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Abstract— The aim of this study was to analyze resting-state 
magnetoencephalography (MEG) activity in Alzheimer’s 
disease (AD) by means of Granger Causality (GC), an effective 
connectivity measure that provides an estimation of the 
information flow between brain regions. For this task, five 
minutes of MEG recordings were acquired with a 148-channel 
whole-head magnetometer from 36 AD patients and 26 healthy 
controls. Abnormalities in AD connectivity were found in the 
five typical frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), 
alpha (α, 8-13 Hz), beta (β, 13-30 Hz), and gamma (γ, 30-65 
Hz). Noteworthy increments in delta band and decrements in 
beta and gamma bands revealed disrupted connections in AD 
brain activity. Our analyses suggest that GC may be useful to 
characterize the brain impairment in AD. 

I. INTRODUCTION 

Alzheimer’s disease (AD), the most common cause of 
dementia, is a neurodegenerative disorder associated with 
aging and characterized by progressive memory and 
cognitive impairment. This disease has an important impact 
on the social life and development of daily activities of 
patients and families [1]. Around 46.8 million people 
worldwide suffer from dementia in 2015 [2]. Among them, it 
is estimated that around 60% to 80% are caused by AD [3], 
[4]. Due to the increase in elderly population, AD is 
becoming a growing medical concern. 

Over the years, several techniques have been used to 
describe the brain dynamics in AD. Electroencephalography 
(EEG), magnetoencephalography (MEG), positron emission 
tomography (PET), and functional magnetic resonance 
imaging (fMRI) allow to study brain activity in a non-
invasive way [5]. In some of the cases, they rely on indirect 
measures to evaluate the brain activity. For instance, fMRI 
and PET measure changes in the brain hemodynamics 
response caused by neural activation, providing an excellent 
spatial resolution but a poor temporal resolution, which is 
limited by the rate of oxygen release to neurons (fMRI) or 
radioactive tracer (PET), and by the blood flow. On the other 
hand, EEG and MEG provide a direct measure of the 
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electromagnetic brain activity: electric potentials (EEG) or 
magnetic fields (MEG) [5]. On the contrary to fMRI or PET, 
temporal resolution is limited by the sampling frequency of 
the device, achieving resolutions of less than 1 ms. 
Additionally, magnetic fields are less distorted than electrical 
activity due to the heterogeneous conductivity of the skull 
and scalp. Furthermore, MEG provides reference-free 
recordings and a better spatial resolution than EEG. 
Consequently, MEG can be considered an appropriate 
technique for the analysis of brain activity. 

Most of the efforts on understanding brain functioning 
have focused on the evaluation of brain connectivity, as it 
could be an important tool for the comprehension of the 
underlying mechanisms associated to a complex disease, such 
as AD. Connectivity measures are usually differentiated in 
three categories: anatomical connectivity (structural 
characteristics of the neural connections in the brain), 
functional connectivity (dependencies between remote 
neurophysiological events), and effective or causal 
connectivity (direction in which that influence is exerted 
between those events) [6]. 

In the last decades, numerous studies were conducted to 
characterize functional connectivity through several 
mathematical approaches, such as coherence (COH), 
synchronization likelihood (SL) or phase-lag-index (PLI) 
[7]–[9], among others. They highlighted abnormalities related 
to AD resting-state functional dynamics. Particularly, using 
EEG, AD evidenced decreased coherences in alpha frequency 
band and increased in delta band [7]. Other EEG studies 
revealed a decrease of SL in beta band for AD patients [8]. 
Using PLI in MEG recordings, Stam et al. [9] found 
decrements in alpha and beta bands in AD patients compared 
to healthy controls. 

Above-mentioned functional connectivity measurements 
are helpful tools for the description of brain connectivity. 
However, they failed to analyze the direction of the 
interaction between brain regions [10]. In this study, we have 
examined the spontaneous MEG activity in AD patients 
using Granger Causality (GC), a popular method able to 
identify causal connectivity in time-series data. Therefore, the 
purpose of this study was to characterize connectivity 
patterns of resting-state MEG in AD. 

II. MATERIALS AND METHODS 

A. Subjects 

MEG recordings were acquired from 62 subjects. The 
population was divided into 36 AD patients and 26 controls 
without past or present neurological disorders. AD patients 
were recruited from the ‘Asociación de Familiares de 
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Enfermos de Alzheimer (AFAL)’ and the Geriatric Unit of 
the ‘Hospital Clínico Universitario San Carlos’ (Madrid, 
Spain). Diagnoses were made according to the clinical 
guidelines of the National Institute of Neurological and 
Communicative Disorders and Stroke and the AD and 
Related Disorders Association [11]. Cognitive and functional 
deficits were screened in both groups using the mini-mental 
state examination (MMSE) and the functional assessment 
staging (FAST). Differences in the mean age and gender of 
both populations were not statistically significant (p = 0.19 < 
0.05, Student’s t-test and p = 0.916 < 0.05 chi-square test, 
respectively). Table 1 summarizes the main clinical and 
socio-demographic data. 

B. MEG Recordings 

MEG signals were recorded with a 148-channel whole-
head magnetometer (MAGNES 2500 WH, 4D 
Neuroimaging) placed in a magnetically shielded room at the 
MEG Center Dr. Pérez-Modrego (Spain). The subjects lay 
comfortably on a patient bed, in a relaxed state and with their 
eyes closed, in order to reduce the presence of artifacts in the 
recordings. Five minutes of MEG data were acquired from 
each subject at a sampling frequency of 678.17 Hz. A 
process of down-sampling by a factor of four was carried out 
to reduce the data length, resulting a sampling rate of 169.55 
Hz. Data were digitally filtered using a 1-65 Hz band-pass 
filter and a 50 Hz notch filter. Both visual inspection and 
independent component analysis (ICA) were performed to 
minimize the presence of artifacts. MEG preprocessed 
signals were band-pass filtered into the five typical 
frequency bands: delta (, 1‐4 Hz), theta (, 4-8 Hz), alpha 
(, 8-13 Hz), beta (, 13-30 Hz), and gamma (, 30-65 Hz). 
Artifact-free epochs of 5 s (848 samples) were then selected 
for further analyses. 

C. Granger Causality (GC) 

GC is a synchrony measure, useful to evaluate the 
effective connectivity between two signals [12]. As proposed 
by Wiener in 1956 [13], one signal x(t) could be called causal 
to other y(t) if it is possible to predict better the second one 
y(t) by adding past information of the first one x(t) than only 
with the past information of y(t). This idea was later 
reformulated using linear autoregressive models for 
stochastic processes by Granger in 1969 [14]. Specifically, 
GC is based in two principles [15]: 

1. The cause precedes the effect. 
2. Modifications in the cause change the effect. 

Let X1 and X2 be two systems whose time observations 
could be represented as the time series x1(t) and x2(t). The 
univariate autoregressive model (AR) of order p could be 
formulated as [10]:  
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where ai(k) are the model parameters, and ui(t) are the 
prediction errors for each time. In this case, the prediction of 
each signal depends only on its own past. 

The bivariate autoregressive model of order p is 
formulated as follows:  
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where the prediction errors wi(t) depend on the past of the 
two signals, and ai,j(k) are the model parameters. According 
to [14], if the variance of wi(t) is lower than the variance of 
ui(t) by the inclusion of ai,j(k), then xi(t) is purportedly 
causing xj(t). 

Let var[ui(t)] be the variance over time of the prediction 
errors ui(t) for models with parameters ai,j(k) = 0, and 
var[wi(t)] the variance of the prediction errors over time for 
models with ai,j(k) ≠ 0. Then, GC from i to j is defined as: 
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Specification of model order p (the total number of past 
samples taken into account) is required for the calculation of 
GC [16]. An order p too low gives a sparse representation of 
the data. On the contrary, high values of p can be 
problematic for model estimation. In this study, 
autoregressive model order was selected from the minimum 
obtained after applying the Akaike and the Bayesian 
Information Criterion assigning a value of p = 10 [17]. 

D. Statistical Analysis. 

A descriptive analysis was initially performed to explore 
data distribution (normality and homoscedasticity). Variables 
did not meet the parametric assumptions. Therefore, Mann-
Whitney U-test was used. The significance level was set at  
 = 0.01. It is important to note that results were reported 
only in a descriptive sense, since they were not corrected for 
multiple comparisons. 

Signal processing and statistical analyses were performed 
using the software packages Matlab (version 7.14 
Mathworks, Natick, MA) and the software toolbox Hermes 
[17]. 

III. RESULTS 

GC algorithm was applied to our 148-channel MEG data 
set. An adjacency matrix was obtained for each subject in 
each frequency band. Asymmetric matrices of GC median 
values per group and band are displayed in the first and 
second column of Figure 1. The third column of this figure 

TABLE I.  CLINICAL AND SOCIO-DEMOGRAPHIC DATA OF THE 
RECRUITED SUBJECTS 

 AD patients Controls 

Number of subjects 36 26 

Age (years) (Mean ± SD) 74.06 ± 6.95 71.77 ± 6.38 

Gender (F:M) 24:12 17:9 

FAST a (Mean ± SD) 4.17 ± 0.45 1.73 ± 0.45 

MMSE b (Mean ± SD) 18.06 ± 3.36 28.88 ± 1.18 

a. MMSE: Mini-mental State Examination 

b. FAST: Functional Assessment Staging 
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Figure 1. Results obtained after applying GC to MEG recordings. First and second column correspond to the median GC results for AD patients and 
controls, respectively. Third column illustrates statistically significant increases (red) or decreases (blue) in connectivity values of AD patients respect 
to controls for each frequency band. For simplicity, connectivity graphs do not show the direction of each connection. 

illustrates statistical results using Mann-Whitney U-test. 
Graph plots summarize statistically significant increases (red) 
or decreases (blue) in connectivity of AD patients in 
comparison with controls for each frequency band. 

The analysis showed a widespread significant 
connectivity increment in delta band for AD patients 
compared to controls. On the other hand, GC values decrease 
in gamma and beta bands for AD patients. A clear asymmetry 
in the adjacency matrices becomes apparent for theta band 
with evident decrements in the frontal cortex. Not conclusive 

results were obtained for alpha band. 

IV. DISCUSSION AND CONCLUSION 

The aim of this study was to analyze AD-related 
alterations in neural information flow. For that purpose, GC 
was applied to spontaneous MEG recordings from 36 AD 
patients and 26 control subjects. Our results showed that AD 
is accompanied by an increase of the causal connectivity in 
delta band, as well as a decrease in high-frequency bands 
(i.e., beta and gamma bands). 



  

Our findings are consistent with previous works that 
evidenced increments in AD activity in delta band. 
Specifically, in [7] and [18] the increment in delta coherence 
and Global Field Synchronization (GFS) was attributed to the 
cholinergic deafferentation, characteristic in AD. 

Theta band is clinically associated with working memory 
processes, which are usually reduced in AD [8]. A decrease 
in the fronto-cortical region is found in our results, which is 
in concordance with [19]. The asymmetry of the adjacency 
matrices in this band suggests the presence of a strong 
direction of the information flow, which is less pronounced in 
AD subjects. 

Our results in alpha band are less forthright. Although, 
several studies reported decrements in alpha band in EEG [7] 
and MEG [9], our findings are inconclusive, showing 
increases and decreases in connectivity in similar brain 
regions. Nevertheless, the direction of the coupling in this 
band is noticeable in the adjacency matrices for both groups. 
This direction appears to be stronger for control subjects. 

In the case of beta band, several studies reported weak 
couplings in AD subjects compared with healthy controls [9], 
[18], [20]. A loss in gamma band synchronization was also 
reported for the first time in [21]. These results are in 
accordance with our GC results in beta and gamma bands, 
and reinforce the hypothesis of disconnection syndrome in 
AD. 

Classically, connectivity decrements were attributed to 
neuronal loss and neocortical disconnection [19]. However, 
this could not explain the existing dissimilarities among 
bands, as was pointed by [8]. In the aforementioned study, 
the differences in connectivity patterns were attributed to loss 
of cortical acetylcholine synthesis, which is involved in 
synaptic function. 

Some limitations in this study should be taken into 
account. Although GC results present asymmetric adjacency 
matrices indicating causal connectivity, a broad study should 
be done to completely characterize the direction of the 
couplings. It should be also noted that GC analysis was 
performed by means of bivariate autoregressive models and 
indirect connections will be present. In addition, it should be 
further explored whether the abnormal GC patterns are AD-
specific and confirm the GC results with alternative effective 
connectivity measures such as Partial Directed Coherence 
(PDC) or direct Directed Transfer Function (dDTF). 

In summary, this research shows that AD elicits an 
abnormal frequency-dependent pattern of effective 
connectivity. In our study, high-frequency couplings seem to 
be disrupted. This agree with the hypothesis of a 
disconnection syndrome in AD, since these bands are related 
to cognitive processes, which commonly are impaired in this 
disease [18]. Our findings suggest that GC can be useful to 
discriminate AD patients, as it evaluates both the connection 
between groups of neurons, and the direction in which that 
coupling is exerted. That information can provide further 
insights into neural mechanisms underlying AD.  
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