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Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and
application to the submicrosecond laser processes in implanted silicon
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Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond
scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution
can be achieved only by simulating particle interactions in the presence of large and transient gradients of
the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems
in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are
nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density,
due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the
phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then
dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational
code are discussed in detail. As an application example we analyze the evolution of the defect system caused
by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant
annihilation of the implantation damage which can be well controlled by the laser fluence.
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I. INTRODUCTION

The kinetic Monte Carlo (KMC) method is the key
formalism for the simulation of evolution of large systems
when the kinetics is driven by thermally activated phenomena.
Its applications cover different topics: e.g., erosion [1], crystal
growth [2], surface modification by plasmas [3,4], cell and
macromolecule interactions [5], and so on. The KMC method
simulates the kinetics by a stochastic sequence of elementary
events (e.g., displacement, chemical reaction, bond formation,
dissolution, etc.) leading to a state change of the evolving
Monte Carlo particles (e.g., atoms, defects, molecules, cells).
A common characteristic of the KMC models developed so
far is that the temperature is uniform in the simulated space
region [i.e., T (r,t) = Tuni(t) for all r in the simulation box].
This assumption allows the stochastic selection of the tem-
porally ordered chain of events using temperature-dependent
probability rules which depend only on the event type. We
note that the optimal algorithmic formulation and the practical
implementation of the KMC model in simulation codes are
strongly based on the one-to-one relationship between the
event type and its probability (and frequency) value and that
this unique correspondence is not in general valid when T is
not uniform.

An interesting application of the KMC approach concerns
the simulation of the damage evolution in ion-implanted
samples [6,7] for technological applications in the field
of microelectronics. Several works have demonstrated the
prediction power of this method when it is applied to postim-
plantation annealing processes at high uniform temperature.
However, the KMC approach has not been applied so far in
the case when the annealing induces, in the damaged region,
large and transient gradients of the thermal field, as in the case
of pulsed laser irradiation.
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Simulations of laser processes are crucial in order to
understand the effects of irradiation on material modifications
in both melting and solid phases. Many issues are also still
poorly understood for the widely investigated case of laser ther-
mal annealing of implanted silicon; for instance, the behavior
of common dopant atoms (arsenic, boron, or phosphorus) and
their evolution in the melting phase or the dopant activation
promoted by laser irradiation processes in solid regions. Due
to the intrinsic features of these annealing treatments, i.e.,
localized irradiation with a space- and time-dependent (on
the nanosecond scale) thermal field, experimental analysis can
reveal only specimen postirradiation characteristics. In order
to understand in depth how the defect system (i.e., the damage)
evolves and reaches its final state, a theoretical work based on
full process simulation is crucial and KMC simulation could
be the ideal method.

Conventional KMC algorithms cannot be applied for the
simulation of the laser annealing process since it induces a
highly nonuniform T field and, in contrast to processes at
uniform temperature, the space- and time-dependent tempera-
ture implies space- and time-dependent event frequencies. An
evolution and a change of the thermal field requires an update
of the frequencies associated with all the possible events. This
particularity requires the introduction of different and more
efficient sampling methods.

In this paper we propose a KMC model which explains
the postimplant kinetics of the defect system in the extremely
far-from-the equilibrium conditions caused by laser irradiation
in the nonmelting, melting, and partial melting regimes. As
presented in Sec. II, it considers defect diffusion, annihilation,
and clustering.

A key feature of our method is the coupling of the KMC
code with a phase-field model which properly simulates the
thermal-field evolution in an irradiated sample also when the
liquid-solid phase transition takes place. In Sec. III we discuss
the coupling methodology and in particular the procedure
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implemented in order to map in the KMC simulation box
the fast-varying nonuniform thermal field T (r,t) derived by
means of the thermal-field simulations.

In Sec. IV we present a continuous approximation of
the KMC model which results in a set of reaction-diffusion
partial differential equations (PDEs) controlling the average
density fields of the MC particles. Comparisons between the
particlelike and the continuous simulations are useful for
testing and for a proper discussion of the application limits
of the continuous approximation.

In order to consider a realistic application, the KMC
code has been applied to the laser annealing processes of a
phosphorus-implanted silicon substrate (P ions with 200 keV
energy and a dose of 1014 cm−2). The evolution of point defects
and clusters has been analyzed by varying the laser fluence.
Simulation results, discussed in Sec. V, predict a reduction of
the implantation damage with increase of the applied thermal
budget. These results correctly match the increase of the dopant
activation efficiency in the silicon solid phase as the laser
fluence builds up. The same scenario has been simulated by
means of the continuous model. A comparison of the two
approaches will supply a test for the PDE model and the
correct parameter relations when passing from the KMC to
the continuous equation methodology.

II. KMC CODE FOR THE DEFECT SYSTEM IN SILICON

Dopant-defect system evolution in implanted silicon under
constant temperature processes has been widely investigated in
recent decades. Consequently, a great number of codes based
on KMC and continuous models have been developed, most
of them daily used in academic and industrial research [7]. In
this section a brief generic description of the KMC method
will be given, focusing on the modifications of the numerical
formalism which make possible the kinetic simulation in
the case of a transient nonuniform thermal field. Indeed,
the transition from the conventional annealing to the laser
irradiation process imposes selection solutions usually not
implemented in the conventional KMC algorithms.

The KMC formalism is consistent with the framework of
the transition state theory and, therefore, we assume that all the
elementary events occur when an activated intermediate state
is achieved with the aid of the thermal fluctuations. The event
probability (and consequently the event rate or frequency) is a
function of Eact/kBT , where Eact is the energy difference be-
tween the activated state and the initial one, kB the Boltzmann
constant, and T the temperature. Event rates are also dependent
on several other parameters (e.g., capture volumes, entropy
contribution, etc.) whose values must be defined a priori. We
consider an Arrhenius-like T dependence of the probabilities.
Therefore, the frequency (or probability per unit time) related
to the occurrence of a particular event i can be expressed as

νi = 1

τi

= ν0
i exp

(
− Eact

i

kBT

)
, (1)

where ν0
i is a prefactor which formally includes the

dependence of νi on the other parameters.
In our (nonlattice) KMC code the damage in Si is described

as a system of mobile point defects, interstitials (I ), and
vacancies (V ), and their immobile aggregates (from small

Laser irradia�on Laser irradia�on

Liquid Liquid

Solid Solid

FIG. 1. (Color online) Schema of no-lattice kinetic Monte Carlo
environment which considers interstitial (dark balls) and vacancy
(white balls) defects in mobile (surrounded by arrows) or clustered
configuration. The two panels refer to the melting front evolution
induced by a laser irradiation process. Particle annhilation in the
molten region [red (dark gray)] and defect ripening process in solid
phase [yellow (light gray)] are also represented.

clusters to extended defects) residing in a simulation box
(Xb × Yb × Zb). Both mobile and immobile particles are
located in internal positions r(i) of the three-dimensional
simulation box. The system status is described as the set of
necessary information on the defects (i.e., defect position,
type, and size) which is stored in proper arrays. The regular
Si atoms residing in the sites of the crystalline silicon lattice
(i.e., undamaged regions) do not participate in the evolution;
and, as a consequence, their positions are not stored in our
code. A two-dimensional schema of the KMC environment is
reported in Fig. 1 with interstitial (dark balls) and vacancy
(white balls) defects in mobile (surrounded by arrows) or
clustered configurations. Without loss of generality, we also
assume that I and V point defects are the only mobile species
and defect clusters Xn can only absorb or emit point defects.
Therefore, in order to reproduce the defect system evolution as
a function of time, a numerical procedure simulating the effects
of the following elementary events has been implemented:

I (r) → I (r′) (2)

(I jumps randomly in order to reproduce diffusive behavior,
event rate νIdiff);

V (r) → V (r′) (3)

(V jumps randomly in order to reproduce diffusive behavior,
event rate νV diff);

I + V ↔ 0 (4)

(pair annihilation, event rate νIV );

X + Xn−1 ↔ Xn (5)

(I or V aggregate growth and dissolution, event rates νXXn−1

and νXndiss);

In + V ↔ In−1 (6)

(V annihilation in I aggregates, event rate νInV νIn−1V diss);

Vn + I ↔ Vn−1 (7)

(I annihilation in V aggregates, event rate νVnI νVn−1Idiss)
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where r and r′ are the positions occupied by the defects in
the simulation box before and after the random jump. If T

is uniform in the whole simulation box, there is a one-to-one
correspondence between the event type and its associated rate,
independently of the position of the particle in the simulation
box. As a consequence we can classify the events in discrete
classes {CIdiff,CV diff, . . .}, where each class is characterized
by a single common rate {CIdiff ⇒ νIdiff,CV diff ⇒ νV diff, . . .}.
This is the case of KMC algorithms simulating dopant-
defect systems in implanted semiconductors during constant
temperature annealing. The parametric dependence on T

allows the implementation of an efficient sampling method for
the selection of the occurring event from the set of possible
ones. If the system at a given time could evolve by one of the
next possible events i, the total event rate is

R =
∑

i

νi =
∑

C∈classes

NCvC, (8)

where NC is the number of events belonging to the C class at
that time. The random sampling process is composed of two
steps: the first selects a particular class by means of the discrete
probability distribution (NCvC/R) among all the possible
classes; the second picks randomly one of the NC events
belonging to the selected class. Hence standard selection
algorithms can be implemented based on the class storage
for each particular elementary event, and the simulation time
is increased by an amount t = 1/R. Moreover, the update of
the system state and the event distribution in the probability
classes is simple, since it requires a local change of the particle
type and a well-defined modification in a very limited part of
the whole information stored in the {NC} array.

These algorithms cannot be applied for a kinetic Monte
Carlo simulation of the laser annealing process since the
temperature is a nonuniform variable field T (r,t) (represented
by means of the color scale in the schematic of Fig. 1). In
this case, assuming the same functional dependence (1) of
the event rate on T (which is valid in the limit of pointlike
events), we obtain a continuous field map for the frequencies
vi(T (r,t)) which vary with time and space in the simulated
samples. Therefore, standard selection algorithms, based on
class storage, cannot be implemented since events in the same
class have different frequencies (i.e., similar particles involved
in the transition experience different temperatures) and class
ordering does not result in computational advantages.

We have to develop a code which considers the possibility
of fieldlike event probabilities expressed by suitable local
functions of T (r,t). An evolution and a change of the thermal
field require an update of all the frequencies associated
with all the possible events. This particularity requires the
introduction of a different sampling method. We could simply
select the event by directly using the probability distribution
vi(T (r,t))/R, where the index i runs over all the Nevent events.
However, this trivial selection procedure is not efficient for
large systems since it requires an o(Nevent) CPU time per KMC
step.

The use of a tree storage of vi(T (r,t)) can overcome
these difficulties, and, for consistency’s sake, we will briefly
recapitulate this procedure here. A tree is similar to a linked list
in being made up of elements and pointers, but each element
or node can be accompanied by more than one pointer. The

most common type of tree is the binary tree in which each
node has two pointers to other descendant nodes and its
element wp = w1 + w2 is the sum of the values present in
the descendant nodes. The root node R = ∑

i νi is that at the
very beginning of the tree while the nodes at the very end store
vi(T (r,t)) and are called leaves. During a random selection
process, a random number between 0 and 1 allows us to choose
one of the two descendants of a parent node according to their
own probabilities {w1/wp,w2/wp}. Hence starting from the
tree root, a loop allows us to reach a leaf at the end of the
tree, and the choosing procedure is equivalent to the direct use
of the vi(T (r,t))/R weights. The number of steps needed to
complete this selection is proportional to the logarithm (base
2 in the case of a binary tree) of Nevent [o(logNevent) CPU
time per step]. Therefore, it is more efficient with respect to
the selection based on the simple array storage. The tree root,
being the sum of all the event probabilities, i.e., the total event
rate R of Eq. (8), is used to update the time interval between
two successive KMC steps.

The following procedures are implemented to simulate
diffusion and dissolution events. If the selected event is a
random jump (i.e., a diffusive event) of the mobile point defects
(I or V ), the code updates the particle position from r to
r′ = r + dr, simulating a jump in a random direction. In this
case the module of dr [dr = (dr,θ,ϕ) in polar coordinates] is
constant and equal to the capture radius of the I -V annihilation,
while θ and ϕ are randomly picked. If the selected event is the
dissolution of an immobile aggregate Xn, the code updates
the cluster size from n to n − 1 and, concurrently, creates a
new mobile point defect at r′ = r + dr. Here r is the original
position of the aggregate and dr is again a vector with a
random direction and fixed length (equal to the sum of the
capture radius of the I -V annihilation and the capture radius
characteristic of the cluster Xn).

If the moved particle has neighboring ones to interact with
in its new position, a new interaction is added in the possible
list. Kinetic Monte Carlo codes based on crystalline lattices can
quickly check the present of neighboring particles to interact
with, looking at next-neighbor or next-nearest-neighbor sites
in the lattice structure [8]. Nonlattice KMC codes are more
efficient as they deal with only the defect system, neglecting the
local lattice details, but they lose the local correlation between
the interacting particles. In principle, a complete checking
among the whole set of particles has to be carried out, and
for distances greater than their capture radius. In order to
overcome this problem, which worsens with increase of the
total particle number, a linked list has been implemented, as
presented in Ref. [9]. It creates a local correlation between the
interacting particles, replacing the lattice structure in lattice
KMC codes.

We end this section by describing the implementation
details both for the interaction mechanisms and for the
derivation of the KMC model parameters. A space cutoff is
considered for the interactions (4)–(7) (i.e., νi = 0 if the particle
distance is larger than rn). Therefore, I (V ) annihilation, as
described by Eqs. (4), (6), and (7), has been assumed when
a mobile defect falls, after a random jump, inside the capture
radius rn(I − Vn)[rn(V − In)] of another point or clustered
V -I -type defect. On the other hand, cluster growth [Eq. (5)]
occurs when a mobile point defect falls inside the capture
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radius rn−1(Vn−1) or rn−1(In−1) of an immobile aggregate of
the same kind.

Point defect and cluster parameters for both I -type and
V -type defects were taken from fundamental theoretical works
and experimental literature. In particular, for diffusive events,
the activation energy barrier Eact

i of Eq. (1) represents the
migration energy while the ν0

i frequency prefactor is related to
the D0 exponential prefactor of the experimental Arrhenius-
like form by means of the relation

f = 6D0

λ2
, (9)

where λ is the jump distance.
Concerning the cluster dissolution events, the activation en-

ergy barrier Eact
i now represents the dissolution energies, and a

probability prefactor equal to the diffusive one (distinguishing
between I and V defects) multiplied by the cluster size was
chosen.

III. COUPLING BETWEEN KMC METHOD
AND THE PHASE FIELD

The innovation of our code lies in the extension of the KMC
method to deal with the evolution problem for the damage in
silicon in a space- and time-dependent thermal field. However,
the T (r,t) field must be calculated with an external code in
order to simulate the transient conditions of a real process.
Pulsed laser irradiation can induce a strongly varying T (r,t)
(on the submicrosecond and submicrometer scale); moreover,
if the energy density exceeds a proper threshold value, a
localized melting can occur. Therefore, the evolution of the
molten region (phase field) should also be simulated and
reliably mapped in the KMC code. Mapping of the thermal
and phase fields induced by the laser annealing processes has
been obtained by coupling the KMC code with simulation
results carried out within the phase-field methodology.

According to this approach a continuous field ϕ (−1 �
ϕ � 1, with ϕ = −1 and ϕ = 1 in the pure liquid and solid
phases, respectively) is introduced to describe smooth phase
transitions. The phase-field and heat equations are solved
concurrently using the following equations [10]:

τ
∂ϕ

∂t
= W 2∇2ϕ − ϕ(ϕ2 − 1) − λ

cp

Lfus
(T − TM )(ϕ2 − 1)2,

(10)

ρcp

∂T

∂t
− ∇2(KT ) = ρLfus

2

15

8
(ϕ2 − 1)

∂ϕ

∂t
+ S(r,t),

(11)

where TM and Lfus are the melting temperature and the latent
heat of crystalline silicon, respectively. S(r,t) is the heat source
due to the absorption of laser light which can eventually be
calculated by self-consistently solving the Maxwell equations
[11,12]. All the material properties (heat capacity cp, heat
conductivity K , density ρ) are phase dependent. The phase-
field parameters (τ , W, and λ) are chosen in order to correctly
achieve the thin-interface limit [10]. The phase-field model
calibration is equivalent to that reported in Ref. [13].

The defect evolution should not substantially influence the
T (r,t) and ϕ(r,t) solutions, and therefore the parameters used
in Eqs. (10) and (11) do not depend on the damage state. As
a consequence, a sequential coupling between the phase-field
and KMC models has been implemented as follows. Once a
particular laser process has been simulated with the phase-field
model, the temperature field as a function of time and melt
depth evolution in the processed region is extracted and
stored at constant intervals with a given time resolution δt .
We note that the minimal value of δtmin is given by the
inner discretization of the time variable in the PDE solver of
Eqs. (10) and (11) and that the choice δt = δtmin is obligatory
in the eventual case of interdependence between the optical and
thermal parameters of the phase-field model and the damage
state. However, due to the assumed lack of interdependence,
a different value δt > δtmin can be used if the defect stage is
slowly varying on the time scale δtmin. The choice of δt is
related to the time variation of the event frequencies by the
local temperature rate δT ,

Eact
min

kBT 2
δT <

δR

R
<

Eact
max

kBT 2
δT , (12)

whereEact
min (Eact

max) is the smallest (largest) activation energy
involved in the event frequencies of the process. Equation (12)
has been derived from Eqs. (1) and (8). For instance, for our
defect parameter setting we have Eact

max = E8
diss = 4.22 eV, i.e.,

the dissociation energy of I8 (see Table II). Therefore a tem-
perature variation of δT ∼ 10 K from the room temperature
value leads to a total R variation of less than ∼5.4%, while at
higher temperature, e.g., T = 1600 K, the total R variation is
less than ∼2.0%.

The space dependence of the temperature fields at different
times is stored in a grid representing equally spaced points
of the simulation box; therefore a linear interpolation allows
us to calculate the temperature for the particles occupying a
given position, and the related local frequency can be properly
updated. Note that during the δt interval, the frequencies are
considered only space dependent. Concurrently, by means
of the storage of the evolving melt depth curve, the time-
dependent molten region can be tracked, and all the particles
that during their evolution fall inside this zone are fully
annihilated. The melting process evolution and the correlated
effects in the no-lattice kinetic Monte Carlo environment are
represented in the schema of Fig. 1. The two panels refer to the
melting front evolution induced by a laser irradiation process.
In particular, particle annhilation in the molten region (red)
and the defect ripening process in the solid phase (yellow) are
represented. Considering the laser pulse shape and analyzing
the simulation output, for all the laser processes considered in
the following, a value of δt = 0.5 ns ensures temperature
variations lower than 10 K with a consequent acceptable
variation of the total R.

IV. FULLY CONTINUOUS MODELING

Several advantages arise from the use of the kinetic Monte
Carlo approach to simulate dopant-defect system evolution
on semiconductor substrates. One of them is the absence of
limitations in the number of interactions between dopant atoms
and defects. The detailed dopant clustering can be considered
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as well as dopant-defect cluster complexes without restriction
on the number of constituents. The kinetics is simulated by a
sequence of “virtual” events associated one to one with “real”
events; and, in general, we do not need to reduce the complexity
of the problem under study since the computation speed
does not slow down with increasing number of interactions
considered. At the same time, consistently, the greater part of
the parameters can be directly extracted from atomistic (i.e.,
ab initio) calculations.

However, CPU time grows with the total number of
MC particles and this fact imposes limitations on the size
of the system which can be simulated. Hence, along with
KMC methodologies, great interest has developed in the past
decades in continuous models, which deal with the same issues
previously reported [14–16].

The continuous model, analogous to the KMC method
introduced in the previous sections, can be formulated by
coupling the phase-field model with a set of rate equations
for the defect evolution in the following form [17]:

∂CX

∂t
= −∇JX + RX, (13)

where RX accounts for the point defect I -V and point-defect–
cluster interactions [Eqs. (2)–(7)]. In particular,

RX = −RI,V + RC, (14)

RI,V = k
f

I,V (CICV − C∗
I C∗

V ), (15)

k
f

I,V = 4π (DI + DV )rcapt(I,V ), (16)

where CX, C∗
X, and JX are respectively the density, equilibrium

density, and flux of a defect X (I or V ). Possible reactions
between X and other species (point defects, clusters) are taken
into account by RX (see Ref. [18] for details). The flux term JX

is the sum of the diffusion term (Fick’s law) and a thermal-field
drift term [19]:

JX = −DX

(
∇CX + CX

∇T

T

)
. (17)

The diffusivities are written in a general Arrhenius-type
expression [20].

Concerning clustered defects, a reduced model, able to
capture the main features of the kinetic damage in Si during an
irradiation process [16], has been adopted, where clusters with
sizes up to 9 are taken into account explicitly with specific
dissolution energies:

∂CXn

∂t
= kf

n CXCXn−1 − kb
nCXn

+ kb
n+1CXn+1 − k

f

n+1CXCXn
.

(18)

Two different set of reaction rates k
f
n and kb

n have been
tested. The first set [18] represents the conventional choice
implemented in most of the continuous models which describe
dopant-defect systems under constant temperature annealing:

kf
n = α4πrnDX, (19)

kb
n = βDXC∗

Xrn−1 exp

(
Q − En

diss

kbT

)
, (20)

where rn and En
diss = Em + En

binding are the capture radius and
the dissolution energy of the cluster Xn, Q the activation

energy of the product DXC∗
X, and α and β calibration

parameters. Em is the migration energy of the mobile defect
produced by the dissolution event and En

binding is the binding
energy of the n-size cluster.

The second set, taken from the work of Rafferty et al.
(see Ref. [21]), does not include additional constants or the
equilibrium point defect concentration C∗

X in the backward
reaction rate kb

n :

kf
n = 4πrnDX, (21)

kb
n = nDX(a)−2 exp

(
−En

binding

kbT

)
, (22)

where a is the average interatomic spacing fixed equal to
the rcapt value described before, i.e., the capture radius of
I -V annihilation. In both approaches, the bigger clusters
XCl are considered to be similar to extended defects with a
unique reaction rate, and cluster diffusion, as in Ref. [19], is
neglected.

It is worthy of emphasis that in the backward reaction
rates kb

n the energies in the Arrhenius-type expressions are
fixed equal in both sets, while differences appear only in the
exponential prefactors. The prefactor for interstitial defects in
the case of Giles et al.’s set is ∼2.7 × 104 greater than that of
Rafferty et al. For vacancy-type defects the ratio is ∼2.1 × 102.

V. SIMULATION RESULTS AND DISCUSSION

A. Calibration and initialization of KMC and PDE models

As a test case for study, the damage evolution in implanted
silicon for three different laser irradiations has been simu-
lated, reproducing real experimental conditions [16]. In this
experiment silicon substrates were implanted with phosphorus
ions with an energy of 200 keV and a dose of 1014 cm−2.
Subsequently, the specimens were irradiated by means of
an excimer laser (308 nm wavelength). Different irradiation
processes have been reproduced, varying the laser fluence:
with values of 2.6 and 3.0 J/cm2, partial melting processes
(melt depth smaller than the P projected range) were obtained.
Partial melting processes represent the ideal test case for our
KMC code since the implantation damage, residing in the
solid region below the maximum melt depth, undergoes the
most critical conditions (proximity of a liquid region, large
transient gradient of T ). On the other hand, at 3.6 J/cm2

a total melting process (melt depth greater than the P
projected range) occurs and most of the implantation damage
is than fully annihilated. As described in Ref. [16], after
implantation and/or laser irradiation (LI), all the samples
remain monocrystalline as verified by transmission electron
microscopy. From a simulation point of view, this allows im-
plementation in the code of both the physics and the complete
set of process parameters for the case of a crystalline silicon
substrate.

Since the scope of this section is to supply a comparison
and a cross validation of the two simulation approaches,
without lack of generality, we have tested our KMC code in
a calibration setting which is similar to that already used in
Ref. [16] for the PDE modeling of the same problem. Hence
the same energetic and capture radii have been implemented
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both in the KMC code and in the continuous model, and
the difference arises only in the implementation details of
the physical phenomena peculiar to each approach. The
reference experimental results refer to nonpatterned (i.e., one-
dimensional) samples; as a consequence, periodic conditions
for the diffusion events and particle interactions were set in
the directions orthogonal to the depth. Annihilation conditions
were fixed at the irradiated surface to introduce the physical
effect of mobile point defect dissolution at the sample surface.
Reflective conditions were set on the opposite side (to the
surface) in order to reproduce with a good approximation
the real bulk behavior. This assumption is reliable when the
simulation box length Zb is much larger than the size of
the damaged region. The latter region is fixed by the initial
conditions as well as the annealing process (temperature and
duration) conditions. The projected range of the phosphorus
ions (200 keV) is 300 nm and the maximum melt depth cor-
responding to the highest laser fluence employed (3.6 J/cm2)
is 350 nm, so the choice of Zb = 1 μm ensures the validity
of the real bulk approximation. On the other hand, the choice
of the remaining dimensions Xb and Yb of the simulation box
is determined by the total number of particles to simulate
in a KMC run. This number, which plays a central role in
CPU time, can be determined by the initial defect density,
strictly related to the implantation process characteristics. In
our case, a simulation box of Xb = 50 nm, Yb = 50 nm, and
Zb = 1.0 μm implies that 13 × 106 particles must be simulated.

Free defect migration energies were taken from the work
of Pelaz et al. [6], whilst the D0 values, which also determine
the frequency prefactors for the random jump events by means
of Eq. (9), were fixed in order to achieve the proper diffusivity
values near the silicon melting point (Dmelt

I = 3.6 × 10−4

and Dmelt
V = 4.0 × 10−5 cm2/s [22]). This strategy allows

a reasonable physical setting of free defect parameters in
the whole temperature range reached during laser annealing
processes. This last issue makes simulation of systems treated
by laser irradiation, from a calibration point of view, more
ambitious with respect to conventional temperature annealing
where physical properties of the simulated system have to be
calibrated in a limited temperature range. Migration energies,
D0 values, and point defect equilibrium concentrations are
reported in Table I. The products DXC∗

X for both interstitial
and vacancy point defects have been taken from [23], where
activation energies of 4.95 eV (I ) and 3.80 eV (V ) have
been extracted. Interstitial cluster parameters (dissociation and
binding energies) are taken from Ref. [18], while vacancy
cluster parameters were fitted on experimental supersaturation
data [24]. The cluster energetics are reported in Table II

TABLE I. Parameters used in the kinetic Monte Carlo code and
continuous model for I and V point defects [6,22,23].

Expression

C∗
I 43.0 × 1025 exp( −3.95 eV/kT ) (cm−3)

C∗
V 33.9 × 1023 exp( − 3.3 eV/kT ) (cm−3)

DI 0.34 exp( − 1.00eV/kT ) (cm2/s)
DV 1.23 × 10−3 exp( − 0.5 eV/kT ) (cm2/s)
rcapt 2.725 × 10−8 (cm)

TABLE II. I and V cluster parameters used in the kinetic Monte
Carlo code and continuous model [16,18].

InEdiss (eV) VnEdiss (eV) rn (Å)

X2 3.61 1.7 1.92
X3 3.74 2.00 3.84
X4 3.92 2.20 5.76
X5 3.79 1.80 7.68
X6 3.58 3.46 9.60
X7 3.59 2.40 11.52
X8 4.22 2.50 13.44
X9 3.54 2.80 15.36
XCl 4.13 3.46 15.60

together with the corresponding capture radii implemented
both in the KMC code and in the continuous one. In the liquid
state, free and clustered defects are assumed to be entirely
dissolved in the KMC approach, while in the continuous model
free defects are forced to be at their equilibrium concentrations
at the melting temperature and clusters are assumed to be
fully annihilated. The implementation in the KMC approach
of the equilibrium effect (i.e., the defect density balance
controlled by the local thermal field) is not a trivial question.
Nevertheless its effect can be neglected in our case since
the local supersaturation maintained by clusters is orders of
magnitude greater than the equilibrium value.

The defect system was initialized by coupling binary colli-
sion approximation (BCA) and atomistic KMC simulations of
the defect evolution at room temperature after the implant. The
dark dashed (I -type defects) and dotted (V -type defects) lines
of Fig. 2 refer to the as-implanted defects obtained by stopping
and range of ions in matter (SRIM) simulations [25]. In the
same figure, the inset reports their difference, which correctly
shows higher vacancy concentration near the implanted surface
and a prevalence of interstitial defects in the implant tail. Green
(light gray) lines refer to the residual defect density after room
temperature evolution obtained by means of the atomistic
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FIG. 2. (Color online) Total interstitial (dashed) and vacancy
(dotted) defect density: dark lines refer to the as-implanted defects
obtained by SRIM simulation; green (light gray) and red (dark
gray) lines refer, respectively, to the residual defect density after
room temperature evolution obtained from the atomistic KMC
simulation and from the continuous PDE model. The inset shows
the difference between total I - and V -type defects as obtained after
SRIM simulation.
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KMC simulation (i.e., the constant T case simulating the
effective postimplantation residual damage). The simulation
results suggest a reduction of 40% of the BCA-estimated
total implantation damage. The postimplantation damage
is stored in small defect aggregates [26] corresponding to
space-dependent cluster size distributions of I - and V -type
aggregates. Note that the I and V distributions are always
superimposed due to fast rates of the point-defect–point-
defect or point-defect–cluster interactions with respect to the
particle diffusion. Similar postimplantation evolution at room
temperature has been carried out by means of the continuous
model described in detail in Sec. IV. The red (dark gray)
dashed (I -type defects) and dotted (V -type defects) lines
of Fig. 2 represent the residual defect density after room
temperature evolution obtained within this approach. The
continuous equations of Sec. IV as well as the model for
the thermal problem of Sec. III have been solved within
an external PDE solver [27]. Excellent agreement can be
noticed with respect to the atomistic KMC data [green (light
gray) lines]. The comparison provides also a test for the
continuous model applied to the case where I -V annihilation
or cluster aggregation are the main kinetic events, since cluster
dissolution cannot take place at room temperature.

In the following we turn to the investigation of defect
system evolution during a laser annealing treatment where
all interactions play crucial roles. In these conditions defect
complexes can dissolve because the temperature, in the
irradiated specimens, reaches the melting point in silicon solid
phase near the liquid-solid interface.

B. Irradiation simulations

In order to simulate laser irradiation processes with the
KMC code, the melt depth and thermal fields at different
sampling positions (every 0.1 μm starting from the irradiated
surface) have been extracted from the phase-field simulations.
Figures 3 and 4 report typical temperature and phase evolutions
during a melting laser process. In particular, the time evolution
of the temperature at three different positions for the 2.6 J/cm2

laser process is shown in Fig. 3. Note that, after 130 ns from the
beginning of irradiation (see the inset in Fig. 3), the maximum
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FIG. 3. Time evolution of the temperature at three different
positions for the 2.6 J/cm2 laser process: solid, dashed, and dotted
lines refer, respectively, to the thermal field at 0.0, 0.5, and 1.0 μm
below the irradiated surface (0.0 μm). The inset shows the evolution
of the temperature variation between the points 0.0 and 1.0 μm.
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FIG. 4. Time evolution of the melt depth during the melting laser
processes with 2.6 (dotted), 3.0 (dashed), and 3.6 (solid) J/cm2 laser
fluences.

variation of ∼960 K is simulated between the temperature
at the surface and that reached at a 1.0 μm depth. Note that
these large thermal gradient variations with time have to be
taken into account if extended defect complexes (>10 nm
wide) characterize the damage evolution. In the latter case, the
pointlike approximation, assumed in the present work, fails
and an on-lattice formalism has to be implemented [27].

Comparing Figs. 3 and 4, it can be seen that the largest
rates of temperature change mark the beginning of the melting
process. As a consequence these rate values have been
considered to set the update time interval δt for the whole
irradiation process. For times larger than 500 ns, the specimen
is quenched with an almost constant temperature field as
evidenced by the overlap of the three curves of Fig. 3. In
Fig. 4 we show the time evolution of the melt depth during
three melting laser processes (2.6, 3.0, and 3.6 J/cm2). These
curves indicate the melting process duration and the extent
of the molten region where defects (mobile and clustered)
simulated in the KMC module are fully annihilated.

Considering this analysis of the thermal and phase fields,
during the KMC simulations an update of melt depth and
temperature is made at each point. A linear interpolation allows
for a sufficiently accurate determination of the temperature
as a function of the depth in the space regions between two
consecutive sampling points. We set an update time of 0.5 ns
which maintains the temperature increase at all the sampling
points smaller than 10 K for the whole simulated time interval.

Figure 5 shows the total interstitial and vacancy defect
density profiles before (dark) and after [colored (grayscale)]
laser irradiations obtained by means of atomistic KMC
simulations. Red (dark gray) circles (2.6 J/cm2) and green
(light gray) triangles (3.0 J/cm2) refer to two partial melting
processes where the corresponding maximum melt depths
(108 and 194 nm) are lower than the P ions’ projected range
(300 nm). The melting front extent has been extracted from
Fig. 4. The code reproduces full damage annihilation in the
molten regions due to the liquid-solid epitaxial regrowth, while
defect reduction in the solid phase (colored squares) is less
pronounced. This result is strictly related to the implemented
energetics for migration and dissolution events. The high
temperatures reached in the solid region of the sample near the
liquid-solid interface and the low point defect supersaturation
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FIG. 5. (Color online) Postanneal total interstitial (filled symbols)
and vacancy (empty symbols) defect densities for 2.6 [red (dark gray)]
and 3.0 [green (light gray)] J/cm2 laser fluences. Dark squares refer
to the simulated total interstitial and vacancy defects after KMC
room temperature evolution. Dashed (I ) and dotted (V ) lines refer
to the continuous simulation carried out by means of the Giles et al.
(upper panel) and Rafferty et al. (lower panel) parameters for cluster
dissolution rates.

make cluster dissolution events the most relevant interactions.
Subsequently, the point defects detached from the clusters
can migrate and fall inside the capture radius of composite
defects with the consequent preservation or decrease of the
total defect density if the capture results in cluster growth or
in I -V annihilation. The atomistic KMC simulations of Fig. 5
suggest that interactions which preserve the total defect system
density prevail over the others.

In order to investigate these effects, a deeper analysis has to
be carried out which looks inside the defect system. Therefore
we chose to follow the evolution of small size aggregates since
their lower dissolution energies (see Table II) make them the
most relevant particles for the characterization of the system
evolution. Analyzing the interstitialdefect case of Figs. 6
and 8, atomistic kinetic Monte Carlo simulations predict,
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FIG. 6. (Color online) Interstitial concentrations after room
temperature (empty squares) and one-pulse (filled squares) laser
irradiation of 2.6 J/cm2 laser fluence obtained by means of the KMC
code. Dashed lines refer to PDE simulation for the same process
carried out with the Giles et al. (upper panel) and Rafferty et al. (lower
panel) parameters for the cluster dissolution rates. Dark, red (dark
gray), and green (light gray) lines refer, respectively, to distributions
of clusters formed by two, three, and four defects.

in the whole simulated solid phase zone, a weak reduction
of the small cluster densities for the two laser irradiations
considered in the partial melting regime. Note that different
colored (grayscale) squares refer to cluster densities formed
by two, three, and four particles, respectively. Concurrently,
vacancy aggregates undergo a pronounced Oswald ripening
process with a reduction of cluster density with respect to
the postimplant concentrations for V2 and V3 and a relative
shift to bigger size complexes. These results suggest a faster
dissolution of V -type defects with respect to I -type ones,
reflecting the dissolution energy differences for interstitials
and vacancies (Table II). The more rapid healing of the
damage stored in V aggregates has a double effect: it decreases
the population of small V -type clusters and increases the
population of small I -type ones due to the V -In interactions.

This picture of the damage system evolution can be related
to the dopant activation in the silicon solid phase during a
laser annealing treatment. As reported in detail in previous
work [16], the solid phase dopant activation efficiency grows
with increase of the laser fluence (i.e., the maximum melt
depth). This activation increase has been related to the
damage reduction caused by thermal annealing, which can
trap mobile dopant particles during its evolution. Atomistic
KMC results, elucidating the damage reduction mechanism,
suggest that small cluster dissolution plays a central role in
dopant activation, decreasing the trap sites controlled by the
Oswald ripening process.

Another aim of this research is to analyze how a suitable
calibration of the continuous models can reproduce reliable
atomistic KMC results. The lines of Fig. 5 show post-laser-
irradiation total interstitial and vacancy defect density profiles.
The continuous model results reported in the upper panel
were obtained with the Giles et al. parameters [18] for the
cluster reaction rates, while the simulation outcomes in the
lower panel are obtained with the calibration suggested by
Rafferty et al. in Ref. [21]. A substantial difference can be
seen between the continuous model (dash-dotted lines) and the
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FIG. 7. (Color online) Vacancy concentrations after room temper-
ature (empty squares) and one-pulse (filled squares) laser irradiation
of 2.6 J/cm2 laser fluence obtained by means of the KMC code.
Dotted lines refer to PDE simulation for the same process carried out
with the Giles et al. (upper panel) and Rafferty et al. (lower panel)
parameters for the cluster dissolution rates. Dark, red (dark gray), and
green (light gray) lines refer, respectively, to distributions of clusters
formed by two, three, and four defects.
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FIG. 8. (Color online) Interstitial concentrations after room
temperature (empty squares) and one-pulse (filled squares) laser
irradiation of 3.0 J/cm2 laser fluence obtained by means of the KMC
code. Dashed lines refer to PDE simulation for the same process
carried out with the Giles et al. (upper panel) and Rafferty et al. (lower
panel) parameters for the cluster dissolution rates. Dark, red (dark
gray), and green (light gray) lines refer, respectively, to distributions
of clusters formed by two, three, and four defects.

KMC results (filled and empty symbols) in the upper panel.
Indeed, in spite of the excellent agreement between the KMC
and PDE models calibrated with the Giles et al. parameters
for the case of damage reduction after the implant process at
room temperature in Fig. 2. The KMC simulations predict a
lower damage reduction with respect to the PDE model for
the total I or V density after one-pulse laser irradiation for all
the fluences considered. On the other hand, the Rafferty et al.
parameters lead to an excellent agreement between the PDE
and KMC total damage annihilation after laser irradiation.

In Figs. 6–9 comparisons between the interstitial and
vacancy small cluster densities after one-pulse laser irradiation
are reported. As in Fig. 5, the continuous model results reported
in the upper (lower) panels were obtained with the Giles et al.
(Rafferty et al.) setting procedure for the cluster reaction
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FIG. 9. (Color online) Vacancy concentrations after room temper-
ature (empty squares) and one-pulse (filled squares) laser irradiation
of 3.0 J/cm2 laser fluence obtained by means of the KMC code.
Dotted lines refer to PDE simulation for the same process carried out
with the Giles et al. (upper panel) and Rafferty et al. (lower panel)
parameters for the cluster dissolution rates. Dark, red (dark gray), and
green (light gray) lines refer, respectively, to distributions of clusters
formed by two, three, and four defects.

rates. The analysis of distributions of clusters formed by
two, three, and four particles leads to similar conclusions for
the calibration comparison. Implementing the Rafferty et al.
reaction rates, and in particular the backward reaction rates, an
excellent agreement is found between PDE and KMC results
for interstitial distributions (lower panels). Going to the V -type
distributions, Rafferty et al.’s setting improves the general
trend with less pronounced damage annihilation with respect
to the Giles et al. setting.

It is worth underlining the differences between the Giles
et al. and Rafferty et al. calibration strategies. In both
approaches, the energies in the Arrhenius-type expressions
for the backward reaction rates kb

n are fixed equal, while
differences appear only in the exponential prefactors. The
prefactor for interstitial defects in the case of Giles et al.’s
parameter set is ∼2.7 × 104 larger than the Rafferty et al.
value. For vacancy-type defects the ratio is ∼2.1 × 102. This
difference is at the origin of the discrepancies between the
approaches. From this point of view, the present analysis
marks an important step in the development of continuous
models for the simulation of nonequilibrium evolution of
systems which undergo laser annealing processes on the
nanosecond scale: a formulation which fixes reaction rates,
forcing a fast equilibration of the defect density (as in the Giles
et al.’s case), correctly reproduces the damage for the case of
conventional thermal annealing processes while it fails for the
simulation of laser irradiation processes, whose behavior can
be accurately investigated by means of the atomistic KMC
approach. The continuous results also suggests that a fine
tuning of the Rafferty et al. rates can more easily match the
KMC predictions.

VI. CONCLUSION

In the present work a kinetic Monte Carlo method has
been proposed which simulates the evolution of the damage
caused by an ion implantation process in silicon during a laser
annealing treatment. Thermal fields were previously obtained
and extracted from a simulator based on the phase-field
methodology. The atomistic KMC simulations suggest that
interactions which preserve the total defect system prevail.
The results suggest a faster dissolution of V -type with respect
to I -type defects, reflecting the dissolution energy differences
between interstitial and vacancy complexes. In particular,
small I -type aggregates undergo a negligible solid phase
reduction for both partial melting laser irradiations tested,
while vacancy complexes show a pronounced Oswald ripening
process with a reduction of cluster density with respect to
the postimplant concentrations for V2 and V3 and a relative
shift to larger complexes. The picture of the damage system
evolution has been related to the dopant activation in the silicon
solid phase during laser annealing [16]. Atomistic KMC
results, elucidating the damage reduction mechanism, suggest
that small cluster dissolution plays a central role in dopant
activation, decreasing the number of trap sites controlled by
the Oswald ripening process.

Concurrently, a comparison between the KMC and con-
tinuous models with the two different sets of reaction rates
(taken, respectively, from the works of Giles et al. [18] and
Rafferty et al. [21]) has been reported which suggests that
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the second setting better reproduces the KMC scenario. The
great difference arises from the backward reaction rate kb

n,

where the exponential energies are fixed equal in both sets, but
differences appear in the constant exponential prefactor. The
results suggest that a fine tuning of the Rafferty et al. rates
can easily match the KMC predictions and that a formulation
which fixes the reaction rates, imposing the rapid reaching of
an equilibrium state, is not reliable for the simulation of laser
annealing processes.

To conclude, we would like to discuss two approximations
on the basis of our method, i.e., the transition state theory
[Eq. (1)] and the continuous heat diffusion equation in the
form of Eq. (11). We assume the validity of the equilibrium
rate expression (1) also in the presence of variable temperature
fields with the only prescription that the frequency list must
be updated when the local temperature significantly changes
[see the discussion in Sec. III], i.e., we approximate the local
temperature as a stepwise function of time which is constant
between two successive updates. This numerical procedure is
consistent with the assumption of local equilibration, which
in turn validates also the Arrhenius-type expression and the
derivation of Eq. (12) for error control. The internal consis-
tency of the local equilibration is violated if the following
inequality does not hold τi = 1/νi 
 τT 
 τph (where τT

is the equilibration time and τph ≈ 10−12 s is the typical
phonon time scale), i.e., if the average (local) kinetic energy
of the system changes at a rate similar to that of the faster
degree of freedom (i.e., the phonons). This situation is not
relevant in our simulations. However, an improvement of the
formalism when this approximation fails would need a revision
of the classical rate theory [28] and a generalization of the
temperature definition (a preliminary tentative formulation of
this can be found in Ref. [19]).

Somewhat connected to the local equilibration hypothesis
is the use of the heat diffusion equation as a first-order
approximation for the energy transport in our system. This
approximation is sufficiently accurate if (a) the transfer time
(∼10−10 s) of the electromagnetic excitation from the electron
system to the phonon system is significantly faster than the
simulated time scale for the evolution of the thermal field;
(b) if the phonon mean free path (∼10 nm) is much smaller than
the simulated space scale. These conditions are verified in our
case since the simulated time is ∼μs while the computational
box is ∼μm. Improvements can be obtained using different
derivations for the energy transport derived in the framework
of the Boltzmann equation. In particular, for the question (a),
a two-temperature (one for the electrons, the other for the
phonons) model [29] can be conveniently implemented in
order to describe with accuracy the energy transfer between
the two systems.

Note that the generalizations necessary to overcome the
limitations of the present approach could be topics of future
research work, especially in view of applications to laser irra-
diations with shorter pulses (∼ns). Another possible extension
of this research, which does not imply a complete revision of
the formalism, could be the application of the method in the
lattice kinetic Monte Carlo framework, aiming to avoid the
pointlike (local) approximation for the transition frequencies
when the evolving particles belong to large complexes.
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