## COMPREHENSIVE ANALYSIS OF PREBIOTIC PROPENAL UP TO 660 GHz

A. M. DALY<sup>1,2</sup>, C. BERMÚDEZ<sup>1</sup>, L. KOLESNIKOVÁ<sup>1</sup>, AND J. L. ALONSO<sup>1</sup>

<sup>1</sup> Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa,

Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid, Spain; Adam.M.Daly@jpl.nasa.gov

<sup>2</sup> Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

Received 2015 March 13; accepted 2015 May 8; published 2015 June 22

### ABSTRACT

Since interstellar detection of propenal is only based on two rotational transitions in the centimeter wave region, its high resolution rotational spectrum has been measured up to 660 GHz and fully characterized by assignment of more than 12,000 transitions to provide direct laboratory data to the astronomical community. Spectral assignments and analysis include transitions from the ground state of the *trans* and *cis* isomers, three *trans*- $^{13}$ C isotopologues, and ten excited vibrational states of the trans form. Combining new millimeter and submillimeter data with those from the far-infrared region has yielded the most precise set of spectroscopic constants of trans-propenal obtained to date. Newly determined rotational constants, centrifugal distortion constants, vibrational energies, and Coriolis and Fermi interaction constants are given with high accuracy and were used to predict transition frequencies and intensities over a wide frequency range. Results of this work should facilitate astronomers further observation of propenal in the interstellar medium.

Key words: catalogs - ISM: molecules - molecular data - techniques: spectroscopic

Supporting material: machine-readable tables

# 1. INTRODUCTION

Ever since the discovery of the simplest aldehyde (formaldehyde) in the interstellar medium (ISM), aldehydes have also been called the "sugars of space" (Snyder et al. 1969). Detection of these "sugars of space" is associated mainly to molecular clouds, which may indicate that the reactions occuring in grains facilitate their formation (Ikeda et al. 2001). So far, the observation of lines belonging to these aldehydes is restricted to molecules with chains containing no more than three carbon atoms, with propenal (acrolein), CH<sub>2</sub>CHCHO, the simplest conjugated aldehyde, being one of the largest. Additionally, propenal is considered to be a prebiotic molecule owing both to its formation in the decomposition of sugars (Moldoveanu 2010; Bermúdez et al. 2013) and its implication in the synthesis of amino acids, such as methionine and glutamic acid, via Strecker-type reactions (van Trump & Miller 1972). Its generation in the ISM has been postulated to be a product of a simple hydrogen addition reaction from a known interstellar aldehyde, propynal (Irvine et al. 1988; Turner 1991). Nevertheless, while more than 40 transitions have been found belonging to other relevant aldehydes, such as glycoladehyde, in different regions of the ISM (Hollis et al. 2000; Halfen et al. 2006; Beltrán et al. 2009; Jørgensen et al. 2012), positive detection of propenal has thus far been based on only two transitions of its lower energy trans isomer in the ground vibrational state, namely  $2_{11} \leftarrow 1_{10}$  and the  $3_{13} \leftarrow 2_{12}$  at 18221.164 (2) and 26079.449 (1) MHz, respectively, observed by the 100 m Green Bank Telescope pointing toward the star-forming region of Sagittarius B2(N) (Hollis et al. 2004; Requena-Torres et al. 2008). With the increasing sensitivity of astrophysical detection facilities, it might now be possible to identify not only further lines of trans-propenal, but also transitions from <sup>13</sup>C isotopologues, excited vibrational states, or the higher energy cis isomeric form. The key to success in this astrophysical identification lies in analyzing propenal pure rotational transitions, especially those that fall into the millimeter- and submillimeter-wave

regions, which are the working domains for the IRAM, NRAO, SEST, CSO telescopes, or ALMA interferometers.

Propenal can be observed in two *trans* and *cis* planar  $C_s$ conformers that interchange by rotation around the single C–C bond (see figures in Table 1), the *cis* form being  $600 \text{ cm}^{-1}$ higher in energy than the trans one (Blom & Bauder 1982). Ground state rotational spectra of both conformers, their isotopologues, and the lowest-energy excited vibrational state have already been studied in the microwave region (Fine et al. 1955; Wagner et al. 1957; Cherniak & Costain 1966; Blom & Bauder 1982; Blom et al. 1984). However, apart from the ground vibrational state of *trans*-propenal, which has been analyzed up to 170 GHz (Winnewisser et al. 1975), no further information exists on the rotational spectrum of propenal. Since there is always an uncertainty involved in predicting transitions at higher frequencies, interstellar detection of new propenal lines should be based on transitions measured directly in the laboratory or transitions predicted from a data set that includes higher frequency lines. In the present work, the pure rotational spectrum of propenal up to 660 GHz has been analyzed for the ground vibrational state of cis- and trans-propenal, the three <sup>13</sup>C isotopologues of the latter and ten lowest energy excited vibrational states below 700 cm<sup>-1</sup>. Given the strong Coriolis and Fermi perturbations observed, a global fit analysis combining our pure rotational and previously published vibrational rotational data (McKellar et al. 2007; McKellar & Appadoo 2008) was required. A highly accurate set of spectroscopic parameters that reproduce the spectrum and can facilitate detections of propenal in the ISM was thus obtained.

### 2. EXPERIMENTAL DETAILS

A commercially available sample of liquid propenal  $(b.p. = 125 \degree C)$  was used without further purification. Propenal spectrum was acquired using two different spectrometers. A recently upgraded Stark-modulation spectrometer employing 33 kHz modulation frequency and phase-sensitive detection (J. L. Alonso et al., in preparation) was used to cover the

| $\mathbf{T}_{\mathbf{a}}$ | ы | 6 | 1 |  |
|---------------------------|---|---|---|--|
| ни                        |   | е |   |  |
|                           |   |   |   |  |

Ground State Spectroscopic Constants of the Trans-propenal Parent and <sup>13</sup>C-species and Cis-propenal (A-reduction, I<sup>r</sup>-representation)

| Constant                           | Unit | Trans-propenal               | $Trans^{-13}C_1$    | Trans- <sup>13</sup> C <sub>2</sub> | Trans- <sup>13</sup> C <sub>3</sub> | Cis-propenal    |
|------------------------------------|------|------------------------------|---------------------|-------------------------------------|-------------------------------------|-----------------|
|                                    |      |                              |                     | e.                                  | ●<br>                               |                 |
| Α                                  | MHz  | 47353.7074 (17) <sup>a</sup> | 46781.0275 (67)     | 46518.9165 (64)                     | 47255.1934 (73)                     | 22831.6487 (43) |
| В                                  | MHz  | 4659.499468 (61)             | 4644.74135 (19)     | 4642.43842 (17)                     | 4520.79374 (15)                     | 6241.04728 (35) |
| С                                  | MHz  | 4242.689488 (56)             | 4225.83534 (20)     | 4221.74338 (19)                     | 4126.64084 (18)                     | 4902.20757 (21) |
| $\Delta_J$                         | kHz  | 1.042067 (19)                | 1.03970 (10)        | 1.03172 (10)                        | 0.988410 (65)                       | 5.11335 (24)    |
| $\Delta_{JK}$                      | kHz  | -8.78538 (44)                | -8.6890 (24)        | -8.7575 (13)                        | -8.9704 (14)                        | -29.1854 (13)   |
| $\Delta_K$                         | kHz  | 360.363 (64)                 | 348.56 (23)         | 367.21 (22)                         | 363.31 (26)                         | 108.07 (12)     |
| $\delta_J$                         | kHz  | 0.1202675 (76)               | 0.120817 (20)       | 0.121459 (18)                       | 0.111595 (18)                       | 1.48116 (12)    |
| $\delta_K$                         | kHz  | 5.7481 (24)                  | 5.643 (10)          | 5.745 (10)                          | 5.441 (10)                          | 11.3386 (76)    |
| $\Phi_I^{\mathbf{b}}$              | mHz  | 0.2994 (25)                  | 0.209 (20)          | 0.274 (21)                          | 0.287 (11)                          | 1.601 (89)      |
| $\Phi_{IK}$                        | mHz  | -6.576 (46)                  | -6.576 <sup>c</sup> | -6.576 <sup>c</sup>                 | -6.576 <sup>c</sup>                 | 92.04 (49)      |
| $\Phi_{KI}$                        | mHz  | -510.0 (12)                  | -382(19)            | -536.1 (64)                         | -459.1 (70)                         | -1153.0 (21)    |
| $\phi_I$                           | mHz  | 0.0740 (11)                  | 0.0740 <sup>c</sup> | 0.0740 <sup>c</sup>                 | 0.0740 <sup>c</sup>                 | 1.082 (43)      |
| $\phi_{IK}$                        | mHz  | 5.00 (62)                    | 5.00 <sup>c</sup>   | 5.00 <sup>c</sup>                   | 5.00 <sup>c</sup>                   | -19.3 (20)      |
| J range                            |      | 5-73                         | 1-55                | 1-55                                | 1-67                                | 1-61            |
| $K_a$ range                        |      | 0-19                         | 0-12                | 0-16                                | 0-16                                | 0-23            |
| $N_{\rm lines}/N_{\rm ex}^{\rm d}$ |      | 1606/28                      | 492/103             | 531/85                              | 485/93                              | 574/78          |
| $\sigma_{\rm fit}^{\rm e}$         | kHz  | 37                           | 40                  | 40                                  | 41                                  | 39              |

Note.

<sup>a</sup> The numbers in parentheses are  $1\sigma$  uncertainties in the units of the last decimal digit.

<sup>b</sup> Purely K-dependent sextic centrifugal distortion constants  $\Phi_K$  and  $\phi_K$  could not be determined from the present data sets.

<sup>c</sup> Fixed to the parent species value.

<sup>d</sup> Number of distinct frequency fitted lines/number of excluded lines based on the 2u fitting criterion of the SPFIT program (Pickett 1991) where u is the uncertainty of the measured frequency. The uncertainties between 50 and 500 kHz were given to the millimeter and submillimeter data from this work and 100 kHz to the microwave data from Blom & Bauder (1982), Blom et al. (1984).

<sup>e</sup> Standard deviation of the fit.

26-110 GHz range. Millimeter- and submillimeter-wave measurements, over the 50-660 GHz range, were performed using a direct absorption spectrometer recently constructed at the University of Valladolid (Daly et al. 2014). It is based on the frequency multiplier chains (VDI, Inc.) driven by an Agilent E8257D microwave synthesizer. The signal was detected using solid-state zero-bias detectors (VDI, Inc.) at twice the modulation frequency (2f = 20.4 kHz) and with a modulation depth between 20 and 50 kHz resulting in the second derivative line shape. All spectra were taken at room temperature with sample pressure less than 30 mTorr and recorded in 1 GHz sections in both directions. Rotational spectra of all three <sup>13</sup>C isotopologues were measured in their natural abundances. Transition lines were measured using a Gaussian profile function (AABS package; Kisiel et al. 2005) with accuracy better than 50 kHz for isolated well-developed lines (the accuracy up to 500 kHz was given to lines with poor signal-tonoise ratio).

### 3. ROTATIONAL SPECTRA AND ANALYSIS

## 3.1. Ground Vibrational State

The ground state rotational spectrum of *trans*-propenal is dominated by strong *a*-type *R*-branch transitions and weaker *b*type *R*-branch and *Q*-branch transitions, in agreement with the values of the dipole moment components  $|\mu_a| = 3.052$  (4) D and  $|\mu_b| = 0.630$  (1) D (Blom et al. 1984). Starting with the predictions based on the previous results and following an iterative process of assignment and fitting, over 1900 lines were assigned up to J = 76 and  $K_a = 24$ . The following Watson's Areduced semi-rigid Hamiltonian up to the sixth order (Watson 1977) was used in the analysis

$$\begin{aligned} H_{\text{Rot}}^{(\nu)} &= AJ_a^2 + BJ_b^2 + CJ_c^2 - \Delta_J J^4 - \Delta_{JK} J^2 J_a^2 \\ &- \Delta_K J_a^4 - \frac{1}{2} \Big[ \delta_J J^2 + \delta_K J_a^2, J_+^2 + J_-^2 \Big]_+ \\ &+ \Phi_J J^6 + \Phi_{JK} J^4 J_a^2 + \Phi_{KJ} J^2 J_a^4 \\ &+ \Phi_K J_a^6 + \frac{1}{2} \Big[ \phi_J J^4 + \phi_{JK} J^2 J_a^2 \\ &+ \phi_K J_a^4, J_+^2 + J_-^2 \Big]_+ \end{aligned}$$
(1)

where *A*, *B*, *C* are the rotational constants,  $\Delta_J$ ,  $\Delta_{JK}$ ,  $\Delta_K$ ,  $\delta_J$ ,  $\delta_K$ are quartic, and  $\Phi_J$ ,  $\Phi_{JK}$ ,  $\Phi_{KJ}$ ,  $\Phi_K$ ,  $\phi_J$ ,  $\phi_{JK}$ ,  $\phi_K$  are sextic centrifugal distortion constants. Some series of high  $K_a$ rotational transitions were found to be perturbed and could not be fitted within the distortable rotor model, hence, they were not included in the current stage of the fit. These perturbations were later treated in the global analysis presented in the following section. The spectroscopic parameters derived are listed in the first column of Table 1.

Around 500 distinct frequency ground state lines for each <sup>13</sup>C-species were analyzed in terms of the same Hamiltonian given by Equation (1) with  $\Phi_{JK}$ ,  $\phi_J$ , and  $\phi_{JK}$  constants fixed to the values of the parent species. Since our measurements were performed in natural abundance (intensities about 1% of the parent species), only the intense *a*-type transitions were

 Table 2

 Laboratory Assigned and Fitted Transition Frequencies for the *Trans*-propenal Parent, *Trans*-<sup>13</sup>C-species, *Cis*-propenal Ground States and Ten Excited Vibrational States of *Trans*-propenal

|                  |    |        |        | Tran   | sition <sup>a</sup> |         |         |            | $\nu_{\rm obs}{}^{\rm b}$ | $\nu_{\rm obs} - \nu_{\rm calc}{}^{\rm c}$ |                      |            |
|------------------|----|--------|--------|--------|---------------------|---------|---------|------------|---------------------------|--------------------------------------------|----------------------|------------|
| Species          | J' | $K'_a$ | $K_c'$ | $\nu'$ | J''                 | $K_a''$ | $K_c''$ | <i>v</i> ″ | $(MHz/cm^{-1})$           | $(MHz/cm^{-1})$                            | Comment <sup>d</sup> | References |
| $Trans^{-13}C_1$ | 16 | 1      | 16     | 0      | 15                  | 1       | 15      | 0          | 138100.896                | 0.040                                      |                      | (2)        |
| $Trans^{-13}C_1$ | 16 | 0      | 16     | 0      | 15                  | 0       | 15      | 0          | 139964.297                | 0.020                                      |                      | (2)        |
| $Trans^{-13}C_2$ | 20 | 7      | 13     | 0      | 19                  | 7       | 12      | 0          | 177365.923                | -0.031                                     |                      | (2)        |
| $Trans^{-13}C_2$ | 20 | 6      | 14     | 0      | 19                  | 6       | 13      | 0          | 177394.047                | 0.053                                      | В                    | (2)        |
| $Trans^{-13}C_2$ | 20 | 6      | 15     | 0      | 19                  | 6       | 14      | 0          | 177394.047                | 0.056                                      | В                    | (2)        |
| $Trans^{-13}C_3$ | 16 | 0      | 16     | 0      | 15                  | 0       | 15      | 0          | 136624.069                | 0.005                                      |                      | (2)        |
| $Trans^{-13}C_3$ | 20 | 1      | 19     | 0      | 19                  | 1       | 18      | 0          | 175805.698                | 0.121                                      | U                    | (2)        |
| Cis              | 17 | 1      | 16     | 0      | 16                  | 1       | 15      | 0          | 182121.954                | -0.030                                     |                      | (2)        |
| Cis              | 16 | 2      | 14     | 0      | 15                  | 2       | 13      | 0          | 184240.673                | -0.006                                     |                      | (2)        |
| Trans            | 23 | 2      | 22     | 0      | 22                  | 2       | 21      | 0          | 203709.166                | -0.031                                     |                      | (2)        |
| Trans            | 23 | 2      | 22     | 3      | 22                  | 2       | 21      | 3          | 203716.290                | 0.012                                      |                      | (2)        |
| Trans            | 23 | 2      | 22     | 10     | 22                  | 2       | 21      | 10         | 203840.124                | -0.005                                     |                      | (2)        |

Notes.

<sup>a</sup> Upper and lower state quantum numbers are indicated by "and," respectively. The assignment of the individual vibrational states to v is as following:  $0 \rightarrow$  ground state,  $1 \rightarrow v_{18} = 1$ ,  $2 \rightarrow v_{18} = 2$ ,  $3 \rightarrow v_{13} = 1$ ,  $4 \rightarrow v_{18} = 3$ ,  $5 \rightarrow (v_{18} = 1, v_{13} = 1)$ ,  $6 \rightarrow v_{12} = 1$ ,  $7 \rightarrow v_{17} = 1$ ,  $8 \rightarrow v_{18} = 4$ ,  $9 \rightarrow (v_{18} = 2, v_{13} = 1)$ , and  $10 \rightarrow v_{13} = 2$ .

<sup>b</sup> Observed frequency. Microwave, millimeter and submillimeter data are in MHz while the far-infrared data are in cm<sup>-1</sup>.

<sup>c</sup> Observed minus calculated frequency.

<sup>d</sup> Blended transitions were fitted to their intensity weighted averages and are labeled by B. Unfitted transitions are labeled by U.

References. (1) Blom et al. (1984); (2) This work; (3) Blom & Bauder (1982); (4) Winnewisser et al. (1975); (5) McKellar & Appadoo (2008).

(This table is available in its entirety in machine-readable form.)

observed. These transitions were combined with the a- and b-type ones measured by Blom et al. (1984) using isotopically highly enriched samples. The final sets of the spectroscopic constants are also given in Table 1.

For *cis*-propenal ( $|\mu_a| = 2.010(5)$  D and  $|\mu_b| = 1.573(3)$  D (Blom & Bauder 1982)), more than 500 lines were assigned to *a*- and *b*-type *R*-branch transitions up to J = 60 and  $K_a = 23$  and were analyzed using the above-mentioned Hamiltonian. The derived spectroscopic constants are listed in the last column of Table 1. Line assignments, observed frequencies  $\nu_{obs}$ ,  $\nu_{obs} - \nu_{calc}$  values, where  $\nu_{calc}$  is the calculated frequency based on the Hamiltonian model used, and references of the data sources included in the final fits for the *trans*-<sup>13</sup>C-species and *cis*-propenal ground states are presented in Table 2.

#### 3.2. Excited Vibrational States

Trans-propenal has four low-lying vibrational modes involving skeletal C–C torsion ( $\nu_{18}$ ), C = C–C bending ( $\nu_{13}$ ), O = C - C bending  $(\nu_{12})$ , and  $= CH_2$  twisting mode  $(\nu_{17})$ . Up to 10 vibrational states below  $700 \text{ cm}^{-1}$  (see Figure 1) can be sufficiently populated at the room temperature of the experiment to generate a highly rich vibrational satellite spectrum. Stark-modulation microwave spectroscopy is a very useful tool for analyzing these rotational satellite lines as has recently been shown in works on ethyl (Daly et al. 2014) and vinyl cyanide (López et al. 2014). When an electric field is applied to a rotating molecule, the M-degeneracy is partially or fully removed. This perturbation of the rotational energy levels by electric field gives rise to a Stark spectrum. A section of the Stark spectrum around the ground state  $4_{14} \leftarrow 3_{13}$  rotational transition of trans-propenal is presented in Figure 2. Rotational transitions in the excited vibrational states were readily

assigned on the basis of their characteristic Stark patterns (negative lobes in Figure 2), the same as the ground state line. Hence, at the higher frequency side of the ground state line, a harmonic progression formed by four satellite lines can easily be identified and assigned to pure rotational transition in successive excited vibrational states of the  $v_{18}$  torsional mode. Moreover, pure rotational spectra in other excited states corresponding to  $v_{13} = 1$ ,  $v_{12} = 1$ ,  $v_{17} = 1$  as well as combination states  $(v_{18} = 1, v_{13} = 1)$  and  $(v_{18} = 2, v_{13} = 1)$ were also observed. Preliminary spectroscopic constants obtained for these 10 excited states were used to predict the corresponding rotational spectra in the millimeter- and submillimeter-wave region. Loomis-Wood type plots, originally described by Loomis & Wood (1928), from the AABS package (Kisiel et al. 2005, 2012) were used to facilitate identification of rotational transitions for each vibrational state.

During the analysis of propenal in the millimeter and submillimeter region, the major complication is due to the mutual interactions between excited vibrational states belonging to low-lying vibrational modes leading to strong perturbations in the spectrum. The possible interactions between two states depends on the symmetry classification of the states involved which is marked in Figure 1 according to the  $C_s$ symmetry point group. Vibrational states belonging to different symmetry species may be connected by a- and b-type Coriolis interaction terms, and excited states with the same symmetry species may be coupled through c-type Coriolis and Fermi interactions. Figure 1 shows how the lowest-energy  $v_{18} = 1$ excited state should be free of interactions due to its energy spacing with respect to other excited states. Over 1000 pure rotational transitions could be included in the fit using the Equation (1). Nonetheless, several  $K_a$  series revealed deviations that could not be taken into account by adding higher-



**Figure 1.** Vibrational energy levels of *trans*-propenal below 700 cm<sup>-1</sup> obtained by McKellar & Appadoo (2008) and schematic illustration of the four lowestenergy normal vibrational modes,  $\nu_{18}$ : C–C torsion,  $\nu_{13}$ : C = C–C bending mode,  $\nu_{12}$ : O = C–C bending mode, and  $\nu_{17}$ : = CH<sub>2</sub> twisting mode. The symmetry specifications are given in accordance with  $C_s$  point group.

order centrifugal distortion effects. Some of these anomalies were observed exactly within the same range of the *J* quantum numbers as those already observed for ground state transitions. This clearly indicates that the ground state is in mutual interaction with the  $v_{18} = 1$  excited state and, as a result, they were analyzed together. Even though both *a*- and *b*-type Coriolis couplings are allowed in this case, only *b*-type Coriolis terms were found to be significant in the fitting. Including the Coriolis terms in the analysis improved the fit considerably, although, several  $K_a$  series of transitions in  $v_{18} = 1$  could still not be reproduced. A deeper insight into the  $v_{18} = 1$  rotational energy levels showed further interactions with higher-energy  $v_{18} = 2$  state. This significantly complicates the analysis since the  $v_{18} = 2$  state cannot be analyzed without the neighboring

almost iso-energetic  $v_{13} = 1$  state due to strong *c*-type Coriolis and Fermi interactions between them. A close look at the microwave spectrum in Figure 2 shows a small shift of the  $v_{18} = 2$  transition from the equidistant pattern which reflects the strong coupling between this state and  $v_{13} = 1$ . A 4-state Hamiltonian analysis was thus performed to correctly reproduce all the perturbed transitions in the ground state,  $v_{18} = 1$ ,  $v_{18} = 2$ , and  $v_{13} = 1$  excited vibrational states. Two excited vibrational states,  $v_{18} = 3$  and  $(v_{18} = 1, v_{13} = 1)$ , were then also analyzed as an interacting pair connected through *c*-type Coriolis and Fermi interactions. Possible interactions of this pair with other states were ignored. Analysis of the five remaining excited vibrational states above 500 cm<sup>-1</sup> led to the identification of many local perturbations. Although the  $v_{12} = 1$ and  $v_{17} = 1$  pair was initially treated separately, a 5-state Hamiltonian including  $v_{12} = 1$ ,  $v_{17} = 1$ ,  $v_{18} = 4$ ,  $(v_{18} = 2$ ,  $v_{13} = 1$ ), and  $v_{13} = 2$  excited vibrational states was inevitable.

## 3.3. Global Analysis

Over 10,000 distinct frequency lines treated in the abovementioned 4-state, 2-state, and 5-state analyses were finally combined with more than 8000 lines available from high resolution vibration-rotation study of McKellar & Appadoo (2008). The uncertainties between 50 and 500 kHz were given to the millimeter and submillimeter data and between 0.0003 and 0.001 cm<sup>-1</sup> to the far-infrared data for weighing purposes of the nonlinear least-square fit. The Hamiltonian matrix constructed for this problem can be written in standard block form with  $11 \times 11$  array size. Each diagonal block consists of  $H_{\rm Rot}^{(\nu)} + \Delta E_{\nu}$  term where  $H_{\rm Rot}^{(\nu)}$  is the Watson's A-reduced rotational Hamiltonian for given vibrational state v defined by Equation (1) and  $\Delta E_v = E_v - E_0$  is the vibrational energy difference from the ground state. The vibrational identifiers v are assigned to individual vibrational states as follows:  $0 \rightarrow$  ground state,  $1 \rightarrow v_{18} = 1$ ,  $2 \rightarrow v_{18} = 2$ ,  $3 \rightarrow v_{13} = 1$ , 4  $\rightarrow v_{18} = 3, 5 \rightarrow (v_{18} = 1, v_{13} = 1), 6 \rightarrow v_{12} = 1, 7 \rightarrow v_{17} = 1, 8$  $\rightarrow v_{18} = 4, 9 \rightarrow (v_{18} = 2, v_{13} = 1)$ , and  $10 \rightarrow v_{13} = 2$ . The offdiagonal blocks are composed by the Coriolis and Fermi interaction Hamiltonians  ${}^{\alpha}H_{Cor}^{(\nu,\nu')}$  and  $H_{F}^{(\nu,\nu')}$ , respectively, and were used when clear evidence of the mutual interactions between two states v and v' was found. The leading terms of the  $\alpha$ -type Coriolis Hamiltonian up to the second power in angular



Figure 2. Stark modulated spectrum of the  $J'_{k_a'K_c'} \leftarrow J''_{k_a''K_c''} = 4_{14} \leftarrow 3_{13}$  transition (modulation voltage 200 V) showing the assignments of the vibrational states below 700 cm<sup>-1</sup>.

Table 3 Spectroscopic Constants of Trans-propenal for Each Vibrational State v included in the Global 11-state Fit (A-reduction, I<sup>r</sup>-representation)

|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       | v <sup>a</sup>                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| $OC^b$                                                                                                                                                                 | Constant <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                    | 5                                      |
| 100vv′                                                                                                                                                                 | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz                                                                                                                              | 47353.6999 (17) <sup>d</sup>                                                                                                                                                                                                                                                                                        | 45782.9630 (50)                                                                                                                                                                                                                                                                                                       | 44374.617 (61)                                                                                                                                                                                                                                                                                                       | 48755.457 (49)                                                                                                                                                                                                                                                                                                    | 43101.272 (93)                                                                                                                                                                                                                                                                                                       | 46956.217 (86)                         |
| 200vv′                                                                                                                                                                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz                                                                                                                              | 4659.499451 (93)                                                                                                                                                                                                                                                                                                    | 4666.24463 (33)                                                                                                                                                                                                                                                                                                       | 4672.9124 (10)                                                                                                                                                                                                                                                                                                       | 4659.3132 (10)                                                                                                                                                                                                                                                                                                    | 4679.4475 (17)                                                                                                                                                                                                                                                                                                       | 4665.4082 (17)                         |
| 300vv′                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz                                                                                                                              | 4242.689513 (86)                                                                                                                                                                                                                                                                                                    | 4259.62456 (32)                                                                                                                                                                                                                                                                                                       | 4276.62153 (90)                                                                                                                                                                                                                                                                                                      | 4238.35294 (96)                                                                                                                                                                                                                                                                                                   | 4293.6518 (14)                                                                                                                                                                                                                                                                                                       | 4255.7034 (11)                         |
| 2vv'                                                                                                                                                                   | $-\Delta_J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kHz                                                                                                                              | -1.042093 (30)                                                                                                                                                                                                                                                                                                      | -1.087069 (83)                                                                                                                                                                                                                                                                                                        | -1.13228 (17)                                                                                                                                                                                                                                                                                                        | -1.02736 (16)                                                                                                                                                                                                                                                                                                     | -1.18057 (18)                                                                                                                                                                                                                                                                                                        | -1.06618 (13)                          |
| 11vv'                                                                                                                                                                  | $-\Delta_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kHz                                                                                                                              | 8.79047 (56)                                                                                                                                                                                                                                                                                                        | 8.5734 (12)                                                                                                                                                                                                                                                                                                           | 8.2463 (68)                                                                                                                                                                                                                                                                                                          | 10.2970 (59)                                                                                                                                                                                                                                                                                                      | 8.3705 (97)                                                                                                                                                                                                                                                                                                          | 9.667 (10)                             |
| 20vv'                                                                                                                                                                  | $-\Delta_K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kHz                                                                                                                              | -360.260 (44)                                                                                                                                                                                                                                                                                                       | 64.74 (10)                                                                                                                                                                                                                                                                                                            | 327.99 (35)                                                                                                                                                                                                                                                                                                          | -803.12 (23)                                                                                                                                                                                                                                                                                                      | 507.10 (41)                                                                                                                                                                                                                                                                                                          | -149.07 (36)                           |
| 401vv'                                                                                                                                                                 | $-\delta_J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kHz                                                                                                                              | -0.120239 (11)                                                                                                                                                                                                                                                                                                      | -0.119011 (66)                                                                                                                                                                                                                                                                                                        | -0.11652 (15)                                                                                                                                                                                                                                                                                                        | -0.11803 (15)                                                                                                                                                                                                                                                                                                     | -0.11483 (15)                                                                                                                                                                                                                                                                                                        | -0.116933 (68)                         |
| 410vv'                                                                                                                                                                 | $-\delta_K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kHz                                                                                                                              | -5.7747 (39)                                                                                                                                                                                                                                                                                                        | 0.769 (28)                                                                                                                                                                                                                                                                                                            | 6.258 (67)                                                                                                                                                                                                                                                                                                           | -11.756 (68)                                                                                                                                                                                                                                                                                                      | 10.237 (63)                                                                                                                                                                                                                                                                                                          | -2.335 (38)                            |
| 3vv'                                                                                                                                                                   | $\Phi_J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mHz                                                                                                                              | 0.3090 (39)                                                                                                                                                                                                                                                                                                         | 0.513 (13)                                                                                                                                                                                                                                                                                                            | 0.688 (35)                                                                                                                                                                                                                                                                                                           | 0.185 (33)                                                                                                                                                                                                                                                                                                        | 1.068 (33)                                                                                                                                                                                                                                                                                                           | 0.3090 <sup>e</sup>                    |
| 12vv'                                                                                                                                                                  | $\Phi_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mHz                                                                                                                              | 12.2 (17)                                                                                                                                                                                                                                                                                                           | -101.1 (22)                                                                                                                                                                                                                                                                                                           | -232 (11)                                                                                                                                                                                                                                                                                                            | 95 (11)                                                                                                                                                                                                                                                                                                           | -74.7 (91)                                                                                                                                                                                                                                                                                                           | -58.7 (84)                             |
| 21vv'                                                                                                                                                                  | $\Phi_{KJ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz                                                                                                                               | -0.5951 (64)                                                                                                                                                                                                                                                                                                        | 0.9430 (99)                                                                                                                                                                                                                                                                                                           | 2.460 (50)                                                                                                                                                                                                                                                                                                           | -1.905 (41)                                                                                                                                                                                                                                                                                                       | 1.805 (41)                                                                                                                                                                                                                                                                                                           | 1.065 (42)                             |
| 30vv'                                                                                                                                                                  | $\Phi_K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz                                                                                                                               | 1.42 (25)                                                                                                                                                                                                                                                                                                           | -217.87 (48)                                                                                                                                                                                                                                                                                                          | -277.53 (71)                                                                                                                                                                                                                                                                                                         | 161.49 (49)                                                                                                                                                                                                                                                                                                       | -299.60 (66)                                                                                                                                                                                                                                                                                                         | -232.43 (82)                           |
| 402 <i>vv</i> ′                                                                                                                                                        | $\phi_J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mHz                                                                                                                              | 0.0760 (17)                                                                                                                                                                                                                                                                                                         | 0.0858 (83)                                                                                                                                                                                                                                                                                                           | -0.069 (21)                                                                                                                                                                                                                                                                                                          | 0.151 (23)                                                                                                                                                                                                                                                                                                        | 0.182 (19)                                                                                                                                                                                                                                                                                                           | 0.0760                                 |
| 411 <i>vv</i> ′                                                                                                                                                        | $\phi_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mHz                                                                                                                              | 7.99 (96)                                                                                                                                                                                                                                                                                                           | 60.7 (49)                                                                                                                                                                                                                                                                                                             | 93 (12)                                                                                                                                                                                                                                                                                                              | -78 (11)                                                                                                                                                                                                                                                                                                          | 142 (11)                                                                                                                                                                                                                                                                                                             | 7.99°                                  |
| 420vv'                                                                                                                                                                 | $\phi_K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz                                                                                                                               | 2.63 (25)                                                                                                                                                                                                                                                                                                           | -13.72 (33)                                                                                                                                                                                                                                                                                                           | -31.5 (15)                                                                                                                                                                                                                                                                                                           | 16.7 (17)                                                                                                                                                                                                                                                                                                         | -10.0 (12)                                                                                                                                                                                                                                                                                                           | -6.8 (11)                              |
| vv'                                                                                                                                                                    | $\Delta E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $cm^{-1}$                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                   | 157.883986 (22)                                                                                                                                                                                                                                                                                                       | 314.19009 (26)                                                                                                                                                                                                                                                                                                       | 323.05132 (25)                                                                                                                                                                                                                                                                                                    | 468.94645 (68)                                                                                                                                                                                                                                                                                                       | 482.82732 (68)                         |
|                                                                                                                                                                        | J range <sup>f</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | 0–77                                                                                                                                                                                                                                                                                                                | 2-74                                                                                                                                                                                                                                                                                                                  | 2-70                                                                                                                                                                                                                                                                                                                 | 3–73                                                                                                                                                                                                                                                                                                              | 2-71                                                                                                                                                                                                                                                                                                                 | 3-70                                   |
|                                                                                                                                                                        | $K_a$ range <sup>f</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  | 0-24                                                                                                                                                                                                                                                                                                                | 0-22                                                                                                                                                                                                                                                                                                                  | 0-20                                                                                                                                                                                                                                                                                                                 | 0-21                                                                                                                                                                                                                                                                                                              | 0-17                                                                                                                                                                                                                                                                                                                 | 0-15                                   |
|                                                                                                                                                                        | $N_{\rm lines}/N_{\rm ex}^{\rm g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  | 1983/1                                                                                                                                                                                                                                                                                                              | 1728/23                                                                                                                                                                                                                                                                                                               | 936/0                                                                                                                                                                                                                                                                                                                | 947/1                                                                                                                                                                                                                                                                                                             | 977/10                                                                                                                                                                                                                                                                                                               | 811/12                                 |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                                        |
| OC <sup>b</sup>                                                                                                                                                        | Constant <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                   |                                        |
| $OC^{b}$<br>100vv'                                                                                                                                                     | Constant <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit<br>MHz                                                                                                                      | 6<br>47416.470 (69)                                                                                                                                                                                                                                                                                                 | 7 47190.191 (58)                                                                                                                                                                                                                                                                                                      | 8 41959.25 (94)                                                                                                                                                                                                                                                                                                      | 9 45351.42 (89)                                                                                                                                                                                                                                                                                                   | 10 50229.95 (13)                                                                                                                                                                                                                                                                                                     |                                        |
| OC <sup>b</sup><br>100vv'<br>200vv'                                                                                                                                    | Constant <sup>c</sup><br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit<br>MHz<br>MHz                                                                                                               | 6<br>47416.470 (69)<br>4656.00325 (58)                                                                                                                                                                                                                                                                              | 7<br>47190.191 (58)<br>4653.5032 (10)                                                                                                                                                                                                                                                                                 | 8<br>41959.25 (94)<br>4686.1597 (97)                                                                                                                                                                                                                                                                                 | 9<br>45351.42 (89)<br>4671.2440 (83)                                                                                                                                                                                                                                                                              | 10<br>50229.95 (13)<br>4659.2597 (25)                                                                                                                                                                                                                                                                                |                                        |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'                                                                                                                          | Constant <sup>c</sup><br>A<br>B<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>MHz<br>MHz<br>MHz                                                                                                        | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)                                                                                                                                                                                                                                                           | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)                                                                                                                                                                                                                                                              | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)                                                                                                                                                                                                                                                               | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)                                                                                                                                                                                                                                                            | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)                                                                                                                                                                                                                                                              | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'                                                                                                                  | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit<br>MHz<br>MHz<br>MHz<br>kHz                                                                                                 | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)                                                                                                                                                                                                                                          | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)<br>-1.04841 (19)                                                                                                                                                                                                                                             | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)                                                                                                                                                                                                                                              | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)                                                                                                                                                                                                                                           | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)<br>-1.02430 (53)                                                                                                                                                                                                                                             |                                        |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'                                                                                                         | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit<br>MHz<br>MHz<br>MHz<br>kHz<br>kHz                                                                                          | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)<br>9.074 (12)                                                                                                                                                                                                                            | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)<br>-1.04841 (19)<br>9.410 (13)                                                                                                                                                                                                                               | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)                                                                                                                                                                                                                                | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)                                                                                                                                                                                                                             | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)<br>-1.02430 (53)<br>12.082 (18)                                                                                                                                                                                                                              | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'                                                                                                | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz                                                                                   | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)<br>9.074 (12)<br>-357.36 (47)                                                                                                                                                                                                            | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)<br>-1.04841 (19)<br>9.410 (13)<br>-368.38 (15)                                                                                                                                                                                                               | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)                                                                                                                                                                                                                  | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)                                                                                                                                                                                                               | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)<br>-1.02430 (53)<br>12.082 (18)<br>-1365.53 (91)                                                                                                                                                                                                             | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'                                                                                      | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz                                                                            | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)<br>9.074 (12)<br>-357.36 (47)<br>-0.119715 (39)                                                                                                                                                                                          | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)<br>-1.04841 (19)<br>9.410 (13)<br>-368.38 (15)<br>-0.11940 (16)                                                                                                                                                                                              | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)<br>-0.10875 (21)                                                                                                                                                                                                 | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)                                                                                                                                                                                              | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)<br>-1.02430 (53)<br>12.082 (18)<br>-1365.53 (91)<br>-0.11000 (53)                                                                                                                                                                                            | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'                                                                            | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz                                                                     | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)<br>9.074 (12)<br>-357.36 (47)<br>-0.119715 (39)<br>-6.242 (53)                                                                                                                                                                           | 7<br>47190.191 (58)<br>4653.5032 (10)<br>4242.15421 (76)<br>-1.04841 (19)<br>9.410 (13)<br>-368.38 (15)<br>-0.11940 (16)<br>-5.413 (59)                                                                                                                                                                               | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)<br>-0.10875 (21)<br>-13.143 (90)                                                                                                                                                                                 | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)                                                                                                                                                                               | $\begin{array}{r} 10\\ \hline 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19) \end{array}$                                                                                                                                                | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'                                                                    | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz                                                       | $\begin{array}{c} 6\\ \hline 47416.470 \ (69)\\ 4656.00325 \ (58)\\ 4237.96030 \ (46)\\ -1.04737 \ (16)\\ 9.074 \ (12)\\ -357.36 \ (47)\\ -0.119715 \ (39)\\ -6.242 \ (53)\\ 0.332 \ (26) \end{array}$                                                                                                              | $\begin{array}{c} 7\\ 47190.191 (58)\\ 4653.5032 (10)\\ 4242.15421 (76)\\ -1.04841 (19)\\ 9.410 (13)\\ -368.38 (15)\\ -0.11940 (16)\\ -5.413 (59)\\ 0.412 (32)\\ \end{array}$                                                                                                                                         | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)<br>-0.10875 (21)<br>-13.143 (90)<br>1.488 (36)                                                                                                                                                                   | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)                                                                                                                                                                 | 10<br>50229.95 (13)<br>4659.2597 (25)<br>4234.0391 (24)<br>-1.02430 (53)<br>12.082 (18)<br>-1365.53 (91)<br>-0.11000 (53)<br>20.47 (19)<br>-1.10 (13)                                                                                                                                                                | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'                                                           | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz                                                       | $\begin{array}{c} 6\\ \hline 47416.470 \ (69)\\ 4656.00325 \ (58)\\ 4237.96030 \ (46)\\ -1.04737 \ (16)\\ 9.074 \ (12)\\ -357.36 \ (47)\\ -0.119715 \ (39)\\ -6.242 \ (53)\\ 0.332 \ (26)\\ 82.1 \ (53) \end{array}$                                                                                                | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18) \end{array}$                                                                                                            | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)<br>-0.10875 (21)<br>-13.143 (90)<br>1.488 (36)<br>-192 (28)                                                                                                                                                      | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)<br>-955 (20)                                                                                                                                                    | $\begin{array}{c} 10\\ \hline 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ \end{array}$                                                                                                                     | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>21vv'                                         | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$ $\Phi_{KJ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz                                                 | 6<br>47416.470 (69)<br>4656.00325 (58)<br>4237.96030 (46)<br>-1.04737 (16)<br>9.074 (12)<br>-357.36 (47)<br>-0.119715 (39)<br>-6.242 (53)<br>0.332 (26)<br>82.1 (53)<br>-0.5951°                                                                                                                                    | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16) \end{array}$                                                                                            | 8<br>41959.25 (94)<br>4686.1597 (97)<br>4310.8450 (53)<br>-1.22103 (33)<br>7.935 (28)<br>584.0 (46)<br>-0.10875 (21)<br>-13.143 (90)<br>1.488 (36)<br>-192 (28)<br>3.90 (15)                                                                                                                                         | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)<br>-955 (20)<br>5.49 (14)                                                                                                                                       | $\begin{array}{r} 10\\ \hline 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ -6.34 (10)\\ \end{array}$                                                                                                        | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>300vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>30vv'                                         | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$ $\Phi_{KJ}$ $\Phi_{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz<br>Hz                                           | $\begin{array}{c} 6\\ \hline 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15) \end{array}$                                                                                | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36) \end{array}$                                                                            | $\begin{array}{r} 8\\ \hline 41959.25 & (94)\\ 4686.1597 & (97)\\ 4310.8450 & (53)\\ -1.22103 & (33)\\ 7.935 & (28)\\ 584.0 & (46)\\ -0.10875 & (21)\\ -13.143 & (90)\\ 1.488 & (36)\\ -192 & (28)\\ 3.90 & (15)\\ -223.4 & (95)\\ \end{array}$                                                                      | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)<br>-955 (20)<br>5.49 (14)<br>-409.5 (77)                                                                                                                        | $\begin{array}{c} 10\\ \hline 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ -6.34 (10)\\ 426.5 (18)\\ \end{array}$                                                                                           | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>21vv'<br>30vv'<br>402vv'                                | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$ $\Phi_{KJ}$ $\Phi_{K}$ $\phi_{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz<br>Hz<br>Hz<br>mHz                              | $\begin{array}{c} 6\\ \hline 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15)\\ 0.0760^{e} \end{array}$                                                                   | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ \end{array}$                                                           | $\begin{array}{c} 8\\ \hline 41959.25 & (94)\\ 4686.1597 & (97)\\ 4310.8450 & (53)\\ -1.22103 & (33)\\ 7.935 & (28)\\ 584.0 & (46)\\ -0.10875 & (21)\\ -13.143 & (90)\\ 1.488 & (36)\\ -192 & (28)\\ 3.90 & (15)\\ -223.4 & (95)\\ -0.531 & (37)\\ \end{array}$                                                      | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)<br>-955 (20)<br>5.49 (14)<br>-409.5 (77)<br>-1.09 (11)                                                                                                          | $\begin{array}{c} 10\\ \hline 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ -6.34 (10)\\ 426.5 (18)\\ 0.79 (10)\\ \end{array}$                                                                               | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>21vv'<br>30vv'<br>402vv'<br>411vv'                      | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$ $\Phi_{KJ}$ $\Phi_{KJ}$ $\phi_{JK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz<br>Hz<br>mHz<br>mHz<br>mHz                      | $\begin{array}{c} 6\\ 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15)\\ 0.0760^{e}\\ 18.5\ (93) \end{array}$                                                             | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ 50 \ (11) \end{array}$                                                 | $\begin{array}{c} 8\\ 41959.25 \ (94)\\ 4686.1597 \ (97)\\ 4310.8450 \ (53)\\ -1.22103 \ (33)\\ 7.935 \ (28)\\ 584.0 \ (46)\\ -0.10875 \ (21)\\ -13.143 \ (90)\\ 1.488 \ (36)\\ -192 \ (28)\\ 3.90 \ (15)\\ -223.4 \ (95)\\ -0.531 \ (37)\\ 7.99^{\circ}\end{array}$                                                 | 9<br>45351.42 (89)<br>4671.2440 (83)<br>4273.1641 (46)<br>-1.09837 (54)<br>9.036 (23)<br>279.9 (41)<br>-0.11748 (59)<br>-10.39 (20)<br>-0.75 (13)<br>-955 (20)<br>5.49 (14)<br>-409.5 (77)<br>-1.09 (11)<br>-206 (56)                                                                                             | $\begin{array}{c} 10\\ \hline \\ 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ -6.34 (10)\\ 426.5 (18)\\ 0.79 (10)\\ -617 (52)\\ \end{array}$                                                                | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>21vv'<br>30vv'<br>402vv'<br>411vv'<br>420vv'            | $Constant^{c}$ $A$ $B$ $C$ $-\Delta_{J}$ $-\Delta_{JK}$ $-\Delta_{K}$ $-\delta_{J}$ $-\delta_{K}$ $\Phi_{J}$ $\Phi_{JK}$ $\Phi_{KJ}$ $\Phi_{KJ}$ $\phi_{JK}$ $\phi_{JK}$ $\phi_{JK}$ $\phi_{KK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz<br>Hz<br>mHz<br>mHz<br>mHz<br>mHz<br>Hz                | $\begin{array}{c} 6\\ \hline 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15)\\ 0.0760^{e}\\ 18.5\ (93)\\ 13.14\ (75)\\ \end{array}$                                      | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ 50 \ (11)\\ 2.63^{\circ} \end{array}$                                  | $\begin{array}{c} 8\\ 41959.25 \ (94)\\ 4686.1597 \ (97)\\ 4310.8450 \ (53)\\ -1.22103 \ (33)\\ 7.935 \ (28)\\ 584.0 \ (46)\\ -0.10875 \ (21)\\ -13.143 \ (90)\\ 1.488 \ (36)\\ -192 \ (28)\\ 3.90 \ (15)\\ -223.4 \ (95)\\ -0.531 \ (37)\\ 7.99^{\rm e}\\ -23.2 \ (37)\end{array}$                                  | $\begin{array}{c} 9\\ \hline 45351.42 \ (89)\\ 4671.2440 \ (83)\\ 4273.1641 \ (46)\\ -1.09837 \ (54)\\ 9.036 \ (23)\\ 279.9 \ (41)\\ -0.11748 \ (59)\\ -10.39 \ (20)\\ -0.75 \ (13)\\ -955 \ (20)\\ 5.49 \ (14)\\ -409.5 \ (77)\\ -1.09 \ (11)\\ -206 \ (56)\\ -130.8 \ (32) \end{array}$                         | $\begin{array}{c} 10\\ \hline 50229.95 \ (13)\\ 4659.2597 \ (25)\\ 4234.0391 \ (24)\\ -1.02430 \ (53)\\ 12.082 \ (18)\\ -1365.53 \ (91)\\ -0.11000 \ (53)\\ 20.47 \ (19)\\ -1.10 \ (13)\\ 1022 \ (35)\\ -6.34 \ (10)\\ 426.5 \ (18)\\ 0.79 \ (10)\\ -617 \ (52)\\ 145.9 \ (49)\\ \end{array}$                        | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>30vv'<br>402vv'<br>411vv'<br>402vv'<br>402vv'<br>402vv' | $Constantc$ $A$ $B$ $C$ $-\Delta_J$ $-\Delta_{JK}$ $-\delta_K$ $\Phi_J$ $\Phi_{JK}$ $\Phi_{KJ}$ $\Phi_K$ $\phi_J$ $\phi_{JK}$ $\phi_K$ $\phi_K$ $\Delta E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>mHz<br>Hz<br>mHz<br>mHz<br>mHz<br>mHz<br>mHz<br>cm <sup>-1</sup> | $\begin{array}{c} 6\\ \hline 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15)\\ 0.0760^{e}\\ 18.5\ (93)\\ 13.14\ (75)\\ 564.340326\ (23)\\ \end{array}$                   | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ 50 \ (11)\\ 2.63^{\circ}\\ 593.079293 \ (15)\\ \end{array}$            | $\begin{array}{c} 8\\ 41959.25 \ (94)\\ 4686.1597 \ (97)\\ 4310.8450 \ (53)\\ -1.22103 \ (33)\\ 7.935 \ (28)\\ 584.0 \ (46)\\ -0.10875 \ (21)\\ -13.143 \ (90)\\ 1.488 \ (36)\\ -192 \ (28)\\ 3.90 \ (15)\\ -223.4 \ (95)\\ -0.531 \ (37)\\ 7.99^{\rm e}\\ -23.2 \ (37)\\ 621.8530 \ (40) \end{array}$               | $\begin{array}{c} 9\\ \hline 45351.42 \ (89)\\ 4671.2440 \ (83)\\ 4273.1641 \ (46)\\ -1.09837 \ (54)\\ 9.036 \ (23)\\ 279.9 \ (41)\\ -0.11748 \ (59)\\ -10.39 \ (20)\\ -0.75 \ (13)\\ -955 \ (20)\\ 5.49 \ (14)\\ -409.5 \ (77)\\ -1.09 \ (11)\\ -206 \ (56)\\ -130.8 \ (32)\\ 641.0928 \ (41) \end{array}$       | $\begin{array}{c} 10\\ \hline \\ 50229.95 (13)\\ 4659.2597 (25)\\ 4234.0391 (24)\\ -1.02430 (53)\\ 12.082 (18)\\ -1365.53 (91)\\ -0.11000 (53)\\ 20.47 (19)\\ -1.10 (13)\\ 1022 (35)\\ -6.34 (10)\\ 426.5 (18)\\ 0.79 (10)\\ -617 (52)\\ 145.9 (49)\\ 647.83644 (57)\\ \end{array}$                                  | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>30vv'<br>402vv'<br>411vv'<br>402vv'<br>402vv'<br>402vv' | Constant <sup>c</sup><br>A<br>B<br>C<br>$-\Delta_J$<br>$-\Delta_{JK}$<br>$-\Delta_K$<br>$-\delta_J$<br>$-\delta_K$<br>$\Phi_J$<br>$\Phi_{JK}$<br>$\Phi_{KJ}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{K}$<br>$\phi_{$ | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>Hz<br>Hz<br>Hz<br>mHz<br>mHz<br>mHz<br>mHz<br>mHz<br>mHz         | $\begin{array}{c} 6\\ \hline 47416.470 \ (69)\\ 4656.00325 \ (58)\\ 4237.96030 \ (46)\\ -1.04737 \ (16)\\ 9.074 \ (12)\\ -357.36 \ (47)\\ -0.119715 \ (39)\\ -6.242 \ (53)\\ 0.332 \ (26)\\ 82.1 \ (53)\\ -0.5951^{e}\\ 5.5 \ (15)\\ 0.0760^{e}\\ 18.5 \ (93)\\ 13.14 \ (75)\\ 564.340326 \ (23)\\ 3-70\end{array}$ | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ 50 \ (11)\\ 2.63^{e}\\ 593.079293 \ (15)\\ 3-69\end{array}$            | $\begin{array}{c} 8\\ 41959.25 & (94)\\ 4686.1597 & (97)\\ 4310.8450 & (53)\\ -1.22103 & (33)\\ 7.935 & (28)\\ 584.0 & (46)\\ -0.10875 & (21)\\ -13.143 & (90)\\ 1.488 & (36)\\ -192 & (28)\\ 3.90 & (15)\\ -223.4 & (95)\\ -0.531 & (37)\\ 7.99^{e}\\ -23.2 & (37)\\ 621.8530 & (40)\\ 2-70\\ \end{array}$          | $\begin{array}{c} 9\\ 45351.42 \ (89)\\ 4671.2440 \ (83)\\ 4273.1641 \ (46)\\ -1.09837 \ (54)\\ 9.036 \ (23)\\ 279.9 \ (41)\\ -0.11748 \ (59)\\ -10.39 \ (20)\\ -0.75 \ (13)\\ -955 \ (20)\\ 5.49 \ (14)\\ -409.5 \ (77)\\ -1.09 \ (11)\\ -206 \ (56)\\ -130.8 \ (32)\\ 641.0928 \ (41)\\ 3-67\end{array}$        | $\begin{array}{c} 10\\ \hline 50229.95 \ (13)\\ 4659.2597 \ (25)\\ 4234.0391 \ (24)\\ -1.02430 \ (53)\\ 12.082 \ (18)\\ -1365.53 \ (91)\\ -0.11000 \ (53)\\ 20.47 \ (19)\\ -1.10 \ (13)\\ 1022 \ (35)\\ -6.34 \ (10)\\ 426.5 \ (18)\\ 0.79 \ (10)\\ -617 \ (52)\\ 145.9 \ (49)\\ 647.83644 \ (57)\\ 3-66\end{array}$ | ····                                   |
| OC <sup>b</sup><br>100vv'<br>200vv'<br>2vv'<br>11vv'<br>20vv'<br>401vv'<br>410vv'<br>3vv'<br>12vv'<br>21vv'<br>30vv'<br>402vv'<br>411vv'<br>402vv'<br>402vv'<br>402vv' | Constant <sup>c</sup><br>A<br>B<br>C<br>$-\Delta_J$<br>$-\Delta_{JK}$<br>$-\Delta_K$<br>$-\delta_J$<br>$-\delta_K$<br>$\Phi_J$<br>$\Phi_{JK}$<br>$\Phi_{KJ}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_{JK}$<br>$\phi_$                                                   | Unit<br>MHz<br>MHz<br>kHz<br>kHz<br>kHz<br>kHz<br>kHz<br>mHz<br>Hz<br>Hz<br>mHz<br>Hz<br>mHz<br>mHz<br>mHz<br>mHz<br>mHz         | $\begin{array}{c} 6\\ 47416.470\ (69)\\ 4656.00325\ (58)\\ 4237.96030\ (46)\\ -1.04737\ (16)\\ 9.074\ (12)\\ -357.36\ (47)\\ -0.119715\ (39)\\ -6.242\ (53)\\ 0.332\ (26)\\ 82.1\ (53)\\ -0.5951^{e}\\ 5.5\ (15)\\ 0.0760^{e}\\ 18.5\ (93)\\ 13.14\ (75)\\ 564.340326\ (23)\\ 3-70\\ 0-15\end{array}$               | $\begin{array}{c} 7\\ 47190.191 \ (58)\\ 4653.5032 \ (10)\\ 4242.15421 \ (76)\\ -1.04841 \ (19)\\ 9.410 \ (13)\\ -368.38 \ (15)\\ -0.11940 \ (16)\\ -5.413 \ (59)\\ 0.412 \ (32)\\ 8.3 \ (18)\\ -0.339 \ (16)\\ -25.65 \ (36)\\ 0.087 \ (20)\\ 50 \ (11)\\ 2.63^{\circ}\\ 593.079293 \ (15)\\ 3-69\\ 0-17\end{array}$ | $\begin{array}{c} 8\\ 41959.25 & (94)\\ 4686.1597 & (97)\\ 4310.8450 & (53)\\ -1.22103 & (33)\\ 7.935 & (28)\\ 584.0 & (46)\\ -0.10875 & (21)\\ -13.143 & (90)\\ 1.488 & (36)\\ -192 & (28)\\ 3.90 & (15)\\ -223.4 & (95)\\ -0.531 & (37)\\ 7.99^{\rm e}\\ -23.2 & (37)\\ 621.8530 & (40)\\ 2-70\\ 0-15 \end{array}$ | $\begin{array}{c} 9\\ 45351.42 \ (89)\\ 4671.2440 \ (83)\\ 4273.1641 \ (46)\\ -1.09837 \ (54)\\ 9.036 \ (23)\\ 279.9 \ (41)\\ -0.11748 \ (59)\\ -10.39 \ (20)\\ -0.75 \ (13)\\ -955 \ (20)\\ 5.49 \ (14)\\ -409.5 \ (77)\\ -1.09 \ (11)\\ -206 \ (56)\\ -130.8 \ (32)\\ 641.0928 \ (41)\\ 3-67\\ 0-15\end{array}$ | $\begin{array}{c} 10\\ 50229.95\ (13)\\ 4659.2597\ (25)\\ 4234.0391\ (24)\\ -1.02430\ (53)\\ 12.082\ (18)\\ -1365.53\ (91)\\ -0.11000\ (53)\\ 20.47\ (19)\\ -1.10\ (13)\\ 1022\ (35)\\ -6.34\ (10)\\ 426.5\ (18)\\ 0.79\ (10)\\ -617\ (52)\\ 145.9\ (49)\\ 647.83644\ (57)\\ 3-66\\ 0-17\end{array}$                 | ······································ |

## Note.

<sup>a</sup> The assignment of the vibrational states to v is as following:  $0 \rightarrow$  ground state,  $1 \rightarrow v_{18} = 1$ ,  $2 \rightarrow v_{18} = 2$ ,  $3 \rightarrow v_{13} = 1$ ,  $4 \rightarrow v_{18} = 3$ ,  $5 \rightarrow (v_{18} = 1, v_{13} = 1)$ ,  $6 \rightarrow v_{18} = 1$ ,  $v_{18} = 1$ , v $v_{12} = 1, 7 \rightarrow v_{17} = 1, 8 \rightarrow v_{18} = 4, 9 \rightarrow (v_{18} = 2, v_{13} = 1)$ , and  $10 \rightarrow v_{13} = 2$ . <sup>b</sup> SPFIT/SPCAT operator code. These operators are each within a defined state v where v = v' = 0, 1, ... 10.

<sup>c</sup> Common constant symbol.

<sup>d</sup> The numbers in parentheses are  $1\sigma$  uncertainties in the units of the last decimal digit.

<sup>e</sup> Fixed to the ground state value.

<sup>f</sup> Quantum number range corresponding to the millimeter and submillimeter data.

<sup>g</sup> Number of distinct frequency fitted lines/number of excluded lines corresponding to the pure rotational data based on the 9*u* fitting criterion of the SPFIT program where u is the uncertainty of the measured frequency.

momentum are (Prevalov & Tyuterev 1982)

$${}^{\alpha}H_{\rm Cor}^{(\nu,\nu')} = iG_{\alpha}J_{\alpha} + F_{\beta\gamma} \Big( J_{\beta}J_{\gamma} + J_{\gamma}J_{\beta} \Big)$$
(2)

where  $G_{\alpha}$  and  $F_{\beta}\gamma$  are the Coriolis coupling constants  $\alpha$ ,  $\beta$ ,  $\gamma$ are the permutations of a, b, c. The Fermi interaction

Hamiltonian up to the second power in angular momentum is given as (Prevalov & Tyuterev 1982)

$$H_{\rm F}^{(v,v')} = W + W_J J^2 + W_K J_a^2 + W_{\pm} \left( J_b^2 - J_c^2 \right) \tag{3}$$

Table 4 Coriolis and Fermi Coupling Constants for Interacting States ( $v \Leftrightarrow v'$ ) of *Trans*-propenal Obtained from the Global 11-state Fit (*I*<sup>r</sup>-representation)

|                 |                       |      | $(v \Leftrightarrow v')^{\mathrm{a}}$ |                         |                           |                         |            |                          |  |  |  |
|-----------------|-----------------------|------|---------------------------------------|-------------------------|---------------------------|-------------------------|------------|--------------------------|--|--|--|
| $OC^b$          | Constant <sup>c</sup> | Unit | $(0 \Leftrightarrow 1)$               | $(1 \Leftrightarrow 2)$ | (6 ⇔ 7)                   | (7 ⇔ 8)                 | (7 ⇔ 9)    | $(7 \Leftrightarrow 10)$ |  |  |  |
| 2000vv'         | $G_a$                 | MHz  |                                       |                         | 11272.5 (21) <sup>d</sup> | 131.3 (20)              | -413 (15)  |                          |  |  |  |
| 2001vv'         | $G_a^J$               | MHz  |                                       |                         | -0.02270 (44)             |                         |            |                          |  |  |  |
| 2100vv'         | $F_{bc}$              | MHz  |                                       |                         |                           |                         |            | 1.0621 (30)              |  |  |  |
| 4000vv'         | $G_b$                 | MHz  |                                       |                         | 1132.26 (13)              | 43.37 (70)              | -69.9 (69) |                          |  |  |  |
| 4001vv'         | $G_b^J$               | kHz  |                                       |                         | 0.0239 (88)               |                         |            |                          |  |  |  |
| 4010vv'         | $G_b^K$               | MHz  |                                       |                         | -0.1287 (14)              |                         |            |                          |  |  |  |
| 4100vv'         | $F_{ac}$              | MHz  |                                       |                         |                           |                         | 5.48 (26)  |                          |  |  |  |
| 4200vv'         |                       | kHz  | 5.606 (49)                            |                         |                           |                         |            |                          |  |  |  |
| 4210vv′         |                       | kHz  |                                       | 0.02467 (19)            |                           |                         |            |                          |  |  |  |
| OC <sup>b</sup> | Constant <sup>c</sup> | Unit | (2 ⇔ 3)                               | (4 ⇔ 5)                 | (6 ⇔ 8)                   | $(8 \Leftrightarrow 9)$ | (8 ⇔ 10)   | (9 ⇔ 10)                 |  |  |  |
| 6000vv′         | $G_c$                 | MHz  | -345.488 (34)                         | 550.203 (35)            | 77.54 (10)                | 650.24 (30)             | -98.8 (13) | 534.61 (40)              |  |  |  |
| 6001vv'         | $G_c^J$               | kHz  | 0.388 (13)                            |                         |                           |                         |            |                          |  |  |  |
| 6100vv′         | $F_{ab}$              | MHz  | -1.6356 (22)                          | 2.2549 (25)             |                           |                         |            | 3.432 (22)               |  |  |  |
| 6200vv′         |                       | kHz  | -0.571 (10)                           | 0.9216 (34)             |                           |                         | 3.997 (73) | 0.210 (23)               |  |  |  |
| vv'             | W                     | MHz  | 81372 (13)                            | -134480 (32)            |                           | 168296 (202)            |            | 116018 (15)              |  |  |  |
| 1vv'            | $W_J$                 | MHz  | -0.2174 (16)                          | 0.5528 (30)             |                           |                         |            | -0.2685 (27)             |  |  |  |
| 10vv'           | $W_K$                 | MHz  | -52.12 (15)                           | 56.78 (18)              |                           | -111.5 (28)             |            | -73.86 (29)              |  |  |  |
| 11vv'           | $W_{JK}$              | kHz  | -1.015 (29)                           | 0.993 (28)              |                           |                         |            |                          |  |  |  |
| 400vv'          | $W_{\pm}$             | MHz  |                                       |                         |                           | -0.0790 (57)            |            |                          |  |  |  |
| 410vv'          | $W^K_{\pm}$           | kHz  |                                       | 0.308 (28)              |                           |                         |            |                          |  |  |  |
| 1200vv′         |                       | kHz  |                                       |                         |                           |                         | 0.797 (47) |                          |  |  |  |

#### Note.

<sup>a</sup> The assignment of the vibrational states to v is as following:  $0 \rightarrow$  ground state,  $1 \rightarrow v_{18} = 1, 2 \rightarrow v_{18} = 2, 3 \rightarrow v_{13} = 1, 4 \rightarrow v_{18} = 3, 5 \rightarrow (v_{18} = 1, v_{13} = 1), 6 \rightarrow (v_{18} = 1, v_{18} = 1), 1 \rightarrow (v_{18} = 1), 1 \rightarrow$  $v_{12} = 1, 7 \rightarrow v_{17} = 1, 8 \rightarrow v_{18} = 4, 9 \rightarrow (v_{18} = 2, v_{13} = 1), \text{ and } 10 \rightarrow v_{13} = 2.$ 

<sup>b</sup> SPFIT/SPCAT operator code. These operators each connect defined vibrational states v and v' where  $v \neq v'$  and v, v' = 0, 1, ...10.

<sup>c</sup> Common constant symbol.

<sup>d</sup> The numbers in parentheses are  $1\sigma$  uncertainties in the units of the last decimal digit.

| Species $\overline{J'  K'_a}$ |        |    |     | Tran    | sition <sup>a</sup> |            |       | $\nu_{\rm calc}{}^{\rm b}$ | $u(\nu_{\rm calc})^{\rm c}$ | $S\mu^{2d}$          | $E'^{e}$             | $E''^{\rm f}$ |         |
|-------------------------------|--------|----|-----|---------|---------------------|------------|-------|----------------------------|-----------------------------|----------------------|----------------------|---------------|---------|
|                               | $K_c'$ | v' | J'' | $K_a''$ | $K_c''$             | <i>v</i> ″ | (MHz) | (MHz)                      | $(D^2)$                     | $(\mathrm{cm}^{-1})$ | $(\mathrm{cm}^{-1})$ |               |         |
| Trans                         | 10     | 2  | 8   | 3       | 9                   | 2          | 7     | 3                          | 89423.789                   | 0.005                | 733.300              | 346.055       | 343.072 |
| Trans                         | 10     | 5  | 6   | 2       | 9                   | 5          | 5     | 2                          | 89431.879                   | 0.010                | 574.612              | 363.332       | 360.349 |
| Trans                         | 10     | 2  | 8   | 0       | 9                   | 2          | 7     | 0                          | 89436.162                   | 0.001                | 733.476              | 22.098        | 19.115  |
| Cis                           | 8      | 6  | 2   | 0       | 7                   | 6          | 1     | 0                          | 89445.730                   | 0.002                | 101.415              | 34.124        | 31.140  |
| Cis                           | 21     | 4  | 17  | 0       | 21                  | 3          | 18    | 0                          | 89523.928                   | 0.025                | 182.948              | 97.469        | 94.483  |
| Cis                           | 8      | 5  | 4   | 0       | 7                   | 5          | 3     | 0                          | 89527.729                   | 0.003                | 141.241              | 27.803        | 24.817  |

Table 5 Predicted Transition Frequencies of the Trans- and Cis-propenal Ground States and Ten Excited Vibrational States of Trans-propenal

Note. Only transitions with predicted uncertainties  $u(\nu_{calc}) \leq 1$  MHz are included.

<sup>a</sup> Upper and lower state quantum numbers are indicated by ' and ", respectively. The assignment of the individual vibrational states to v is as following:  $0 \rightarrow$  ground state,  $1 \rightarrow v_{18} = 1, 2 \rightarrow v_{18} = 2, 3 \rightarrow v_{13} = 1, 4 \rightarrow v_{18} = 3, 5 \rightarrow (v_{18} = 1, v_{13} = 1), 6 \rightarrow v_{12} = 1, 7 \rightarrow v_{17} = 1, 8 \rightarrow v_{18} = 4, 9 \rightarrow (v_{18} = 2, v_{13} = 1), and 10 \rightarrow v_{18} = 1, 2 \rightarrow$  $v_{13} = 2.$ <sup>b</sup> Predicted frequency.

<sup>c</sup>  $1\sigma$  uncertainty of the predicted frequency.

<sup>d</sup> Line strength S multiplied by the square of the dipole moment component. Experimentally available values of the dipole moment of  $|\mu_{li}| = 3.052$  D and  $|\mu_b| = 0.630$  D for trans-propenal and  $|\mu_b| = 2.010$  D and  $|\mu_b| = 1.573$  D (Blom et al. 1984) for cis-propenal were used in the calculation. Dipole moment components for trans-propenal excited vibrational states were approximated by corresponding ground state values.

e Upper level energy.

f Lower level energy.

(This table is available in its entirety in machine-readable form.)

where W,  $W_J$ ,  $W_K$ , and  $W_{\pm}$  are the Fermi coupling constants. Despite the huge convergence problems, a stable fit was eventually achieved by finally selecting 211 adjusted and 7 fixed parameters leading to root mean square deviation of 168 kHz. Analysis of many interstate perturbations allowed to derive precise values of vibrational energies for all the excited vibrational states and together with the rotational and centrifugal distortion constants are assembled in Table 3. Determinable Coriolis and Fermi coupling constants are listed in Table 4. Choice of the Coriolis and Fermi coupling constants related to higher powers of angular momentum operators, than those presented in Equations (2) and (3), has been established empirically during the fitting procedure. Those producing a significant improvement of the fit were retained. Some of these constants, however, do not have generally known symbols. SPFIT/SPCAT operator codes are thus provided in Tables 3 and 4 to be able to derive the corresponding operator form. In the basis of  $J^2$ ,  $J^2_a$ , and  $J_{\pm}$ , where  $J_{\pm} = J_b \pm i J_c$ , definition of such operators can be found in Butler et al. (2003) or Pearson et al. (2008). Spectroscopic constants reported in Tables 3 and 4 can be considered as effective parameters that reproduce precisely the rotational spectrum trans-propenal in the ground and ten excited vibrational states.

Since the intensities are prerequisite for a correct molecular identification in the ISM, the spectroscopic constants from Tables 1–4 were used to predict the transition frequencies and line strengths of both isomers studied in this work in the frequency region through 760 GHz. The predicted transition frequencies are gathered in Table 5 along with the rotational quantum numbers, estimated uncertainties, intensities in terms of line strengths multiplied by the square of the corresponding dipole moment component, and energies of the lower and upper energy levels.

To sum up, present laboratory measurements and complete analysis of the propenal millimeter and submillimeter spectra have allowed to determine new sets of the spectroscopic constants and, using the available values of the dipole moment components, it was possible to predict the transition frequencies and intensities of many additional lines through 760 GHz. Rotational transitions of propenal can now be searched for over a wide frequency range toward appropriate interstellar sources.

This research has been supported by the "Ministerio de Ciencia e Innovación" (grant numbers CTQ 2013-40717 P, CTQ 2010-19008 and CONSOLIDER-Ingenio program "ASTROMOL," CSD 2009-00038) and Junta de Castilla y

León (Grants VA070A08 and VA175U13). C.B. wishes to thank the Minisiterio de Ciencia e Innovación for an FPI grant (BES 2011-047695).

#### REFERENCES

- Beltrán, M. T., Codella, C., Viti, S., Neri, R., & Cesaroni, R. 2009, ApJL, 690, L93
- Bermúdez, C., Peña, I., Cabezas, C., Daly, A. M., & Alonso, J. L. 2013, ChemPhysChem, 14, 893
- Blom, C. E., & Bauder, A. 1982, CPL, 88, 55
- Blom, C. E., Grassi, G., & Bauder, A. J. 1984, JAChS, 106, 7427
- Butler, R. A. H., Petkie, D. T., Helminger, P., & de Lucia, F. C. 2003, JMoSp, 220, 150
- Cherniak, E. A., & Costain, C. C. 1966, JChPh, 45, 104
- Cole, A. R. H., & Green, A. A. 1973, JMoSp, 48, 232
- Daly, A. M., Bermúdez, C., López, A., et al. 2013, ApJ, 768, 81
- Daly, A. M., Kolesniková, L., Mata, S., & Alonso, J. L. 2014, JMoSp, 306, 11
- Dickens, J. E., Irvine, W. M., & Nummelin, A. 2001, AcSpA, 57, 643
- Halfen, D. T., Apponi, A. J., Woolf, N., Polt, R., & Ziurys, L. M. 2006, ApJ, 639, 237
- Fine, J., Goldstein, J. H., & Simmons, J. W. 1955, JChPh, 23, 601
- Hollis, J. M., Jewell, P. R., Lovas, F. J., Remijan, A., & Mollendal, H. 2004, ApJL, 610, L21
- Hollis, J. M., Lovas, F. J., & Jewell, P. R. 2000, ApJL, 540, L107
- Ikeda, M., Ohishi, M., Nummelin, A., et al. 2001, ApJ, 560, 792
- Irvine, W. M., Brown, R. D., Cragg, D. M., et al. 1988, ApJL, 335, L89
- Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJL, 757, L4
- Kisiel, Z., Pszczolkowski, L., Drouin, B., et al. 2012, JMoSp, 280, 134
- Kisiel, Z., Pszczolkowski, L., Medvedev, I. R., et al. 2005, JMoSp, 233, 231
- Loomis, F. W., & Wood, R. W. 1928, PhRv, 32, 223
- López, A., Tercero, B., Kisiel, Z., et al. 2014, A&A, 572, A44
- McKellar, A. R. W., & Appadoo, D. R. T. 2008, JMoSp, 250, 106
- McKellar, A. R. W., Tokaryk, D. W., Xu, L. H., Appadoo, D. R. T., & May, T. 2007, JMoSp, 242, 31
- Moldoveanu, S. 2010, Pyrolysis of Organic Molecules: Applications to Health and Environmental Issues, Vol. 28 (Amsterdam: Elsevier)
- Pickett, H. M. 1991, JMoSp, 148, 371
- Pearson, J. C., Brauer, C. S., & Drouin, B. J. 2008, JMoSp, 251, 394 Prevalov, V. I., & Tyuterev, V. G. 1982, JMoSp, 96, 56
- Requena-Torres, M. A., Martín-Pindado, J., Martín, S., & Morris, M. R. 2008, ApJ, 672, 352
- Turner, B. E. 1991, ApJS, 76, 617
- Snyder, L. E., Buhl, D., Zuckerman, B., & Palmer, P. 1969, PhRv, 22, 679
- van Trump, J. E., & Miller, S. L. 1972, Sci, 178, 859
- Wagner, R., Fine, J., Simmons, J. W., & Goldstein, J. H. 1957, JChPh, 26, 634
- Watson, J. K. G. 1977, Vibrational Spectra and Structure, Vol. 6 (Amsterdam: Elsevier)
- Winnewisser, M., Winnewisser, G., Honda, T., & Hirota, E. 1975, ZNatA, 30A. 1001
- Xu, L. H., Jiang, X., Shi, H., et al. 2011, JMoSp, 268, 136