
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 1

An OpenMP Extension that Supports
Thread-Level Speculation

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos, Senior Member, IEEE, and Arturo Gonzalez-Escribano

Abstract—OpenMP directives are the de-facto standard for shared-memory parallel programming. However, OpenMP does not
guarantee the correctness of the parallel execution of a given loop if runtime data dependences arise. Consequently, many highly-
parallel regions cannot be safely parallelized with OpenMP due to the possibility of a dependence violation. In this paper, we propose to
augment OpenMP capabilities, by adding Thread-Level Speculation (TLS) support. Our contribution is threefold. First, we have defined
a new speculative clause for variables inside parallel loops. This clause ensures that all accesses to these variables will be carried out
according to sequential semantics. Second, we have created a new, software-based TLS runtime library to ensure correctness in the
parallel execution of OpenMP loops that include speculative variables. Third, we have developed a new GCC plugin, which seamlessly
translates our OpenMP speculative clause into calls to our TLS runtime engine. The result is the ATLaS C Compiler framework, which
takes advantage of TLS techniques to expand OpenMP functionalities, and guarantees the sequential semantics of any parallelized
loop.

Index Terms—Parallelism and concurrency, code generation, thread-level speculation, optimistic parallelization

F

1 INTRODUCTION

THE advent of multicore technologies in the new
century made parallel processing ubiquitous. Many

parallel languages and parallel extensions to sequential
languages have been proposed to exploit the capabilities
of modern multicore systems. The most successful pro-
posal is OpenMP [1], a directive-based parallel extension
to sequential languages (such as C, Fortran or C++) that
allows parallel execution of user-defined code regions.

Figure 1 shows an example of (a) a sequential C loop,
and (b) its parallelization with OpenMP directives. As
can be seen, all variables inside the loop body should
be classified as private or shared. Informally speaking,
variables whose values are always set in a given iteration
before their use should be labeled as private, while vari-
ables that have values visible by all threads executing
the loop in parallel should be classified as shared. In our
example, a[] is a read-only shared vector, while v[] is
a shared vector that is modified by each iteration.

As OpenMP is a simple and powerful mechanism
for code parallelization, its use has several limitations.
First, the classification of all variables inside the critical
region, according to their use, is a time-consuming,
error-prone task. Second, OpenMP does not ensure the
parallel execution of the code according to sequential
semantics, as the programmer is responsible for such a
task. In the example shown in Fig. 1, the programmer is
responsible for ensuring that each thread modifies a dif-
ferent element of v[]. Third, in many cases, potentially-

• S. Aldea, A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano are with
Dpto. Informática, Universidad de Valladolid, Campus Miguel Delibes,
47011, Valladolid, Spain.
E-mails: {sergio,diego,arturo}@infor.uva.es, palestebanez1@gmail.com

#pragma omp parallel for \
private (i,b) shared (a,v)

for (i=0; i<MAX; i++) { for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
v[i] = b * a[i]; v[i] = b * a[i];

} }
(a) (b)

Fig. 1. Example of loop parallelization with OpenMP.

#pragma omp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) { for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
if (b==k) if (b==k)

v[i] = v[i-b]; v[i] = v[i-b];
else else

v[i] = b * a[i]; v[i] = b * a[i];
} }

(a) (b)

Fig. 2. A loop that cannot be safely parallelized with
current OpenMP clauses (a), and its parallelization with
our new speculative clause (b).

parallel regions cannot be safely parallelized because
their control flow depends on runtime data. Consider
the code depicted in Fig. 2. Suppose that the value of k
is not known at compile time. Assuming b>0 for a given
i, if the parallel execution of the loop calculates iteration
i before iteration i-b, access to v[i-b] may return an
outdated value, breaking sequential semantics. The only
way to guarantee a correct behavior would be to serialize
the execution of iterations i− b and i, a difficult task in
the general case.

Safely parallelizing loops that may present runtime
dependence violations can have a significant impact in
terms of performance. We have previously measured the
amount of loop-level parallelism that could be extracted
from the SPEC CPU 2006 benchmark, with different

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 2

techniques [2]. Our results show that, while around
48% of the loops present in the applications analyzed
(representing around 13% of their aggregate execution
time) are potentially parallelizable with existent parallel
programming models such as OpenMP, an additional
38% of loops (representing around 20% of the execution
time) could be run in parallel with the help of runtime
speculative parallelization techniques.

Our proposal consists in augmenting OpenMP with
software-based, Thread-Level Speculation (TLS) tech-
niques to ensure that definitions and uses of shared vari-
ables are carried out according to sequential semantics.
This solution allows the OpenMP programming model
to be used even when dependence violations may arise
at runtime. To do so, we define a new speculative clause.
Variables labeled as speculative will be accessed following
two simple rules:

• All reads of a speculative variable will return the
most up-to-date value for this variable. This value
can either be generated previously by this thread
or by any of its predecessors, defined as threads
that execute earlier iterations according to sequential
semantics. This is called a forwarding operation.

• All writes to a speculative variable will store the
value in a local copy, and will check whether a
successor thread (that is, threads that are execut-
ing “future” iterations) has consumed an outdated
value of this variable. In this case, the offending
thread (and possibly some of its successors) will be
stopped and re-started, in order to force them to
consume the updated value of the variable. This is
called a squash operation.

As long as a dependence violation forces the values of
speculative variables to be discarded, all threads maintain
version copies of the speculative variables being accessed.
When a non-speculative thread (that is, a thread with no
alive predecessors) successfully finishes the execution
of its block of consecutive iterations, all changes are
committed to the main copy of all speculative variables.
After this commit operation, the thread will become the
most speculative one, since it will execute the following
block of iterations that remains unassigned.

The three main contributions of this paper are the
following:

1) We have defined an extension to OpenMP spec-
ifications, adding a clause to support speculative
accesses to data in omp parallel for constructs. This
clause follows the guidelines proposed by Aldea et
al. [3].

2) We have created a brand-new TLS runtime library
that handles the parallel execution of loops that
includes speculative variables, including support for
speculative access of pointer-based data of any
size without the need for a compile-time analysis.
This runtime library not only manages accesses to
speculative data, but also handles the scheduling of
iterations among threads and ensures correctness in

the parallel execution of the loop.
3) Finally, we have developed a new plugin-based

compiler pass to the GCC OpenMP implementa-
tion to support the speculative clause. This pass
transforms the loop to be parallelized, inserting the
runtime TLS calls needed to (a) distribute blocks of
iterations among processors, (b) perform specula-
tive loads and stores of speculative variables, and
(c) perform partial commits of the correct results
calculated so far.

The result is ATLaS, a complete framework that allows
OpenMP to execute loops in parallel without the need
of a prior dependence analysis. Our performance evalua-
tion, using both synthetic and real-world applications on
a real multicore system, shows that this approach leads
to performance speedups.

The rest of the paper is organized as follows. Section 2
introduces TLS key concepts. Section 3 describes some
related work. Section 4 briefly describes our proposal of
a new OpenMP speculative clause. Section 5 describes in
detail the architecture of our new TLS runtime library.
Section 6 shows how we have added support to handle
our new clause in the GCC OpenMP compiler. Section 7
presents the experimental evaluation. Finally, Sect. 8
summarizes our conclusions.

2 THREAD-LEVEL SPECULATION

Speculative parallelization (SP), also called Thread-Level
Speculation (TLS) or Optimistic Parallelization [4], as-
sumes that sequential code can be optimistically exe-
cuted in parallel, and relies on a runtime monitor to
ensure that no dependence violations are produced.
A dependence violation appears when a given thread
generates a datum that has already been consumed by
a successor in the original sequential order. In this case,
the results calculated so far by the successor (called the
offending thread) are not valid and should be discarded.
Early proposals [5], [6] stop the parallel execution and
restart the loop serially. Other proposals stop the of-
fending thread and all its successors, re-executing them
in parallel [7], [8], [9], [10]. A third option (see e.g.
[11], [12], [13]) is to only re-start the offending thread
and subsequent threads that have actually consumed
any value from it, leading to a noticeable performance
improvement in some cases.

Figure 3 shows an example of thread-level speculation.
The figure represents four threads executing fragments
of four consecutive iterations of the same loop. The value
of x was not known at compile time, so the compiler
was not able to ensure that accesses to the SV structure
do not lead to dependence violations when executing
them in parallel. However, the actual values of x for
each iteration are known at runtime.

Under speculative execution, each thread maintains
a version copy of the data structure that is accessed
speculatively (here, the SV vector). At compile time,
the original code is augmented to perform speculative

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 3

t5

t8

t10

LocalVar1 = SV[x]

SV[x] = LocalVar2

t6
t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

t2

t4

t6

LocalVar1 = SV[x]

SV[x] = LocalVar2

(c) In−order commit of data from successfully−finished threads

t0

t1

t3 SV[x] = LocalVar2

Time

LocalVar1 = SV[x]

Thread 1 (non spec)

(iteration 1, x = 1) (iteration 2, x = 1)

Thread 2

(iteration 3, x = 2)

Thread 3 Thread 4 (most−spec)

(iteration 4, x = 2)

Reference

copy of

sv[2]

(Time t4: Thread 2 forwards updated value for sv[1] from thread 1)

(Time t3: thread 1 detects no dependence violations)

(Time t6: thread 1 detects no dependence violations)

(Time t8: Thread 3 forwards value of sv[2] from reference copy)

(Time t7: Thread 4 forwards value of sv[2] from reference copy)

(Time t10: Thread 3 detects violation: thread 4 squashed)

(b) Speculative loads with most−recent value forwarding

(a) Speculative stores plus detection of dependence violations

Fig. 3. Example of speculative execution of a loop and summary of operations carried out by a runtime TLS library.

stores, speculative loads, and in-order commits. In addi-
tion, the loop structure is rearranged in order to allow
the re-execution of squashed iterations. The following
paragraphs describe these operations in more detail.

Speculative stores At compile time, all write operations
to the data structure being speculatively accessed should
be replaced with a speculative store function. This function
writes the datum in the version copy of the current
thread, and ensures that no thread executing a subse-
quent iteration has already consumed an outdated value
for this structure element, a situation called “dependence
violation”. If such a violation is detected, the offending
thread and its successors are stopped and restarted. In
the example depicted in Fig. 3, the checks for depen-
dence violations performed by Threads 1 and 2 do not
find any successor that has consumed an outdated value
for SV[1]. However, at time t10, Thread 3 discovers
that Thread 4 has already consumed an outdated value
for SV[2], so a dependence violation has been found.
Therefore, Thread 4 should be stopped and restarted, in
a so-called squash operation. When Thread 4 is restarted,
it will forward the updated value for SV[2] from Thread
3, being able to continue the execution of the iteration
assigned to it.

Speculative loads At compile time, all reads to the
speculative data structure are replaced by a function
that performs a speculative load. This function obtains the
most up-to-date value of the element being accessed.
If a predecessor (that is, a thread executing an earlier
iteration) has already read or written that element, the
value is forwarded (as Thread 2 does in Fig. 3). If not, the
function obtains the value from the reference copy of the
data structure (as Thread 3 does in the figure).

Commit-or-discard operation If no dependence viola-
tion arises during the execution of a given thread, its

changes to the speculative data structure should be com-
mitted to the reference copy of the data structure. Note
that commits should be done in order, to ensure that
the most up-to-date values are stored. In the case of a
dependence violation, the intermediate results calculated
by this thread should be discarded, an operation known
as thread squash. In both cases, the scheduling runtime
system should assign a new block of iterations to the
thread to continue the parallel work.

Scheduling iterations under TLS The scheduling
method used with speculative parallelization is different
from classic scheduling methods, e.g. [14], [15], [16].
Under TLS, the execution of an iteration or chunk of
iterations can be discarded, so the scheduling method
should be able to re-assign the squashed iteration to the
same or a different thread. The loop structure should be
changed to allow re-execution of iterations.

3 RELATED WORK

Software-based TLS (STLS) proposals Several works
propose speculative parallelization mechanisms that
benefit from different degrees of code transforma-
tions. Tian et al. [17] propose the use of the Copy-
or-Discard (CorD) execution model to avoid expensive
state-recovering mechanisms in case of misspeculation.
This proposal requires an in-depth analysis of the origi-
nal loop, and the use of code transformation techniques
that reduce the probability of misspeculation. Specula-
tive loads in this proposal always get the non-speculative
version of the data, so successors of the offending thread
are not affected by misspeculations. In [18], a software-
based TLS system is proposed to help in the manual
parallelization of applications. The system requires the
programmer to mark “possibly parallel regions” (PPR)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 4

in the application to be parallelized. The system relies on
a so-called “tournament” model, with different threads
cooperating to execute the region speculatively, while an
additional thread runs the same code sequentially. If a
single dependence arises, speculation fails entirely and
the sequential execution results are used instead. The
usefulness of this system is based on the assumption
that the code chosen by the programmer will likely
not present any dependencies. An improvement to this
scheme is described in [19], relying on dependence hints
provided by the programmer to allow explicit data
communication between threads, thus reducing runtime
dependence violations. In [9], a model that combines
different techniques such as thread-level speculation,
helper threads and run-ahead execution is proposed to
dynamically choose the most appropriate combination at
runtime. A work of the CorD group [20] aims to reduce
the cost of misspeculation, by recording intermediate
states during the speculative execution. In this way,
instead of aborting a complete task, only a portion of
the task is re-executed. This solution comes at the cost
of a more complex code analysis, in order to insert
intermediate checkpoints where the earliest reads of the
speculative variables are found.

Oancea et al. developed SpLIP [21], an STLS approach
centered on decreasing overheads of speculative op-
erations. In this work, load and store operations di-
rectly work with the main copy of the variables, and
dependences are managed through exceptions. They
extract many of the ideas from software Transactional
Memory (STM), implementing non-locking operations
where possible, and preserving a log of variables and
timestamps to handle the execution. ATLaS’ runtime
library and SpLIP are both STLS implementations that
can extract speed-up from sequential applications with
complex dependences. Conceptually, the main difference
between ATLaS’ runtime library and SpLIP is the way
they manage their operations, since ATLaS manages
version copies, while SpLIP works with the main version
of speculative data. ATLaS also incorporates a compile-
time phase that greatly simplifies the use of speculation
for production purposes. To take advantage of SpLIP,
the user has to rewrite the entire application almost
from scratch, since the code to be parallelized and the
underlying library are extremely highly coupled. ATLaS
compile-time and runtime features are mature enough
to be used in production environments with almost no
effort.

Finally, an adaptive approach for speculative loop
execution, which handles nested loops, has recently been
proposed [10]. Our proposal does handle nested loops
transparently, in the same way standard OpenMP does.

TLS and Software Transactional Memory Both TLS
and software Transactional Memory (STM) [22] are so-
lutions that use speculative techniques to improve the
programmability and performance of programs. TLS has
several features in common with TM, such as the use

of speculative reads and writes that can be rolled back.
However, and despite their implementation similarities,
they solve different problems. The goal of TM is to help
in explicit parallel programming by reducing the costs
of the locks required to avoid race conditions in critical
sections [23], [24]. On the other hand, TLS departs from
a sequential program, breaks it into tasks and tries to
execute them optimistically in parallel, while preserving
sequential semantics.

The main difference between TLS and TM is that TLS
ensures a total order in the commit operation, which is
always carried out sequentially from the non-speculative
to the most-speculative thread. As long as TM does
not preserve any order in the commit operations, STM
libraries cannot be used directly to mimic the behavior
of loop-based speculative parallelization whenever se-
quential semantics should be preserved. Section 1 of the
Supplemental Material further discusses this issue.

Finally, there are several interesting TLS-TM hybrid
approaches. These solutions are reviewed in Sect. 2 of
the Supplemental Material.

TLS extensions to OpenMP Early works, such as [25],
propose the use of OpenMP directives to enable specula-
tive parallelism, the details of the implementation being
transparent to the programmer. In a similar way, [26]
exposes the advantages of using OpenMP to give explicit
hints to the compiler and the underlying hardware to
extract speculative parallelism.

Other proposals aim to integrate Transactional Mem-
ory technologies into OpenMP (see [27], [28], [29], [30],
[31], [32], [33], [34], [35]). These proposals are reviewed
in Sect. 3 of the Supplemental Material.

4 SEMANTICS OF OUR speculative CLAUSE

The problem of adding speculative parallelization sup-
port to OpenMP can be handled using two approaches.
The first one requires the addition of a new directive,
such as pragma omp speculative for. However, there are
many OpenMP related components that should be mod-
ified in order to add a new directive. A simpler solution
is to add a new OpenMP clause to the list of available
parallel constructs, which allows the programmer to
enumerate which variables should be handled specula-
tively. The syntax of this clause is:

speculative(variable[, var_list])

In this way, if the programmer is unsure about the
use of a certain data structure, he can simply label it as
speculative. In this case, a tailored OpenMP implemen-
tation should replace all definitions and uses of this data
structure with the corresponding specload() and spec-
store() function calls. An additional commit_or_discard()
function will be automatically inserted once each thread
has finished its chunk of iterations, to either commit the
results, or to restart the execution if the thread has been
squashed due to a runtime dependence violation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 5

Our new TLS runtime library, described in the fol-
lowing section, was indeed developed using standard
OpenMP clauses. In order to integrate our library into
an experimental OpenMP framework that includes a
new speculative clause, two particularities of our TLS
library should be taken into account. First, since our TLS
runtime library has also been developed using OpenMP,
some private and shared control variables should be
added to the target loop in order to use it. Therefore,
if a speculative clause is found by the compiler, this
occurrence, which implies the use of our speculative
library, should trigger the inclusion of several private and
shared variables to the existing lists. As long as OpenMP
allows the repetition of clauses, so the compile time
support for this new speculative clause can add additional
private and shared clauses that will later be expanded by
the compiler.

Second, the standard scheduling methods imple-
mented by OpenMP are not enough to handle spec-
ulative parallelization. These methods assume that the
execution of a chunk of iterations will never fail, so they
do not consider the possibility of restarting a chunk that
has failed due to a dependence violation. Therefore, it
is necessary to use a speculative scheduling method.
Instead of dividing the iteration space, we have followed
the solution adopted in [7], replacing the original loop
structure with a new loop composed by N iterations,
N being the number of threads. At the beginning of
the loop, each thread is assigned a different chunk of
iterations to be executed. If a thread has successfully
finished a chunk, it will receive a new chunk that has
not yet been successfully executed. In the case of a de-
pendence violation that triggers a squash operation, the
scheduling method will try to reassign to that thread the
chunk whose execution has failed, in order to improve
locality and cache reutilization.

5 A NEW RUNTIME LIBRARY FOR TLS
We have developed a new TLS runtime library that
supports the speculative execution of for loops. The
library architecture follows the design principles of the
speculative parallelization library developed by Cintra
and Llanos [7], [36]. In order to understand our solution,
a brief description of that proposal is needed.

In [7], [36], Cintra and Llanos developed a runtime
library that uses a sliding window mechanism that al-
lows the parallel execution of W consecutive chunks of
iterations. Each time the non-speculative thread finishes,
a partial commit takes place; the thread executing the fol-
lowing chunk becomes the new, non-speculative thread;
and the window advances, allowing the execution of
new chunks of iterations. Despite its good performance
figures, the runtime library developed by Cintra and
Llanos suffers from severe limitations. First, their library
requires all speculative variables to be packed in a single,
one-dimensional vector before the start of the speculative
loop. Second, all speculative variables should share a

single data type. Third, speculative variables can only be
accessed by name inside the loop (no references by ad-
dresses or pointers were allowed). Finally, this runtime
library creates W version copies of the entire speculative
data structure, being W the size of the sliding window
being used, instead of just keeping version copies of
the data elements actually accessed. These limitations
prevent the use of this runtime library to support a
speculative clause, where variables and data structures
labeled as speculative may be of different data types, can
be accessed by name or address, and where speculative
data structures can be of any size.

Our TLS runtime library overcomes all these limita-
tions. It allows variables of any data type to be specula-
tively accessed, both by name or address, and managing
the space needed for version copies on demand. In this
section, we will briefly show the general architecture of
the library. A more detailed description of the design
decisions faced can be found in [37].

5.1 Loop transformation for speculative execution

Figure 4 briefly shows the transformation of a parallel
loop for speculative execution. This transformation is
triggered by our proposed speculative clause, and it is
automatically carried out by our compiler plugin. The
changes are briefly described below:

• Line 1: Additional, internal variables are defined.
• Line 2: Before the loop, the omp_set_num_threads()

function is called to define the number of threads
to be used.

• Line 3: A specbegin() function is called to initialize
the execution of the following parallel loop. If it is
the first loop being parallelized, this function also
initializes the runtime speculative library.

• Line 4: All variables labeled as speculative are auto-
matically reclassified as shared. Besides this change,
all reads and stores inside the loop body on those
speculative variables (see below) are replaced with
calls to specload() and specstore() functions, in or-
der to keep sequential consistency, as described
in Sect. 2. Our compiler plugin also labels other
internal variables needed by the runtime systems
as private and shared, such as tid and threads in our
example.

• Line 5: The original loop structure is replaced with
a parallel for loop with just “threads” iterations. This
launches the number of desired threads.

• Line 6: A while(true) loop ensures that each thread
repeatedly requires a chunk of iterations from the
original loop to be processed. If no chunks are left,
a break statement exits this loop, thus reaching the
end of the thread (see line 12).

• Line 7: Inside the loop, each thread receives the
index of the first iteration of its assigned chunk and
proceeds with the original loop body.

• Lines 8-10: The read of b variable in line 8 of
Fig. 4(a) is replaced with a call to the specload()

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 6

1: char a; float b; 1: char a; float b; char temp; float value, int tid, threads; ...
2: omp_get_num_threads(threads);
3: specbegin(MAX);

4: #pragma openmp parallel for \ 4: #pragma openmp parallel for \
private (i) speculative (a,b) private (i,tid,temp,value,...) shared (a,b,threads,...)

5: for (i=0; i<MAX; i++) { 5: for (tid=0; tid<threads; tid++) {
6: while(true) {
7: i = assign_following_chunk(tid, MAX,...);

Original loop code, part 1 Original loop code, part 1

8: a = f(b); 8: specload(&b, sizeof(b),..., &value);
9: temp = f(value);
10: specstore(&a, sizeof(a),..., &temp);

Original loop code, part 2 Original loop code, part 2

11: commit_or_discard_data(tid,...);
12: if(no_chunks_left(tid, MAX,...)) break;
13: }

14: } 14: }
(a) (b)

Fig. 4. Loop transformation to allow its speculative execution: Original (a) and transformed (b) code.

function, which recovers the most up-to-date value
for this variable. The exact behavior of specload() is
described later in this section. The value is stored in
a private, temporal location. Line 8 of Fig. 4(a) also
performs a write on a. This write is replaced with a
call to specstore() (line 9), which first stores the value
in a local version copy and then checks whether a
successor has already consumed an outdated value
of a. If so, the offending thread and some or all of
its successors (depending on the squash policy being
defined [13]) are squashed.
It is important to highlight that only the lines of the
original loop body that involve speculative variables
are changed in this way: the remaining code is left
with no changes.

• Line 11: Once the original loop body is finished, a
call to commit_or_discard_data() checks whether the
thread has been squashed or not. If a squash op-
eration was issued by a predecessor, local copies
of speculative data will be discarded. If the thread
has not been squashed and it is the not-spec one,
a partial commit will occur. Partial commits will be
described in Sect. 5.4.

• Line 12: After finishing their tasks related to the
current chunk, all threads check whether there are
no pending chunks to be executed. If there is no
pending work, threads leave the while loop.

When all threads have exited the while(true) loop, the
end of the parallel section has been reached and (despite
the number of needed attempts) all chunks of iterations
have been successfully executed, and their results com-
mitted to the speculative variables.

5.2 Data structures
The data structures needed by the new speculative
library are depicted in Fig. 5(a). The sliding window
mechanism is implemented by a matrix with W window
slots (four in the figure). Each slot acts as a “scratchpad”
used to handle the speculative execution of a particular
chunk of iterations. Two global variables, non-spec and

most-spec, indicates the slot assigned to the execution
of the non-speculative and most-speculative chunks of
iterations at each particular moment. These variables are
used as limits to stop the search for predecessor ver-
sions and the search for possible dependence violations,
respectively. The STATE field indicates the state of the
execution being carried out in each slot.

The figure represents the parallel execution of a loop.
The loop has been divided into three chunks of it-
erations, and will be executed in parallel using three
threads. It is very important to understand that there is
no fixed association between threads and slots. When-
ever a thread is assigned a new chunk of iteration, it
is also assigned the corresponding slot to work in. This
allows an order relationship to be maintained between
the chunks being executed.

In our example, the thread working in slot 1 is execut-
ing the non-speculative chunk of iterations (as indicated
by its RUNNING state); the following chunk has already
been executed and its data has been left there to be
committed after the non-spec chunk finishes (since it
is in the DONE state), while the last one, the most-
speculative chunk launched so far, is also RUNNING. In
other words, the thread in charge of the second chunk
has already finished, while the non-spec and most-spec
threads are working. If more chunks were pending, the
freed thread would be assigned the following chunk,
starting its execution in slot 4. Slot 2 cannot be re-used
yet, because the execution of chunk 2 left changes to
speculative variables that are yet to be committed. As
we will see in Sect. 5.4, when the non-speculative thread
working in slot 1 finishes, it will commit its results and
the results stored in all subsequent DONE slots, since
commits should be carried out in order. After that, in
our example, the non-spec pointer will be advanced to
slot 3 to reflect the new situation.

In addition to its STATE, each slot points to a data
structure that holds the version copies of the data being
speculatively accessed. Figure 5(a) represents a situation
where the programmer declared three variables within

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 7

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

Exp. Loaded and Updated

(ELUP)

Exposed Loaded

(EXPLD)

Not Accessed

Modified

(MOD)

store

load

store

Spec.

Spec.

Spec.

Spec. load / spec. store

Spec. load

Spec. load / spec. store

(a) (b)
Fig. 5. Data structures of our new speculative library (a) and state transition diagram for speculative data (b).

our speculative clause. At a given moment, the thread
executing the non-speculative chunk has speculatively
accessed variables a and b. Each row of the version copy
data structure keeps the information needed to manage
the access to a different speculative variable. The first
column indicates the address of the original variable,
known as the reference copy. The second one indicates the
data size. Note that, although entire data structures may
be labeled as speculative, speculative reads and writes
are always carried out over scalar variables. Therefore,
the maximum size of the data being speculatively ac-
cessed will be the size of the biggest scalar variable
in the architecture considered. This value is 8 bytes
in 64-bit architectures. The third column indicates the
address of the local copy of this variable associated to
this window slot. Finally, the fourth column indicates
the state associated to this local copy. Once accessed by
a thread, the version copies of the speculative data can
be in three different states: Exposed Loaded, indicating that
the thread has forwarded its value from a predecessor or
from the main copy; Modified, indicating that the thread
has written to that variable without having consumed its
original value; and Exposed Loaded and Updated, where a
thread has first forwarded the value for a variable and
has later modified it. The transition diagram for these
states is shown in Fig. 5(b).

Figure 5(a) represents a situation where the thread
working in slot 1 has performed a speculative load
from variable a (obtaining its value from the reference
copy) and a speculative store to variable b. Regarding
a, the figure shows that the thread working in slots 3
has forwarded its value. With respect to variable b, the
information in the figure shows that b was overwritten
by both threads working in slots 1 and 3.

5.3 Speculative loads and stores
The interface of our implementation of specload() is as
follows:

specload(VOID* addr, UINT size, UINT chunk_number, VOID*
value)

The first parameter is the address of the speculative
variable; the second one is the size of the variable; the
third one is the number of the chunk being executed
(needed to infer the slot being used); and the fourth one
is a pointer to a place to store the datum requested.

Recall that specload() should return the most up-to-
date value available for the speculative variable. Figure 6
shows how the speculative load works. Suppose that the
thread working in slot 2 has only accessed to variable c
so far, and it then calls specload(&b, sizeof(b), 2, &value)
to obtain a value for b. The sequence of events is the
following:

1) The thread working in slot 2 scans its version copy
data structure to check whether a value for b has
been already stored there. As long as the only
speculative variable accessed so far is c, this search
produces no results.

2) Our thread goes to its predecessor version copy
data structure and scans it in order to find a value
for b. Its predecessor has stored a value for it, so
our thread copies its value to a new location. Note
that, if no value for b were found there, our thread
would go to the next predecessor, until the non-
speculative thread is found. If no predecessor had
used the value, our thread would get the value
from the reference copy.

3) After storing a copy of b’s value, the thread work-
ing in slot 2 adds a new row to its version copy data
structure, storing the address of b, its data size, the
address of the version copy of b being managed by
the thread, and the new state for this version copy,
EXPLD. The call to specload() finishes by returning

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 8

2

1 E

F

A

B

D

G

C3

1

Non−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1
9

a3 b3

25.8

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

&a 1 &a2 MOD

FreeRunning
SQUASHED

Most−spec window slot

23

Fig. 6. Steps of a speculative load (1..3) and speculative store (A..F).

the value 18.997 in the address indicated by its
fourth parameter.

The interface of specstore() is the same as specload(), but
in this case the last parameter is a pointer to the value
to be stored. Recall that specstore() should not only store
the new value, but also check whether a successor has
consumed an outdated value for it.

Figure 6 shows the sequence of events related to a
speculative store. Suppose that the thread working in
slot 2 executes specstore(&a, sizeof(a), 2, &temp), where
temp holds the value 7. The sequence of events is the
following:

A) The thread working in slot 2 searches for a local
version copy of a. At this moment, only copies of c
and b are stored in its version copy data structure,
so the search produces no results. If a were found,
this thread would update its status according to the
state diagram of Fig. 5(b), and it would proceed to
step D.

B) The thread working in slot 2 creates a local copy
of a, storing value 7 on it.

C) A new row is added to the version copy data
structure, with a pointer to a, its size, the pointer
to the local copy and the status, which, in this case,
will be MOD (see Fig. 5(b)).

D) After storing the value locally, the thread working
in slot 2 should check whether any successor has
consumed an outdated value. To do so, our thread
would scan (in increasing order of speculativeness)
for any successor slot that holds a copy of a in
the EXPLD or ELUP states. These states would
indicate that the successor has used the value. In
our example, the search finds out that the thread
working in Slot 3 has consumed an incorrect value
for a. If no dependence violation was detected, the
call to specstore() would finish here.

E) A dependence violation has been detected. Thread
working in slot 3 should be squashed. To do so, the
thread working in slot 2 changes the state of slot 3
from Running to Squashed. Since all threads check
their own state at the beginning of each specload(),
specstore(), and at the end of the execution of
each chunk of iterations, thread working in slot 3
will eventually discover that it has been squashed,
and will execute a call to commit_or_discard() to be
assigned a new chunk (possibly the same) and start
the process again.

F) Finally, the thread working in slot 2 marks itself
as the most-speculative thread, since data stored in
association with slot 3 is no longer valid. The most-
spec pointer will be advanced later by the thread
that receives the task of re-executing chunk 3.

If, after these events, the thread working in slot 2
finishes its execution, while the threads associated to
slots 1 and 3 are still working, we reach the situation
shown in Fig. 5(a). Note that, at that point, the thread
working in slot 3 has already been re-started and it has
forwarded the most up-to-date value for a (that is, 7)
from slot 2.

5.4 Partial commit operation
The partial commit operation is exclusively carried out
by the non-speculative thread. Every time a thread exe-
cutes commit_or_discard(), it first checks if it has not been
squashed and if it is the non-speculative one. If the
thread is speculative, the slot is left to be committed by
the non-spec thread.

Suppose that we are in the situation depicted in
Fig. 5(a), and the non-spec thread working in slot 1
finishes. As long as it is the non-spec one, it will scan its
data structure for variables in the ELUP or MOD states.
In our example, b has been modified, so it copies the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 9

content of b1 into b. After committing the version copy
data structure associated to slot 1, it changes its state to
FREE and advances the non-spec pointer to 2. As long as
slot 2 is marked as DONE, its data should be committed
as well. In our example, data stored in c2 and a2 should
be committed to the user-defined variables. After this,
the state of the slot is also changed to FREE and the non-
spec pointer is advanced as well. The thread working in
slot 3 is still running: When it finishes, it will be in charge
of committing its own data. These commit operations are
carried out with the help of auxiliary data structures that
store a list of elements in the ELUP or MOD states (not
shown in our examples), in order to avoid traversing the
local copies entirely only to commit few data elements.

It is interesting to note that each thread only writes
on its local version copy data structure, so no critical
sections are needed to protect them. The only critical
section used protects the sliding window data structure,
to avoid that a thread overwrites another thread’s state.

5.5 Performance hurdles

One of the main advantages of our new speculative
parallelization library is that each thread only allocates
the memory needed to store local copies of the spec-
ulative data actually being accessed (see step (3) of the
speculative load operation and step (B) of the speculative
store, above). In contrast, Cintra et al.’s solution keeps T
copies of the entire list of speculative variables. As will
be seen in Sect. 7.2, the number of potentially-speculative
variables can be huge, so Cintra et al.’s solution severely
limits scalability.

Our improvement in terms of memory footprint
comes at the cost of longer times to find the most-up-
to-date value in speculative loads, and longer times to
detect dependence violations in speculative stores, since
both operations should traverse all the values accessed
by all the predecessors and successors, respectively. T
being the number of threads, in [7], the time complexity
of this operation was in T × O(1) = O(T), since all the
memory needed for any data that might be accessed was
allocated in advance. In our scheme, N being the number
of data elements stored locally, the search is done in
T ×O(N) = O(TN). Therefore, the performance figures
for our library with this mechanism are somewhat lower
than the ones described in [7].

One way to speed up these searches is to switch to
a different data structure to hold local version copies
of data. Instead of using a single table per thread as
version copy data structure, we have developed an
alternative structure with X tables, defined by the pro-
grammer (see [38] for more details). Before accessing
the data, a module operation on the address of the user-
defined speculative variable obtains a hash H , in the
range 0 . . . (X − 1). This hash is used to look into the
Hth tables of all predecessors and successors, effectively
speeding up the search by an average factor of H with-
out increasing the time needed to add a new row to the

corresponding table, leading to O(T.N
H) search times. We

are also evaluating other solutions, such as dichotomic
search, which can be used to reach search values in
O(T. log(N)), but it comes at the cost of spending more
time finding the place to store the data locally.

6 COMPILER SUPPORT FOR THE speculative
CLAUSE

The compiler phase of our system is implemented on the
GCC C compiler [39], extending its functionality through
a plugin. Before describing the implementation of the
plugin, it is necessary to introduce the GCC architecture.

GCC architecture in a nutshell Figure 7 shows the
scheme of the GCC architecture [40], [41]. In basic
terms, GCC is a big pipeline that converts one pro-
gram representation into another, in different stages.
Each stage generates a lower-level representation, until
the assembly code is generated at the last stage. GCC
architecture has three clearly-defined blocks: Front End,
Middle End and Back End. There is one front end for each
programming language. The parser of each language
converts source files into a unified tree form, called
GENERIC, which is a high-level tree representation.
When it finishes, the Front End emits a GENERIC in-
termediate representation (IR) of the code, which serves
as the interface between the front end and the rest of the
compiler.

The Middle End works on GIMPLE, which is a 3-
address language with no high-level control flow struc-
tures. In GIMPLE, each statement does not contain more
than three operands (except function calls); control flow
structures are combinations of conditional statements
and goto operators; and there is a single scope for vari-
ables. This kind of representation is convenient to opti-
mize the source code. Once the source code is in GIMPLE
form, an interprocedural optimizer is called, where inlining
operations, constant propagation, or static variable analysis
are performed. We have inserted our plugin at this point.

The following step is the transformation from GIMPLE
into SSA (Static Single Assignment) representation. In
SSA form, each variable is assigned or written only
once, creating new versions for each assignment of the
same variable, which can be read many times. When
different versions of the same variable are written into
both branches of a conditional expression, a φ-function
is added just after the conditional block, allowing the
selection of the correct version of the variable, depending
on the branch executed. SSA representation is used for
several optimizations, such as forward expression substi-
tution, loop interchange, vectorization or parallelization,
among others. These optimizations are performed in
around 100 passes.

After these optimizations, the SSA representation is
converted back to the GIMPLE form, which is trans-
formed into a register-transfer language (RTL) form, in
which the Back End works on. RTL was the original
primary intermediate representation used by GCC. It is a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 10

C parser

 Java parser

Fortran parser

C++ parser

GENERIC

Front End

GIMPLE

Interprocedural
Optimizer

SSA
Optimizer

RTL

RTL
Optimizer

Final Code
Generation

Assembly

Middle End Back End

Call Graph
Manager

Pass
Manager

Plugin Pass

Fig. 7. GCC Compiler Architecture. The main OpenMP related components, highlighted in grey, are the C, C++ and
Fortran parsers, and the GIMPLE IR level. Highlighted in black is the location of our plugin pass.

hardware-based representation which corresponds to an
abstract machine with an infinite number of registers.
GCC also uses this form to perform several optimiza-
tions, such as branch prediction or register renaming, in
around 70 passes.

Finally, the Final Code Generation step of the Back End
creates the assembly code for the target architecture (x86,
mips, etc.) from the RTL representation.

Transactions between the different phases are se-
quenced by the Call Graph and the Pass Manager. The
Call Graph Manager generates a call graph for the
compilation unit, decides in which order the functions
are optimized, and drives the interprocedural analysis.
The Pass Manager sequences individual transformations
and handles pre- and post-cleanup actions as needed by
each pass.

Parsing the new clause In order to parse the new
speculative clause, we have extended the GNU OpenMP
(GOMP) compiler, the OpenMP implementation for
GCC. The main parts of the GCC architecture related
with OpenMP are highlighted in grey in Figure 7. GOMP
has four main components [30]: parser; intermediate
representation; code generation; and the runtime library
called libGOMP. We have focused on modifying the
GOMP parsing phase. The generation of new code to
support TLS is located in the plugin developed, and
mainly consists of inserting calls to the TLS library
functions described in the previous sections.

The parser identifies OpenMP directives and clauses,
and emits the corresponding GENERIC representation.
We have modified the C parser and the IR to add support
for the new speculative clause. First, we have created
the GENERIC representation of the new clause as other
standard clauses. Then, the compiler has been modified
to recognize and parse that clause as part of the parallel
loop construct. When the new clause has been parsed,
and the IR is generated, our plugin detects the clause
and triggers all the transformations needed by the code.

GCC speculative plugin description GCC plugins pro-

vide extra features to the compiler –although they cannot
extend the parsed language–, allowing passes to be
added, replaced, monitored, or even removed from the
GCC compiler without touching the GCC source code.
Hence, plugins ease the programming of modifications
and contributions to the GCC community. Using this
mechanism, our system adds a new pass in the GCC
pipeline. This new pass performs all the transformations
needed in the code when the programmer marks a
variable as speculative.

The new pass is added before the compiler optimiza-
tion passes, and just before GCC does the first pass in
relation with OpenMP: omplower. At this point, we have
the code in a GIMPLE representation, and the for loop
marked with the parallel loop directive preserves all the
clauses introduced by the programmer. Therefore, we
have the information about which variables are specula-
tive. After this pass, GCC manages speculative variables
as shared, while their handling as speculative is carried
out by the TLS runtime library.

Figure 4 shows a brief example of the transforma-
tions made by the plugin. The parser detects the new
speculative clause, and the new compiler pass performs
automatically all the transformations needed to specula-
tively parallelize the loop. With the list of variables and
data structures that should be speculatively updated, the
plugin replaces each read of one of these variables or
data elements with a specload() function call. Similarly,
all write operations to speculative variables are replaced
with a specstore() function call. Loads or stores involving
other variables do not require additional changes in the
code, since all flavors of private and shared variables keep
their respective semantics in the context of a specula-
tive execution. The plugin also adds all the structures
and functions needed to speculatively parallelize the
code. This process is completely transparent to the pro-
grammer, who does not need to know anything about
the speculative parallelization model. The programmer
should only label the variables involved in the target
loop as private or shared, as with any other OpenMP

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 11

Programmer Code
C + OpenMP with
speculative clause

GCC 4.6.2
 +
 plugin

Compiler parameters:
 - Threads
 - Block size

Executable
binary

Linker

TLS Runtime library

ATLaS

Fig. 8. Overview of the code generation process for the
speculative clause

program, and mark as speculative those variables that
might lead to any dependence violation.

The scheme of the process followed by the plugin can
be summarized in the following steps:

1) The plugin traverses each function of the original
program looking for an OpenMP parallel loop di-
rective with a speculative clause on it. If the plugin
does not find the speculative clause on the pragma,
the semantic of the loop remains identical to any
other standard OpenMP loop.

2) If the plugin finds the speculative clause, it extracts
the speculative variables pointed to by the clause,
and two functions are added before the loop:
omp_set_num_threads(T), where T is the number of
threads indicated in the compilation command; and
specbegin(N), where N is the number of iterations of
the loop.

3) The plugin adds, as private or shared variables, those
variables needed by the runtime system. The code
generated by the plugin also includes the creation
of other new variables, which are also added as
private or shared.

4) The plugin adds all the code needed to run the TLS
system, including the replacement of the original
loop by a new loop that drives the speculative
execution.

5) The plugin traverses the GIMPLE nodes of the
loop, searching for readings from and writings into
the speculative variables. Each read and write are
replaced by a specload() and specstore() function,
respectively.

Once the plugin has transformed the loop, GCC oper-
ation continues with the next passes. When the compi-
lation ends, the resulting binary file is prepared to run
speculatively.

Use of the ATLaS framework To speculatively par-
allelize a source code with our system, programmers
should add the OpenMP directive in the target loop,
and classify its variables, according to their usage, into
private (and its variants), shared, or speculative. To compile
the program, the programmer should also indicate the
size of the block of iterations that will be issued for
speculative execution, among other minor parameters.
With these simple modifications, a programmer can

speculatively parallelize a code, while the rest of the
transformations needed are transparently performed by
the plugin and the compiler. Figure 8 summarizes the
code generation process performed by the plugin, and
the link to the TLS runtime system, which is transparent
to the user.

7 EXPERIMENTAL EVALUATION

Experiments were carried out on a 64-processor server,
equipped with four 16-core AMD Opteron 6376 pro-
cessors at 2.3GHz and 256GB of RAM, which runs
Ubuntu 12.04.3 LTS. All threads had exclusive access to
the processors during the execution of the experiments,
and we used wall-clock times in our measurements. We
have used the ATLaS plugin together with gcc for all
applications.

7.1 Real-world benchmark evaluation
To test the ATLaS framework, we have used both real-
world and synthetic benchmarks. The real-world appli-
cations include the 2-dimensional Minimum Enclosing
Circle (2D-MEC) problem, the 2-dimensional Convex
Hull problem (2D-Hull), the Delaunay Triangulation
problem, and a C implementation of the TREE bench-
mark. The synthetic benchmarks are described in the
Supplemental Material.

The 2D-MEC problem consists in finding the smallest
circle that encloses a set of points. We have parallelized
the randomized incremental approach due to Welzl [42],
which solves the problem in linear time. This algorithm
starts with a circle of radius equal to zero located in
the center of the search space. If a point lies outside
the current solution, the algorithm defines a new circle
that uses this point as one of its frontiers. It is inter-
esting to note that points inside the old solution may
lie outside the new one. Therefore, all points should
be processed again to check if the new circle encloses
them. The solution can be defined by two or three points,
and the algorithm is composed of three nested loops.
We have used a random, ten-million point, uniformly
distributed input set. We have speculatively parallelized
the innermost loop, which consumes 43.75% of the total
execution time (see Tab. 1). The 2D-Hull problem solves
the computation of the convex hull (smallest enclosing
polygon) of a set of points in the plane. We have
parallelized Clarkson et al. [43]’s implementation. The
algorithm starts with the triangle composed by the first
three points and adds points in an incremental way. If the
point lies inside the current solution, it will be discarded.
Otherwise, the new convex hull is computed. Note that
any change to the solution found so far generates a
dependence violation, because other successor threads
may have used the old enclosing polygon to process the
points assigned to them. The probability of a dependence
violation in the 2D-Hull algorithm depends on the shape
of the input set. Therefore, we have used three different,
ten-million-point input sets to run this benchmark. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 12

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 12 16 20 24 32 40 48 56 64

S
p
e
e
d

u
p

Number of processors

2D-MEC
2D-Hull (Kuzmin)
2D-Hull (Square)

2D-Hull (Disc)
Delaunay

TREE

Fig. 9. Performance achieved by the parallelizable loop of the benchmarks considered.

Kuzmin input set follows a Gauss-Kuzmin distribution,
with a higher density of points around the center of the
distribution space, which leads to very few dependence
violations, since points far from the center are very
scarce. The two other input sets, Square and Disc, cause
more dependence violations than Kuzmin, with their
points uniformly distributed inside a square and a disc,
respectively. The Square input set leads to an enclosing
polygon with fewer edges than the Disc input set, thus
generating fewer dependence violations.

The next real-world application is the randomized in-
cremental construction of the Delaunay Triangulation us-
ing the Jump-and-Walk strategy, which was introduced
by Mücke et al. [44], [45]. This incremental strategy
starts with a number of points, called anchors, whose
containing triangles are known. The algorithm finds the
closest anchor to the point to be inserted (the jump
phase), and then traverses the current triangulation until
the triangle that contains the point to be inserted is found
(the walk phase). The goal of the algorithm is to find the
network of triangles in which all the circumcircles of all
triangles in the network are empty, i.e., the circumcircle
of each triangle contains no other vertices than those
three that define the triangle. We have used an input set
of 5000 anchors, and one million points to be inserted.

The TREE problem [46], unlike the previous three
applications, does not suffer from dependence violations,
but it is still not parallelizable at compile time because
the compiler is not able to ensure that there are no data
dependencies. Compilers also find hurdles in several
sum and maximum reductions contained in the code,
which ATLaS detects and handles properly. We have run
this benchmark with a 4096-point input set.

Figure 9 shows the speedups achieved using the pro-
posed OpenMP speculative clause with the mentioned
real-world applications. For the 2D-MEC benchmark,
our solution achieves a peak speedup of 2.6×. Although
these are not big figures, these results are achieved by

simply declaring as speculative the variables that hold the
solution found so far.

In the case of 2D-Hull, as described above, results
depend on the input set. Performance varies from a 2.4×
speedup with the Disc input set, which causes a huge
number of dependence violations, to a 13× speedup with
the Kuzmin input set, which leads to fewer violations.

Delaunay’s execution produces a high number of de-
pendence violations, which affects the speedup. Delau-
nay achieves a peak performance of 3.1× speedup.

Finally, TREE obtains a peak of 6.5× speedup. This
benchmark is characterized by the presence of reduc-
tions over sum and maximum operations that involve
speculative variables.

Performance comparison with other TLS solutions A
recent paper of our group [37] helps to put these results
into perspective. That work compares the performance
of the ATLaS runtime library with respect to the TLS
library developed by Cintra and Llanos [7]. The results
described in [37] show that the current version of the AT-
LaS runtime system achieves 68% to 75% of the speedup
obtained by Cintra and Llanos’ library. Recall that, as
we described in Sect. 5, the applicability of Cintra and
Llanos’ solution is severely limited, while ATLaS is of
general use. Regarding SpLIP [21], as mentioned in Sect.
3, its use implies a rebuilding of the entire application to
tightly integrate their approach into the sequential code,
a work that exceeds the objectives of this paper.

7.2 Effectiveness of the ATLaS runtime library

Table 1 summarizes the percentage of time consumed
by the target loops of each benchmark, together with
an estimation of the maximum speedup obtained (using
Amhdahl’s Law), and the performance results obtained
by our runtime library for the entire application, both in
terms of speedup and as a percentage of the maximum
speedup attainable. The last two columns indicate the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 13

Application % Target Max. speedup Maximum % of % of iterations # of potentially Size of
loop with P=64 speedup exploited that present speculative chunks

(Amhdahl) obtained speedup dep. violations scalar variables issued
2D-MEC 43.75 1.76 1.37 77.84% 0.009% 10 1 800
FAST 100 64 44.49 69.52% 0.001% 2 25
TREE 95.17 15.84 5.12 32.32% 0% 259 100
2D-Hull, Kuzmin 100 64 12.92 20.18% 0.0008% 1 206 11 000
2D-Hull, Square 100 64 8.47 13.23% 0.0032% 3 906 3 000
Delaunay 97.60 25.47 2.96 11.62% 0.5% 12 030 060 2
2D-Hull, Disc 100 64 2.48 3.88% 0.0219% 26 406 1 250

TABLE 1
Percentages of parallelism effectively exploited by ATLaS for the benchmarks considered, together with some

benchmarks’ characteristics. I/O time consumed by the benchmarks were not taken into account.

percentage of iterations that lead to runtime dependence
violations, and the number of speculative variables.
Since all benchmarks but TREE present dependences
among some iterations, the value given by Amhdahl’s
law is just an upper bound of the available parallelism.

The percentage of the speedup effectively exploited
depends on a number of factors. The first one is the
occurrence of runtime dependence violations. In general,
the more dependences there are, the less speedup there
will be. This fact can be observed in the results for
the execution of 2D-Hull with different input sets that
lead to a different number of runtime dependencies. The
second factor is load imbalance, since not all iterations
present the same amount of workload. As long as the
scheduling mechanism implemented in ATLaS issues
chunks of iterations of fixed size (with the best sizes
obtained by experimentation), runtime load imbalance
is not being mitigated in any way. The third factor
that affects parallel performance is the efficiency of the
ATLaS runtime library itself. The performance results
obtained with the FAST benchmark, described in the
Supplemental Material, show that the library presents a
very low runtime overhead. Finally, the fourth factor is
the number of speculative variables. As can be seen, the
more speculative variables there are, the less percentage
of exploited speedup there will be. This is due to the
cost of the commit operation, which should be done
sequentially for each variable by the non-speculative
thread.

A more detailed analysis of the TLS operations carried
out by the library, together with an execution breakdown
for speculative loads and stores, can be found in [37].
Regarding the influence of the number of squashes in
performance, please see [13]. The ATLaS framework
incorporates tools to measure these and other values.
Please refer to the ATLaS documentation for more de-
tails.

8 CONCLUSIONS

The ATLaS framework allows loops that cannot be an-
alyzed at compile time and/or can present dependence
violations when executed in parallel to be easily par-
allelized. The solution consists in the use of a new

speculative clause to point out the variables that may lead
to dependence violations. The use of this solution does
not require more knowledge than the use of standard
OpenMP directives. Moreover, its use simplifies the task
of classifying variables according to their usage: If a
programmer is unsure about the feasibility of the parallel
execution of a given loop, he/she may label as speculative
the variables that affect it. Such a decision guarantees
the correct parallel execution of the loop, possibly at
the cost of a lower performance. Our solution not only
executes loops in parallel correctly, even when runtime
dependence violations arise, but also achieves noticeable
speedups in applications not parallelizable by other
means.

Our future work also includes offering different
scheduling mechanisms in addition to the fixed-size
chunking currently implemented, and other squashing
alternatives in addition to inclusive squash.

The ATLaS framework is freely available at http://
atlas.infor.uva.es.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers
and the Editor for their work. This research is partly
supported by the Castilla-Leon Regional Government
(VA172A12-2, PIRTU); Ministerio de Industria, Spain
(CENIT OCEANLIDER); MICINN (Spain) and the Eu-
ropean Union FEDER (MOGECOPP project TIN2011-
25639, CAPAP-H3 network TIN2010-12011-E, CAPAP-
H4 network TIN2011-15734-E).

REFERENCES

[1] R. Chandra et al., Parallel Programming in OpenMP, 1st ed. Morgan
Kaufmann, Oct. 2000.

[2] S. Aldea et al., “The Bonafide C analyzer: Automatic loop-level
characterization and coverage measurement,” The Journal of Su-
percomputing, vol. 68, no. 3, pp. 1378–1401, june 2014.

[3] ——, “Support for thread-level speculation into OpenMP,” in
IWOMP’12 Proceedings, June 2012, pp. 275–278.

[4] M. Kulkarni et al., “Optimistic parallelism requires abstractions,”
in PLDI’07 Proceedings, 2007, pp. 211–222.

[5] M. Gupta and R. Nim, “Techniques for speculative run-time
parallelization of loops,” in SC’98 Proceedings, 1998, pp. 1–12.

[6] L. Rauchwerger and D. Padua, “The lrpd test: speculative run-
time parallelization of loops with privatization and reduction
parallelization,” in PLDI’95 Proceedings, 1995, pp. 218–232.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, YEAR MONTH 14

[7] M. Cintra and D. R. Llanos, “Toward efficient and robust software
speculative parallelization on multiprocessors,” in PPoPP’03 Pro-
ceedings, June 2003, pp. 13–24.

[8] F. H. Dang et al., “The r-lrpd test: Speculative parallelization of
partially parallel loops,” in IPDPS’02 Proceedings, 2002, pp. 20–29.

[9] P. Xekalakis et al., “Combining thread level speculation helper
threads and runahead execution,” in ICS’09 Proceedings, 2009, pp.
410–420.

[10] L. Gao et al., “Seed: A statically-greedy and dynamically-adaptive
approach for speculative loop execution,” IEEE Transactions on
Computers, vol. 62, no. 5, pp. 1004–1016, May 2013.

[11] X.-F. Li et al., “Speculative parallel threading architecture and
compilation,” in ICPPW ’05 Proceedings. IEEE Computer Society,
2005, pp. 285–294.

[12] C. Tian et al., “Speculative parallelization using state separation
and multiple value prediction,” in ISMM ’10 Proceedings. New
York, NY, USA: ACM, 2010, pp. 63–72.

[13] A. García-Yágüez et al., “Squashing alternatives for software-
based speculative parallelization,” IEEE Transaction on Computers,
vol. 63, no. 7, pp. 1826–1839, july 2014.

[14] T. Hagerup, “Allocating independent tasks to parallel processors:
An experimental study.” J. Parallel Distrib. Comput., vol. 47, no. 2,
pp. 185–197, 1997.

[15] C. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors,” IEEE Transactions on Software Engineering, vol.
SE-11, no. 10, pp. 1001–1016, 1985.

[16] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A pratical
scheduling scheme for parallel compilers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 1, pp. 87–98, 1993.

[17] C. Tian et al., “Copy or discard execution model for speculative
parallelization on multicores,” in MICRO-41 Proceedings, nov.
2008, pp. 330–341.

[18] C. Ding et al., “Software behavior oriented parallelization,” in
PLDI’07 Proceedings, 2007, pp. 223–234.

[19] C. Ke et al., “Safe parallel programming using dynamic depen-
dence hints,” in OOPSLA’11 Proceedings, 2011, pp. 243–258.

[20] C. Tian et al., “Enhanced speculative parallelization via incremen-
tal recovery,” in PPoPP’11 Proceedings, 2011, pp. 189–200.

[21] C. E. Oancea et al., “A lightweight in-place implementation
for software thread-level speculation,” in SPAA ’09 Proceedings.
ACM, 2009, pp. 223–232.

[22] N. Shavit and D. Touitou, “Software transactional memory,”
Distributed Computing, vol. 10, pp. 99–116, 1997.

[23] L. Ceze et al., “Bulk disambiguation of speculative threads in
multiprocessors,” ACM SIGARCH Computer Architecture News,
vol. 34, no. 2, pp. 227–238, 2006.

[24] J. a. Barreto et al., “Unifying thread-level speculation and transac-
tional memory,” in Proceedings of the 13th International Middleware
Conference, ser. Middleware ’12. New York, NY, USA: Springer-
Verlag New York, Inc., 2012, pp. 187–207.

[25] J. F. Martínez and J. Torrellas, “Speculative synchronization: ap-
plying thread-level speculation to explicitly parallel applications,”
in ASPLOS’02 Proceedings, vol. 37, Oct. 2002, pp. 18–29.

[26] V. Packirisamy and H. Barathvajasankar, “Openmp in multicore
architectures,” University of Minnesota, Tech. Rep, 2005.

[27] W. Baek et al., “The OpenTM transactional application program-
ming interface,” in ISCA’07 Proceedings, 2007, pp. 376–387.

[28] M. Herlihy and J. E. B. Moss, “Transactional memory: architec-
tural support for lock-free data structures,” in ISCA’93 Proceedings,
1993, pp. 289–300.

[29] J. Larus and C. Kozyrakis, “Transactional memory,” Communica-
tions of the ACM, vol. 51, no. 7, pp. 80–88, Jul. 2008.

[30] D. Novillo, “OpenMP and automatic parallelization in GCC,” in
Proceedings of the 2006 GCC Developers’ Summit, Ottawa, Canada,
2006, pp. 135–144.

[31] M. Milovanović et al., “Transactional memory and OpenMP,” in
IWOMP’07 Proceedings, 2007, pp. 37–53.

[32] ——, “Multithreaded software transactional memory and
OpenMP,” in MEDEA’07 Workshop, 2007, pp. 81–88.

[33] C. Ferri et al., “SoC-TM: integrated HW/SW support for trans-
actional memory programming on embedded MPSoCs,” in
CODES+ISSS’11 Proceedings, 2011, pp. 39–48.

[34] M. Wong et al., “A case for including transactions in OpenMP,”
in IWOMP’10 Proceedings, 2010, pp. 149–160.

[35] IBM, “Thread-level speculative execution for C/C++,” 2012, tech.
report.

[36] M. Cintra and D. R. Llanos, “Design space exploration of a
software speculative parallelization scheme,” IEEE Transactions on
Parallel and Distributed Systems, vol. 16, no. 6, pp. 562–576, 2005.

[37] A. Estebanez et al., “New data structures to handle speculative
parallelization at runtime,” ser. HLPP 2014 Proceedings, July 2014.

[38] ——, “Improving the perfomance of a pointer-based, speculative
parallelization scheme,” in PPGM’14 Proceedings, February 2014.

[39] GNU Project, “GCC, the GNU Compiler Collection,” http://gcc.
gnu.org/, [Last visit: March 2014].

[40] ——, “GCC internals,” http://gcc.gnu.org/onlinedocs/gccint/,
[Last visit: March 2014].

[41] D. Novillo, “GCC an architectural overview, current status, and
future directions,” in Proceedings of the Linux Symposium, Tokyo,
Japan, September 2006, pp. 185–200.

[42] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in New
results and new trends in computer science, ser. Lecture notes in
computer science, vol. 555. Springer-Verlag, 1991, pp. 359–370.

[43] K. L. Clarkson et al., “Four results on randomized incremental
constructions,” Comput. Geom. Theory Appl., vol. 3, no. 4, pp. 185–
212, 1993.

[44] E. P. Mücke et al., “Fast randomized point location without
preprocessing in two- and three-dimensional Delaunay triangu-
lations,” in SoCG’96 Proceedings, 1996, pp. 274–283.

[45] L. Devroye et al., “A note on point location in Delaunay trian-
gulations of random points,” Algorithmica, vol. 22, pp. 477–482,
1998.

[46] J. E. Barnes, “TREE,” Jan. 1997, institute for Astronomy, University
of Hawaii. http://www.ifa.hawaii.edu/~barnes/ftp/treecode/.

Sergio Aldea received his M.Sc. in Computer
Science and his M.Sc. in Research in Infor-
mation and Communication Technologies from
the Universidad de Valladolid, Spain, in 2010,
and 2011, respectively. His research interests
include parallel and distributed computing, auto-
matic parallelization of sequential code, and au-
tomatic code generation. More information about
his current research activities can be found at
http://www.infor.uva.es/∼sergio.

Alvaro Estebanez received his M.Sc. in Com-
puter Science and his M.Sc. in Research in Infor-
mation and Communication Technologies from
the Universidad de Valladolid, Spain, in 2012,
and 2013, respectively. His research interests
include parallel and distributed computing, auto-
matic parallelization of sequential code.

Diego R. Llanos received his MS and PhD de-
grees in Computer Science from the University
of Valladolid, Spain, in 1996 and 2000, respec-
tively. He is a recipient of the Spanish govern-
ment’s national award for academic excellence.
Dr. Llanos is Associate Professor of Computer
Architecture at the Universidad de Valladolid,
and his research interests include parallel and
distributed computing, automatic parallelization
of sequential code, and embedded computing.
He is a Senior Member of the IEEE and Senior

Member of the ACM. More information about his current research
activities can be found at http://www.infor.uva.es/∼diego.

Arturo Gonzalez-Escribano received his MS
and PhD degrees in Computer Science from
the Universidad de Valladolid, Spain, in 1996
and 2003, respectively. Dr. Gonzalez-Escribano
is Associate Professor of Computer Science at
the Universidad de Valladolid, and his research
interests include parallel and distributed comput-
ing, parallel programming models, and embed-
ded computing. He is a Member of the IEEE
Computer Society and Member of the ACM.
More information about his current research ac-

tivities can be found at http://www.infor.uva.es/∼arturo.

