
Noname manuscript No.
(will be inserted by the editor)

TuCCompi: A Multi-Layer Model for Distributed
Heterogeneous Computing with Tuning Capabilities

Hector Ortega-Arranz · Yuri Torres ·
Arturo Gonzalez-Escribano ·
Diego R. Llanos

Received: date / Accepted: date

Abstract During the last decade, parallel processing architectures have be-
come a powerful tool to deal with massively-parallel problems that require
High Performance Computing (HPC). The last trend of HPC is the use of
heterogeneous environments, that combine different computational processing
devices, such as CPU-cores and GPUs (Graphics Processing Units). Maxi-
mizing the performance of any GPU parallel implementation of an algorithm
requires an in-depth knowledge about the GPU underlying architecture, be-
coming a tedious manual effort only suited for experienced programmers. In
this paper, we present TuCCompi, a multi-layer abstract model that sim-
plifies the programming on heterogeneous systems including hardware accel-
erators, by hiding the details of synchronization, deployment, and tunning.
TuCCompi chooses optimal values for their configuration parameters using a
kernel characterization provided by the programmer. This model is very use-
ful to tackle problems characterized by independent, high computational-load
independent tasks, such as embarrassingly-parallel problems. We have evalu-
ated TuCCompi in different, real-world, heterogeneous environments using the
All-Pair Shortest-Path problem as a case study.

Keywords Abstract parallel model · Auto-Tunig · CUDA · GPU ·
Heterogeneous system · HPC framework · MPI · OpenMP

1 Introduction

Some computing-intensive problems are divided into many independent tasks
that can be executed in parallel without requiring any communication among
them. They are called embarrassingly-parallel problems [1]. Many real prob-
lems are included in this category, such as index processing in web search [2],
bag-of-tasks applications [3], traffic simulations [4] or Bitcoin mining [5].
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Although the parallelization of embarrassingly-parallel problems does not
require a very complex algorithm to take advantage of parallel computing envi-
ronments, their high amount of computational work requires High Performance
Computing (HPC). Deployment, load balancing, and tasks synchronization de-
tails should be tackled by the programmer in a specific way for different appli-
cations, and different execution environments. In order to give support to the
massive demand of HPC, the last trends focus on the use of heterogeneous en-
vironments including computational units of different nature, such as common
CPU-cores, graphics processing units (GPUs) and other hardware accelerators.
The exploitation of these environments offers a higher peak performance and
a better efficiency compared to the classical homogeneous cluster systems [6].
Due to these advantages, and since the cost of building heterogeneous sys-
tems is low, they are being incorporated into many different computational
environments, from academic research clusters to supercomputing centers.

Despite the wide use of heterogeneous environments to execute massively-
parallel problems, there are two issues that limit the usability of these systems.
The first one is the lack of computing frameworks that can easily schedule the
workload in such complex environments. Some works have been presented to
integrate the use of different programming languages or tools [7,8]. However,
the programmer still needs to tackle different design and implementation prob-
lems related with each level of parallelism. These problems are specially more
complex when integrating GPU programming techniques. The second limi-
tation is the lack of a tuning methodology that efficiently unleashes all the
power of GPU devices. Although there are languages, such as CUDA, that
aim to reduce the programmer’s burden in writing parallel applications, it is
a difficult exercise to correctly tune the code in order to efficiently exploit all
underlying GPU resources. Several studies [9,10] have shown that, in some
cases, the values that are recommended by CUDA do not lead to the optimum
performance, leaving to the programmers the responsibility of searching for the
best values. This search usually implies to carry out several time-consuming
trial-and-error tests. There is not a parallel model that automatically selects
the optimal values for CUDA configuration parameters, such as the thread-
Block size-shape, or the state of L1 cache memory, for each kernel. These
optimization techniques significantly enhance the GPU performance.

In this paper, we present TuCCompi (Tuned, Concurrent Cuda, OpenMP
and MPI), a multi-layer, skeleton-based abstract model, that transparently
exploits heterogeneous systems and squeezes the GPU capabilities by auto-
matically choosing the optimal values for important configuration parameters.
Moreover, it easily supports the inclusion of work distribution policies as plug-
ins. Each layer represents a level of parallelism. The first layer handles the
distributed-memory environment, coordinating different shared-memory sys-
tems (nodes). The second layer manages the computational units that are in-
side the nodes. The third layer automatically deploys the execution in the hard-
ware accelerators, such as the GPUs. The fourth layer automatically handles
concurrent works inside these GPUs. Finally, an internal tuning mechanism
automatically selects the optimal values for GPU configuration parameters
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for each kernel, and each GPU architecture. We have developed a prototype
framework to test this model, allowing a user to transparently take advan-
tage of all computational capabilities of both, CPU-cores and GPU devices,
distributed across different shared-memory systems, without having a deep
knowledge of parallel programming methods. The case study used to evaluate
the model is the All-Pair Shortest-Path problem. The experiments have been
run in an academic heterogeneous environment.

The contributions of this work are: (a) a multi-layer abstract parallel model
that simplifies programming in heterogeneous systems including hardware ac-
celerators, by hiding the details of synchronization, load balancing, and deploy-
ment; (b) a prototype implementation that exploits modern GPU capabilities,
such as concurrent kernel execution on a GPU, or parameter tuning for GPU
execution; and (c) a technique to allow the programmer to supply abstract
kernel characterizations of the GPU codes to help the framework to chose op-
timal values for important CUDA tuning parameters. These optimal values
are valid for any current GPU architecture, and are based on the work of [10].
Experimental work with the prototype framework shows that the new abstrac-
tion layers easily allow to obtain performance improvements of up to 12 % in
the test case, with minimum extra programming effort, compared with using
only the traditional three first ones.

The rest of this paper is organized as follows. Section 2 describes some
related work. Section 3 introduces our conceptual approach. Section 4 describes
the use of the model through some code snippets. Section 5 shows the internals
of the TuCCompi framework. Section 6 explains the case study used. In Sect. 7
we present the experimental environment and the results obtained. Finally,
Sect. 8 summarizes our conclusions and describes the future work.

2 Related work

There are several works that integrate languages on tools to consider several
levels of parallelism. llCoMP [7] is a source-to-source compiler that translates
C annotated code to MPI + OpenMP or CUDA code. The user needs to specify
the sequential code he wants to parallelize. The authors are only focused in
parallel-loop problems. This compiler does not support the joint use of CUDA
with any other parallel model, therefore, it is not appropriate to be used in
heterogeneous environments. Besides this, the llCoMP compiler does not easily
support a new GPU architecture or other kind of accelerators.

The authors in [8] propose a framework called OMPICUDA to develop par-
allel applications on hybrid CPU/GPU clusters by mixing OpenMP, MPI and
CUDA models. This framework presents some limitations: it cannot be easily
modified to support a new parallel model, and it is not consider any policy to
select proper values of CUDA configuration parameters. Another parallel pro-
gramming approach using hybrid CUDA, MPI and OpenMP programming is
presented in [11]. The authors focus on the model to solve iterative problems,
and they do not take into account any generic CUDA optimization technique.
It does not support any mechanism to include new load distribution policies.
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Fig. 1 Usage of TuCCompi with code-transformation modules.

The authors in [12] have created an hybrid tool, that includes the same
parallel models used by the previous mentioned works, to solve raycasting
volume rendering algorithm. They test the system scalability when the input
data size is increased. This tool is only focused in a single parallel application
and does not include any CUDA optimization technique, nor any automatic
mechanism to efficiently exploit heterogeneous environments.

Other programming libraries for hybrid architectures supporting GPUs are
SkelCL [13], StarPU [14] and SkePU [15]. The first tries to enhace the OpenCL
interface in order to coordinate different GPUs of the same shared-memory
machine. However, it does not support load distribution between GPUs of dif-
ferent machines, or even, other computational units of different nature, such as
the CPU-cores. These limitations are not present in StarPU and SkePU, but
they do not support the exploitation of the concurrent-kernels feature of mod-
ern GPUs. StarPU does not even consider the use of tuning techniques for bet-
ter exploiting GPU capabilities. SkePU tries to find the optimal threadblock
size by automatically checking all possibilities using trial-and-error executions,
but it does not provide a model for tuning this parameter.

There are other works that aim to transform sequential code to parallel
code, and vice-versa. For example, accULL [16] receives a sequential code and
automatically transforms it to parallel GPU code. Another example of code
transformation is Ocelot [17], that works in the opposite way. Given a GPU
implementation, Ocelot transforms it to sequential code. TuCCompi model
does not aim to deal with code transformations, but these works can be easily
attached as previous functional modules to our multilayer model (see Fig. 1).
Another attachable module could be the work of elastic kernels presented in
[18]. They do manual source-to-source code transformations in order to obtain
GPU kernels that exploit more the multikernel feature of the GPU devices.

3 TuCCompi Architecture

TuCCompi integrates several execution layers with different coordination mech-
anisms, that are abstracted to provide an unified view of the computing het-
erogeneous system to the programmer. He has to program his applications in
two programming levels: (1) a coordination level, that abstracts the work dis-
tribution across the computational units inside the distributed shared-memory
nodes; and (2) a deployment level, that abstracts the management of computa-
tional unit of different nature. This section gives a description of these different
layers defined in our model. A graphical representation is depicted in Fig. 2.
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Fig. 2 Layer deployment of TuCCompi model in a heterogeneous cluster.

The 1st layer (distributed environment) Nowadays, one of the most
economic ways to assemble a heterogeneous system is to interconnect a set of
different individual machines, also called nodes, such as personal computers,
laptops, complex virtual host machines, or even other supercomputing systems
composed in turn by other machines. It is necessary to apply communication
and synchronization mechanisms in order to coordinate these nodes. The first
layer of TuCCompi (see Fig. 2) is responsible of managing this node coordi-
nation without taking into account the hardware details and features of each
machine. This layer is abstracted at the coordination level, allowing the pro-
grammer to skip thinking in terms of more complex message-passing models.

The 2nd layer (shared-memory systems) Nodes are nowadays com-
posed by several processing units that share a global address space. Addition-
ally, there are other accelerator devices, such as GPUs, FPGAs and Xeon Phi,
that are usually controlled by a host system (CPU) and are capable of exe-
cuting kernels independently. In this layer of TuCCompi we use the concept
of “computational unit” for any CPU-core or device hosted in a node. This
second layer is responsible of the coordination of all computational units inside
the node. For the programmer’s point of view, this layer is also encapsulated in
the abstraction of the coordination level. It also hides the fact that each special
device is controlled by a dedicated thread that executes a different code. The
programmer sees all devices and CPU-cores in an homogeneous form.

The 3rd layer (GPU devices) This layer implements the abstraction
used at the deployment level. It is the responsible of the coordination and
deployment actions needed for special devices, such as GPUs, FPGAs, or Xeon
Phis, in an homogeneous form. This is done by hiding the details needed to
manage different address spaces, offloading codes, etc.

The 4th layer (concurrent GPU kernel execution) The most re-
cent NVDIA GPUs support concurrent-kernel execution [19], where different
kernels of the same application context can be executed on a GPU at the same
time. This feature is very helpful when kernels that use just few resources are
launched, allowing a concurrent execution of other kernels, and thus, exploit-
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ing at the same time all resources of the device. Although at first glance this
feature seems to be profitable only when low resource-consuming kernels are
launched, the concurrent execution of higher resource-consuming kernels also
gives performance gains. This occurs because several kernels of the same ap-
plication context work on the same memory areas taking advantage of the L1
data-cache, originating less number of cache-misses and therefore alleviating
the global memory bottlenecks. The programmer provides a parameter to de-
fine the number of tasks that will be concurrently deployed in a single GPU for
each application. This layer internally take cares of the synchronization of the
concurrent kernel launching. It contributes to the functionalities encapsulated
in the deployment level.

The Tuning layer While correctness of an NVIDIA CUDA program
is easy to achieve, the optimal exploitation of the GPU computational ca-
pabilities is much more complicated than in traditional CPU cores. Usually,
it requires an extensive CUDA programming experience. Some examples of
code tuning strategies are the choice of an appropriate threadBlocks size and
shape, the coalescing maximization of the memory accesses, or the occupancy
maximization of the Streaming Multiprocessors, among others. Moreover, the
resource differences between each GPU architecture and release, such as the
number of computational units, cache-sizes, and other features, make it even
more difficult to find the optimal configuration for a given GPU. Besides this,
the optimal values also depend on the memory access pattern and the charac-
teristics of the code of each executed kernel. This layer allow the programmer
to supply to the deployment level with an abstract kernel characterization of
the CUDA codes in terms of human-understandable features. With these val-
ues, the model internally chooses proper values for the execution parameters.
This solution opens the possibility to integrate techniques to automatically
analyze and characterize the CUDA kernel codes for specific GPU devices.

4 TuCCompi Model Usage

To build a program using TuCCompi, a programmer should provide the fol-
lowing elements (see Fig. 3): (1) Coordination level, implemented as a main C
language program with the TuCCompi primitives and macros, and (2) Deploy-
ment level, including the sequential-CPU and the parallel-GPU specific codes
for each application, named as PLUG-IN CPU and PLUG-IN GPU respectively,
and characterizations of the accelerator kernel codes.

In this way, the application programmer does not have to provide: (a) the
values of GPU configuration parameters for an optimal execution on each
different GPU, (b) the code implementation for concurrent kernel deployment,
(c) the code implementation for the management of the distributed and shared
computational-units, nor (d) the communication between all involved nodes.

4.1 Coordination Level - TuCCompi Main Program Implementation

Figure 4 shows an example of the code that the user has to implement in order
to start and control the execution. The primitive TuCCompi COMM in Line M01
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Fig. 3 TuCCompi model usage. Elements in the dashed box are provided by the program-
mer. Note that the user can develop different versions of each plug-in (Code A, Code B, . . . )
but only one at a time will be deployed into TuCCompi framework.

M00: main( ){
M01: TuCCompi COMM( );

M02: (main user code)

M03: TuCCompi SETMK( number );

M04: TuCCompi PARALLEL(MS, plugin Cpu(..), plugin Gpu(..));

M05: TuCCompi SYN( );

M06: (main user code)

M07: TuCCompi ENDCOMM( );

M08: }//main

Fig. 4 User implementation of the TuCCompi main-program. The programmer has to add
to his code the boxed primitives.

initializes the system. Afterwards, the user can introduce his code, including
variable declarations, initializations and the sequential code needed for the
application. Line M03 shows the primitive needed to set the number of ker-
nels that the GPU devices will execute concurrently (information for the 4th
execution layer). Line M04 shows the primitive used to initialize and execute
the functions implemented in the corresponding plug-ins. This synchronization
expression transparently executes the CPU-plugin code for the CPU-cores, or
the specialized GPU-plugin code for the GPU devices, using the same seman-
tics, across a whole heterogeneous cluster. The first parameter of this macro
represents the kind of scheduling policy desired by the user (described below).
It is used internally by the 1st and 2nd execution layers to balance the work-
load across the different computational units. Line M05 shows the primitive
needed to make the process wait until all node computational units have fin-
ished. The user is free to insert more code to execute other kernels, before the
finalization of the heterogeneous cluster communication, shown in line M07.

4.2 Coordination Level - Workload Scheduling

The TuCCompi model includes three different policies to distribute the work-
load between all available cluster resources through the first parameter of the
M04 primitive.
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C00: plugin Cpu(user vars ...) {
C01: (Cpu user code)
C02: }//pluginCPU

G00: plugin Gpu(user vars ...) {
G01: (Gpu user code)

G02: TuCCompi GPULAUNCH(k1, input size, TuCCompi PARLLMK(vector1, type, lng), ...);

G03: TuCCompi GPUSYN( );

G04: TuCCompi GPULAUNCH(k2, input size2, TuCCompi PARLLMK(vector2, type, lng), ...);

G05: TuCCompi GPUSYN( );

G06: }//pluginGPU

Fig. 5 Plugin Cpu (top) and Plugin Gpu (down) interfaces. The programmer adds to his
code the boxed arguments to deploy the Cpu plugin in TuCCompi, and he has to replace
the CUDA kernel launch primitives for the boxed TuCCompi macros for the GPU plugin.

The first one, EQ1, is an equitable policy that schedules the same number of
tasks to each node of the 1st layer (distributed memory environment), indepen-
dently of the number of CPU-cores, GPUs, or other accelerators that the nodes
have inside. Later, each node equally divides the assigned workload between
all its own computational units (CPU-core/Accel.), also in a balanced way.

The second one, EQ2, is also an equitable policy, but it divides the workspace
straight between the computational units of the whole cluster at the 2nd layer.
The workspace division does not consider the computational unit nature.

The third one, MS, follows a master-slave model. One computational unit
is sacrificed to act as the master, and the rest of the computational units
work as slaves. The slaves enter into a working loop, requesting tasks from the
master when they become idle, until the master sends a termination signal
to them. Thus, the more powerful units will ask for more work, and therefore
they will process more tasks than the less powerful units. As the master can be
located at any cluster node, these asking-for-tasks requests are issued through
distributed-environment communications.

Additionally, TuCCompi also offers the possibility of including a scheduling
policy programmed by the user through the Scheduling plug-in (see Sect. 5.5.1).

4.3 Deployment Level - User-code Plug-ins

Figure 5 (top) shows the interface of the sequential code that will be executed
in a CPU computational unit. The user is responsible of inserting the code to
implement the algorithm that solves a single task (line C01, Cpu user code).

Figure 5 (bottom) shows the code that will be executed in a CPU thread
to manage one or more associated GPUs. The control of the GPU often in-
volves active waits. In this case, a CPU-core should be sacrificed to execute
this GPU-controller thread. The user should define the code that handles the
logic control of the algorithm that comprises the use of one or several GPU
kernels. This code will be responsible of launching the corresponding kernels.
Line G02 shows the TuCCompi macro that carries out a kernel launch, with
the name of the kernel as first parameter, and followed by other user variables
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Table 1 TuCCompi kernel-characterization classification. The def choice can be used when
the user does not know the kernel characterization.

Parameter Description Choice
A Global memory-access pattern scatter/ medium-coalesced/

coalesced/ def

B Ratio of arithmetic instructions per thread high/ low/ none/ def
compared to the global-memory accesses

C Ratio of L1 cache memory lines evictions high/ medium/ low/ def
compared to the size of this memory

D Ratio of memory data reutilization compared to high/ medium/ low/ def
the number of arithmetic instruction per thread

K00: TuCCompi KERNELCHAR(k1, 2, scatter, none, high, low);

K01: global void k1 (...){
K02: (kernel implementation)
K03: }
K04: TuCCompi KERNELCHAR(k2, 1, coalesced, low, low, high);

K05: global void k2 (...){
K06: (kernel implementation)
K07: }

Fig. 6 Kernel characterizations and implementations. The programmer adds the boxed
primitive before the kernel implementation to characterize it.

that have been previously allocated in the GPU. Transparently for the user,
the model executes as many kernel instances as indicated by the programmer
in the main control program (MK value) (see line M03 of Fig. 4). Every con-
current kernel launched will need its own workspace to compute its results.
The second primitive of line G02 gives to the kernel one memory pointer for
each data structure needed. The needed parameters are: The variable name;
the native type of the elements that it contains; and the number of elements
that compounds it. As we said before, the algorithm implementation can re-
quire the execution of different kernels that should be sequentially launched
for a single task computation (line G04). The TuCCompi primitive of line G03
forces the CPU to wait for the finalization of an executing kernel, or kernels
concurrently olaunched, providing a synchronization mechanism.

4.4 Deployment Level - Kernel Characterization

The user has to provide a general characterization of his kernels along with
its definition. This information is easily expressed in our prototype implemen-
tation through the TuCCompi KERNELCHAR( kernel name, num dims, A, B,

C, D ) primitive. The values for parameters A, B, C and D have to be chosen
from the kernel-characterization classification shown in Table 1. TuCCompi
model will automatically optimize the use of the underlying hardware of any
kind of GPU found in the platform, following the guidelines and optimizations
proposed in [10] for each possible combination of these parameters.

Figure 6 shows some examples of the code used to characterize the ker-
nels. Lines K00 and K04 describes the characterization of kernels k1 and
k2 respectively, indicating the kernel name, the number of dimensions of the
threadBlock, and the class chosen from the classification criteria described in
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Tab. 1. In the case that the user does not know how to classify his kernels, he
can use the default (def) values provided by the model. The primitive used
for this default case is TuCCompi KERNELCHAR(kernel name, num dim, def,

def, def, def).

5 TuCCompi internals

In this section we will discuss the internals of the TuCCompi framework. The
functions and primitives described here have a correspondence with the model
layers described in Sect. 3.

5.1 Cluster Inter-Node Communication (1st Layer): TuCCompi COMM

Once a TuCCompi program is in execution, each process initializes its MPI-
identification variables, and enters into a global communication step carried
out by exchanging a few MPI messages. An arbitrary process is the coordina-
tion handler, that we name as parent process. It receives from the remaining
processes the number of the computational resources they are able to manage.
Then, the parent process sends to each process a global identification num-
ber for each resource inside the whole heterogeneous cluster. Additionally, the
parent process sends more information about the heterogeneous cluster, such
as the total number of computational units and the numeration per node.

Fig. 7 shows the implementation of this first phase. We will now review the
data structures involved. The v cu vector stores the number of computational
units from each process. The v id vector stores the number from which the nu-
meration of computational units should start for the process i. The total cu

variable stores the total number of computational units. The id mpi variable
stores the identifier of the MPI process. The n proc variable stores the total
number of MPI processes. Finally, the PARENT constant is the identifier of the
MPI process that coordinates the communication. In this first phase, lines
02-04 initialize some values and ask to the second layer how many computa-
tional units has the machine. Lines 05-09 receive information from the rest
of processes. Lines 10-14 perform the heterogeneous-environment information
shipping. Lines 15-21 correspond to the behavior of the rest of process, that
looks up for the available resources, sends this value to parent process and
receives the cluster information.

For problems where not all the input data is needed, and just the required
one is wanted be sent from the parent process, the user just has to slightly
modify this macro in order to obtain this desired behavior of the framework.

5.2 Cluster In-Node Synchronization (2nd Layer): TuCCompi PARALLEL

Once the TuCCompi model has been initialized and the user variables have
been defined, the TuCCompi PARALLEL primitive automatically creates as many
OpenMP threads as the number of CPU-cores that will perform the parallel
execution. Figure 8 shows the code that is executed when the programmer uses
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00: comm(v cu, v id, total cu, id mpi, n proc){
01: if ( id mpi == PARENT){
02: v id [PARENT] = 0;
03: v cu [PARENT] = second layer resources()
04: total cu = v cu[PARENT];
05: for (int i=1; i<n proc; i++){
06: v id [i] = total cu;
07: RECV( v cu [i], i);
08: total cu += v cu [i];
09: }
10: for(int i=1; i<n proc; i++){
11: SEND(v id, i);
12: SEND(v hilos, i);
13: SEND(total cu, i);
14: }
15: }else{
16: cu local = second layer resources()
17: SEND(cu local, PARENT process);
18: RECV(v id, PARENT process);
19: RECV(v cu, PARENT process);
20: RECV(total cu, PARENT process);
21: }
22: }

Fig. 7 Implementation of the comm() recognition function, called from TuCCompi COMM().

00: #define TuCCompi PARALLEL(MS, pluginCPU, pluginGPU)\
01: cudaGetDeviceCount(&TuCCompi gpuCount);\
02: omp set num threads(omp get num procs());\
03: #pragma omp parallel\
04: {\
05: int task;\
06: int TuCCompi local id = omp get thread num();\
07: int TuCCompi global id = v id[id mpi] + TuCCompi local id ;\
08: if( TuCCompi global id == TuCCompi master) {\
09: pluginMASTER;\
10: } else if( TuCCompi local id < TuCCompi gpuCount ){\
11: cudaDeviceProp props;\
12: cudaGetDeviceProperties(&prop,TuCCompi local id);\
13: int gpu arch = props.major;\
14: while( (task = pluginSLAVE) < total tasks)\
15: pluginGPU;\
16: } else\
17: while( (task = pluginSLAVE) < total tasks)\
18: pluginCPU;\
19: }#pragma

20: #define TuCCompi SYN( )\
21: #pragma omp barrier\
22: MPI Barrier(MPI COMM WORLD)

23: #define TuCCompi END( )\
24: MPI Finalize();

Fig. 8 TuCCompi PARALLEL() and other macro-definition codes.

the TuCCompi PARALLEL primitive for the master-slave scheduling policy, (EQ1
and EQ2 policies are not shown due to space restrictions). The master-slave
implementation just divides the workload between the cluster nodes and the
computational units. The slaves execute each task without needing any more
communication with the master. Lines 05-07 initialize the intra-node computa-
tional units identifiers. Lines 08-09 check whether any of the current OpenMP
thread should act as the master, executing the default master function. If
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00: #define TuCCompi GPULAUNCH(k name,input size,uservars)\
01: for( int parll = 0; parll < MK; parll++)\
02: k name<<<t grid(k name, arch, input size),\
03: t threads(k name, arch)>>>(uservars)\

04: #define TuCCompi PARLLMK(var name,var type,var length)\
05: var name + parll * sizeof(var type) * var length

06: #define TuCCompi GPUSYN( )\
07: cudaThreadSynchronize()

Fig. 9 Declarations for the automatic kernel launch and multikernel support.

there are GPUs, each one is governed by its corresponding CPU-core. There-
fore, lines 10-15 obtain the device properties, entering into the ask-for-tasks
working loop and executing the parallel GPU code provided by the pluginGPU
(see Sect. 4.3). The normal CPU-cores also enter into the ask-for-tasks working
loop but executing the code of the pluginCPU (see Sect. 4.3) (lines 16-18).

5.3 Kernel Launch and Concurrent Kernel Execution (3rd and 4th Layers):
TuCCompi GPULAUNCH

Before the task-threads spawn (Line 03 of Fig. 8), the first layer (distributed-
memory process) consults how many GPUs are available in the shared-memory
node (Line 01 of Fig. 8). Once in the parallel region, an OpenMP thread is as-
signed to one CPU-core in order to govern each hardware accelerator, also stor-
ing some relevant properties of the GPU, such as its architecture (Lines 11-13
of Fig. 8). Afterwards, this thread is the responsible of handling the logic con-
trol of the algorithm implemented in pluginGPU, actually launching the differ-
ent kernels invoked through the primitive TuCCompi GPULAUNCH(kernel name,

input size, kernel vars ), whose definition is shown in Fig. 9.
The model automatically detects if the concurrent execution of several

kernels (the multikernel feature) is supported by the GPU using the prop-
erties previously retrieved. Otherwise, the model always launches only one
kernel at the same time. The multikernel feature is also embedded in the GPU
launching primitive (Line 01 of Fig. 9). Additionally, in order to make possible
that each kernel works in a different workspace, the PARLLMK(variable name,

variable type, variable length )macro automatically computes the mem-
ory offset allocation of the corresponding variables that are task-dependent
(Lines 04-05 of Fig. 9).

5.4 Automatic Kernel Tuning (Tuning Layer): TuCCompi KERNELCHAR

The optimization layer automatically configures the kernel parameters depend-
ing on: (1) The GPU architecture where it is going to be launched, and (2)
the kernel characteristics provided by the user.

In order to obtain the optimal values in terms of kernel features, we have
followed the guidelines proposed in [10]. The authors designed and imple-
mented a suite of micro-benchmarks, called uBench, in order to evaluate how
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00: #define TuCCompi KERNELCHAR(name, numDim, A, B, C, D)\
01: int k ##name[4] = k ##A##B##C##D

02: #define t threads(name,arch) k ##name[arch]
03: #define t grid(name,arch,size) size/k ##name[arch]

04: #define k defdefdefdef {256, 256, 256, 256}
05: #define k scatterlowhighlow {256, 256, 96, 64}
06: #define k coalescedlowlowmedium {256, 128, 192, 128}
07: #define ...

Fig. 10 Some declaration examples for the automatic GPU kernel optimizations.

different threadBlock sizes and shapes affect the performance for each GPU ar-
chitecture (Fermi and Kepler). They characterized and classified a wide range
of kernel types, also presenting the optimal configurations for them. As pre-
viously discussed in Sect. 4.4, we have implemented a classification based on
the previously cited work.

As long as the model recognizes the architecture of the GPUs that are
present in each cluster node, it only needs to know the characterization of each
user-defined kernel. This characterization is indicated by the programmer be-
fore the kernel definition (see previous example of Fig. 6), and automatically
mapped to a structure that contains the optimal values for all classified archi-
tectures (see Fig. 10). As can be seen in lines 02-03 of Fig. 9, these values are
already embedded in the primitive of kernel launching as a call to the t grid()

function, that returns the optimal number of blocks, and t threads(), that
returns the optimal number of threads per block. In this way, TuCCompi au-
tomatically selects the optimal configuration of the threadsBlock size-shape.

If the user does not know how to characterize his kernel, the default values
can be used. These values are recommended by CUDA [20], to maximize the
SM Occupancy. Although these recommended values sometimes work well, we
will see that there could be performance differences of more than ten percent
compared to the optimal values.

5.5 Advanced TuCCompi Model Features

TuCCompi model has additional functionalities and features, such as the pos-
sibility of executing a more complex workload scheduling policy created by
the user, or the possibility of changing the optimal values for each kernel and
GPU. We will now describe two plugin systems that help with these functions.

5.5.1 Scheduling plug-in system

The current master-slave policy involved in the prototype gives a simple im-
plementation where only one task is scheduled to each slave independently
of its computational power. The master and the slaves execute, respectively,
the master-function and slave-function codes provided in the scheduling plug-
in. Additionally, if the problem or the user need a different granularity or a
particular load distribution that follows a special pattern or policy, the model
allows the programmer to use his own scheduling implementation. This is done
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by injecting new distribution policies through a scheduling plug-in system, us-
ing an extended primitive TuCCompi PARALLEL(MS, pluginCPU, pluginGPU,

pluginMASTER, pluginSLAVE).
This is very useful if the user has in the heterogeneous environment some

devices that works very fast compared with the rest. In this case, it may be
a good choice that the master gives them a pack of tasks instead of a single
one. When an OpenMP thread responsible of a GPU device asks for tasks,
it is able to retrieve the corresponding device information that could be sent
to the master in the requesting message. With this information, the master
could give a pack of tasks to the most powerful devices and a single one to
the less powerful computational units. Thus, the master can produce a more
complex distribution depending on the capabilities of the computational units
that are asking for work. Figure 11 shows a customized implementation of the
scheduling plug-in created for the case study.

5.5.2 Characterization plug-in system

The optimal values for GPU configurations used by the Characterization plug-
in are stored in a file. These values can be easily updated if new devices with
different architectures or resources are added to the heterogeneous environ-
ment. Moreover, it is also easy to modify these values if the user wants to
experiment with new combinations of parameters.

6 Case study

In order to illustrate the capabilities of the TuCCompi framework prototype,
we have chosen the All-Pair Shortest-Path (APSP) problem for sparse graphs,
as our case study because it is a representative example with good characteris-
tics to evaluate the model features. Being an embarrassingly parallel problem,
it suits perfectly with TuCCompi approach for the first three layers. Besides,
the GPU solution for this problem involves three kernels of very different na-
ture, and characterization. This variety allows us to check the behavior of the
fourth and tuning layers.

In this section we explain this problem in more detail and we describe the
corresponding plug-ins developed for the TuCCompi model.

6.1 The All-Pair Shortest-Path (APSP) Problem

The APSP problem is a well-known problem in graph theory whose objec-
tive is to find the shortest paths between any pair of nodes. Given a graph
G = (V,E) and a function w(e) : e ∈ E that associates a weight to the edges
of the graph, it consists in computing the shortest paths for all pair of nodes
(u, v) : u, v ∈ V . The APSP problem is a generalization of a classical prob-
lem of optimization, the Single-Source Shortest-Path (SSSP), that consists in
computing the shortest paths from just one source node s to every node v ∈ V .

An efficient solution for the APSP problem in sparse graphs is to execute a
SSSP algorithm |V | times selecting a different node as source in each iteration.
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Algorithm 1 GPU code of Crauser’s algorithm. Kernels are delimited by <<< ... >>>.

1: while (∆ 6= ∞) do
2: <<<relax>>> (U, F, δ); //Edge relaxation
3: ∆ =<<<minimum>>> (U, δ); //Settlement step 1
4: <<<update>>> (U, F, δ,∆); //Settlement step 2
5: end while

00:void master scheduler(task ini,total tasks){
01: int next task = task ini;
02: while( next task < total tasks ){
03: RECV(id slave, any slave, slave info);
04: if( slave info == (FERMI or KEPLER) ){
05: if( (next task + MK) <= total tasks){
06: SEND(next task, id slave);
07: next task = next task + MK;
08: }else{
09: SEND(END SIGNAL, id slave);
10: token++;
11: }
12: }else{
13: SEND(next task, id slave);
14: next task++;
15: }
16: }
17: while( token < total cu-1 ){
18: RECV(id slave, any slave);
19: SEND(END SIGNAL, id slave);
20: token++;
21: }
22:}

00:SSSP pluginGPU(...){
01: user code

02: while( ){
03: TuCCompi GPULAUNCH(relax,n v,v d,a d,w d,
07: PARLLMK(p d, bool, n v),
08: PARLLMK(f d, bool, n v),
09: PARLLMK(c d, int, n v) )
11: TuCCompi GPUSYN( )
12: TuCCompi GPULAUNCH(min,n v,v d,a d,w d,
16: PARLLMK(p d, bool, n v),
17: PARLLMK(f d, bool, n v),
18: PARLLMK(c d, int, n v) )
20: TuCCompi GPUSYN( )
21: TuCCompi GPULAUNCH(update,n v,v d,a d,w d,
25: PARLLMK(p d, bool, n v),
26: PARLLMK(f d, bool, n v),
27: PARLLMK(c d, int, n v) )
29: TuCCompi GPUSYN( )
30: }
31: user code

32:}//SSSP pluginGPU

23: int slave(id slave, mpi master, tag){
24: SEND(id slave, mpi master, tag);
25: RECV(task, mpi master, id slave);
26: return task;
27: }

Fig. 11 Our case-study implementation for the functions, master and slave (left), of the
distribution plug-in. Case-study user implementation for pluginGPU (right).

The classical algorithm that solves the SSSP problem is due to Dijkstra [21].
Crauser et al. in [22] introduces an enhancement that tries in each iteration i
to augment the threshold ∆i as much as possible to process more nodes in the
next iteration.

6.2 Plug-ins Used for Our Case Study

Scheduling plug-in: Each SSSP computation is a single independent task.
We have slightly modified the naive master-slave behavior in order to show
how easily is to customize the scheduling plug-in, see Fig. 11 (left). The master
differentiates the nature of the slave that is requesting a task. Depending on
the slaves computational power, the master will send more or less tasks. The
TuCCompi model is better exploited if the master gives more tasks to the
modern GPUs (Fermi, Kepler and so on) due to their multi-kernel execution
feature. This implementation sends MK tasks to each modern GPU, and only
one for the Pre-Fermi architectures and the CPU cores.
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Table 2 Summary of kernels characterization.

Kernel A B C D
Relax scatter low high low
Minimum coalesced low low medium
Update coalesced low low low

Figure 11 (left) shows the master (lines 00-22) and slave (lines 23-27) im-
plementations. The master will manage the task distribution while there are
task to be executed (lines 01-16). To do so, the master waits for a task re-
quest from any slave (line 3). If the slave is a modern GPU (Fermi or Kepler)
(line 04), the master checks if there are MK available tasks to be sent. In this
case, it sends the identifier of the first task of the pack to the corresponding
slave using its identifier, and updates the task counter (lines 05-07). However,
if there are not enough tasks for this type of slave, the master sends to it
the termination signal and updates the counter of slaves that have already
finished (lines 08-11). If the requesting slave is an old GPU (pre-Fermi) or a
CPU-core, the master only sends a single task to the slave (lines 12-15), thus,
the task counter is simply incremented. When all tasks have been scheduled
and carried out, the master sends the termination signal to the rest of active
slaves when they request more tasks (lines 17-21).

Regarding the slave implementation, it first notifies the master that it is
idle (line 24). Then the slave receives the identifier of the task pack to be
executed, 1 task for CPU-cores and Pre-Fermi GPUs, and MK tasks for the
modern GPUs in this prototype (line 25).

SSSP plug-ins: Both the CPU-core sequential and the parallel GPU codes are
implementations of the Crauser algorithm. Their implementation for this prob-
lem has been taken from [23]. Algorithm 1 shows the GPU parallel pseudo-code
of Crauser’s algorithm. Figure 11 (right) shows the TuCCompi implementation
for the pluginGPU. This implementation repeatedly launches three kernels (re-
lax, minimum and update) with different features. Following the classification
criteria described in Sect. 4.4, the kernels are characterized in Table 2.

7 Experimental evaluation

This section describes the methodology used to test the TuCCompi proto-
type, the platforms used, and the input set characteristics for the case study
(the APSP problem). Finally, the experimental results and a discussion are
presented.

7.1 Methodology

In order to evaluate TuCCompi for heterogeneous environments, we have
tested the APSP problem as a case study (see Sect. 6) in different scenarios.
Each scenario was designed with the aim to check the use of the layers involved
in an incremental fashion. Architecture details are shown in Table 3: (1) A sin-
gle GPU, that uses the 3rd, 4th, and the tuning layer; (2) Two GPUs, that
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Table 3 Description of the components that compound the Heterogeneous Clusters (HCs).

Small Heterogeneous Cluster (Small HC)

Node CPUInfo #CPU-cores GPU details

Pegaso IC2 i7 960 3.20GHz 8
GeForce GTX 480 +
GeForce GTX 680

Nodoyuna IC2 Q8200 2.33GHz 4 -
Trasgo/Apolo IC2 Q6600 2.40GHz 4/4 -
Geopar IX E7310 1.6GHz 16 -
Patan IC2 E6550 2.33GHz 2 -
Atc01/02 IC2 6300 1.86GHz 2/2 GeForce 9600GT/-
Atc03 AMD AtX2 3600+ 2 GeForce 8500GT
Atc09 IC Q8299 2.33GHz 4 -

Big Heterogeneous Cluster (Big HC): Small HC plus the following machines

Node CPUInfo #CPU-cores GPU details
Titan01/02/05 IX E5-2620 2.00GHz 4/4/12+12 -
Titan03/04 IX E5645 2.40GHz 8+8/8+8 -
Atc05/06 IX E5630 2.53GHz 8+8/4 -
Atc07 IX X-5675 3.07GHz 12+12 -
Atc08 IX E5-2620 2.00GHz 12+12 -

involve the 2nd layer in addition to the previous ones; (3)Pegaso: A shared-
memory system with two GPUs and eight CPU-cores (two for handling the
GPUs and six for computing), in order to test the 2nd layer by mixing two
different kinds of computational units; (4) Small HC : Small heterogeneous
cluster, that uses all layers of TuCCompi; and (5) Big HC : Big heterogeneous
cluster to evaluate the scalability of the model.

We set the parameter of the concurrent kernel execution to four (MK=4).
The workload scheduling used for the scenarios described below is the cus-
tomized master-slave policy presented in Sect. 6.2. Note that the behavior of
the equitable policies, for our heterogeneous scenarios would result in a bot-
tleneck of the slowest node whereas the rest are idle. Table 3 describes the
heterogeneous platforms used for our experiments. For each node, we indicate
the number of CPU-cores and GPUs. The nodes run Ubuntu Desktop 10.04
OS, with CUDA 4.2 and driver 295.41. The Big HC contains a total of 180
CPU-cores and 4 GPUs. However, each GPU device is governed by a single
CPU core, thus, the total number of real computational units is 180 (176 CPU-
cores plus 4 GPUs). The multi-GPU system includes the 2 GPUs of the Pegaso
machine. The single GPU scenario uses the fastest of them, the GTX 480.

Finally, with the aim of testing the performance gain offered by the pro-
posed 4th and Tuning layers, we have compared the execution of a single GPU
connecting or disconnecting the optimizations introduced by these layers. For
the non-automatically optimized versions (without 4th and Tuning layers), we
have chosen some of the optimal values recommended by CUDA that maximize
the GPU occupancy executing a single kernel at a time.

7.2 Input Set Characteristics

The input set is composed of a collection of graphs randomly generated by a
graph-creation tool used by [24] in their experiments. The graph generation
method leads to irregular loads when applying individual SSSP searches. The
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graphs are stored in standard CSR format, and the edge weighs are integers
that randomly range from 1 . . . 10. We have used four different graph-sizes,
whose number of vertices are 1 049 088, 1 509 888, 2 001 408 and 2 539 008.
These sizes have been chosen because they are multiple of the threadBlock
sizes considered. In this way the GPU algorithm is easier to implement be-
cause we do not have to use padding techniques to avoid buffer overrun errors.
The experiments have been carried out just computing enough task sets (1 024,
2 048, 4 096, 8 102, 16 204, and 32 408) to produce sufficient computational load
to keep scalability in all scenarios.

7.3 Experimental results

GPUs vs the heterogeneous environments Figure 12 (left) shows the
execution times for the single GPU, the multi-GPU system and the two hetero-
geneous cluster scenarios. Although the GPUs are the most powerful devices,
and their combined use significantly decreases the execution times, the addi-
tion of many less-powerful computational units enhances even more the total
performance gain. Moreover, the use of this model has a communication over-
head across nodes lower than 1%. In the Small-HC scenario, this overhead has
never surpassed 0.589% of the total execution time. Figure 13 shows the exper-
imental distribution of tasks per cluster node using the MS scheduling policy,
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compared with the theoretical values that EQ1 and EQ2 static policies would
obtain.

The 4th and Tuning layers performance gain Figure 12 (right) shows
the comparison of the concurrent kernel execution, with MK=4, combined
with the values proposed in [10], with respect to one of the CUDA recom-
mended values for each kind of APSP kernel on the GPU GeForce GTX 480,
with only one kernel per time. The use of the concurrent kernel layer and the
optimization tuning reduces the execution time for our test case up to 12%.

8 Conclusions and Future Work

In this paper we propose TuCCompi, a multilayer abstract model that helps
the programmer to easily obtain flexible and portable programs that automati-
cally detect at run-time the available computational resources and exploits hy-
brid clusters with heterogeneous devices. This model offers to the programmer
a transparent and easy mechanism to select the optimal values of GPU config-
uration parameters just characterizing the nature of the kernels. Any parallel
application that can be devised as a collection of non-dependent tasks working
on shared data-structures can be exploited with the TuCCompi model.

Compared with previous works, TuCCompi adds a novel parallel layer to
the traditional parallel dimensions, with the automatic execution of concurrent
kernels in a single GPU. Additionally, it squeezes even more the computational
power of the GPUs by applying optimal values for runtime configuration pa-
rameters, such as the threadblock size. For our test case, the use of these both
new layers leads to performance improvements of up to the 12%. Thus, these
new layers turn out very significant for heterogeneous clusters with GPUs.

The model is designed to provide a mechanism of plug-ins, in order to easily
change: (1) The algorithms to be deployed; (2) the scheduling policies of the
tasks; and (3) the parameter values for optimal configurations of different
GPU architectures, without making any change in the model. The use of this
model exploits even the less powerful devices of a heterogeneous cluster, and it
correctly scales if more computational units are added to the environment, with
a communication overhead less than one percent of the total execution time.

Our future work includes the implementation and testing of new scheduling
plug-ins for new kinds of applications, also including problems with data-
dependencies, and for specific data partition and data distribution schemes,
needed in problems with larger input data sets. Regarding the concurrent
kernel layer, we plan to incorporate an optional autotunning behavior that
allows the framework to find the optimal number of kernels to be deployed
during the execution.
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