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Resumen del TFM

La tractograf́ıa es el proceso que se emplea para estimar la estructura de las fibras nerviosas del
interior del cerebro in vivo a partir de datos de Resonancia Magnética (MR). Existen varios métodos de
tractograf́ıa, que generalmente se dividen en locales y globales. Los primeros intentan reconstruir cada
fibra por separado, mientras que los segundos intentan reconstruir todas las estructuras neuronales a la
vez, buscando una configuración que mejor se ajusta a los datos proporcionados.

Dichos métodos globales han demostrado ser más precisos y fiables que los métodos de tractograf́ıa
local, para datos sintéticos. Sin embargo hasta la fecha no hay estudios que definan la relación entre los
parámetros de adquisición de la MR y los resultados de tractograf́ıa estocástica o global con datos reales.

Esta tésis de Master pretende mostrar la influencia de ciertos parámetros de adquisición como el factor
de difusión de las secuencias de adquisición, el espaciado entre voxels o el número de gradientes en la
variabilidad de las tractograf́ıas obtenidas.
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Abstract

Tractography is the process used to estimate the structure of the nervous fibers in the interior of the
brain in vivo from magnetic resonance data (MR). There are several methods of tractography, which are
usually divided into local and global. The first attempt to reconstruct each fiber separately, while the
latter try to reconstruct all the neural structures at the same time, looking for a configuration that best
fits the provided data.

Global methods have proven to be more accurate and reliable than local methods for synthetic data.
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However to date there are no studies that define the relationship between MR acquisition parameters and
the results of stochastic or global tractography with real data.

This Master thesis is intended to show the influence of some parameters of acquisition as the factor of
dissemination of sequences of acquisition, the spacing between voxels or the number of gradients in the
variability of the obtained tractographies.
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v



Gonzalo Barrio Arranz

vi



Contents

1 Introduction 1
1.1 Basis of MRI and tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Basis of DTI mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Basis of tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Phases and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of this memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Study plan 5
2.1 Objectives for data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tractography algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Profile extraction from fiber tracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 ROI definition and spatial filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 State of Art 11
3.1 Diffusion Weighted Imaging (DWI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Diffusion Tensor Imaging (DTMRI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Low and high-order diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Spatial model approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Q-space model approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Mixture model approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Tractography: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Deterministic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Probabilistic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Global optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Other tractography algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Limits of neural tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Materials and methods 31
4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Patients and data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Tensor estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Tractography process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Stochastic tractography algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Global tractography parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Software additions to Saturn (Software Application of Tensor Utilities for Research in Neu-
roimaging) 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Additions in the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 New tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Fiber selection tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



Contents Gonzalo Barrio Arranz

5.3.2 Fiber deleting tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.3 Deleting fibers by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.4 Spatial filtering methods based on ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.5 Fiber visitation map creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.6 Random seed tractography tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.7 Profile extractor for fiber tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.8 Superresolution track density imaging method . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Results 43
6.1 Reproducibility studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Reproducibility of the Corpus Callosum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 Reproducibility of the Left Cingulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3 Reproducibility of the Right Cingulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Profile comparison studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.1 In Corpus Callosum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 In Left and Right Cingulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.1 Effects of SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.2 Variance differences between global and streamline tractography . . . . . . . . . . . . . . . 54
6.3.3 Effect of b-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.4 Effect of the number of gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.5 Effects of spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Conclusions 57
7.1 Future lines of investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Publications of this Master thesis 63

B Connectivity data tables 69

C Fiber FA profiles data tables 79

viii



List of Figures

2.1 ROIs defining IOFF spatial filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 ROIs defining Cingulum spatial filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ROIs defining CST spatial filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 ROIs defining CC spatial filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Schematic view of a myelinated axon [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ODF estimation with DSI [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Illustration of the grid sampling and the spherical sampling acquisition protocols [48]. . . . . . . . 14
3.4 Spherical convolution / deconvolution. In a) the convolution between diffusion ODF (dODF) kernel

and the fiber orientation distribution (FOD) produces a smooth dODF. In b) the Funk Radon
transform (FRT) of the simulated HARDI signal produces a soomth dODF; which is transformed
into a sharp fiber ODF by a deconvolution with the ODF kernel of a) [20]. . . . . . . . . . . . . . 16

3.5 Fiber path composed by a track of vectors [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 An example of deterministic tractography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Three track propagation algorithms. From left to right: Runge-Kutta, Euler and Euler with variable

step-size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 An example of probabilistic tractography [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Synthetic data of five equal FA paths. There is a bias that favors shortest, straightest paths [47]. . . 24
3.10 Two line segments (given by midpoints x1, x2 and orientations n1, n2) and the elements for con-

structing their internal energy. The red dotted lines indicate the distances whose sum of square
defines the internal energy [56]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11 ODF estimation for different complex fiber configurations [48]. . . . . . . . . . . . . . . . . . . . . 28

5.1 Additions to the GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Flip DWI loading directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Interactive fiber selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Delete fiber tool panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Interactive fiber deleting tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Delete fibers by distance panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Fiber filter by ROI panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 Example of fiber visitation map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.9 Random seed example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.10 Profile extractor panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.11 Profile map example for two different tractography methods, left -global tract, right -streamline tract. 42
5.12 Superresolution TDI example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Reconstructed fibers with Global tractography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Reconstructed fibers with Streamline tractography. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Normalized fiber count, Corpus Callosum, for global t.(up) and streamline t.(down). . . . . . . . . 46
6.4 Normalized fiber count, Left Cingulum, for global t.(up), streamline t. (middle) and stoch. t.(down). 47
6.5 Normalized fiber count, Right Cingulum, for global t.(up), streamline t. (middle) and stoch. t.(down). 48
6.6 Mean and Standard Deviation of the connectivity for Global, Streamline and Stoch. tract., Corpus

Callosum, Left and Right Cinglum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



List of Figures Gonzalo Barrio Arranz

6.7 Standard Deviation of FA from the fiber profiles separated by patients, Global t., Corpus Callosum. 51
6.8 Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Corpus Callosum. 51
6.9 Standard Deviation of FA from the fiber profiles, Global(up) and Streamline t.(down), Corpus

Callosum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.10 Standard Deviation of FA from the fiber profiles separated by patients, Global t., Left Cingulum. . . 53
6.11 Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Left Cingulum. 53
6.12 Standard Deviation of FA from the fiber profiles separated by patients, Global t., Right Cingulum. . 53
6.13 Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Right Cingulum. 54
6.14 Standard Deviation of FA from the fiber profiles, Global and Streamline t., Left and Right Cingulum. 55

x



Chapter 1

Introduction

1.1 Basis of MRI and tractography

Magnetic Resonance Imaging (MRI) is a medical imaging technique used to visualize the internal structures of
the body in vivo. MR images are extremely rich in information due to the great number of parameters that have
influence on each voxel value. One of its main features is that we can use it to differentiate between tissue types,
and it has been very successfully as a diagnostical tool, but it is not an adequate tool to study the intricacies of
the structure of the nervous tissues.

Diffusion Tensor Imaging (DTI) can solve this limitation [1]. DTI is a MRI method that maps the diffusion
process of the water molecules, providing information about the diffusion of water at each voxel. Molecular
diffusion in tissues is not free, and reflects interactions with many obstacles around it. For example, the neural
axons of white matter in the brain or muscle fibers in the heart have an internal fibrous structure. Water will
then diffuse more rapidly in the direction parallel to the fibers, and more slowly perpendicular to it, therefore
revealing details about tissue architecture, either healthy or diseased.

Some neurological diseases are associated with abnormalities that can be detected an measured with DTI

1.1.1 Basis of DTI mathematical model

Each voxel contains information about the local characteristics of diffusion. Normally, this information is modeled
as a 2nd order tensor, using measurements from at least six different directions.

Modeling diffusion as a tensor has certain mathematical advantages, they are rotationally invariant ( their
values does not change when the coordinate system used to describe them is rotated ); the diffusion tensor is
positive definite, thus all of its eigenvalues are positive. Each eigenvalue represents the magnitude of diffusion in
the direction of the eigenvector associated with that eigenvalue.

The 2nd order tensor can be described as an ellipsoid, whose major and minor axis are formed by the
eigenvectors and associated eigenvalues of the tensor. The eigenvector associated with the largest eigenvalue is
sometimes referred to as the principal diffusion direction.

1.1.2 Basis of tractography

But the tensor and its eigenvalues and eigenvectors are a multidimensional structure and is not useful to visualize
the interior of the brain. A popular technique used to visualize these diffusion tensors is to extract fiber tracts
which summarize the diffusion information across many voxels. This technique is known as tractography.

Several methods exist for performing tractography:

� The most common method is to generate fiber tracks that follow the direction of maximal water diffusion
of the voxels they pass through. This method is known as streamline tractography[22]. Streamline trac-
tography has relatively low computational cost and is very useful for visualization of DTI data. However,
it does not provide information about the uncertainty of the generated tracks, and limits the regions that
streamlining tractography can reach as the majority of streamline tractography algorithms stop at highly
isotropic regions, where the main direction is not well defined.

1
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� Stochastic tractography [38] provides a measure of confidence of the estimated fiber tracks, by performing
tractography under a probabilistic framework. They can generate tracts that momentarily pass through
regions of low anisotropy because they integrate local fiber orientation uncertainty into the uncertainty of
the entire tract.

� Global tractography methods try to reconstruct the fibers simultaneously by finding the configuration that
describes best the measured data. Global tracking promises a better stability with respect to noise and
imaging artifacts.
The fibers are reconstructed from small line segments that get bind together during the optimization phase.
Their orientation and number are adjusted simultaneously to match the data.
The main problem of global methods is a very long computation time, often unacceptable in the clinical
setting.

Together, DTI and tractography can help us to study the structure of the brain and to obtain quantitative
measures of diffusion within its tissues. They work particularly well in defining and characterizing white matter
structures. it exists a growing interest in the last decades in using magnetic resonance diffusion imaging to
provide information on anatomical connectivity in the brain by measuring the diffusion of water in white matter
tracts. Among the measures, the most commonly derived from diffusion data is fractional anisotropy (FA), which
quantifies local tract directionality and integrity.

But while DT-MRI tractography can produce striking images of the brain anatomy, it suffers from a number
of problems:

� Brain tractography lacks of a neuroanatomical white matter ”gold standard”. Currently it does not exist
a definitive validation standard for in vivo images.

� Lack of reliability within the same data-set. For many tractography algorithms, specially for the simple
streamline methods, their estimations are very dependent on seedpoint placement. Also, there can be
differences based on the initialization position. The propagation of fibers through a noisy diffusion tensor
field may result in deviation from the true fiber and therefore may lead to erroneous connection estimates.
The errors in the diffusion tensor and, consequently, the major eigenvector are an unknown function of the
measurement noise, tensor eigenvalues, tensor encoding set, and tensor field geometry. There can be even
computer-dependent bias.

� Problems resolving the crossing or meeting of different fiber bundles

In summary, obtaining reliable data and drawing meaningful and robust inferences from them, with diffusion
MRI, can be challenging. The effects of the acquisition parameters on the quantifying diffusion indexes, have
been profusely studied; some papers such as Wakana et al.[71] have studied the effects of streamline reproducibil-
ity intersubjects and intrasession, and Zhan et al.[73] have studied the effects of some acquisition parameters
onto streamline connectivity but the effects of the acquisition parameters into the reproducibility of different
tractography algorithms have not been properly studied.

1.2 Objectives

One of the ultimate goals for all tractography techniques is to define quantitative and reproducible parameters
for measuring anatomical connectivity. The main objective of this Master’s thesis is to study the reproducibility
of the fiber tracks and the variability created by the acquisition parameters onto the reconstructed fiber tracks
for different tractography methods. To evaluate which of the the major technical factors of DTI that affect image
quality also have effect in the track results; with a special focus on the b-values, the number and orientations of
diffusion-weighted acquisitions, voxel spacing as well as the fiber tracking parameters

1.3 Phases and methods

The following phases are followed for the writing of this Master thesis:

1 Reading literature on the scope of the project; as a contact intake with the properties and essential concepts.

2 Study of existing algorithms currently used in the state-of-the-art tractography.

3 Development of experiments on tractography using those different algorithms and an extensive data set of
brain images.

2
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1.4 Structure of this memory

This report has been structured in seven chapters:

� Chapter 2 establishes the basis of our experiments.

� Chapter 3 discusses the theoretical concepts and general ideas behind MRI and the DT-MRI, and gives
an state of the art of the the mathematical models used to characterize the diffusion and its use along the
main existing tractography methods and algorithms.

� Chapter 4 details the materials and methods used in the experiments, explaining the parameters and
configurations employed.

� Chapter 5 explains the additions created for the Saturn software (Software Application of Tensor Utilities
for Research in Neuroimaging) specifically for this Master thesis.

� Chapter 6 collects the results obtained for the tractography experiments and discuses them.

� Chapter 7 finally details the conclusions of this work and possible future lines of investigation.

Appendix A contains a publication related to Master thesis. Appendix B and C contains tables with data employed
for the experiments.

3
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Chapter 2

Study plan

The objective of this study is to understand how the acquisition parameters of the MR can influence the tractogra-
phy results. In order to accomplish this, we want to compare tractography reconstructions of different parts of the
brain, created with different tractography methods, from several volume data acquired with three combinations
of three different acquisition parameters.

In order to compare the tracks, we plan to check two different factors: The count of correctly extracted tracks
and the mean profiles extracted from the fibers. There are many potential sources of variation in quantitative DTI
parameters. Therefore, is important to be consistent in data acquisition, reconstruction, and processing across
subjects in clinical DTI research.

2.1 Objectives for data processing

One of the major sources of variability of the track estimation, in addition to noise and lack of spatial resolution,
comes from the fact that fiber tracks have to be started from certain user-selected ROIs to identify specific white
matter tracts. This fact can be avoided by seeding every voxel in the entire 3D volume containing the head, and
thereby generating all the white matter streamlines in one computation. Then, we can extract specific tracks by
using manually placed ROIs and spatial designed filters. This process is known as whole brain tractography.

Whole brain tractography as two main advantages over the more simple user-selected ROI points. First is an
automatic process; second, it may find some tracks that are missed by ROI-based seeding; third, the large number
of fibers created can compensate small error estimation that accumulates along each step of the tractography and
finally it can produce a better balance of streamline density along the delineated tract. On the flip side, it has
great requirements of computation time, memory and disk space.

2.1.1 Tractography algorithms

We plan to compare two local tractography algorithms and one global: The streamline tractography proposed by
Mori et al.[22], a bayesian probabilistic algorithm implemented by Friman et al.[38]. and a global reconstruction
algorithm implemented by Reisert et al.[56].

2.1.2 Profile extraction from fiber tracts

Profiles of each fiber are extracted based from their points, limited from a max distance to a preestablished model.
Mean values and standard deviation of the tensor values are computed and stored. Tract based measurements
are more robust and reproducible than voxel-wise measures, in both intrasession and intersession measurements,
according to Farrel et al.[70]

2.1.3 ROI definition and spatial filtering

After the whole brain tractography we will extract specific tracks of interest by using manually placed ROIs and
spatial designed filters. In highly isotropic regions, the main direction is not well defined, and many streamline
algorithms will stop the estimation tracts in that zone. Unfortunately, isotropic voxels occur throughout the
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Figure 2.1: ROIs defining IOFF spatial filter.

brain, even in regions with highly coherent fibers, due to noise, distortions in the DTI data or insufficient spatial
resolution which result in partial volume effects. To avoid highly isotropic regions, our experiments are centered
on highly anisotropic and well known regions of the brain.

For this work, we are interested in four major white matter structures, the Inferior Occipitofrontal Fasciculus
(IOFF), the Corpus Callosum (CC), the Cingulum (Cing) and the Corticospinal tract (CST). These are highly
studied brain zones, with a high number of connections and a very defined main orientation.

Inferior occipito-frontal fasciculus (ioff)

This white matter structure crosses the brain along the Anterior to Posterior axis. Connects the ipsilateral
frontal and occipital lobes; ipsilateral frontal and posterior parietal and temporal lobes; intermingles with uncinate
fasciculus. Its main function is the integration of auditory and visual association cortices with prefrontal cortex.
It is also related with the language learning.

On the RGB viewer, these fibers are easy to identify ( they are marked in green in the fig. refIOFF ) as they
cross the brain from the Anterior to the Posterior part of the brain. Two groups of three ROIs are defined to
filter the the left and right IOFF fibers:

� First, from the Sagittal view on the left hemisphere, we define a small patch over the middle occipital surcus
( a hook shaped curve on the Parietal region ). This is shown on the fig. 2.1.3 (right).

� Then, again from the Sagittal view, define the other two regions, on the Central and the Anterior regions,
as can be seen on the fig. 2.1.3 (center and left).

� Changing to the Coronal view, we search the ROIs that we have defined and complete them. This is shown
on the fig. 2.1.3 ( left, center and right ).

� We repeat these three steps for the other side of the brain.

Cingulum

The cingulum is a circonvolution or gyrus in the medium area of the brain. This structure connects the prefrontal
cortex and other portions of frontal lobe to other posterior structures including temporal lobe and hippocampus.
Its disruption is usually related in Alzheimer’s disease and vascular dementia. The ROIs for the cingulum are
defined from the Sagittal and the Axial view. On the RGB viewer, the Cingulum tracts can be clearly seen near
the medial longitudinal fissure, in blue and green, around the Corpus Callosum in red.
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Figure 2.2: ROIs defining Cingulum spatial filter.

� First, from the Axial view, we define the first region on the just over the Corpus Callosum ( shown on the
fig. 2.1.3 left ).

� The second ROI is defined form the Sagittal view; at the same level of the previous ROI, both at the front
and the back of the Corpus Callosum limits ( seen the fig. 2.1.3 (center) ).

� The third ROI follows the inferior part of the gyrus. The ROI does not follow the same straight direction
of the superior part, but turn outwards to the temporal lobe. This ROI can be seen on the fig. 2.1.3 ( right
).

� Finally, from the Axial view, we must search the previously defined ROIs and complete them.

Corticospinal tract

This region connects the cerebral motor cortex to medulla, then descends into contralateral spinal cord. The
corticospinal tract conducts impulses from the brain to the spinal cord. It contains mostly motor axons. The
corticospinal tract is made up of two separate tracts in the spinal cord: the lateral corticospinal tract and
the anterior corticospinal tract. If injured, induces motor deficiencies and hemiparesis. The corticospinal tract
originates from pyramidal cells in layer V of the cerebral cortex. About half of its fibres arise from the primary
motor cortex. Other contributions come from the supplementary motor area, premotor cortex, somatosensory
cortex, parietal lobe, and cingulate gyrus. The average fiber diameter is in the region of 10 micrometers.

These ROIs are defined from the Axial and Coronal views. The Corticospinal Tract can be seen on the RGB
viewer in blue, from the base of the spinal cord to the blue-green at the somatosensor cortex:

� The first ROI is defined from the Axial view, covering all the base of one side of the medulla( as is shown
on the fig. 2.1.3 left ).

� The second ROI is first defined on the Coronal view; at the same Anterior to Posterior level that the
previous ROI. This new ROI must be situated at the height of the internal capsule. Then, from the Axial
view, we complete the ROI of the fiber tract. An example can be seen on the fig. 2.1.3 (center).

� The third ROI is first defined from the Coronal view at the same A-P level of the previous ROIs, and covers
all the motor area of the cortex. The figure 2.1.3 right shows an example.

� Finally, we repeat these three steps for the other side of the brain.
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Figure 2.3: ROIs defining CST spatial filter.

Figure 2.4: ROIs defining CC spatial filter.
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Corpus Callosum

The Corpus Callosum is the largest fiber bundle in the brain. It connects the neocortical areas between both
cerebral hemispheres; most are mirror image of each other. It is related to interhemispheric sensorimotor function
and auditory connectivity.

The CC is a wide, flat bundle of neural fibers beneath the cortex in the eutherian brain at the longitudinal
fissure. It connects the left and right cerebral hemispheres and facilitates interhemispheric communication. It is
the largest white matter structure in the brain, consisting of 200-250 million contralateral axonal projections.

The ROIs for the Corpus Callosum are defined from the Sagittal and the Axial views. The Corpus Callosum
can be seen on the RGB viewer in red at the level of the interhemispheric fissure, turning to blue up to the
superior and parietal cortex. The protocol used to define the ROIs is this:

� The first ROI is defined from the Sagittal view, at the center of the brain, at the level of the interhemispheric
fissure,. The Corpus Callosum is the big red zone that goes between the brain hemispheres from left to
right ( as is shown on the fig. 2.1.3 left ).

� The second ROI and third ROI are defined form the Axial view; one over the right and one over the left
hemisphere, way up the level of the superior frontal lobe and the paracentral lobe. An example can be seen
on the fig. 2.1.3 (right).
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Chapter 3

State of Art

3.1 Diffusion Weighted Imaging (DWI)

Diffusion Weighted Imaging (DWI) is a non invasive technique of Magnetic Resonance (MR) that provides infor-
mation about the the diffusion of water molecules in the brain. This technique appeared first in the late 1980s
and it is used to study the local characteristics of water molecules inside organic tissues in vivo.

Its physical basis is the assumption that the phase of the electrons of the water molecules inside the biological
tissues respond at intense magnetic fields ( for example, in a typical T1-weighted image water molecules are
excited with a strong homogeneous magnetic field ). In T2-weighted images, contrast is produced by measuring
the loss of synchrony between the water protons. When water is in an environment where it can freely tumble,
relaxation times tends to take longer. Using this data, we can create an image that differentiates between tissue
types due to their relaxation time.

Unfortunately, MRI images do not provide much information about the orientation of the neural tracts within
each voxel; information we could use to determine the connectivity between different regions of gray matter.

These interactions are orientation-dependent, meaning that the diffusion in parts of the brain has directionality.
The influence of several magnetic fields from different orientations is useful for determining structures in the brain
that restrict the flow of water in one direction, such as the myelinated axons of nerve cells. As the Figure 3.1
shows, the myelin cover and the neurofilaments are oriented structures that cause the perpendicular diffusion
coefficient, D(⊥), to be smaller than the parallel diffusion coefficient D(‖). Knowing the main structure and

Figure 3.1: Schematic view of a myelinated axon [13].

connectivity of the brain, and differences between health and pathological tissues can give us a great insight of
the neural diseases and of the brain itself.

3.2 Diffusion Tensor Imaging (DTMRI)

Diffusion Tensor MRI (DTMRI) is a special technique of MRI that can be used to produce neural tract images
with useful structural information. Instead of using a homogeneous magnetic field, varies its intensity linearly
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by a pulsed field gradient. Since precession of the protons is proportional to the magnet strength (b-value), they
move at different rates, resulting in dispersion of the phase and signal loss. Then, another gradient pulse is applied
( with the same direction and opposite magnitude ) to refocus or rephase the spins. Protons that have moved
between pulses due to Brownian diffusion reduce the signal measured by the MRI machine. Therefore each DWI
provides information about the magnitude of diffusion in one particular direction. Using from six to, sometimes,
hundreds of measurements is possible to generate a single resulting calculated image data set [1].

In DTI, each voxel is defined by its rate of diffusion and its preferred direction of diffusion. These properties
are described by a 3× 3 symmetric tensor with six uniques coefficients.

The properties of each voxel of a single DTI image is usually calculated by vector or tensor math from six or
more different diffusion weighted acquisitions, each obtained with a different orientation of the diffusion sensitizing
gradients.

Under noise-free conditions, the diffusion tensor is related to the DWI intensity by this equation:

Si = S0e
−bigT

i Dgi (3.1)

where D is the diffusion tensor, Si is the DWI intensity, S0 is the baseline intensity, gi and bi are the gradi-
ent directions and diffusion weighting factor respectively. The diffusion tensor is positive definite, so all of its
eigenvalues are positive. Each eigenvalue represents the magnitude of diffusion in the direction of the eigenvector
associated with that eigenvalue. The eigenvector associated with the largest eigenvalue is also called the principal
diffusion direction (PDD). Some anisotropy coefficients that can be derived from the tensor information, such as
Fractional Anisotropy (FA) and others, can be used in clinical studies [3].

The single diffusion constant is the simplest model that we can use to characterize water diffusion, assuming
that the system has isotropic structures. Its main advantage (simplicity, as it only needs six parameters to be
estimated) can also be its main weakness. The tensor model may oversimplify the underlying anatomy,so it is
important to interpret results derived from the tensor model with care. For these reasons, there is an increasing
interest in high order models that can capture and display the DWI information.

Ultimately, clinical researchers are often interested in the global neural fiber bundles. These span through
multiple voxels, limiting the usefulness of localized studies. The directional information can be exploited at a
higher level of structure by following neural tracts through the brain. This process is called tractography.

Most of the current techniques in DWI tractography can be divided into two major components: local
modeling of the diffusion propagator at each voxel, and fiber tracking algorithms integrating this local
information into streamlines representing fiber tracts. Advanced tractography algorithms and high-order models
are key concepts in the study of neural structures and its connectivity; and both are highly related to each other.
In the next sections we will describe them in detail.

3.3 Low and high-order diffusion models

The role of the modeling techniques is to reconstruct the diffusion propagator from DWI data; converting the
diffusion weighted signal into a quantity able to characterize the number and orientation of the fiber tracts at
each voxel.

Some methods try to simplify the reconstruction of the diffusion propagator; either on the spatial domain or
on the q-space acquisition domain. The first works under the assumption of Gaussian anisotropic diffusion and is
simpler; the second provides a less parametrized representation of the diffusion propagator. More complex models
use composited acquisitions, like the multiple-tensor model and the ball-and-stick model.

Also, another class of methods directly aims to the reconstruction of the distribution of fiber orientations,
e.g., by spherical deconvolution.

3.3.1 Spatial model approaches

Simple diffusion tensor model

The most commonly used is the diffusion tensor (DT) [1]. It requires as few as six DW images to characterize
each voxel (although usually up to twenty five are taken). First fits a Gaussian model for voxel wise diffusion,
and assumes that only one main direction exists within each voxel. Data is sampled on a 3D Cartesian lattice.
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DT assumes that diffusion model is a mean zero trivariate Gaussian distribution.

p(x) =
`
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D is the diffusion tensor and t the diffusion time.
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DTI is popular due to the simplicity of the model and of the imaging acquisition. Also is compatible with clinical
conditions. However, it can only characterize one fiber compartment per voxel; this simplification is not always a
good representation of fiber orientation and can lead to difficult interpretations in complex regions.

Several alternatives have been proposed to overcome the DT limitation, most of them are based on high
angular resolution diffusion imaging (HARDI), which uses several tens to a few hundreds of DWI.

3.3.2 Q-space model approaches

Methods based on q-space provide an estimate of the angular dependence of the spin propagator, by exploiting
its Fourier relationship with the DWI signal measured as a function of the q-vector [2]. The estimated spin
propagator corresponds to the probability that a random water molecule will have a particular displacement over
the diffusion time. In these models the fiber orientation are taken from the spin propagator by identifying the
directions along which the probability of displacement is highest.

A common criticism of the q-space methods is the violation of the Narrow Pulse Approximation ( the as-
sumption that the spins move an insignificant distance during the gradient pulse itself ). Q-space formalism is
only strictly valid if this condition is true, and for the in vivo cases, this requires DW gradient pulse durations
of 1 ms or less. Unfortunately, on current clinical systems, the required diffusion weighting cannot be obtained
with such short pulse durations due to the limited gradient amplitudes available. However, it has been shown
that with longer DW gradient pulses, the spin displacements obtained reflect the difference between the spin’s
time-averaged positions during each DW gradient pulse. This will cause an underestimation of quantitative mea-
surements of displacement, but importantly will not necessarily affect the estimated orientations, and indeed may
be beneficial[4],[5].

Another criticism of q-space is the fact that the directions with the highest probability of displacement are
relatively broad and overlap significantly. While not necessarily a problem itself, closely aligned fiber orientations
will be blurred together and will thus be identified as a single orientation; this can lead to a bias in the estimated
fiber orientations [6].

Figure 3.2: ODF estimation with DSI [48].

Diffusion Spectrum Imaging (DSI)

DSI is the direct application of q-space in 3D. It reconstructs a discrete representation of p directly from a 3D
Cartesian grid in q-space, from which it is trivial to perform the required 3D Fourier transform. We can compute
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the diffusion orientation density function (ODF) from p as:

ODF (x̂) =

Z inf

0

p(αx̂)dx (3.4)

where x̂ is a unit vector in the direction of x. The reconstruction gives the values of p on a grid of displacement.
Fiber orientations are identified by reducing the 3D spin propagator to its 2D radial projection and finding

the peaks of its ODF. ODF (x̂) is computed numerically by interpolating the grid representations of p:
For a 3D vector ~u with |u| = 1, we define

ODF (u) =

Z
p(ρu)ρ2dρ (3.5)

where ρ = |r|, ρ2dρ is the 3D volume element and the integral is computed as a discrete sum over a range of
voxels in diffusion r-space. The ODF can have multiple pairs of equal and opposite peaks, each pair provides a
distinct fiber orientation estimation. The figure 3.5 shows the procedure: on the left panel, the white spots shows
the points in which we acquire the measurements; the second panel shows p, the Fourier Transform of the signal,
together with the grid displacement vectors at which the FFT provides the value of p. To obtain the ODF we
interpolate the grid of samples of p and integrate along radial lines.

The main disadvantages of DSI are:

� Requires a large amount of data ( the complete Cartesian sampling of q-space), at least one order of
magnitude greater than DT.

� Lengthy acquisition (requires large pulsed field gradients to satisfy the Nyquist condition for diffusion in
nerve tissue).

This measurement scheme is not practical if we are only interested on the angular structure (much of the infor-
mation in the measures contributes only to the radial structure of p ).

Q-Ball Imaging (QBI)

An alternative approach to DSI, based on sampling on a spherical shell (or combination of shells) in diffusion
wavevector space, as seen in figure 3.3.2,. Uses shorter acquisition times and requires less data than DSI. It
approximates the ODF using a spherical tomographic inversion called the Funk-Radon transform (also known as
the spherical Radon transform). The value of the transformation of a spherical function at a point x̂ is the integral

Figure 3.3: Illustration of the grid sampling and the spherical sampling acquisition protocols [48].

of the function over the circle C(x) perpendicular to x̂ at a fixed radius in q-space. Is model-independently and
it can resolve multiple intravoxel fiber orientations without any assumptions on the diffusion process such as
Gaussianity or multi-Gaussianity [11]. Then, at each voxel, directions of maximum diffusion are defined as local
maxima of its ODF. QBI is acquired with low to intermediate q values to ensure adequate Signal to Noise Ratio
(SNR). This introduces some blurring into the ODF. Larger q-values reduce the blurring but at the expense of
SNR and or scan time. Higher spherical harmonic orders have been shown to increase the sensitivity of the q-ball
reconstruction to fiber populations crossing at small angles. However, this comes at the expense of increased error
in measured fiber orientation.
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Persistant Angular Structure (PAS)

In [12], Jansons et al. define, for the HARDI data, a statistic called the (radially) persistent angular structure
(PAS). It is a representation of the relative mobility of particles in each direction. Spins are assumed to diffuse
a fixed distance with an angular distribution given by the PAS. The spherical samples in the q-space of the 3D
Fourier transform can be taken as the probability density function of particle displacements.

It is a computationally intensive method. The non linear optimization and numerical integration make the
PAS much slower than QBI or deconvolution methods, so normally a maximum entropy constraint is defined to
operate on low b-value data and to improve the stability of the results and the velocity of its estimation.

Both QBI and PAS compute functions of the sphere that reflect the angular structure of the particle displace-
ment density. The peaks of these functions provide estimates of fiber orientations.

Diffusion Orientation Transform (DOT)

Like PAS, it gives an estimation of a spin propagator at any given radius. The 3D Fourier transform is made
tractable by assuming a mono exponential radial dependence for the DW signal. ODF is not a radial projection
of the spin propagator, but corresponds to the amplitude of the spin propagator for a chosen displacement R0.
This provides increased separation between various fiber orientations when using larger values of R0.

3.3.3 Mixture model approaches

Mixture models assume that the DW signal for a particular combination of fiber orientations is the weighted sum
of each population’s contribution to the signal.

Estimating the fiber orientations becomes a matter of fitting the model to the given DW data.

This requires two conditions: first, there is a negligible exchange of water molecules between fiber populations
at diffusion time ( according to [13] exchange effects can only become significant if fibers from different bundles
interdigitate at micron scale ) and second, fibers must share at least some of the DWI characteristics, which
makes possible to reduce the complexity of the model and increase the stability of the reconstruction ( this can
go from assuming axial symmetry of diffusion to stating that the diffusion signal is identical for all fiber bundles
). These assumptions may seem excessive, but these parameters have a relative weak effect on anisotropy and the
estimated orientation will not be affected by it.

Mixture models can be improved with constraints: i.e. those based in prior knowledge of the fiber distribu-
tion (like the constraint of non negative volume fractions [9]) or a maximum entropy constraint (that favors a
distribution of fiber orientations with a few well defined peaks [10]).

Multi tensor model

A natural extension of the DT model. Assumes that the DWI signal is created from a mixture of compartments
each described by its own diffusion tensor. The signal S(g) is predicted as the combination of several Gaussian
models:

S(g) = S0

nX
i=1

fie
bgTDig (3.6)

where n is the number of compartments, S0 is the non diffusion-weighted signal, b is the diffusion weighting,
and g is the diffusion-sensitizing gradient. The sum of fi is equal to one. There are particles displacements in n
distinct compartments, between which no exchange of particles occurs. It is assumed that the number of distinct
fiber populations is known. A full n-tensor model has 7n − 1 degrees of freedom, but additional constraints are
imposed in practice. Usually, by assuming equal eigenvalues on all Di, or imposing axial symmetry ( l2 = l3 ).
For practical considerations of noise, most works normally uses a maximum of n = 2 (losing accuracy if it fits a
model with n ≥ 2 ).

A weakness of this strategy stems from the potential failures of the fitting process. Fitting multi-tensor models
requires nonlinear optimization, usually done by descent-type algorithms or local maxima. The QBI approach,
which converts directly the diffusion data into a fiber ODF, overcomes this difficulty.
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Figure 3.4: Spherical convolution / deconvolution. In a) the convolution between diffusion ODF (dODF) kernel
and the fiber orientation distribution (FOD) produces a smooth dODF. In b) the Funk Radon transform (FRT)
of the simulated HARDI signal produces a soomth dODF; which is transformed into a sharp fiber ODF by a
deconvolution with the ODF kernel of a) [20].

Combined Hindered and Restricted Model of Diffusion (CHARMED)

CHARMED is strongly related to multitensor models. It is formed by one extra axonal compartment ( char-
acterized by a single diffusion tensor ) and n intra-axonal compartments ( corresponding to n fiber populations
).

It is characterized by a model of restricted diffusion within cylinders. Requires a more complete 3D q-space
acquisition to discriminate between both models. In CHARMED, the data is acquired from multiple q-values per
DW orientation, and multiple orientations. Also this model requires a large maximum q-value ( accomplished by
increasing echo acquisition time . By contrast, most high-order models employs the HARDI strategy: acquiring a
large number of DW directions with a constant b or q-value. This allows to focus on the angular part of the DW
signal and to select the most appropriate diffusion weighting to maximize contrast to noise per unit of scan-time
[14].

Ball and stick model

This model assumes that all Di have equal eigenvalues ( completely isotropic ) and the remaining “stick” com-
partments are perfectly linear ( the second and third eigenvalues are zero l2 = l3 = 0). For n fiber terms, this
leads to k = n + 1 compartments and 3n + 1 degrees of freedom. We consider the model up to n = 3. Fitting the
ball-and-stick model can theoretically be formulated as a deconvolution problem with a discrete ODF

Spherical Deconvolution model(SD)

A generalization of previous methods: SD assumes a distribution, rather than a discrete number, of fiber popu-
lations. The summation becomes an integral over the distribution so it takes account for an infinite number of
fiber populations. The method assumes that the diffusion signal S(θ, φ) is the convolution of the ODF.

It tries to reconstruct directly the distribution of fiber orientations. This requires an explicit model of the
diffusion properties of a single fiber ( convolution kernel ), and its results are more easily interpretable.By assuming
a particular convolution kernel ( representing the DW signal for single fiber orientation ) the fiber orientation
distribution can be estimated by a constrained spherical deconvolution.

S(θ, φ) =

2πZ
0

πZ
0

ODF (θ′, φ′)R(γ′)sin(θ′)dθ′dφ′ (3.7)
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where γ′ is the angle between directions given by (θ, φ) and (θ′, φ′). Typically, S(θ, φ) and R(γ) are estimated
from the data and modeled in spherical harmonics and rotational harmonics, respectively. This reduces spherical
deconvolution to simple scalar division, and yields ODF (θ, φ).

Some implementations differ in the convolution kernel employed ( some assume a DT model [15], and some
measure it directly from the data [16] ). They also differ in the constraints of the solution (some implementations
introduce a non negativity constraint [16] and others a maximum entropy term [10] ).

SD, like DSI and QBI, can be expressed as linear matrix operations, so their computation times can be kept
very short. Linear spherical deconvolution is extremely fast and does not require pre-specification of an expected
number of fibers. On the other hand, multi-tensor models offer higher accuracy for applications like multi-fiber
streamline tractography.

3.4 Tractography: Basics

In the brain, the white matter consist in axons that form bundles which connect different regions of the brain.
Fiber tractography algorithms take the local diffusion information and integrate them into tracks that aim to
represent the neural fibers tracts. Many prominent tracts are large enough to be delineated by DTI and to
estimate connections between adjacent voxels.

Tractography is the only tool we currently have to visualize white matter neural tracts in vivo and non
invasive, providing us information of the white matter architecture and connections.

The most simplest implementation for performing tractography is the numerical integration between neigh-
boring image voxels that are thought to belong to the same white matter fiber tract. Typically, it starts from a
preassigned voxel called the “seeding voxel”. Integration continues examining the directional consistency between
the principal eigenvectors of the two neighboring voxels and between the fiber direction and the vector connecting
the two voxels. The angle θ between two vectors a and b can be calculated with the inner product:

cos(θ) =
~a~b

|~a~b|
(3.8)

Knowing the angular relationships, tractography continues choosing those with angles smaller than a prespecified
threshold. Then process steps up to the next voxel before reaching a determined stop criteria. An example of
this can be seen in the figure 3.4

Figure 3.5: Fiber path composed by a track of vectors [38].

The definition of the voxel neighborhood can be extended from the simplest case of 3× 3× 3 to, for instance,
5 × 5 × 5. This extension would allow a jump if an underlying voxel contains an erroneously estimated fiber
direction (due to fiber crossing or noise contamination), at the expense of computational complexity. The optimal
choice of the voxel neighborhood definition depends of the spatial resolution and the width of the fiber tracts
under consideration.

3.4.1 Deterministic algorithms

Deterministic algorithms, also called streamline tractography, are based on line propagation techniques to delineate
the white matter pathways. The simplest tractography algorithms: they only follow the most probable direction
at each voxel. They rely on these basic points:
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Figure 3.6: An example of deterministic tractography.
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� Seed point: It is necessary the identification of a suitable starting position to initiate the algorithm. In brain
tractography, the selection of anatomically appropriate regions is critical. Small changes in the starting
position can lead to very different results. Usually this part is manually performed by an operator although
other methods exists like the brute force method ( in which tracking is initiated from all the voxels in
the data in combination with tract editing methods to identify tracts of interest ) or the fMRI method (
peak activation areas of functional MRI data is used as a starting point, allowing for correlational analysis
between structural and functional connectivity ).

� Step size: Distance between successive steps. Most algorithms work with a fixed value, although some use
a variable length. The radius of curvature of the tract is strongly dependent on the step size. A small
step size allows the algorithm to follow more closely the curvature of the tracts, at the expense of a bigger
computational load.

� Track propagation. The algorithms try to estimate the white matter fiber direction based on the DW data
around each point. The algorithm can advance from the starting position along the estimated orientation.
Then, the orientation of the new position is reestimated until a termination criteria is achieved. We will
expand this point later.

� Termination criteria. Most common criteria is a threshold based on a measure of anisotropy ( typically, if
the value of fractional anisotropy at a voxel is below 0.15, the track is terminated ) [17]. There are two
reasons for this. First, in regions with low anisotropy, the major eigenvector of the diffusion tensor will tend
to be poorly estimated and sensitive to noise; and second, anisotropy tends to be high in white matter and
low in gray matter, a sudden drop in anisotropy is likely to coincide with the gray/white matter boundary,
where tracts are generally assumed to start and end.

The second most common criteria is based on the local curvature of the track: if the angle between the
directions of two subsequent steps is above certain threshold ( typically 90 degrees ), the track is stopped.
A sudden change in direction of the track is likely to be caused by data artifacts. This also reduces the
number of tracks that “rebound” or turn around and return to the seeding point.

Other proposed criteria are a measure of the coherence of the fiber orientations within the neighboring
voxels [22], or the use of a binary mask of permitted and forbidden regions.

Another point usually mentioned on tractography is tract edit. Tract editing is a refinement method. Consists
of defining regions through which the tract of interest is known to pass. Tracks that enter these regions are
considered anatomically plausible, and all other tracks are discarded. It is also possible to define regions through
which the tract is known not to pass and discard any tracks that enter these regions. These methods are very
powerful for removing spurious findings, but they require expert anatomical knowledge. While tract editing can
reduce the number of false negatives, it can also reduce the number of true positives. Also, these techniques are
not suited to exploratory studies, where connections may not be known a priori.

Methods of track propagation

Normally it is assumed that the major eigenvector of the diffusion tensor can give a good estimation of the fiber
orientation within each imaging voxel. For deterministic algorithms, track propagation depends on two factors:
the interpolation method used to estimate the tensor values and the propagation algorithm employed.

� Interpolation methods: The simplest method is nearest-neighbor interpolation: at any point, the quantity
of interest ( usually the whole tensor ) used is approximated to that of the nearest voxel value. Most
algorithms use tri-linear interpolation, whereby is calculated as a weighted sum from the 8 voxels nearest
to the point of interest [17]. Other perform tri-linear interpolation on the raw DW signals themselves, and
recompute the major eigenvector based on this data. Another approach is to interpolate the elements of
the diffusion tensor themselves [19, 20, 21].

� Propagation algorithms: These algorithms aim to represent the white matter fiber tracts as 3D space curves,
calculating new steps at each time.

– Fiber Assignment by Continuous Tracking (FACT) algorithm: The most basic propagation algorithm,
each new step is integrated tangent to the main eigenvector direction. Presented by Basser et al. [1],
employs an Euler integration procedure. Euler method is is accurate only to a first-order, so it is
susceptible to large accumulated errors and numerical instabilities. Some algorithms use an adaptative
step size to control the amount of error introduced in each step.
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Figure 3.7: Three track propagation algorithms. From left to right: Runge-Kutta, Euler and Euler with
variable step-size.

More advanced versions employs a fourth order Runge Kutta integrator, for it can achieve better
estimations in highly curved regions minimizing the integration error per step.

Mori et al. [22] developed a more complex variation, which alters the propagation direction at the
voxel boundary interfaces. It uses variable step sizes, depending upon the length of the trajectory
needed to pass through a voxel.

– Tensor Deflection methods (TEND): An approach, proposed by Weinstein et al. [23] and Lazar et al
[24] to resolve ambiguities in complex regions using the entire diffusion tensor information, instead of
just the major eigenvector direction.

It works with a combination of the direction of the incoming vector and the outcoming vector weighted
by the linearity index of diffusion and some user-defined parameters. For example, if the incoming
vector coincides with one of the tensor eigenvectors, the propagation direction will not be deviated.

TEND is less sensitive to both measurement noise and lower tensor anisotropy than STT. However,
TEND will underestimate the trajectory curvature for curved pathways, as it limits the curvature of
the deflection. This error is cumulative, but can be reduced by using smaller step sizes. Consequently,
with TEND there is a tradeoff between lower error in straight sections and higher errors in curved
sections.

Examples of deterministic algorithms

In [25], Fillard et al. present a comparative study of several deterministic tractography algorithms with different
modeling methods against real phantom data.

� Multitensor methods: Ramirez et al. [26] defines a mixture of single and 2-tensor models (when a tensor
has a much larger importance than the other, the 2-tensor approach is dropped), the next propagation
direction is chosen as the closest to the previous direction among all available candidate directions given
the single or 2-tensor model.
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Malcolm et al. [27] also propose a tractography 2-tensor model. Each step follows the tensor whose PDD
is the closest to the previous direction. However, instead of using least-squares to fit the tensor parameters
directly, it uses an unscented Kalman filter to make an estimation given the results of previous positions
along the fiber. Nevertheless, the tractography algorithm employed is the bottleneck of the method as
errors may accumulate during the reconstruction, which may eventually lead to erroneous pathways.

� Q-Space methods: Sakaie et al. [28] employs a fast PAS calculation with a simple FACT algorithm.
Each next step direction is defined by the local maxima of the ODF (subject to angular and magnitude
thresholding). This method is not appropriate to use in crossing regions. According to [25] high angular
resolution and noise immunity of the persistent angular structure are not sufficient to compensate for
shortcomings of simple streamline tractography in the presence of complex fiber geometries.

� Spherical deconvolution: In [29], Goh et al. present a FOD based method. Tensor values and ODF are
estimated using a probability density constraint and a spatial regularity prior. The constraint enforces
the ODF to be positive, while the spatial prior ensures the resulting field to be spatially smooth, and the
method is consequently robust to noise. Tracking algorithm is a simple first-order integration method, by
detecting ODF maxima with a threshold over the sphere.

Descoteaux et al. [30] method estimates the FOD with a SD and a constrained regularization method. This
is specially noise sensitive; the simple streamline tracking used can be mislead by erroneous FOD maxima,
especially in crossing regions.

The method of Jeurissen et al. [31] also implements the constrained SD to estimate the FOD. Given that
data with low angular contrast and low SNR makes the estimated fiber orientations very susceptible to
noise contamination, the estimation method applies an adaptive anisotropic Gaussian filter to increase
SNR. Then, the FOD maxima is extracted using a Newton optimization method. Tracking is ended when
FOD peak intensities are beneath a threshold or a maximum angle is exceeded.

With SD, the denoising process seems to overcome the decreased precision of the fiber spatial positions
induced by the diminished resolution; SNR should not always be sacrificed at the profit of spatial resolution

These methods are highly dependent on the accuracy of the ODF estimation. In conclusion, multi tensor
based methods perform better than single tensor methods in crossing regions.

For high SNR datasets, diffusion models such as ODF can correctly model the underlying fiber distribution
and can be used in conjunction with streamline tractography. In high SNR and simple regions, the single-DT
model is still able to correctly characterize numerous fiber bundles. For medium or low SNR datasets, a prior
on the spatial smoothness of either the diffusion model or the fibers is recommended for correct modeling of the
fiber distribution and obtain proper tractography results.

Limitations of deterministic algorithms

There are several issues with most of the previously mentioned tractography algorithms. These problems can be
summed up in a small list:

� Using only the principal eigenvector means that the information of the second and the third eigenvectors
is entirely excluded.

� The directional consistency criteria favors tracks without sharp turning angles. Some tracts are known to
show prominent directional turning, such as the Meyer loop, and can present difficulties to the algorithms.

� Placement of the seed voxels. Small differences in starting point can lead to very different results. To study
the number of tracts passing through certain regions of interest, one can preassign seed voxels manually
and follow the diffusion through it or, alternatively, can place the seed voxels globally within the entire
brain region. The later, also called “brute force approach”, detects all possible tracts within the range at
the expense of huge computation time. Tracts that do not pass through the designated regions of interest
are filtered out.

3.4.2 Probabilistic algorithms

Noise in DW measurements introduces uncertainty in the model estimation, these errors accumulates along the
fiber track and can lead to completely different connections.

Deterministic algorithms don’t provide information about the accuracy of the estimated track. Probabilistic
tractography tries to provide a confidence interval of the reconstructed pathways.

21



Chapter 3. State of Art Gonzalo Barrio Arranz

Figure 3.8: An example of probabilistic tractography [38].

Most probabilistic approaches are derived from deterministic streamlines and therefore share many of their
characteristics and limitations. The main difference lies in the main direction estimation: the direction for the next
step is not unique but chosen from a range of likely orientations; probabilistic algorithms estimates orientation at
random from the local probability density function (PDF).

Starting from a seed point, the track is propagated with each step selected at random. After a large number
of samples, is possible to compute the probability of the dominant streamline.

The ratio between the total number of pathways and the number of pathways that reach a determined voxel
infers how likely is that such pathway could have arisen by chance alone, or how reproducible is the pathway
through the data. Repeating the same process a large number of times introduces uncertainty at each estimation
of the fiber orientation.

It is important to distinct between precision (the reproducibility of the result) and accuracy (difference between
the measured and the true data). Probabilistic tracking results give an indication of the precision of the tracking
but give no indication about its accuracy. An example of probabilistic tractography can be seen in the figure 3.4.2

Characterization of the fiber orientation PDF

A key aspect these algorithms is the characterization of the fiber orientation PDF. Ideally it should provide an
estimate of the fiber orientation and its uncertainty, based on the given data and its noise. There are a great
number of methods, such as:

� Heuristic functions on the DT shape: Parker et al.[32] present a framework that estimates the uncertainty
based on the orientation of the tensor ellipsoid. The direction of the next step is decided by interpolating the
twenty-six nearest neighbours tensor values; each tensor rotated by a frame of reference chosen at random
from a specific shape model. Two models can be used, a 0th order model based on the anisotropy of the
tensor; and a 1st order model, based on the relative magnitudes of the second and third eigenvectors.

� Bootstrap methods: An extremely powerful nonparametric statistical procedure for determining the uncer-
tainty of a given statistic. It works by randomly selecting individual measurements (in this case individual
diffusion-weighted images) from a set of repeated measurements, thus generating many bootstrap samples.
Each bootstrap sample provides a random estimate of a given statistic. By generating a sufficient number
of the bootstrap replicates one obtains a measure of uncertainty or, in some cases, the PDF of the given
statistic.

Some bootstrap methods are variations of the deterministic methods, like Jones et al.[33], which defines a
single pathway ( propagated parallel to the PDD from a seed point ) iterated a large number of times to
produce a maximum visitation count that shows the most highly reproducible trajectory.

Other approaches rely on a priori assumptions about the error distribution. The overall variability in the
trajectory of reconstructed tracts is determined not only by the uncertainty in the vector field (which would
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determine the likelihood of going off track) but also by the characteristics of the surrounding tissue (like
the FA index).

In the wild bootstrap method of Jones et al.[34], and large number of tensor volumes are generated by first
fitting the diffusion tensor using linear least squares and then computing the residuals to the fitted model.
Then, tracks are created with a simple Runge-Kutta algorithm through all the volumes. This data is used
to create a ”cone of uncertainty” at each vertex. This method allows to apply bootstrap methodologies to
data which was not explicitly acquired with multiple repeat data sets. When comparing these estimations
with those obtained from Monte Carlo simulations, no difference is found in the median values. However,
a substantially larger dispersion can be observed.

There are four main approaches to computing bootstrap confidence intervals: normal approximation, per-
centile, bias-corrected percentile, and percentile-t [34].

� Bayesian inference methods: Diffusion tensor model assumes a local 3D Gaussian diffusion profile, so
diffusion goes along only on the dominant direction. Bayesian techniques allows for the application of prior
constraints on parameters in the model where such constraints are sensible.

The output of these algorithms is a set of nodes describing the maximum likelihood pathway through the
DTI data, with no measure of confidence on the location of this pathway.

There are two general approaches to fit a parametrized model to data:

The first is to look for the set of parameters which best fit the data. This is called a point estimate of the
parameters. A special case of this is Maximum Likelihood Estimation (MLE), where we look for the set of
parameters which maximize the probability of seeing this realization of the data given the model and its
parameters.

The second approach is to associate a PDF with the parameters. This distribution is called the posterior
distribution on the parameters given the data.

� Other methods:

Random walk method: Koch et al.[35] propose a Monte-Carlo simulation that determines the probability
of a jump in a particular direction from a given voxel based on the local value of the diffusion tensor
components and the adjacent voxels.

Graph theories approaches: In [35] Iturria et al. present a method for characterizing anatomical connections
between brain gray matter areas. First, voxels are modeled as nodes of a non-directed graph, with the weight
of an arc linking two neighbor nodes is estimated by the intravoxel white matter orientational distribution
function. Secondly, an iterative algorithm is used to solve the most probable path problem between any
two nodes. Third, for assessing anatomical connectivity between K gray matter structures, the previous
graph is redefined as a K + 1 partied graph by partitioning the initial nodes set in K non-overlapped gray
matter subsets and one subset clustering the remaining nodes.

Examples of probabilistic algorithms

Grouped on its basis of characterization of the uncertainty of the fiber orientation:

� Heuristic functions: Tournier et al.[36] propose the Front Evolution Tractography algorithm (FRET), in
which the each new step is expressed in terms of a front emanating from the seed point. A child front is
generated from the parent point, which describes the local evolution of the front. The child front is made
up of the set of points obtained by stepping away from the parent point by step size along the directions
sampled. At each iteration, many child fronts are generated and merged to form the surface of the main
front. For the next iteration, each point on the new surface will be used to generate a child front. ODF
function dictates the evolution of the front and contains all the assumptions made. The likelihood index is
defined by the magnitude of the main eigenvector and a combination of anisotropy indexes.

� Bayesian inference: In [37] Behrens et al. present an online Bayesian method for assessing the most
appropriate number of fiber orientations for the data at each voxel. Automatic relevance determination
(ARD) is a model selection technique that fits data to the model, but ensures that parameters that are
not supported by the data, do not contribute to the likelihood. It is different from other normally used
techniques, that fit different models to the data separately, and compare them on the basis of a metric
reflecting data fit and model complexity. This is achieved by placing a prior distribution on a parameter
in a Bayesian model, which will force that parameter to take the value zero if, and only if, there is no
evidence in the data for its existence. This prior distribution can take a number of forms. However, the
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Figure 3.9: Synthetic data of five equal FA paths. There is a bias that favors shortest, straightest paths [47].

most common of these is a Gaussian distribution with mean zero, but unknown variance. ARD only requires
a single model to be fit to the data (as opposed to fitting every candidate model and comparing).

Friman et al. [38] describe a Bayesian approach for deriving probability density functions of the local fiber
orientation, and an associated theorem that facilitates the estimation of the parameters in this model.
The probability of a fiber going from a to b can be found by summing the probabilities for all paths of
all lengths between these areas, to diminish computation complexity, it is estimated as a Monte Carlo
method. It is assumed that the prior distribution can be factorized ( meaning that prior knowledge about
the nuisance parameters in each point of integration is independent of both the previous step direction and
prior knowledge about the next step direction). Also, is assumed that the diffusion measurements do not
depend on the previous step direction. Modeling and estimation are carried out at two levels: a global level
and a local level. At the global level, estimates the probability that a fiber seeded in a point or area A
reaches and area B; at a local fiber orientation is estimated from the diffusion data, and uncertainty enters
in this process due to image noise and complex fiber architectures.

In [39], Wedeen et al. describe the PDF with DSI.The PDF is estimated from these ODF by projection of
the data in the radial direction. The directions of maximum diffusion are defined as local maxima of the
ODF projection that produces least curvature for the incoming path.

In the method of Berman et al. [40], the orientations of fiber populations within a voxel are defined by
the local maxima of the ODF, subject to angular and magnitude thresholds. Maxima are located with an
iterative gradient ascent routine that identifies peaks.

Limitations of the probabilistic algorithms

They can be summarized in:

� Distance bias: The voxels closer to the seed region are more likely to be reached than farther voxels;
therefore is common to find short, anatomically implausible tracks with higher probability values than
more distant, biologically relevant connections, as figure 3.4.2 shows. Length and shape of the tract alone
influences tracking accuracy and precision and, therefore, will influence any connectivity measure derived
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from probabilistic tractography. Furthermore, if a fiber system branches the total number of reconstructed
streamlines will be divided reducing the connectivity index [14].

� Dependence of the data acquisition protocol: Estimations made with higher quality data ( higher SNR,
larger number of DW directions, etc. ), can lead to more precise and less spread tracking results. This
leads to a greater density of tracks reaching the connected region, and hence to a greater probability of
connection.

� Complex tract configurations: If the tract of interest has a specially complex configuration, (as if branches
to or merges from multiple directions) there will be a reduction of the ratio of fibers that reach its target.
Each destination will be assigned a lower probability value that it corresponds.

3.4.3 Global optimization algorithms

Deterministic and probabilistic tractography algorithms are local methods: they try to construct fibers indepen-
dently path-by-path, instead of reconstructing tracts one by one; each fiber does not have influence on the others.
With global methods, long pathways are estimated in small successive steps by following the local distribution of
fiber directions; the basic principle is analogous to curve fitting. Often the global methods start by performing
modeling, first for a predetermined geometric smoothness of the fiber tracts; then the shortest or the most suitable
path is searched so that a general agreement with the principal eigenvectors can be reached. The balance between
tract smoothness and tensor consistency is balanced iteratively by a predefined energy and penalty variables.
Compared with local methods, global methods are a lot more slow that the deterministic ones but are also more
robust. They can give a more precise estimations and seem to be well-adapted in real, noisy situations, as the
entire neural pathway is the parameter to be optimized.

Examples of global optimization algorithms

In [41], Reisert et al. propose a global tractography method. Each segment of a fiber is a parameter to be
optimized (they try to associate with neighboring segments to form longer chains of low curvature while modeling
the diffusion weighted data at best). Each segment contributes as a single isotropic Gaussian model, which
eventually results in a mixture of Gaussian in each voxel. The behaviour of each segment is controlled by an
interaction between line elements and by an increasing match to the measured data.

Each fiber segment is described by a continuous spatial position x ∈ Re3 and an orientation n ∈ S2 by the
tuple Xi = (xi, ni), and each connection between endpoints is described by E = (Xα1

1 , Xα2
2 ). The parameter

α = −, + defines the direction along the segment.

The aim of the optimization is to maximize the a-posteriori probability, P (M |D) with respect to M ; which is
equivalent to finding the minimum of its total energy, E(M) = Eint(M) + Eext(M, D).

P (M) = e−Eint(M)/T (3.9)

P (M |D) = e−Eext(M,D)/T (3.10)

The internal energy term, Eint, controls the behaviour of line segments, in particular driving them to build long
fibers. Each segment can make connections with both of its endpoints. If two segments are connected, they feel a
certain attraction force such that they stay nearby and keep their orientations similar; they do not attract other
segments. The internal energy is a sum over all connections:

Eint(M) =
X

(X
α1
1 ,X

α2
2 )∈ε

Ucon(Xα1
1 , Xα2

2 ) (3.11)

where ε is the set of all connections, and Ucon(Xα1
1 , Xα2

2 ) is the interaction potential, composed by the squared
distances from the endpoints of the segments to the midpoint of the line connecting both, as seen in figure 3.4.3.

Ucon(Xα1
1 , Xα2

2 ) =
1

l2
(‖|x1 + α1ln1 − x̄‖|2 + ‖|x2 + α2ln2 − x̄‖|2)− L (3.12)

x̄ is the midpoint and the bias L is a connection likeliness. Large L > 0 imply a high likeliness that two segments
link together.
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Figure 3.10: Two line segments (given by midpoints x1, x2 and orientations n1, n2) and the elements for
constructing their internal energy. The red dotted lines indicate the distances whose sum of square defines the
internal energy [56].

The external energy term, Eext, expresses the similarity of the model with respect to the data.

ρM (x, n) = w
X
Xi

ρXi(x, n) (3.13)

where w is the weight with which each segment contributes. The external energy is the L2-norm of the meanless
signal difference:

Eext(M, D) = ‖|ρ
′
M −D

′
‖|

2

L2(R3×S2) (3.14)

The energy Eext forces the model to be close to the measurement in anisotropic areas where the data interpretation
is unambiguous, while the segments in isotropic areas do not affect the energy as long as they are isotropically
distributed.

The method uses a Metropolis-Hastings sampler to draw samples from the posterior distribution.

P (M, D) ∝ P (D|M)P (M) ∝ e−E(M)/T (3.15)

As more low is the temperature T , more like is that the sample from P (M |D) corresponds to minima of E(M).
For an undetermined number of iterations, a segment choose certain state M transitions randomly according to a
proposal distribution pprop. This modification is accepted if the so-called Green’s ratio R is above 1, where R is:

R =
P (M ′|D)pprop(M ′|M)

P (M |D)pprop(M ′|M)
(3.16)

After a certain number of iterations the resulting chain of states follows the desired distribution. There are two
stopping criteria: the ratio of the connections versus the number of segments, and the distribution of fiber length.
Once both have converged to a kind of stable state the iteration is stopped.

The proposal splits into three different types, each with a certain probability: segment creation/deletion
(pbirth,ppdeath), segment moves (pshift,poptimize) and segment connections (pfiber).

The absence of any boundary conditions minimizes the dependence on the operator and keeps the necessary
user interaction low.

The results of this method vary according to certain parameters such as width ρ and orientation sharpness
c. They both control the expected number of fibers of the reconstruction. A small choice for ρ results in a high
number of reconstructed fibers. The segment length l controls the expected curvature of the fibers. Large l imply
low curvature and vice versa. Usually values of 2ρ < l are taken. The connection bias L is the likelihood that two
segments become connected. Large values lead to ’curly’ reconstructions with lots of false positive connections,
while small L result in rather short fibers. The weight w is the parameter which controls the expected number of
segments. For low values, the reconstruction needs more segments to ’explain’ the same signal portion. Reasonable
values of w tend to be within 0.2stdev < w < 0.5stddev of the data, according to Reisert et al. [41].

The interplay of w, ρ and c is the most crucial part for obtaining good results.
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3.4.4 Other tractography algorithms

Fast marching algorithms

The process of passage from one vector to another is modeled similar to the propagation of a water wave from
the seed point: new points are generated from each point of the front, along a connectivity matrix; which is used
to select a subset of pathways of connection.

The speed of the wavefront toward all directions is determined by the colinearity of the principal eigenvectors
in the neighbour voxels, following the direction of the maximum propagation speed. More advanced algorithms
can modify the propagation speed by the magnitude of the eigenvalues or resolve fiber crossing regions.

For example, in Parker et al.[42], the rate at which the front propagates is linked to the information contained
in the main eigenvector field or to its embedded connectivity information ( given by scalar product of the normal
to the front in each position to weight propagation if is pointing towards).

Fiber tracking via fluid mechanics analogy

The information of the diffusion tensor is included by a modeling process based on the Navier Stokes equation,
simulating an artificial fluid flowing through the data volume. The most likely connection paths between pre-
assigned points are estimated by the gradient of the vector flow (a metric derived from the fluid velocity vector
field).

Algorithms with a priori anatomic knowledge: Previous algorithms are based only on directional consistency
or tract smoothness. First applies a global searching procedure to find anatomic connections, which are used to
guide the subsequent fiber tracking process.

This method can improve the tracking accuracy, especially in the region of complex fiber crossing. On the other
hand, normal anatomy cannot be extrapolated to pathological situations, although some studies used anatomic
templates constructed from a specific group of patients to assist tractography. [43].

3.5 Limits of neural tractography

Most of the advancements in this field in the last decade have been in modeling the source of the signal variation in
the presence of complex regions; leading to new modeling techniques, such as DSI, Q-Ball or SD. As tractography
is the only tool currently available to study the connectivity of the brain in vivo, we must ask ourselves how far
can these methods be relied on and what are their limitations to represent tissue connectivity.

These limitations can be summarized as:

� Directional consistency: The main parameter for fiber tracking; all the tracking algorithms use it as the
major constraint. It risks having bias in favor of connecting fibers with similar orientations, highly curved
fibers such as the Meyer loop may be easily missed meanwhile incidental consistency can lead to identify
spurious tracts with no actual anatomic existence. This is also complicated by complex architecture (like
twisting or branching or kissing or crossing zones) or the presence of noise. The estimation of the PDD
shows high accuracy if the diffusion tensors has high FA values ( and are less prone to noise influences ),
but if the first eigenvalue is not much larger than the second eigenvalue, the angular deviation from the
true value could become rather large.

Directional consistency between neighboring voxels (and showing successful tract connection) does not
guarantee fiber integrity, even if directional consistency and fiber integrity are generally believed to be
positively correlated.

� Estimation errors: Maybe the most important limitation of tractography in clinical neuroradiology. All the
fiber tracks are only computational estimations based on tensorial information with presence of noise. The
errors on step estimation, fiber direction and created by noise are all mutually integrated. It is difficult
to isolate their influences independently. These errors accumulate, hence, longer the fiber path, is harder
to reconstruct the path accurately. Also, different computers can have different levels of threshold error;
therefore fiber tracks results may also be computer dependent.

� Data acquisition limitations ( Spatial resolution, SNR, anisotropy misattributions ): Limited resolution can
affect the result of the tractography. According to Kim et al. [44], undersampling of the voxel size affects
widely the distribution of fiber tracks.
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Figure 3.11: ODF estimation for different complex fiber configurations [48].

Usually, there is a exchange between SNR and spatial resolution: increasing spatial resolution results in a
reduced SNR, which may affect the FA estimation (since there is a a systematic overestimation of anisotropy
as noise increases) [45]. Increasing voxel size results in higher SNR and a reduction of the number of fiber
tracts. Meanwhile, areas with low FA can suffer an overestimation, as noise can be interpreted as a random
addition of directionality; FA value does not significantly vary along the fiber path due to differents spatial
resolutions.

Accuracy of fiber directions is positively correlated with SNR. SNR can be increased at expense of scanning
time or spatial resolution. Acquisition with isotropic voxel dimension is preferable for fiber tractography,
though not absolutely necessary.

� Lack of validation: For any estimation method, the false-positive and false-negative rates determine the
extent to which the method can be clinically useful. Unfortunately, DT MRI tractography results are hard
to validate in vivo; hence, false-positive and false-negative rates are both unavailable. Studies with physical
or synthetic phantoms and verification with animal experiments, are the only methods to test effectiveness
of the estimations. Validation studies are mostly focused on limited aspects only and hence should not be
extrapolated to the general situations.

One of the most important ideas that we must remark is that the elements of anatomical connectivity that
are poorly known in the human brain are the ones that are challenging for tractography. The tractography main
limitation comes from the fact that it is based on an estimation based on reduced anatomical information at voxel
level, so often it is difficult to draw any conclusions about the exact cause of error at the cellular level.

The anisotropy is simply a measure of the mean square displacement of water molecules, not a measure of
connectivity, but tractography uses it as a mean to obtain structural information. At each voxel, multiple fiber
bundles with different orientations contribute to the final signal, and microscopic factors in cellular components
may be override by macroscopic factors (for example, crossing fibers within a voxel can lead to isotropic diffusion
properties).

Several factors can modulate the anisotropy measures, including the axon diameter distribution, the axon
density, the myelination of the fibers, how are the individual axons orientated with respect to each other within
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the voxel), and many others. This can lead to paradoxical observations:
Regions with the lowest anisotropy within deep white matter can often contain the largest number of axons:

due to their incoherent orientations, diffusion displacements are no longer preferentially hindered along a single
axis. In contrast, an elevation of anisotropy can be observed in diseases with selective destruction of one particular
fiber orientation.

Another case. When FA is decreased, there can be at least three potential cases: (1) the longest axis of the
diffusion ellipsoid is shortened, (2) the shorter axes are elongated, or (3) both of these happen simultaneously.
Past studies have shown that myelin loss is correlated with an increase in perpendicular diffusivity, whereas
axonal loss is related more to a decrease in the parallel diffusivity [46]. However, there is the possibility that such
correlations are specific to the particular disease model used and may not always hold. For instance, histological
correlation studies do not support the inverse relationship (e.g., axonal loss may lead to a decrease in the parallel
diffusivity, but such a decrease may not necessarily mean axonal loss).

Studying a certain region of the optic nerve, Tuch et al. [49] found a linear correlation between reaction time
and FA: higher the anisotropy, the longer the reaction time. This seems to be against the common idea that FA
measures alone can provide a measure of efficiency of information transfer, but this anomaly can be explained
by the fiber architecture in the vicinity of the region ( where two main fiber populations merge at different
orientations: from the corpus callosum and from the visual system ). If the anisotropy of the visual system fibers
is increased, potentially improving efficiency of information transfer, then the result is a reduction in anisotropy
in the vicinity.

If this is extremely complicated, the effect of disease can confound matters further. This serves as a very strong
argument against the use of voxel-wise measurements of FA to make inferences on connectivity and capacity for
information transfer.

Nowadays, with the available data and algorithms, the only information that is calculated on the tractog-
raphy maps is an estimate of the tangent to the space curve ( either from eigenvector or a peak in some other
reconstruction from HARDI data ) and, for probabilistic tractography, the associated uncertainty. It does not
reflect the the number of axonal connections or the capacity to carry information between two points between
two points. Some of the challenges for the future of tractography as a tool in the study of the brain are:

� Create a publicly available ground truth for validation. It is difficult to objectively choose among the huge
variety of diffusion models, tractography algorithms, and combinations thereof. A number of validation
studies have been performed, but each has its drawbacks.

� Finding the exact termination point of a connection, a crucial matter for assessing side-to-side connectivity,
both in radial and transversal accuracy. Radial accuracy means determining the cortical layers where a
white matter connection ends (which gives information about hierarchical levels of cortical organization
[52]). Transverse accuracy refers to the capacity of detecting where a connection first enters in the cortex
(which provides a framework to understand functional specializations and interactions of the brain[53]);
achieving fine grade transverse accuracy is difficult for two reasons: first because the spatial resolution
limits of DTMRI and second because its measures are inherently noisy. In the practice tractography
algorithms uses heuristic or macrovoxel termination criteria, so their ending points does not necessarily
reflect the end point of a tract.

� Detecting collateral tracts.

� Tracking very dense networks, for example the horizontal intracortical regions.

� Discriminating between afferent and efferent connections.

� Detecting synapses and extract information about axon diameter distribution.

Some of the questions that are of particular interest in neurology, and nowadays cannot be answered by
tractography are: Which cortical region send or receives which connections? Does a bundle of axons spreads
when it reach the cortex? Do long association tracts send or receive adjunct connections? Is a bundle of axons a
continuous long range connection between remote regions or is a succession of short fibers?

Also, it is important to remember that, although the connectivity map can give us a insight of the inner works
of the brain, the orientation of a path (via the tangent to the curve) is insufficient to determine the potential to
carry information of a connection.

In the next chapters we will try to study the effect of the intrinsic parameters of deterministic and probabilistic
tractography in the results and we will explore new methods that can lead to better approximations of the structure
of the brain.
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Chapter 4

Materials and methods

In this section we will describe the details of the data, methods and processes used for our tractography experi-
ments.

4.1 Materials

4.1.1 Patients and data acquisition

For the present study we have selected six healthy male controls, aged between 23 and 31 (mean age 27 years).
All the data sets used in this work have been acquired in a GE Signa 1.5 T MR scanner at the Gregorio Marañon
Hospital in Madrid.

Diffusion weighted MR images were acquired using a multi-shot pseudo-3D double spin-echo echo-planar
imaging (SE-EPI) sequence with two phase encoding directions and four segments per pseudo-slice. Each patient
was scanned nine times with nine different acquisition parameters resulting in a total of one hundred and sixty
two scans.

There is no fixed set of parameters optimal for every application; optimization depends on the MR imaging
hardware configuration, available scanning time, anatomic coverage needed, and specific anatomic structures to
be investigated. The parameters employed are these:

� B-value: Volumes have been acquired with three different b-values: 800,1000 and 1300 s
mm2 . A b-value of

1000s/mm2 has become the standard for clinical DWI.

� Spacing: The Field of View of the data spans for three different voxel size: 2×2×2mm3, 2.5×2.5×2.5mm3

and 3× 3× 3mm3. The matrix sizes varies between 96× 96× 53 and 128× 128× 62 voxels. The table 4.1
shows all the sizes of each data volume.

� Gradient directions: All the scans have been acquired with 61 gradient directions and one baseline volume.
The gradient directions have been specially designed so the tensor volume can be calculated with 61, 40
or just 21 gradient directions. This subsampling technique allows us to measure the effect of the number
of gradients in the tensor calculation error with just one data acquisition. Stronger and faster gradients
enable stronger diffusion-weighting in a shorter period of time as well as reducing the time required to form
an image. This permits DWIs to be acquired at a shorter TE , which improves SNR and reduces warping
artifacts.

The other diffusion acquisition parameters are TR = 8 , TE = 1.6ms.

4.2 Methods

4.2.1 Tensor estimation

Diffusion at each voxel is modeled as a single tensor. More sophisticated and successful diffusion model exists,
but the single tensor model is still one of the simplest and most used.
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r2 r2.5 r3
b800 128 128 66 96 96 53 80 80 44

P1 b1000 128 128 53 96 96 53 80 80 44
b1300 128 128 66 96 96 53 80 80 44
b800 128 128 66 96 96 53 80 80 44

P2 b1000 128 128 53 96 96 53 80 80 44
b1300 128 128 66 96 96 53 80 80 44
b800 128 128 66 128 128 53 128 128 44

P3 b1000 128 128 66 128 128 53 128 128 44
b1300 128 128 66 128 128 53 128 128 44
b800 128 128 66 96 96 53 80 80 44

P4 b1000 128 128 66 96 96 53 80 80 44
b1300 128 128 66 96 96 53 80 80 44
b800 128 128 66 96 96 53 80 80 44

P5 b1000 128 128 66 96 96 53 80 80 44
b1300 128 128 66 96 96 53 80 80 44
b800 128 128 66 96 96 53 80 80 44

P6 b1000 128 128 66 96 96 53 80 80 44
b1300 128 128 66 96 96 53 80 80 44

Tabla 4.1: RAS size for the datasets from the Gregorio Marañon

The tensor at each voxel must be estimated from the DWI channels ( each channel acquired with a different
gradient direction ). But, as the acquired data presents a high level of noise, a filter pass is executed before
the tensor estimation to improve the quality of the data while preserving the structures of the brain. This filter
employs a Linear Minimum Mean Squared Error method (LMMSE). The LMMSE method uses classical linear
functions and prior information about the noise distribution to improve the estimation of the signal. In the case
of DWI data, the noise is known to have a Rician distribution.

The diffusion tensor (DT) models the diffusion profile in a voxel as a 3D Gaussian with three orthogonal
eigenvectors or axis of diffusion (the major, median and minor eigenvector e1,e2 and e3 and their corresponding
eigenvalues l1, l2 and l3). The diffusion tensor models the signal S for a diffusion-weighting direction g =
(gx, gy, gz) with respect to the baseline weighted image S0 as:

S

S0
= e−bgT Dg (4.1)

The software used for tensor estimation of all the data was the DTItool developed by M. Reisert and V.
Kiselev, at the University of Friburg.

4.2.2 Tractography process

Mask computing

Before any computation, the streamline and the global tractography methods require a mask computing step.
The mask defines the points that will be used as seeds points.

First, an FA map is created (although a Trace map could also be used), and from a certain threshold value
the mask is created. The mask isolates the brain tissue from the background and other non brain structures, such
as the skull. This mask can be used to avoid doing computations outside the zones without real value.

Streamline tractography algorithm

The first tractography method used for the study is the Streamline tractography. It is the most simple, uses a
fourth order Runge Kutta numeric integrator to create the fiber tracks, starting from a fixed seed point position,
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as defined by the mask initiator. The line propagation is initiated for each seedpoint, both in the positive and
negative direction of the local primary eigenvector.

The streamline tractography algorithm employed was developed by the LPI in the University of Valladolid.
The parameters used for streamline tractography were:

� Step size: A constant step size of 0.9mm was used for RK4 estimation; the tensor at each integration step
being calculated using trilinear interpolation of the tensor elements in the neighborhood.

� Start FA limit: The FA value used as minimum threshold for using a voxel as a seed point was 0.35.

� Start Trace limit: The Trace value used as minimum threshold for using a voxel as a seed point was 0.02.

� Stop FA limit: The FA value used as maximum threshold for stopping the tractography process was 0.005.

� Stop Trace limit: The Trace value used as maximum threshold for stopping the tractography process was
0.002.

� Maximum angle between steps: 40

� Minimum number of steps fpr saving a fiber: 25.

4.2.3 Stochastic tractography algorithm

For our experiments, we have used the stochastic tractography method implemented by Friman et al. [38] in
Matlab. It does not perform a whole brain tractography and requires a previous step for defining the starting
seed points of the tractography. The ROI definition has been done with the DTITool implemented by Reisert et
al.

The stochastic tractography algorithm employed was developed by O.Friman from the LMI, Brigham and
Women’s Hospital, Harvard Medical School, Boston.

From this selected points the tractography is repeated n iterations; and the resulting fibers and the connectivity
information are stored. The parameters used for stochastic tractography were:

� Step length: 0.9mm.

� Anisotropy stopping criteria: The tracking is terminated if the diffusion anisotropy is too low, as below of
0.05.

� Max β
α+β

: 0.15. Stopping criteria related to the eigenvalues, the main eigenvector and the estimate of the
noise variance obtained from the residuals.

� Number of start positions: 100.

� Number of steps per iterations:120.

� Number of iterations: 1000.

4.2.4 Global tractography parameters

In [56], Reisert et al. suggest two series of parameters: a set of “sparse” parameters and a set of “full” parameters.
The latter have far greater computational and memory requirements. For example, the first set can complete a
whole brain tractography in four hours; the latter requires at least twelve hours. The tractographies used in our
experiments have been generated with a set of “sparse parameters”.

The Global algorithm method can be described as similar in spirit of statistical physics. The reconstruction
is controlled by two energy terms: one of internal energy (Eint) that handles the behavior of line segments and
one of external energy (Eext) that expresses the similarity of the model to the data. Maximizing the probability
is equivalent to finding the minimum of the total energy. The temperature represents the state of agitation of
each particle, how probable is that it could break its connection to form another.

The parameters include the particle shape specifications. The width wi and length l control the maximum
fiber curvature, and it is recomended that l > 2×wi. The weight w is a third parameter that controls the expected
number of segments. For low values of w, the reconstruction needs more segments to “explain” the same signal
portion than for high values. For higher weights, the segments get very sparsely distributed.

The global tractography algorithm employed was developed by M. Reisert and V. Kiselev, at the U.of Friburg.
The parameters used for global tractography were:

� Start temperature: 0.5.
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� Stop temperature: 0.001.

� Number of steps: 50.

� Particle width: 1.5.

� Particle length: 4.5.

� Particle weight: 0.19. The weight is a crucial point in obtaining good results. The algorithm provides a
rough estimate for w, in a more or less automatic way, as the standard deviation of the meanless signal
(around 0.2× std < w = 0.5× s).

� Density penalty: 0.2.

� Probabilities employed: pbirth = 0.25, pdeath = 0.05, pshift = 0.15, popt = 0.1, pfiber = 0.45.

� Number of iterations: 5× 107 iterations.

� Range of allowed fiber length: From 10 to 150 mm.

4.3 Spatial Filtering

The result of the tractography step is usually a big volume of connected fibers. To extract values from this data
is necessary to do a previous spatial filtering step. Tracked fibers were filtered by a combination of maximum
length, main orientation and logic ROI filtering. Each group of fibers was separated by three ROIs working as an
AND filter group.

Regions of interest (ROIs) were drawn as contiguous patches of voxels on coronal and Sagittal slices through
the left and right cingulum bundle, the inferior fronto-occipital fasciculus and the corticospinal tract, according
to the points suggested by Mori et al. [57] and described in the chapter 2. The software employed for the spatial
filtering was the Saturn, developed at the University of Valladolid [64].

All the data has been processed on a Toshiba laptop with four cores i7-740QM, working with an Ubuntu 12.02
OS.
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Chapter 5

Software additions to Saturn (Software
Application of Tensor Utilities for

Research in Neuroimaging)

5.1 Introduction

Saturn (Software Application of Tensor Utilities for Research in Neuroimaging) is a software program developed
at the Laboratory of Image Processing at the University of Valladolid specially designed for visualization and
quantitative analysis of DT images. It includes a complete set of visualization capabilities to browse and analyze
efficiently DTI data, making it a powerful tool for research and diagnostical purposes. Saturn has been presented
in several papers and conferences, such as [58, 62, 63], and has been used in several studies of neurological
diseases. In [61], Saturn was used to compare robustly fiber bundles affected by tumors with healthy fiber tracts
from control subjects and also to quantify the relative state of degeneration between the fiber tracts in the two
hemispheres of the same patient. Also, Saturn had been used in [60], to analyze the fiber structures, like the
corticospinal tract, in brain white matter to characterize different subjects, either patients or controls. This
paper also proposes some measures such as integrity, discontinuity and connectivity of the fiber bundles. For this

Figure 5.1: Additions to the GUI.

project, new additions have been developed for this software, which have been used for the development of this
project. These new methods include improvements in the Graphics User Interface (GUI), new fiber selection and
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3d model editing tools, new spatial filtering methods based on regions of interest, a user tool to create visitation
maps of tridimensional fiber models, and a random seeding method to create tractographies starting from random
positions within a voxel.

These additions have been included in the last version of the SATURN software, available at [64] and are
currently used for future DTI research studies.

5.2 Additions in the GUI

The main panels of GUI in the program have been modified for this work, as can be seen in the fig. 5.1. Buttons
associated with different functions have been rearranged to facilitate its use. For example, in the figure 5.1
different buttons from different panels used for fiber editing have been arranged together.

Another addition of the GUI are the dialog windows. The dialog in the fig. 5.2 appears each time a new DW
dicom image is loaded, and offers the possibility of flip the volume along each one of the three main axes.

Figure 5.2: Flip DWI loading directions.

5.3 New tools

5.3.1 Fiber selection tool

One of the most useful changes added for this work is the fiber selection tool. This tool work as an interaction
method over the 3d viewer window. It can be activated by clicking on a checkbox situated over the viewer, as is
shown in fig. 5.3.1.

When is active, this interaction method blocks the camera over the tridimensional scene. Then, to select a
single fiber or a bunch of fibers on the display, the user just have to click and drag over them. The selected
rectangular area defines six planes between the frustrum of the camera and the infinity. These six planes can be
used to select, extract, highlight, delete or enhace the tridimensional data represented on the scene.

This simple tool is useful, quick and precise and can facilitate in great way the user interaction with the data.
The next section shows an implementation of a tool that uses this interaction method.
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Figure 5.3: Interactive fiber selection.
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5.3.2 Fiber deleting tool

For a selected tridimensional area and a tridimensional model, this function goes through every cell in the model.
If any point of the cell is located within this area the whole cell is discarded. This method used in conjunction with

Figure 5.4: Delete fiber tool panel.

the method described in the previous section can be used to remove spurious fibers from a tractography. It also
can be used with other already implemented deleting tools, for example it can remove only the fibers that have
a certain condition, such as remove fibers longer or shorter than the mean fiber length. Other implementation of
the same filter uses an absolute metric value to delete those fibers over or below a certain length.

Figure 5.5: Interactive fiber deleting tool.
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5.3.3 Deleting fibers by size

This function allows to entirely delete fiber longer or shorter than a given physical distance.

Figure 5.6: Delete fibers by distance panel.

5.3.4 Spatial filtering methods based on ROIs

Removes all the fibers in a tridimensional volume except those that pass through certain regions. These regions
are selected by the user by drawing them over the scalar data volume shown in the active 2D viewer of the
program. It can be used as a logic filter (AND or OR filter), selecting fibers that pass through at least one of
these regions, or at least two or through all the active regions created by the user.

Figure 5.7: Fiber filter by ROI panel.

5.3.5 Fiber visitation map creator

Creates a mask of all the voxels that a fiber model visits and saves the result as a raw volume file. This file can
be used as a ROI mask to create new tractographies or a more precise fiber spatial filtering tool (as explained in
the previous point).
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Figure 5.8: Example of fiber visitation map.

For example, this method was used in this work to filter the models of the inferior occipito-frontal fasciculus
from a whole brain tractography. First, using the maximum length fiber selection tool and the spatial orientation
tool, we could quickly obtain a few fibers that we positively knew were part of this fasciculus.

Then we used these few fibers to create a visitation map, that later was used to separate all the fibers from the
whole brain tractography from all the fibers that passed through this region. The result is a precise approximation
of the fasciculus; a fiber model that later can be used to extract DT measures and make comparisons between
patient groups.

5.3.6 Random seed tractography tool

In the standard Runge-Kutta streamline tractography, each voxel covered by an active ROI mask is used as seed.
This seeds works as strinting points for tractography: from the center of each voxel, starts integrating a line from
the center of the voxel through the tensorial volume, until certain threshold conditions are reached.

With random seed tractography, each voxel is used as starting point for n fibers; not from the center of the
voxel but from random positions within it. The user can select the number n of fibers generated per voxel and
the dispersion from the center (in millimeters). The seed placement was implemented in C + + and follows a
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Figure 5.9: Random seed example.

uniform random probability distribution.
Using random seeds helps to visualize the estimation errors created during the numerical integration caused

by the different staring points.

5.3.7 Profile extractor for fiber tracks

One of the means used to compare different tractography methods are their DT values along certain fibers. This
tool extracts those scalar values, for a previously defined fiber bundle track, and displays them into a bidimensional
color map. First, the fiber tract data is used as basis to create a k-dimensional tree data structure which later

Figure 5.10: Profile extractor panel.

will be used for a nearest-neighbour point search. The user must define a series of points that follow the main
direction of the fiber track; this rough model is used to create a smoother parametric spline model.

The spline is placed over the fiber track, so each point of it can be used to find all the fiber point within a
certain radius, that then are projected over the spline. Different fibers can be in the range of each spline point,
so the values are added by rows (each row correspond to a different fiber).

The whole data is exported to Matlab, where the map shown in fig. 5.3.7 is created. The x-axis represents the
length of the whole track in millimeters, (in this case the cingulum, from the frontal lobe to the hippocampus),
the y-axis represents each one of the fibers tracks calculated. The scalar values are represented by the color, in
this example the FA is represented.

5.3.8 Superresolution track density imaging method

Also, for this project we have implemented the Superresolution Track Density Imaging (TDI) proposed by Cala-
mante et al.[55]. If one major limitation of current methods is the spatial scale, this method uses the fiber count
visitation map created by random seed tractography to reveal structures beyond the resolution of the acquired
imaging voxel. A unique property of these maps is that their spatial resolution and signal-to-noise ratio can be
tailored depending on the chosen image resolution and total number of fiber-tracks generated. An example can
be seen in the figure 5.3.8.
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Figure 5.11: Profile map example for two different tractography methods, left -global tract, right -streamline
tract.

Figure 5.12: Superresolution TDI example.
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Chapter 6

Results

This chapter describes the results of the experiments conducted with different acquisition parameters for three
different tractography methods: streamline, global and stochastic.

In the fig.6 we can see one example of the reconstructed fibers with Global tractography; while in the fig.6 we
can see the results with streamline tractography. The reconstructed tracts are:

� Corpus Callosum, in yellow.

� Left and right Cingulum, in dark red.

� Left and right Corticospinal tract, in green.

� Left and right Inferior Occipito Frontal Fasciculus, in blue.

At first sight, the streamline tractography reconstruction seems more direct and clean while the global trac-
tography seems more disperse and untidy, some of its fibers even follow strange loops. But we must remember
that it doesn’t exist a real validation process for brain tractography.

We have studied two different kind of data: First, the number of successfully reconstructed fibers and second,
the mean and standard deviation of the mean values of FA fiber profiles.

6.1 Reproducibility studies

The number of successfully reconstructed fibers can help us to understand the reproducibility of each tractography
method for each acquisition method.

We understand successfully reconstructed fiber as a fiber that goes through three preselected ROIs (as were
defined onto chapter 4. To illustrate better the connectivity between the three ROIs we present this value as
the normalized scalar R, calculated as the absolute value of the difference between the number of fibers and the
maximum number of fibers of that reconstruction. The value of R ranges from zero to one.

R =

s„
Nmax −Nfibs

Nmax

«2

(6.1)

We have grouped the reproducibility values by brain zones and patients into the figures 6.1, 6.1 and 6.1. The
full tables of connectivity for all zones and patients can be seen in the Appendix B.

6.1.1 Reproducibility of the Corpus Callosum

In global tractography

The figure 6.1 shows the results for Corpus Callosum. For Global tractography, there are usually low values for
higher b-values. For most of the patients, the values seem higher at b = 800 s

mm
2. There also a clear correlation

between the number of gradients and the reproducibility values. For lower number of gradients, more fibers crosses
the three ROIs. The lower R results usually appear for b = 1300 s

mm
2 and spacing of r = 2.5mm. Higher values

of R appear at b = 1000 s
mm

2 and r = 2mm. There are normally high values for all the r = 3mm cases.
The figure6.1.1 shows the mean and standard deviations of all the patients for the different parameters. Higher

b-values get higher variance. The maximum variance appears for b = 1000 s
mm

2 and r = 2mm.
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Figure 6.1: Reconstructed fibers with Global tractography.
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Figure 6.2: Reconstructed fibers with Streamline tractography.
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Figure 6.3: Normalized fiber count, Corpus Callosum, for global t.(up) and streamline t.(down).
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Figure 6.4: Normalized fiber count, Left Cingulum, for global t.(up), streamline t. (middle) and stoch. t.(down).
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Figure 6.5: Normalized fiber count, Right Cingulum, for global t.(up), streamline t. (middle) and stoch.
t.(down).
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Figure 6.6: Mean and Standard Deviation of the connectivity for Global, Streamline and Stoch. tract., Corpus
Callosum, Left and Right Cinglum.

In streamline tractography

For Streamline tractography, also seems to be a correlation between low b-values and high R; and a correlation
between low number of gradients and high R. The values at r = 2.5mm seem worse that those calulated with
Global tractograhy. It is remarkable that Streamline tractography produces a much higher absolute number of
correct ly reconstructed fibers.

The means and standard deviation values of Streamline t. follow the same patterns than the Global t. The
variance of the values at r = 2.5mm is higher than those at r = 3mm and those of r = 2mm. A high number of
gradients also seems to be related with higher variance.

6.1.2 Reproducibility of the Left Cingulum

The figure 6.1 shows the results for the left Cingulum.

In global tractography

Again, the maximum values seem to appear at b = 1000 s
mm

2 and r = 2mm, and the minimum at b = 1300 s
mm

2

and r = 2.5mm. The relation between number of gradients and number of fibers also can be seen here.
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The number of R for b = 800 is usually higher than for b = 1300, but there are exceptions like in patient 5.

This time the maximum variance appears for b = 1300 s
mm

2 and r = 2.5mm and the minimum variance at
b = 1300 s

mm
2 and r = 2mm and at b = 800 s

mm
2 and r = 3mm.

In streamline tractography

For most of the patients, the R values seem to be higher for b-values of b = 1000, slightly lower for b = 800 and
been lowest for b = 1300 s

mm
2. For spacing, the R values seem to be higher for r = 2, slightly lower for r = 3 and

been lowest for r = 2.5mm3.

The maximum values appear at b = 1000 s
mm

2 and r = 2mm and the minimum values at b = 1300 s
mm

2 and
r = 2.5mm, which are also the parameters that get the maximum variation. The minimum variation appear at
b = 1300, r = 2mm and at b = 800 and r = 3mm.

In stochastic tractography

There does not seem to be clear patterns on the values of stochastic tractography, or at least their values are not
consistent with the other two methods. The reproducibility values seem very similar for a few patients and very
variable for others.

The mean values of the patients combined are consistently high, and their standard deviation is low for high
values of b and very high for b = 1000 and r = 3mm.

6.1.3 Reproducibility of the Right Cingulum

The figure 6.1 shows the results for the right Cingulum.

In global tractography

As in the previous zones, the maximum values seem to appear at b = 1000 s
mm

2 and r = 2mm, and the minimum
at b = 1300 s

mm
2 and r = 2.5mm. The number of gradients again have a inverse relation with the reproducibility

value, as like the b− values. The spacing seems to affect the R value, as Rr=2mm > Rr=3mm > Rr=2.5mm, except
for patients six and four.

The standard deviations are higher than those of the left cingulum, but more constant. The maximum variance
appears for b = 1000 s

mm
2 and r = 2mm or r = 3mm and the minimum variance at b = 1300 s

mm
2 and r = 2.5mm.

In streamline tractography

The maximum values are at b = 1000, 1300 s
mm

2 for r = 2mm, and the minimum at b = 1300 s
mm

2 and r =
2.5mm,g = 61. The effect of the number of gradients is still shown. In this case, high b-values seem to gt higher
reproducibility values.

The maximum variance starts for r = 2.5 and b = 800, 1300; meanwhile the minimum appears at b = 1000
and r = 2mm.

In stochastic tractography

Again, it does not seem to be a pattern on the values of stochastic tractography. There is small variance for
spacing values of r = 2, 2.5mm. The maximum variance appears at b = 1000, r = 3mm and g = 21.

6.2 Profile comparison studies

From the filtered fibers we have extracted their mean values of FA, as was explained in the chapter 4. These
fiber profiles contain the mean and standard deviation of FA per each fiber. Here, in the figure 6.2.2 the standard
deviations for all patients and tractography methods are represented.
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Figure 6.7: Standard Deviation of FA from the fiber profiles separated by patients, Global t., Corpus Callosum.
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Figure 6.8: Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Corpus
Callosum.

6.2.1 In Corpus Callosum

For both global and streamline tractography there seems to be profile differences caused by the different spacing
configurations and number of gradients. Lower values of r have higher deviations and viceversa. Also, tractogra-
phies from lower number of gradients g = 21, have higher variability than those of high number of gradients
g = 61.

6.2.2 In Left and Right Cingulum

Our calculations for left cingulum profiles have a lot of null values, so we must be particularly careful in order to
interpret the results. The global tractography profiles seem to suggest that a low number of gradients leads to
higher variability ( like the Corpus Callosum results ) and the same happens with lower b-values.

Global tractography seems to have lower variability than Streamline tractography.
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Figure 6.9: Standard Deviation of FA from the fiber profiles, Global(up) and Streamline t.(down), Corpus
Callosum.

52



Universidad de Valladolid Chapter 6. Results

P1 P2 P3 STD FA, Global tractography, CINGL

 

 

r2+g21 r2+g40 r2+g61 r25+g21 r25+g40 r25+g61 r3+g21 r3+g40 r3+g61

P1, b 800

P1, b 1000

P1, b 1300

P2, b 800

P2, b 1000

P2, b 1300

P3, b 800

P3, b 1000

P3, b 1300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P1 P2 P3 STD FA, Global tractography, CINGL

 

 

r2+g21 r2+g40 r2+g61 r25+g21 r25+g40 r25+g61 r3+g21 r3+g40 r3+g61

P1, b 800

P1, b 1000

P1, b 1300

P2, b 800

P2, b 1000

P2, b 1300

P3, b 800

P3, b 1000

P3, b 1300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.10: Standard Deviation of FA from the fiber profiles separated by patients, Global t., Left Cingulum.
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Figure 6.11: Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Left Cingulum.
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Figure 6.12: Standard Deviation of FA from the fiber profiles separated by patients, Global t., Right Cingulum.
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Figure 6.13: Standard Deviation of FA from the fiber profiles separated by patients, Streamline t., Right
Cingulum.

6.3 Discussion of the results

The effect of the MR acquisition parameters on the reproducibility of the DTI quantitative measures has been
studied by many previous works [74],[75]).

6.3.1 Effects of SNR

The effect of a high and low SNR into DTI measures have been studied in several papers, such as [67], [68]. These
studies reveal that imaging parameters do indeed have an effect on DTI measures. It is supposed that higher
SNR leads to higher track reproducibility[75]).

According to Jones et al.[47] the FA values exhibit an upward bias at low SNR. Insufficient SNR is undesirable
because weak diffusion-weighted signals close to the background noise level bias the estimated diffusion tensor pa-
rameters [66]. Very small signals tend to be overestimated by noise, because MR imaging signals are reconstructed
as the magnitude of complex values and forced to be non-negative. Overestimation of diffusion signals results
in the underestimation of diffusivity and, in anisotropic structures, underestimation of anisotropy (because diffu-
sivities along the directions of fiber bundles are larger and more underestimated)[69]. Highly anisotropic white
matter structures, such as those studied here, can be especially vulnerable to insufficient SNR because the lack
of restriction of water diffusion along the fiber orientation of the white matter tracts leads to strongly attenuated
diffusion-weighted signals.

The overestimation in FA could have effects into the tracking reproducibility, as lower minimum FA thresholds
will produce more and longer streamlines, and more spurious (ie, false-positive) fiber tracks. The variance in the
anisotropy increases as the added noise increases. However, the mean value remains approximately constant in
the white matter, but increases rapidly in the grey matter [47]. This fact can explain the variability that we have
noticed into our profile data. Data acquired with less spatial resolution is more prone to partial volume effect.

Partial volume effects occur when multiple fibers cross within a single voxel resulting in a diffusion distribution
which is affected by both fiber orientations. Under a single tensor model, partial volume effects result in reduced
anisotropy and thus increased uncertainty in the fiber orientation estimate. From our profile data we can see that
higher spatial resolution leads to less variance in the fiber profiles FA value.

6.3.2 Variance differences between global and streamline tractography

In global tractography, the observed signal is modeled by an ensemble of non-collinear segments. For example, a
high sniotropic region, the group of segments inside a voxel fluctuate around one strong mean direction and the
fluctuation leads to a broadening of the predicted signal.
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Figure 6.14: Standard Deviation of FA from the fiber profiles, Global and Streamline t., Left and Right Cingu-
lum.
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This approach makes the model parameters more or less independent of the b-value of the measurement,
because if the width of the measured orientation distribution, for instance, gets smaller ( for high b-values), the
reconstructed fibers just get more aligned to the data.

This could explain the difference of variance in the FA profiles between the global and the streamline methods.

6.3.3 Effect of b-values

Lazar et al.[72] tested a series of experiments with synthetic data and their conclusions were that, in general, the
tract dispersion increased with distance and decreased with SNR and anisotropy.

Higher b-values lead to complete dephasing of water molecules and signal loss for faster-moving extra-axonal
water. Hence higher b-values make the angular diffusion profile sharper and more senstive to the orientation of
the fibers. However, larger b-values also mean larger signal loss and lower SNR. This could explain the variance in
our values of reproducibility between b-values in some of the cases, in which lower b-values lead to more correctly
reconstructed fibers.

6.3.4 Effect of the number of gradients

To estimate the diffusion tensor, usually is needed with high b-values along at least six noncollinear directions in
addition to a low-b DWI image, but for most applications, many more images are usually required. In theory,
sampling more directions reduces the orientational dependence and increases the accuracy and precision of diffusion
tensor parameters.

In other words, measurement errors will not be as dependent on relative orientation of the measured diffusion
tensor compared with the set of diffusion-gradient directions. According to [65] at least 20 unique directions are
necessary for a robust estimation of anisotropy, and at least 30 directions are required for a robust estimation of
tensor orientation (ie, the primary eigenvector) and mean diffusivity.

Variance in derived indexes can be strongly dependent on the orientation of the structure. For example,
according to [65] the lowest variance is found when the fiber is aligned with one of the sampling orientations, and
is largest when the fibre is at the greatest angle to the sampling vectors. The orientational dependence becomes
more marked as the anisotropy increases.

Our data has been collected from equidistant positions so we did not get high variance results with lower
number of gradients; in fact our data suggest that the tracks have higher reproducibility with twenty one gradients
that with sixty one. This seems to be an counter intuitive result.

6.3.5 Effects of spatial resolution

Spacing can affect both the reproducibility of the tracking and the degree of partial volume averaging. Larger
voxels are more likely to contain more than one fiber tract. The presence of multiple intravoxel fiber populations
with different orientations will cause errors in the estimation of fiber direction ( this limitation is inherent to
the diffusion tensor ). The literature recommends using the maximum possible resolution in any case, unless
SNR is not sufficiently high. Jones et al.[76] suggest a SNR value higher than 3 : 1. If higher resolution leads
to lower SNR, this could have had an effect in our experiments but it the values of the variance data tables are
inconclusive.

The effects of spatial resolution and the varying degrees of partial volume averaging of complex fiber archi-
tecture on the performance of these methods could be investigated.
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Chapter 7

Conclusions

Overall, in this thesis we have presented a comparative between tractography methods and acquisition parameters.
The tracking results depend on many factors: the particular tracts of interest, imaging parameters (e.g. SNR,

partial volume effect, patient motion, etc.), tracking algorithms and the choice of ROIs and thresholds. Usually
the precision of a tracking procedure can be given by repeating the measurement N times for a given tract and
reconstruction protocol. After discussing the results of the experiments presented in this Master thesis, we have
to take in account that there are two measures for judging the quality of a tractography:

� Precision, or how reproducible the results are. The reproducibility measurement could be one of the most
important steps to establish the tractography as a useful research and clinical tool. Even if its accuracy
is unknown, if tractography can detect reproducible difference in a specific tract between two groups, this
would be an important information to understand disease status or even mechanism.

� Accuracy, or how real or valid the results are. This is not easy to measure because of the lack of a
gold standard in tractography. As for accuracy of tracking results, we have chosen tracts that are well
documented in previous anatomical studies using anatomical constraints (multiple ROIs) based on a priori
knowledge. The macroscopic configuration of these reconstructed tracts are likely to reflect true fiber
bundles.

We must also highlight that fiber count should not be considered as a measure of connection strength, but of
reproducibility. The uncertainty in fiber orientation depends on the anisotropy. Therefore if we measure the fiber
count through a white matter bundle with higher anisotropy, it will naturally exhibit a higher fiber count that a
bundle with lower anisotropy, even if both have the same topology.

These reconstructed track estimation are the best possible guesses (in absence of any further information),
but any track reconstruction has a big uncertainty attached to them. It is necessary to develop new methods able
to compensate for the many existing differences in the tractography reconstruction procedures, from acquisition
to reconstruction.

7.1 Future lines of investigation

Here we present some outlines for future continuation of this work:
These techniques rely on the diffusion tensor model to provide an accurate estimate of the white matter fiber

orientation. Unfortunately, the diffusion tensor model is not always adequate, particularly in voxels containing
contributions from differently oriented fiber bundles (a common occurrence in real neurological data). An obvious
line of investigation should be try to reproduce this results using newer and more sophisticated orientation models,
such as ODF, DSI or HARDI.

Another point from the literature that could be checked with our data: According to Descoteaux et al.[30], in
synthetic data, increasing the b-values reduces the minimal resolvable angle between fibers. A possible method
for checking this would be to compare our tractographies reconstruction for the cingulum with different b-values.
The number of fibers that correctly complete the reconstruction of the back corner of the cingulum should be
smaller in those data set with higher b’s.

Another possible line of study will be use the fiber profile data to estimate some index of anatomical integrity
between brain regions, using a measure such as those proposed by Cardenes et al.[61]. Also, some metrics like
normalized reconstructed volume could be calculated.
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interactive tool for ultrasound image processing”, IEEE 7th Int. Symp. BioInformat. BioEng., 2007, Istambul,
Turkey.
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[61] Cardenes R, Muñoz-Moreno E, Sarabia-Herrero R, Rodriguez-Velasco M, Fuertes-Alija JJ, Martin-Fernandez
M. “Analysis of the pyramidal tract in tumor patients using diffusion tensor imaging”, NeuroImage 2010;
50(1):27-39.
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Estudio de los efectos de los parámetros de adquisición en

la tractograf́ıa global

G. Barrio-Arranz
Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain, gbararr@lpi.tel.uva.es

Abstract
La tractograf́ıa es el proceso que se emplea para estimar la
estructura de las fibras nerviosas del interior del cerebro in
vivo a partir de datos de Resonancia Magnética (MR).

Los métodos de tractograf́ıa global, al contrario que los
métodos locales, intentan reconstruir todas las estructuras
neuronales a la vez, buscando una configuración que mejor
se ajusta a los datos proporcionados.

Dichos métodos globales han demostrado ser más precisos
y fiables que los métodos de tractograf́ıa local, para datos
sintéticos. Sin embargo hasta la fecha no hay estudios
que definan la relación entre los parámetros de adquisición
de la MR y los resultados de tractograf́ıa global con datos
reales.

Este art́ıculo pretende mostrar la influencia de ciertos

parámetros de adquisición como el factor de difusión de

las secuencias de adquisición (b-value) o el número de gra-

dientes en la variabilidad de las tractograf́ıas obtenidas.

1 Introducción

DTI (Diffusion Tensor Imaging) es una modalidad de
MRI (Magnetic Resonance Imaging) que se emplea
para estudiar las caracteŕısticas internas del cerebro
y las conexiones que existen entre ellas. Esta técnica
se basa en medir la cantidad y la dirección principal
de difusión de las moléculas de agua dentro de los
tejidos vivos al aplicarles una serie de fuertes pulsos
magnéticos. Dentro del cerebro los tejidos limitan las
direcciones de difusión, el agua contenida dentro de
ellas tiende a difundirse más a lo largo de los axones
que perpendicular a ellos; por tanto conociendo la di-
rección principal dentro de cada voxel podemos esti-
mar las estructuras de las fibras nerviosas que forman
el cerebro [1].

Los distintos parámetros con los que se realiza la
adquisición de la resonancia magnética como el factor
de difusión de las secuencias de imáganes (b-value), el
tiempo entre pulsos (TE), el espaciado entre muestras
(r), el número de gradientes (g) acaban teniendo gran
importancia durante la estimación del tensor y en los
resultados finales de tractograf́ıa.

La tractograf́ıa es un proceso diseñado para estimar
los tractos de fibras cerebrales a partir de la infor-
mación de difusión. Existen varios métodos trac-

tográficos: los más comunes son los métodos locales
que reconstruyen cada fibra de manera independiente,
cada fibra estimada no influye sobre el resto. La recon-
strucción se realiza a través de una serie de pequeños
pasos sucesivos.
• La tractograf́ıa “streamline” emplea un estimador

numérico (Euler o Runge-Kutta) para seguir la
dirección principal de difusión desde un punto
semilla a lo largo de varios voxels hasta que se
cumple algún tipo de condición de umbral (angu-
lar, medida de difusión, etc.)[2]. Algunas de las
principales ventajas de este método es su simpli-
cidad y su bajo coste computacional. Uno de los
inconvenientes es que no proporciona información
sobre la reproducibilidad del tracto generado.

• La tractograf́ıa estocástica o probabiĺıstica in-
tenta solucionar dicha limitación modelando
expĺıcitamente la incertidumbre en la orientación
de la fibra durante la estimación. Existen varias
implementaciones de algoritmos probabiĺısticos;
Jones et al.[3] emplean combinaciones aleatorias
creadas a partir de una serie de datos redundantes
con métodos streamline. En cambio, Friman
et al.[4] o Jbabdi et al. [5] emplean modelos
Bayesianos para generar una distribución pos-
terior de posibles orientaciones en cada paso.
Puesto que existen múltiples posibles caminos,
deben generarse múltiples tractos para obtener
una idea de la probabilidad de que un tracto al-
cance una determinada región.

A pesar de su simplicidad, los métodos locales se ven
afectados por su falta de exactitud: los pequeños
errores producidos al determinar cada nuevo paso
pueden acumularse y afectar significativamente al re-
sultado final. Para minimizar este tipo de error surgen
los métodos globales.

Los métodos globales intentan reconstruir todas las
fibras simultáneamente, buscando una configuración
que mejor describe los datos proporcionados.

Las fibras se reconstruyen mediante pequeños segmen-
tos que se unen, desunen y recombinan (en orientación
y número)durante la fase de optimización. Su com-
portamiento está gobernado por la interacción entre
dichos segmentos y la maximización del acople con los



datos. El mayor problema de este tipo de métodos es
su largo tiempo de computación.

El algoritmo empleado en este art́ıculo es el desar-
rollado por Reisert et al.[6]. Este algoritmo resultó
el mejor puntuado en la comparación entre distintos
algoritmos de tractograf́ıa que se llevó a cabo en con-
greso MICCAI en 2010[7].

La zona del cerebro que hemos elegido como base
de las medidas es el ćıngulo, una colección de fi-
bras de materia blanca que se extienden desde el giro
ćıngulado hasta el cortex entorrinal. Hay varias ra-
zones para esta elección: se trata de una región muy
estudiada; con altos valores de anosotroṕıa (lo que fa-
cilita la estimación de la tractograf́ıa) y relativamente
estrecha por lo que a la hora de extraer los perfiles de
las fibras podemos asumir una distancia máxima de la
que tomar la media de los valores tensoriales.

Recientemente otros art́ıculos, como el de Zhan et
al.[8] han estudiado como los parámetros de resolución
espacial y el número de gradientes afectan a la “conec-
tividad” en varias zonas de materia blanca del cerebro
empleando tractograf́ıa streamline. sin embargo, no
existe literatura sobre como estos parámetros pueden
afectar a los métodos de tractograf́ıa global.

En este art́ıculo intentamos entender como los dis-
tintos parámetros de adquisición como el valor de
b afectan al resultado de la tractograf́ıa global del
ćıngulo, estudiando su variabilidad en número de fi-
bras que completan con éxito la reconstrucción y los
valores medios de los perf́ıles de las fibras. En la
sección 2 describiremos los detalles y caracteŕısticas
de los volúmenes de datos que empleamos en nuestros
experimentos. A continuación en la sección 3 hablare-
mos de las medidas calculadas y discutiremos las posi-
bles deducciones a partir de ellas. Finalmente en la
sección 4 cerraremos con las conclusiones y futuras
ĺıneas de trabajo.

2 Materiales y métodos

En esta sección describiremos los detalles de los datos
empleados en nuestros experimentos de tractograf́ıa.

2.1 Adquisición

Para este estudio hemos seleccionado a seis pacientes
control saludables, hombres de entre 23 y 31 años (
con edad media de 27 años ). Todos los datos fueron
adquiridos en un escáner GE Signa de 1.5 Teslas en el
Hospital Gregorio Marañon de Madrid.

Cada paciente fue escaneado nueve veces con nueve
distintas combinaciones de parámetros:
• B−value: Los volúmenes se adquirieron con tres

valores diferentes de b: 800,1000 y 1300 s
mm2 .

• Espaciado: La matriz de datos posee un tamaño
de voxel de 2×2×2mm3. El número de ı́ndices de
las matrices de datos es de 128× 128× 62 voxels.

• Direcciones de gradientes: Todos los volúmenes

se adquirieron con 61 gradientes y un volumen
baseline. Las direcciones se diseñaron para que
los datos pudieran ser submuestreados a 40 o 21
gradientes fácilmente. El submuestreo nos per-
mite medir el efecto del número de gradientes en
el cálculo tensorial con una sola adquisición.

Otros parámetros son: tiempo de repetición TR = 8,
tiempo entre pulsos TE = 1.6ms.

2.2 Procesado de datos

Los valores tensoriales de cada voxel se estiman a par-
tir de los múltiples gradientes. Para disminuir el nivel
de ruido primero se ejecutó una etapa de filtrado me-
diante un método de mı́nimo error cuadrático medio
lineal (LMMSE).

Luego, a partir de un cierto valor umbral de
anisotroṕıa se creó una máscara sobre la que se eje-
cutó el algoritmo de tractograf́ıa global de Reisert et
al. desarrollado en la Universidad de Friburgo.

2.3 Filtrado espacial

Una vez realizada la tractograf́ıa de todo el cerebro
se definieron tres regiones de interés (ROIs) sobre el
ćıngulo de acuerdo con los puntos propuestos por Mori
et al. [10]. Se eliminaron todas las fibras que no atrav-
esaban las tres ROIs. El filtrado se realizó por medio
del software Saturn [9] desarrollado por la Universidad
de Valladolid.

2.4 Extracción de los perfiles de las fibras

Una de las formas de comparar diferentes grupos de
fibras es midiendo sus valores tensoriales a lo largo de
la fibra, generalmente se comparan valores escalares
como el ı́ndice de anisotroṕıa fraccional (FA). Para
extraer valores consistentes de los tensores y evitar los
efectos de volumen parcial (contaminación de valores
cercanos a la fibra) creamos un método extractor de
perfiles.

En primer lugar, a partir de las ROIs definidas se crea
un esqueleto promedio sobre el que luego se proyec-
tarán los valores tensoriales de cada punto de las fi-
bras. Los puntos de este esqueleto se suavizan para
formar una curva spline parámetrica.

En segundo lugar, los puntos de las fibras se orde-
nan según una estructura de árbol k-dimensional, em-
pleada para poder realizar una busqueda de puntos
cercanos.

Para cada punto de la curva spline se buscan los pun-
tos de las fibras situados dentro de un radio de 2mm
de distancia y se proyectan sus valores sobre ella para
cada fibra por separado. Finalmente se calculan las
medias y varianzas de cada fibra proyectada y de to-
das las fibras proyectadas.
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Figure 3. Número de fibras reconstrúıdas para los tres pacientes para varios valores de b y g.

Figure 1. ROIs usadas para filtado espacial.

Figure 2. Cı́ngulo reconstrúıdo con la tractograf́ıa global.

3 Resultados

En esta sección presentamos los resultados de los ex-
perimentos. Una vez computados las fibras que for-
man el ćıngulo para todos los volúmenes de datos,
tomamos dos medidas como base: el número de fi-
bras que completan el recorrido con éxito entre las
tres ROIs y los perfiles de FA de dichas fibras. La FA
es una medida comúnmente usada en los estudios neu-
rológicos de DTI [1]. En la fig. 3 se muestra el número
de fibras que completan el recorrido normalizado por

el número máximo de fibras de cada reconstrucción:

V al =

√(
Nmax −Nfibs

Nmax

)2

(1)

El valor resultante, situado entre cero y uno, nos
permite tener una idea de como los valores de b y
el número de gradientes afectan al resultado trac-
tográfico. Los valores que obtienen resultados más
reproducibles son para b intermedios (b = 1000).

Sin embargo, no parece haber un patrón claro entre
los valores de b. De acuerdo con Lazar et al.[12] un
aumento de los valores de b hace que los valores de di-
fusión sean más sensibles a la orientación de las fibras
a cambio de una perdida de SNR. En teoŕıa, un mayor
valor de b conlleva una reducción de SNR y una mayor
dispersión en las fibras. Esta diferencia con nuestros
datos podŕıa ser causado por la naturaleza del algo-
ritmo de reconstrucción global. El número de fibras no
parece ser una buena medida para comparar el efecto
de los parámetros de adquisición.

La figura 4 representa los valores de la media de FA
de los perfiles, y la figura 5 representa la desviación
estándar para cada conjunto de fibras estimado. De
esta forma podemos observar la variabilidad de las me-
didas de los perfiles. Para valores de b de entre 800
y 1300 la desviación de los valores es muy pequeña.
Esto nos sugiere que es posible emplear valores de
b más pequeños sin afectar en gran medida a la re-
construcción de grandes grupos de fibras. No pode-
mos discutir los efectos de los grupos de fibras más
pequeños y dispersos, como aquellas cercanas al cor-
tex.

El número de gradientes afecta tanto a la media como
a la desviación estándar. Un menor número de gra-
dientes aumenta los valores medios y la desviación
estándar, especialmente para valores altos de b. Esto
puede ser explicado por el hecho de que valores altos
de b conducen a una subestimación de los valores de
FA [11] en los voxels más anisotrópicos.

4 Conclusiones

Los resultados de la tractograf́ıa dependen de muchos
factores: las regiones de interés, los parámetros de
adquisición, las fuentes de variación (por ejemplo, la



SNR, el efecto de volumen parcial, movimiento del
paciente, etc.), los algoritmos de reconstrucción em-
pleados y la elección de umbrales.

Si bien podemos medir la precisión de un método
(cómo de reproducibles son sus resultados), no existe
un “golden-standard” sobre la exactitud de una recon-
strucción tractográfica. Uno de los objetivos de este
trabajo es sentar las bases para computar la influen-
cia de los parámetros de adquisición, de forma que
puedan tenerse en cuenta en futuros modelos capaces
de validar los resultados de tractograf́ıas sobre tejidos
in-vivo.

Para este art́ıculo hemos estudiado tractos bien
documentados en estudios anatómicos previos, por
lo que es probable que al menos la configuración
macroscópica de estos tractos sea exacta.

Entre las futuras ĺıneas de investigación de este tra-
bajo esta el estudiar la influencia del espaciado entre
voxels para este tipo de algoritmos de tractograf́ıa.

También hay que destacar que estos datos se basan
en el modelo de tensor de difusión para estimar la or-
intación de la fibra en materia blanca. Sin embargo, el
modelo de tensor de difusión no siempre es adecuado,
particularmente en voxels que contienen varias fibras.
Una posible forma de avanzar seŕıa emplear mode-
los de orientación más sofisticados como ODF, DSI o
HARDI que han demostrado ser capaces de resolver
mejor cruces de fibras en datos sintéticos.
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Appendix B. Connectivity data tables Gonzalo Barrio Arranz

P1 P2 P3 P4 P5 P6
b800,r2,g21 124 158 109 154 107 193
b800,r2,g40 173 184 136 182 86 223
b800,r2,g61 177 202 136 188 104 255
b800,r25,g21 80 206 140 93 178 77
b800,r25,g40 85 206 103 114 171 75
b800,r25,g61 88 232 129 135 201 69
b800,r3,g21 47 37 71 82 113 120
b800,r3,g40 61 62 76 77 106 96
b800,r3,g61 54 52 66 78 114 106
b1000,r2,g21 0 0 126 166 102 175
b1000,r2,g40 2 1 151 202 105 205
b1000,r2,g61 1 0 134 202 125 224
b1000,r25,g21 89 196 119 150 212 79
b1000,r25,g40 82 169 155 167 207 83
b1000,r25,g61 89 196 126 171 223 85
b1000,r3,g21 54 47 87 98 116 101
b1000,r3,g40 65 55 91 84 123 109
b1000,r3,g61 58 55 75 93 141 121
b1300,r2,g21 114 169 96 244 127 199
b1300,r2,g40 135 193 148 271 171 199
b1300,r2,g61 157 234 148 267 196 221
b1300,r25,g21 94 227 186 178 297 120
b1300,r25,g40 110 181 184 192 333 127
b1300,r25,g61 112 229 196 177 345 109
b1300,r3,g21 46 65 78 124 143 200
b1300,r3,g40 65 67 84 126 122 185
b1300,r3,g61 60 73 83 152 196 182

Tabla B.1: Connectivity table for Global tractography, Corpus Callosum
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Universidad de Valladolid Appendix B. Connectivity data tables

P1 P2 P3 P4 P5 P6
b800,r2,g21 3 297 4 478 18 5
b800,r2,g40 143 577 405 3595 5 740
b800,r2,g61 879 1320 1446 4244 242 3233
b800,r25,g21 627 389 336 3485 2998 421
b800,r25,g40 576 1132 1049 6583 5522 999
b800,r25,g61 1342 1374 1646 7041 6502 1384
b800,r3,g21 197 145 22 2419 3279 802
b800,r3,g40 278 138 429 2856 2646 1715
b800,r3,g61 612 204 675 3105 3800 1679
b1000,r2,g21 0 0 195 1033 4 185
b1000,r2,g40 0 0 429 1389 272 1043
b1000,r2,g61 0 0 1936 4990 364 3261
b1000,r25,g21 1137 939 268 3951 4319 866
b1000,r25,g40 1814 1319 573 5121 8049 2142
b1000,r25,g61 2745 2246 1128 7034 10746 2735
b1000,r3,g21 284 209 787 2916 3403 1375
b1000,r3,g40 800 183 322 3391 4498 2318
b1000,r3,g61 995 209 535 4243 4697 2244
b1300,r2,g21 0 229 58 405 216 33
b1300,r2,g40 22 726 640 2914 685 480
b1300,r2,g61 18 1364 1546 3722 835 625
b1300,r25,g21 602 914 1396 3825 4938 784
b1300,r25,g40 2890 947 2677 5451 7620 2183
b1300,r25,g61 3935 912 3768 7534 9695 3128
b1300,r3,g21 947 541 221 2580 4499 2344
b1300,r3,g40 1196 479 769 3704 2721 2072
b1300,r3,g61 1710 609 568 3952 5001 2381

Tabla B.2: Connectivity table for Streamline tractography, Corpus Callosum
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Appendix B. Connectivity data tables Gonzalo Barrio Arranz

P1 P2 P3 P4 P5 P6
b800,r2,g21 26 87 56 36 54 72
b800,r2,g40 38 74 67 50 21 80
b800,r2,g61 34 91 65 50 26 96
b800,r25,g21 20 66 83 66 20 57
b800,r25,g40 22 79 97 83 12 58
b800,r25,g61 22 74 95 85 13 63
b800,r3,g21 30 29 66 51 33 40
b800,r3,g40 23 37 78 60 35 30
b800,r3,g61 28 40 76 53 38 29
b1000,r2,g21 4 8 52 35 43 40
b1000,r2,g40 8 6 70 33 47 68
b1000,r2,g61 5 10 64 39 53 68
b1000,r25,g21 24 67 91 95 34 54
b1000,r25,g40 21 78 86 113 32 60
b1000,r25,g61 22 75 94 113 24 55
b1000,r3,g21 19 31 70 65 49 34
b1000,r3,g40 22 34 72 65 44 26
b1000,r3,g61 21 37 84 61 41 32
b1300,r2,g21 12 55 51 46 42 47
b1300,r2,g40 14 85 64 57 62 64
b1300,r2,g61 20 70 82 43 63 70
b1300,r25,g21 24 78 141 137 66 84
b1300,r25,g40 27 66 150 125 83 75
b1300,r25,g61 37 83 152 108 87 79
b1300,r3,g21 27 41 86 106 40 34
b1300,r3,g40 33 46 86 110 42 44
b1300,r3,g61 32 46 104 103 47 48

Tabla B.3: Connectivity table for Global tractography, Left Cingulum
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Universidad de Valladolid Appendix B. Connectivity data tables

P1 P2 P3 P4 P5 P6
b800,r2,g21 1 180 2 50 7 90
b800,r2,g40 3 565 384 209 16 768
b800,r2,g61 229 915 479 219 61 805
b800,r25,g21 45 905 1448 1094 0 398
b800,r25,g40 191 692 1588 1302 2 452
b800,r25,g61 213 1028 2602 1287 5 580
b800,r3,g21 85 388 371 373 532 171
b800,r3,g40 31 518 591 528 305 269
b800,r3,g61 59 554 633 607 333 227
b1000,r2,g21 0 0 100 101 50 29
b1000,r2,g40 0 0 421 122 52 460
b1000,r2,g61 0 2 761 169 87 544
b1000,r25,g21 51 596 706 989 5 306
b1000,r25,g40 127 1088 1200 937 122 539
b1000,r25,g61 238 1457 1218 1071 184 849
b1000,r3,g21 17 662 451 795 459 118
b1000,r3,g40 36 342 870 434 332 351
b1000,r3,g61 26 634 852 726 596 232
b1300,r2,g21 0 109 117 20 0 51
b1300,r2,g40 0 62 162 42 5 58
b1300,r2,g61 0 161 226 64 11 120
b1300,r25,g21 78 583 1604 1446 310 364
b1300,r25,g40 153 841 2113 1689 677 719
b1300,r25,g61 246 965 2624 2124 656 910
b1300,r3,g21 18 444 946 792 181 221
b1300,r3,g40 149 536 1194 906 330 304
b1300,r3,g61 73 528 1096 851 352 433

Tabla B.4: Connectivity table for Streamline tractography, Left Cingulum
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Appendix B. Connectivity data tables Gonzalo Barrio Arranz

P1 P2 P3 P4 P5 P6
b800,r2,g21 5 20 801 3 6 5
b800,r2,g40 6 1 210 7 0 1
b800,r2,g61 3 0 330 6 2 6
b800,r25,g21 95 200 0 132 6 4
b800,r25,g40 4 194 114 84 2 1
b800,r25,g61 14 205 68 75 6 3
b800,r3,g21 5 6 0 368 22 2
b800,r3,g40 23 5 3 534 6 128
b800,r3,g61 107 7 0 622 7 2
b1000,r2,g21 0 7 125 5 3 0
b1000,r2,g40 0 8 24 20 0 5
b1000,r2,g61 5 0 7 3 2 3
b1000,r25,g21 26 295 97 427 0 3
b1000,r25,g40 1 51 2 337 5 7
b1000,r25,g61 2 129 5 492 7 6
b1000,r3,g21 766 334 2 752 1 8
b1000,r3,g40 924 325 2 651 2 0
b1000,r3,g61 963 325 1 251 3 174
b1300,r2,g21 5 4 34 4 4 2
b1300,r2,g40 8 4 25 6 8 7
b1300,r2,g61 1 8 24 6 2 4
b1300,r25,g21 5 191 1 83 4 3
b1300,r25,g40 235 163 18 90 4 4
b1300,r25,g61 176 129 35 85 7 6
b1300,r3,g21 176 207 5 75 5 0
b1300,r3,g40 562 88 4 40 18 1
b1300,r3,g61 681 78 6 80 2 6

Tabla B.5: Connectivity table for Probabilistic tractography, Left Cingulum
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Universidad de Valladolid Appendix B. Connectivity data tables

P1 P2 P3 P4 P5 P6
b800,r2,g21 64 72 109 92 21 95
b800,r2,g40 83 91 117 101 18 125
b800,r2,g61 76 100 118 102 23 134
b800,r25,g21 82 105 82 91 13 40
b800,r25,g40 86 93 82 83 11 42
b800,r25,g61 88 103 93 98 7 44
b800,r3,g21 53 18 101 55 33 17
b800,r3,g40 58 14 117 55 36 18
b800,r3,g61 56 16 119 49 30 24
b1000,r2,g21 7 18 80 104 24 63
b1000,r2,g40 4 6 97 87 16 97
b1000,r2,g61 8 26 80 105 30 98
b1000,r25,g21 78 99 78 122 22 47
b1000,r25,g40 94 77 66 124 35 57
b1000,r25,g61 99 98 95 138 37 51
b1000,r3,g21 52 18 152 59 44 31
b1000,r3,g40 52 16 124 59 41 22
b1000,r3,g61 66 22 129 64 57 23
b1300,r2,g21 41 49 102 104 37 69
b1300,r2,g40 41 81 128 114 49 77
b1300,r2,g61 52 68 125 118 35 78
b1300,r25,g21 104 110 130 128 102 52
b1300,r25,g40 95 106 128 154 106 71
b1300,r25,g61 113 117 134 115 109 58
b1300,r3,g21 64 29 106 90 36 37
b1300,r3,g40 61 25 116 95 56 41
b1300,r3,g61 70 22 125 99 60 45

Tabla B.6: Connectivity table for Global tractography, Right Cingulum
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Appendix B. Connectivity data tables Gonzalo Barrio Arranz

P1 P2 P3 P4 P5 P6
b800,r2,g21 258 612 414 23 7 606
b800,r2,g40 334 1454 1167 316 24 1071
b800,r2,g61 489 1862 1618 148 1 1389
b800,r25,g21 487 1063 2420 1273 11 237
b800,r25,g40 708 789 2660 1490 16 262
b800,r25,g61 945 1321 2898 1477 52 420
b800,r3,g21 121 154 1574 507 189 43
b800,r3,g40 281 441 1571 674 234 175
b800,r3,g61 270 422 1771 535 243 104
b1000,r2,g21 0 0 203 2 1 104
b1000,r2,g40 0 0 780 11 8 342
b1000,r2,g61 0 1 886 27 42 460
b1000,r25,g21 645 1465 1358 1230 8 215
b1000,r25,g40 885 937 1631 1452 150 356
b1000,r25,g61 921 1457 1834 1710 326 361
b1000,r3,g21 190 506 1993 538 378 137
b1000,r3,g40 293 489 2144 753 365 286
b1000,r3,g61 401 449 2286 795 451 75
b1300,r2,g21 0 2 548 45 1 53
b1300,r2,g40 0 14 1159 104 20 68
b1300,r2,g61 5 12 1870 220 31 184
b1300,r25,g21 911 890 2523 1564 703 209
b1300,r25,g40 914 1219 2697 2177 683 624
b1300,r25,g61 1196 1430 3031 2345 979 577
b1300,r3,g21 409 264 2144 665 174 45
b1300,r3,g40 260 430 3219 925 510 147
b1300,r3,g61 296 499 2689 920 332 124

Tabla B.7: Connectivity table for Streamline tractography, Right Cingulum
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P1 P2 P3 P4 P5 P6
b800,r2,g21 5 5 4 5 3 4
b800,r2,g40 2 6 1 2 1 1
b800,r2,g61 5 8 1 0 7 4
b800,r25,g21 5 8 0 4 3 1
b800,r25,g40 7 6 3 3 7 1
b800,r25,g61 6 5 0 1 6 6
b800,r3,g21 0 8 1 126 8 1
b800,r3,g40 5 5 1 122 2 0
b800,r3,g61 5 0 0 103 6 7
b1000,r2,g21 0 1 6 15 3 1
b1000,r2,g40 5 7 5 36 6 7
b1000,r2,g61 7 4 8 38 6 8
b1000,r25,g21 5 7 6 4 6 3
b1000,r25,g40 8 1 8 3 3 7
b1000,r25,g61 6 4 8 6 6 6
b1000,r3,g21 7 170 5 308 3 4
b1000,r3,g40 8 46 0 51 0 7
b1000,r3,g61 0 53 1 41 2 5
b1300,r2,g21 4 8 7 4 7 6
b1300,r2,g40 4 6 1 7 3 7
b1300,r2,g61 7 8 4 4 1 7
b1300,r25,g21 7 8 3 6 3 1
b1300,r25,g40 5 1 7 0 2 1
b1300,r25,g61 8 1 4 4 1 3
b1300,r3,g21 2 58 5 23 7 2
b1300,r3,g40 4 67 0 36 3 4
b1300,r3,g61 8 28 5 26 6 0

Tabla B.8: Connectivity table for Probabilistic tractography, Right Cingulum
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Appendix C. Fiber FA profiles data tables Gonzalo Barrio Arranz
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