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Determination of the glass-forming concentration range in binary alloys
from a semiempirical theory: Application to Zr-based alloys
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A semiempirical theory is presented to calculate free-energy diagrams of glass-forming alloys.
The theory is based on the enthalpy of formation of the solid solution expressed as a sum of two
contributions: (a) a chemical contribution due to electronic redistribution in forming the alloy,
and (b) an elastic contribution arising from the difference in size between solute and solvent atoms.
The enthalpy of formation of the amorphous phase has only the chemical contribution. The
theory is used to successfully describe the glass-forming concentration range of some Zr-based al-
loys, which have been experimentally analyzed by several distinct techniques.

I. INTRODUCTION

Growing efforts have been devoted to the promotion
of a better understanding of the glass-formation ability
(GFA) of metallic alloys (see, e.g. , the recent review by
Jackie' and references therein). At the same time, new
powerful techniques, as the ion-beam mixing and the
laser quenching, have been developed to produce
amorphous materials which have not been obtained by
the traditional quenching methods. Because the ex-
planation of the amorphization mechanism on the atom-
ic scale is a very difficult task, several semiempirical
treatments have been proposed focusing on the funda-
mental factors which are believed to influence the GFA.
For instance, Egami and co-workers '' and Liou and
Chien, " by examining the published reports on the glass
formation range of a large number of binary systems,
have found that the minimum solute concentration
necessary to obtain amorphous alloys by rapid quench-
ing is inversely related to the atomic-volume mismatch.
On the other hand, Liu' has recently formulated rules
for predicting glass formation of alloys prepared by ion
beam mixing on the basis of thermodynamic and kinetic
considerations. He states that (i) if the overall composi-
tion is in a two-phase region of the phase diagram, an
amorphous alloy is most likely to be formed, and (ii) if
the overall composition is in or near a single-phase re-
gion of the phase diagram and the structure of this
phase is not simple, an amorphous alloy is likely to be
formed. The first of these rules is called the "extended-
structural-difference rule, " and is more general than the
well-known deep eutectic criterion for forming metallic
glasses by rapid liquid melt quenching. Both of the rules
proposed by Liu are consistent with the idea that only
chemically different metals are able to form amorphous
alloys.

Another approach to the question of the GFA has
been developed by Alonso and co-workers' ' using a
two-dimensional map formed by thermochemical coordi-
nates. In a recent paper published by these authors, '

they use the heat of mixing in the liquid state and the
size-mismatch contribution to the heat of formation of
the solid solution, calculated from elasticity theory, to
construct glass-forming maps. These maps are able to
perfectly separate amorphous and nonamorphous alloys
which have been treated by ion beam mixing and laser-
quenching techniques. Thermochemical coordinates
were also successfully employed by the authors to pre-
dict solid solubility in equilibrium alloys ' ' and to
differentiate between substitutional and interstitial solute
positions in dilute alloys obtained by ion implanta-
tion.

The main virtue of the thermochemical-coordinate ap-
proach is that it provides a route to quantitative calcula-
tions of the free energy of mixing of alloy phases, and
then to construct equilibrium or metastable phase dia-
grams. This has been successfully done for the case of
equilibrium solid solutions, and we now propose to
consider the metastable case. As we shall show, our
treatment allows a very accurate prediction of the glass
forming concentration range of several metallic systems,
which emphasizes the role of the thermochemical coor-
dinates in controlling the formation of amorphous alloys.

The layout of this paper is as follows. In Sec. II we

briefly survey the basic thermodynamic relations on
which the construction of the free-energy diagrams car-
ried out in this paper is based. In Sec. III we present the
semiempirical theory which allows us to obtain the
enthalpies of mixing of the competing phases existing in

alloys with GFA. In Sec. IV we apply the theory to
study the glass forming concentration range of some Zr-
based alloys, which have been experimentally studied by
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several distinct techniques (see Saunders and
Miodownik and references therein). Finally, the con-
clusions are presented in Sec. V. The good results ob-
tained in this paper provide, we think, a suitable test of
the reliability of the approximations used.

II. THERMODYNAMIC RELATIONS

The glass forming range of a binary alloy A-B is limit-
ed by the composition at which the Gibbs free energies
of competing crystalline phases become more negative
than that of the amorphous phase, and the possible pres-
ence of structurally simple compounds (see Liu' and
discussion below). As usual, we shall treat the amor-
phous phase as an extension of the liquid phase to tem-
peratures in the undercooled regime, thus neglecting the
configurational freezing of the undercooled liquid as the
glass transition temperature, Tg, is approached from
above. The construction of the free energy diagrams will
be carried here by using the free energies of mixing,
rather than the Gibbs free energies as is usually done
(e.g. , Schwarz and co-workers ).

The free energy of mixing of a solid solution is given
by

Gs =~Hs —T~SS (2)

where AHS and b,SS are the enthalpy and entropy of
mixing of the crystalline phase, respectively. To deter-
mine the glass forming concentration range of the alloys,
AGS must be compared with the excess of the free ener-

gy of the amorphous or undercooled melt over those of
the pure solid metals, i.e., with the quantity

AG( = G( —LA G A, s —XBGB,s

where G( is the free energy of the amorphous phase.
4G( can also be written as

s S A A s BGBS

where GAs and GBs are the free energies of the pure
solid metals A and B, and Gs is the free energy of the
solid solution with atomic concentrations LA and XB.
AGS can be separated as

Tf
H; I H—s bH——g; —1

'

(Cp, —Cs, )dT (i = AB),
T

where AHf; is the heat of fusion of the component i,
Tf; is the melting point of this component, and Cp, and

Cp; are the specific heats, at constant pressure, of the
component i in the undercooled and in the solid state,
respectively. In a similar way, one can write for the en-
tropies the relation

AHf;
S;(—S;s ——

f,i

T
Cs

(8)

To calculate the integral terms in Eqs. (7) and (8) several
approximations can be used (see Ref. 27). The simplest
approximation, first proposed by Turnbull, assumes
that fhe difference 6Cp ' Cp Cp is zero, which leads
to

and

H; I H; s ——A—Hg; (i =A, B) (9)

AHf,
S,(

—S,s=
Tf i

(i =A, B) . (10)

This approximation has been successfully employed by
Schwarz et al. ' to study the formation of amorphous
alloys by solid-state reaction. Several improvements on
Eqs. (9) and (10) have been published. ' Perepezko
and Paik have analyzed these approximations in terms
of measurements of ACp in undercooled melts of Hg, In,
Sn, and Bi. Their conclusion is that a linear variation of
ACp with T, as proposed by Singh and Holtz, ' gives the
best agreement with the experimental data. In spite of
this result, it must be said that the use of better approxi-
mations than that provided by Eqs. (9) and (10) has rath-
er little effect on the products and the composition re-
gimes predicted by the free energy diagram, as pointed
out by Schwarz et al . Accordingly, we have kept
these equations in the calculations carried out in this pa-
per. Then, using the expressions (4)—(6), (9), and (10),
one finds that the quantities AG( and AG( are related by

AG( ——AH( —TAS(,

where AH( and AS( are defined, respectively, by

~H( Hl LA HA s LBHB S

and

AS( ——S( —XASA S —LBSBs .

(4)

(6)

b,Hg „(Tg„—T)
G( ——~G(+L

f A

/hIHf p ( Tf 8 T)
+XB

Tf B

where 4G(, the free energy of mixing of the amorphous
phase, is given by

In these expressions H( and S( are the enthalpy and en-
tropy of the amorphous phase, respectively, and the
quantities HA s, HB s, SA s, and SB s refer to the pure
solid components A and B. AG( can be related to the
true free energy of mixing of the amorphous phase, AG(,
as indicated immediately below.

We first note that, at a given temperature, the enthal-
pies of the solid and the undercooled pure metals are re-
lated through the so-called Kirchhoff's equation

b, GI =(HJ X„Hz I AH@ &

—)—
—T(SI —X„S„I XsSs ()—

=AH( —TAS( . (12)

In the calculations performed in this paper with Eqs.
(2), (11), and (12), we have assumed that the entropy of
mixing, of both solid solutions and amorphous phases, is



3718 J. M. LOPEZ, J. A. ALONSO, AND L. J. GALLECiO 36

that corresponding to an ideal mixing, i.e.,

b,S= —R (X„ lnX„+XB lnXB ), (13)

where R is the gas constant. Of course, better approxi-
mations for the entropy of mixing can be used, but for
our purposes ideality leads to good results. The next
step is to set up expressions for the enthalpies of mixing
of the competing phases. This point is considered in the
next section.

III. ENTHALPY OF FORMATION
OF METALLIC SOLID

AND AMORPHOUS SOLUTIONS

The enthalpy of mixing, or enthalpy of formation, of a
substitutional solid solution contains three terms:

Hs =~Hs+ AHs +AHs (14)

The first one, AHs, is a chemical term due to the elec-
tron redistribution that occurs when the alloy is formed.
It has been extensively studied by Miedema and co-
workers. ' According to these authors, AHs can be
written as

(15)

where Xz is the atomic cell surface-area concentration of
metal B in the alloy. For solid ordered compounds
Miedema and co-workers use the empirical relation

fAB XB[1+1(XAXB ) 1 (17)

with y=8.
The enthalpy of formation of an amorphous alloy has

sometimes been calculated using Eqs. (15) and (16) and
then adding a constant to account for the enthalphy
difference between a crystalline and an amorphous ele-
ment (see, e.g. , Ref. 37). Weeber has modified the
function f~B, this modification being based on the ex-
istence of chemical short-range order (CSRO) in amor-
phous alloys. In this way, Weeber suggested to use (17)
with y=5.

AHs'" is an elastic contribution due to the difference
in atomic volume between solute and solvent metals.
This term can be computed using classical elasticity
theory. ' ' The result can be written in the following
simple form

X~XBhhs "(3 in B)bhs "(B in 2)
X„bhs "(3 in B)+XBAh&'"(B in 3 )

(18)

where b,hs'"(3 in B) is the size mismatch contribution
to the enthalpy of solution of 3 in B, and their expres-
sion can be found, for instance, in Ref. 22.

where AH' is an amplitude concerning the magnitude
of the chemical interaction (see, for instance, Ref. 34 for
details), V„ is the atomic volume of metal 3 in the al-

loy, and f„B is a function which accounts for the degree
to which atoms of type 3 are surrounded by atoms of
type B. For statistical solutions fzB is given by

f~B =XB

The size mismatch contribution is not important in in-
termetallic compounds or in amorphous alloys. In the
first case it is because, despite the size difference between
the 3 and B atomic volumes, the atoms always find the
proper crystal structure and concentration in order to
avoid size mismatch contributions to the enthalpy of for-
mation (the size mismatch contribution is always posi-
tive). In the amorphous phase this contribution is not
important because there is not a periodic structure, and
so the atoms are not constrained to fit a certain volume.

Finally AHB" of Eq. (14) is a structural contribution
taking into account the difference in valence and crystal
structure of solute and solvent. ' This contribution is
expected to have only a minor effect in determining the
concentration range of the amorphous alloys treated
here. This is because the size effect, which is the pri-
mary factor controlling this concentration range (as
Egami ' and Liou" have emphasized), is very strong in
the alloys treated in this paper. For this reason AHs'"
will not be considered. In addition there are technical
reasons which make difficult the handling of AHs'".
These will be brieAy discussed in Sec. IV.

All the above results allow us to obtain the free ener-
gies of the amorphous and solid phases of metallic sys-
tems. This is illustrated in the next section by consider-
ing some Zr-based alloys whose amorphization has been
studied by several distinct techniques.

IV. CALCULATIONS FOR Zr-BASED ALLOYS
AND DISCUSSION

We have calculated the free energy of formation of the
amorphous and the solid phases, as a function of concen-
tration, for the systems Ni-Zr, Co-Zr, and Cu-Zr. To
obtain b6~ we have calculated b, GI by using Eq. (12)
with ASI and AH~ given by (13) and (15), respectively.
Moreover, the second and third terms on the right-hand
side of Eq. (11) have been evaluated by using the experi-
mental melting points and heat of fusion data. "' The ex-
pression used for the function f„B of Eq. (15) in the
amorphous phase is that proposed by Weeber, that is
Eq. (17), but with y =4. We have obtained this opti-
mized value of y by fitting the available AH& data for the
amorphous systems Ni-Zr (Refs. 23 and 37) and Cu-Zr
(Refs. 42 and 43) to the expression

Hl ~H1 +XA AHf 3 +XBAHf P

which results from Eqs. (5) and (9). As an illustration in
Fig. 1 we have plotted the AH& fit corresponding to the
system Ni-Zr.

On the other hand we have obtained the free energy of
mixing of the solid solution by using Eqs. (15) and (18)
to obtain the enthalpy of mixing, with y =4 in the ex-
pression (17) for f~B, and Eq. (13) for the entropy of
mixing. Using @=4 in f„B means that we admit the ex-
istence of CSRO in the solid solution (suggested by the
very negative heat of formation of the alloys considered
in this paper) and that the degree of CSRO is similar to
that in the corresponding amorphous phase. This of
course implies that AH~ ——AHs.

The results of the free energy calculations for the sys-
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tems Ni-Zr, Co-Zr, and Cu-Zr at 300 K are plotted in
Figs. 2 —4. In these figures the theoretical range of
amorphization has been obtained by considering the
solid solution and the amorphous phase as the only com-
petitive phases. Thus, when the concentration of Zr is
smaller than that corresponding to the point indicated in
the figures with the number 1, or greater than the con-
centration corresponding to the point indicated by 4, the
more stable phase is the solid solution and the system is
not amorphizable. When the concentration is between
the values corresponding to the points 1 and 4, the free
energy of the amorphous alloy is more negative than the
free energy of solid solutions and the system becomes
amorphous.

So far we have not considered the existence of in-
termetallic compounds in the phase diagram. Generally
these compounds have a complicated crystal structure
and thus they are not usually competing phases due to
nucleation and growth difficulties under rapid quenching
conditions. This is corroborated by the studies of the
thermal stability in amorphous alloys carried out by
Buschow. According to him, the regions with
minimum stability, i.e., with a minimum in the activa-

10
,
' exp

tion energy for crystallization, correspond to concentra-
tions at which intermetallic compounds occur. This fact
indicates that the possible formation of amorphous
phases at these concentrations is due to kinetic frustra-
tion of the crystallization process (see Ref. 12). In Figs.
2 —4 the intermetallic compounds are indicated by ar-
rows at the nominal concentrations. For the Ni-Zr sys-
tem there are seven intermediate compounds which
have complicated structures, with the exception of Ni5Zr
which is of the fcc type. This is the same structure as
that of the solid solution in the Ni-rich concentration.
The Co-Zr system has five intermetallic compounds;
only the Co2Zr is fcc type. Finally, the Cu-Zr system
has ten intermediate compounds, nine of which have a
complicated structure and only one, the Cu&Zr, is fcc
type, as pure Cu.

In these three systems studied we have calculated the
free energy of formation for the compound that has the
same type of crystallographic structure as the corre-
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FIG. 1. Enthalpy of formation, AH&, for the amorphous
Ni-Zr system vs concentration of Zr at 300 K. The solid line is
the theoretical fit given by Eq. (19) to the experimental data
(crosses; Refs. 23 and 37). We have also superimposed on this
figure the values reported by Altounian et al. (open circle; Ref.
50) and by Weeber et al. (solid circle; Ref. 51).

FIG. 2. Calculated free energies of formation, AGt and
EGq, for the Ni-Zr system at 300 K vs concentration of Zr.
The solid circle is the free energy of formation of the NiqZr
compound. The dashed line is schematic. In the upper part of
the figure we show the experimentally observed glass-forming
range found on melt spinning (Ref. 44) and that calculated in
this work. Arrows indicate positions of equilibrium com-
pounds.
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sponding terminal solid solution. We have assumed here
that the structure of the pure Co is fcc type. However,
it must be said that this metal has two crystallographic
forms, one of hcp type (a-Co) and the other of fcc type
(P-Co), both forms commonly coexisting in samples at
room temperature (see, e.g. , Ref. 47). The free energy
calculations have been carried out using Eq. (15) for the
enthalpy of formation, with fz~ given by (17) (y=8),
and assuming AS„~,„„d——0, because evidence exists
that the entropy of formation is smaller than the entropy
of formations of the solid solutions. ' The results are
indicated by a filled circle in Figs. 2 —4; a schematic
curve (dashed line) has been drawn to indicate that the
free energy of the intermetallic compound changes rap-
idly around the nominal composition. This allows us to
explain the existence of a gap in the experimental range
of amorphization for the three systems considered in this

10

paper. When the concentration of the system is between
those points indicated in the figures by numbers 2 and 3,
the simpler and more stable phase is in the intermetallic
compound. Thus, when the system is rapidly cooled
from the liquid state this is the phase that is obtained
rather than the amorphous phase. We can consider the
stable compound basically as an extension of the solid
solutions because in all cases the crystallographic struc-
tures are the same in both phases.

The good agreement with the experimental concentra-
tion range for amorphization shows that the structural
contribution in Eq. (14) can be neglected, as expected, in
studying this particular property. On the other hand
there are technical reasons that make the handling of
AH&'" difficult, at least for the class of alloys treated
here. The main problem is that a study of the variation
of the structural stability of elemental metals as a func-
tion of the number of valence electrons has only been
performed, so far, for transition metals of the 4d and 5d
periods, whereas two alloys treated here contain one 3d
metal (Co, Ni) and the third one a noble metal (Cu).
Due to magnetic effects in the 3d period, there is no
guarantee at all that the data for 4d and Sd metals could
be extrapolated with confidence to the 3d period. In fact
Mn, Fe, and Co have crystal structures different from
those of their corresponding 4d or Sd partners. Even if
this extrapolation were valid, a second possible problem
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FIG. 3. Calculated free energies of formation, 6G~ and
AG&, for the Co-Zr system at 300 K vs concentration of Zr.
The filled circle is the free energy of formation of the Co&Zr
compound. The dashed line is schematic. In the upper part of
the figure we show the experimentally observed glass-forming
range found on melt spinning (Ref. 44) and that calculated in
this work. Arrows indicate positions of equilibrium com-
pounds.

FIG. 4. Calculated free energies of formation, 6GI and
AG&, for the Cu-Zr system at 300 K vs concentration of Zr.
The filled circle is the free energy of formation of the Cu~Zr
compound. The dashed line is schematic. In the upper part of
the figure we show the experimentally observed glass-forming
range found on melting spinning (Ref. 44) and that calculated
in this work. Arrows indicate positions of equilibrium com-
pounds.
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could be the large valence difference between Zr and Ni,
Co or Cu. In spite of these reservations we could adopt
the questionable point of view of taking the structural
stability curves of Fig. 2 in Ref. 32 as valid for the non-
magnetic 3d metals. Then, after including AH&" in our
calculations for the Zr-Ni alloy we have found that the
concentration range for amorphization becomes hardly
modified ( —I at. %%uo )wit hrespec t to th eamorphization
range in Fig. 2. This is, of course, because the size effect
is the dominant factor.

Evidently, from the theory developed above, the cross-
ing points between the curves AGi and AG& in Figs. 2 —4
are determined by the equation

AHf g(Tf g T) bHf tt(Tf tt T)
+X~

Tf, 3 Tf g

X„Xttb hs "(3 in B )b hs'"(B in 3 )
(2O)

Xz b,hs'"( A in B)+Xtt hhs "(B in 3 )

This result agrees with the findings of Egami and co-
workers ' and of Liou and Chien" that atomic size
mismatch between the components is critical in deter-
mining the concentration range for amorphization.
Rather than working directly with Eq. (20) we have pre-
ferred, however, to plot in the figures the free energy of
formation of the competing phases because this gives a
more comprehensive view of the situation, and it also al-
lows for a simpler discussion of the effect of intermediate
compounds.

V. SUMMARY

In conclusion, we have presented a theory which is
capable of successfully explaining the concentration

range in which amorphous alloys can be obtained in
binary transition-metal systems. Although this theory is
semiempirical we believe that it contains the fundamen-
tal thermodynamic factors influencing glass forming
ability. The theory emphasizes the role of the size
mismatch contribution in determining the glass-forming
concentration range, whose importance has also been
noted by Egami and Waseda and by Liou and Chien. "
The theory also takes into account the chemical contri-
butions due to the electronic redistribution in forming
the alloy. It is these factors that we believe are the key
ingredients in describing the formation of amorphous al-
loys correctly and which any ab initio theory should in-
corporate. Although size mismatch effects control the
glass forming concentration range, provided that the
amorphous alloy forms, the chemical interaction term is
important, in addition to the size term, to determine if
an amorphous phase will form at all. '
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