
  

  

Abstract— The aim of this pilot study was to analyze 
spontaneous electroencephalography (EEG) activity in 
Alzheimer’s disease (AD) by means of Cross-Sample Entropy 
(Cross-SampEn) and two local measures derived from graph 
theory: clustering coefficient (CC) and characteristic path 
length (PL). Five minutes of EEG activity were recorded from 
37 patients with dementia due to AD and 29 elderly controls. 
Our results showed that Cross-SampEn values were lower in 
the AD group than in the control one for all the interactions 
among EEG channels. This finding indicates that EEG activity 
in AD is characterized by a lower statistical dissimilarity 
among channels. Significant differences were found mainly for 
fronto-central interactions (p < 0.01, permutation test). 
Additionally, the application of graph theory measures 
revealed diverse neural network changes, i.e. lower CC and 
higher PL values in AD group, leading to a less efficient brain 
organization. This study suggests the usefulness of our 
approach to provide further insights into the underlying brain 
dynamics associated with AD. 

I. INTRODUCTION 

Alzheimer’s disease (AD) is a primary degenerative 
dementia, which gradually destroys brain cells. The number 
of people with dementia increases exponentially with 
increasing age. AD affects 1% of population under 60 years 
but reaches 30% for people over 85 years. Besides, due to the 
increase in average life expectancy during the 21st century, it 
is expected that dementia will affect 81.1 million people by 
2040 [1]. Thus, AD is becoming a key public-healthcare and 
economic problem.  

Pathologically, AD is characterized by the deposition of 
amyloid beta-peptide as insoluble extracellular plaques and 
intracellular tau aggregation [2]. Currently, a definite 
diagnosis of AD requires examination of brain tissue at 
autopsy. For this reason, physicians can really only make a 
diagnosis of probable AD. Clinical diagnosis usually includes 
medical history, neurological examination, blood tests, and 
neuroimaging studies. Nowadays, electroencephalography 
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(EEG) is not always used in AD diagnosis, in spite of its 
potential to characterize neural dynamics [3]. EEG is a non-
invasive technique to measure the electromagnetic brain 
activity [4]. It allows the assessment of the spatio-temporal 
patterns of neural activity and their interactions in the time 
range of milliseconds [5]. The EEG reflects not only brain 
oscillation activity but also the underlying associated neural 
dynamics [6]. As AD affects the cerebral cortex areas, EEG 
is a useful technique to understand the neural mechanisms of 
this disorder. 

For the analysis of EEG activity in AD, spectral 
techniques are the most extended option, due to their 
simplicity and ease of clinical interpretation. Spectral 
analyses seem to discriminate AD patients from control 
subjects through an increased brain activity in lower 
frequency bands associated with AD [7]. From another point 
of view, non-linear analysis techniques have been widely 
used since the mid-90s [8]. Several non-linear analysis 
methods have suggested that AD elicits a complexity 
decrease in spontaneous brain activity (using Lempel-Ziv 
complexity or fractal dimension) and an increase of regularity 
(using approximate entropy and sample entropy) [9-10]. All 
these methods (both spectral and non-linear) measure local 
activation patterns in individual sensors. However, it has 
become clear that simple activation studies are no longer 
sufficient for AD characterization [11]. For this reason, graph 
theory has been introduced in cognitive neuroscience to 
overcome the limitations of the aforementioned analyses. In 
this regard, the application of graph theory concepts can be 
used to gain more insight into the AD pathophysiological 
processes [12]. 

In this study, EEG activity has been analyzed in 37 
patients with dementia due to AD and 29 control subjects 
using Cross-Sample Entropy (Cross-SampEn) and two local 
measures derived from graph theory: clustering coefficient 
(CC) and characteristic path length (PL). Our aim is to 
characterize the neural mechanisms in AD. 

II. MATERIALS 

A. Subjects 
EEG data were acquired from 66 subjects. The AD group 

was formed by thirty-seven patients with mild/moderate 
dementia due to AD, diagnosed according to the clinical 
criteria of the National Institute on Aging and Alzheimer’s 
Association (NIA-AA). Twenty-nine elderly subjects without 
cognitive impairments and with no history of neurological or 
psychiatric disorders comprised the control group. Table 1 
shows socio-demographic and clinical data for both groups.  
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All participants and patients’ caregivers were informed 
about the research background and the study protocol. 
Moreover, all of them gave their written informed consent to 
be included in the study. The Ethics Committee at the 
“Hospital Universitario Río Hortega” (Valladolid, Spain) 
endorsed the study protocol, according to The Code of Ethics 
of the World Medical Association (Declaration of Helsinki). 

B. EEG recording 
EEG activity was acquired with a 19-channel EEG 

system (XLTEK®, Natus Medical). For each subject, five 
minutes of resting-state EEG activity were recorded at a 
sampling frequency of 200 Hz from the 19 following 
electrodes: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, 
T5, T6, Pz, P3, P4, O1 and O2. EEG data were then digitally 
filtered between 1 and 40 Hz. Finally, 27.7 ± 8.4 (mean ± 
standard deviation, SD) artifact-free 5-s length epochs per 
channel and subject were selected by visual inspection.  

III. METHODS 

A. Cross Sample Entropy (Cross-SampEn) 
Cross-SampEn is a nonlinear measure that allows 

assessing the degree of similarity of two time series [13]. It 
was proposed by Richman and Moorman to overcome some 
drawbacks of a related algorithm called Cross-Approximate 
Entropy (Cross-ApEn). Firstly, Cross-SampEn remains 
relatively consistent for conditions where Cross-ApEn does 
not. Secondly, Cross-ApEn is not always defined. Cross-
SampEn solves this problem. Finally, there is other important 
difference between these two algorithms: whereas Cross-
ApEn analysis exhibits direction dependence (i.e. it is an 
asymmetric method), Cross-SampEn is a direction 
independent measure. 

To compute Cross-SampEn, a run length m and a 
tolerance window r must been set. Given two time series, u(i) 
and v(i), Cross-SampEn measures, within tolerance r, the 
frequency of v-patterns similar to a given u-pattern of length 
m. Although a right choice of m and r are important to 
calculate Cross-SampEn, no guidelines exist to optimize their 
values. However, values of m equal to 1 or 2, and r between 
0.1 and 0.25 have been suggested [14]. In this pilot study, we 
have specified values of m = 1 and r = 0.2. The detailed 
algorithm to calculate the Cross-SampEn between two 
signals u(i) and v(i) is the following [13, 15]: 

1) Normalize u(i) and v(i). The normalized time series u*(i) 
and v*(i) are:  
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2) Form the vector sequences: 
xm(i) = [u*(i), u*(i+1),…, u*(i+m–1)],    1 ≤ i ≤ N–m   (3) 
ym (j) = [v*(j), v*(j+1),…, v*(j+m–1)],    1 ≤ j ≤ N–m.   (4) 

3) Define the distance between the vector sequences xm(i) 
and ym(j) as: 
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4) For each xm(i), count the number of j (j=1,2,…,N−m) so 
that d[xm(i),ym(j)] ≤ r, denoted as bi

m(r). Then, for 
i=1,2,…,N−m, set: 
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))(( uvrBmi  is the probability that any ym(j) is within r 
of xm(i). 

5) Define ))(( uvrBm  as: 
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6) Similarly, define ))(( uvrAmi  as 1/(N−m) times the 

number of j (j=1,2,…,N−m), such the distance between 
xm+1(i) and ym+1(j) is less than or equal to r. Then, 
calculate:  
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))(( uvrBm  is the probability that two templates 

matches for m points, whereas ))(( uvrAm  is the 
probability that two templates matches for m+1 points.  

7) Finally, Cross-SampEn is defined as: 
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In this study, Cross-SampEn has been computed for all 
pairwise combinations of EEG channels. After the averaging 
process over all artifact-free epochs, a 19 × 19 Cross-SampEn 
matrix per subject was obtained. 

B. Graph Theory 
Graph theory is the scientific study of graphs or networks. 

A graph is a set of nodes (or vertices) and the corresponding 
set of edges (or connections), defined as the 
connectivity/similarity values among nodes [16]. In our 
study, a network with N = 19 nodes (corresponding to the 
aforementioned 19 EEG electrodes) was analyzed. The edge 
between two vertices k and l takes the Cross-SampEn value 
between channels k and l. The edge weight between these 
two vertices k and l is denoted as wkl. A graph can be 
characterized using various network parameters. In this 
study, CC and PL were calculated for each node.  

We can define the CC of a node k, CCk, as the probability 
that other nodes l, that are connected to node k, will be also 
connected to each other [17]: 

TABLE I. SOCIO-DEMOGRAPHIC AND CLINICAL DATA FOR EACH GROUP 

 AD group Control group 

Number of subjects 37 29 

Age (years) (Mean ± SD) 79.2 ± 6.9 76.6 ± 7.2 

Gender (Male:Female) 13:24 9:20 

MMSEa (Mean ± SD) 18.7 ± 6.2 28.9 ± 1.3 
a MMSE: Mini-mental State Examination 
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Figure 1. EEG layouts showing the distribution of mean values for each group (Controls and AD patients) and the corresponding p-values:  
(a) Cross-Sample Entropy among electrodes; (b) Clustering coefficient of each electrode; (c) Characteristic path length of each electrode. 

 
 
 

 

 
 

∑∑

∑∑

≠
≠
≠

≠
≠
≠

=

kp
pq
kq

kqkp

kp
pq
kq

pqkqkp

k ww

www

CC .      (10) 

 

On the other hand, PL of node k, PLk, is calculated as the 
average minimal travel distance dkl between node k and all 
nodes l [18]:  
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where dkl is the shortest weighted distance between 
nodes k and l in the graph and N is the number of nodes of 
the network (N = 19). 
 

C. Statistical analysis 
Statistical comparison between groups was performed by 

means of multiple comparisons nonparametric permutation 
test. It allows achieving a strong control over type I error in 
situations in which the multiplicity of testing must be taken 
into account, as in this case. 

IV. RESULTS 

Firstly, Cross-SampEn measure was applied to the EEG 
data with parameter values of m = 1 and r = 0.2. Fig. 1a 
illustrates entropy values for both groups. This figure shows 
that Cross-SampEn values were higher in the control group 
than in AD group for all EEG channels combinations. This 
finding suggests that dementia due to AD is characterized by 
a higher degree of similarity among channels. Right panel of 
Fig. 1a summarized statistical results (it is important to note 



  

that only significant differences between groups are 
displayed). 

 Secondly, CC and PL measures were calculated from 
Cross-SampEn values. As expected, our results revealed that 
AD is associated with lower CC in comparison with controls. 
On the other hand, the patients group exhibited higher values 
of PL than the control group. Differences were statistically 
significant (p < 0.01, nonparametric permutation test) with 
both parameters in all EEG channels, with the exception of 
T4 and O1. 

V. DISCUSSION AND CONCLUSION 
In this pilot study, EEG activity was analyzed from 37 

patients with dementia due to AD and 29 elderly control 
subjects by means of Cross-SampEn, CC and PL. Our main 
goal was to characterize the neural mechanisms in AD. 

Cross-SampEn results revealed that AD patients exhibit a 
higher degree of similarity among channels than controls. 
These findings agree with previous studies. For instance, 
Jeong et al. [19] reported lower values of cross-mutual 
information in AD subjects than in controls, mainly over 
frontal and antero-temporal regions. Koenig et al. [20] 
analyzed a large EEG database of control subjects and 
patients with varying degrees of cognitive decline or AD 
using global field synchronization. Their results showed 
decreased synchronization values in alpha, beta, and gamma 
frequency bands [20]. All these studies support the notion 
that AD is associated with a loss of functional connectivity. 

Graph theory results showed lower CC and higher PL 
values in AD group in comparison with the control one. As 
CC provides a measure of the node strength, our study 
indicates that functional brain networks in AD are 
characterized by a diminished strength. On the other hand, 
our PL results suggest that the different brain areas are worse 
connected in AD group. These findings partially agree with 
previous studies. Using synchronization likelihood and 
unweighted graphs, de Haan et al. [12] found a significant 
decrease of CC in the lower alpha and beta bands in AD 
group, but also diminished PL values in the lower alpha and 
gamma bands. The main finding of an fMRI study is that 
brain networks in AD are characterized by lower CC values 
but similar PL values in comparison with controls [21]. These 
researches suggest that AD is associated with less efficient 
information exchange between brain areas [12]. 

Some limitations of our research work merit consideration. 
Firstly, the sample size was limited to 66 subjects. In addition 
to this, only AD patients and controls took part in this study. 
Future efforts will be focused to increase the number of 
subjects, as well as to include mild cognitive impairment 
subjects, as this condition is considered a prodromal stage of 
AD. Finally, CC and PL are not the only measures to 
characterize brain networks, so other graph theory parameters 
could provide complementary information. 

In sum, our study leads us to conclude that spontaneous 
EEG activity in AD patients is accompanied by diverse 
neural network changes. This study suggests the usefulness 
of our approach (combination of Cross-SampEn, CC and PL) 
to provide further insights into the underlying brain dynamics 
associated with AD.  
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