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Abstract 

Ethane 1, 2 diamineborane (EDAB) was micronized from THF solutions using 

Supercritical Antisolvent (SAS) process. The influence of temperature, solute 

concentration and carbon dioxide fraction on the final properties of EDAB particles was 

studied. By SAS micronization, the original prismatic EDAB particles of about 400 µm 

with a crystallite size of 100 nm were converted into microspheres of less than 2 µm 

with a crystallite size of 50 nm. This reduction in the particle and grain sizes resulted in 

an improvement in thermal properties. The kinetics of release of hydrogen by 

thermolysis at 100ºC was also significantly enhanced due to the reduction in the 

diffusion length, reducing the time needed for the decomposition of the hydride by a 

factor of six. Moreover, a suppression of induction time was obtained by destabilization 

of the hydride after treatment. XRD and FTIR analyses showed that no chemical 

decomposition and no variation of the crystalline structure took place by SAS 

processing. 

Keywords: Hydrogen storage; Ethane diamineborane; micronization; kinetics; 

supercritical carbon dioxide; supercritical anti solvent 

1. Introduction 

In recent years, important efforts have been made in order to find renewable energy 

sources that can satisfy the current necessities. This is promoted by the depletion of 

fossil fuels and the climate change due to the release of greenhouse gases [1]. However, 

an important limitation of the main renewable energy resources is the unpredictability of 
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fluctuations in their output. In this context, hydrogen could be a solution to these 

problems using it as an energy vector, in an approach known as ‘hydrogen economy’ or 

‘hydrogen society’ [2]. 

In the case of onboard applications, the simplest idea would be to use hydrogen as gas 

or a liquid. However, in the case of gas, high pressures tanks would be necessary in 

order to have the required high density of hydrogen and this would mean high volumes 

of tanks and, therefore, high costs of material. Using hydrogen at cryogenic conditions, 

a considerable energy input (estimated around 30% of the total energy stored in 

hydrogen) would be required in order to maintain the desired temperature [3]. For these 

reasons, solid state hydrogen storage appears as a compelling alternative. 

Different solid hydrogen storage materials have been tested, such as metal hydrides, 

complex hydrides [4], metal organic frameworks (MOF) [5], adsorbents, polymer 

composites or clathrate hydrates [6], among others [7,8]. However, till now, no material 

satisfies all the latest targets set for onboard applications by the US Department of 

Energy (DoE) for 2017 for a practical automotive application (5.5 wt% hydrogen 

content, release temperature at 85°C, 100% reversibility, good cyclability) [9]. 

Many recent research works have been focused in boron-nitrogen-hydrogen systems, 

especially in ammonia borane (AB). AB has been widely investigated due to its high 

content of hydrogen (19.6 wt%) which is released at moderate temperatures. Moreover, 

it is non-toxic and stable at room temperature. However, the most important limitations 

related to this compound are the regeneration and cyclability of the compound and the 

emission of some volatile byproducts as borazine, diborane or ammonia during the 

release of hydrogen which could be poisonous for the fuel cell [10]. 
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Carbon derivatives of AB, such as ethane 1,2 diamineborane (BH3NH2CH2)2, known as 

EDAB, are promising alternatives. EDAB has a high content in hydrogen (10 wt%), 

which is released below 473 K in a two-step reaction. Moreover, it is also very stable 

under ambient conditions (particularly, against ambient oxygen and humidity), even 

more than AB, which facilitates the manipulation of this material. However, only a few 

works can be found related to this compound [11,12,13]. Among other results, it has 

been observed that the modification of AB to obtain EDAB produces a chemical 

structure with a stronger B-H bond and a more thermal stable B-N bond due to the 

existence of C-N and C-C bonds, resulting in the production of less non-desirable 

volatile gases in the hydrogen outstream [11]. However, more investigation is necessary 

in order to destabilize the compound during thermal decomposition process at moderate 

temperatures, in order to improve the kinetics of release of hydrogen. 

Nanoengineering could be a solution to reduce the crystallite size and improve the 

decomposition rate by increasing the diffusion rate and therefore, reduce the hydrogen 

release temperature [7]. Different methods can be used in order to reduce the size of the 

metal hydride such as laser ablation, vapor condensation, sputtering or ball milling [14].  

One of the most used methods is ball milling [4,15]. With this method, hydrogen release 

kinetics are enhanced due to the reduction of the diffusion lengths without any cost of a 

catalyst or a reduction of storage capacity. Milling can also induce other material 

changes, such as an increase in the number of defects [16], create more disorder and 

strain into the material [17], and therefore improve surface properties. 

The problem of this method is the inhomogeneity of the product after milling [18]. 

Because of this disadvantage, Supercritical Antisolvent Solution is proposed as a 

promising alternative method in order to micronize the hydride controlling the reduction 

of the particle size by changing the conditions and the supersaturation driving forces. In 
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this way, the advantages of milling are present in this method, while obtaining a much 

more homogeneous product. This technique has been used to micronize a wide range of 

compounds such as polymers, pharmaceutical compounds [19] or catalysts. For its 

application, the only requirement is that the compound which is going to be micronized 

needs to be soluble in an organic solvent and stable in CO2 atmosphere [20]. 

In this work, the micronization of EDAB from THF solutions using Supercritical 

Antisolvent (SAS) process is reported. The influence of the concentration of the 

solution, the temperature and the carbon dioxide molar fraction on the properties of the 

micronized product has been studied. Scanning electron microscopy, FT-IR 

spectroscopy, X-ray diffraction, DSC analyses and the measurement of hydrogen 

release kinetics by thermal decomposition at 100 ºC have been done in order to 

characterize and compare the final products obtained at different conditions in contrast 

to the bulk EDAB. 

 

2. Experimental methods 

2.1 Materials 

Ethane 1,2 diamineborane (EDAB, purity: 96 wt%) was supplied by Sigma-Aldrich. As 

shown in the SEM micrograph presented in Figure 1, the material was constituted by 

prismatic particles of around 400 µm. 

Dry tetrahydrofuran (with maximum water of 0.0075wt %) was purchased from Panreac 

(Spain). Carbon dioxide (purity: 99.95wt %) was supplied from Carburos Metálicos 

S.A. (Spain). 

(FIGURE 1) 

2.2 Micronization of EDAB by Supercritical Anti Solvent (SAS) process  
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Supercritical Antisolvent technique is the process used to micronize EDAB in this work. 

It takes place in the same semi continuous equipment reported in a previous work [18], 

and schematically represented in Figure 2.  

A cylindrical vessel of 1.5 L was used as precipitator. First, preheated carbon dioxide 

was pumped at a flowrate of 2 kg/h with a diaphragm pump (Dosapro Milton Roy, 

Spain) until stable conditions of temperature and pressure were reached. The pressure 

was maintained in all the experiments at 100 bar in order to have a single phase in the 

system [21]. Pressure was controlled with a back pressure valve (model BP66, GO, 

USA).  

Then, pure THF was flowed to the precipitator in order to obtain steady composition 

conditions of the fluid phase. After this, 0.5 g of EDAB dissolved in different volumes 

(0.02-0.15 L) of THF, depending on the concentration studied in each experiment, were 

pumped to the precipitator using a HPLC pump Jasco model PU-2080, maximum flow 

rate: 10 mL/min (flow rate control with an accuracy of 1%). Both solutions were 

pumped continuously through a coaxial nozzle which was located in the upper zone of 

the vessel in which the solution flowed through the inner tube, with an inner diameter of 

100 m, and CO2 flowed through the coaxial annulus. At this point of the vessel, the 

mixture produces the super saturation of the dispersed phase and the particles are 

formed [22]. The particles thus formed were collected in a stainless steel frit covered 

with a polymeric membrane filter (pore size of 0.1 µm) which was located at the bottom 

of the precipitator. Once the solution was pumped, CO2 was flowed for 1 h to assure the 

total elimination of the solvent and after this time, the system was depressurized till 

ambient conditions. 

The influence of the concentration of EDAB in THF in the range 3-25 g/L, which is 

within the solubility limit of EDAB in THF (46-47 g/L at 25 °C) [23], the temperature  
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(308-318K) and the molar fraction of CO2 in the CO2-THF fluid mixture (0.96-0.98) 

were studied. 

(FIGURE 2) 

2.3 Product characterization 

Particle morphology was observed by Scanning Electron Microscopy (SEM) using Jeol 

JSM 820 equipment. A gold sputter was used to cover the samples with a thin layer of 

gold to allow the electron reflection for particle evaluation. To determine particle size 

from SEM micrographs, around 100 individual particles were counted from SEM 

photos using Image J software. The mean particle size was calculated as number 

average diameter [24].   

Crystallinity of the different samples obtained after micronization was examined using 

an X-ray powder diffractometer (model Bruker Discover D8). The measuring conditions 

were CuKα radiation, λ=1.5418 Å, 2θ angle ranging from 5º to 70º with a scan rate of 4 

s/step and a step size of 0.020º. Also, Fourier Transform Infrared Spectroscopy (FT-IR) 

assays were performed using a BRUKER ALPHA spectrometer with a Platinum-ATR 

single diffraction sampling module. 

Regarding the thermal characterization of products, differential scanning calorimetry 

(DSC) analyses were carried out in a Mettler Toledo model 822e with a ceramic sensor 

of high sensitivity. Nitrogen gas flowed at 60 mL/min, with a heating rate of 5ºC/min 

from 0 to 250ºC (273.15 to 523.15K) using less than 1 mg of sample in each analysis. 

Hydrogen release kinetics were measured by a volumetric method employing a stainless 

steel cell of 4.7 mL. The cell was loaded with around 30 mg of EDAB, weighed using a 

balance with ±0.1 mg of uncertainty. Air was then removed from inside the cell with a 

vacuum pump, down to an absolute pressure of less than 0.02 bar. After that, the sample 

was heated to 100ºC (373.15K), introducing the cell in a chromatographic oven. The 
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release rate of hydrogen from the sample was determined by measuring the increasing 

gas pressure inside the cell, which was recorded with a certified pressure transducer 

model DPI-104 (GE Druck from Germany) with an accuracy of 0.001 MPa, connected 

to a data acquisition computer that recorded the pressure measurement every 10 

seconds. The amount of hydrogen released was calculated from pressure recordings 

assuming that the gas phase formed was entirely constituted by hydrogen according to 

[12], using the Hydrogen Reference Equation of State [25] implemented in the 

Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) 

software developed by the National Institute of Standards and Technology (NIST) [26]. 

3. Results and discussion 

Table 1 shows a summary of the conditions for the different SAS experiments 

performed, together with the particle size obtained by image analysis of SEM 

micrographs. As previously described, different experiments were carried out varying 

the concentration of EDAB in the solution (runs 1-7), the temperature (runs 7-9) and the 

molar fraction of CO2 (runs 7, 10 and 11).  

(TABLE 1) 

3.1 Structural properties of micronized EDAB 

Regarding the crystallinity, Figure 3 shows the diffractogram of unprocessed EDAB 

which agrees well with those previously reported [27]. As it can be observed in Figure 

3, the diffractogram of micronized samples corresponds to that of unprocessed material, 

indicating that the crystalline structure of the material was preserved. While Figure 3 

only presents the results corresponding to the micronized sample obtained in 

experimental run 9, similar spectra were obtained in all SAS experiments.  

(FIGURE 3) 
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The average crystallize size was calculated using the Scherrer equation [28] which is 

shown in equation 1.  

 eq[1] 

Where K is a Scherrer constant (0.9 for spherical particles), λ is the wavelength of the 

incident x-rays (1.5418Å), β is the full width at half maximum (FWHM) and θ is the 

Bragg angle. The final diameter is the mean of the diameter obtained for the peaks at 

2θ= 16.4°, 19.7°, 23.4°, 24.4° and 25.6°.  Table 2 shows the crystallite size obtained for 

unprocessed EDAB and micronized SAS in experiments 1, 7, 8 and 9. 

(TABLE 2) 

As table 2 shows, crystallite size was reduced by SAS micronization, but a big 

difference is not observed between the different experiments carried out using SAS 

technique. 

(FIGURE 4) 

Regarding the results of FTIR analyses, the peaks identified correspond with those 

reported for EDAB in [11,29]. Figure 4 shows no variation in the FTIR spectra of 

EDAB after SAS process (for all the conditions tested). This result indicates that no 

chemical decomposition took place during recrystallization process at supercritical 

conditions. B-H stretching and N-H bands appeared at the same wavenumber value 

without any shift that could indicate a weakening in the bond. This is due to the strong 

C-N and C-C bond that makes this compound much more thermal stable compared to 

other compounds from the family of Ammine Boranes [11].  

Regarding the results obtained from microscopy (figures 5, 6 and 7), a considerable 

reduction in the particle size was observed after SAS micronization (table 1). The mean 
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particle size was reduced from 400 µm (unprocessed EDAB) to around 2 µm. The 

particle morphology also changed: the prismatic structure of unprocessed EDAB was 

converted into microspheres interconnected between them due to the droplet and 

particle coalescence phenomena during SAS process. 

With respect to the influence of the conditions tested in the different SAS experiments, 

the mean particle size and particle size distribution (PSD) did not change significantly. 

First, particle size distribution is shifted to the right when the concentration increases till 

c=10g/L. At higher concentration than 10g/L, the opposite behavior is observed. This 

means that till this concentration, the coagulation and condensation mechanisms allow 

the growth of the particles inside the droplets and limit SAS process [30]. However, at 

higher concentration of the solution than 10g/L, higher supersaturations were achieved, 

and therefore the rate of formation of new particles by nucleation increased 

exponentially obtaining particles with lower mean size [31]. 

(FIGURE 5) 

In the case of the temperature, figure 6 shows that when temperature in SAS process is 

increased, more agglomeration is observed but a similar mean particle size is obtained 

for the range of temperature studied 35-45°C (308.15-318-15K).  

Similarly, only small differences were observed in the experiments carried out at 

different CO2 molar fractions by varying the flow of CO2 or the flow of the inlet 

solution, as it can be seen in figure 7. 

(FIGURE 6) 

(FIGURE 7) 

3.2 Thermal properties of micronized EDAB  

Figure 8 shows the Differential Scanning Calorimetry (DSC) of the different samples 

treated in SAS process in contrast to unprocessed EDAB. As shown in this figure, the 
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first exothermic peak related to the decomposition of EDAB has been shifted from 141 

ºC (414.15K) in unprocessed EDAB to 134 °C (407.15K) for the best SAS micronized 

sample (run 9). This improvement is due to the lower particle and grain size obtained in 

treated samples in contrast to unprocessed EDAB. Similar results have been reported in 

the case of milled MgH2 [15], getting a reduction of the hydrogen desorption 

temperature which indicates faster hydrogen desorption kinetics and lower activation 

energy or the production of nanoparticles of AB through a solvent-free method [32] 

which showed superior dehydrogenation behaviour. 

Regarding the influence of the concentration in the inlet solution (figure 8A), a higher 

shift to lower temperatures is observed when the concentration increases till c=10g/L. 

This could be due to the lower grain size and thinner bridges between the particles. At 

higher concentration (12.5-25.0 g/L), the same tendency is followed obtaining almost 

the same peak temperature.  

In the case of the temperature of SAS process (figure 8B), the variation of the peak 

temperature in DSC assays follows the same tendency that the grain size calculated with 

Scherrer equation and the PSD obtained from SEM images. Lower exothermic 

temperature peak is observed in samples processed by SAS at higher temperatures. 

Varying the molar fractions of carbon dioxide (figure 8C), a significant difference is not 

observed. 

(FIGURE 8) 

Regarding the second step of hydrogen release, similar results were obtained for all the 

micronized samples with a peak temperature in the range 187°C-190°C (460-463K). It 

is observed in figure 9 that samples obtained at different conditions in SAS process 

show the same tendency than in the first peak. 
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Comparing with previous results [12], both decomposition peak temperatures are higher 

than previously reported. This can be explained by the difference in gradient 

temperature in the analyses (5 K/min instead of 1K/min) or due to the different stability 

of bulk EDAB due to the different source of the chemical compound.  

(FIGURE 9) 

The variations in particle morphology and decomposition temperature reported in the 

previous section result in important variations in the hydrogen release kinetics. Figure 

10 shows the kinetic of hydrogen released by thermolysis at 100 ºC (373.15K) for 

unprocessed EDAB in contrast to micronized EDAB in SAS process.  

As presented in this figure, the kinetic has been considerably improved after 

micronization due to the reduction of the particle and grain size. Moreover, it induces 

the increase of surface area and surface energy, reducing the diffusion lengths and 

therefore improving the decomposition rate [33].   Almost 1 day is taken to release 1 

mol of H2 in unprocessed EDAB, whereas less than 4 hours are taken for sample 9 after 

SAS process, which means a reduction by a factor of 6. 

Comparing the different SAS samples obtained after treatment at different conditions, 

they follow the same tendency that was reported in the previous analyses, without any 

significant difference among them. 

In the case of unprocessed EDAB, in this work different kinetic properties have been 

observed with respect to the results reported in previous works [12]. In our case, neat 

EDAB seems to be more stable than in previous works due to the slower kinetic that has 

been measured at the same temperature and the induction time of more than 1 hour. This 

fact was also seen in DSC analyses. This difference can be attributed to the different 
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starting material. In our work, EDAB was supplied by Sigma-Aldrich whereas Neiner et 

al. prepared it according to Moore and Kelly [34].  

On the other hand and following the mechanism proposed by Neiner et al. [12] and 

corroborated by Leardini et al. [11], this difference could be explained by the higher 

stability of unprocessed EDAB from this work to initiate the isomerization in order to 

form the borohydride. Neiner et al. [12] reported the appearance of this isomer at 98°C 

(371.15K) after 15min by NMR whereas kinetic measurements from this work indicate 

that a longer induction time is required to form this intermediate compound. 

In SAS samples, not only an improvement in the kinetic of H2 release is observed, but 

also the elimination of induction time can be seen in micronized samples. This indicates 

that the reduction of particle size achieved by SAS process is accompanied by a 

destabilization of the molecule, leading to a faster dimerization and the consequent 

reduction of induction time. 

Regarding the amount of H2 released, an amount of 3.9 wt% H2 is obtained with respect 

to unprocessed EDAB or 3.7 wt% regarding pure EDAB, taking into account that the 

purity is 96%, whose value is similar to those reported in the literature at the same 

temperature [12]. 

(FIGURE 10) 

In order to clarify the compounds that are formed after thermal decomposition at 100 °C 

(373.15K) and the mechanism that is followed, FTIR analyses were performed and 

shown in figure 11. The same spectrum is obtained for unprocessed EDAB and SAS 

samples, but only one is shown for simplicity.  

These spectra are similar to those reported by Leardini et al. [11]. Lattice mode at 

435cm
-1 

disappears but a new one at around 420cm
-1

 is detected. On the other hand, B-
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N stretching peak at 706cm
-1

 is attenuated after thermal decomposition accompanied by 

the formation of a broader peak around 805cm
-1

 related to a new B-N stretching mode. 

Regarding B-H and N-H bands, they are broadened but they are still present after 

releasing almost 4 wt% H2. This is due to the proposed polymerization mechanism, 

similar to those reported in AB [35].  In this case, chains of molecules of EDAB are 

formed with new B-N bonds resulting in a polyaminoborane with still more solid 

hydrogen stored which can be released at higher temperature. The bands corresponding 

to C-H groups remain after thermal decomposition due to the stability of these bonds at 

this temperature. 

(FIGURE 11) 

4. Conclusions 

1, 2 diamineborane (EDAB) was successfully micronized using Supercritical 

Antisolvent (SAS) Process. Therefore, SAS process could be suitable for the 

micronization of other hydrides compounds, especially boron-nitrogen-hydrogen 

compounds, in the case that the compound dissolved in an organic solvent is stable in 

CO2 atmosphere. The influence of the concentration of THF solutions, the temperature 

of the process and the fraction of carbon dioxide in the fluid phase on the final structural 

and thermal properties of EDAB was studied. Similar results were obtained for all the 

studied conditions regarding particle size, calorimetry and kinetic results.  

After micronization process of EDAB, the particle size of about 400 µm with a 

crystallite size of 100 nm were drastically reduced to 2 µm with a crystal size of 50 nm. 

Also, the shape suffered variations after SAS process: prismatic structure from 

unprocessed EDAB changed into microspheres showing agglomeration. XRD and FTIR 



15 
 

analyses showed that no chemical decomposition and no variation of the crystalline 

structure was produced by SAS processing. 

Thermal analyses showed a reduction in decomposition temperatures after SAS process. 

DSC showed a reduction of 7 K in the decomposition peak temperature after 

micronization process, releasing hydrogen in a 2 step pathway whose peak temperatures 

were 134.1 °C (407.25K) and 187.1 °C (460.25K) respectively. In the case of the 

kinetics of release of hydrogen at 100 ºC (373.15K), the reduction of the particle and 

grain size resulted in a considerable acceleration of kinetics, reducing by a factor of 6 

the time required to release 3.9%wt H2, comparing to unprocessed EDAB. Moreover, a 

suppression of induction time was observed due to the destabilization of the hydride 

after SAS treatment.  
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Figure Captions 

Figure 1. SEM image (magnification ratio: 25x/120x, size bar: 900 m/200 m) of 

unprocessed EDAB. 

Figure 2. Schematic diagram of the Supercritical Anti Solvent apparatus. 

Figure 3.  XRD spectra of unprocessed and SAS EDAB samples. Curves are vertically 

displaced for clarity. 

Figure 4.   FTIR spectra of unprocessed and SAS-micronized EDAB samples. Curves 

are vertically displaced for clarity. 

Figure 5. a) SEM for micronized EDAB samples at different concentration of the 

solution. A) c=3.3g/L; B) c=8.1g/L; C) c=10.0g/L; D) c=12.5g/L; E) c=16.7g/L; F) 

c=25.0g/L (magnification ratio: 5000X; size bar: 5 µm). b) Particle size distribution of 

the samples obtained from SEM micrographs. 

Figure 6. a) SEM for micronized EDAB samples at different temperature and c=25g/L. 

G) T=35 °C (308.15K); H) T= 40 °C (313.15K); I) T= 45 °C (318.15K) (Magnification 

ratio: 5000X; size bar: 5 µm). b) Particle size distribution of the samples obtained from 

SEM micrographs. 

Figure 7. a) SEM for micronized EDAB samples at different molar fraction of CO2 at 

40 °C (313.15K) and c=25g/L. J) x=0.964; K) x=0.975; L) x=0.981 (Magnification 

ratio: 5000X; size bar: 5 µm). b) Particle size distribution of the samples obtained from 

SEM micrographs. 

Figure 8. DSC curves of unprocessed EDAB and micronized SAS samples at different 

conditions. A) Influence of the concentration of the inlet solution B) Influence of the 

temperature of the SAS process C) Influence of the molar fraction of CO2. 
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Figure 9. DSC curves of micronized SAS samples at different conditions in the range 

170-200 ºC (443.15-473.15K). A) Influence of the concentration of the inlet solution B) 

Influence of the temperature of the SAS process C) Influence of the molar fraction of 

CO2. 

Figure 10. Isothermal kinetics of hydrogen release from unprocessed and SAS 

processed EDAB samples at 100ºC. 

Figure 11.  FTIR spectra of EDAB before and after thermal kinetic at 100 °C 

(373.15K). Curves are vertically displaced for clarity. 



21 
 

 

Tables 

 

  T  c EDAB x CO2 Dp 

Run (°C) (g/L) (mol frac) (µm) 

0 unprocessed 400 

1 40 3.3 0.964 2.3 

2 40 6.1 0.964 2.3 

3 40 8.1  0.964 2.2  

4 40 10.0  0.964 2.7  

5 40 12.5  0.964 1.7  

6 40 16.7 0.964 2.1 

7 40 25.0 0.964 2.3 

8 35 25.0 0.959 2.0 

9 45 25.0 0.971 2.2 

10 40 25.2 0.975 2.3 

11 40 24.8 0.981 2.0 

Table 1. Experimental conditions of different experiments carried out to micronize 

EDAB using Supercritical Antisolvent (SAS) process. 
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Run  

Crystallite size 

(nm) 

unprocessed 93.1±10.7 

SAS 1 59.6±4.1 

SAS 7 52.6±3.1 

SAS 8 57.4±6.0 

SAS 9 52.6±3.0 

Table 2. Crystallite size obtained by Scherer equation for unprocessed and SAS 

micronized EDAB samples. 

 


