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Summary 

A complete series of aliphatic aromatic copoly(ether-imide)s, based on aromatic dianhydrides (BPDA, 

BKDA or PMDA) and mixtures of an aromatic diamine (ODA) and an aliphatic diamine terminated 

poly(ethylene oxide) PEO(2000) (Mw=2000 g/mol) or PEO(6000) (Mw= 6000 g/mol), has been 

synthesized using different PEO contents. Cast films of these copolymers have been thermally treated to 

ensure the segregation of the linear PEO chains from the aromatic portion of these copoly(ether-imide)s. 

 

Gas permeability (O2, N2, CO2 and CH4) of membranes, made from these copolymers with different 

proportions of PEO, were compared with the predictions of various electrical or thermal conductivity 

models adapted to gas permeability. Several of these models, from Maxwell-Garnett to percolation 

theory, proved to be inaccurate. Nevertheless, the model based on the Effective Medium Approximation 

(EMA) is proved here to succeed in predicting the main features of the experimental results for all 

mixture proportions, taking as the starting point the sole input of pure homopolymer permeabilities. 

Specifically, this later method was able to calculate the volume fraction for the maximum increase of 

permeability, a common feature for all the studied segregated copolymer membranes. The model was 

even able to predict the permeabilities of a three phase system consisting in the aromatic (BKDA-ODA) 

phase plus a mixture of amorphous PEO(6000) and crystalline PEO(6000). 

 

Keywords: Copoly(ether-imide) membrane; Phase segregation; Thermal treatment; Gas 

separation; Effective Medium Approximation, Percolation, Maxwell-Garnett Models. 
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1. Introduction 

 

Nowadays, the role of polymeric membranes applied to gas separation is being more 

and more important. Although some of these materials have been used in industrial 

separations[1], it is well known that a lot of research is still necessary to discover or 

refine materials having an equilibrium of properties making them suitable to be 

employed in applications demanded nowadays by the industry. In all cases, an adequate 

balance of high permeability and good selectivity must be achieved [2-3]. 

 

In order to be useful in gas separation applications where one or several of the gases to 

separate be separated is a condensable gas such as CO2 or CH4, the polymeric 

membrane should show a preferential affinity for them. In addition, these membranes 

must have good mechanical and thermal resistance.  

 

Glassy polymers and in particular polyimides are well known by their excellent thermal 

oxidative stability, good organic solvent resistance and exceptional mechanical 

properties, along with an extraordinary ability to separate complex mixtures of gases in 

diverse applications [4-6]. Thus, it has been widely recognized that the use of aromatic 

polyimides is one of the best alternatives to be chosen among all the polymeric 

membranes for gas separation applications [7]. 

 

Typically, these materials have good selectivity and not very high permeability [8-9]. It 

could therefore be interesting to increase the affinity of the material matrix for 

condensable gases such as CO2, or CH4 as one of the most effective approaches. 

  

Aromatic-aliphatic block-copolymers usually combine a hard block and a soft block. 

The hard block can be formed by a polymer with well-packed and highly rigid 

structures; as a result it forms a glassy phase with usually low free volume.  In contrast, 

the soft block can consist in a polymer with more flexible, low Tg, chains, which can 

form a rubbery phase having high free volume. Also, when aromatic-aliphatic block 

copolymers are phase-separated, for instance, by an adequate thermal treatment, their 

glassy polymer parts could provide mechanical support. The rubbery segments, due to 

the nature of the flexible chain structure, should allow an efficient transport of gas, 
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giving a good permeability to the material [10-11]. Among all the block copolymers, 

those having chains of polyethylene oxide (PEO) or polypropylene oxide (PPO) show 

outstanding features to be employed in gas separation applications. 

 

The synthesis of new PEO systems using different aromatic diamines showed that an 

increase of rigidity in the hard part promoted the phase segregation process [12]. When 

the temperature of treatment of the films increased, phase segregation improved [13]. 

Analogous trends have been proved when diverse types of aromatic dianhydrides of 

different rigidity were employed [14]. These processes depended also on the type of 

polyether used, because the phase segregation and the final properties of the membranes 

can also vary depending on the nature of the soft part [15].  

 

Mechanical properties of the membranes tended to worsen when the amount of 

polyether increased, because the amount of the hard part (which provides the 

mechanical strength of the final polymer) decreased. At the same time, the segregation 

and the permeation properties improved [16-17, 18].  

 

Polyethers such as PEO can experience easy crystallization processes when the 

molecular weight exceeds a certain value [16]. In gas separation this increase of 

crystallinity is undesirable because ordered structures have low or null permeation 

capacity. When PEO is in amorphous state, it can be said that the permeability increases 

with the length of the aliphatic part, mainly due to the improvement in phase 

segregation [16]. It is clearly important to find a good balance between the hard and the 

soft block segments in order to provide good permeability without having a dramatic 

loss in mechanical properties. 

  

Many composite systems, as for example mixed matrix membranes, MMM, have been 

modeled to correlate the overall permeability with those of the component phases by 

applying Maxwell-Garnett, MG, based treatments. Herein, we have applied this 

treatment to phase segregated membranes and we have found difficulties to model, 

within this theoretical frame, the range of intermediate concentrations. In this paper it is 

demonstrated that more symmetric schemes as the effective medium approximations, 

EMA, reproduce well enough the composition ranges where none of the phases, 

forming the material, can be considered as dispersed in a continuous matrix. 
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2. Experimental 

 

The segregated copoly(etherimide)s whose permeabilities are modeled here have been 

synthetized, thermally segregated and characterized previously by our group [12, 15-16, 

19]. A brief summary of these aspects is provided below.  

 

2.1. Chemicals 

 

3,3′,4,4′- Biphenyltetracarboxylic dianhydride (BPDA); 3,3′,4,4′-benzophenone 

tetracarboxylic dianhydride (BTDA or BKDA); pyromellite dianhydride (PMDA), and 

4,4'-oxydianiline (ODA) were purchased from Aldrich. These products were purified by 

sublimation at high vacuum just before use. Polyoxyethylene bis(amine) (Jeffamine ED-

2003, n= 41) with nominal molecular weight of 2000 g/mol, was kindly donated given 

by Huntsman
®
 (Holland) (PEO-2000 from here on). α,ω-Diamine-poly(ethylene oxide) 

with nominal molecular weight of 6000 g/mol, were obtained from Kawaken Fine 

Chemicals Co., Ltd. (Tokyo, Japan), (PEO-6000 from here on). These polyethers were 

dried at 70 ºC in vacuum for 5 hours and stored in a desiccator at vacuum until use. 

Anhydrous N-methylpyrrolidinone (NMP), used as the polymerization solvent, was 

purchased from Sigma-Aldrich Co.  

 

2.2. Synthesis of copoly(ether-imide)s 

 

The samples were synthesized by combination of a dianhydride (BPDA, BKDA or 

PMDA) with mixtures of an aromatic diamine (ODA), and diverse proportions of an 

aliphatic diamine (PEO). The corresponding copoly(ether-imide)s will be designated by 

adding cPI to the w/w percentage of the aliphatic proportion.  

 

Diamine-terminated poly(oxyethylene oxide) – PEO(2000) or PEO(6000) — (x mmol), 

and 4,4'-oxydianiline (ODA) (y mmol) in several weight ratios were dissolved in 

anhydrous NMP (5 mmol (x+y)/10 mL) in a 100 mL three-necked flask blanketed with 

nitrogen. 
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Then, the reaction mixture was cooled down to 0 ºC, and under mechanical stirring, a 

stoichiometric amount of the dianhydride (x+y mmol) was added. The mixture was 

maintained overnight at room temperature. During this time the dianhydride was 

completely dissolved and the solution reached high viscosity. 

 

In Figure 1 the corresponding structures of the aromatic and aliphatic homopolymers 

corresponding to the copoly(ether-imide)s synthetized are shown along with their 

densities 

Figure 1 

 

2.3. Preparation of the copolyimide dense films. 

 

The resultant viscous copolyamic acid solution was diluted with NMP to the appropriate 

viscosity for casting, filtered through a nominal #1 fritted glass funnel, degassed, and 

cast onto a leveled glass plate. The resulting film was covered with a conical funnel to 

avoid fast evaporation of the solvent, dried at 80 ºC overnight, and finally treated at 

several temperatures from 160 to 250 ºC (275 ºC for the BKDA containing films) for 6 

hours until 200ºC and 30 min over this temperature in a vacuum oven, in order to 

achieve a complete imidization. Films of copolymers having 50-70 m in thickness 

were obtained. After that, thermal treatments under an inert atmosphere were carried out 

at different temperatures.  

 

2.4. Characterization of the membranes. 

 

All the copoly(eherimide)s studied here were treated at different temperatures (as 

mentioned above) and the resulting films extensively characterized [12-19]. They were 

and Phase segregation was confirmed by Small-Angle X-ray Scattering (SAXS) 

observing that this process increases with temperature. Glass transition temperatures, 

crystallinity and mechanical properties were obtained by using Differential Scanning 

Calorimetry (DSC), Thermo Gravimetric Analysis (TGA), Thermo Mechanical 

Analysis (TMA) and Dynamic Mechanical Analysis (DMA). All the films showed good 

mechanical properties. 
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Permselectivities were obtained by using ―time lag‖ permeators at 3 bar and 30 ºC 

(some measurements were done at 50 ºC when crystallinity was present in the case of 

PEO-6000).  

 

3. Theory 

 

The membranes composed by two or more different phases should have permeability 

values placed between those for pure phases. Copolyimides consisting in an aromatic 

polyimide part (hard segments) and an aliphatic polyether one (soft PEO chains) should 

be modeled as a system formed by two intermixed phases. 

 

It has been generally [16, 20,21] found that for intermediate volume fractions there is a 

range where none of the Maxwell-Garnett predictions are accurate. It has been also 

noticed that low PEO proportions are well predicted by the Maxwell-Garnett model 

assuming that PEO is the dispersed phase although for high PEO proportions the 

Maxwell-Garnett model with PEO as the continuous phase fits better the experimental 

results [20]. Of course there is a range where neither the PEO rich nor the aromatic rich 

phases can be taken as disperse or  (discontinuous). This intermediate range has resisted 

all attempts to be predictable or even understood [19]. Among the attempts made we 

can mention the addition of an ad hoc parameter, so called  ―chain immobilization 

factor―, that should be evaluated as a function of composition to take into account the 

differences between the predictions of Maxwell-Garnett model for small fractions of 

one of the phases and the experimental results [21]. Other possibility is to patch both the 

Maxwell-Garnet predictions corresponding to PEO as disperse and to PEO as 

continuous phase by introducing a threshold value for the composition that again has to 

be adapted ―ad hoc‖ to the experimental results [19].  

 

A revision will be made here of some of the main models that can be used to predict 

permeabilities for different proportions of a multiphase gas separation membrane. This 

revision cannot be exhaustive as far as there are a huge plethora of models more or less 

similar to each other which were originally proposed for electric or thermal conductivity 

or for mechanical properties [22-24]. The models will, of course, be adapted to gas 
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permeation attending to the well-known analogy existent between the transport 

processes [25]. 

 

3.1. Maxwell-Garnett Models 

 

The Maxwell-Garnett approximation, [26-27] also known as the Clausius-Mossotti 

approximation, is one of the most widely used methods for calculating the bulk 

dielectric properties of inhomogeneous materials [28-29]. It is useful when one of the 

components can be considered as a host in which inclusions of the other component or 

components are embedded. It involves an exact calculation of the field induced in the 

uniform host by a single spherical or ellipsoidal inclusion and an approximate treatment 

of its distortion by the electrostatic interaction between the different inclusions. This 

distortion is caused by the charge dipoles and higher multipoles induced in the other 

inclusions. The induced dipole moments cause the longest range distortions and their 

average effect is included in the Maxwell approximation which results in a uniform 

field inside all the inclusions. 

 

These approaches have been extensively used to study the properties of two-component 

mixtures in which both, the host and the inclusions, are isotropic materials with scalar 

dielectric coefficients. Nevertheless, applying relaying inthe known analogies of 

transport phenomena, this theoretical frame has been used to model: electrical 

conductivity, thermal conductivity and elasticity parameters. They have been also 

extensively used for permeation modeling. 

 

For gas separation processes, it has been demonstrated that systems consisting in a 

disperse phase embedded in a continuous matrix can be described in terms of these 

models that have been called Maxwell-Garnett or Maxwell-Eucken models. Within the 

frame of these theoretical schemes, the effective permeability is: 

 

 

 

2 2

2

d c c d

eff

d c c d

c

P P P P
P

P P P P
P
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  
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                                    (1) 
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Where Peff is the effective permeability, Pc and Pd are the permeabilities of the 

continuous and disperse phase, respectively, and d is the volume fraction of the 

dispersed phase in the block copolymer. 

 

In our study, of course the continuous phase can be the aromatic or the aliphatic rich 

portions depending on the composition of the copolymer. For this reason, it should be 

necessary to make two different predictions depending on which segment is taken as the 

continuous phase or the disperse one. This is necessary because Equation (1) is not 

symmetric and if the roles of the filler and the continuous phase are swapped, different 

results are obtained.  

Bruggeman [30] introduced a  popular approximation that is now widely known as the 

differential scheme or the Bruggeman equation. Bruggeman proceeds from the premise 

that the fields of neighboring particles can be taken into account by adding the dispersed 

particles incrementally, taking the surrounding medium to be the existing composite at 

each stage. 

 

Translated to gas permeability, the Bruggeman equation says that the effective 

permeability of an inhomogeneous medium is given by: 

 
1

1

d

d eff c

d

d c eff

P P P

P P P

 
  

   
                                                        (2) 

where d = 3 for spherical fillers [31]. 

 

The Bruggeman equation is appropriate for composites containing spherical particles 

with a very wide size distribution. Ideally, the size distribution should be wide enough 

so that any two spheres of comparable size are far from each other. Note that Equation 

(2) needs to be solved numerically and it is also asymmetric, in the sense commented 

when referring to Equation (1), i.e. it is not single valued. 

 

Some models have been applied without any pursued symmetry between filler and 

continuous matrix because they are intended for low content of filler within a 

continuous matrix. Most of these models lead to divergences in permeability for filler 

contents over a certain value. They belong to this class, for example, the models due to 
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Bruggeman [30], Bötcher [32] and De Loor  [33] and corresponding to Equations (3) to 

(5) [34]: 

 
3

1eff c dP P


                                                 (3) 

 
1

1eff c dP P


                                                 (4) 

  
1

1 1 2eff c d dP P


                                                  (5) 

 

The Lewis and Nielsen model [35-37], originally proposed for the elastic modulus of 

particulate composites, gives: 
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2

1
1 d

d
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  
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                                                       (7) 

 

The values of A and d  were given for many geometric shapes and orientations [38-40]. 

A is 2 for spheres in a unidirectional transport, d is 0.64 for random close packing of 

uniform spheres. d is the maximum d that is the maximum packing volume fraction 

for a given inclusion size and shape. 

 

The Pal model [41] assumes that: 

 
1

1

d
d

d eff c d

d c eff d

P P P

P P P


   

        
                                       (8) 

 

where d = 3 as in Equation (2) for spheres like for the original work of Bruggeman 

(Equation (2)). Pal originally proposed this expression for the thermal conductivity of 

particulate composites using a differential scheme and taking into account the packing 

difficulty of particles and modifying the Bruggeman model. 

 

Equations (6) to (8) belong also to the divergent or low filler fraction models. 
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3.2. Effective Medium Theory  

 

Actually, when both phases are not continuous and there is a random dispersion of 

them, the Maxwell-Garnett approach is not reasonable. Within the frame of the 

Maxwell-Garnett’s model, the continuous and discontinuous phases must be first 

identified because Equations (1) to (8) are not symmetric as mentioned. Systems where 

the formation of an internal network in the structure is observed are more accurately 

represented with the effective medium theory (EMT) that treats the contributions of 

each phase equally. As the equation of Maxwell-Garnett, EMT is derived from the 

solution of the Laplace equation applied to a single sphere surrounded by a continuous 

medium, and subjected to a steady-state concentration gradient around the spheres. 

Maxwell-Garnett assumed that the local distortions to the concentration distributions 

around the dispersed spheres did not affect their neighbors. The essence of EMT, 

however, lies in the assumption that for a completely random distribution of 

components, the effect of local distortions to the concentration distribution caused by 

individual inclusions could be averaged in such way that over a sufficiently large 

volume (or ensemble) the concentration distribution within the material could be 

approximated by a material having an uniform concentration distribution and 

permeability Peff  [42-43].  

 

Effective medium approximations or effective medium theory (sometimes abbreviated 

as EMA or EMT) are physical models that describe the macroscopic properties 

of composite materials, which are developed from averaging the multiple values of the 

constituents that directly make up the composite material. At the constituent level, the 

values of the materials vary and are inhomogeneous. Precise calculation of the many 

constituent values is nearly impossible. The EMA methodologies are based [30]  on a 

self-consistent procedure in which a grain of one of the components is assumed to have 

a convenient shape (usually spherical or ellipsoidal) and to be embedded in an effective 

medium whose properties are determined self-consistently [29, 43]. EMA treats equally 

both the components as shown in its fundamental equation, [44, 45]: 
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Note that this frame can be extended to n phases by using: 

 

1

0
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i eff
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i i eff
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                                                 (10) 

 

Although the distinction of dispersed and continuous phases losses its meaning as far as 

the two phases are treated in the same way and the roles of both the phases could be 

interchanged and the predicted overall permeability would not change, we will continue 

naming disperse phase to the PEO domains and continuous phase to the aromatic rich 

one. Equation (9) can be solved to: 

 

 21
8

4
eff d cP P P                                                     (11) 

with 

 

   3 1 3 1d d c cP P                                                      (12) 

 

of course using the identity 1c d   . All these EMA calculations are particularly 

appropriate for composites and polycrystals in which the grains of the various 

components are randomly and symmetrically distributed, so that none of the 

components is identifiable as a host in which the others are preferentially embedded.  

 

Because of the asymmetry of the assumed geometry, and the approximation, the results 

are likely to differ somewhat from the unevaluated (symmetric) EMA. This geometrical 

distinction may be easily understood by noting that the EMA and MG approximations 

are exact for two different microgeometries [28]. The EMA becomes exact in a 

hierarchical geometry where the two components play symmetrical geometric roles 

[46]. In contrast, the MG approach is exact for a geometry where the entire space is 

filled with equal spheres, each with identical ratio, such that one component is the core 

material and the other is the coating material (the host). 

 

3.3. Modifications of the Maxwell-Garnett models 

 

Modifications of the Maxwell-Garnett model have been done in two main directions. 

Firstly, the original asymmetric model has been modified to be symmetrical. And also 

the model has been modified to take into account the appearance of different phases 
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corresponding, for example, to the interfaces between the matrix and the disperse phases 

or to take into account the differences of: size, isotropy etc. In this work, we will only 

mention in some detail the modifications addressed to make the approach symmetric 

and to take into account the possible presence of more phases.  

 

The Levy model was originally proposed as a purely mathematical averaging of the 

Maxwell–Eucken model with each of the two phases being treated as continuous [47]. 

This model was recently given a physical interpretation by Wang  et al. [48]. In terms of 

gas permeability the model states that: 
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                                    (13) 
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                              (15) 

 

which is symmetrical and single valued  although, as we will see below, its symmetry 

could be inadequate in some cases. 

 

In order to treat three-phase-systems the Maxwell-Garnett model has been modified as: 
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with 
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                            (17) 

 

Peff is the permeability of the ensemble continuous phase plus disperse phase, Pd is the 

permeability of a single core plus interfacial shield particle and Pin is the permeability of 

the interfacial shield covering the particle core that has a permeability Pk. d is the 
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volume fraction of inclusions and k is the fraction of the core in the core+shield 

system. This model has been developed to take into account the existence of such 

shields covering inclusions in mixed matrix membranes [49-51]. 

 

The Felske model [52] has been proposed for such complex (three phases) inclusions. 

This model gives: 

    

    

2 1 1 2
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d d

eff c
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                            (18) 
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And  is the ratio of outer-shield to core radii. 

 

The Felske model gives almost the same results than the modified Maxwell-Garnett 

model and although it is somewhat simpler, it has the same limitations than the original 

Maxwell-Garnett model [53]. 

 

As done by Lewis and Nielsen, d can be introduced in the Felske model to give [36, 

53]: 

1 2
2

1
2

d

eff c

d

P P

  
    

 
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                              (21) 

 

with  given by Equation (7). 

 

3.4. Percolation Models 

 

The original problem was proposed [54] for the fluid flow in a porous medium. It has 

been applied to many other related problems including many phenomena in 

physics, chemistry and materials science [55]. 
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A two phase system formed by inclusions dispersed in a continuous matrix can be 

modeled by a (3D) lattice in which each site can be occupied or empty with certain 

complimentary probabilities. In mathematics, percolation theory describes the behavior 

of connected clusters in such a random graph.  In terms of gas permeability, an occupied 

site has a permeability Pd while an unoccupied site has a permeability Pc. The 

fundamental premise of percolation theory is the appearance of a sharp increase in the 

effective permeability of the disordered media at a critical volume fraction known as the 

percolation threshold t at which long-range connectivity of the system appears. 

  

When 0dP  , Pc = 0, and d < t, no macroscopic conducting pathway exists and no 

permeation happens through the composite phase. When d >t, however, the system 

becomes permeable as a connected path appear through the composite material. The 

existence of a critical percolation threshold for electrical conductivity has been 

demonstrated for a wide variety of fillers, all at concentrations below the maximum 

packing fraction, d  [56]. The percolation threshold in an actual composite material is 

in general a function of the lattice structure of the phases, and ranges from 0.2t   for a 

face-centered cubic arrangement to 0.7t   for a honeycomb arrangement and it can be 

exactly calculated for certain simple lattices [44,45]. 

 

Electrical conductivity has been treated frequently within percolation models [57] but 

also thermal conductivity has been modeled as percolative [58-59]. However, many 

researchers have reported that no percolation appears in thermal conductivity [60]. It 

may be noted that in contrast to the electrical conductivity, the concentration 

dependence of thermal conductivity does not show any swift leap that could be 

interpreted as a percolation threshold. This is because thermal conductivity of the 

dispersed filler is usually comparable to that of the polymer matrix. Given that this is 

even more certain for the gas permeabilities through disperse and continuous phases in a 

composite, we could find difficult to justify the appearance of percolation in the systems 

to be studied here. Nevertheless, as will be seen below, there is actually a sudden 

increase in the effective permeability of our two phase systems, thus we will adapt and 

try to use the most promising percolation model proposed for the thermal conductivity. 
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This model was proposed by Zhang et al. [61-62] and translated to permeability says 

that: 
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                                   (22) 

Pt is the permeability at the threshold (percolation) composition given by t and N is the 

percolation exponent. This model contains actually 3 parameters to be fitted. Although 

the values of Pt and t can be obtained by an analysis of the experimental data, n has to 

be fitted or evaluated for some fixed point.  

 

4. Results and Discussion 

 

In Figure 2 the CO2 permeability of the copolyimide BPDA-ODA-PEO(2000) thermally 

treated to 250 ºC as a function of the volume fraction of PEO (d) is shown. The 

predictions of Equations: (1) (Maxwell-Garnett); (2) (Brugeman); (9), (11) and (12) 

(EMA) and of Equations (13), (14) and (15) (Levy) are shown. It seems clear that the 

EMA model reproduces well all the main features of experimental data. It seems clear 

that the presence of an inflexion point in the experimental data is only predicted by the 

EMA and the Levy models. The vertical double line in Figure 2 corresponds to the 

volume fraction of PEO for this inflexion point. 

 

Figure 2 

 

When Equations (11) and (12) are taken into account it is seen that an inflexion point 

always appears, within the EMA model when log Peff is plotted versus d. This inflexion 

point can be calculated by solving d
2
log(Peff)/dd

2
 = 0 and corresponds to the volume 

fraction of the disperse phase at which Peff increases at its maximum pace. This happens 

when: 

 

1 2ˆ
3 1

d

 
 


  or for all d when 1                              (23) 

Here 

d
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P
                                       (24) 
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It is worth remembering that the roles of continuous and disperse phases could be 

interchanged.  

 

The behavior of the function given in Equation (23) is shown in Figure 3. Note that the 

maximum increase of Peff happens for ˆ 1/ 3d  if Pd>>Pc (or ˆ 2 / 3d  if Pc>>Pd). 

Moreover only when Pd=Pc/2 or Pc=Pd/2 there is a maximum increase of Peff at ˆ 0d   or 

ˆ 1d  . In any case, this inflexion point cannot appear within the range ˆ1/3 2 /3d   . Note 

that according to the Levy model this inflexion would appear at ˆ 1/ 2d  . This is the 

justification to our attribution of an excessive symmetry to this model that, nevertheless, 

is the only model along with the EMA model to be able to predict an inflexion point.  

 

Figure 3 

 

In Figure 4 the O2, N2 and CH4 permeabilities of the copolyimide BPDA-ODA-

PEO(2000) thermally treated at 250 ºC as a function of the volume fraction of PEO (d) 

are depicted. The same features as seen in Figure 2 are now observed and in this case 

only the predictions of the EMA model are shown. 

 

Figure 4 

 

In Figure 5 the permeability for O2 of the copolyimide BPDA-ODA-PEO(2000) 

thermally treated at 250 ºC is shown as a function of the volume fraction of PEO (d) 

along with the predictions of the models given by Equations: (3) (Brugeman) ; (4) 

(Bötcher); (5) (De Loor); (6) and (7) (Lewis-Nielsen) and by Equation (8) (Pal). The 

EMA model predictions, already shown in Figure 4 are drawn too for the sake of 

comparison. It seems clear that all these models diverge or at least do not approximate 

to the pure PEO permeability for d = 1, while the EMA model clearly succeeds to 

approach gradually the pure PEO permeability. The Lewis-Nielsen (with A= 2) and Pal 

(with d=3) models have been taken with 0.64d   as should correspond to the maximum 

packing of spherical inclusions. It seems clear that none of them adequately fits the 

experimental results probably because their application domain restrict to low content of 

the filler within a continuous matrix. 
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Figure 5 

 

In Figure 6 the values of 
d for the Pal model (that seems to be the most acceptable 

among the models shown in Figure 5) are changed in order to compare its predictions 

with the data for the N2 permeability (again for the BPDA-ODA-PEO(2000) 

copolyimide thermally treated at 250 ºC) as a function of the volume fraction of PEO 

(d).  It appears clear that the Pal model cannot account for the real dependence of 

permeability for any value of 
d . 

 

Figure 6 

 

The predictions of the percolation model of Zhang (Equation (22)) clearly do not fit the 

experimental results for low volume fractions of PEO as shown for the CH4 

permeability (for the BPDA-ODA-PEO(2000) copolyimide thermally treated at 250 ºC) 

in Figure 7. In this Figure, the two discontinuous lines correspond to fixed and fitted 

values for t and Pt. Clearly they do not show significant differences. The values 

obtained for N are also quite similar.  It may be noted that the percolation based model 

proposed by Zhang et al. predicts that a percolation threshold would appear only if the 

ratio of the permeability of the filler to the polymer permeability was larger than 10
5
, 

which in the present case is not satisfied [62]. This requirement is clear in Figure 7 

where it is seen that the assumption of a percolation threshold would lead to a predicted 

permeability of CH4 for the continuous phase that would be 10
-5 

barrer for a PEO 

permeability of the order of unity. 

 

Figure 7 

 

The values of N, 2.55 and 2.83, are somehow out of the range that could be expected for 

electrical or thermal conductivity and for permeability as far as it is well known that N 

= 2 in a three-dimensional percolation (with an aspect ratio,  = 1) [63], with  = L/D, L 

and D being the length and the diameter of the inclusions.  
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In Figure 8 the EMA model is applied to the CO2 permeability of the copolyimides: 

BPDA-ODA-PEO(2000), BKDA-ODA-PEO(2000) and PMDA-ODA-PEO(2000). The 

figure shows that a change in the dianhydride has little effect in the dependence of 

permeability and the point of maximal increase in the effective permeability is quite 

similar and very close to a volume fraction of PEO ˆ 1/ 3d  . This could be predicted 

from Equations (23) and (24) because  goes from 2.8·10
-3

 to 17.4·10
-3

 which 

corresponds to values of ˆ d  going from 32.7 % to 33.2 %. 

 

Figure 8 

 

 

Figure 9 and 10 correspond to a three phase system BKDA-ODA-PEO(6000) 

constituted by the pure BKDA-ODA, the amorphous PEO(6000) and the crystalline 

one. In Figure 9 the white symbols correspond to the total volume proportion of 

PEO(6000). The EMA model fits the results only when the actual amorphous volume 

proportion of PEO(6000) is taken into account after subtraction of the crystalline 

volume as obtained by DSC, [16], and the system is taken as a bi-phase system.  

 

In Figure 10 the three phase system has been fitted to Equation (10), for three phases: 
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                                   (25) 

assuming that the permeability of the crystalline PEO is zero. It is clear that as shown in 

Figure 10, the EMA model can predict also the permeability across three phase 

composite segregated copolyimides. The graph corresponds to the effective 

permeability for the mentioned ternary system. In the Figure, the composition of the 

ternary system is given in terms of the volume fractions of crystalline and amorphous 

PEO. The datum for the semicrystalline PEO with 29 % crystallinity has been taken 

from Lin and Freeman [64] (see Figure 2 of this reference). 

 

Figure 9 
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Figure 10 

 

5.  Conclusions 

 

A series of aliphatic aromatic copoly(etherimide)s has been synthesized. Cast films of 

these copolymers have been thermally treated to ensure the phase segregation of the 

linear PEO chains from the aromatic moiety of the copoly(etherimide)s. The 

permeability of O2, N2, CO2 and CH4 of the resulting membranes have been compared 

with the predictions of the main usable models adapted to the gas permeability. 

 

The model based on the Effective Medium Approximation (EMA) succeeded to predict 

the main features of the experimental results. Specifically, it was able to calculate the 

volume fraction for the maximum increase of permeability, a common feature for all the 

studied segregated copolymer membranes. The model was even able to predict the 

permeabilities of a three phase system consisting in the aromatic (BKDA-ODA) rich 

phase plus the amorphous PEO(6000) and the crystalline PEO(6000) phases. 

 

As discussed, the EMA calculations are especially applicable to composites and 

polycrystals in which the various components are randomly and symmetrically 

distributed, so that none of the components is identifiable as a host in which the others 

are preferentially embedded. The size and orientation of each phase are continuously 

changing with their proportion; this is the case with the segregated copoly(ether)imides 

studied here. On the other hand, there is not a constant size network to be filled and the 

permeabilities of the phases involved are relatively close to each other as to make 

percolation impossible. Nevertheless they are different enough to have a certain 

percolation-like sudden step in the effective permeability which is well integrated in the 

EMA model. 

 

The model has the advantage of being able to be adapted for three phase (or multiphase) 

composites where the structure of each phase in the mixture is effectively random in 

nature. This fact has the added advantage of making unnecessary any consideration on 

the detailed phase-to-phase morphology. 
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Figure Captions 

 

Figure 1.- Structure of the aromatic and aliphatic components of the copolyimide 

thermally segregated membranes studied here along with their densities. (
a
) Data from 

the manufacturer and (
b
) Tanaka et al. [7]. Volume fractions d can be evaluated from 

weight fractions  d by: d = (d/d)/[( d/d)+(1-d)/c]. d is the density of filler and c 
is the density of the matrix.  
 

 

Figure 2.- Comparison of some models for the effective permeability of CO2 for a 

maximum thermally segregated polyimide. The Bruggeman model corresponds to 

Equation (2) with d=3. The EMA model corresponds to the s-shaped continuous thick 

line. 

 

Figure 3.- Plot of Equation (1724) showing that there is a range from  d = 1/3 to 2/3 

that can’t correspond to the inflexion point in P eff. The inflexion point for the Levy 

model should be placed in d = 1/2. 

 

Figure 4.- Effective permeability of: O2 , N2 and CH4 for a thermally segregated 

polyimide. The lines correspond to the EMA model. Vertical lines correspond to the 

maximum increase in permeability. 

 

Figure 5.- Effective permeability of O2 and predictions of some models for low content 

of a dispersed phase. The Lewis-Nielsen (A=2) and the Pal (d=3) models have been 

shown for              . The EMA model predictions are shown for the sake of comparison. 

Vertical lines correspond to the maximum increase in permeability 

 

Figure 6.- Effective permeability of N2 and predictions of the Pal model (with d = 3) for 

three different   . The double vertical lines correspond to the maximum increase in 

permeability while the other vertical lines correspond to the asymptotes of the Pal 

model. 
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Figure 7.- Effective permeability of CH4 and predictions of the percolation model of 

Zhang. The white cross corresponds to a fixed pair t and Pt while the gray one 

corresponds to values obtained for t and Pt after fitting. 

 

Figure 8.- Effective permeability of CO2 for thermally segregated polyimides with 

different dianhydrides. The lines correspond to the EMA model. 

 

Figure 9.- Effective permeability of CO2 for a partially crystalline PEO within a  

BKDA-ODA matrix at 30 ºC (). When the fractions of real amorphous PEO () are 

taken into account EMA predictions reproduce the experimental results. The line 

correspond to the EMA model. At 50 º C () there is no crystallinity and the EMA 

predictions are again quite good. 

 

Figure 10.- Effective permeability of CO2 for a three-phase system of crystalline and 

amorphous PEO in a  BKDA-ODA matrix and the predictions of EMA. 
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AlbertoTena
1,3

, Mónica de la Viuda
1
, Laura Palacio

1,2
, Pedro Prádanos

1,2
, Ángel 

Marcos-Fernández
1,3

, Ángel E. Lozano
1,3

 and Antonio Hernández
1,2 

 

1
Smap UA-UVA-CSIC, Parque Científico Universidad de Valladolid, Paseo de Belén, s/n, 47011 

Valladolid, Spain. 

2
Dept. Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 

Valladolid, Spain 

3
Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain. 

 

Summary 

A complete series of aliphatic aromatic copoly(ether-imide)s, based on aromatic dianhydrides (BPDA, 

BKDA or PMDA) and mixtures of an aromatic diamine (ODA) and an aliphatic diamine terminated 

poly(ethylene oxide) PEO(2000) (Mw=2000 g/mol) or PEO(6000) (Mw= 6000 g/mol), has been 

synthesized using different PEO contents. Cast films of these copolymers have been thermally treated to 

ensure the segregation of the linear PEO chains from the aromatic portion of these copoly(ether-imide)s. 

 

Gas permeability (O2, N2, CO2 and CH4) of membranes, made from these copolymers with different 

proportions of PEO, were compared with the predictions of various electrical or thermal conductivity 

models adapted to gas permeability. Several of these models, from Maxwell-Garnett to percolation 

theory, proved to be inaccurate. Nevertheless, the model based on the Effective Medium Approximation 

(EMA) is proved here to succeed in predicting the main features of the experimental results for all 

mixture proportions, taking as the starting point the sole input of pure homopolymer permeabilities. 

Specifically, this later method was able to calculate the volume fraction for the maximum increase of 

permeability, a common feature for all the studied segregated copolymer membranes. The model was 

even able to predict the permeabilities of a three phase system consisting in the aromatic (BKDA-ODA) 

phase plus a mixture of amorphous PEO(6000) and crystalline PEO(6000). 

 

Keywords: Copoly(ether-imide) membrane; Phase segregation; Thermal treatment; Gas 

separation; Effective Medium Approximation, Percolation, Maxwell-Garnett Models. 
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1. Introduction 

 

Nowadays, the role of polymeric membranes applied to gas separation is being more 

and more important. Although some of these materials have been used in industrial 

separations[1], it is well known that a lot of research is still necessary to discover or 

refine materials having an equilibrium of properties making them suitable to be 

employed in applications demanded nowadays by the industry. In all cases, an adequate 

balance of high permeability and good selectivity must be achieved [2-3]. 

 

In order to be useful in gas separation applications where one or several of the gases to 

separate be separated is a condensable gas such as CO2 or CH4, the polymeric 

membrane should show a preferential affinity for them. In addition, these membranes 

must have good mechanical and thermal resistance.  

 

Glassy polymers and in particular polyimides are well known by their excellent thermal 

oxidative stability, good organic solvent resistance and exceptional mechanical 

properties, along with an extraordinary ability to separate complex mixtures of gases in 

diverse applications [4-6]. Thus, it has been widely recognized that the use of aromatic 

polyimides is one of the best alternatives to be chosen among all the polymeric 

membranes for gas separation applications [7]. 

 

Typically, these materials have good selectivity and not very high permeability [8-9]. It 

could therefore be interesting to increase the affinity of the material matrix for 

condensable gases such as CO2, or CH4 as one of the most effective approaches. 

  

Aromatic-aliphatic block-copolymers usually combine a hard block and a soft block. 

The hard block can be formed by a polymer with well-packed and highly rigid 

structures; as a result it forms a glassy phase with usually low free volume.  In contrast, 

the soft block can consist in a polymer with more flexible, low Tg, chains, which can 

form a rubbery phase having high free volume. Also, when aromatic-aliphatic block 

copolymers are phase-separated, for instance, by an adequate thermal treatment, their 

glassy polymer parts could provide mechanical support. The rubbery segments, due to 

the nature of the flexible chain structure, should allow an efficient transport of gas, 
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giving a good permeability to the material [10-11]. Among all the block copolymers, 

those having chains of polyethylene oxide (PEO) or polypropylene oxide (PPO) show 

outstanding features to be employed in gas separation applications. 

 

The synthesis of new PEO systems using different aromatic diamines showed that an 

increase of rigidity in the hard part promoted the phase segregation process [12]. When 

the temperature of treatment of the films increased, phase segregation improved [13]. 

Analogous trends have been proved when diverse types of aromatic dianhydrides of 

different rigidity were employed [14]. These processes depended also on the type of 

polyether used, because the phase segregation and the final properties of the membranes 

can also vary depending on the nature of the soft part [15].  

 

Mechanical properties of the membranes tended to worsen when the amount of 

polyether increased, because the amount of the hard part (which provides the 

mechanical strength of the final polymer) decreased. At the same time, the segregation 

and the permeation properties improved [16-17, 18].  

 

Polyethers such as PEO can experience easy crystallization processes when the 

molecular weight exceeds a certain value [16]. In gas separation this increase of 

crystallinity is undesirable because ordered structures have low or null permeation 

capacity. When PEO is in amorphous state, it can be said that the permeability increases 

with the length of the aliphatic part, mainly due to the improvement in phase 

segregation [16]. It is clearly important to find a good balance between the hard and the 

soft block segments in order to provide good permeability without having a dramatic 

loss in mechanical properties. 

  

Many composite systems, as for example mixed matrix membranes, MMM, have been 

modeled to correlate the overall permeability with those of the component phases by 

applying Maxwell-Garnett, MG, based treatments. Herein, we have applied this 

treatment to phase segregated membranes and we have found difficulties to model, 

within this theoretical frame, the range of intermediate concentrations. In this paper it is 

demonstrated that more symmetric schemes as the effective medium approximations, 

EMA, reproduce well enough the composition ranges where none of the phases, 

forming the material, can be considered as dispersed in a continuous matrix. 
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2. Experimental 

 

The segregated copoly(etherimide)s whose permeabilities are modeled here have been 

synthetized, thermally segregated and characterized previously by our group [12, 15-16, 

19]. A brief summary of these aspects is provided below.  

 

2.1. Chemicals 

 

3,3′,4,4′- Biphenyltetracarboxylic dianhydride (BPDA); 3,3′,4,4′-benzophenone 

tetracarboxylic dianhydride (BTDA or BKDA); pyromellite dianhydride (PMDA), and 

4,4'-oxydianiline (ODA) were purchased from Aldrich. These products were purified by 

sublimation at high vacuum just before use. Polyoxyethylene bis(amine) (Jeffamine ED-

2003, n= 41) with nominal molecular weight of 2000 g/mol, was kindly donated given 

by Huntsman
®
 (Holland) (PEO-2000 from here on). α,ω-Diamine-poly(ethylene oxide) 

with nominal molecular weight of 6000 g/mol, were obtained from Kawaken Fine 

Chemicals Co., Ltd. (Tokyo, Japan), (PEO-6000 from here on). These polyethers were 

dried at 70 ºC in vacuum for 5 hours and stored in a desiccator at vacuum until use. 

Anhydrous N-methylpyrrolidinone (NMP), used as the polymerization solvent, was 

purchased from Sigma-Aldrich Co.  

 

2.2. Synthesis of copoly(ether-imide)s 

 

The samples were synthesized by combination of a dianhydride (BPDA, BKDA or 

PMDA) with mixtures of an aromatic diamine (ODA), and diverse proportions of an 

aliphatic diamine (PEO). The corresponding copoly(ether-imide)s will be designated by 

adding cPI to the w/w percentage of the aliphatic proportion.  

 

Diamine-terminated poly(oxyethylene oxide) – PEO(2000) or PEO(6000) — (x mmol), 

and 4,4'-oxydianiline (ODA) (y mmol) in several weight ratios were dissolved in 

anhydrous NMP (5 mmol (x+y)/10 mL) in a 100 mL three-necked flask blanketed with 

nitrogen. 
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Then, the reaction mixture was cooled down to 0 ºC, and under mechanical stirring, a 

stoichiometric amount of the dianhydride (x+y mmol) was added. The mixture was 

maintained overnight at room temperature. During this time the dianhydride was 

completely dissolved and the solution reached high viscosity. 

 

In Figure 1 the corresponding structures of the aromatic and aliphatic homopolymers 

corresponding to the copoly(ether-imide)s synthetized are shown along with their 

densities 

Figure 1 

 

2.3. Preparation of the copolyimide dense films. 

 

The resultant viscous copolyamic acid solution was diluted with NMP to the appropriate 

viscosity for casting, filtered through a nominal #1 fritted glass funnel, degassed, and 

cast onto a leveled glass plate. The resulting film was covered with a conical funnel to 

avoid fast evaporation of the solvent, dried at 80 ºC overnight, and finally treated at 

several temperatures from 160 to 250 ºC (275 ºC for the BKDA containing films) for 6 

hours until 200ºC and 30 min over this temperature in a vacuum oven, in order to 

achieve a complete imidization. Films of copolymers having 50-70 m in thickness 

were obtained. After that, thermal treatments under an inert atmosphere were carried out 

at different temperatures.  

 

2.4. Characterization of the membranes. 

 

All the copoly(eherimide)s studied here were treated at different temperatures (as 

mentioned above) and the resulting films extensively characterized [12-19]. They were 

and Phase segregation was confirmed by Small-Angle X-ray Scattering (SAXS) 

observing that this process increases with temperature. Glass transition temperatures, 

crystallinity and mechanical properties were obtained by using Differential Scanning 

Calorimetry (DSC), Thermo Gravimetric Analysis (TGA), Thermo Mechanical 

Analysis (TMA) and Dynamic Mechanical Analysis (DMA). All the films showed good 

mechanical properties. 
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Permselectivities were obtained by using ―time lag‖ permeators at 3 bar and 30 ºC 

(some measurements were done at 50 ºC when crystallinity was present in the case of 

PEO-6000).  

 

3. Theory 

 

The membranes composed by two or more different phases should have permeability 

values placed between those for pure phases. Copolyimides consisting in an aromatic 

polyimide part (hard segments) and an aliphatic polyether one (soft PEO chains) should 

be modeled as a system formed by two intermixed phases. 

 

It has been generally [16, 20,21] found that for intermediate volume fractions there is a 

range where none of the Maxwell-Garnett predictions are accurate. It has been also 

noticed that low PEO proportions are well predicted by the Maxwell-Garnett model 

assuming that PEO is the dispersed phase although for high PEO proportions the 

Maxwell-Garnett model with PEO as the continuous phase fits better the experimental 

results [20]. Of course there is a range where neither the PEO rich nor the aromatic rich 

phases can be taken as disperse or  (discontinuous). This intermediate range has resisted 

all attempts to be predictable or even understood [19]. Among the attempts made we 

can mention the addition of an ad hoc parameter, so called  ―chain immobilization 

factor―, that should be evaluated as a function of composition to take into account the 

differences between the predictions of Maxwell-Garnett model for small fractions of 

one of the phases and the experimental results [21]. Other possibility is to patch both the 

Maxwell-Garnet predictions corresponding to PEO as disperse and to PEO as 

continuous phase by introducing a threshold value for the composition that again has to 

be adapted ―ad hoc‖ to the experimental results [19].  

 

A revision will be made here of some of the main models that can be used to predict 

permeabilities for different proportions of a multiphase gas separation membrane. This 

revision cannot be exhaustive as far as there are a huge plethora of models more or less 

similar to each other which were originally proposed for electric or thermal conductivity 

or for mechanical properties [22-24]. The models will, of course, be adapted to gas 
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permeation attending to the well-known analogy existent between the transport 

processes [25]. 

 

3.1. Maxwell-Garnett Models 

 

The Maxwell-Garnett approximation, [26-27] also known as the Clausius-Mossotti 

approximation, is one of the most widely used methods for calculating the bulk 

dielectric properties of inhomogeneous materials [28-29]. It is useful when one of the 

components can be considered as a host in which inclusions of the other component or 

components are embedded. It involves an exact calculation of the field induced in the 

uniform host by a single spherical or ellipsoidal inclusion and an approximate treatment 

of its distortion by the electrostatic interaction between the different inclusions. This 

distortion is caused by the charge dipoles and higher multipoles induced in the other 

inclusions. The induced dipole moments cause the longest range distortions and their 

average effect is included in the Maxwell approximation which results in a uniform 

field inside all the inclusions. 

 

These approaches have been extensively used to study the properties of two-component 

mixtures in which both, the host and the inclusions, are isotropic materials with scalar 

dielectric coefficients. Nevertheless, applying relaying inthe known analogies of 

transport phenomena, this theoretical frame has been used to model: electrical 

conductivity, thermal conductivity and elasticity parameters. They have been also 

extensively used for permeation modeling. 

 

For gas separation processes, it has been demonstrated that systems consisting in a 

disperse phase embedded in a continuous matrix can be described in terms of these 

models that have been called Maxwell-Garnett or Maxwell-Eucken models. Within the 

frame of these theoretical schemes, the effective permeability is: 
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Where Peff is the effective permeability, Pc and Pd are the permeabilities of the 

continuous and disperse phase, respectively, and d is the volume fraction of the 

dispersed phase in the block copolymer. 

 

In our study, of course the continuous phase can be the aromatic or the aliphatic rich 

portions depending on the composition of the copolymer. For this reason, it should be 

necessary to make two different predictions depending on which segment is taken as the 

continuous phase or the disperse one. This is necessary because Equation (1) is not 

symmetric and if the roles of the filler and the continuous phase are swapped, different 

results are obtained.  

Bruggeman [30] introduced a  popular approximation that is now widely known as the 

differential scheme or the Bruggeman equation. Bruggeman proceeds from the premise 

that the fields of neighboring particles can be taken into account by adding the dispersed 

particles incrementally, taking the surrounding medium to be the existing composite at 

each stage. 

 

Translated to gas permeability, the Bruggeman equation says that the effective 

permeability of an inhomogeneous medium is given by: 

 
1

1

d

d eff c

d

d c eff

P P P

P P P

 
  

   
                                                        (2) 

where d = 3 for spherical fillers [31]. 

 

The Bruggeman equation is appropriate for composites containing spherical particles 

with a very wide size distribution. Ideally, the size distribution should be wide enough 

so that any two spheres of comparable size are far from each other. Note that Equation 

(2) needs to be solved numerically and it is also asymmetric, in the sense commented 

when referring to Equation (1), i.e. it is not single valued. 

 

Some models have been applied without any pursued symmetry between filler and 

continuous matrix because they are intended for low content of filler within a 

continuous matrix. Most of these models lead to divergences in permeability for filler 

contents over a certain value. They belong to this class, for example, the models due to 
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Bruggeman [30], Bötcher [32] and De Loor  [33] and corresponding to Equations (3) to 

(5) [34]: 

 
3

1eff c dP P


                                                 (3) 

 
1

1eff c dP P


                                                 (4) 

  
1

1 1 2eff c d dP P


                                                  (5) 

 

The Lewis and Nielsen model [35-37], originally proposed for the elastic modulus of 

particulate composites, gives: 
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                                                       (7) 

 

The values of A and d  were given for many geometric shapes and orientations [38-40]. 

A is 2 for spheres in a unidirectional transport, d is 0.64 for random close packing of 

uniform spheres. d is the maximum d that is the maximum packing volume fraction 

for a given inclusion size and shape. 

 

The Pal model [41] assumes that: 
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                                       (8) 

 

where d = 3 as in Equation (2) for spheres like for the original work of Bruggeman 

(Equation (2)). Pal originally proposed this expression for the thermal conductivity of 

particulate composites using a differential scheme and taking into account the packing 

difficulty of particles and modifying the Bruggeman model. 

 

Equations (6) to (8) belong also to the divergent or low filler fraction models. 
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3.2. Effective Medium Theory  

 

Actually, when both phases are not continuous and there is a random dispersion of 

them, the Maxwell-Garnett approach is not reasonable. Within the frame of the 

Maxwell-Garnett’s model, the continuous and discontinuous phases must be first 

identified because Equations (1) to (8) are not symmetric as mentioned. Systems where 

the formation of an internal network in the structure is observed are more accurately 

represented with the effective medium theory (EMT) that treats the contributions of 

each phase equally. As the equation of Maxwell-Garnett, EMT is derived from the 

solution of the Laplace equation applied to a single sphere surrounded by a continuous 

medium, and subjected to a steady-state concentration gradient around the spheres. 

Maxwell-Garnett assumed that the local distortions to the concentration distributions 

around the dispersed spheres did not affect their neighbors. The essence of EMT, 

however, lies in the assumption that for a completely random distribution of 

components, the effect of local distortions to the concentration distribution caused by 

individual inclusions could be averaged in such way that over a sufficiently large 

volume (or ensemble) the concentration distribution within the material could be 

approximated by a material having an uniform concentration distribution and 

permeability Peff  [42-43].  

 

Effective medium approximations or effective medium theory (sometimes abbreviated 

as EMA or EMT) are physical models that describe the macroscopic properties 

of composite materials, which are developed from averaging the multiple values of the 

constituents that directly make up the composite material. At the constituent level, the 

values of the materials vary and are inhomogeneous. Precise calculation of the many 

constituent values is nearly impossible. The EMA methodologies are based [30]  on a 

self-consistent procedure in which a grain of one of the components is assumed to have 

a convenient shape (usually spherical or ellipsoidal) and to be embedded in an effective 

medium whose properties are determined self-consistently [29, 43]. EMA treats equally 

both the components as shown in its fundamental equation, [44, 45]: 
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Note that this frame can be extended to n phases by using: 
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                                                 (10) 

 

Although the distinction of dispersed and continuous phases losses its meaning as far as 

the two phases are treated in the same way and the roles of both the phases could be 

interchanged and the predicted overall permeability would not change, we will continue 

naming disperse phase to the PEO domains and continuous phase to the aromatic rich 

one. Equation (9) can be solved to: 

 

 21
8

4
eff d cP P P                                                     (11) 

with 

 

   3 1 3 1d d c cP P                                                      (12) 

 

of course using the identity 1c d   . All these EMA calculations are particularly 

appropriate for composites and polycrystals in which the grains of the various 

components are randomly and symmetrically distributed, so that none of the 

components is identifiable as a host in which the others are preferentially embedded.  

 

Because of the asymmetry of the assumed geometry, and the approximation, the results 

are likely to differ somewhat from the unevaluated (symmetric) EMA. This geometrical 

distinction may be easily understood by noting that the EMA and MG approximations 

are exact for two different microgeometries [28]. The EMA becomes exact in a 

hierarchical geometry where the two components play symmetrical geometric roles 

[46]. In contrast, the MG approach is exact for a geometry where the entire space is 

filled with equal spheres, each with identical ratio, such that one component is the core 

material and the other is the coating material (the host). 

 

3.3. Modifications of the Maxwell-Garnett models 

 

Modifications of the Maxwell-Garnett model have been done in two main directions. 

Firstly, the original asymmetric model has been modified to be symmetrical. And also 

the model has been modified to take into account the appearance of different phases 
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corresponding, for example, to the interfaces between the matrix and the disperse phases 

or to take into account the differences of: size, isotropy etc. In this work, we will only 

mention in some detail the modifications addressed to make the approach symmetric 

and to take into account the possible presence of more phases.  

 

The Levy model was originally proposed as a purely mathematical averaging of the 

Maxwell–Eucken model with each of the two phases being treated as continuous [47]. 

This model was recently given a physical interpretation by Wang  et al. [48]. In terms of 

gas permeability the model states that: 
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which is symmetrical and single valued  although, as we will see below, its symmetry 

could be inadequate in some cases. 

 

In order to treat three-phase-systems the Maxwell-Garnett model has been modified as: 
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Peff is the permeability of the ensemble continuous phase plus disperse phase, Pd is the 

permeability of a single core plus interfacial shield particle and Pin is the permeability of 

the interfacial shield covering the particle core that has a permeability Pk. d is the 
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volume fraction of inclusions and k is the fraction of the core in the core+shield 

system. This model has been developed to take into account the existence of such 

shields covering inclusions in mixed matrix membranes [49-51]. 

 

The Felske model [52] has been proposed for such complex (three phases) inclusions. 

This model gives: 
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And  is the ratio of outer-shield to core radii. 

 

The Felske model gives almost the same results than the modified Maxwell-Garnett 

model and although it is somewhat simpler, it has the same limitations than the original 

Maxwell-Garnett model [53]. 

 

As done by Lewis and Nielsen, d can be introduced in the Felske model to give [36, 

53]: 
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with  given by Equation (7). 

 

3.4. Percolation Models 

 

The original problem was proposed [54] for the fluid flow in a porous medium. It has 

been applied to many other related problems including many phenomena in 

physics, chemistry and materials science [55]. 
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A two phase system formed by inclusions dispersed in a continuous matrix can be 

modeled by a (3D) lattice in which each site can be occupied or empty with certain 

complimentary probabilities. In mathematics, percolation theory describes the behavior 

of connected clusters in such a random graph.  In terms of gas permeability, an occupied 

site has a permeability Pd while an unoccupied site has a permeability Pc. The 

fundamental premise of percolation theory is the appearance of a sharp increase in the 

effective permeability of the disordered media at a critical volume fraction known as the 

percolation threshold t at which long-range connectivity of the system appears. 

  

When 0dP  , Pc = 0, and d < t, no macroscopic conducting pathway exists and no 

permeation happens through the composite phase. When d >t, however, the system 

becomes permeable as a connected path appear through the composite material. The 

existence of a critical percolation threshold for electrical conductivity has been 

demonstrated for a wide variety of fillers, all at concentrations below the maximum 

packing fraction, d  [56]. The percolation threshold in an actual composite material is 

in general a function of the lattice structure of the phases, and ranges from 0.2t   for a 

face-centered cubic arrangement to 0.7t   for a honeycomb arrangement and it can be 

exactly calculated for certain simple lattices [44,45]. 

 

Electrical conductivity has been treated frequently within percolation models [57] but 

also thermal conductivity has been modeled as percolative [58-59]. However, many 

researchers have reported that no percolation appears in thermal conductivity [60]. It 

may be noted that in contrast to the electrical conductivity, the concentration 

dependence of thermal conductivity does not show any swift leap that could be 

interpreted as a percolation threshold. This is because thermal conductivity of the 

dispersed filler is usually comparable to that of the polymer matrix. Given that this is 

even more certain for the gas permeabilities through disperse and continuous phases in a 

composite, we could find difficult to justify the appearance of percolation in the systems 

to be studied here. Nevertheless, as will be seen below, there is actually a sudden 

increase in the effective permeability of our two phase systems, thus we will adapt and 

try to use the most promising percolation model proposed for the thermal conductivity. 
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This model was proposed by Zhang et al. [61-62] and translated to permeability says 

that: 

1

1

N

d

t
t

eff d

d
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  
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                                   (22) 

Pt is the permeability at the threshold (percolation) composition given by t and N is the 

percolation exponent. This model contains actually 3 parameters to be fitted. Although 

the values of Pt and t can be obtained by an analysis of the experimental data, n has to 

be fitted or evaluated for some fixed point.  

 

4. Results and Discussion 

 

In Figure 2 the CO2 permeability of the copolyimide BPDA-ODA-PEO(2000) thermally 

treated to 250 ºC as a function of the volume fraction of PEO (d) is shown. The 

predictions of Equations: (1) (Maxwell-Garnett); (2) (Brugeman); (9), (11) and (12) 

(EMA) and of Equations (13), (14) and (15) (Levy) are shown. It seems clear that the 

EMA model reproduces well all the main features of experimental data. It seems clear 

that the presence of an inflexion point in the experimental data is only predicted by the 

EMA and the Levy models. The vertical double line in Figure 2 corresponds to the 

volume fraction of PEO for this inflexion point. 

 

Figure 2 

 

When Equations (11) and (12) are taken into account it is seen that an inflexion point 

always appears, within the EMA model when log Peff is plotted versus d. This inflexion 

point can be calculated by solving d
2
log(Peff)/dd

2
 = 0 and corresponds to the volume 

fraction of the disperse phase at which Peff increases at its maximum pace. This happens 

when: 

 

1 2ˆ
3 1

d

 
 


  or for all d when 1                              (23) 

Here 

d

c

P

P
                                       (24) 
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It is worth remembering that the roles of continuous and disperse phases could be 

interchanged.  

 

The behavior of the function given in Equation (23) is shown in Figure 3. Note that the 

maximum increase of Peff happens for ˆ 1/ 3d  if Pd>>Pc (or ˆ 2 / 3d  if Pc>>Pd). 

Moreover only when Pd=Pc/2 or Pc=Pd/2 there is a maximum increase of Peff at ˆ 0d   or 

ˆ 1d  . In any case, this inflexion point cannot appear within the range ˆ1/3 2 /3d   . Note 

that according to the Levy model this inflexion would appear at ˆ 1/ 2d  . This is the 

justification to our attribution of an excessive symmetry to this model that, nevertheless, 

is the only model along with the EMA model to be able to predict an inflexion point.  

 

Figure 3 

 

In Figure 4 the O2, N2 and CH4 permeabilities of the copolyimide BPDA-ODA-

PEO(2000) thermally treated at 250 ºC as a function of the volume fraction of PEO (d) 

are depicted. The same features as seen in Figure 2 are now observed and in this case 

only the predictions of the EMA model are shown. 

 

Figure 4 

 

In Figure 5 the permeability for O2 of the copolyimide BPDA-ODA-PEO(2000) 

thermally treated at 250 ºC is shown as a function of the volume fraction of PEO (d) 

along with the predictions of the models given by Equations: (3) (Brugeman) ; (4) 

(Bötcher); (5) (De Loor); (6) and (7) (Lewis-Nielsen) and by Equation (8) (Pal). The 

EMA model predictions, already shown in Figure 4 are drawn too for the sake of 

comparison. It seems clear that all these models diverge or at least do not approximate 

to the pure PEO permeability for d = 1, while the EMA model clearly succeeds to 

approach gradually the pure PEO permeability. The Lewis-Nielsen (with A= 2) and Pal 

(with d=3) models have been taken with 0.64d   as should correspond to the maximum 

packing of spherical inclusions. It seems clear that none of them adequately fits the 

experimental results probably because their application domain restrict to low content of 

the filler within a continuous matrix. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Figure 5 

 

In Figure 6 the values of 
d for the Pal model (that seems to be the most acceptable 

among the models shown in Figure 5) are changed in order to compare its predictions 

with the data for the N2 permeability (again for the BPDA-ODA-PEO(2000) 

copolyimide thermally treated at 250 ºC) as a function of the volume fraction of PEO 

(d).  It appears clear that the Pal model cannot account for the real dependence of 

permeability for any value of 
d . 

 

Figure 6 

 

The predictions of the percolation model of Zhang (Equation (22)) clearly do not fit the 

experimental results for low volume fractions of PEO as shown for the CH4 

permeability (for the BPDA-ODA-PEO(2000) copolyimide thermally treated at 250 ºC) 

in Figure 7. In this Figure, the two discontinuous lines correspond to fixed and fitted 

values for t and Pt. Clearly they do not show significant differences. The values 

obtained for N are also quite similar.  It may be noted that the percolation based model 

proposed by Zhang et al. predicts that a percolation threshold would appear only if the 

ratio of the permeability of the filler to the polymer permeability was larger than 10
5
, 

which in the present case is not satisfied [62]. This requirement is clear in Figure 7 

where it is seen that the assumption of a percolation threshold would lead to a predicted 

permeability of CH4 for the continuous phase that would be 10
-5 

barrer for a PEO 

permeability of the order of unity. 

 

Figure 7 

 

The values of N, 2.55 and 2.83, are somehow out of the range that could be expected for 

electrical or thermal conductivity and for permeability as far as it is well known that N 

= 2 in a three-dimensional percolation (with an aspect ratio,  = 1) [63], with  = L/D, L 

and D being the length and the diameter of the inclusions.  
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In Figure 8 the EMA model is applied to the CO2 permeability of the copolyimides: 

BPDA-ODA-PEO(2000), BKDA-ODA-PEO(2000) and PMDA-ODA-PEO(2000). The 

figure shows that a change in the dianhydride has little effect in the dependence of 

permeability and the point of maximal increase in the effective permeability is quite 

similar and very close to a volume fraction of PEO ˆ 1/ 3d  . This could be predicted 

from Equations (23) and (24) because  goes from 2.8·10
-3

 to 17.4·10
-3

 which 

corresponds to values of ˆ d  going from 32.7 % to 33.2 %. 

 

Figure 8 

 

 

Figure 9 and 10 correspond to a three phase system BKDA-ODA-PEO(6000) 

constituted by the pure BKDA-ODA, the amorphous PEO(6000) and the crystalline 

one. In Figure 9 the white symbols correspond to the total volume proportion of 

PEO(6000). The EMA model fits the results only when the actual amorphous volume 

proportion of PEO(6000) is taken into account after subtraction of the crystalline 

volume as obtained by DSC, [16], and the system is taken as a bi-phase system.  

 

In Figure 10 the three phase system has been fitted to Equation (10), for three phases: 
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                                   (25) 

assuming that the permeability of the crystalline PEO is zero. It is clear that as shown in 

Figure 10, the EMA model can predict also the permeability across three phase 

composite segregated copolyimides. The graph corresponds to the effective 

permeability for the mentioned ternary system. In the Figure, the composition of the 

ternary system is given in terms of the volume fractions of crystalline and amorphous 

PEO. The datum for the semicrystalline PEO with 29 % crystallinity has been taken 

from Lin and Freeman [64] (see Figure 2 of this reference). 

 

Figure 9 
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Figure 10 

 

5.  Conclusions 

 

A series of aliphatic aromatic copoly(etherimide)s has been synthesized. Cast films of 

these copolymers have been thermally treated to ensure the phase segregation of the 

linear PEO chains from the aromatic moiety of the copoly(etherimide)s. The 

permeability of O2, N2, CO2 and CH4 of the resulting membranes have been compared 

with the predictions of the main usable models adapted to the gas permeability. 

 

The model based on the Effective Medium Approximation (EMA) succeeded to predict 

the main features of the experimental results. Specifically, it was able to calculate the 

volume fraction for the maximum increase of permeability, a common feature for all the 

studied segregated copolymer membranes. The model was even able to predict the 

permeabilities of a three phase system consisting in the aromatic (BKDA-ODA) rich 

phase plus the amorphous PEO(6000) and the crystalline PEO(6000) phases. 

 

As discussed, the EMA calculations are especially applicable to composites and 

polycrystals in which the various components are randomly and symmetrically 

distributed, so that none of the components is identifiable as a host in which the others 

are preferentially embedded. The size and orientation of each phase are continuously 

changing with their proportion; this is the case with the segregated copoly(ether)imides 

studied here. On the other hand, there is not a constant size network to be filled and the 

permeabilities of the phases involved are relatively close to each other as to make 

percolation impossible. Nevertheless they are different enough to have a certain 

percolation-like sudden step in the effective permeability which is well integrated in the 

EMA model. 

 

The model has the advantage of being able to be adapted for three phase (or multiphase) 

composites where the structure of each phase in the mixture is effectively random in 

nature. This fact has the added advantage of making unnecessary any consideration on 

the detailed phase-to-phase morphology. 
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Figure Captions 

 

Figure 1.- Structure of the aromatic and aliphatic components of the copolyimide 

thermally segregated membranes studied here along with their densities. (
a
) Data from 

the manufacturer and (
b
) Tanaka et al. [7]. Volume fractions d can be evaluated from 

weight fractions  d by: d = (d/d)/[( d/d)+(1-d)/c]. d is the density of filler and c 

is the density of the matrix.  

 

 

Figure 2.- Comparison of some models for the effective permeability of CO2 for a 

maximum thermally segregated polyimide. The Bruggeman model corresponds to 

Equation (2) with d=3. The EMA model corresponds to the s-shaped continuous thick 

line. 

 

Figure 3.- Plot of Equation (1724) showing that there is a range from  d = 1/3 to 2/3 

that can’t correspond to the inflexion point in P eff. The inflexion point for the Levy 

model should be placed in d = 1/2. 

 

Figure 4.- Effective permeability of: O2 , N2 and CH4 for a thermally segregated 

polyimide. The lines correspond to the EMA model. Vertical lines correspond to the 

maximum increase in permeability. 

 

Figure 5.- Effective permeability of O2 and predictions of some models for low content 

of a dispersed phase. The Lewis-Nielsen (A=2) and the Pal (d=3) models have been 

shown for              . The EMA model predictions are shown for the sake of comparison. 

Vertical lines correspond to the maximum increase in permeability 

 

Figure 6.- Effective permeability of N2 and predictions of the Pal model (with d = 3) for 

three different   . The double vertical lines correspond to the maximum increase in 

permeability while the other vertical lines correspond to the asymptotes of the Pal 

model. 

 

0.64d 

d
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Figure 7.- Effective permeability of CH4 and predictions of the percolation model of 

Zhang. The white cross corresponds to a fixed pair t and Pt while the gray one 

corresponds to values obtained for t and Pt after fitting. 

 

Figure 8.- Effective permeability of CO2 for thermally segregated polyimides with 

different dianhydrides. The lines correspond to the EMA model. 

 

Figure 9.- Effective permeability of CO2 for a partially crystalline PEO within a  

BKDA-ODA matrix at 30 ºC (). When the fractions of real amorphous PEO () are 

taken into account EMA predictions reproduce the experimental results. The line 

correspond to the EMA model. At 50 º C () there is no crystallinity and the EMA 

predictions are again quite good. 

 

Figure 10.- Effective permeability of CO2 for a three-phase system of crystalline and 

amorphous PEO in a  BKDA-ODA matrix and the predictions of EMA. 
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Figure 1.- Structure of the aromatic and aliphatic components of the copolyimide thermally 
segregated membranes studied here along with their densities. (a) Data from the manufacturer 
and (b) Tanaka et al. [7]. Volume fractions d can be evaluated from weight fractions  d by: d = 
(d/d)/[( d/d)+(1-d)/c]. d is the density of filler and c is the density of the matrix.  
 

Figure



Figure 2.- Comparison of some models for the effective permeability of CO2 for a maximum 
thermally segregated polyimide. The Bruggeman model corresponds to Equation (2) with d=3. 
The EMA model corresponds to the s-shaped continuous thick line. 
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Figure 3.- Plot of Equation (17) showing that there is a range from  d = 1/3 to 2/3 that can’t 
correspond to the inflexion point in P eff. The inflexion point for the Levy model should be placed 
in  d = 1/2. 
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Figure 4.- Effective permeability of: O2 , N2 and CH4 for a thermally segregated polyimide. The 
lines correspond to the EMA model. Vertical lines correspond to the maximum increase in 
permeability. 

BPDA-ODA-PEO(2000) Treated at 250 C 



Figure 5.- Effective permeability of O2 and predictions of some models for low content of a 
dispersed phase. The Lewis-Nielsen (with A=2) and the Pal (with d=3) models have been shown 
for        . The EMA model predictions are shown for the sake of comparison. Vertical lines 
correspond to the maximum increase in permeability.                                                              
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Figure 6.- Effective permeability of N2 and predictions of the Pal model (with d = 3) for three 
different     . The double vertical lines correspond to the maximum increase in permeability 
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Figure 7.- Effective permeability of CH4 and predictions of the percolation model of Zhang. The 
white  cross corresponds to a fixed pair t and Pt while the gray one corresponds to values 
obtained for t and Pt after fitting. 
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Figure 9.- Effective permeability of CO2 for a partially crystalline PEO within a  BKDA-ODA matrix 

at 30 ºC (). When the fractions of real amorphous PEO () are taken into account EMA 

predictions reproduce the experimental results. The line correspond to the EMA model. At 50 º 
C ()there is no crystallinity and the EMA predictions are again quite good.  
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Figure 10.- Effective permeability of CO2 for a three-phase system of crystalline and amorphous 
PEO in a  BKDA-ODA matrix and the predictions of EMA. 
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