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Abstract

In this paper, we consider that agents judge the feasible alternatives through
linguistic terms –when they are confident in their opinions– or linguistic expres-
sions formed by several consecutive linguistic terms –when they hesitate. In this
context, we propose an agglomerative hierarchical clustering process where the
clusters of agents are generated by using a distance-based consensus measure.

1. Introduction

In different decision-making problems, agents show their opinions about a
set of alternatives and then an aggregation procedure generates an outcome
(a winning alternative, several winning alternatives, a ranking on the set of
alternatives, etc.). The opinions given by the agents may be provided in different
ways: the favorite alternative, a subset of acceptable alternatives, a ranking on
the set of alternatives, an assessment for each alternative, etc.

In the case of agents assess independently each alternative, the corresponding
assessments can be of different nature depending of the context: numerical
values, intervals of real numbers, fuzzy numbers, linguistic terms, etc.

Usually people prefer to handle the imprecision through linguistic terms
rather than with exact numerical values. Since opinions are imprecise, trying
to represent them by using a precise number is meaningless (see Zimmer [38]).
Wallsten et al. [34] have shown empirically how most people are more com-
fortable using words rather than numbers to describe probabilities. On the
other hand, for evaluating qualitative aspects, as the comfort of a car, is more
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appropriate to use linguistic terms than quantitative values (see Levrat et al.
[23]).

In the context of voting theory, it is worth mentioning that Balinski and
Laraki [4, 5] have proposed a voting system called Majority Judgment where
voters assess the alternatives through linguistic terms (‘excellent’, ‘very good’,
‘good’, ‘acceptable’, ‘poor’ and ‘to reject’). See Balinski and Laraki [6] for an
experimental analysis of their proposal.

Clearly, the use of linguistic assessments allows the agents to show their
imprecise opinions in a suitable way (see Zadeh [36, 37]). However, in some
situations agents, even experts assessing alternatives within their field of exper-
tise may have doubts about which feasible linguistic term would assign to an
alternative (see Agell et al. [2] and Garćıa-Lapresta et al. [16]). For this reason,
it is interesting to allow the agents to judge in a more imprecise way, giving
them the option of assigning several linguistic terms1.

Our approach concerning the imprecision is based on an adaptation of the
absolute order of magnitude spaces introduced by Travé-Massuyès and Dague
[31] and Travé-Massuyès and Piera [32]; more specifically in the extensions
devised by Roselló et al. [25, 26, 27] (see also Agell et al. [1] and Falcó et al.
[13, 14]).

In many contexts and disciplines, observations or objects are grouped in
clusters in such a way that elements within each cluster are similar to one an-
other with respect to an attribute. Then, objects are classified in homogeneous
clusters and the objects in a cluster are more similar to each other than they
are to an object belonging to a different cluster (see Jain et al. [21] and Everitt
et al. [12], among others).

In this paper, we have devised a clustering procedure in the context of hes-
itant qualitative assessments2. More specifically, we have analyzed how agents
can be grouped into clusters when such agents rate alternatives by means of lin-
guistic terms from a predetermined linguistic scale3, if the agents are confident
in their opinions. If they are not confident about which term to use, they are
allowed to use a linguistic expression generated by several consecutive linguistic
terms.

In the cluster formation, we have considered that the similarity between
two groups of agents with respect to an alternative is the degree of consensus4

1In this way, Torra [29] introduced the notion of hesitant fuzzy set as a generalization of
the intuitionistic fuzzy sets and fuzzy multisets, by allowing the agents to assign several values
for the membership function to each alternative.

2Other clustering procedures have been used in decision-making. For instance, Valls and
Torra [33] proposed one for grouping alternatives taking into account the assessments obtained
in different criteria; Garćıa-Lapresta and Pérez-Román [18] proposed another one for grouping
individuals who rank alternatives through weak orders.

3We have assumed that the linguistic scale is uniformly and symmetrically distributed.
Thus, the distance between consecutive linguistic terms is assumed to be constant.

4The notion of consensus measure was introduced by Bosch [8] in the context of linear
orders. Additionally, Bosch [8] and Alcalde-Unzu and Vorsatz [3] provided axiomatic char-
acterizations of several consensus measures in the context of linear orders. Garćıa-Lapresta
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in the merged group. That consensus is measured taking into account the
distances between all the pairs of individual assessments over the alternative
that is been evaluated (according to a previously fixed metric on the set of
linguistic expressions).

Given an alternative, the agglomerative hierarchical clustering process starts
by joining the two agents that are more similar with respect to that alternative
(ties are broken in a lexicographic manner). The next cluster is created by
merging a new agent to the previous cluster or by joining two agents in such a
way that the similarity is maximized (again ties are broken in a lexicographic
manner). The process continues until the last cluster join all the agents.

The overall agglomerative hierarchical clustering process follows the same
pattern that the previous one, but now taking all the alternatives into account.
The (overall) degree of consensus in a group of agents is defined as the outcome
given by an aggregation function to the degrees of consensus in that group of
agents with respect to all the alternatives. The overall similarity between two
groups of agents is defined as the (overall) degree of consensus in the merged
group.

We have proven some properties that both consensus measures satisfy. These
properties ensure that the similarities that generate the clustering processes
work in a suitable way.

The information provided by the clustering procedure is interesting for know-
ing what is the agreement of the agents over each alternative and also what is the
overall agreement. It is also useful for having a picture on what agents are more
similar regarding a specific alternative as well as from an overall perspective. In
this way, possible outliers are easily detected.

A clear application of our proposal is in consensus reaching processes, where
a human or virtual moderator invites the agents to modify their opinions for
increasing the agreement before applying a decision-making procedure (see, for
instance, Saint and Lawson [28] and Eklund et al. [9]).

In order to show how our proposal works, we illustrate the procedure from
the data of the field experiment carried out by Agell et al. [2].

The rest of the paper is organized as follows. Section 2 is devoted to intro-
duce some notation and basic notions. Section 3 includes the clustering proce-
dure. Section 4 contains the illustrative example. Finally, Section 5 concludes
with some remarks.

2. Notation and basic notions

We now show some concepts and notation we need for introducing our pro-
posal (for more details, see Falcó et al. [14]).

Let A = {1, . . . ,m}, with m ≥ 2, be a set of agents and let X = {x1, . . . , xn},
with n ≥ 2, be the set of alternatives which have to be evaluated. Under total

and Pérez-Román [17] extended that notion to the context of weak orders and they analyzed
a class of consensus measures generated by distances.
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certainty, each agent assigns a linguistic term to every alternative within a lin-
guistic ordered scale L = {l1, . . . , lg}, where l1 < l2 < · · · < lg. The linguistic
scale is balanced and equispaced between consecutive terms. The elements of L
can be linguistic terms as ‘very good’, ‘good’, etc.

Based on the absolute order of magnitude spaces introduced by Travé-Massuyès
and Piera [32], we define the set of linguistic expressions as follows

L = {[lh, lk] | lh, lk ∈ L , 1 ≤ h ≤ k ≤ g},

where [lh, lk] = {lh, lh+1, . . . , lk}. Since [lh, lh] = {lh}, this linguistic expression
can be replaced by the linguistic term lh. In this way, L ⊂ L.

Example 1. Consider the set of linguistic terms L = {l1, l2, l3, l4, l5} with the
meanings given in Table 1.

l1 l2 l3 l4 l5
very bad bad acceptable good very good

Table 1: Meaning of the linguistic terms.

Linguistic expressions have clear meanings. For instance, [l1, l3] means ‘be-
tween very bad and acceptable’, [l4, l5] means ‘between good and very good’,
or ‘at least good’, etc.

Taking into account the approach introduced in Roselló et al. [27], the
set of all the linguistic expressions can be represented by a graph GL. In the
graph, the lowest layer represents the linguistic terms lh ∈ L ⊂ L, the second
layer represents the linguistic expressions created by two consecutive linguistic
terms [lh, lh+1], the third layer represents the linguistic expressions generated
by three consecutive linguistic terms [lh, lh+2], and so on up to last layer where
we represent the linguistic expression [l1, lg]. As a result, the higher an element
is, the more imprecise it becomes.

The vertices in GL are the elements of L and the edges E − F , where E =
[lh, lk] and F = [lh, lk+1], or E = [lh, lk] and F = [lh+1, lk].

Fig. 1 shows the graph representation of Example 1.
When an agent is confident about his opinion on an alternative, he can assign

a linguistic term lh ∈ L to this alternative. However, if he is unconfident about
his opinion, he might use a linguistic expression [lh, lk] ∈ L, with h < k. For
more details, see Roselló et al. [25, 26, 27].

In Falcó et al. [13, 14] the mentioned approach has been used for intro-
ducing and analyzing some voting systems where agents show their linguistic
assessments over the alternatives under uncertainty.

A profile V is a matrix (vai ) consisting of m rows and n columns of linguistic
expressions, where the element vai ∈ L represents the linguistic assessment given
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[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 1: Graph representation of the linguistic expressions for g = 5.

by the agent a ∈ A to the alternative xi ∈ X. Then,

V =


v11 · · · v1i · · · v1n
· · · · · · · · · · · · · · ·
va1 · · · vai · · · van
· · · · · · · · · · · · · · ·
vm1 · · · vmi · · · vmn

 = (vai ) .

The distance between two linguistic expressions E ,F ∈ L is defined as the
geodesic distance in the graph GL between their associated vertices and it is
denoted by d(E ,F). The geodesic distance between two vertices in a graph
is the number of edges in one of the shortest paths connecting them5. These
geodesic distances can be analytically expressed through

d
(
[lh, lk], [lh′ , lk′ ]

)
= |h− h′|+ |k − k′|.

Notice that the geodesic distance between consecutive linguistic terms is al-
ways 2: d(lh, lh+1) = d

(
[lh, lh], [lh+1, lh+1]

)
= 2, for every h ∈ {1, . . . , g − 1}.

This fact is consistent with the assumption that L is uniformly and symmetri-
cally distributed.

3. Clustering

There are many clustering algorithms because the notion of cluster cannot
be precisely defined (see Ward [35], Jain et al. [21], Everitt et al. [12] and

5In Falcó et al. [13] these distances are modified through two parameters for penalizing
the increase of imprecision.
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Estivill-Castro [11], among others).
Hierarchical clustering deals with how objects should be grouped into clus-

ters. Given a distance matrix, linkage objects can be computed through a
criterion to compute distances between groups. There are common and basic
criteria such as single-link, complete-link, average-link and centroid distance cri-
terion. These criteria are mostly based on a measure of (dis)similarity between
sets of observations. Mostly, this is achieved through a metric that measures
the distance between pairs of observations as well as a linkage criterion which
measures the (dis)similarity between sets, defined as a function of the pairwise
distances of observations in the sets.

In our proposal, we will use consensus measures for defining the (dis)similari-
ties and also for defining the linkage criterion.

In single-link and complete-link, the (dis)similarity of two clusters is defined
as the (dis)similarity of their most (dis)similar elements. These criteria do not
consider what happens to the other elements of the clusters.

Average-link and centroid distance criterion evaluate cluster quality based
on all (dis)similarities between members, thus avoiding the pitfalls of the single-
link and complete-link criteria. However, these criteria increase the overall time
complexity because it is necessary to obtain a representative element of each
new cluster. It is important to mention that we do not represent each cluster
by a single representative element, but we use all the information included in
the cluster.

For the above four criteria, its time complexity is Θ(N2 logN) (see Manning
et al. [24, Chapter 17]). The consensus criterion in the alternatives level has
the same time complexity. The structure of the algorithm matches the above
criteria, but the similarity function for potential merge pairs considers what
happens to the other members in the clusters. This procedure does not increase
time complexity.

3.1. Measuring consensus

For measuring the consensus over an alternative in a group of agents (Defi-
nition 1), we propose a method based on the Gini coefficient [19] (a classical dis-
persion measure over income distributions that is based on the sum of absolute
differences between individual incomes) and the consensus measures introduced
by Garćıa-Lapresta and Pérez-Román [17] in the context of weak orders (see also
Erdamar et al. [10] for an extension of this notion to the preference-approval
setting).

With P2(A) = {I ⊆ A | #I ≥ 2} we denote the family of subsets of at least
two agents. The inverse of a linguistic expression E = [lh, lk] ∈ L is defined
as E−1 = [lg+1−k, lg+1−h]. Given a profile V = (vai ), its inverse is defined
as V −1 = (uai ) with uai = (vai )−1. Given a permutation π on A, a profile
V = (vai ) and a subset of agents I ∈ P2(A), the profile V π = (uai ) is defined

as uai = v
π(a)
i ; and Iπ = {π−1(a) | a ∈ I}, i.e., a ∈ Iπ ⇔ π(a) ∈ I.

Following the pattern of the consensus measures introduced by Garćıa-
Lapresta and Pérez-Román [17], we now define the degree of consensus over
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an alternative through distances between linguistic expressions (instead of weak
orders) and the corresponding normalization.

Definition 1. Given a profile V = (vai ), the degree of consensus in a subset of
agents I ∈ P2(A) over the alternative xi ∈ X is defined as

C(V, I, xi) = 1−

∑
a,b∈I
a<b

d
(
vai , v

b
i

)
(
|I|
2

)
· 2 · (g − 1)

.

The following result includes some interesting properties of the proposed
consensus measure. Normalization means that consensus is always between 0
and 1. Anonymity requires symmetry with respect to agents. Unanimity means
that the maximum consensus is only achieved when all opinions are the same.
Positiveness means that consensus is always positive whenever more than two
individuals are involved. Maximum dissension means that in each subset of
two agents, the minimum consensus is only reached whenever the assessments
of agents are extreme and each one is the inverse of the other. Reciprocity
means that if all individual assessments are reversed, then the consensus does
not change.

Proposition 1. For every profile V = (vai ), every subset of agents I ∈ P2(A)
and every alternative xi ∈ X, the following statements hold:

1. Normalization: C(V, I, xi) ∈ [0, 1].

2. Anonymity: C(V π, Iπ, xi) = C(V, I, xi) for every permutation π on A.

3. Unanimity: C(V, I, xi) = 1 ⇔
(
vai = vbi for all a, b ∈ I

)
.

4. Positiveness: If #I > 2, then C(V, I, xi) > 0.

5. Maximum dissension: C(V, {a, b}, xi) = 0 ⇔
((
vai = l1 and vbi = lg

)
or(

vai = lg and vbi = l1
))

.

6. Reciprocity: C(V −1, I, xi) = C(V, I, xi).

Proof: Let V = (vai ) be a profile.

1. Since 2·(g−1) is the maximum distance between linguistic expressions and(
|I|
2

)
is the number of terms in the numerator of the quotient appearing

in C(V, I, xi), we have that C(V, I, xi) ∈ [0, 1] for all I ∈ P2(A) and
xi ∈ X.
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2. Let V = (vai ) and V π = (uai ) with uai = v
π(a)
i . Then, we have

C(V π, Iπ, xi) = 1−

∑
a,b∈Iπ
a<b

d
(
uai , u

b
i

)
(
|Iπ|

2

)
· 2 · (g − 1)

=

1−

∑
π(a),π(b)∈I
π(a)<π(b)

d
(
v
π(a)
i , v

π(b)
i

)
(
|I|
2

)
· 2 · (g − 1)

= C(V, I, xi).

3. It follows from the fact that d is a distance.

4. If C(V, I, xi) = 0, then d(vai , v
b
i ) is maximum for all a, b ∈ I. Since the

maximum distance between linguistic expressions is only reached when
comparing l1 and lg, we have vai ∈ {l1, lg} for every a ∈ I. Consequently,
#I = 2.

5. It follows from the fact that the maximum distance between linguistic
expressions is only reached when comparing l1 and lg.

6. It is due to the fact that d
(
E−1,F−1

)
= d(E ,F) for all E ,F ∈ L.

Once we know the degree of consensus of a subset of agents over each alter-
native, it would be interesting to determine the overall consensus of this group
of agents. For this matter, we will use aggregation functions (see Fodor and
Roubens [15], Beliakov et al. [7], Torra and Narukawa [30] and Grabisch et al.
[20]).

Definition 2. An aggregation function is a mapping F : [0, 1]n −→ [0, 1]
that is monotonic in each component and satisfies the boundary conditions
F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1. Moreover,

1. F is symmetric if for all (t1, . . . , tn) ∈ [0, 1]n and permutation σ on
{1, . . . , n} it holds F (tσ(1), . . . , tσ(n)) = F (t1, . . . , tn).

2. F is idempotent if for every t ∈ [0, 1] it holds F (t, . . . , t) = t.

3. F is compensative if for every (t1, . . . , tn) ∈ [0, 1]n it holds

min(t1, . . . , tn) ≤ F (t1, . . . , tn) ≤ max(t1, . . . , tn).

It is easy to see that every idempotent aggregation function is compensative,
and viceversa.

Typical symmetric, idempotent (hence compensative) aggregation functions
are the family of OWA operators (including the arithmetic mean, the median,
the maximum, the minimum, the mid-range and the family of trimmed means,
among others) and the family of quasiarithmetic means.
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Definition 3. Given an aggregation function F : [0, 1]n −→ [0, 1], the degree
of consensus relative to F of a set of agents I ∈ P2(A) in a profile V is defined
as

CF (V, I) = F (C(V, I, x1), . . . , C(V, I, xn)).

Although the properties of CF (V, I) depend on the chosen aggregation func-
tion F , in the following result we show some properties that are always satisfied.
The new property neutrality means symmetry with respect to alternatives.

Given a permutation σ on {1, . . . , n} and a profile V = (vai ), the profile
Vσ = (uai ) is defined as uai = vaσ(i).

Proposition 2. For every aggregation function F : [0, 1]n −→ [0, 1], every
profile V and every subset of agents I ∈ P2(A), the following statements hold:

1. Normalization: CF (V, I) ∈ [0, 1].

2. Anonymity: CF (V π, Iπ) = CF (V, I) for every permutation π on A.

3. Unanimity: If vai = vbi for all xi ∈ X and a, b ∈ I, then CF (V, I) = 1.

4. Positiveness: If #I > 2 and F is idempotent, then CF (V, I) > 0.

5. Maximum dissension: If
((
vai = l1 and vbi = lg

)
or

(
vai = lg and

vbi = l1
))

for all xi ∈ X, then CF (V, {a, b}) = 0.

6. Neutrality: If F is symmetric, then CF (Vσ, I) = CF (V, I) for every per-
mutation σ on {1, . . . , n}.

7. Reciprocity: CF (V −1, I) = CF (V, I).

8. Compensativeness: If F is idempotent, then

min(C(V, I, x1), . . . , C(V, I, xn)) ≤ CF (V, I) ≤ max(C(V, I, x1), . . . , C(V, I, xn)).

Proof: By Proposition 1 and the properties of F .

3.2. Clustering in the alternatives level

We now introduce a similarity function for each alternative that is con-
structed through the distance-based degrees of consensus C(V, I, xi). With
these functions we will formulate our proposal of clustering in the alternatives
level. With P(A) we denote the power set of A, i.e., the set of all the subsets
of agents in A.

Definition 4. Given a profile V and an alternative xi ∈ X, the similarity
function relative to xi

Si :
(
P(A) \ {∅}

)2 −→ [0, 1]

is defined as

Si(I, J) =

{
C(V, I ∪ J, xi), if #(I ∪ J) ≥ 2,

1, if #(I ∪ J) = 1.
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Obviously, Si(I, J) = Si(J, I) for all I, J ∈
(
P(A) \ {∅}

)
. Moreover, the

mapping δi : A2 −→ [0, 1] defined as δi(a, b) = 1− Si({a}, {b}) is a metric:

δi(a, b) =
d
(
vai , v

b
i

)
2 · (g − 1)

.

Given a profile V = (vai ), the distance matrix Di =
(
d
(
vai , v

b
i

))
contains

all the distances between the assessments given by the agents to the alternative
xi, i = 1, . . . , n. Taking into account these matrices, all the consensus and
similarities computations can be made.

For each alternative xi ∈ X, the agglomerative hierarchical clustering pro-
cedure we propose consists of a sequential process addressed by the following
stages:

1. The initial clustering is Ai0 = {{1}, . . . , {m}}.
2. Calculate the similarities between all the pairs of agents, Si({a}, {b}) for

all a, b ∈ A.

3. Select the two agents a, b ∈ A that maximize these similarities in a lexi-
cographic manner and construct the first cluster Ai1 = {a, b}.

4. The new clustering is Ai1 =
(
Ai0 \ {{a}, {b}}

)
∪ {Ai1}.

5. Calculate the similarities Si(Ai1, {c}) and take into account the previously
computed similarities Si({c}, {d}), for all {c}, {d} ∈ Ai1.

6. Select the two elements of Ai1 with maximum value of Si in a lexico-
graphic manner and construct the second cluster Ai2.

7. Proceed as in previous items until obtaining the next clustering Ai2.

The process continues in the same way until obtaining the last cluster,
Aim−1 = {A}.

3.3. Overall clustering

Once the clustering in the alternatives level has been formulated, we now
introduce an overall clustering procedure that is based on the consensus degrees
CF (V, I) for a fixed aggregation function F .

Definition 5. Given a profile V and aggregation function F : [0, 1]n −→ [0, 1],
the overall similarity function associated with F ,

SF :
(
P(A) \ {∅}

)2 −→ [0, 1],

is defined as

SF (I, J) =

{
CF (V, I ∪ J), if #(I ∪ J) ≥ 2,

1, if #(I ∪ J) = 1.
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Obviously, SF (I, J) = SF (J, I) for all I, J ∈
(
P(A) \ {∅}

)
.

The overall clustering procedure follows the same pattern that the one in-
troduced in the alternatives level, but now using the overall similarity func-
tion SF instead of Si, starting from A0 = {{1}, . . . , {m}} and following until
Am−1 = {A}.

Dendrograms are a useful tool for viewing the hierarchical dynamic process.
Taking into account the visual information provided by a dendrogram, it is
possible to decide when to stop the clustering formation. But if a fixed number
of clusters has to be constructed, the process should stop whenever this number
of clusters is reached.

4. An illustrative example

In order to illustrate our proposal of clustering, we consider the field exper-
iment carried out by Agell et al. [2] where five experts assessed five fruits with
respect to their suitability to combine with dark chocolate.

The five experts of A = {1, 2, 3, 4, 5} evaluated the five fruits of X =
{x1, x2, x3, x4, x5} (see Table 2) through the linguistic expressions of L gener-
ated by the set of five linguistic terms L = {l1, l2, l3, l4, l5} whose meanings are
in Table 3.

x1 x2 x3 x4 x5
red-bilberry gooseberry west Indian cherry cashew fruit guava

Table 2: Fruits.

l1 l2 l3 l4 l5
it does not it does not combines combines it is an excellent

combine at all combine well well very well combination

Table 3: Meaning of the linguistic terms.

Table 4 contains the assessments given by the experts to the fruits.

x1 x2 x3 x4 x5
1 [l4, l5] [l3, l4] l1 [l4, l5] l1
2 l5 [l1, l2] [l2, l3] l3 [l1, l2]
3 l5 l3 l4 l5 l2
4 l5 [l2, l3] l4 l5 [l1, l2]
5 l5 [l1, l2] l2 [l1, l5] l3

Table 4: Assessments given by the experts.

Notice that the experts provided 25 assessments: 15 of them were single
linguistic terms, 9 linguistic expressions with two consecutive linguistic terms
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and one linguistic expression with all the linguistic terms. It is important em-
phasizing that even experts may hesitate when they assess alternatives (in this
experiment 40% of the cases).

Taking into account the individual assessments included in Table 4, the
distance matrices Di =

(
d
(
vai , v

b
i

))
, i = 1, . . . , 5, will be used for all the needed

computations in the clustering process.

D1 =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 , D2 =


0 4 1 2 4
4 0 3 2 0
1 3 0 1 3
2 2 1 0 2
4 0 3 2 0

 ,

D3 =


0 3 6 6 2
3 0 3 3 1
6 3 0 0 4
6 3 0 0 4
2 1 4 4 0

 , D4 =


0 3 1 1 3
3 0 4 4 4
1 4 0 0 4
1 4 0 0 4
3 4 4 4 0

 ,

D5 =


0 1 2 1 4
1 0 1 0 3
2 1 0 1 2
1 0 1 0 3
4 3 2 3 0

 .

When considering the whole set of experts, the consensus degrees over the
five alternatives are as follows:

C(V,A, x1) = 0.95 > C(V,A, x5) = 0.787 > C(V,A, x4) = 0.75 >

C(V,A, x2) = 0.725 > C(V,A, x3) = 0.6 .

According to the decision procedure considered by Agell et al. [2], the social
ranking of the five alternatives is x1 � x4 � x3 � x2 � x5 . Thus, the maximum
consensus is reached over the best alternative.

After some computations, we obtain the following clusterings in the alterna-
tives level (see also Fig. 2):

A1
0 = {{1}, {2}, {3}, {4}, {5}} A2

0 = {{1}, {2}, {3}, {4}, {5}}
A1

1 = {{2, 3}, {1}, {4}, {5}} A2
1 = {{2, 5}, {1}, {3}, {4}}

A1
2 = {{2, 3, 4}, {1}, {5}} A2

2 = {{2, 5}, {1, 3}, {4}}
A1

3 = {{2, 3, 4, 5}, {1}} A2
3 = {{2, 5}, {1, 3, 4}}

A1
4 = {{1, 2, 3, 4, 5}} A2

4 = {{1, 2, 3, 4, 5}}
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A3
0 = {{1}, {2}, {3}, {4}, {5}} A4

0 = {{1}, {2}, {3}, {4}, {5}}
A3

1 = {{3, 4}, {1}, {2}, {5}} A4
1 = {{3, 4}, {1}, {2}, {5}}

A3
2 = {{3, 4}, {2, 5}, {1}} A4

2 = {{1, 3, 4}, {2}, {5}}
A3

3 = {{3, 4}, {1, 2, 5}} A4
3 = {{1, 2, 3, 4}, {5}}

A3
4 = {{1, 2, 3, 4, 5}} A4

4 = {{1, 2, 3, 4, 5}}

A5
0 = {{1}, {2}, {3}, {4}, {5}}
A5

1 = {{2, 4}, {1}, {3}, {5}}
A5

2 = {{1, 2, 4}, {3}, {5}}
A5

3 = {{1, 2, 3, 4}, {5}}
A5

4 = {{1, 2, 3, 4, 5}}.

2 3 4 5 1
1

0.90

0.80

0.70

0.60

(a) Alternative x1.

2 5 1 3 4
1

0.90

0.80

0.70

0.60

(b) Alternative x2.

3 4 1 2 5
1

0.90

0.80

0.70

0.60

(c) Alternative x3.

3 4 1 2 5
1

0.90

0.80

0.70

0.60

(d) Alternative x4.

2 4 1 3 5
1

0.90

0.80

0.70

0.60

(e) Alternative x5.

Figure 2: Dendrograms in the alternatives level.
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Notice that the clustering processes are quite different depending on the
alternatives. Thus, it makes sense to take into account the overall clustering by
using different aggregation functions. In this example we have considered the
two most important OWA operators, the arithmetic mean and the median, and
additionally the 1-trimmed mean6, a compromise between the arithmetic mean
and the median.

When using the arithmetic mean, the overall clustering is as follows (see also
Fig. 3):

A0 = {{1}, {2}, {3}, {4}, {5}}
A1 = {{3, 4}, {1}, {2}, {5}}
A2 = {{2, 3, 4}, {1}, {5}}
A3 = {{1, 2, 3, 4}, {5}}
A4 = {{1, 2, 3, 4, 5}}.

3 4 2 1 5
1

0.90

0.80

0.70

0.60

Figure 3: Overall dendrogram with the arithmetic mean.

When using the 1-trimmed mean, the overall clustering is as follows (see also
Fig. 4):

A0 = {{1}, {2}, {3}, {4}, {5}}
A1 = {{3, 4}, {1}, {2}, {5}}
A2 = {{1, 3, 4}, {2}, {5}}
A3 = {{1, 3, 4}, {2, 5}}
A4 = {{1, 2, 3, 4, 5}}.

6The arithmetic mean after discarding the highest and lowest values.
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3 4 1 2 5
1

0.90

0.80

0.70

0.60

Figure 4: Overall dendrogram with the 1-trimmed mean.

When using the median, the overall clustering is as follows (see also Fig. 5):

A0 = {{1}, {2}, {3}, {4}, {5}}
A1 = {{3, 4}, {1}, {2}, {5}}
A2 = {{3, 4}, {2, 5}, {1}}
A3 = {{1, 3, 4}, {2, 5}}
A4 = {{1, 2, 3, 4, 5}}.

3 4 1 2 5
1

0.90

0.80

0.70

0.60

Figure 5: Overall dendrogram with the median.

Clearly, the aggregation function used in the overall clustering process has
been determinant in the cluster formation. In this example, for obtaining the
corresponding overall similarities, five values have been aggregated: the consen-
sus degrees over each of the five alternatives in different subsets of agents. In
each case, the arithmetic mean takes into account all the five values and the
median only one, while the 1-trimmed mean considers the three central values.
It is worth mentioning that the only coincidence among the three cases is that
{3, 4} is the first cluster. The clustering processes generated by the 1-trimmed
mean and the median are similar (see Figures 4 and 5), but the one generated
by the arithmetic mean is totally different (see Figure 3). The reason is that
the arithmetic mean is very sensitive to extreme values. In our opinion, in
this example the overall clustering generated by the 1-trimmed mean could be
considered the most suitable of the three cases. But, in general, an important
and controversial task of the decision maker is to fix an appropriate aggregation
function for conducting the overall clustering process.
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5. Concluding remarks

In this paper, we have proposed a clustering algorithm in a hesitant linguistic
evaluation setting where agents assign linguistic terms to the alternatives or,
when they are unconfident in their opinions, linguistic expressions formed by
several consecutive linguistic terms.

The clustering procedure is based on a notion of consensus generated by
geodesic distances between individual assessments. The main feature of this
process is that agents are joined in a cluster when they maximize the consensus.

Clearly, other metrics can be used, in particular the parameterized family
introduced by Falcó et al. [14]. The geodesic metric used in this paper, for
simplicity reasons, is the degenerate case of the mentioned family, just when
the parameters that penalize the imprecision are zero.

A possible application to the devised clustering procedure is to consensus
reaching processes in the hesitant linguistic evaluation setting. They are dy-
namic and sequential procedures where a moderator tries to convince agents
to change their opinions in several rounds for increasing the agreement in the
group (see Kacprzyk et al. [22], Saint and Lawson [28] and Eklund et al. [9],
among others).

Due to the monotonicity of aggregation functions, the overall consensus (Def-
inition 3) is sensitive to the increase of the consensus degrees in the alternatives
level (Definition 1). Thus, the moderator only needs to help the agents increase
the agreement in each alternative. In this way, the corresponding dendrograms
show who are the outliers. Then, the moderator may focus on these agents.
Once a consensus threshold is reached, a group decision-making procedure can
be carried out in order to rank the alternatives (within our framework those
given by Falcó et al. [13, 14], for instance).
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