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Structure and bonding in small neutral alkali halide clusters
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The structural and bonding properties of small neutral alkali halide clusters, (AX)n with n<10, A
5Li1,Na1,K1,Rb1, andX5F2,Cl2,Br2,I2, are studied using theab initio perturbed ion~PI! model and a
restricted structural relaxation criterion. A trend of competition between rocksalt and hexagonal ringlike iso-
mers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate
value of r C /r A50.5 ~where r C and r A are the cationic and anionic radii! separates the hexagonal from the
rocksalt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to
explain these trends. The magic numbers in the size range studied aren54, 6, and 9, and these are universal
since they occur for all alkali halides and do not depend on the specific ground-state geometry. Instead those
numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n

(n53 – 7) and (AX)3 clusters, and the effect of Coulomb correlation is studied in a few selected cases. These
two effects preserve the general conclusions achieved thus far.@S0163-1829~97!01848-1#
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I. INTRODUCTION

Small clusters often present significant physical a
chemical differences with respect to the bulk phase. Wh
the structural possibilities are limited for the bulk materi
the number of different isomers that may coexist for clust
is usually large, and the energy differences between isom
are often small. Here we are interested in neutral stoich
metric clusters of typical materials with ionic bonding, th
is, (AX)n clusters, whereA is an alkali andX a halide atom.
As ab initio studies on these clusters are computationa
expensive, the first theoretical calculations were based
pairwise interaction models.1–3 Meanwhile, experimentalists
moved forward using several techniques to produce and
vestigate these clusters: particle sputtering,4,5 where rare-gas
ions are used to bombard a crystal surface, vapor conde
tion in an inert-gas atmosphere,6–8 and laser vaporization o
a crystal surface.9,10 In the expanding molecular jet cond
tions, clusters undergo a rapid and efficient evaporative c
ing, and this leads to a cluster size distribution determin
almost exclusively by the cluster stability. The evaporat
cooling process leads to the so-called abundance magic n
bers as a result of the longer time that the most stable clus
remain in the beam before decaying. Alkali halide ma
numbers are often explained in terms of cuboid structu
resembling fragments of the crystalline lattice, but other p
sibilities such as ring stackings, or even mixed structu
exist, which could be competitive. Nevertheless, only
cently the possibility of detecting different isomers h
emerged in drift tube experiments.11,12 Those experiments
have led to a renewed interest in isomerization studies
order to disentangle these interesting problems,ab initio
calculations13–16 provide an ideal complement to the expe
560163-1829/97/56~23!/15353~8!/$10.00
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mental studies, which are restricted to charged species.
instance, a study of (KCl)n and (LiF)n clusters up to sizes o
n532 has been carried out in Ref. 16, using quantu
chemical methods including correlation effects at the M
level. We have performed calculations for (NaCl)n and
(NaI)n using theab initio perturbed ion~PI! model.13,14

The objective of the present paper is to give a glo
characterization of the structure and other related prope
of small neutral alkali halide clusters. To this end we ha
carried out extensive perturbed ion~PI! calculations for the
(AX)n (n51210) clusters, identifying the most stable is
mers, the binding energy differences between some isom
and the evolution of several properties with the cluster s
Trends are highlighted and differences between different
terials are discussed. To obtain a more profound insight
the physics behind the observed trends, the (AX)6 clusters
are studied in more detail. Thus, conclusions can be draw
to what energy components dictate the structure of
ground-state isomer. Direct contact with the results of d
tube experiments is yet premature since those experim
involve nonstoichiometric singly-charged clusters.

This paper is structured as follows: Section II contains
brief account of the theoretical method and computatio
details. Section III contains the results for the structure a
bonding properties. Section IV contains a detailed study
the (AX)6 clusters, which provides further insight into th
results obtained in Sec. III. Finally, Sec. V contains our co
clusions and summarizes the principal ideas of this study

II. METHOD

According to the theory of electronic separabili
~TES!,17,18when a system is composed of weakly interacti
15 353 © 1997 The American Physical Society
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15 354 56AGUADO, AYUELA, LÓPEZ, AND ALONSO
groups, its wave function can be expressed as an antisym
trized product of group wave functions. If these satis
strong-orthogonality conditions,19,20 the total energy can be
written as a sum of intragroup energies and intergroup in
action energies. The PI model is a particular application
the TES in which each atom in a cluster with a fixed stru
ture ~or in a crystal! is considered as a different group.21 The
TES provides an efficient tool for dealing with ion
bonding.22 Thus, alkali halide clusters are ideal systems to
treated by the PI model. The ions~positive and negative! are
the basic entities of the model. Their electronic structures
self-consistently calculated, subject to the effect of the
environment, by using an effective Hamiltonian includin
intragroup terms and coulombic, exchange, and projec
ion-cluster interaction terms. The exchange interaction is
curately approximated by a nondiagonal spectral resolut
as given by Huzinagaet al.23 The projection energy term
enforces strong orthogonality conditions between the io
wave functions, increasing their kinetic energies and prov
ing the short-range repulsive forces necessary for the st
ity of the cluster. All the two-center integrals involved in th
calculation of these three interaction terms are analytic
determined by using the algorithm of Silverstone and Mo
for the expansion of a function around a displaced cente24

The PI model is formulated at a Hartree-Fock~HF! level and
has been described in full detail in other papers.13,14,21Cor-
relation can also be included in an approximate way.

In the calculations we have used large multizeta Sla
type orbital ~STO! basis sets, taken from Clementi an
Roetti.25 Basis sets optimized for the description of ions
vacuum are, in principle, an available choice to descr
those ions in a cluster. However, these are not necessaril
best basis sets, as shown in Ref. 13~c!. The sensitivity of the
PI model to the quality of the wave function tails is we
documented.21,22,26,27Specifically, the effective potential fo
each ion depends, among other factors, on the overlaps
wave functions of neighbor ions. Thus, it is of paramou
importance to choose the most appropriate basis set for
description of each material. We have performed explorat
studies forAX molecules and (AX)6 clusters. Specifically,
we have used the basis sets of Clementi and Roetti with
exponents optimized for the description of ions in vacuu
and also with the exponents optimized for the neutral s
cies. The main difference between these basis sets is in
in the tail zone. This leads to four distinct possible basis s
for each alkali halide. The basis set leading to the larg
binding energy for each individual alkali halide material@the
results for (AX)6 andAX lead to the same conclusions# has
been adopted for all clusters of that material. We have a
checked that inclusion of diffuse orbitals is not necessar

III. CLUSTER GEOMETRIES AND RELATIVE
STABILITIES

A. Ground-state structures and low-lying isomers

The problem of minimizing the total cluster energy wi
respect to the positions of all the ions is computationa
very demanding. In our case we have performed a restri
search on the (3n– 6)-dimensional potential energy surfac
The starting geometries have been investigated by o
authors1–3 within the context of pair potential models. Sp
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cifically, we have considered cuboid structures~rocksalt
fragments!, ringlike configurations~mainly hexagonal! to-
gether with prismatic structures obtained by stacking th
rings, and some mixed configurations. For the cuboidl
structures, the energy has been minimized with respect
single parameter, the nearest-neighbor distance. For ring
structures, we have relaxed two or three parameters, one
counting for the stacking distance between parallel rings
the two others for the different distances of cations and
ions to the center of the ring.

Figure 1 shows the results for (LiF)n and (KCl)n clusters.
The ground state and one or more low-lying isomers
given for eachn. The energy difference with respect to th
most stable isomer is given~in eV! below each isomer. The
first number corresponds to (KCl)n and the number below to
(LiF) n . Although we have performed calculations for ma
alkali halides, we only represent in Fig. 1 the results
(KCl) n and (LiF)n because those two systems show well t
main trend in structural stability, namely, the competiti
between rings and stacks of rings~mainly hexagonal! on one
hand, and structures that are fragments of a rocksalt cry
lattice on the other. The tendency to form rings is stronge
(LiF) n , and most (KCl)n clusters form instead rocksalt frag
ments. These structural trends support the conclusion
Ochsenfeld and Ahlrichs16 of a slower convergence o
(LiF) n towards bulk properties. More generally, all alka
halide clusters containing Li have a tendency to form rin
clusters containing K and Rb form rocksalt pieces, and
halides represent an intermediate case. Of course there
exceptions to this simple rule: for instance, we observe
Fig. 1 that the lowest-energy structure of (LiF)7 and (KCl)7
is in both cases a fragment of the wurtzite crystal. Also,
ground state structure forn53 is the hexagonal ring in both
systems.

To give a more precise description of the competiti
between ringlike and cuboid isomers we present in Fig. 2
structural stability map in which the two coordinates are
empirical anion (r A) and cation (r C) radii.28 The map corre-
sponds to (AX)6 , and the straight line drawn in the ma
achieves a perfect separation between the systems in w
the lowest structure is the cuboid and those that prefer
hexagonal prism. The same line separates the hexag
prism and the rocksalt fragment in (AX)9 , but the line may
depend a little onn: a vertical line neatly separating Li clus
ters from the rest serves to distinguish between the octog
ring and the cube in (AX)4 . The conclusion from the struc
tural maps is that two parameters,r A andr C , are enough to
parametrize the competition between ringlike and rocks
isomers: alkali halide clusters with a smallr C and a larger A
have a tendency to form rings, although the first requirem
~small r C! is almost sufficient.

The ring versus rocksalt competition can be further si
plified to a one-parameter plot. In Fig. 3 the energy diffe
ence between the two isomers has been plotted versus
ratio r C /r A , again forn56. A visible correlation exists be
tween the two magnitudes. A critical ratior C /r A50.5 sepa-
rates the hexagonal from the rocksalt structures.

B. Evolution of the interionic distances with cluster size

In Fig. 4 we present the evolution of the averaged inte
onic distances of (LiF)n and (KCl)n with the cluster size for
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56 15 355STRUCTURE AND BONDING IN SMALL NEUTRAL . . .
FIG. 1. Lowest-energy structures and low-lying isomers of (LiF)n and (KCl)n clusters, relaxed as indicated in the text. The ene
difference~in eV! with respect to the most stable structure is given below the corresponding isomers. First row: KCl; second ro
Stability decreases from left to right for (KCl)n clusters.
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15 356 56AGUADO, AYUELA, LÓPEZ, AND ALONSO
two isomeric families~rocksalt and hexagonal prism!. The
tendency is a slight increase of the cation-anion distancd
with cluster size, but each isomeric family follows a differe
growth curve and cation-anion distances are smaller in
hexagonal-ring pieces. Although not plotted in the figure
have found that interionic distances in higher-order rin
~octogonal, . . . ! are even smaller, so we conclude that t
higher the order of the rings forming the structure, t
smaller the interionic distances.d tends to a saturation valu
in cubic (KCl)n clusters that is about 0.1 Å larger than th
corresponding interionic bulk distanced(KCl) 53.33 Å.28 In
cubic (LiF)n clusters, on the other hand,d tends from below
to a value very close to the corresponding bulk lim
d(LiF) 52.02 Å.

C. Cluster stabilities

Now we examine the relative stability as a function of t
cluster size. The binding energy per molecule of a giv
cluster (AX)n with respect to the separate free ions is giv
by

FIG. 2. Structural stability map for (AX)6 . A plot in terms of
the cation and anion radii,r C and r A respectively, separates th
hexagonal~squares! from the cubic~circles! isomers. The same ma
is also valid for (AX)9 .

FIG. 3. Energy difference between hexagonal and rocksalt
mers in (AX)6 vs the ratio of ionic radii.
t
e

e
s

n

Ebind5
1

n
@nE0~X2!1nE0~A1!2E~cluster!#, ~1!

whereE0 refers to the energies of the free ions. In Fig. 5 w
showEbind as a function ofn, for a number of alkali halides
The general trend is an increase ofEbind with n. However,
some values ofn for which the cluster is specially stable ca
be observed. These aren5(4), 6, and 9.Local maxima can
be seen forn56,9 in all cases, and a maximum or a chan
of the slope of the curve forn54. The most important fea
ture is that these magic numbers are ‘‘universal’’ within t
alkali halide family, that is, they occur both in ring-formin
systems and in rocksalt forming systems and this occurs
cause the difference in energy between ringlike and rock
isomers is small compared to the change in binding ene
when the cluster size 2n changes. In summary, it is the e
pecial value ofn that makes some clusters special and
their particular ground-state geometries. The stability occ
because those special sizes permit the formation of ‘‘co
pact’’ clusters. Let us illustrate this with specific example

o-

FIG. 4. Interionic distances in (LiF)n ~open circles! and (KCl)n
~full circles! clusters. Lines join isomers pertaining to the sam
structural family: rocksalt~full line!, hexagonal rings~dashed line!.
Left scale is for (LiF)n and right scale for (KCl)n .

FIG. 5. Binding energy per molecule as a function of the clus
size for some alkali halide clusters. From the top to the botto
these are LiCl, LiBr, RbF, NaBr, LiI, KCl, KBr, RbCl, RbBr, KI,
and RbI.
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56 15 357STRUCTURE AND BONDING IN SMALL NEUTRAL . . .
The two isomers of (AX)5 ~a decagonal ring and a cube wi
anAX molecule attached to it! and the hexagonal isomers o
(AX)7 contain some low coordinated ions, in contrast
(AX)6 . (AX)9 is also more compact than the elongat
forms of (AX)10 and (AX)8 . The octogonal prism in (AX)8
contains also less coordinated ions than (AX)9 . This idea of
stability of compact clusters is evidently associated to
optimization of the attractive part of the electrostatic ener
Excluding the lithium clusters, our results are in accorda
with a geometrical model1,2 proposed to explain the magi
numbers of large clusters with ionic bonding. This mod
assumes that the most stable configurations correspon
those values ofn for which it is possible to form compac
cuboid structures of type (a3b3c), wherea, b, andc are
the number of atoms along three perpendicular edges.

D. Inclusion of general geometrical distortions

In addition to the restricted search of energy minima
scribed in Sec. III A above, we have performed ‘‘full ge

FIG. 6. Lowest-energy structures and low-lying isomers
(LiF) n (n53 – 7) calculated allowing for a full geometrical relax
ation. Differences in total energy are given in eV.
e
.
e

l
to

-

metrical relaxations’’ for (LiF)n (n<7) and for all the
(AX)3 clusters. To this end, we have used a simplex dow
hill algorithm.29,30 The input geometries for these addition
calculations are those obtained from the previous restric
calculations. Results for (LiF)n (n53 – 7) are presented in
Fig. 6. Appreciable distortions are observed in some lo
lying isomers but not on the ground state. The effect of
distortions is to reduce the energy difference between
first isomer and the ground state, although the relative ord
ing of these two is not changed. The effect is largest fon
55, where the energy difference between isomers is lowe
by 3.39 eV. Forn54, the ring remains as the lowest-ener
structure, but the isomers are now nearly degenerate.
other materials we have performed such calculations only
n53, and the distortions are very small. The general conc
sion of this section is the same as in Sec. III A, namely, t
only (LiX)n and some (NaX)n clusters have a marked ten
dency to adopt ringlike structures.

E. Inclusion of correlation effects

Coulomb correlation can play a significant role when t
HF energy differences between isomers are small. We h
studied the influence of correlation in some selected case
using the unrelaxed Coulomb-Hartree-Fock~uCHF! model
proposed by Clementi.31,32 Within this model, the PI wave
functions calculated at the HF level are kept fixed and
correlation energy is added as a~perturbativelike! correction.
The calculations have been carried out using the restric
search described in Sec. III A. As the electron-electron
pulsion is lowered upon inclusion of correlation, a contra
tion of the interionic distances is obtained in all cases. T
contraction is always larger in the more compact~rocksalt!
isomer compared to the ringlike isomers. Results for the
fect on the binding energies of (LiX)4 clusters are presente
in Table I. The inclusion of correlation leads to higher bin
ing energies and results in a larger stabilization of the c
isomer. This reduces the energy difference between the
isomers in (LiCl)4 , (LiBr) 4 , (LiI) 4 , and it changes the or
der of the two isomers in (LiF)4 , giving a result in accor-
dance with those of Refs. 16 and 33, where a cube
obtained as the most stable (LiF)4 isomer. However,
(LiCl) 4 , (LiBr) 4 , and (LiI)4 remain as octogonal rings
Thus, the stability map forn54 only changes gently and it
main characteristics remain valid upon inclusion of corre
tion.

We have also performed uCHF calculations for the pla
(KX)3 isomers, and the results are given in Table II. T
most stable structure for (KX)3 at the HF level is the hex-
agonal ring, the same obtained for (NaCl)3 in Refs. 13 and

f

TABLE I. Effect of correlation on the binding energies o
(LiX) 4 clusters. HF and uCHF binding energies per molecule
given ~in eV! for the cube and the octogonal ring.

Material

(LiF) 4 (LiCl) 4 (LiBr) 4 (LiI) 4

HF uCHF HF uCHF HF uCHF HF uCHF

Cube 8.99 9.67 6.88 7.49 6.47 7.30 5.74 6.5
Ring 9.00 9.59 7.00 7.52 6.56 7.32 5.91 6.5
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15 358 56AGUADO, AYUELA, LÓPEZ, AND ALONSO
15 and for (NaI)3 in Ref. 14. The calculations of Ochsenfe
et al.16 predict that the rectangular~or double chain! struc-
ture becomes the most stable (KCl)3 isomer upon inclusion
of correlation at the MP2 level. We do not obtain the dou
chain as the minimum-energy isomer of the (KX)3 clusters
upon including correlation, but the energy differences
tween the two isomers decrease a little. For instance,
energy difference for (KCl)3 changes from 0.05 eV at th
HF level to 0.04 eV at the uCHF level. On the other hand
we perform a uCHF calculation for the fixed geometries
(KX)3 isomers fully relaxed at the HF level, the above e
ergy differences are 0.14~HF! and 0.11 eV~uCHF!, respec-
tively. Thus, inclusion of correlation and a full geometric
relaxation have opposite effects on the relative stability
the two isomers. The main conclusion is that both isom
could coexist in the experiments, since their energies
close.

From Fig. 3 it can be appreciated that the two (NaB6
isomers have nearly the same energy. Inclusion of Coulo
correlation inverts the order of the isomers only in this ca
Thus, the general features of the stability map remain v
after including correlation. In summary, inclusion of Co
lomb correlation results in a gain in binding energy that
larger for the rocksalt isomers, but this effect becomes
nificant only for those cases showing near degenerate
mers.

IV. DETAILED STUDY OF THE „AX…6 ISOMERS

A. Hexagonal versus rocksalt isomer

In this section we deal with the specific case ofn56 and
work at the level of restricted relaxation explained in S
III A. Our goal is to achieve a deeper understanding of
stability map presented in Fig. 2. To this end we have a
lyzed the factors giving rise to the cluster binding energy.
order to study the deformations on the electron density of
ions induced by the cluster environment we have calcula
the expectation valuêr 2&nl for all the geometrically in-
equivalent ions in the cluster. That expectation value is ta
over the outermost occupied ionic orbitalcnl . In Table III,
the values of̂ r 2&nl for F2 and I 2 anions in vacuum and in
some (AX)6 clusters are compared. Ions in the hexago
prism are labeled with the letterr ~ring!. In the rocksalt
cluster there are two nonequivalent sites, labeledc ~corner!
ande ~edge!. The orbital contraction is important. For a fixe
anion, the contraction is the largest for the Li halide. In co
trast, the contraction of the cationic orbitals is negligible.

It can be shown13,14,21that the binding energy of Eq.~1!
can be written as

TABLE II. Effect of correlation on the binding energies of pla
nar (KX)3 clusters. HF and uCHF binding energies per molec
are given~in eV! for the double chain and the hexagonal ring.

Material

(KF)3 (KCl) 3 (KBr) 3 (KI) 3

HF uCHF HF uCHF HF uCHF HF uCHF

Double chain 6.41 6.88 5.25 5.75 5.06 5.70 4.63 5.
Ring 6.47 6.92 5.30 5.79 5.10 5.72 4.67 5.3
e
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R

Ebind
R 52(

R
~Edef

R 1 1
2 Eint

R !, ~2!

where the sum runs over all the ions in the cluster. Acco
ing to this equation we can separate the binding energy
a sum of site contributions, each one composed in turn
two terms.Edef

R accounts for the self-energy associated to
deformation of the wave functions of the free ions by t
cluster environment, so it is related to the change of^r 2&nl

and depends on the specific site in the cluster.Eint
R is the

interaction energy of the ionR with the rest of the cluster
namelyEint

R 5Eclass
R 1Enc

R 1EX
R1Eoverlap

R , where the different
terms are, respectively: the electrostatic interaction betw
the ion R and the other ions of the cluster, considered
point charges, the correction to this classical energy due
the finite extension of the wave functions, the exchange p
of the interaction energy, and the overlap energy.34 Thus,
after performing theR sum, the binding energy can accor
ingly be partitioned as

nEbind5Edef1
1
2 Eclass1

1
2 ~Enc1EX1Eoverlap!

5Edef1
1
2 Eint

classical1 1
2 Eint

quantum. ~3!

The deformation term is always positive,13,14 so it opposes
binding. The overlap contribution dominatesEint

quantum, so this
term is also positive in all cases. FinallyEint

classical, which is
the Madelung interaction energy between pointlike charg
is negative and stabilizes the cluster. It is worth pointing o
that all these energy components are obtained in a glo
self-consistent process and that this partition of the bind
energy is not strictly necessary; nevertheless, it proves c
ceptually quite useful.

Now, the difference in binding energy per molecule b
tween the hexagonal and rocksalt (AX)6 isomers can be ana
lyzed in those three components. That is made in Table
The following trends can be appreciated:~a! The deforma-
tion part always favors the hexagonal isomer.~b! The interi-
onic distances are smaller in the hexagonal isomer a
therefore, the overlap is larger. Consequently the term
volving overlap favors the rocksalt isomer.~c! Eint

classical al-
ready displays the main feature of Fig. 2, that is, the disti
tion between the hexagonal and the rocksalt fragment. T
is very interesting because a classical Madelung interac
would favor the cuboid isomer if the interionic distanc

e
TABLE III. Values of ^r 2&nl in a.u. for the outermost occupie

orbitals ofF2 and I 2 anions in vacuum and in four representati
(AX)6 clusters.r , ring site;c, corner site;e, edge site~as defined in
the text!.

Site ^r 2&nl Site ^r 2&nl

F2: gas phase 2.207 I 2: gas phase 8.621
F2: (LiF) 6 r 1.794 I 2: (LiI) 6 r 7.575

c 1.806 c 7.604
e 1.763 e 7.398

F2: (RbF)6 r 1.899 I 2: (RbI)6 r 7.779
c 1.907 c 7.789
e 1.867 e 7.645
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56 15 359STRUCTURE AND BONDING IN SMALL NEUTRAL . . .
were the same in both isomers. The Madelung energy
comes more negative for the hexagonal prism only if
interionic distanced(hex) is smaller than a critical fractio
ad(cube) of the interionic distance in the cube isomer, w
a a number slightly smaller than 1. This occurs for tho
materials withr C /r A<0.5. Although the stability map ca
then be justified in terms of classical energy components,
equilibrium interionic distance, which is a key factor in th
discussion, results from a delicate balance between all
energy components, classical, and nonclassical. Returnin
the borderline case (NaBr)6 , the inclusion of Coulomb cor-
relation induces a contraction of the interionic distances
both isomers, but this contraction is larger for the rocks
isomer, and the Madelung energy produces an inversio
the order of the two isomers.

B. Additional geometrical relaxation of the cuboid isomer

A better description of the structure of the rocksalt isom
is obtained by allowing inequivalent ions to relax indepe
dently. We have then relaxed the geometry with respec
four parameters, the distances from the cluster center to
four inequivalent ion types~corner and edge cations and co
ner and edge anions!. In all the Li compounds and in (NaI)6 ,
cations tend to move inwards, while anions move outwa
producing slight deformations. This situation is reversed
the rest of clusters, in which cations move outwards a
anions move inwards. The deformations have an interes
effect on the effective ion size. To see this effect we ha
calculated again̂r 2&nl for the outermost orbital of each ion

TABLE IV. Difference in binding energy per molecule betwee
rocksalt and hexagonal (AX)6 isomers, together with their partition
in deformation, quantum, and classical interaction terms, as defi
in the text. A minus sign indicates that the corresponding quan
favors the hexagonal isomer. All quantities in eV.

Material DEdef
1
2 DEint

quantum 1
2 DEint

classical DEbind

LiI 20.069 0.048 20.089 20.110
LiBr 20.058 0.048 20.081 20.091
LiCl 20.061 0.059 20.088 20.090
LiF 20.067 0.098 20.103 20.072
NaI 20.034 0.055 20.041 20.020
NaBr 20.023 0.045 20.023 20.001
NaCl 20.031 0.033 0.003 0.005
NaF 20.046 0.064 0.006 0.024
KI 20.034 0.022 0.028 0.016
KBr 20.022 0.013 0.029 0.020
KCl 20.008 0.017 0.013 0.022
KF 20.039 0.055 0.015 0.031
RbI 20.034 0.014 0.044 0.024
RbBr 20.009 0.021 0.014 0.026
RbCl 20.001 0.020 0.008 0.027
RbF 20.025 0.033 0.027 0.035
e-
e

e

e

he
to

n
lt
in

r
-
to
he

s,
r
d
g

e

Compared to the results for rocksalt isomers of Table III
have now obtained almost identical contractions for the e
tronic clouds of anions at inequivalent~corner, edge! sites,
with the conclusion that anions at inequivalent positio
have, nevertheless, an identical size. The size changes,
ever, with the nature of the alkali partner.

V. CONCLUSIONS

Using the PI model, we have calculated the most sta
structures of neutral alkali halide clusters (AX)n , with n
<10, A5Li1,Na1,K1,Rb1 and X5F2,Cl2,Br2,I2. With
few exceptions, the equilibrium geometries obtained
ringlike structures for (LiX)n and (NaI)n clusters, and rock-
salt fragments for the rest of the materials; (NaBr)6 is a
borderline case. The competition between rocksalt and r
like isomers has been studied in detail and we have fo
that a stability map with two parameters~the cationic and
anionic ionic radii! is able to separate the alkali halides
two well-defined structural families. A further simplificatio
to a one-parameter (r C /r A) plot has been possible, from
which an approximate value of 0.5 has been extracted
separates the two families. The interionic distances sho
smooth variation with the number of molecules in the clus
when different structural families are considered separat
The alkali halide magic numbers have an universal charac
based on the fact that highly compact isomers can be b
with a number of molecules equal to 4, 6, and 9. Addition
calculations allowing for full geometrical relaxations ha
been performed in the case of (LiF)n (n53 – 7) and (AX)3
clusters. Li-based clusters show larger geometrical dis
tions than clusters not containing lithium. The structur
have been compared with those obtained from other theo
ical calculations, and the overall agreement is good. Inc
sion of correlation corrections has been considered only
those cases with near-degenerate isomers.

The partition of the binding energy for the (AX)6 clusters
has shown that the key ingredients to understand the st
tural differences of Figs. 2 and 3 are the cation-anion d
tances and the classical electrostatic Madelung contribut

To sum up, a simple picture emerges to explain the
served structural trends: when the ratior C /r A<0.5, the in-
terionic distances at equilibrium, determined by minimiz
tion of thetotal energy, are such that the classical Madelu
interaction between pointlike ions favors the hexagonal i
mer. On the other hand, whenr C /r A.0.5, the interionic
distances produce Madelung energies favoring rocksalt st
tures.
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ed
y



m.

.

. E

v.

,

.

J
,

.

J.

ys.

.

15 360 56AGUADO, AYUELA, LÓPEZ, AND ALONSO
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