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Abstract

We introduce a novel methodology for ranking hesitant fuzzy sets. It builds
on a recent, theoretically sound contribution in Social Choice. In order to jus-
tify the applicability of such analysis, we develop two real implementations:
(i) new metarankings of world academic institutions that build on real data
from three reputed agencies, and (ii) a new procedure for improving teach-
ing performance assessments which we illustrate with real data collected by
ourselves. These applications provide new grounds for the theoretical model
by hesitant fuzzy sets.

Keywords: Multi-attribute decision making; Hesitant fuzzy element;
Hesitant fuzzy set; Ranking function; Score; Hesitant fuzzy worth;
Metaranking of universities; Teaching performance assessments.

1. Introduction

It is well-known that the analysis of many real-world situations is intricate
and controversial since it is affected by human behavior and its subjectivity.
Problems defined under uncertain conditions can be approached from differ-
ent positions. For example, Computing with Words can be used for reasoning
and computing with perceptions. This is useful in the cases involving peo-
ple that express their preferences or the potential of each alternative through
qualitative rather than quantitative values (cf., [1]). When the researcher has

∗Corresponding author
Email addresses: jcr@usal.es (J. C. R. Alcantud), rocioac@usal.es (R. de

Andrés Calle), mjmtorre@ual.es (Maŕıa J. M. Torrecillas)
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data in the form of measurements, besides standard optimization procedures
she can refer to Fuzzy Set Theory. This literature has provided useful tools
for the management of such inconveniences in decision-making contexts (see
[2], [3] and [4] as a sample; [5] is an extensive analysis of papers about fuzzy
multi-criteria decision making published in the period 1994-2014). However
it has long been recognized that in some practical problems, imprecise indi-
vidual or group knowledge cannot be suitably represented by fuzzy sets (FSs)
while some generalizations of this notion provide better insights.

To be precise, [6] introduced a new extension of fuzzy sets called hesitant
fuzzy sets (HFSs) that is motivated by such limitations. HFSs incorporate
many-valued sets of memberships (hesitant fuzzy elements, HFEs defined in
[7]), which permits to manage simultaneous sources of vagueness.

The motivation for using this concept in decision making is clearly ex-
plained e.g., in Xu [8]. This reference justifies that hesitant fuzzy elements
and sets have produced an extensive theoretical and applied literature. In
the recent authoritative survey of HFSs [9], the authors summarize many
useful and valuable decision making methods to solve hesitant fuzzy multi-
criteria decision making problems and propose further applications of HFSs
to decision making. Within the extended field of Hesitancy in Fuzzy Sets,
application papers that contribute to multicriteria decision making include
[7], [10], [11], [12], [13], [14], [15] and [16]. Multiexpert multicriteria decision
making under this requirement has been explored by Xia et al. [17] or Tan et
al. [18] among others. Rodŕıguez et al. [9], Section 7, emphasize that “a new
trend is the application of the theoretical models to real problems”. In this
paper we adhere to their position. We introduce a new theoretical procedure
for ranking HFSs, and then we apply the model to a real situation, to wit,
the elaboration of a metaranking of world academic institutions.

The solutions to the problem of prioritizing HFSs on a fixed set of alter-
natives rely on two basic methodologies which in some sense, perform similar
operations in different order. Xia and Xu [7], Section 4, propose to aggre-
gate HFEs into a single HFE and then rank these constructs according to
an indicator or score. Farhadinia [19] attempts to act directly on the HFSs
by computing the scores of their constituting HFEs, which are subsequently
aggregated into an indicator. Xu [8] contains an extensive discussion of other
works along these lines.

Here we propose a new general approach that complements the afore-
mentioned particular solutions. In order to formalize these procedures for
prioritizing HFSs we use the novel abstract concept of ranking function on
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hesitant fuzzy sets. This notion attaches a numerical ‘desirability’ indicator
with each HFS on the set of alternatives. Ranking functions appear to be
the most natural way to prioritize HFSs, in line with earlier uses of specific
ranking functions on FSs (e.g., [20, 21, 22]).

In our proposal the suitable application of scores on HFEs (specifically
from [7], [10], and [19], who introduces a Geometric score, see also [23]) is
complemented with a novel construction in this framework. It was imported
from Social Choice –cf., the worth in Herrero [24]– to fuzzy soft set based
decision making in [25]. There it was announced that the same tool could
be successfully implemented in other related soft computing models, which
we accomplish here for the analysis of HFSs. The conjunction of these two
steps (score followed by application of the adapted notion of worth to the
fuzzy setting) gives rise to a Hesitant Fuzzy Worth which naturally induces
a ranking of the alternatives.

We also report on the results of two real and original applications that
illustrate our theoretical contribution and at the same time, further vali-
date the model by HFSs. In the first case we build on real data from three
reputed rankings of world universities, namely, the Academic Ranking of
World Universities (also known as Shanghai Ranking), the QS World Univer-
sity Rankings and the Times Higher Education World University Rankings.
We justify that this multi-source imprecise information naturally fits the
model by HFSs, thus providing additional truthful justification of the need
for such concept. Then we benefit from this modelization in order to produce
metarankings of academic institutions that result from the application of our
methodology for ranking HFSs. A comparison with existing methodologies
is performed too. Then in the second case we use our methodology to rank
teachers’ performance according to the results of their students’ surveys. We
rely on anonymized real data from student evaluations of staff of the depart-
ment of Economics and Economic History, Universidad de Salamanca, Spain.
We only present a fraction of the data to preserve confidentiality. But our
procedure can be used to design a universal teacher performance assessment
instrument too. This possible target is beyond the scope of this paper.

This paper is organized as follows. Section 2 establishes some basic no-
tation and definitions related to hesitant fuzzy sets. In addition a review of
the literature related to hesitant multi-attribute decision making problems is
included. Section 3 contains our theoretical analysis of the general notion of
ranking function for HFSs and the construction of the Hesitant Fuzzy Worth
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associated with any hesitant fuzzy decision matrix. Section 4 contains two
practical examples that illustrate the use of the Hesitant Fuzzy Worth in
decision making contexts. In Section 5 we develop our first real application
of techniques for the hierarchization of world universities characterized by
hesitant fuzzy sets. Then we compare our results with the rankings obtained
by the application of known methodologies. In Section 6 we explain how
our novel procedure permits to give a ranking of teachers by their students’
surveys, using real data from a fraction of department’s staff. We conclude
in Section 7.

2. Notation, definitions and review of the literature

In this Section we describe basic definitions and notions of hesitant fuzzy
set. In addition, we review the traditional methodologies used to rank HFSs
in multi-attribute decision making contexts.

2.1. Hesitant fuzzy elements and hesitant fuzzy sets

For any set A, P∗(A) denotes the set of non-empty subsets of A, and
F∗(A) denotes the set of non-empty finite subsets of A.

Definition 1 (Xia and Xu [7]). A hesitant fuzzy element (HFE) is a non-
empty, finite subset of [0, 1]. The set of HFEs is denoted by F∗([0, 1]).

Generic HFEs are expressed as h = {h1, ..., hlh}, where h1 < . . . < hlh

and lh = |h| is the cardinality of the HFE h. In particular, h = {1} is usually
called the full HFE, and h = {0} is usually called the empty HFE. [13] made
some deep clarifications on these special HFEs.

Henceforth we refer to X, a fixed set of alternatives.

Definition 2 (Torra [6]). A hesitant fuzzy set (HFS) on X is a function
from X to P∗([0, 1]). A typical hesitant fuzzy set on X is a function from
X to F∗([0, 1]). The set of typical HFSs on X is denoted by HFS(X), and
HFS(X) means the set of HFSs on X. Unless otherwise stated, HFSs are
assumed to be typical.

From a formal point of view, a (typical) HFS is a subset
M ⊆ X × F∗([0, 1]) such that for each x ∈ X, there is exactly one ele-
ment hM(x) ∈ F∗([0, 1]) such that (x, hM(x)) ∈ M . Put differently, typical
HFSs on X associate an HFE hM(x) with each element x ∈ X.
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Every HFS on X defines a set of membership values for each element of
X, and in the case that the HFS is typical such set is always finite. HFEs
represent the set of possible membership values of a typical hesitant fuzzy
set at an alternative.

By restricting ourselves to F∗([0, 1]), i.e., non-empty HFEs, we disregard
‘nonsense elements’ in each HFS: on each alternative, at least one assessment
must be made.

From a practical point of view, the hesitant fuzzy set M can be rep-
resented as M = {(x, hM(x)) | x ∈ X}. For example, following [6] we
define M∗ = {(x, {1}) | x ∈ X} as the ideal or full HFS on X, and
M− = {(x, {0}) | x ∈ X} as the anti-ideal or empty HFS on X.

Clearly, when all HFEs involved in the definition of an HFS on X are
singletons we can identify such HFS with a fuzzy set (FS) on X. That is
to say, HFSs of the form M = {(x, hM(x)) | x ∈ X, hM(x) = {Mx}} can be
identified with the FS on X whose membership function is µM : X −→ [0, 1]
such that µM(x) = Mx. The ideal and anti-ideal HFS on X are examples
of such structural duality. Henceforth FS(X) denotes the fuzzy subsets of
X, and we can embed FS(X) into HFS(X) through the aforementioned
identification.

In agreement with our notation for HFEs, for each typical hesitant fuzzy
set M on X we write hM(x) = {h1M(x), ..., h

lM (x)
M (x)} with the property that

h1M(x) < . . . < h
lM (x)
M (x), and lM(x) = |hM(x)| is the cardinality of the

HFE hM(x). Observe that if the set of membership values at an element is
not finite (i.e., if we refer to a non-typical HFS) then such arrangement in
increasing order cannot be made in general. In any case, because hM(x) is a
set, repetitions are excluded by definition.

2.2. Methodologies for ranking hesitant fuzzy sets

In the context of decision making, when the opinions are collected accor-
ding to either the model by HFEs (one single attribute) or by HFSs (multiple
attributes), the decision maker needs to reach a decision that considers all
that information (see Figure 1). Farhadinia [19] explains that hesitant fuzzy
multi-attribute decision making is a trendy research area, and that in this
context, ranking of alternatives plays a crucial role.

We devote this Subsection to review different existing methodologies that
rank HFSs. We focus our attention on decision making problems where
the evaluations of alternatives are cardinal. Therefore, we avoid ranking
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approaches consistent with ordinal data such as ELECTRE [26], QUALIFEX
[27], TODIM [16], TOPSIS [28], VIKOR [29] and so forth. We classify the
existing methodologies in two groups: methods based on scores for HFEs,
and methods based on distances to ideal HFSs.

We proceed to explain the details of both alternatives.

Decision Analysis

Framework

Gathering 
information

Rating 
alternatives

Make 
a

decision

Problem

Alternatives

Attributes

Stage 
1

Stage 
2

Stage 
3

Figure 1: Scheme of a decision making problem. Stage 2 is reviewed in Subsection 2.2
when the problem consists of hesitant multi-attribute information.

2.2.1. Ranking methodologies based on HFEs scores

Scores on HFEs permit to rank HFEs in an immediate manner: the higher
the score of an HFE, the better it is considered. Nevertheless the formal
concept of score on HFEs remains undefined as far as we are aware of. Con-
sequently, we first introduce this formal concept in Definition 3 below:

Definition 3. A score on HFEs is a mapping s : F∗([0, 1]) −→ [0, 1] such
that s(h) = 1 if and only if h = {1}.

Similar in spirit is Farhadinia [19, Section 2] who defines HFE score func-
tions for HFEs with the same number of (possibly repeated) elements only.
Besides this restriction that we eschew, his limited definition imposes some
unnecessary boundary conditions.

Now we proceed to recall some traditional scores on typical HFEs. 1

1To further clarify the misleading use of the term “score” in the literature, it must be
mentioned that various authors have used the common term “the score function for HFEs”
to designate one of these single specific examples, rather than a generic notion with its
own meaning. This is clearly explained in the up-to-date survey [9].
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Definition 4 (Xia and Xu [7]). The Xia and Xu score on HFEs is the
mapping S1 : F∗([0, 1]) −→ [0, 1] such that

S1(h) =
h1 + . . .+ hlh

lh
.

Definition 5 (Farhadinia [10]). Consider a monotone non-decreasing se-
quence {δ(1), . . . , δ(n), . . .} of positive numbers. The Farhadinia score on
HFEs is the mapping S2 : F∗([0, 1]) −→ [0, 1] such that

S2(h) =
δ(1)h1 + . . .+ δ(lh)h

lh

δ(1) + . . .+ δ(lh)
.

This includes S1 when the sequence is {1, 1, . . . , 1, . . .}.

Definition 6 (Farhadinia [19]). The geometric-mean score function on HFEs
is the mapping

SGM(h) =

(
lh∏
i=1

hi

) 1
lh

.

The following example illustrates some of the HFEs scores described
above.

Example 1. Let X = {x1, x2}. Consider the typical HFS on X defined by

M : X −→ F∗([0, 1])
x1 hM(x1) = {0.55, 0.7}
x2 hM(x2) = {0.75, 0.8, 0.85}

The scores associated with x1 and x2 are:

• With respect to S1:

S1(hM(x1)) = 0.55+0.7
2

= 5
8

= 0.625

S1(hM(x2)) = 0.75+0.8+0.85
3

= 4
5

= 0.8
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• With respect to S2:

S2(hM(x1)) = 0.55+2·0.7
1+2

= 13
20

= 0.65

S2(hM(x2)) = 0.75+2·0.8+3·0.85
1+2+3

= 49
60
≈ 0.82

• With respect to SGM :

SGM(hM(x1)) = (0.55 · 0.7)
1
2 ≈ 0.620

SGM(hM(x2)) = (0.75 · 0.8 · 0.85)
1
3 ≈ 0.798

The aforementioned notions permit to produce solutions in the model by
hesitant fuzzy single-attribute information (formally, options are captured by
HFEs). When options are captured by HFSs we refer to the general model
by hesitant fuzzy multi-attribute information, and we need an intermediate
step that characterizes each alternative by a HFE (see Figure 1, Stage 2).

Xia and Xu [7] fill that step by introducing a number of hesitant fuzzy
aggregation operators that transform HFSs into HFEs, a successful approach
subsequently followed by other authors (cf., Table 1). In short, Xia and Xu’s
methodology proceeds by first associating each alternative with a HFE, and
then ranking the resultant HFEs by the appeal to a score.

Recently, Farhadinia [19] proposes a series of score functions for HFSs
based on known score functions on HFEs. With this tool he develops a HFS
score-based method to solve multi-attribute decision making problems with
hesitant information (cf., Table 1). Put shortly, his proposal proceeds in two
phases: firstly an score function is applied to each HFE, and then a similar
notion computes the final value (cf., [19, Definition 4.1 and page 107]).

In order to compare our new procedure with existing methodologies below
in Section 5, we select the successful approaches proposed in [7] and [19].

2.2.2. Ranking methodologies based on distance measures to reference ele-
ments

The general idea that ‘distances’ to distinguished items are useful indi-
cators of the ordering of the alternatives has been developed from multiple
approaches. The basic idea consists of setting up a reference set(s) and then
all the alternatives are compared with the reference set(s). Following this
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postulate, one can rank HFSs according to their distance or similarity to
adequate reference elements.

The distance measures between hesitant fuzzy elements (HFEs) and hesi-
tant fuzzy sets (HFSs) are introduced in the literature by Xu and Xia [12, 30].
Li et al. [31] propose some new distance and similarity measures on hesi-
tant fuzzy sets. They apply them to various multi-criteria decision making
problems.

Definition 7 (Xu and Xia [30]). A distance measure between HFSs on X
is a function d : HFS(X) × HFS(X) −→ [0, 1] that satisfies: for every
M,N ∈ HFS(X),

(d.1) d(M,N) = 0 if and only if M = N ;

(d.2) d(M,N) = d(N,M).

When d is a distance measure between HFSs on X, s = 1−d is a similarity
measure between HFSs on X (Xu and Xia [30, Def. 3]) and conversely.
Observe that in this case, s(M,N) = 1 if and only if M = N .

Let us fix a distance measure d between HFSs on X. Then for every
M,M ′ ∈ HFS(X) one can rank M above M ′ if and only if d∗(M) 6 d∗(M ′),
where d∗(M) = d(M,M∗) is the distance to the ideal HFS. This captures the
idea that the closer to the ideal HFS, the better.

Or alternatively, for every M,M ′ ∈ HFS(X) one can decide to rank M
above M ′ if and only if d−(M) > d−(M ′), where d−(M) = d(M,M−) is
the distance to the anti-ideal HFS. This captures the idea that the farther
away from the anti-ideal HFS, the better. We eschew the corresponding
analysis based on similarity measures, which derives easily from the simple
transformation between similarity and distance measures.

In order to apply this ranking procedure, the researcher can take ad-
vantage of [9, Subsection 5.1] to fix a suitable distance between HFSs from
the literature. In particular, one can utilize prominent distances from [30]:
the hesitant weighted Hamming distance (HWHD), the hesitant weighted
Euclidean distance (HWED), the hesitant weighted Hamming-Hausdorff dis-
tance (HWHHD), the hesitant weighted Euclidean-Hausdorff distance
(HWEHD), et cetera. In this paper we focus on these distance measures
between HFSs proposed in [30]. Further proposals of distances and similar-
ity measures can be found e.g., in [31] (cf., Table 1).
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To conclude, Table 1 summarizes and classifies the methodologies that
we have reviewed.

Author(s) Tool(s)/method(s)

Based on HFEs scores

[7] Generalized hesitant fuzzy weighted averaging operator (GHFWA)
Generalized hesitant fuzzy weighted geometric operator (GHFWG)

[19] Series of score functions for hesitant fuzzy sets

[32] Weighted hesitant fuzzy geometric Bonferroni mean (WHFGBM)
Weighted hesitant fuzzy Choquet geometric Bonferroni mean (WHFCGBM)

[33] Hesitant fuzzy prioritized operators

Based on distance measures

[12] Distance measures of hesitant fuzzy elements

[30] Generalized hesitant weighted distance

[31] Distance and similarity measures considering hesitancy degree

Table 1: Summary table of studies related to ranking HFSs

3. A novel ranking function for hesitant fuzzy subsets

We devote our theoretical analysis to the concept of a ranking function
for HFSs on a set X, which permits to attach numbers with each HFS on X.
This in turn permits to induce an ordering on HFS(X) which prioritizes the
projects or alternatives characterized by them, among other possible uses.
Of course the same is true for the case of typical HFSs. Formally we have
the following novel definition:

Definition 8. A ranking function on HFS(X) is a mapping

F : HFS(X) −→ [0,+∞)

Similarly we define ranking functions on HFS(X) or even FS(X) by succe-
ssively restricting the domain.

Now we take advantage of a recent advancement in Social Choice that
coupled with the use of scores, provides a completely redesigned approach to
ranking hesitant fuzzy sets. We first give an informal briefing on its various
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steps. Afterwards we present the formal construction of the algorithm and
an illustrative example.

The procedure starts with some complete preorders. In our case we com-
pute the scores associated with each alternative and attribute, and then each
of the attributes produces one prioritization of the alternatives according to
their successive scores. Now with the complete preorders defined by these
prioritizations we proceed to rank the alternatives according to the endoge-
nous scoring rule put forward in [24]. To this purpose we construct a positive
matrix whose cells are defined as Borda counts in its diagonal, and Condorcet
dominations off its diagonal (in all cases with respect to the aforementioned
scores). And the unique normalized eigenvector associated with its dominant
eigenvalue provides the ranking.

The precise definition that captures this construction is as follows.
There are k objects o1, ..., ok, and the set X of characteristics that qualify

them has q components. Each object is identified with a typical HFS on
X. Therefore our input is a Hesitant Fuzzy Decision Table with k rows and
q columns. Each cell (i, j) contains the corresponding HFE that describes
object i according to characteristic j.

Let us fix a score on HFEs (cf., Definition 3). By applying such predefined
score to the constituent HFEs of our Hesitant Fuzzy Decision Table, a new
k× q score table is produced. Its cell (i, j) is denoted by tij. It contains the
score attached to the j-th characteristic of object i.

Now we construct a new k × k matrix C = (cij)k×k according to the
following rules:

(a) When i 6= j, cij is the number of characteristics for which the score
attached to oi is strictly greater than the score attached to oj. Thus
cij is the number of characteristics m for which tim − tjm > 0, or the
number of positive values in the finite sequence ti1 − tj1, ti2 − tj2, . . .

(b) For each i, let mi =
∑

j 6=i cji be the sum of the non-diagonal elements
in column i of C and then define cii = q(k − 1)−mi.

Herrero [24] carefully argues that the tallies in this construction capture
the notions that we explain above. This is to say, our matrix C contains
Borda counts in its diagonal, and Condorcet dominations off its diagonal.
These are two focal notions in group decision making from the viewpoint of
Social Choice. For details on this extraneous issue, the reader is addressed
to [24].
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Because the square matrix C has positive entries, the Perron-Frobenius
theorem asserts that C has a unique largest real eigenvalue, and also that its
corresponding eigenvector can be chosen to have strictly positive components.

Herrero proves that the Perron-Frobenius eigenvalue of C is forcefully
q(k − 1). In order to prioritize the objects we compute a unique norma-
lized eigenvector H = (H1, · · · ,Hk) associated with it. Normalization is
performed so that H1 + · · ·+Hk = 1.

Finally we arrange the objects from highest to smallest component. To
capture these important amounts we formalize the following concept:

Definition 9. For a fixed score on HFEs, Hi is called the Hesitant Fuzzy
Worth (HFW) associated with object oi.

In conclusion, our procedure grades the objects according to their Hes-
itant Fuzzy Worth. This is the corresponding component of a normalized
eigenvector associated with the dominant eigenvalue of a matrix defined
through scores. The higher its HFW, the better an alternative is. The
investigation by Herrero permits to import relevant features of this solution,
like the exact identification of the dominant eigenvalue of the matrix directly
from the size of the corresponding score table.

4. Practical examples

Prior to our real and original applications, in this Section we illustrate our
ranking procedure with two brief case studies. The first one is an artificial
example that shows the various steps in our procedure. The second one uses
data from a real situation in order to produce a ranking of domestic airlines
by their service quality.

4.1. An artificial practical example

In this illustrative example we consider the problem characterized by the
Hesitant Fuzzy Decision Table given in Table 2. Suppose that we are bound
by Xu and Xia’s score. We proceed to apply our proposed ranking approach
in order to prioritize the objects of this artificial problem.

This problem consists of k = 3 objects and q = 3 characteristics. It
addresses to the score table given in Table 3, from which it is simple to
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compute the k × k matrix

C =

2 1 1
2 5 2
2 0 3


The dominant eigenvalue of C is 6 = 3 · (3 − 1). A normalized eigenvec-
tor associated with this eigenvalue is (1

5
, 2
3
, 2
15

), which is computed from the
system of linear equations C~x = 6~x and the normalization rule. Therefore
H1 = 0.2,H2 ≈ 0.67,H3 ≈ 0.13 are the respective Hesitant Fuzzy Worths
associated with the objects, and our algorithm suggests that o2 should be
selected.

Table 2: A representation of the HFSs for the artificial case study in subsection 4.1.

Options Characteristic 1 Characteristic 2 Characteristic 3

o1 (0.30, 0.50) (0.60, 0.65, 0.70) (0.70, 0.80, 0.90)
o2 (0.65, 0.75) (0.90, 0.95, 1) (0.65, 0.85)
o3 (0.60, 0.80) (0.70, 0.80) (0.50, 0.60, 0.70)

Table 3: Score table associated with the case study in subsection 4.1. Xia and Xu’s score
is adopted.

Options Characteristic 1 Characteristic 2 Characteristic 3

o1 0.40 0.65 0.80
o2 0.70 0.95 0.75
o3 0.70 0.75 0.60

4.2. Practical application: a ranking of domestic airlines by service quality

In this subsection we illustrate our ranking procedure with a brief exam-
ple that uses real data from Liou et al. [34], as cited in Liao and Xu [13].
The latter authors explain that Liou et al. [34] conducted a survey about
passengers’ importance and perception of quality of service in four domestic
airlines, according to which they produce a classification that relies on hesi-
tant information regarding four major criteria. We collect that information
in Table 4.
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Table 4: Hesitant fuzzy decision matrix for the application in subsection 4.2 (cf., [13, Table
1]).

Airlines Criterion 1 Criterion 2 Criterion 3 Criterion 4

UNI Air (0.6, 0.7, 0.9) (0.6, 0.8) (0.3, 0.6, 0.9) (0.4, 0.5, 0.9)
Transasia (0.7, 0.8, 0.9) (0.5, 0.8, 0.9) (0.4, 0.8) (0.5, 0.6, 0.7)
Mandarin (0.5, 0.6, 0.8) (0.6, 0.7, 0.9) (0.3, 0.5, 0.7) (0.5, 0.7)
Daily Air (0.6, 0.9) (0.7, 0.9) (0.2, 0.4, 0.7) (0.4, 0.5)

The relevant criteria in Table 4 concern (1) Booking and ticketing service,
(2) Checking and boarding process, (3) Cabin service, and (4) Responsive-
ness. When we use Xia and Xu’s score we obtain Table 5 (cf., [13, Table
2]).

Table 5: Score table associated with the case study in subsection 4.2 (cf., [13, Table 1]).
Xia and Xu’s score is adopted.

Airlines Criterion 1 Criterion 2 Criterion 3 Criterion 4

UNI Air 0.7333 0.7 0.6 0.6
Transasia 0.8 0.7333 0.6 0.6
Mandarin 0.6333 0.7333 0.5 0.6
Daily Air 0.75 0.8 0.4333 0.45

Following our procedure we need to produce the following 4× 4 matrix:

C =


7 0 2 2
2 11 2 3
1 0 6 2
2 1 2 5


The dominant eigenvalue of C is 12 = 4 · (4− 1). A normalized eigenvector
associated with this eigenvalue is (0.0816327, 0.714286, 0.0612245, 0.142857),
which is computed from the system of linear equations C~x = 12~x and the
normalization rule. Therefore H1 ≈ 0.08,H2 ≈ 0.71,H3 ≈ 0.06,H4 ≈ 0.14
are the respective Hesitant Fuzzy Worths associated with the objects. Our al-
gorithm suggests that Transasia has the better performance, which coincides
with the conclusion in Liao and Xu [13].
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5. Real application 1: academic metarankings of universities

In this Section we exemplify the use of the aforementioned methodology
for ranking a sample of seven of the most prestigious worldwide universities:
Stanford, Harvard, Oxford, Cambridge, Berkeley, Princeton and Yale. We
have refrained from making a lengthier study since the approach does not
vary with the number of alternatives.

5.1. Description of the real example

There are various agencies that provide evaluations and rankings of higher
education institutions, and typically they make finer evaluations on restricted
broad fields or subjects like Social Sciences. This fits into our setting since we
can regard this information as the evaluations by agents (the agencies con-
ducting each survey) on different attributes (the fields) of the alternatives
(the universities). It is not necessary that the agents are “good at evaluat-
ing all the attributes”, therefore we accommodate to a request in [7]. For
example, the 2014 Academic Ranking of World Universities (ARWU) does
not evaluate the field Arts and Humanities which is evaluated by The Times
Higher Education and the QS World University Rankings.

We use the evaluations of world universities rankings provided by three
agencies (the experts), namely, the Academic Ranking of World Universities
(Shanghai Ranking, henceforth Sh) by [35], the QS World University Rank-
ings (henceforth QS) by [36] and Times Higher Education World University
Rankings (henceforth THE) by [37]. We aggregate the hesitant fuzzy infor-
mation that they convey in order to create new rankings for universities, as
a function of the methodology that we adopt. These agencies have their own
methodology to attach a score to each university, being 100 the maximum
possible score. The experts are well known for their general world universi-
ties rankings, but they also offer university rankings by field. 2 We establish
five fields that are applicable to the three experts’ classification procedures:

1. Arts and Humanities (A&H).
2. Life Sciences and Medicine (L&M).
3. Engineering and Technology (ENG).
4. Natural Sciences and Mathematics (SCI).
5. Social Sciences (SOC).

2Shanghai ranking uses the term “field”, Times Higher Education “subject” and QS
uses “faculty”, referring to the same thing.
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For illustrative purposes we perform our analysis on the aforementioned 7
top universities. Table 6 gathers the original information, with the following
provisos:

(a) The score attached to Sh and THE in the field “Life Sciences and
Medicine” (L&M) is the respective mean of their scores for the fields “Life
Sciences” and “Medicine”.

(b) Business Schools and Economics are included in the field “Social Sci-
ences” (SOC). QS refers to this field as “Social Sciences and Management”.

The raw information in Table 6 produces Table 7, which contains the
resulting HFEs for each field and university. This is the problem’s Hesitant
Fuzzy Decision Table.

Table 6: Evaluations for the five fields made by the agencies (year 2014). A hyphen means
‘no evaluation provided’.

A&H L&M ENG SCI SOC
University THE QS THE Sh QS THE Sh QS THE Sh QS THE Sh QS

Stanford University 87.1 86.8 87.6 69.4 91.2 91.9 92.1 93.3 89.9 91.4 92.5 93.6 80.1 89.2
Harvard University 86.1 89.7 91.3 100 98.2 - 65.1 85.7 90.2 100 92.3 91.9 100 96.3
University of Oxford 84.4 99.1 91.1 60.9 92.3 87.6 64.4 86.1 87.3 72.3 90.4 93.5 59.9 94.2
University of Cambridge 83.9 93.5 88.5 75.6 91.8 88.8 74.8 90.5 88.8 92.2 97.0 87.5 59.4 91.2
University of California, Berkeley 81.4 87.2 81.6 58.0 85.6 90.6 86.8 90.2 89.9 96.3 93.4 86.9 79.6 87.3
Princeton University 81.2 86.5 42.5 24.8 74.1 89.5 71.1 81.6 91.0 93.7 89.2 91.1 76.4 84.4
Yale University 81.2 89.0 83.7 62.4 88.6 - 49.1 75.2 83.6 65.2 84.3 90.0 72.8 87.4

Table 7: A representation of the HFSs associated with each university.

University A&H L&M ENG SCI SOC

Stanford University (0.868, 0.871) (0.694, 0.876, 0.912) (0.919, 0.921, 0.933) (0.899, 0.914, 0.925) (0.801, 0.892, 0.936)
Harvard University (0.861, 0.897) (0.913, 0.982, 1) (0.651, 0.857) (0.902, 0.923, 1) (0.919, 0.963, 1)
University of Oxford (0.844, 0.991) (0.609, 0.911, 0.923) (0.644, 0.861, 0.876) (0.723, 0.873, 0.904) (0.599, 0.935, 0.942)
University of Cambridge (0.839, 0.935) (0.756, 0.885, 0.918) (0.748, 0.888, 0.905) (0.888, 0.922, 0.97) (0.594, 0.875, 0.912)
University of California, Berkeley (0.814, 0.872) (0.58, 0.816, 0.856) (0.868, 0.902, 0.906) (0.899, 0.934, 0.963) (0.796, 0.869, 0.873)
Princeton University (0.812, 0.865) (0.248, 0.425, 0.741) (0.711, 0.816, 0.895) (0.892, 0.91, 0.937) (0.764, 0.844, 0.911)
Yale University (0.812, 0.89) (0.624, 0.837, 0.886) (0.491, 0.752) (0.652, 0.836, 0.843) (0.728, 0.874, 0.9)

5.2. Metarankings of universities: real exemplifications of our new ranking
functions for HFSs

The novel methodology in Section 3 can be used to provide metarankings
of universities on the basis of the data in Tables 6 and 7. The latter ta-
ble provides the HFSs that characterize the respective universities (broadly
speaking: cells represent HFEs and rows represent HFSs).

Our analyses are collected in Table 8, and Figure 2 provides a visual
display of our conclusions. In both cases we report on rankings of the uni-
versities under inspection, obtained by the respective application of three
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ranking functions for HFEs: namely, the HFWs associated with the S1, S2

and SGM scores.
We observe that there is full coincidence between the first and the third

case, while the HFW obtained through S2 is significantly different.

Table 8: Rankings of the universities by applying the HFW respect to three focal scores.

S1 S2 SGM

University HFW pos. HFW pos. HFW pos.

Stanford University 0.203 2 0.192 2 0.228 2
Harvard University 0.507 1 0.445 1 0.506 1
University of Oxford 0.040 6 0.106 4 0.038 6
University of Cambridge 0.103 3 0.120 3 0.103 3
University of California, Berkeley 0.084 4 0.082 5 0.066 4
Princeton University 0.051 5 0.050 6 0.049 5
Yale University 0.012 7 0.005 7 0.011 7
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Figure 2: A graphical display of the ranking of the universities by the HFW procedure, as
a function of three focal scores.
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5.3. Comparison with other existing methodologies and discussion

We proceed to perform a comparison of our proposal with relevant method-
ologies from the literature. To this purpose we divide the analysis to comply
with the broad earlier approaches explained in Subsection 2.2.

5.3.1. Ranking methodologies based on HFEs scores

Table 9 collects the rankings obtained by four known methodologies on
the data of Table 7. Here we follow the approach suggested by Xia and Xu
[7] and Xia et al. [17]. In order to rank HFSs, in [7, Section 4] the authors
propose to use a GHFWAλ operator (generalized hesitant fuzzy weighted
averaging operator, which requires to fix a weight vector and depends on a λ
factor) in order to aggregate HFEs. But the same objective can be attained
when we employ alternative aggregators or alternative scores on HFEs. 3

In Table 9, the first column of digits captures the values by the ranking
method that first applies the HFWA operator (hesitant fuzzy weighted av-
eraging operator, which is GHFWAλ with λ = 1: cf., [7, Definition 9]) and
then uses the S1 score. If we use the ranking method for HFSs that first
applies the HFWA operator and then uses S2 instead, then we need to vary
the computations above as in the second column of digits. We also present
the corresponding indicators when we use the ranking method for HFSs that
first applies the HFWG operator (or GHFWGλ with λ = 1: cf., [7, Definition
10]) and then the S1 score, resp. the S2 score. To avoid controversies, we use
equal weights throughout.

For the purpose of the comparison, observe that the aggregation by the
HFWG operator with equal weights, followed by either Xia and Xu’s or
Farhadinia’s score, produces the same ranking of the 7 universities. Similarly,
the aggregation by the HFWA operator with equal weights, followed by these
two scores, produces another common ranking of the 7 universities. The
latter ranking coincides with that provided by the HFW associated with
Farhadinia’s score.

We summarize these results in Figure 3, which represents the conclu-
sions in Table 9. Figure 3 compares with Figure 2, a representation of the
conclusions in Table 8.

3Rodŕıguez et al. [9, Section 4] or Xu [8] report on many other alternative aggregators
on HFEs, like GHFWG, GHFOWA or GHFOWG in [7] or QHFOWA, HFMOWA and
HFMOWG in [17]. As to alternative scores on HFEs, Farhadinia’s S2 or any other score
mentioned in Subsection 2.2 can be employed.
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Table 9: Rankings of the universities by applying several aggregation operators.

HFWG HFWA
University S1 S2 pos. S1 S2 pos.

Stanford University 0.895 0.909 2 0.909 0.918 2
Harvard University 0.917 0.932 1 0.943 0.955 1
University of Oxford 0.829 0.864 5 0.883 0.907 4
University of Cambridge 0.864 0.891 3 0.897 0.915 3
University of California, Berkeley 0.846 0.865 4 0.865 0.881 5
Princeton University 0.749 0.788 7 0.838 0.853 6
Yale University 0.762 0.795 6 0.807 0.829 7
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Figure 3: A graphical display of the ranking of the universities by two aggregation pro-
cedures. The subsequent application of Xia and Xu’s or Farhadinia’s score produces the
same ranking in both instances.

In Table 10 we use some score functions on HFSs from Farhadinia [19]
in order to provide rankings of the universities, as explained in subsection
2.2.1. In particular, we report on the analysis by six specifications: namely,
when three respective scores are first applied on the raw data (namely, S1,
S2 and SGM), and then either SAM or SGM (cf., [19, Definition 4.1]) is
computed. We observe that the common ranking obtained in the second, fifth
and sixth instances coincides with the ranking achieved by the application
of the HFWG operator (cf., Table 9).
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A graphical display is given in Figure 4.

Table 10: Rankings of the universities by applying the arithmetic-mean SAM and
geometric-mean SGM score functions to the S1, S2 and SGM scores obtained for
each subject.

S1 S2 SGM

University SAM pos. SGM pos. SAM post. SGM pos. SAM pos. SGM pos.

Stanford University 0.897 2 0.896 2 0.938 1 0.936 1 0.895 2 0.894 2
Harvard University 0.921 1 0.919 1 0.912 2 0.911 2 0.920 1 0.917 1
University of Oxford 0.839 5 0.838 5 0.876 4 0.875 4 0.828 5 0.826 5
University of Cambridge 0.870 3 0.869 3 0.874 5 0.872 5 0.864 3 0.863 3
University of California, Berkeley 0.851 4 0.849 4 0.902 3 0.902 3 0.848 4 0.846 4
Princeton University 0.784 6 0.813 7 0.792 7 0.809 6 0.774 7 0.746 7
Yale University 0.777 7 0.814 6 0.799 6 0.789 7 0.767 6 0.760 6
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Figure 4: A graphical display of the ranking of the universities by Farahadinia’s score
functions (Table 10). Series 1 represents the ranking in the first column of the Table,
Series 2 represents the common ranking obtained in the second, fifth and sixth columns
of the Table, Series 3 represents the ranking in the third column of the Table and Series
4 represents the ranking in the fourth column of the Table.

5.3.2. Ranking methodologies based on distance measures

In Table 11 we obtain respective rankings of the universities by applying
four methodologies from subsection 2.2.2: namely, distances to the ideal ref-
erence HFS by HWED, HWEHD, HWHD, and HWHHD respectively. We
may observe that the verdict under HWHD coincides with the first specifi-
cation of Farhadinia’s score-based procedure (cf., Table 10), i.e., when S1
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and then SAM are applied. In addition, HWED provides the same ranking
as the HFWG procedure (cf., Table 9) and three specifications of rankings
suggested by scores on HFSs (cf., Table 10).

A graphical display is given in Figure 5.

Table 11: Rankings of the universities by applying four different distances to the ideal.

University HWED pos. HWEHD pos. HWHD pos. HWHHD pos.

Stanford University 0.121 2 0.177 2 0.103 2 0.157 2
Harvard University 0.116 1 0.158 1 0.078 1 0.133 1
University of Oxford 0.211 5 0.346 5 0.160 5 0.330 6
University of Cambridge 0.166 3 0.261 4 0.130 3 0.236 4
University of California, Berkeley 0.175 4 0.243 3 0.149 4 0.225 3
Princeton University 0.290 7 0.388 7 0.216 6 0.310 5
Yale University 0.265 6 0.370 6 0.223 7 0.348 7
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Figure 5: A graphical display of the ranking of the universities by four different distances
to the ideal.

6. Real application 2: a teacher performance assessment instru-
ment

In this Section we use our methodology to rank teachers’ performance ac-
cording to the results of their students’ surveys. These surveys allow teachers
to be more discerning about their own practice, and are often the only form
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of feedback on their teaching capabilities. Occasionally they are used for
other practical purposes like hiring or compensations.

In order to submit our procedure, we rely on the real data in Table 12.
It contains anonymized real data from student evaluations of staff of the de-
partment of Economics and Economic History, Universidad de Salamanca,
Spain. In this University students are asked to provide feedback on specific
aspects of their classroom experiences on a biyearly basis. For each subject
and teacher, students submit their level of agreement (0 means “strongly dis-
agree”, 5 means “fully agree”) to statements such as “He/she explains with
clarity”, “He/she clearly answers the questions raised in the classroom”, “Our
activities and duties are well organized and structured”, or “Overall, my de-
gree of satisfaction with him/her has been good”. All steps are taken to
protect students confidentiality. These surveys are then aggregated by sub-
jects and confidentially submitted to the evaluated person. Figure 6 depicts
an anonymized part of a subject report received by one evaluated person,
where the first column of digits is the only individual part of the report (the
other columns provided for comparison: average of the Department and of
the Degree). Hence the staff in the Department receive a number of records
that depends on their teaching allocations. Table 12 has one row for each
evaluated person in our sample, one column for each of the eleven fields in
the survey (attributes), and various assessments for each person that vary
with his/her teaching allocation. We have normalized these figures to the
interval [0, 1] by dividing them by 5. These normalized assessments are al-
ready collected as HFSs for brevity, since we arrive at this form as in the
real example of Section 5. We can now apply our methodology to Table 12
in order to rank the staff by their teaching performance during the academic
year 2013-14. Our analyses are collected in Table 13.

A comparative study could be performed as in Section 5, but we skip it for
brevity. Let us just mention that despite the case of the example in Section
5 (cf., Table 8 and Figure 1), Table 13 proves that the HFWs associated with
the three focal scores we have been using convey distinct rankings.
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Figure 6: Anonymized part of a subject report, Universidad de Salamanca (in Spanish).

7. Conclusion

In this paper we give a novel methodology for ranking hesitant fuzzy sets.
It introduces a pioneering bridge between this topic and Social Choice.

As to methodological differences with existing procedures, there is one
that deserves explicit discussion. We refer to the analysis of the metarankings
of universities for convenience of explanation. The indicators in Table 9
are computed one by one, i.e., they are attached with the corresponding
alternative or HFS independently of the structure of the other HFSs in the
problem. However the indicators in Table 8 must be computed globally
since they build on a matrix that depends on comparisons among related
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Table 12: A representation of the HFSs associated with each staff member.

Criteria

Staff 1 2 3 4 5 6

1 (0.474, 0.822) (0.566, 0.8) (0.558, 0.778) (0.6, 0.8) (0.434, 0.712) (0.722, 0.844)
2 (0.77, 0.8, 0.83) (0.824, 0.838, 0.848) (0.636, 0.68, 0.772) (0.71, 0.75, 0.752) (0.752, 0.788, 0.806) (0.676, 0.716, 0.766)
3 (0.71, 0.73, 0.784, 0.872) (0.772, 0.8, 0.856, 0.896) (0.678, 0.728, 0.734, 0.768) (0.672, 0.72, 0.73, 0.734) (0.754, 0.766, 0.808, 0.81) (0.64, 0.746, 0.756, 0.77)
4 (0.77, 0.83) (0.764, 0.834) (0.706, 0.838) (0.702, 0.818) (0.764, 0.856) (0.77, 0.85)
5 (0.382, 0.662) (0.522, 0.698) (0.634, 0.7) (0.582, 0.752) (0.556, 0.658) (0.66, 0.722)
6 (0.418, 0.566) (0.47, 0.634) (0.426, 0.566) (0.486, 0.662) (0.418, 0.656) (0.47, 0.6)
7 (0.476, 0.576, 0.606, 0.73) (0.65, 0.666, 0.69, 0.746) (0.446, 0.48, 0.488, 0.64) (0.438, 0.52, 0.526, 0.6, 0.65) (0.64, 0.662, 0.7) (0.49, 0.658, 0.662, 0.746)
8 (0.65, 0.738, 0.8, 0.876) (0.65, 0.754, 0.8, 0.842) (0.55, 0.584, 0.6, 0.642) (0.6, 0.63, 0.7) (0.75, 0.816, 0.866) (0.65, 0.7, 0.708, 0.85)
9 (0.672, 0.748, 0.76) (0.696, 0.748, 0.808) (0.45, 0.512, 0.632) (0.528, 0.63, 0.664) (0.6, 0.762, 0.784) (0.456, 0.756, 0.792)
10 (0.726, 0.832) (0.726, 0.79) (0.586, 0.664) (0.534, 0.664) (0.66, 0.758) (0.762, 0.844)

Criteria

Staff 7 8 9 10 11

1 (0.456, 0.756) (0.548, 0.734) (0.6, 0.8) (0.588, 0.8) (0.494, 0.822)
2 (0.782, 0.804, 0.82) (0.624, 0.648, 0.652) (0.834, 0.858, 0.86) (0.62, 0.636, 0.704) (0.812, 0.854, 0.896)
3 (0.754, 0.808, 0.81, 0.872) (0.644, 0.672, 0.676, 0.688) (0.754, 0.8, 0.858, 0.904) (0.59, 0.606, 0.608, 0.682) (0.826, 0.828, 0.902, 0.944)
4 (0.676, 0.8) (0.708, 0.86) (0.716, 0.846) (0.702, 0.834) (0.724, 0.858)
5 (0.454, 0.674) (0.548, 0.732) (0.556, 0.74) (0.592, 0.76) (0.446, 0.658)
6 (0.418, 0.6) (0.574, 0.656) (0.574, 0.662) (0.558, 0.634) (0.418, 0.656)
7 (0.66, 0.73, 0.786, 0.794) (0.566, 0.576, 0.594, 0.63) (0.626, 0.63, 0.668, 0.704) (0.534, 0.538, 0.6) (0.45, 0.5, 0.574, 0.642)
8 (0.75, 0.75, 0.784, 0.892) (0.5, 0.65, 0.726, 0.77) (0.5, 0.65, 0.754, 0.816) (0.554, 0.6, 0.642) (0.65, 0.676, 0.8, 0.816)
9 (0.752, 0.776, 0.8) (0.616, 0.652, 0.736) (0.6, 0.72, 0.762) (0.57, 0.6, 0.64) (0.536, 0.652, 0.712)
10 (0.718, 0.8) (0.61, 0.66) (0.674, 0.684) (0.484, 0.518) (0.712, 0.716)

Table 13: Rankings of staff by teaching performance, academic year 2013-14, according to
their respective HFWs.

Xia and Xu Farhadinia Geometric
Staff HFW pos. HFW pos. HFW pos.

Number 1 0.0344308 6 0.000493097 6 0.0329902 5
Number 2 0.196536 3 0.730558 1 0.177189 3
Number 3 0.203587 2 0.00764202 3 0.217913 2
Number 4 0.423015 1 0.00251855 4 0.444753 1
Number 5 0.0136762 8 0.000180212 8 0.0112894 8
Number 6 0.00141894 10 0.000005168 10 0.00212334 10
Number 7 0.00953274 9 0.0000539497 9 0.00448744 9
Number 8 0.0485923 4 0.000884115 5 0.0488669 4
Number 9 0.0341514 7 0.257395 2 0.029482 7
Number 10 0.0350599 5 0.000270001 7 0.0309057 6

scores. Borrowing from Herrero [24]: the reason is that they attempt to
capture “the relative support of the alternatives (i.e., how important one
alternative is with respect to another one, taking the full set of alternatives
into account)”. Admittedly this feature may seem a handicap with respect
to previous methodologies. But the aspect that we gain is a novel interaction
with a separated branch of the literature, which can be beneficial for future
investigations.

With respect to computational complexity, there are two steps to analyze:
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the calculation of C and then the calculation of a normalized eigenvector for
its known dominant eigenvalue. Let us insist that the C matrix is very simple
to produce (it requires to attach scores and then compare their values). And
nowadays plenty of tools permit to find the eigenvectors associated with a
known eigenvalue. Ultimately, this problem boils down to a known system
of k linear equations, which can be solved very efficiently e.g., by Gauss’
algorithm.

Two applications to real problems are put forward that validate our
methodology. Metarankings of universities are derived on updated evalu-
ations made by three agencies, and a teacher performance assessment instru-
ment is developed and exemplified with real data. By doing so we provide
new justification of the theoretical model by HFSs, and of the need for con-
tinuing studying ranking functions for HFSs.
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