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Distributed Saturated Control for a Class of
Semilinear PDE Systems: A SOS Approach
José Luis Pitarch, Mohsen Rakhshan, Mohammad Mehdi Mardani and Mokhtar Shasadeghi

Abstract—This paper presents a systematic approach to deal
with the saturated control of a class of distributed parameter
systems which can be modeled by first-order hyperbolic par-
tial differential equations (PDE). The approach extends (also
improves over) the existing fuzzy Takagi-Sugeno (TS) state
feedback designs for such systems by applying the concepts
of the polynomial sum-of-squares (SOS) techniques. Firstly, a
fuzzy-polynomial model via Taylor series is used to model the
semilinear hyperbolic PDE system. Secondly, the closed-loop
exponential stability of the fuzzy-PDE system is studied through
the Lyapunov theory. This allows to derive a design methodology
in which a more complex fuzzy state-feedback control is designed
in terms of a set of SOS constraints, able to be numerically
computed via semidefinite programming. Finally, the proposed
approach is tested in simulation with the standard example of a
nonisothermal plug-flow reactor (PFR).

Index Terms—Hyperbolic PDE, Fuzzy Polynomial, SOS, Input
Saturation, Distributed-parameter Systems

I. INTRODUCTION

Numerous processes in industry are essentially distributed in
space, i.e., their behavior is determined by three-dimensional
position in addition to time [1]. Fundamental thermodynamics
allows to obtain mathematical models for such processes: after
applying the balance equations (mass, energy and momentum),
the obtained models are usually in PDE form. Furthermore,
industrial processes are inherently complex, leading to semi-
linear, quasilinear or full-nonlinear PDE systems [2].

In general, PDE systems can be classified in three classes
according to the behavior of their characteristic equation:
hyperbolic, parabolic and elliptic [3]. In particular, hyperbolic
PDE systems represent the dynamics of some industrial pro-
cesses which are used in convection with negligible diffusion
effects, such as fluid heat exchangers, tubular reactors, and
fiber spin lines. Because the PDE systems are inherently
infinite-dimensional, the existing approaches for lumped pa-
rameter systems (LPS) are hard to be directly used for control
[4]: due to practical limitations, actual distributed control
systems are implemented with a finite number of actuators
and sensors. Hence, designing such finite-dimensional control
systems with guaranteed performance becomes a challenging
task. In this way, several approaches have been proposed for
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the control synthesis of PDE systems. In general, these meth-
ods fall into two types: “indirect” and “direct” [5]. Indirect
ones employ the infinite-dimensional PDE model to design
the controller, which is then lumped for implementation aim
[1]. Direct approaches apply a spatial discretization (finite
differences, orthogonal collocation or Galerkin) to the PDE
system in order to obtain an approximate model that contains
a set of ordinary differential equations (ODEs) in time [6]. The
subsequent approximate ODE model is then used to design
finite-dimensional controllers.

Stabilization of hyperbolic PDE systems in industry has
been done typically using PIDs and boundary control [7],
[8]. However, as PID designs are normally based on lin-
earized models, finding the right tuning in order to provide
good robustness/performance tradeoffs is a difficult task [9].
Optimization-based approaches have been also presented in
[10], [11] to deal with such issue, where linear quadratic (LQ)
optimal regulators were proposed for a class of hyperbolic
PDE systems via spectral factorization. Nevertheless, these
linear designs do not give a priori theoretical guarantees
of performance and constraint satisfaction in all the desired
region of operation.

Such theoretical guarantees for PDE systems can be ob-
tained via the extension of the Lyapunov’s second method
to infinite dimensional systems. This method requires the
construction of a Lyapunov Functional (LF) [12] but a priori
choices for LF structures are difficult to make. In this way,
several researches have been carried out along the last decade
to overcome this issue: locally guaranteed control of nonlinear
parabolic PDE systems [13] as well as hyperbolic ones [14]
have been proposed via fuzzy TS approaches, using the well-
known systematic sector nonlinearity modeling and semidefi-
nite programming. In particular, since the seminal paper [14]
appeared, the L2-norm stabilization of semilinear first-order
hyperbolic PDE systems using spatial differential/algebraic
LMIs has been extended. Hence, on the basis of the existing
SDLMI technique, [4] addressed the distributed H∞ control
considering input constraints, [15] proposed an output feed-
back based on distributed-fuzzy observers, [16] addressed the
tracking problem with variable-structure controllers ensuring
exponential or practical stability and, recently, the static H∞
output feedback with Markovian actuator faults was presented
in [17]. Furthermore, the quadratic framework was left in [18]
using fuzzy Lyapunov functions.

Moreover, the SOS programming tools [19] developed for
the analysis and control of polynomial ODE systems [20],
[21], [22] are also useful to analyze PDE systems: stability
for some classes of PDE systems is checked via polynomial
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LFs in [23], [12]. However, such results only deal with PDE
systems of pure polynomial nonlinearities. In addition, there
is a common drawback in many of the above referred TS or
polynomial control designs: the actuators’ physical limitations
are sometimes neglected or their treatment leads to very con-
servative controllers, despite considering them is mandatory
for both performance guarantees in practice and adequate
equipment sizing. Therefore, we consider that treating them
appropriately from the design phase is of key importance.

Also recently, TS approaches for ODE systems have been
extended to use polynomial vertex models instead of linear
ones [24]. If the Taylor series approach [25] is used to compute
such fuzzy-polynomial models, they allow to asymptotically
reduce the conservatism in stability analysis when using
shape-independent constraints. Thereupon, SOS tools are also
able to obtain numerical global or local solutions for fuzzy-
polynomial systems [26], [27]. There are, of course, other
model-based control strategies which explicitly consider input
and/or state constraints [28], but they require the execution of
online optimization routines, so they have been intentionally
left out of the paper’s scope.

Focusing on semilinear hyperbolic PDE systems with
Dirichlet boundary condition, the aim of this paper is finding a
distributed nonlinear state-feedback law which gives a control
profile ensuring performance and input-constraint satisfaction
in practice. The proposed synthesis approach combines fuzzy-
polynomial modeling [25], Positivstellensatz [29] and SOS
programming to derive a set of Lyapunov constraints ensuring
exponential stability of the closed-loop system in a local region
of initial conditions. Briefly, the rest of this paper organizes
as follows: Section II recalls some preliminary results; Section
III introduces the fuzzy-polynomial PDE model and gives the
problem statement; the main result on the control synthesis is
given in Section IV; the effectiveness of the approach is tested
in Section V with the typical example of a nonisothermal PFR;
last, Section VI gathers some conclusions and draws possible
future research lines.
Notation: I stands for the identity matrix of suitable dimen-
sions. Unless otherwise stated, ‖·‖ will state the Frobenius
norm. A positive definite symmetric matrix M is denoted by
M � 0 (M � 0 stands for positive semidefinite). A symmetric
matrix P (x) in the spatial variable x is positive definite
(positive semidefinite) in an interval l1 ≤ x ≤ l2 if P (x) � 0
(P (x) � 0) for all x ∈ [l1, l2]. The symbol (∗) is used
to denote the symmetric element in matrix expressions, e.g.,
[M(x)+N(x)+(∗)] ≡ [M(x)+N(x)+MT (x)+NT (x)]. A
SOS polynomial p(y) in variables y is denoted by p(y) ∈ Σy .
Similarly, an n × m SOS polynomial matrix L(y) will be
denoted by L(y) ∈ Σn×my . Projx((x,w)) := x will project
on x coordinate. Finally, H denotes the infinite-dimensional
Hilbert space of N -dimensional square-integrable vector func-
tions defined on an interval [l1, l2], and L1(H) the space of
Lebesgue integrable functions on H.

II. PRELIMINARIES

This section summarizes well-known results which be useful
throughout the paper.

Proposition 1. Assume an invertible matrix P (x). Hence,
P (x)−1P (x) = I . Differentiating both sides with respect to x
yields:

∂P (x)−1

∂x
P (x) + P (x)−1 ∂P (x)

∂x
= 0 (1)

Thus, the following relation holds:

P (x)−1 ∂P (x)

∂x
P (x)−1 = −∂P (x)−1

∂x
(2)

Consider an affine-in-control nonlinear system formed by n
ordinary differential equations

ẏ(t) = f(y(t)) +B(y(t))u(t) (3)

where y(t) ∈ Rn and u(t) ∈ Rm are the state and control
vectors, respectively. Furthermore, f(·) and B(·) may be vec-
tors of Lipschitz continuous nonlinear functions with suitable
dimensions.

Local fuzzy-polynomial modeling: Consider a compact re-
gion of the state space Ω(y(t)) ⊂ Rn. Results in [25] state that
any sufficiently smooth function of one real variable f(y(·)),
such that its Taylor expansion exists, can be equivalently
represented in Ω by a fuzzy model (linear or polynomial)
using sector conditions. This methodology can be also applied
to any function that can be written as an expression tree with
functions of one variable, i.e., addition and multiplication.

Definition 1 ([25]). A local fuzzy-polynomial model to exactly
represent the system (3) in a compact region Ω can be obtained
via Taylor series as

ẏ(t) =
r∑
i=1

µi(z)
(
pi(y(t)) +Bi(y(t))u(t)

)
(4)

where z are known or measurable quantities (states, external
inputs and/or time), pi(y(t)) ∈ Rny and Bi(y(t)) ∈ Rn×my

are the r polynomial consequent models1, being µi(z) their
corresponding nonlinear membership functions which belong
to the (r − 1)-dimensional standard simplex:

Γ = {µ ∈ Rr :
r∑
i=1

µi = 1, µi ≥ 0}

Remark 1. The modeling methodology in [25] allows to
select a maximum degree for the polynomial consequent
models. This choice defines a tradeoff between complexity
and conservatism: the higher the degree is chosen, the closer
the models are to the original nonlinear system but, the more
computational resources will be required too. Indeed, the
Taylor series of degree one ends up in the well-known TS
or linear-parameter varying (LPV) case. Note also that the
size of the modeling region influences the conservativeness
[30]. Usually the smaller the set Ω is chosen, the closer the
consequent models can be for the same degree. In particular,
if Ω is a small enough neighbourhood of the origin, the
consequent models will tend to the Taylor series.

1Obtained by cutting the Taylor series up to a desired degree and computing
bounds for the Taylor’s reminder in the region Ω. See [25] for further details
and examples.
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Remark 2. The reduction of conservatism by increasing the
degree of polynomial consequent models may be not true for
smooth non-analytic functions, if the Taylor series does not
equal f(y(·)) ∀y(·) ∈ Ω, e.g., the Taylor series of log(1+y(·))
is only a good approximation in the range −1 < y(·) ≤ 1.

Copositive Summation Problem: In closed loop with a
fuzzy state-feedback control law u(t) =

∑r
i=1 µi(z)ki(y(t)),

ki(y(t)) ∈ Rmy , the dynamics of (4) becomes

ẏ(t) =
r∑
i=1

r∑
j=1

µi(z)µj(z)
(
pi(y(t)) +Bi(y(t))kj(y(t))

)
(5)

where double summations on the standard simplex appear.
These double summations must be subsequently translated to
Lyapunov-decrease conditions, for instance, in the form:

Ξ(µ, z, y, t) =
r∑
i=1

r∑
j=1

µi(z)µj(z)Ξij(y(t)) ≤ 0 ∀t ≥ 0

(6)
Widely-known sufficient conditions for (6) are reported in the
literature [31], [32], [33].

To ease further notation, the time t is omitted for the rest of
the section. Hence, notation COPµ[Ξ(y) ≤ 0] will denote any
semialgebraic set Ξ̂ ⊂ {y : Ξ(µ, z, y) ≤ 0 ∀µ ∈ Γ}, obtained
via any shape-independent (replacing µi, µj by arbitrary
scalars in Γ) sufficient relaxation of the copositive problem
(expressed as polynomial inequalities). These relaxations may
range from the naive Ξ̂ = {y : Ξij(y)+Ξji(y) ∈ Σy,∀ i ≤ j},
to the asymptotically exact ones based on the coefficients of
(
∑
i µi)

dΞ ∈ Σµ,y in [32], [34].
SOS programming: The general SOS problem is checking

the non-negativity of a polynomial p(y) in variables y, by
the conservative condition of p(y) being SOS. Such SOS de-
compositions of polynomials can be found using semidefinite
programming (SDP) [19]. The classical LMI framework can be
also extended to polynomial cases by checking if a polynomial
matrix L(y) is positive semi-definite for all y, i.e., L(y) is SOS
if the polynomial vTL(y)v ∈ Σy,v. See [35] for further details.

Consider now a region Ω defined by gi(y), hj(y) polyno-
mial boundaries as follows:

Ω := {y : g1(y) > 0, ..., gng (y) > 0,

h1(y) = 0, ..., hnh(y) = 0} (7)

Local positivity of polynomials in Ω can be checked via
the well-known Positivstellensatz theorem [29]. The following
lemma is reduced version of such theorem (used in later in the
example):

Lemma 1. If polynomials si(y) ∈ Σy and rj(y) ∈ Ry can
be found fulfilling

p(y)− ε(y)−
ng∑
i=1

si(y)gi(y) +

nh∑
j=1

rj(y)hj(y) ∈ Σy (8)

then p(y) is locally greater or equal than ε(y) in Ω.

Based also in Positivstellensatz results, we can set SOS
conditions for a semialgebraic set Z = {zk(y) > 0, k =

1, . . . , kM} to be included in Ω. For instance, the exis-
tence of multipliers (si, sik) ∈ Σy , rij ∈ Ry such that
sigi +

∑nh
j rijhj −

∑kM
k=1 sikzk ∈ Σy , i : 1, . . . , ng . Such

conditions (or any other sufficient SOS relaxation) will be
shorthanded by PS[Z ⊂ Ω]. Conditions in (8) will be a
particular SOS implementation choice of a sufficient con-
dition for Ω ⊂ {y : p(y) − ε(y) ≥ 0}, symbolized by
PS[Ω ⊂ {y : p(y) − ε(y) ≥ 0}]. Also, abusing the notation,
PS[Ω ⊂ {y : L(y) � 0}] will denote any sufficient SOS
condition for Ω ⊂ {y : L(y) � 0} being L(y) ∈ Rl×ly , such
as vT [L(y) −

∑
i si(y)gi(y)I +

∑
j rj(y)hj(y)I]v ∈ Σly,v.

In this way, many analysis and control problems within the
polynomial framework can be handled by combining the SOS
optimization tools with the Positivstellensatz theorem, e.g.,
[21], [22], [12], [36].

III. PROBLEM STATEMENT

We first recall some stability properties for the class of PDE
systems under consideration. Consider the semilinear first-
order hyperbolic PDE systems in one spatial dimension x with
the following state-space description

∂y(x, t)

∂t
= Θ

∂y(x, t)

∂x
+ f(y(x, t), x) +B(y(x, t), x)u(x, t)

(9)
together with the Dirichlet boundary condition and the initial
condition:

y(l1, t) = 0 y(x, 0) = y0(x) (10)

Here y(x, t) = [y1(x, t) . . . yn(x, t)]T ∈ L2([l1, l2];Rn) indi-
cates the state vector, x ∈ [l1, l2] ⊂ R and t ∈ [0,∞) are the
spatial position and time, respectively. Consequently, u(x, t) =
[u1(x, t), . . . , um(x, t)]T ∈ L2([l1, l2];Rm) indicates the con-
trol input vector and f(y, ·), B(y, ·) are matrices of appropriate
dimensions whose entries may be locally Lipschitz continuous
nonlinear functions in the states y. Further, f(0, x) = 0 for all
x ∈ [l1, l2]. The spatially-dependent trajectories of system (9)
starting from y0(x) will be denoted by ψ(t, y0(x)).

Assumption 1. The matrix Θ ∈ Rn×n is diagonal and takes
the form Θ = αI , α ≤ 0.

The model (9) includes the spatially-invariant case f(y),
g(y), which describes many convection-reaction processes that
arise in chemical engineering. Also, (9) is assumed distributed
affine in control because it is a common configuration in
practice, such as applications where the jacket temperature
is chosen as the manipulated variable [1].

Let ω1 and ω2 be two elements ofH. Then the inner product
and the norm in H are defined by:

〈ω1, ω2〉 =

∫ l1

l2

〈ω1(x), ω2(x)〉RN dx

‖ω1‖2 =
√
〈ω1, ω1〉

Where 〈ω1(x), ω2(x)〉RN denotes the inner product in the
Euclidean space RN .

Define χ(·, t) and ũ(·, t) to be continuous state and input
functions on H respectively as χ(·, t) := y(x, t) and ũ(·, t) :=
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u(x, t) for t > 0, x ∈ [l1, l2]. Define the spatial differential
operator A in H and its domain by:

A := Θ
∂

∂x
(11)

D(A) =

{
χ ∈ H, ∂χ

∂x
∈ H, χ(·, 0) = χ0, χ(l1, t) = 0

}
Then (9) can be rewritten as the following differential equation
on the Hilbert space ([14] and references therein)

χ̇(·, t) = Aχ(·, t)+f̃(χ(·, t))+B̃(χ(·, t))ũ(·, t), t ≥ 0, χ(·, 0) = χ0

(12)
being f̃(χ) := f(y, x) and B̃(χ) := B(y, x).

The infinitesimal operator A generates an exponentially
stable C0-semigroup T (t) on H whose induced norm satisfies
||T (t)||2 ≤ σe−$t with σ > 0 and $ > 0. Then, the local
existence of a unique classical solution to (12) can be proven
with ũ(t) ≡ 0. Also, if ũ ∈ L1(0, τ : H) is continuous,
there exist a generalized mild solution for every χ ∈ D(A).
Moreover, if ũ ∈ D(A) and Aũ(t) ∈ L1(0, τ : H), such mild
solution becomes a classical one [37].

Remark 3. Local solutions in time, e.g., finite-escape time, will
be excluded with the Lyapunov-based conditions in Section
IV. From now on, all mention to locality will refer to subsets
of the state space.

Next we introduce the concept of exponential stability used
for the later developments.

Definition 2. The system (9) with u(x, t) ≡ 0 is said
exponentially stable with decay rate ρ > 0, if there exists
κ > 0 such that:

‖ŷ(y(x, t))‖22 ≤ κe−ρt‖ŷ(y0(x))‖22 ∀t ≥ 0 (13)

The term ŷ(y(x, t)) ∈ RN is a column vector whose entries
are monomials in y(x, t) belonging to H. A monomial in y
is a function with form yα1

1 yα2
2 · · · yαnn , where α1, α2, · · · , αn

are nonnegative integers. It is assumed that ŷ(y(x, t)) = 0 iff
y(x, t) = 0.

In the following, notations of time t and spatial variable
x are omitted when no confusion arises, e.g., ŷ(y(x, t)) is
stated as ŷ(y). Now, consider a local region of the state space
Ω, defined by gi(y(x, ·)), hj(y(x, ·)) polynomial boundaries:

Ω := {y(x, ·) ∈ H, x ∈ [l1, l2] : gi(y(x, ·)) > 0,

i : 1, . . . , ng, hj(y(x, ·)) = 0, j : 1, . . . , nh} (14)

Definition 3. The Local Domain of Attraction (LDA) of
system (9) with u(x, t) ≡ 0, referred to region (14) and
denoted by DΩ, is defined as the set of initial conditions
fulfilling:

DΩ :=

{
y0(x) ∈ Ω :

ψ(t, y0(x)) ∈ Ω ∀t ≥ 0
limt→∞ ψ(t, y0(x)) = 0

}
(15)

Fuzzy-polynomial PDE modeling: Using the Taylor series
approach, the semilinear hyperbolic PDE system (9) can be
exactly described in the region (14) by the following fuzzy-
polynomial PDE model

∂y(x, t)

∂t
= Θ

∂y(x, t)

∂x
+

r∑
i=1

µi(z(x, t))
[
Ai(y(x, t), x)

ŷ(y(x, t)) +Bi(y(x, t), x)u(x, t)
]

(16)

where Ai(y(x, t), x) ∈ Rn×N , Bi(y(x, t), x) ∈ Rn×m are
polynomial matrices with suitable dimensions and z(x, t) are
measurable space-time varying quantities. In the following, it

is assumed that µi(z(x, t)) ≥ 0 and
r∑
i=1

µi(z(x, t)) = 1 for all

x ∈ [l1, l2] and t ≥ 0.
Based on the model (16), consider the subsequent fuzzy

state-feedback law with saturation for controlling the nonlinear
PDE system (9)

u(x, t) = sat(ν(x, t)) (17)

ν(x, t) =
r∑
j=1

µj(z(x, t))Kj(y(x, t), x)ŷ(y(x, t))

where the to be computed controller gains Kj(y, x) =
Mj(y, x)P−1(y(x, t), x), Mj(y, x) ∈ Rm×Ny,x , P (y(x, t), x) ∈
RN×Ny,x , are defined in x ∈ [l1, l2]. Note that these controller
gains Kj are neither restricted to be constant nor polynomial,
but may be rational in the state variables. This fact, together
with the nonlinear nature of the membership functions µj ,
gives great freedom to get complex nonlinear controllers.

The control law (17) must fulfill a componentwise saturation
constraint:∣∣∣u[k](x, t)

∣∣∣ ≤ ηk ∀(y, x) ∈ Ω (18)

sat(ν[k](x, t)) := sign(ν[k](x, t)) min
(∣∣∣ν[k](x, t)

∣∣∣ , ηk)
Here ηk ∈ R+ and u[k] denotes the k-th element of the input
vector. Likewise, notation K [k]

j (y, x) will denote the k-th row
of the matrix Kj(y, x).

Now, defining Ψ(ν) := ν − sat(ν), from (16)-(17) the
overall closed-loop system can be written as:

∂y(x, t)

∂t
= Θ

∂y(x, t)

∂x
+

r∑
i=1

r∑
j=1

µi(z(x, t))µj(z(x, t))

Āij ŷ(y(x, t))−Bi(y(x, t), x)Ψ(ν) (19)

Āij = Ai(y(x, t), x) +Bi(y(x, t), x)Kj(y(x, t), x)

Remark 4. If ŷ(y(x, t)) = y(x, t), Ai(y, x) = Ai(x),
Bi(y, x) = Bi(x) and Kj(y, x) = Kj(x), then (19) reduces
to the classical TS/LPV PDE representation used in the related
literature [4], [17].

Hence, the objective of this paper is finding a suitable state
feedback controller (17) fulfilling the bounds (18) such that, in
closed loop with (9), ensures exponential stability with a decay
rate ρ > 0 starting from initial conditions y0(x) ⊂ Ω(y, x).
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IV. DISTRIBUTED CONTROL SYNTHESIS

A Lyapunov-based SOS design is proposed next such that
the closed-loop system (19) is locally exponentially stable
in the sense of definitions 2 and 3. Consider the following
candidate Lyapunov functional

V (t) =

∫ l2

l1

ŷT (y(x, t))P−1(y(x, t), x)ŷ(y(x, t))dx, (20)

where P (y(x, t), x) = PT (y(x, t), x) ∈ RN×Ny,x is a positive-
definite polynomial matrix defined in Ω.

Lemma 2. If for the closed-loop system (19) there exists a
Lyapunov functional (20) and a scalar ρ > 0 satisfying

dV (t)

dt
+ ρV (t) ≤ 0 ∀ t ≥ 0, (y, x) ∈ Ω, (21)

then exponential stability in the sense of Definition 2 is
achieved locally in Ω and there exists c ∈ R+ such that the set
Vc := {y0(x) : ŷT (y0(x))P−1(y0(x), x)ŷ(y0(x)) ≤ c} ⊂ Ω
belongs to the LDA of (19).

Proof. Integrating (21) with respect to t we obtain:

V (t) ≤ V (0)e−ρt

Now, as P−1(y, x) is a spatially-continuous positive matrix
function in Ω, it has bounded minimum and maximum eigen-
values λ(P−1(y, x)) > 0 for (y, x) ∈ Ω. Then, V (t) satisfies

a‖ŷ(y(x, t))‖22 ≤ V (t) ≤ b‖ŷ(y(x, t))‖22 (22)

with a := mini∈{1,...,n}
{

min(y,x)∈Ω{λi(P−1(y, x))}
}

and
b := maxi∈{1,...,n}

{
max(y,x)∈Ω{λi(P−1(y, x))}

}
. Then, us-

ing (22), we can write

a

∫ l2

l1

‖ŷ(y(x, t))‖2dx ≤ V (t) ≤

V (0)e−ρt ≤ e−ρtb
∫ l2

l1

‖ŷ(y0(x))‖2dx

for initial conditions y0(x) ∈ DΩ. So, taking κ = b/a,
it implies that (13) in Definition 2 holds locally in Ω. In
such case, by Lyapunov stability theory, (20)-(21) ensure that
a trajectory ψ(t, y0(x)) which crosses a Lyapunov level set
Vc := {(y, x) : ŷT (y)P−1(y, x)ŷ(y) ≤ c} never can come
out again from it. Thus, each c > 0 such that Vc ⊂ Ω is an
estimate of the LDA for system (19).

Let w ∈ Rm and σ ∈ RN . Then, the set Π is defined by
quadruplets of variables y, x, w, σ as

Π :=

{
(y, x, w, σ) : (y, x) ∈ Ω,

η2
k −

(
M

[k]
j (y, x)σ − w[k]

)2

≥ 0

}
(23)

for all j : 1, . . . , r and k : 1, . . . ,m.

Theorem 1. If there exist polynomial matrices P (y, x),
Mj(y, x), scalars (ρ, η, ε) > 0 and Positivstellensatz multi-
pliers fulfilling:

PS
[
Ω ⊂ {y, x : P (y, x)− εI � 0}

]
(24)

PS
[
Π ⊂ COPµ

[
σT
(

Θ
∂P (y, x)

∂x
+ Ξ(y, x)+

ρP (y, x)
)
σ − 2wTBTi (y, x)σ ≤ 0

]]
(25)

PS
[ {
y, x : P (y, x)− ŷ · ŷT � 0

}
⊂ Projy,x(Π)

]
(26)

PS
[ {
x : P (y0, x)− ŷ(y0) · ŷT (y0) � 0

}
⊂ {x : l2 − x ≥ 0, x− l1 ≥ 0}

]
(27)

Ξ(y, x) =
r∑
i=1

r∑
j=1

µi(y)µj(y) ·
(
T (y)

(
Ai(y, x)P (y, x)+

Bi(y, x)Mj(y, x)
)

+ (∗)−
n∑
k=1

∂P (y, x)

∂y[k]

((
(Ai(y, x)

P (y, x))[k] +B
[k]
i (y, x)Mj(y, x)

)
σ −B[k]

i (y, x)w
))

where T (y) = ∂ŷ(y)
∂y ∈ RN×ny , then the closed-loop sys-

tem (19) is locally exponentially stable with decay rate ρ
in the region (14), with controller (17) fulfilling bounds
(18). The controller gains can be obtained as Kj(y, x) =
Mj(y, x)P−1(y, x).

Proof. Condition (24) ensures V (t) > 0 ∀(y, x) ∈ {Ω/y =
0}, which can be checked by performing the standard change
of variable ŷ = P (y, x)σ in ŷTP−1(y, x)ŷ, leading to search
for a P (y, x) � 0 in Ω. Condition (26) ensures the level set
{(y, x) : ŷTP−1(y, x)ŷ ≤ 1} belongs to the region Π by
applying Schur complement twice:

1− ŷTP−1(y, x)ŷ ≥ 0⇔
(

1 ŷT

ŷ P (y, x)

)
� 0

⇔ P (y, x)− ŷ · ŷT � 0

Hence, undoing the variable changes Mj(y, x) =
Kj(y, x)P (y, x), σ = P−1(y, x)ŷ and w = Ψ(ν) in
(23), (26) is ensuring that the control bound (18) holds in
{(y, x) : ŷTP−1(y, x)ŷ ≤ 1} ⊂ Ω. Following an analogous
development, condition (27) is ensuring the initial conditions
y0(x) belong to the above referred level set. Finally we will
prove that (25) ensures (21) in the region Π, i.e., it ensures
(21) with the bound (18). Recalling the Lyapunov functional
(20) and the closed-loop system (19), the stability condition
(21) yields:

dV (t)

dt
+ ρV (t) =

∫ l2

l1

(
ŷT (y)P−1(y, x)

dŷ(y)

dt
+ (∗)+

ŷT (y)
dP−1(y, x)

dt
ŷ(y)

)
dx+ ρ

∫ l2

l1

ŷT (y)P−1(y, x)ŷ(y)dx =∫ l2

l1

(
(ŷT (y)P−1(y, x)T (y)

(
Θ
∂y

∂x
+

r∑
i=1

r∑
j=1

µi(z)µj(z)

(
Āij ŷ(y)−Bi(y, x)Ψ(ν)

))
+(∗)+ŷT (y)

dP−1(y, x)

dt
ŷ(y)

)
dx

+ ρ

∫ l2

l1

ŷT (y)P−1(y, x)ŷ(y)dx (28)
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As Θ = αI by assumption, we can rewrite the term:

∫ l2

l1

ŷT (y)P−1(y, x)T (y)Θ
∂y

∂x
dx =∫ l2

l1

αŷT (y)P−1(y, x)T (y)
∂y

∂x
dx (29)

Then, integrating (29) by parts with the boundary and initial
conditions (10), and using Proposition 1, we get

∫ l2

l1

αŷT (y)P−1(y, x)
∂ŷ(y)

∂x
dx = αŷT (y(l2, t))P

−1(y, l2)

ŷ(y(l2, t))−
∫ l2

l1

∂

∂x

(
αŷT (y)P−1(y, x)

)
ŷ(y)dx

−
∫ l2

l1

∂

∂x

(
αŷT (y)P−1(y, x)

)
ŷ(y)dx = −

∫ l2

l1

(∂ŷ(y)

∂x

)T
≤

αP−1(y, x)ŷ(y)dx−
∫ l2

l1

ŷT (y)α
dP−1(y, x)

dx
ŷ(y)dx

= −
∫ l2

l1

(∂ŷ(y)

∂x

)T
αP−1(y, x)ŷ(y)dx+∫ l2

l1

ŷT (y)αP−1(y, x)
dP (y, x)

dx
P−1(y, x)ŷ(y)dx (30)

which implies the following inequality:

∫ l2

l1

(
ŷT (y)αP−1(y, x)

∂ŷ(y)

∂x
+ (∗)

)
dx ≤∫ l2

l1

αŷT (y)P−1(y, x)
dP (y, x)

dx
P−1(y, x)ŷ(y)dx (31)

Substitution of (31) into (28) results in the bound:

dV (t)

dt
+ ρV (t) ≤∫ l2

l1

(
ŷT (y)P−1(y, x)T (y)

r∑
i=1

r∑
j=1

µi(z)µj(z)
(
Āij ŷ(y)−

Bi(y, x)Ψ(ν)
))

+(∗)+ŷT (y)
(
αP−1(y, x)

dP (y, x)

dx
P−1(y, x)

+ ρP−1(y, x) +
dP−1(y, x)

dt

)
ŷ(y)

)
dx (32)

Hence, using again Proposition 1 and performing ŷ =
P (y, x)σ in (32), it results in that (21) is satisfied if the
following inequality holds:

σT
( r∑
i=1

r∑
j=1

µi(z)µj(z)T (y)
(
ĀijP (y, x)−Bi(y, x)Ψ(ν)

)
+ (∗) + α

dP (y, x)

dx
+ ρP (y, x)− dP (y, x)

dt

)
σ ≤ 0 (33)

Also, considering dynamics (16), we can write:

α
dP (y, x)

dx
− dP (y, x)

dt
=

n∑
k=1

(
α
∂P (y, x)

∂y[k]

∂y[k]

∂x
+

α
∂P (y, x)

∂x
−∂P (y, x)

∂y[k]

∂y[k]

∂t

)
=

n∑
k=1

(
α
∂P (y, x)

∂x
−∂P (y, x)

∂y[k]

r∑
i=1

r∑
j=1

µi(z)µj(z)
(
Ā

[k]
ij · ŷ(y)−B[k]

i (y, x)Ψ(ν)

)
(34)

Hence, replacing (34) in (33) and changing Kj(y, x) =
Mj(y, x)P−1(y, x), ŷ = P (y, x)σ, Ψ(ν) = w, yields the
SOS-based condition (25).

Remark 5. Note that the spatially-dependent polynomial con-
ditions in Theorem 1 can be directly checked for SOS,
with (y, x, w, σ) independent variables. Thus, the obtained
controller (17) is infinite dimensional, so it must be lumped
for practical implementation using Galerkin [38] or any other
discretization method. Note also that conditions in Theorem
1 are shape independent, so the set of initial conditions
V1 := {y0(x) : ŷ0

TP−1(y0, x)ŷ0 ≤ 1} fulfills ψ(t, y0, µ) ∈ Ω
and limt→∞ ψ(t, y0, µ) = 0 ∀µ ∈ Γ. Therefore V1 ⊂ DΩ and
it is understood as a robust estimate of the LDA [27].

Remark 6. Note that no limit cycles or other attractors than
the considered equilibrium profile can appear in Ω if Theo-
rem 1 renders feasible, because strict positivity of Lyapunov
inequalities is ensured by the ε tolerance.

Conditions in Theorem 1 may be nonconvex2 because of the
products ρP , ∂P

∂y[k]
B

[k]
i Mj and the different Positivstellensatz

multipliers which may multiply either P or Mj . The following
result states a particular finite-dimensional approximation of
Theorem 1, with a suitable selection of Positivstellensatz
multipliers which allow to cast the problem as a convex
one, being thus efficiently solved by SOS programming tools.
Consider a region Ω defined as

Ω :=
{

(y, x) : ŷTU1ŷ ≤ ζ2
1 , ..., ŷ

TUng ŷ ≤ ζ2
ng , x ∈ [l1, l2]

}
(35)

with ζ ∈ R+ and Uj being constant user-defined matrices
with suitable dimensions. Denote by K := [k1, k2, ..., kl] the
subset of indices k such that B[k]

i (y, x) = 0 ∀i, k ∈ K [24].
Assume that the spatial length x ∈ [l1, l2] is gridded in X
equally-distributed points. Then, define ỹ := [yk1 , yk2 , ..., ykl ]
and Ωq := Ω(y, xq) with q ∈ X , xq = l1 + l2−l1

X q, i.e., Ωq is
the cutting hyperplane of Ω in x = xq .

Theorem 2. Given scalars (ρ, η, ε) > 0, if there exist polyno-
mial matrices Pq(ỹ), Mqj(y), Lqj(y), plus Positivstellensatz
multipliers S(y) ∈ ΣN×Ny and ϑ(y) ∈ Rm×my , ϑ being
diagonal, fulfilling:

Pq(ỹ)− εI−
ng∑
z=1

S1qz(y)(ζ2
z − ŷTUz ŷ) ∈ ΣN×Ny q : 0, . . . , X

(36)

2Only in some very particular cases of linear polytopic systems, quadratic
V (y), Theorem 1 reduces to the convex cases in the literature referred in the
introduction.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TFUZZ.2017.2688379

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON FUZZY SYSTEMS 7

σT
( Θ

∆x

(
Pq−1(ỹ)− Pq(ỹ)

)
− Ξqii − ρPq(ỹ)

−
ng∑
z=1

S2qiz(y)(ζ2
z − ŷTUz ŷ)

)
σ + Υqii ∈ Σy,σ,w

q : 1, . . . , X; i : 1, . . . , r (37)

σT
( Θ

∆x

(
Pq−1(ỹ)−Pq(ỹ)

)
− Ξqii
r − 1

−Ξqij + Ξqji
2

−ρPq(ỹ)

−
ng∑
z=1

S2qijz(y)(ζ2
z − ŷTUz ŷ)

)
σ +

Υqii

r − 1
+

Υqij + Υqji

2

∈ Σy,σ,w q : 1, ..., X; i, j : 1, ..., r; i 6= j (38)

ζ2
jU
−1
j − Pq(ỹ)−

ng∑
z=1

S3qjz(y)(ζ2
z − ŷTUz ŷ) ∈ ΣN×Ny

q : 1, ..., X; j : 1, ..., ng (39)[
Pq(ỹ)−

∑ng
z=1 S4qjkz(y)(ζ2

z − ŷTUz ŷ) (∗)
M

[k]
qj (y)− L[k]

qj (y) η2
k

]
∈

Σ(N+1)×(N+1)
y q : 1, . . . , X; j : 1, . . . , r; k : 1, . . . ,m (40)

Pq(ỹ0(xq))− ŷ(y0(xq)) · ŷT (y0(xq)) � 0 q : 1, . . . , X (41)

Ξqij = T (y)
(
Aqi(y)Pq(ỹ) +Bqi(y)Mqj(y)

)
+ (∗)

−
n∑
k=1

∂Pq(ỹ)

∂y[k]
Aqi(y)[k]ŷ

Υqij = 2wTϑqij(y)BTqi(y)σ + wTϑqij(y)w − wTLqj(y)σ

where T (y) = ∂ŷ(y)
∂y ∈ RN×ny and ∆x = l2−l1

X , then
the closed-loop system (19) is locally exponentially stable
with decay rate ρ in the region (14), with controller (17)
fulfilling bounds (18). The controller gains can be obtained
as Kqj(y) = Mqj(y)P−1

q (ỹ).

Proof. Using the finite-differences method [39] for the spa-
tial discretization, conditions in this theorem asymptotically
approach3 those in Theorem 1 for large X , i.e., Kqj(y) and
P−1
q (ỹ) are good approximations to Kj(y, x) and P−1(ỹ, x)

on the interval [xq−∆x/2, xq+∆x/2]. In this way, conditions
(36) ensure (24) and (41) ensure (27).

Conditions (37)-(38) are a particular convex implementation
of (25), spatially discretized using a backward difference for
∂P/∂x [14]. On the one hand, multipliers S2 ensure that the
spatial discretization of (33) holds in each Ωq . On the other
hand, multipliers ϑ together with conditions (40) make (33)
hold also in Π, as follows. We need to ensure the bound (18)
inside each level set {(y, xq) : ŷTP−1

q (ỹ)ŷ ≤ 1}. This, by the
convex-sum property of µj(z) and Lemma 1, is for j : 1, ..., r:

η2
k−(∗)T

(
K

[k]
qj (y)ŷ −Ψ[k](νq)

)
−sqk

(
1− ŷTP−1

q (ỹ)ŷ
)
≥ 0

Now, assume that Ψ(ν) =
∑
j µj(z)Gj(y)ŷ when Ψ(ν) 6=

0, being G(y) ∈ Rm×Ny slack decision variables. Then,

3It is well established [38] that as X increases, the closed-loop system that
results from the PDE model plus an approximate finite-dimensional controller
converges to (19).

choosing sqk = η2
k (classical S-procedure for quadratic

LMIs) and doing the changes of variables ŷ = Pq(ỹ)σ,
Lqj(y) = Gqj(y)Pq(ỹ), the SOS conditions before lead to
σT
(
Pq(ỹ)− η−2

k (∗)T ·
(
M

[k]
qj (y)− L[k]

qj (y)
))

σ, which be-
comes (40) by Schur complement plus multipliers S4

to add local information of Ωq . So, what remains is
checking the Lyapunov condition (21) together with en-
suring Ψ(ν) =

∑
j µj(z)Gj(y)ŷ when Ψ(ν) 6= 0

in . By Lemma 1 this is ensured adding the term
Ψ(νq)

Tϑ−1
q (y)

(
Ψ(νq)−

∑
j µj(z)Gqj(y)ŷ

)
to the spatially-

discretized version of (33). By the convex-sum property and
the changes of variables Ψ(ν) = w, ŷ = Pq(ỹ)σ, the above
can be expressed as

[ σ w ]

[
Λqij(y) (∗)

Bqi(y) + ϑ−1
qij(y)Lqj(y)/2 ϑ−1

qij(y)

] [
σ
w

]
∈ Σy,σ,w (42)

with Λqij(y) being the left-hand side of (37) (or (38) where
corresponds) without the Υ terms. Hence, (42) becomes (37)-
(38) by matrix congruence with [I ϑqij(y)].

Finally, enforcing the Lyapunov level sets {(y, xq) :
ŷTP−1

q (ỹ)ŷ ≤ 1} ⊂ Ωq is required to keep validity of the
fuzzy-polynomial model. This, by similar argumentations to
the ones discussed to obtain (40) and Positivstellensatz, leads
to (39), so (26) holds and the proof is complete.

Remark 7. Constraints (37)-(39) extend the generalized sector
condition for control-input nonlinearity proposed in [40]. This
extension allows all involved matrices being polynomial and
parameter-dependent, which reduces the conservatism.

Corollary 1. Let δ ∈ R+,m be a set of parameters fixed a
priori. If conditions[

Pq(ỹ)−
∑ng
z=1 S5qjkz(y)(ζ2

z − ŷTUz ŷ) (∗)
M

[k]
qj (y) δ2

k/ρ
2

]
∈

Σ(N+1)×(N+1)
y q : 1, . . . , X; j : 1, . . . , r; k : 1, . . . ,m (43)

are added to the ones in Theorem 2, then the control-input
variation with time is bounded by ‖ν̇‖ ≤ ‖δ‖κ+γ, (γ, κ) > 0.

Proof. By Theorem 2, ‖y‖ ≤ κ1e
−ρt ‖y0‖, κ1 > 0. By differ-

entiating both sides with respect to time, one can obtain the
bound ρ ‖y‖ ≤ ‖ẏ‖ ≤ ρκ2 ‖y‖, κ2 > 1. Then, each control-
input derivative ν̇q =

∑
j

(
Kqj(y)T (y)ẏ +

∑
k
∂Kqj(y)

∂y[k]
ẏ[k]ŷ

)
can be bounded by

‖ν̇qj‖ ≤ ‖Kqj(y)T (y)ẏ‖+ γ ≤ ‖Kqj(y)T (y)‖ · ‖ẏ‖+ γ ≤
ρκ2 ‖Kqj(y)T (y)‖ · ‖y‖+ γ ≤ ρκ2κ3 ‖Kqj(y)ŷ‖+ γ (44)

with γ > 0, κ3 ≥ 1 and the fact that ∂Kqj(y)/∂y[k] are
bounded in Ωq . Hence, ensuring δT δ−ρ2(∗)T ·(Kqj(y)ŷ) ≥ 0
when ŷTP−1

q (ỹ)ŷ ≤ 1 allows bounding ‖ν̇‖ ≤ ‖δ‖κ + γ,
κ = κ2κ3. This set inclusion is checked componentwise by
(43) after the usual change of variables, Positivstellensatz and
Schur complement, analogous to the development followed to
obtain (40).
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Remark 8. Note that κ2 is upper bounded by the highest decay
rate achievable by the system at any time and trajectory, κ3 is
bounded thanks to the Cauchy-Schwarz inequality4 and γ is
proportional to the values of gains Kqj and y, bounded too.
Therefore, reducing δ in (43) lowers the gains Kqj , which
themselves limits κ and γ, thus reducing ‖ν̇‖. In this way, δ
can be treated as a design parameter to tune the aggressiveness
of the controller.

Despite conditions (43) do not state a rigorous bound like
the ones to ensure input saturation in Theorem 2, Corollary 1
addresses qualitatively an important limitation in practice: the
actuator’s speed (provided by its own dynamics or external
safety limitations), often forgotten in most of theoretical
LMI/SOS designs.

It is noteworthy to say that Assumption 1 is necessary
to search for full P (y, x) matrices, hence for more general
Lyapunov functionals. However, removing the requirement
of Θ = αI is possible by restricting P (y, x) in Theorem
1 (Pq(ỹ) in Theorem 2) to be diagonal. This conservative
modification allows the treatment of systems with Θ =
diag{α1, α2, ..., αn} ≤ 0. Observe also that if Θ � 0, the
results derived in this paper are also applicable if the boundary
condition (10) is replaced by y(l2, t) = 0.

Note also that, differently from other SDLMI approaches
such as [14] in the TS quadratic case, here there is no need of
fixing a priori an initial P0(ỹ). Indeed, P0 can be also decision
variable, keeping convexity of the whole SOS problem. Fixing
arbitrarily P0 at the beginning may be conservative, decreasing
thus the overall performance, as it influences the shape of the
subsequent Pq(ỹ) to be obtained.

Optimization setups.

Conditions in Theorem 2 and Corollary 1 can be used to
pose some optimization problems such as:

a) Maximizing the guaranteed decay rate: If ρ becomes
decision variable to be maximized, Theorem 2 is not a convex
SOS problem because constraints (37)-(38) are bilinear in ρ
and Pq(ỹ). However, this is a quasiconvex problem so-called
generalized SOS problem [41]. In consequence, the global
optimum can be computed via semidefinite programming by
bisection on ρ, solving a feasibility problem at each step of
the bisection algorithm.

b) Minimizing the controller aggressiveness: Given a
minimum guaranteed decay rate, the smoothest controller
fulfilling it from given initial conditions can be found by
renaming δ2

k = λk, λ new decision variables, and minimizing
J =

∑m
k=1 λk/τ

2
k , where τk is a normalizing factor which

can be taken as, for instance, the corresponding span for the
actuator k.

c) Maximizing the LDA estimate: Constraints (41) can be
replaced by another set inclusion Θi ⊂ {y : ŷTP−1

q (ỹ)ŷ ≤ 1},
being Θi a region of initial conditions around the equilibrium.
In particular, if Θi is a parameterized prefixed-shape set Hλ =
{y : maxi=1,...,M pi(y) ≤ λ} an optimization problem can be
set up maximizing the size parameter λ to obtain the controller

4Useful here when the rows KqjT and y are non-orthogonal, which is the
case for a system to be controlled.

which maximizes the proven domain of attraction fulfilling the
saturation constraints.

V. APPLICATION EXAMPLE

The proposed distributed control design has been tested in
simulation with the nonisothermal PFR in [10]. A PFR is an
ideal flow reactor in which no back mixing occurs while a
chemical reaction of the form A → b̃B takes place, being
b̃ > 0 the stoichiometric coefficient. Thus, the composition of
the reaction mixture changes along the length x of the reactor,
as represented in Figure 1.

Fig. 1: Schema of a nonisothermal plug-flow reactor.

In Figure 1, CA and CB are the reactant and product
concentrations respectively, T denotes the reactor temperature,
Tin/out and CA,in/out are defined as the temperature and
concentration of the inlet/outlet streams respectively, FB is the
partial flow of product B, and L denotes the total length of the
reactor. Under assumptions of perfect radial mixing, constant
density and heat capacity of the reacting liquid, and negligible
diffusive phenomena, a dynamic model of the process can be
derived from material and energy balances in the form:

∂T

∂t
= −v ∂T

∂l
− k0∆H

ρpCp
CA · e−

E
RT +

4h

ρpCpd
(TJ − T ) (45)

∂CA
∂t

= −v ∂CA
∂l
− k0CA · e−

E
RT (46)

∂CB
∂t

= −v ∂CB
∂l

+ b̃ · k0CA · e−
E
RT (47)

where E, R, k0, ∆H , h and d are the activation energy, the
ideal-gas constant, the pre-exponential factor, the enthalpy of
the reaction, the wall heat-transfer coefficient and the reactor
diameter, respectively. t, l denote the independent time and
space variables. The control input is chosen to be the spatially
uniform jacket temperature TJ . For simplicity the considered
reaction is endothermic and a jacket is used to heat the reactor,
so that the system is dissipative and open-loop stable. The
process is subject to the boundary conditions: T (0, t) = Tin,
CA(0, t) = CA,in, CB(0, t) = 0.

A. Nonlinear dimensionless PDE model

From (45)-(47), CB is known if CA and T are known, so
only the two first states will be considered henceforth. Hence,
the following dimensionless states and input are introduced:

χ1 :=
T − Tin
Tin

, χ2 :=
CA,in − CA
CA,in

, φJ :=
TJ − Tin
Tin

(48)

Define also x := l/L. Then an equivalent representation
of (45)-(46) in variables (48) can be obtained, omitted for
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brevity. The reader is referred to [10] for a detailed description.
Note that the dimensionless equilibrium profile (t → ∞) in
one variable can be computed given a prefixed one for other
variable. In this way, setting T (x) = Tin along the reactor in
equilibrium for simplicity, the remaining profiles read:

χ1e(x) = 0, χ2e(x) = 1− e−
β2L
v x, φJe(x) = −β1

b
e−

β2L
v x

with β1 , δβ2, β2 , k0 · e−µ, and

µ ,
E

RTin
, δ ,

(−∆H)CA,in
ρpCpTin

, b ,
4h

ρpCpd
.

Numerical values for the above model parameters, used later
in simulation, are in Table I.

TABLE I: Model parameters for simulation.

Parameters Numerical values
v 0.025 m/s
L 1m
E 11250 cal/mol
k0 106 s−1

4h/ρpCpd 0.2 s−1

CA,in 0.02 mol/L
R 1.986 cal/(mol.K)
Tin 340 K
δ 0.25

Now, let us consider a new input vector u(x, t) = φJ(x, t)−
φJe(x) and the state transformation:

y(x, t) =

[
χ1(x, t)− χ1e(x)
χ2(x, t)− χ2e(x)

]
(49)

Finally, the system (45)-(46) can be rewritten as (9) with:

Θ = − v
L
I, g(x) = [b, 0]T , f(y, x) =

[
β1f0(y, x)− by1,

β2f0(y, x)
]T
, f0(y, x) = (1−χ2e(x))[e

µy1
1+y1 −1]−y2e

µy1
1+y1

B. Fuzzy-polynomial PDE model

The only non-polynomial term appearing in f(y, x) is
ξ(y1) = e

µy1
1+y1 . So, considering a modeling region

Ω = {(y, x) : y2
1 ≤ α2, y2

2 ≤ ι2, x ∈ [0, 1]} (50)

we can exactly represent ξ(y1) in Ω by

ξ(y1) = 122.13y2
1 + 16.661y1 + 1+

η1(y1) sup
Ω
T3(y1) + η2(y1) inf

Ω
T3(y1) (51)

using the Taylor series [25] up to degree 3. Here η1 and η2

are the nonlinear membership functions and T3 is the Taylor’s
remainder of order 3, computed as:

T3(y1) =
ξ(y1)− 122.13y2

1 − 16.661y1 − 1

y3
1

η1(y1) =
T3(y1)− infΩ T3(y1)

supΩ T3(y1)− infΩ T3(y1)
, η2(y1) = 1− η1(y1)

The choice of degree 3 for the vertex models achieves a
good tradeoff between complexity and conservatism, i.e., the
3th-degree vertex models are significantly closer to ξ than
linear (TS) or quadratic ones. Figure 2 shows a comparison

between the sector bounding of ξ in −0.2 ≤ y1 ≤ 0.2 using
3th-degree vertex models computed by Taylor series (Taylor
O3) and linear ones (TS).

Fig. 2: Bounding ξ with polynomial vertex models.

Assuming y1 is measurable, this technique allows to rewrite
the nonlinear PFR model in the fuzzy-polynomial form (16).

C. Simulation results

We decided to compute a finite-dimensional controller (17)
distributed in X = 30 actuation points along the reactor’s
length, able to drive the PFR to the desired equilibrium profiles
starting inside a region (50) defined by5 α = 0.1 and ι = 1.
This choice of modeling region covers the usual operation
range of the plug-flow reactor near the chosen equilibrium.

The following choices have been made for numerical eval-
uation of Theorem 2: ŷ = y, fourth-degree Lyapunov matrices
Pq(y2) and third-degree polynomial matrices Lqi(y),Mqi(y).
The user-defined scalars were set to ρ = 0.016 (decay rate),
$ = 0.1 (saturation), δ = 0.02 (actuator rate) and ε =
0.0001. The initial-condition profiles for simulation are chosen
y1(x, 0) = 0.07 sin(2πxL), y2(x, 0) = 0.5(e−

β2xL
v − 1).

This means an initial reactor temperature fluctuating ±25 K
around the inlet temperature Tin and an initial concentration
of reactant A starting at Ca,in in x = 0 and decreasing
exponentially up to 0.014 mol/L at x = 1 (see Figures 3a,
3b).

Then, the controller computed with the proposed method
has been tested in simulation in closed loop with the nonlinear
model of the plug-flow reactor. The evolution of the reactor
states is depicted in Figure 3. Figure 4 shows the space-time
evolution of the control input, the reactor jacket temperature.
As it can be seen, the actuator saturates at its top and bottom
limits during the first 2-3 seconds approximately, converging
to the equilibrium profiles afterwards in a smooth way.

The discrete approximation of the LDA along the reactor’s
length x is shown in Figure 5. Each level set yTP−1

q (y2)y = 1,
q : 1, . . . , X , depicted on the right-hand side corresponds to a
Lyapunov surface in y(xq) obtained using Theorem 2.

5Note that this choice of Ω strictly should imply U1 = diag(1, 0),
U2 = diag(0, 1) in (35). However this may lead to numerical issues when
computing the inverse, so a small tolerance ε ≈ 0 is used instead of zero in
the main diagonal.
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Fig. 5: Discrete approximation of the estimated LDA along the spatial variable (left) and its contour plots (right).

(a) Reactor temperature.

(b) Reactant concentration.

Fig. 3: Evolution of the reactor states in space and time.

VI. CONCLUSION

In this paper we have proposed a systematic methodology
for controller synthesis with input constraints for a class of
distributed-parameter systems. The approach relies on fuzzy-
polynomial models to exactly represent non-polynomial non-
linearities in a local region, and available SOS-programming
software to check for sufficient conditions to ensure exponen-
tial stability of the closed-loop system.

The approach has been used to compute a suitable nonlinear

Fig. 4: Evolution of the controlled jacket temperature.

state feedback to control a nonisothermal PFR. Numerical
simulations show that the obtained controller is able to drive
the PFR from given initial conditions to the desired equilib-
rium profiles. The saturation limits are reached during the first
seconds but, as expected, the controller gets a smooth response
afterwards.

The computed control profile for the jacket temperature in
simulation could be very useful in practice not only in terms of
improving control but also in terms of process sizing: location
of actuators, required control power, heat-transfer surfaces, etc.

Further research can be directed in several ways: ad-
dressing the problem of partially-unmeasurable states (output
feedback), dealing with disturbances (H∞, practical stability,
etc.), reducing conservativeness (iterative SOS approaches for
solving nonconvex problems) and extending the approach to
other classes of PDE systems.
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