
A Technique to Automatically Determine Ad-hoc Communication
Patterns at Runtime

Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informática, Edif. Tecn. de la Información, Universidad de Valladolid, Campus Miguel Delibes,
47011 Valladolid, Spain.

Abstract

Current High Performance Computing (HPC) systems are typically built as interconnected clus-
ters of shared-memory multicore computers. Several techniques to automatically generate par-
allel programs from high-level parallel languages or sequential codes have been proposed. To
properly exploit the scalability of HPC clusters, these techniques should take into account the
combination of data communication across distributed memory, and the exploitation of shared-
memory models.

In this paper, we present a new communication calculation technique to be applied across
different SPMD (Single Program Multiple Data) code blocks, containing several uniform data
access expressions. We have implemented this technique in Trasgo, a programming model and
compilation framework that transforms parallel programs from a high-level parallel specification
that deals with parallelism in a unified, abstract, and portable way.

The proposed technique computes at runtime exact coarse-grained communications for dis-
tributed message-passing processes. Applying this technique at runtime has the advantage of
being independent of compile-time decisions, such as the tile size chosen for each process. Our
approach allows the automatic generation of pre-compiled multi-level parallel routines, libraries,
or programs that can adapt their communication, synchronization, and optimization structures to
the target system, even when computing nodes have different capabilities.

Our experimental results show that, despite our runtime calculation, our approach can auto-
matically produce efficient programs compared with MPI reference codes, and with codes gen-
erated with auto-parallelizing compilers.

Keywords: SPMD models, Distributed communications, Parallel programming, Trasgo

1. Introduction

Parallel machines are becoming more heterogeneous, mixing devices with different capabil-
ities in the context of hybrid clusters, with hierarchical shared- and distributed-memory levels.
The focus on parallel applications is shifting to more diverse and complex solutions, exploiting

I

Email address: {ana,arturo,diego}@infor.uva.es. (Ana Moreton-Fernandez, Arturo
Gonzalez-Escribano, and Diego R. Llanos)

Preprint submitted to Parallel Computing June 26, 2017

several levels of parallelism, with different strategies of parallelization. Programming in this kind
of environment is challenging. Many approaches have been proposed over the last few years fol-
lowing two different paths: Programming using parallel programming models, or automatically
generating parallel code from sequential programs.

Using current parallel programming models (e.g. MPI, OpenMP, Intel TBBs, Cilk, and
PGAS languages such as Chapel, X10, or UPC), the application programmer still faces many
important decisions not related with the parallel algorithms, but with implementation issues that
are key for obtaining efficient programs. For example, decisions about partition and locality vs.
synchronization/communication costs; grain selection and tiling; proper parallelization strategies
for each grain level; or mapping, layout, and scheduling details.

Automatic code generation techniques can be used to automatically transform high-level
parallel expressions or sequential codes to parallel programs that take into account many of
these issues. Most of these techniques were designed to be applied at compile time [1, 2, 3,
4]. For example, the work presented in [2] proposes a technique that, from a sequential code,
generates a low-level parallel code for distributed-memory systems using the Message Passing
Interface (MPI) library. This technique improves previous schemes because the code it generates
is parametric in the number of processes and problem sizes, reducing the communicated volume
of data. However, it needs to fix a single tile size at compile time, even if the distributed system
has nodes with different capabilities.

In this paper, we present a new communication calculation technique to be applied across dif-
ferent SPMD (Single Program Multiple Data) blocks of code, that contain several different data
accesses expressions to the same data structure, whose indexes are calculate with uniform affine
expressions in the indexes selectors. We consider as uniform affine expressions, those expres-
sions that derive in accesses to a multi-dimensional paralelotope of the data structure domain.
For two dimensions, this means rectangular shapes. The technique supports codes with several
data accesses to the same data structure. Thus, the resulting domain accessed by a code block is
a compound of paralelotope shapes, that can be non-convex.

We have implemented this technique in Trasgo [5], a programming model and compilation
framework to generate parallel programs from a high-level parallel specification that deals with
parallelism in a unified, abstract, and portable way. The proposed technique computes at runtime
exact coarse-grained communications between two consecutive parallel blocks for distributed
message-passing processes.

The main contributions of this paper are the following:

• A technique to determine at runtime communications across SPMD blocks for distributed-
memory systems. The communications calculated are:

– Coarse-grained in the sense that communication calculation across two parallel SPMD
blocks is done once for the whole index space mapped to a process at runtime, inde-
pendently of the number or sizes of tiles generated inside the process. This enables
different tile sizes to be used in the same computation at the same hierarchical level,
an important feature in achieving a good performance on heterogeneous systems that
include machines with different architectures [6].

– Exact because they are optimal in terms of communication volume. Our runtime
calculation skips all the duplicated data elements in the communication. Thus, no
data is communicated twice, and no unneeded or control data is communicated across
any two distributed processes.

2

** Illustrative example
Inputs:

a: 1st stencil parameter
b: 2nd stencil parameter
M[n][n]: Matrix with initial values
limit: Number of iterations

Output:
M[n][n] : Matrix with result values

Temporal variables:
M_temp[n][n]: Auxiliar matrix.

** Time loop
Do iter = 1 to limit

** First SPMD block: Update M_temp
Do i = a to n-b

Do j = a to n-b
M_temp[i][j] = M[i][j]

** Second SPMD block: Compute stencil operation
Do i = a to n-b

Do j = a to n-b
M[i][j] = (M_temp[i-a][j] + M_temp[i+b][j] + M_temp[i][j-a] + M_temp[i][j+b])/4;

Figure 1: Sequential algorithm for the illustrative example.

• The implementation of the proposed communication calculation technique in a parallel
programming framework, whose input language allows the programmer to reason in terms
of logical processes, without facing decisions about granularity, thread management, or
interprocess communication.

• An experimental study to evaluate our runtime proposal comparing it with a compile-time
state-of-the-art tool that generates communication codes, and with pure-MPI references
codes.

Our technique postpones to runtime part of the analysis and decisions needed to transform
program abstractions to actual processes. Thus, the programs can adapt their behavior at runtime,
dealing with different partitions, granularity, data-distribution, memory hierarchies, tile sizes, or
synchronization and communication structures.

We start our discussion with an illustrative example based on a stencil computation in Sect. 2,
showing the transformation techniques presented for the rest of the paper. Section 3 describes
the Trasgo model and its tools. Section 4 introduces the new techniques applied in Trasgo. To
show the applicability and efficiency of the approach, we include several experimental studies
in Sect. 5, comparing performance on distributed- and shared-memory platforms with MPI ref-
erence codes, and codes generated with auto-parallelizing compilers. The results show that our
approach can automatically produce efficient programs despite the overhead of the calculation
performed at runtime. Section 6 discusses some related work. Section 7 presents the conclusion,
and future work.

2. Illustrative example and Overview

This section presents an illustrative example that serves as a quick overview of the techniques
presented in this paper. The example is a modification of a Jacobi PDE solver for Poisson’s

3

(1) SPMD:
 Update

(2) SPMD:
 Computation

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M[i][j]= 0.25* (M2[i-a][j] + M2[i+b][j]
 M2[i][j-a] + M2[i][j+b])

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M2[i][j]= M[i][j]

Communication
stage

Distribute comp.
among processes

}

Communication
stage

for(t=0;t<limit;t++){

lower_x = map_lower(a, n-b, myRank, num_processes, 0)
upper_x = map_upper(a, n-b, myRank, num_processes, 0)
lower_y = map_lower(a, n-b, myRank, num_processes, 1)
upper_y = map_upper(a, n-b, myRank, num_processes, 1)

// Determine communication pattern 1
// Execute communication pattern 1

// Determine communication pattern 2
// Execute communication pattern 2

Figure 2: Scheme of the parallel algorithm following an SPMD model for the illustrative example (left), and code
excerpts for the main blocks (right). The parameter a determines the halo sizes on the top and left sides, and the b
parameter determines the same on the bottom and right sides.

equation to compute heat transfer in a discretized two-dimensional surface. This is a simple
data-parallel example, that aims to introduce the readers to the basis of the approach. This ex-
ample can be used to show basic concepts of MPI synchronization (see e.g. [7]). It contains
clear computation and communication stages with uniform data access expressions. The sequen-
tial algorithm is shown in Fig. 1. In our example we also introduce two integer parameters a, b
that are used in the access expressions to select at runtime the distance to the positions consid-
ered neighbors in terms of the stencil operation carried out for that particular invocation of the
computation.

2.1. Programming with an SPMD model

We first present an overview of the typical approach used to program the illustrative exam-
ple following an SPMD model. In the sequential algorithm (recall Fig. 1), we can distinguish
two different blocks of code inside the time loop that can be parallelized independently without
violating any data dependence (transforming them into SPMD blocks). Figure 2 (left) shows a
distributed parallel programming scheme of the illustrative example following an SPMD model.
To program this algorithm in parallel, the only data dependences that must be taken into account
are those produced between the SPMD blocks. For this reason, a communication/synchroniza-
tion stage is inserted between them.

When we execute this parallel example algorithm in shared-memory systems, a synchroniza-
tion stage is enough to avoid data dependences between the two parallel structures. However,
in distributed memory systems, the data written by a process in the first SPMD block should be
sent to other processes that need these data to execute the second SPMD block. Notice that a
synchronization is implicit in this communication.

Programming for distributed-memory systems has the challenge for the programmer of deal-
ing with the data and computation distribution between different processes. In our example (see
Fig. 2, right), we have distributed the computation using the mapping functions map lower() and

4

 WO
M_temp,1,p

WI
M_temp,2,p U

Read
expressions

upper_ylower_y

lower_x

upper_x

Expr: [i-a][j] Expr: [i+b][j] Expr: [i][j-a] Expr: [i][j+b]U UExpr: [i][j] =

lower_x-a

upper_x-a

lower_x+b

upper_x+b

upper_y-alower_y-a upper_y+blower_y+b
Write
expressions

NORM

Figure 3: Using the read and write data-access expressions inside the parallel structure of the illustrative example to
calculate the working input and output index sets (W2

I ,W1
O) for M temp for a generic process. This example assumes

positive parameters a, b ≥ 0. The Norm operation on the last stage reduces the number of boxes used to represent the
union of domains. The drawings consider the particular case of a = 2, b = 3, for a domain with 8× 8 contiguous indexes.

map upper(). These mapping functions receive the first and last iteration of the loop to be dis-
tributed, the identifier of the current process, and the total number of processes. These functions
return the loop limits corresponding to the chunk of iterations that should be executed by the
current process, avoiding overlappings with other processes.

Each process is ready to perform the computation as soon as it has the corresponding data
in its local memory. These data include not only the data in the positions that match the loop
iterations, but also the data that correspond to their halo, which may be owned by other processes.
A communication stage before each SPMD block should retrieve the corresponding halos, thus
ensuring that each process has a local copy of all the needed data. In our particular example,
before the execution of the first SPMD block, a communication stage is not necessary as each
process already has all the data it needs. However, in the second SPMD block, each process
needs data that have been updated by other processes (data in the halo). The communication
phase in this case depends on execution parameters, such as the matrix size, the tile size, the
number of processes, the partition policy (the way in which the data were partitioned among the
processes), and the values of a and b parameters which define the halo sizes.

The technique presented in this paper determines automatically at runtime the communi-
cation patterns needed between two consecutive parallel structures, taking into account these
parameters, regardless of their availability at compile or execution time, regardless of the appli-
cation of other sequential or tiling optimization techniques inside each process.

2.2. Overview of the communication determination technique
We present here an overview of the proposed technique to determine automatically the com-

munication patterns among different SPMD blocks. As we have seen in the previous description,
we usually need a communication stage between two consecutive SPMD blocks to ensure a cor-
rect execution. In our example, we need to communicate some data written in the first SPMD
block by each process to other processes that read these data in the second SPMD block. Our
technique consists of two steps:

1. In order to determine the data read and written in each parallel structure, for each SPMD
block in the program, we generate at compile time a parametrized function that, at runtime,
returns the set of data being read or written for a given process identifier p.

For the illustrative example, we show an example of both sets of indexes returned by these
generated functions in Fig. 3. We name the sets of indexes of the matrix M read and written

5

3

6 7

5

8

0 1 2

3

6 7

5

8

0 1 2

4 4

for (p=0; p<Number of processes; p++)
 if (p != 4) {
 Calculate intersection of WO

M_temp,1,p and WI
M_temp,2,4

 Store intersection in CR
 }

Data needed from P1:

Data needed from P3:

Data needed from P5:

Data needed from P7:

CR

Communication Receive (CR) pattern for process 4:

Figure 4: Calculation of Communication Receive (CR) pattern between the two parallel structures of the illustrative
example. Example for a number of processes P = 9, a process identifier 4, the previously generated functions W M temp,2,∗

I

and W M temp,1,∗
O , a mapping/partition function that returns irregular rectangular blocks, and particular values for symbolic

parameters a = 2, b = 3.

by the k-th SPMD block in the code, at a given processor p as follows: Input Working Set
Indexes W M,k,p

I , and Output Working Set Indexes W M,k,p
O . These functions are generated

at compile time using the data-access expressions found in the input code. In Fig. 3, we
see how the set WM temp,2,p

I is calculated by applying the uniform access expressions found
in the code to the calculated loop limits (lower x, lower y, upper x, upper y). The set of
indexes is normalized to be represented with a set of rectangular shapes.

2. In the second step, we apply an algorithm at runtime to determine the communication
patterns and to store a compact description of them in an object. To calculate the data that
have to be received by a local process from a remote process p, the algorithm intersects
the set of indexes read by the local process in the second SPMD block (that is, W M,k+1,local

I)
with the set of indexes written by the process p in the first SPMD block (W M,k,p

O). Figure 4
shows a visual representation of our runtime algorithm for the illustrative example. The
example shows the calculation of the Communication Receive (CR) pattern for process 4.
On the left, we can see the M temp matrix distributed among 9 processes with an arbitrary
irregular partition policy, and the data set (dotted lines) to be read by process 4 in the
following SPMD block. On the right, we see the data that should be received by process 4
from different remote processes. The patterns are calculated using the proper intersections
of the data owned by different processes.

To calculate the data to be sent by a local process to a process p, the algorithm performs
the opposite intersection, between the set of indexes written by the local process in the
first SPMD block (that is, W M,k,local

O) and the set of indexes read by the p process in the
second SPMD block (W M,k+1,p

I). An empty intersection indicates that no send (or receive)
operation is needed for that particular process p.

6

Front−end translator

Native compiler

High level source code
CMAPS

SPC−XML specification
XML

XML

SMP Code + HIT calls
C + runtime HITmap

Mapped program

Multilevel code
C + runtime HITmap + OpenMP

Binary executable

Program representations Transformations

Code transformations
Expression builder

Back−end

Shared memory
Polyhedral model: Pluto

HITmap library

Xslt

Xslt

Figure 5: Structure of the Trasgo transformation framework.

After applying this technique for every process and every array we can apply the deter-
mined send and receive patterns to perform the actual communications.

Our technique requires that any symbolic parameter must have the same value on every pro-
cess. Thus, the set of indexes accessed by a remote process p can be calculated by any process,
with no inter-process communication. A deeper discussion about the constraints, the features
used to reduce the complexity, and a formal definition of our technique is presented in Sect. 4.

3. The Trasgo Model

The previous section briefly describes our proposed technique. In this section, we review the
Trasgo parallel programming and execution model, where our technique has been implemented.

The Trasgo model [5] proposes the use of an explicitly parallel, but high-level and struc-
tured representation of parallel algorithms. It uses restricted synchronization at the higher level,
generating more efficient and less synchronized parallel structures at the low level. The original
model is based on the SP (Series-Parallel) process model [8] and data-distribution algebras, pro-
viding clear and well-defined semantics [9]. The model is free of race conditions, unexpected
dead-locks, or stochastic behaviors. The high-level code uses a global view approach in hier-
archical decompositions. The semantics provide clear synchronization points and hierarchical
global states that simplify testing and debugging.

3.1. Overview of the code transformation framework

Figure 5 shows the structure of the Trasgo transformation framework. The left column shows
the program representations, and the right columns the transformation layers.

A front-end translates the input language (in our case CMAPS [10]) to an XML internal
representation. The main part of the transformation layer transforms the global address space
into a partitioned address space, building the functions to compute communications across virtual
processes. The transformed code is rewritten by a back-end that generates C code with calls to
the Hitmap run-time library (see Sect. 3.3). The resulting computation code, generated for the
local distributed process, can finally be optimized through polyhedral tools to generate optimized
parallel code for the shared memory level using OpenMP. Pluto compiler [11] has been shown

7

1 /* Second Sequential function */
2 void updateCell(in double up, in double down, in double left, in double right,
3 out double result) {
4 *result = (up + down + left + right) / 4 ;
5 }
6

7 /* First Sequential function */
8 void updateData(in double Data, out double result) {
9 *result = Data ;

10 }
11

12 /* Parallel stencil code with parametric dependences */
13 coordination void caseA(inout tile double M[][], in int limit,
14 in int a, in int b, in layout partition_policy) {
15 double M_temp[][];
16 /* Distribute arrays*/
17 ArrayMap(M, partition_policy);
18 ArrayMap(M_temp, partition_policy);
19

20 /* Time loop */
21 loop(t in [1:limit]) {
22 /* First SPMD block: Update M_temp */
23 parallel (i,j in M) {
24 do: updateData(M[i][j], M_temp[i][j]);
25 }
26 /* Second SPMD block: Compute stencil operation */
27 parallel (i,j in M) {
28 do: updateCell(M_temp[i-a][j], M_temp[i+b][j],
29 M_temp[i][j-a], M_temp[i][j+b],
30 M[i][j]);
31 }
32 }
33 }

Figure 6: CMAPS code for the illustrative example.

to be a good tool to auto parallelize sequential codes for shared-memory systems. As a proof
of concept, we use Pluto on the codes obtained after applying the mapping policy. Thus, we
make it optimize the local computation inside each MPI process, in order to efficiently exploit
internally the multi-core processor of each node. The methodology used to integrate Pluto with
the Hitmap toolchain was described in [12]. The final code is compiled with a native C compiler.

Figure 6 shows the illustrative example coded in CMAPS, the current Trasgo input language.
First, we define the sequential functions to apply to each element, specifying the output or input
role of the parameters (lines 2,8). The parallel function is defined using the coordination modi-
fier, and also specifying the role of the parameters (line 13). In its body, the function ArrayMap()
distributively allocates both arrays M temp and M in terms of the results of a mapping/partition
policy named partition policy, which is also a parameter (line 17-18). After the distribution, the
code updates and computes each element of M temp in parallel using the sequential functions
previously defined (lines 23, 28). The parallel structure in CMAPS maps the computation indi-
cated in the do: code to each indexes pair in the domain specified in the clause inside the parallel
brackets.

3.2. Notations and definitions

In this section, we present definitions used in the rest of the paper. In this work, we focus on
arrays with regular dense and strided domains.

8

Signature is a triplet of integer numbers S 〈b, e, s〉 (meaning begin, end, and stride). The set of
indexes expressed by a signature is S 〈b, e, s〉 = {b ≤ i ≤ e : (i − b) mod s = 0}.

Domain is a subspace of Zn. Rectangular n-dimensional parallelotope domains, dense or strided,
can be represented by a tuple of n Signatures. Let us consider an n-dimensional domain
Dn〈s0, s1, ..., sn−1〉 ∈ Zn, where s0 ∈ S ∗, .., sn−1 ∈ S ∗ are the signatures whose Cartesian
product defines the domain. This kind of structures only represent rectangular shapes.

Working set is a generic set of indexes. We represent generic sets as unions of signature do-
mains, W M = ∪

q
i=0di : q ∈ θ(N), di ∈ Dn.

Tile is an object that associates data elements of a given type to index elements of a domain.
The domain of a tile is denoted as D(T), T : D→ type.

Logical process is a tuple P〈 f ,W M
I ,W

M
O 〉, where f is a function or subprogram, W M

I is the
working set that P receives as input (the data indexes of M that are read), and W M

O is the
set used as output (the data indexes of M that are written). Logical processes may be
composed in sequence, or in parallel. A sequential composition P1 . P2 indicates that f1
is executed before f2, and that data modifications introduced in the output tiles of P1 are
propagated in the corresponding input tiles of P2. Sequential composition is associative but
not commutative. A parallel composition P1 ◦ P2 indicates that f1 and f2 can be executed
in parallel. Parallel composition is associative and commutative.

Wave-front composition (P1 • (W f)P2), is a parallel composition with explicitly added order
dependences for arbitrary tiles, across processes. If there is overlapping of the shapes of
W f with the input working set of P2 and the output working set of P1, the function f2 cannot
be started until f1 has finished. The data represented by the overlapping shapes should be
propagated. This does not allow generic data-flow compositions to be expressed, with
transitive cycles that could lead to dead-locks. This composition operation allows parallel
structures, such as wave-front computations, and macropipelines to be expressed when
used inside a loop.

Virtual Topology V(N,R) is a graph where the vertices N represent virtual processes, associated
with computational resources (groups of processors), and the edges R represent neighbor
relations.

Layout L : D→ V is a function that maps domain subspaces (indexes of tiles or logical pro-
cesses) to the virtual processes in a virtual topology.

3.3. Hitmap library

Hitmap [13] is a library for the management and run-time mapping of hierarchically tiled
arrays used in Trasgo. It is based on an SPMD model, and on the message-passing paradigm.
Hitmap has three main functionality modules: (a) Domain and tile management; (b) Mapping
modules; and (c) Communication patterns. Hitmap defines objects to declare and manipulate
index sets as multidimensional parallelotopes with optional stride, or as sparse sets. Hitmap
defines a plug-in system to include new mapping modules: Virtual topology constructors and
mapping functions named layouts. The modules generate objects that can be queried at runtime
to obtain information about the result of the mapping for the local, or any remote process. Finally,
it contains functionalities to build reusable communication patterns for tiles, or subtiles, across

9

virtual processes. These functions internally use the MPI standard, exploiting efficient techniques
like derived data types, and asynchronous communications.

Several new functionalities have been added to Hitmap to support the new techniques pre-
sented in Sect. 4. To represent generic domains and working-set indexes in Hitmap, we have cre-
ated a new data structure, called Domain. We have implemented functions for efficient domain
set operations (intersection ∩, union ∪, and subtraction \) on parallelotope shape structures. A
Norm function is implemented to transform any domain, represented as a set of signature-based
parallelotope shapes, in an union of a set of signature-based parallelotope shapes with empty
pair-to-pair intersections. The resulting normalized domain is a set of parallelotope areas with
optional stride inside, which can be directly translated to MPI derived data-types for efficient
marshalling/unmarshalling operations. The runtime asymptotic complexity of this function is
directly related to the amount of shapes that compose the input set. Also, the actual bound of
the q value for a given application (reminding the representation of the working sets) is directly
related with the runtime complexity of applying our technique. See an example of the use of the
Norm function in the final step of Fig. 3. More advanced representations will be presented in a
future work.

4. Implementation of the technique to determine communication patterns

This section describes in depth the new technique we propose in the context of the Trasgo
framework. It allows to determine at runtime the exact aggregated communications across dis-
tributed processes, for codes with data-access expressions which are affine transformations of the
data indexes used in an SPMD block. Let ix : x = 0 . . . n − 1 be the data indexes in an SPMD
block (parallel indexes). The parallel indexes in a CMAPS code are those in the clause inside the
brackets of a parallel structure. An affine access expression ρ(x) is defined as:

ρ(x) = α0 × i0 + α1 × i1 + ... + αn−1 × in−1 + β

where the coefficients αx, β can be general expressions using constants and parameters whose
values can be unknown at compile time, but are invariant in the body of the parallel structure
(SPMD block). In the current prototype we only support uniform affine expressions, whose
resulting index domain is a multidimensional parallelotope (hyperrectangular shapes). A uniform
expression is defined as:

%(x) = iy + β

The proposed technique also supports the composition of several blocks that come from the
application of several uniform expressions. The resulting domain can be a non-convex domain
that is represented by a set of non-overlapped hyperrectangular blocks, that represent the exact
subspace of the domain that is accessed. See an example on Fig. 3.

This section describes in detail the proposed technique. As shown in the illustrative example,
we divide our technique into two steps.

4.1. Functions to calculate working set indexes

As previously discussed in section 2.2, we should generate functions Wk
I (. . .), and Wk

O(. . .),
which calculate at runtime the input/output working set indexes of each data structure, at each
k-th parallel structure (SPMD block). These functions are generated from the expressions found
in the do: clauses of the CMAPS codes. For parallel structures with wave-front expressions, we

10

also generate functions to compute the Input-Flow Working Set Indexes Wk
F(. . .). The wave-front

expressions are found in CMAPS in a specific clause that determine the wave-front dependences.
These functions (Wk

F(. . .)) are generated like other working-set index functions, but using the
wave-front expressions as if they were read accesses to the data structure.

The generated functions have the following parameters: A process index p, a mapping func-
tion L(p) to obtain the subdomain of parallel indexes mapped to p, and the symbolic parameters
that appear in the data read/write accesses to the chosen data structure. The code of the func-
tion applies, to the index subdomain L(p), all the affine transformations found in the read/write
accesses for the data structure, inside the k-th parallel structure. Figure 7 shows the functions
generated for the working sets WM temp,2,p

I and WM temp,1,p
O in the illustrative example (they are

prefixed by calculateWI, and calculateWO in the code). The HitLayout objects implement
the L(p) methods applied at runtime. The resulting shape domain is transformed according to the
code expressions found in CMAPS codes, and the union of domains is computed. The example
of Fig. 7, uses specialized Hitmap functions for the case of expressions with only one parallel
index on each dimension scope. Let [αx ∗ iy +βx] be an expression to access the x-th dimension of
the data structure. Notice that the parallel index y does not need to be the same as the dimension
that is accessed. The hit shapeAffine2(. . .) function transforms a 2-dimensional shape to another
2-dimensional shape. For each dimension, the parameters are the identifier of the parallel index
y, and the subexpressions αx, βx, which are literally copied from the data access expression.

In the current implementation of the Trasgo prototype, we have only taken into account
uniform access expressions (According to [4], approximately 84% of the benchmarks of the
Polybench [14] can be fully uniformized). The implementation of the transformation functions
(such as hit shapeAffine2()) is based on signature (domain) algebras. These functions simply
apply the access expressions to the index-space limits at runtime to calculate the resulting shapes.
The transformations can be applied independently to each shape, and each dimension. Let us
consider a shape domain L(p) = 〈s0, s1, . . . , sn−1〉. Let sy〈b, e, s〉 be its signature in the dimension
y. For an access expression [αx ∗ iy + βx], the signature representing the transformed working-set
index domain in the x-th dimension can be calculated as T1(L(p), y, αx, βx) = 〈b′, e′, s′〉, with:

b′ = min(αx × sy.b + βx, αx × sy.e + βx)
e′ = max(αx × sy.b + βx, αx × sy.e + βx)

s′ = αx × sy.s

The transformation functions are applied one by one, according with the data accesses ex-
pressions. Their resulting domains are compounded using the hit shapeUnion function. This
composition can result in a non-convex domain, that is normalized to eliminate the overlapped
parts. The result is a set of non-overlapped rectangular shapes (see Fig. 3). These functions are
used to calculate the domains, WM

I and WM
O , independently on each process, with no interprocess

communication.
Future work includes the implementation of functions to support multi-domains, allowing

expressions that involve more than one parallel index. For example, a transformation for expres-
sions such as [i0 + i1][i0 − i1] would lead to a non-rectangular, rhomboidal shape, that can be
represented as a set of rectangular shape structures. Moreover, more complex representations
based on octagons [15] can be considered for more general shape representations.

11

1 /** Calculate W_I for M_temp in SPMD 2 */
2 HitDomain calculateWI_M_temp_2(HitRank p, HitLayout lay, int a, int b){
3 HitShape _TT_mapIdx = hit_layOtherShape(lay, p); // L(p)
4

5 HitDomain _TT_inWS_matrix = hit_shapeUnion(
6 // 2D Affine transformations (domain, index_x, alpha_0, beta_0, index_y, alpha_1, beta_1)
7 hit_shapeAffine2(_TT_mapIdx, 0, 1, -a, 1, 1, 0),
8 hit_shapeAffine2(_TT_mapIdx, 0, 1, +b, 1, 1, 0),
9 hit_shapeAffine2(_TT_mapIdx, 0, 1, 0, 1, 1, -a),

10 hit_shapeAffine2(_TT_mapIdx, 0, 1, 0, 1, 1, +b));
11

12 return _TT_inWS_matrix
13 }
14

15 /** Calculate W_O for M_temp in SPMD 1 */
16 HitDomain calculateWO_M_temp_1(HitRank p, HitLayout lay){
17 HitShape _TT_mapIdx = hit_layOtherShape(lay, p); // L(p)
18 HitDomain _TT_outWS_matrix = hit_shapeTodomain(_TT_mapIdx); // No transformations
19 return _TT_outWS_matrix;
20 }
21

22 /** Calculate Communication Pattern: Between SPMD 1 and 2 */
23 HitPattern calculateCommunications_M_temp_1_2(HitTile _TT_Tile1, HitLayout _TT_lay1,
24 int a, int b){
25

26 HitRank local = hit_laySelfRanks (_TT_lay1); // myRank
27 HitPattern _TT_patternComm=HIT_PATTERN_NULL; // CR,CS = Empty
28 HitDomain WO_L = calculateWO_M_temp_1(local , _TT_lay1); // W_O(myRank,L)
29 HitDomain WI_L = calculateWI_M_temp_2(local , _TT_lay1); // W_I(myRank,L)
30

31 for (_TT_1 = 0; _TT_1 < hit_layNumActives(_TT_lay1) ; _TT_1++){ // For p = 0..P
32 if(hit_layToActiveRanks(_TT_lay1, _TT_1) != local){ // If p != myRank
33 // Send tuple
34 HitDomain WI_P = calculateWI_M_temp_2(_TT_1 , _TT_lay1, a, b); // W_I(p,L,a,b)
35 HitDomain _TT_aux = hit_domainIntersect(WO_L, WI_P); // Intersection
36 _TT_aux = hit_NormalizeDomain (_TT_aux); // Normalize
37 hit_patternAdd(&_TT_patternComm, // Add CS tuple
38 hit_comSendSelect(_TT_lay1, hit_layToActiveRanks(_TT_1), &_TT_Tile1, _TT_aux,
39 HIT_COM_TILECOORDS, HIT_DOUBLE));
40 // Receive tuple
41 HitDomain WO_P = calculateWO_M_temp_1(_TT_1 , _TT_lay1); // W_O(p,L)
42 HitDomain _TT_aux = hit_domainIntersect(WI_L, WO_P); // Intersection
43 _TT_aux = hit_NormalizeDomain (_TT_aux); // Normalize
44 hit_patternAdd(&_TT_patternComm, // Add CR tuple
45 hit_comRecvSelect(_TT_lay1, hit_layToActiveRanks(_TT_1), &_TT_Tile1, _TT_aux,
46 HIT_COM_TILECOORDS, HIT_DOUBLE));
47 }
48 }
49 return _TT_patternComm;
50 }

Figure 7: Generated code for illustrative example: Communication constructor functions for the parallel structure inside
the time loop. Hitmap library is used for tiling management and message passing. Communication is encapsulated on
HitPattern objects. Reading a, b values from program arguments is skipped.

12

ALGORITHM 1: Model to calculate
the communication pattern across par-
allel structures, for a given data struc-
ture, in terms of intersections of in-
put/output working-set indexes.

Input: P : Number of processes,
myRank : Local process id,
Wk

O(p) : Function to compute output
working-set
Wk+1

I (p) : Function to compute input
working-set
Output: 〈CS ,CR〉 : Sets of

communication tuples

CS ← ∅, CR ← ∅

for p = 1 to P do
if p , myRank then

CS ← CS ∪ 〈p,Wk
O(myRank)∩

Wk+1
I (p)〉

CR ← CR ∪ 〈p,Wk
O(p) ∩

Wk+1
I (myRank)〉

end
end

ALGORITHM 2: Model to calculate
communication pattern from parallel
structure k to itself, after satisfying
wave-front flow dependences.

Input: P : Number of processes,
myRank : Local process id,
Wk

I (p) : Function to compute input
working-set of k
Wk

O(p) : Function to compute output
working-set of k
Wk

F(p) : Function to compute
input-flow

working-set of k
Output: 〈CS ,CR〉 : Sets of

communication tuples

CS ← ∅, CR ← ∅

Wtmp1 ← Wk
I (myRank) \ Wk

F(myRank)
for p = 1 to P do

if p , myRank then
Wtmp2 ← Wk

I (p) \ Wk
F(p)

CS ←

CS ∪〈p,Wk
O(myRank)∩Wtmp2〉

CR ← CR ∪〈p,Wk
O(p)∩Wtmp1〉

end
end

13

I
kW

OWk

1

OWk

Wk
F

OWk

Wk
FI

kW

1

2
OWk

Wk’
I

k’

k

1 OWk

Wk
F

OWk

Wk’
I1

1

(a)
k’

k

(c)

k

(b)
Loop

k

(d)
Loop

Figure 8: Working-set index functions used to tailor the communication constructor algorithms for the four possible
situations. Cases (a) and (c) calculate communications across two parallel structures. Cases (b) and (d) calculate com-
munications from one parallel structure to itself, when it is inside a loop. In cases (a) and (b), the parallel structure k does
not have wave-front expressions. The encircled number represents the algorithm implemented by the generated function.

4.2. Determining Communications patterns

As described in the overview on Sect. 2.2, communications should be executed between
parallel structures, or between a parallel structure and itself if it is inside a loop.

Communication patterns are formed by two subsets 〈CR,CS 〉 of comm-tuples (communi-
cation tuples). CR tuples indicate receive operations. CS tuples indicate send operations. A
comm-tuple 〈p,W M〉 contains the index of the remote process p, and the working-set indexes
W M of the structure whose data values will be communicated.

Our solution determines the communication patterns needed across SPMD blocks combining
two algorithms. Algorithms 1 and 2 are generic models that traverse at runtime the remote active
P − 1 processes intersecting output and input working-set indexes for the same data structure in
order to determine the communication tuples needed between two SPMD blocks. Comm-tuples
with empty sets, resulting from the intersections, are discarded and not internally stored by the
Hitmap objects. For clarity, the data-structure name, the mapping functions L(p) of the indexes
at each parallel structure, and the specific parameters are omitted. These algorithms should be
implemented on tailored functions for each communication calculation stage, adding the extra
parameters needed as inputs in the calls to each specific working-set function.

We distinguish four different cases for using the working-set index functions in order to
build the communication constructor functions (See Fig. 8). The cases for parallel structures
without wave-front expressions (namely, (a) and (b)), are simpler. A function is built using
Alg. 1. It is tailored to use Wk

O(. . .) for output working-set indexes. For input working-set
indexes, we use Wk′

I (. . .) in case (a), or Wk
I (. . .) in case (b), which only has a single SPMD

block inside a loop. An example of a tailored function to calculate the communication of two
consecutive parallel structures in the illustrative example, is shown in Fig. 7, with the name
calculateCommunications M temp 1 2().

Our communication calculation and execution are performed just before the computation
of the SPMD block. Nevertheless, if the access-expressions is not dependent on an index of
an outer loop, the communication calculations can be inserted as soon as the parameters and L
functions are known (even in initialization time in many cases), and the communication execution
is inserted before the computation of the parallel structure. For example, in the generated code
for the illustrative example (see Fig. 9), the invocation to calculate the communications is at line
2 on the main program, before the time loop iteration. Communications are calculated only once,
because the a and b parameters are not modified during the computation. The execution of the

14

1 /* 1. Building comm. pattern A (1 to 2) that is invariant in the whole execution */
2 HitPattern _TT_comA = calculateCommunications_M_temp_1_2(M_temp, M_temp.Layout a, b);
3

4 /* 2. Time loop */
5 for(i=0; i<iterations; i++) {
6

7 /* 3. SPMD block: Loops to update M_temp */
8 ...
9

10 /* 4. Communication, execute pattern A */
11 hit_patternDo(_TT_comA);
12

13 /* 5. SPMD block: Loops to traverse the logical processes */
14 for (_TT_i0=0; _TT_i0 < hit_tileDimCard(M,0); _TT_i0++) {
15 for (_TT_i1=0; _TT_i1 < hit_tileDimCard(M,1); _TT_i1++) {
16 /* 5.1. Call functions with selections */
17 updateCell(
18 hit_tileElemAt(M_temp, 2, _TT_i0-a, _TT_i1),
19 hit_tileElemAt(M_temp, 2, _TT_i0+b, _TT_i1),
20 hit_tileElemAt(M_temp, 2, _TT_i0, _TT_i1-a),
21 hit_tileElemAt(M_temp, 2, _TT_i0, _TT_i1+b),
22 hit_tileElemAt(M, 2, _TT_i0, _TT_i1)
23);
24 }
25 }
26 }

Figure 9: Excerpt of generated code for illustrative example: main program. Hitmap library is used for tiling manage-
ment, and message passing. Communication is encapsulated on HitPattern objects. Reading a, b values from program
arguments is skipped.

communications is at line 11, before the second parallel block. It is executed on each iteration.
When the parallel structure k has wave-front expressions, we should generate two different

communication patterns. The first one is to satisfy the dependences indicated by the wave-
front expressions across processes during the first SPMD block. In cases (c) and (d), Alg. 1 is
tailored to use Wk

O(. . .) for output working-set indexes, and for input working-set indexes, we use
Wk

F(. . .). The CR comm-tuples are executed before the parallel structure, blocking the process
until the dependences from other processes are satisfied. The CS comm-tuples are executed after
the parallel structure.

The second communication pattern aims to communicate with the following parallel struc-
ture. If it is another different parallel structure, case (c), we use Alg. 1 in the standard way.
However, in the case of a parallel with wave-front expressions inside a loop (d), we should skip
the data already communicated due to the flow dependences. For this particular case, we build a
tailored function following Alg.2, using functions Wk

O(. . .), Wk
I (. . .), and Wk

F(. . .).
In the same way than this communication calculation is performed, it would be possible

to calculate at runtime the part of the data domain where it is possible to overlap computation
with the communication of other parts. The calculation can be performed also at runtime, by
operating (intersecting, subtracting, etc.) with the HitShape objects that contain information
about the domains of: the data to be sent, the data to be received, and the data to be computed.
Future work includes the implementation of this feature in the framework.

4.3. Communication patterns for specific applications

In the general case, determining the communication structures involves the comparison of the
local working sets with the working sets of the rest of the active distributed processes. Thus, the

15

Table 1: Input data sizes (N × N), time loop iterations (T), and threshold parameter, for the different benchmarks in the
experimental studies conducted in Heracles and CETA.

Machine Heracles CETA
Benchmarks Sizes, iterations, threshold Sizes, iterations, threshold
Illustrative example N = 7500, T = 200 N = 7500, T = 200
Stencil-Opt N = 5000, Threshold = 0.001 N = 5000, Threshold = 0.001
Cannon’s algorithm N = 7680 N = 7680
Matmul N = 4000 N = 4000
Jacobi-2d N = 7000, T = 1000 N = 5000, T = 800
Gauss-Seidel N = 7000, T = 1000 N = 5000, T = 800
Blur-Roberts N = 13000 N = 13000
Gemver N = 8000 N = 600

computation cost of the communication calculation at runtime grows linearly with the number
of virtual processes P in the topology. In many applications, the calculation of the communi-
cation patterns can be moved out of the loops and computed at initialization time. However, in
applications where the communication expressions are parametrized with loop indexes or other
parameters, the expressions are not invariant, and the communication patterns should be com-
puted at every loop iteration.

The new Trasgo prototype allows the addition of specialized transformation modules that, by
input code inspection, can detect parallelism patterns, and substitute the generic communication
calculation by specific optimized functions that do not traverse all the other processes to compute
working-set index intersections. The time to compute communications in these cases does not
grow with the number of processes. For example, by checking the expressions used in the tile
selections, it is possible to detect stencil computations, that derive in neighbor synchronization
structures. Similarly, a circular shift pattern is also detectable in Cannon’s algorithm for matrix
multiplication. Our Trasgo prototype includes modules for some simple stencil and shift patterns,
which substitute the generic communication calculation by code that calculates the intersections
only with the needed neighbors for both input and output working sets.

These modules to detect specific patterns reduce the calculation communication times. Nev-
ertheless, they cannot be generalized to any dependences pattern or mapping policy chosen.
More well-known applications or design patterns can be analyzed and implemented. It is an
interesting research question if any well-defined pattern can be detected, and its corresponding
communication code can be generated for any mapping policy chosen at runtime.

5. Experimental study

We have conducted an experimental study to validate our approach, and to verify the effi-
ciency of the resulting codes. We present four different performance studies:

• One of our main contributions is the ability of our technique to automatically calculate
communications on a distributed-memory programming model without a fixed tile size at
compile time. For this reason, the experimental study starts with a performance study to
show the performance improvement achieved when the tile size is independently tuned at
runtime for each machine involved in the computation.

16

• Second, we evaluate the potential overhead that our runtime technique can introduce when
adding more computing elements. The simulation study shows a comparison of the run-
time cost of the general communication determination using the described algorithms
with respect to using communication patterns for specific applications already included
in Trasgo.

• Third, we perform an end-to-end measure, including creation of data structures, data ini-
tialization, and the rest of Trasgo potential overheads to compare the programs generated
by our Trasgo prototype with MPI programs manually developed and optimized.

• The last study presents a comparison in terms of computation and communication (de-
termination plus execution) times with a state-of-the-art polyhedral code generator for
distributed-memory systems, the Pluto-MPI compiler [2], using several benchmarks of the
PolyBench [14].

A more concise description of each application and benchmark used in the studies can be
found in the supplementary material of this paper.

5.1. Experimental platforms and setup

Two clusters have been used in the different experimental studies. The first one is a homo-
geneous distributed-memory system called CETA. It is a hybrid cluster that belongs to CIEMAT
and the Spanish government. The cluster nodes are connected by Infiniband technology, and they
have two Intel Nehalem-based Xeon 5520 CPUs at 2.27 GHz, with 4 cores each. Using 8 nodes
of the cluster, we exploit up to 64 computational units.

The other cluster, Atlas, is composed by two multicore machines (Heracles and Zeus), that
acts as a distributed-memory cluster. Heracles is a Dell PowerEdge R815 server, with 4 AMD
Opteron 6376 processors at 2.3 GHz, with 16 cores each, and 64 cores in total. Zeus is a 6-core
Intel E5-2620 v3 at 2.40GHz (up to 12 threads with hyperthreading). Heracles is used in all
the experiments to test the scalability of the generated message-passing codes in shared-memory
platforms.

In the experimental studies, all the codes, including the MPI reference codes and the pro-
grams generated by Trasgo or Pluto, are compiled with GCC v4.8.3 with -O3 flag. We use
mpich3 v3.1.3 as MPI implementation.

Table 1 shows the benchmarks, input sizes of the matrices, threshold, and number of iterations
for the experimental studies using Heracles alone and CETA, except for the first experimental
study, where we use the full Atlas cluster with matrices of 1 500x1 500 data elements. These
problem sizes have been chosen to generate enough computational load to obtain significant
results for our experimental platforms. In some cases, like Gemver in CETA, the size is the
maximum supported in the platform by the distributed version of Pluto-MPI that replicates the
memory footprint of the whole global data structures for each process.

As the focus of our work is the efficient automatic calculation and execution of communica-
tions among processes, we have launched, in all the experiments, a distributed process for each
computational unit, without exploiting the shared memory of the machines. All the results pre-
sented are the minimum execution time on ten repetitions of each experiment, to eliminate the
outliers produced by stochastic delays in the communication systems.

17

Table 2: Computation times (seconds), of the matrix multiplication benchmark with a size of 1500x1500 on the cluster
Atlas with different tunning of the tile size. TS-Heracles, when applying the best tile size for the Heracles machine in
both machines. TS-Zeus, when applying the best tile size for the Zeus machine in both machines. Best TS represents the
program that chooses the best tile size found empirically for each machine.

Processes TS-Heracles TS-Zeus Best TS
1+1 11.32 6.23 6.23
2+2 5.69 3.17 3.17
4+4 2.87 2.24 1.78
6+6 2.00 2.11 1.75

12+12 1.16 1.28 0.99

Table 3: Execution time for the communication determination for Jacobi-2D solver (seconds).

Processes General Model Specific Model Hierarchical mapping policy
256 2.27 ×10−3 3.08 ×10−5 7.60 ×10−4

1 024 3.92 ×10−3 3.12 ×10−5 1.48 ×10−3

16 384 0.12 2.97 ×10−5 1.54 ×10−3

262 144 2.41 3.27 ×10−5 2.38 ×10−1

1 048 576 53.22 3.21 ×10−5 9.53 ×10−1

5.2. Improvement achieved by tuning the tile size for each process

We have developed an experimental study to show the positive impact on the performance of
tuning the tile size at runtime based on the execution machine details [6].

We use as benchmark the classical algorithm for matrix multiplication (in CMAPS). We have
executed the program with different tile sizes in the two different machines of the Atlas cluster,
to empirically determine which is the best tile size for each machine. Then, we execute the
program distributing the processes across both machines at the same time. Table 2 shows the
runtime execution times when the matrix multiplication is executed (1) using the best tile size
found for Heracles in both machines (TS-Heracles), (2) using the best tile size found for Zeus in
both machines (TS-Zeus), and (3) using, on each machine, its best tile size (Best TS),

We observe that the best performance is achieved when the tile size is tuned for each machine
independently. Unlike previous techniques, our solution does not analyze the index domain and
nor does it generate communication code at compile time. This allows the tile size to be adjusted
at runtime using different approaches. For example, fixing a parametric tile size in an already
tiled input code or using works, such as [16], that provide different ways to choose the best
tile size at runtime. Our method allows the application of this kind of optimization techniques
without changing the communication codes. This feature is not found in other techniques of the
related work, where the tiling is also used as a main feature to generate the communication code,
and thus the tile size cannot be changed at runtime.

5.3. General communications model vs. patterns for specific applications

In this study, we evaluate the potential overhead that our runtime technique can introduce
when the number of processes is really high. Each process computes its communication structure
independently. Thus, we can isolate and run the code to compute the communication structures
on a single process with the proper parameters to simulate the calculations that would be done if

18

Group: 0

Level: 0 Level: 1

GP: 0 GP: 1

GP: 4 GP: 5

GP: 8 GP: 9

GP: 12 GP: 13

GP: 2 GP: 3

GP: 6 GP: 7

Level: 2

27 27 27 2826

19

35

Group: 1

Group: 2 Group: 3

Figure 10: Application of the proposed communication calculation technique when using a hierarchical QuadTree map-
ping policy to distribute a matrix on 64 processes. White rectangular shapes represent the WI of the 28-th process (id=27)
for the Jacobi-2D benchmark. Crosses point out the processes or groups of processes whose mapped data do not intersect
with the locally accessed domain at a given level, detecting that no communication is needed. Thus, they are not checked
at lower levels.

the application were to be launched with any given number of processes. This allows us to obtain
accurate measures of the cost of the communication determination alone for a huge number of
processes. This study has been carried out with one MPI process in Heracles.

Table 3 shows the execution times obtained to compute the communications structure of the
Jacobi-2D solver. It compares the actual time to calculate communications using the general
model, described in Sect. 4.2, with the optimized pattern described in Sect. 4.3. Moreover,
we also compare the time spent to calculate communications using the general model when a
Qtree hierarchical mapping policy is used to distribute the data. This kind of mapping policies
define the distribution of data in several levels (see Fig. 10). Our technique is performed at each
hierarchical level recursively. The calculation operations (such as intersections or subtractions
among domains) are only performed in the next lower/finer level for the parts of the current level
whose intersection with the local accessed domain is not empty. Thus, in the example shown in
the figure with 64 processes, instead of comparing with all the processes, the comparison is only
performed with 4 domains at level 0, 12 at level 1 and 12 at the last level. Using this kind of
hierarchical mapping techniques, we obtain a calculation time bounded by O(log(P)) for patterns
which imply communication with a constant number of processes.

The time of the general model grows linearly with the number of processors as expected
(P). For the Jacobi-2D example, we can see on Tab. 3 that it is less than two seconds, even for
hundreds of thousands of processors. But it may be a hindrance for millions of processors, or if
the pattern needs to be recomputed at different iterations of a loop. In these cases, a hierarchical
decomposition and nested parallel structures can alleviate the problem, as we can see in the
third column of the table. This simulation verifies that the communication calculation time when
using the general model on a hierarchical mapping policy, is reduced to be proportional to log(P)
instead of P.

On the other hand, the specific pattern for the Jacobi-2D stencil always computes neighbor
synchronization pairs, independently of the data sizes or the number of processes. The time in
this case is bounded and negligible.

19

Table 4: Performance (in seconds) obtained for the three benchmarks chosen, for MPI reference versions, and for Trasgo
generated codes. Cannon’s algorithm by design requires a number of processes with a perfect square root.

Illust. case Stencil-Opt Cannon’s
Machine MPI Trasgo MPI Trasgo MPI Trasgo

Heracles-4 14.48 18.04 163.47 196.86 174.31 186.01
Heracles-8 17.51 20.28 116.76 118.68 - -
Heracles-16 9.79 11.07 57.34 67.43 56.66 62.94
Heracles-32 4.42 5.43 35.83 43.61 - -
Heracles-64 4.00 5.08 31.62 35.89 16.10 17.95
CETA-4 25.22 27.69 147.79 166.72 173.46 173.71
CETA-8 22.68 23.20 108.94 114.01 - -
CETA-16 11.03 12.72 100.97 111.19 48.89 58.46
CETA-32 6.04 6.64 80.11 86.08 - -
CETA-64 3.37 3.63 57.54 60.20 18.54 21.37

The use of hierarchical mapping policies is an interesting feature to scale the use of the
proposed technique to really huge amounts of processes, with the target of exascale computing
in mind. However, for the small sizes of the machines used in the rest of our current experimental
studies, we use the general model with a simple one level mapping policy, because determining
the communication patterns for these cases has an unnoticeable impact on the performance, for
any model or application.

5.4. Comparison with MPI references
In this study, we compare the programs generated by our Trasgo prototype with MPI pro-

grams manually developed and optimized. In order to do that, we perform an end-to-end mea-
sure, including creation of data structures, data initialization, and the rest of Trasgo overheads.
For this study we use: the Illustrative example, an implementation of Cannon’s algorithm for
matrix multiplication [17], which is specially devised for distributed-memory systems in order
to minimize the memory footprint, and an optimized stencil computation (Stencil-Opt) whose
communication pattern is data-dependent and redetermined on each time iteration of the stencil
program. These benchmarks are described in the supplementary material.

Table 4 shows the performance obtained by the MPI reference versions, and the Trasgo gen-
erated programs for the cases of study. We execute the applications on both, shared-memory
and distributed-memory machines. We see that Trasgo programs scale quite well, but losing
some performance in comparison with the manually optimized MPI codes (less than 20% in the
worst cases). This shows that the implementation of the proposed technique in Trasgo produces
efficient parallel programs at the communication level.

5.5. Comparison with a state-of-the-art tool
In this study, we have performed an in-depth comparison of the performance between the

codes generated by Trasgo, and those generated for distributed-memory by Pluto-MPI (dist-
mem), a polyhedral model compiler that includes state-of-the-art techniques for generating com-
munication code [3]. We choose Pluto-MPI because: (1) According to the authors, it is the
first work that reported an end-to-end fully automatic distributed-memory parallelization and
code generation for input programs and transformation techniques; (2) It is a free available tool
easy to install, which supports all the benchmarks tested in the paper; (3) Many research works
have appeared that use Pluto as baseline, for both shared- and distributed-memory systems, such
as [18, 19, 20]; (4) To the best of our knowledge, the methods of Pluto for code generation in

20

Table 5: Maximum variation in the execution times for each benchmark in Heracles and CETA, when using Trasgo and
Pluto. The variation ratio is defined using the following formula: ((max time − min time)/min time).

Machine Heracles
Benchmarks Trasgo Pluto
Matmul 0.0231 0.0575
Jacobi-2d 0.0490 0.0707
Gauss-Seidel 0.0079 0.0160
Blur-Roberts 0.2670 0.2591
Gemver 0.1192 0.1965

Machine CETA
Benchmarks Trasgo Pluto
Matmul 0.0262 0.0260
Jacobi-2d 0.0196 0.0177
Gauss-Seidel 0.0119 0.0056
Blur-Roberts 0.1695 1.1790
Gemver 0.5304 0.4878

distributed-memory systems, comparing with others, are the ones that reduce the communicated
volume of data, being the generated code parametric in the number of processes and problem
sizes.

We have selected five examples from Polybench [14], a collection of examples to be used
for testing and developing polyhedral model compilation techniques. The examples are Jacobi-
2D, Gauss-Seidel, Blur-Roberts, the classical Matrix Multiplication algorithm and the Gemver
algorithm. We have slightly modified the stencil in the Jacobi-2D, and the Gauss-Seidel exam-
ples. Instead of computing a 5-point star stencil, we compute the 4-point star stencil of Poisson’s
equation. It reduces the computation load per process, leading to a slightly bigger impact of
the communications, which is the focus of this study. Gauss-Seidel has been selected because it
presents wave-front dependences, deriving in a macropipeline computation. Matrix Multiplica-
tion is a good case for simple linear algebra problems with a nice computation/communication
balance. On the other hand, Gemver presents a communication/computation balance that is not
adequate to distributed-memory systems (communication time typically is higher than compu-
tation). The Blur-Roberts filter is a kind of stencil with a single iteration. They were chosen to
show the performance of this kind of applications when the techniques discussed in this paper
are applied.

We compile the codes with the Makefiles provided by default with Pluto-MPI, which include
a distopt option enabling the use of the FOP communications model [2], and a set of default flags
and tile size values for each example. The Makefiles for the stencil examples do not include the
flag -l2tiles to enable multi-level tiling. The internal tools used in Pluto-MPI do not handle it in
an affordable compilation time.

For time measuring, in this study, we have taken into account only the main computation
and communication times, named Seq. and Comm. in the result tables. In Pluto-MPI, the full
matrices are allocated and initialized in all processes, although only the parts needed for the
local computation are used. At the end of a parallelized affine loop nest, Pluto needs to create
again a common global state communicating local results for each process. We have skipped
all these times in our Pluto-MPI measures. For fair comparison, we measure in all the codes as
communication times only: The cost of packing and unpacking the data, the cost of communicat-
ing control information needed for the communications (only in Pluto-MPI), network latencies
and synchronization waits. In the computation parts, we have selected the same tile sizes on
each example for both, Trasgo and Pluto codes. In addition, in order to provide a measure of
the stochastic delays, we also show in Tab. 5 the maximum variation of the execution times,
for the different benchmarks, for each different execution platform, and for each different tool
tested, Trasgo and Pluto. The maximum variation is represented as a ratio of the time difference
between the minimum and the maximum execution times. We observe that in the applications
Blur-Roberts and Gemver, where the communication time is much higher than the computation

21

Table 6: Main execution times (in seconds) for the five benchmarks chosen from the Polybench.

Jacobi-2d Gauss-Seidel matmul Gemver Blur-Roberts
Machine Trasgo Pluto Trasgo Pluto Trasgo Pluto Trasgo Pluto Trasgo Pluto

Heracles-4 142.65 101.67 428.36 274.04 41.34 28.46 0.65 0.75 0.38 1.36
Heracles-8 83.35 77.74 253.40 196.52 23.23 14.41 1.15 0.76 0.29 1.49
Heracles-16 46.61 58.26 142.41 156.02 13.24 8.26 1.60 0.78 0.24 1.75
Heracles-32 24.18 59.47 113.21 138.58 7.23 4.67 1.85 0.83 0.14 2.05
Heracles-64 18.51 61.32 64.91 128.11 4.05 2.39 2.52 0.86 0.11 2.77
CETA-4 53.44 38.20 122.13 72.08 26.19 30.31 0.0025 0.0049 0.48 1.61
CETA-8 37.03 28.73 71.08 59.87 13.33 14.36 0.0999 0.0046 0.38 5.67
CETA-16 24.28 33.20 62.86 44.93 7.84 12.73 0.1291 0.0787 0.41 20.88
CETA-32 14.62 21.13 40.25 46.65 7.05 6.84 0.4696 0.1673 0.35 47.05
CETA-64 14.56 24.36 35.09 70.30 7.56 4.13 0.4641 0.1310 0.20 59.78

time, the variation of the execution times is really high because of the stochastic delays of the
network. In order not to take into account this stochastic effects of the network infrastructure, in
the rest of tables, we show the minimum execution time achieved in the experiments.

In Table 6, we present the total execution times (Seq+Comm) considered for each benchmark.
In Table 7, we present independently the accumulated time expended in the computation stages,
and the accumulated time expended in the communication calculation, execution, and synchro-
nization waits. Each result is the measure obtained for the process that expended more time in
the corresponding stages. Thus, we can observe in which cases the communication cost is higher
or lower, independently of the computation code.

The results for the Jacobi-2d, and the Gauss-Seidel examples indicate that the Pluto code is
more efficient for a low number of processes, although it does not scale as well as Trasgo. The
transformations performed by Pluto, including skewing the time loop to parallelize, derive in a
lot of re-utilization and exploitation of memory hierarchies inside the processes. Trasgo codes
exploit only spatial parallelism at the distributed-level, as in classical manual message-passing
approaches. This derives in coarse-grained communications, but fewer opportunities to exploit
computation code optimizations inside the processes due to extra synchronizations. It is specially
noticeable for the macro-pipeline structure from which Gauss-Seidel derives. However, as the
number of processes grows, Pluto reveals its more clumsy communication calculations, while the
granularity of the Trasgo communications decreases, and its reduced costs for communications
become much more relevant. See the communication cost in Table 7 for these examples.

In the case of Pluto codes, the full matrices are allocated and initialized in all the processes.
On the other hand, Trasgo use actually distributed arrays, with much lower memory footprint.
However, Trasgo needs a communication stage before the execution of each SPMD block. In
the case of the matrix multiplication, there is only one execution of an SPMD block. Thus,
the communication times in Table 7 for Trasgo only include the time to redistribute the data
needed for each process to compute its local part. On the other hand, Pluto does not need a
communication stage beyond the global state consolidation, which we do not consider in our
study. The communication times for the matrix multiplication in Pluto codes in Table 7 are due
mainly to the synchronization times to exchange control information in order to determine that
no communication is necessary for any process.

As expected, the Gemver example shows poor scalability for both Trasgo and Pluto distributed-
22

memory programs. The computational load is really low, with several high-volume communi-
cation stages. The cost of executing the communications is higher than the computation. The
sequential algorithm in the Gemver benchmark is not a good candidate for distributed-memory
programming in general. The performance in this case can be improved in both approaches using
a different mapping policy to distribute the computational load among the processes. However,
this study is beyond the scope of this paper.

The Blur-Roberts filter is a kind of stencil program with a single iteration with two SPMD
blocks. The results show that the transformation of SPMD blocks into an affine loop nest per-
formed by Pluto sometimes implies poor performance, specially in distributed-memory systems,
due to the need for multiple communication stages in the generated pipeline (although locality
is improved). This effect is highly noticeable for CETA, the distributed-memory cluster (see
Comm. times in Table 7). Using solutions such as diamond-tiling can alleviate this problem in
Pluto. On the other hand, Trasgo issues a single communication stage for each SPMD block,
with the expected scalability.

We conclude that Trasgo codes scale very well due to their very efficient communication
structures, despite the fact that the computation code can still be optimized further.

6. Related Work

The polyhedral model provides a formal framework to develop automatic transformation
techniques at the source code level [21]. It is applicable to codes based on sequential static loops
with affine expressions (SCoP). All the polyhedral techniques presented so far for distributed
memory need to parametrize the iteration space polyhedra and analyze dependences at compile
time. There are many similarities between our work and specific polyhedral model techniques.
For distributed memory, the best communication calculation methods so far (see e.g. [2, 22, 3])
compute communications for sequences of arbitrary nested loops with regular (affine) accesses,
also known as affine loop nests. The loops are transformed, tiled and finally parallelized. Com-
munications cannot be calculated across different sections of affine loop nests unless loop fusion
can be done. These techniques analyze at compile time the footprint of tile data used by other
tiles. This implies that the tile size must be fixed at compile time and must be the same for all
the machines involved in the computation. Moreover, using these methods, there are still cases
for duplicated or unnecessary data communications [2]. The run-time complexity of the gen-
erated code is dependent on both the data size (number of tiles) and the number of processing
elements [23]. Multi-level tiling techniques can be used to alleviate the problem. However, this
introduces more tile-size decisions at compile time. Communication across tiles of different lev-
els is harder, and communicating across tiles of bigger sizes increases the cases of redundant
communications.

There are tools which bring together the advantages of the polyhedral model and the task-
oriented programming proposals [19]. These approaches reduce global barriers in shared-memory
parallel codes by launching tasks and computing their dependences and footprints. However, this
approach also performs a data partition after a tiling technique is applied with predefined tile sizes
at compile time [11]. The best tile size depends, among other things, on the architecture details
of the target machine where the program will be executed [6]. Choosing tile sizes at compile time
prevents automatic tuning for different devices in heterogeneous environments. There are some
proposals such as [24] that generate loops that iterate over full rectangular tiles, with unknown
parametric tile size. However, it has not been demonstrated that these techniques can be applied
with the current communication code generators for distributed-memory systems.

23

Table 7: Performance (in seconds) of Polybench codes, generated for distributed-memory by Trasgo, and by Pluto-MPI, broken down into computation and communication
times (including calculation and execution).

Jacobi-2d Gauss-Seidel Matmul
Trasgo Pluto Trasgo Pluto Trasgo Pluto

Machine Seq. Comm. Seq. Comm. Seq. Comm. Seq. Comm. Seq. Comm. Seq. Comm.
Heracles-4 141.94 2.24 85.35 49.43 226.32 283.24 192.41 116.34 41.24 0.09 28.46 2.73
Heracles-8 80.56 16.51 52.52 54.18 129.52 182.18 100.02 123.70 23.05 0.18 14.41 2.69
Heracles-16 45.93 15.24 30.04 48.48 70.61 108.35 53.80 122.33 13.05 0.20 8.26 3.30
Heracles-32 22.46 7.83 22.23 54.78 52.88 95.59 33.25 123.64 7.05 0.18 4.67 3.49
Heracles-64 15.57 7.86 22.96 63.83 27.73 55.60 22.11 123.51 3.79 0.26 2.39 2.39
CETA-4 53.04 8.09 36.88 15.98 62.93 75.75 55.65 29.37 26.12 0.07 30.31 2.62
CETA-8 36.17 13.19 22.15 17.87 32.89 52.95 28.60 36.43 13.22 0.13 14.36 2.66
CETA-16 20.24 13.14 16.49 30.66 22.83 53.43 14.39 35.78 6.97 0.89 12.72 6.16
CETA-32 8.63 9.40 8.54 22.41 19.62 36.24 10.79 43.36 5.32 1.79 6.81 5.85
CETA-64 5.77 12.29 8.55 25.39 8.81 33.09 9.35 70.47 5.60 1.69 4.07 4.13

Gemver Blur-Roberts
Trasgo Pluto Trasgo Pluto

Machine Seq. Comm. Seq. Comm. Seq. Comm. Seq. Comm.
Heracles-4 0.1816 0.4648 0.7514 0.7538 0.35 0.03 0.70 0.93
Heracles-8 0.1607 0.9864 0.7553 0.7585 0.21 0.06 0.47 1.41
Heracles-16 0.1417 1.4545 0.7790 0.7848 0.19 0.07 0.41 1.78
Heracles-32 0.0504 1.7966 0.8158 0.8286 0.08 0.05 0.39 2.19
Heracles-64 0.0383 2.4794 0.8442 0.8679 0.09 0.05 0.39 3.25
CETA-4 0.0010 0.0019 0.0026 0.0033 0.38 0.10 0.75 1.01
CETA-8 0.0005 0.0989 0.0031 0.0045 0.38 0.15 0.74 4.92
CETA-16 0.0003 0.1203 0.0037 0.0462 0.22 0.33 0.70 19.48
CETA-32 0.0003 0.3767 0.0036 0.1987 0.11 0.30 0.37 45.20
CETA-64 0.0002 0.4633 0.0035 0.1967 0.05 0.16 0.41 53.93

24

Other similar approaches based on compile-time intersections of parametric polyhedra have
been proposed to reduce data transfers in accelerators, such as FPGAS [25], where communi-
cations are calculated and optimized only between the host and the accelerator. Distributed-
memory programs introduce the complexity of dealing with data partition policies, and different
communication patterns across a number of processes only known at runtime.

The work in [26] presents a hybrid compiler-runtime translator scheme, similar to our ap-
proach, that calculates the communication pattern needed among the SPMD blocks. However,
they only support regular and repetitive applications where the communication pattern is the
same in all the iterations of the outer serial loop that encloses the SPMD blocks. This constraint
is also found in other distributed-memory approaches that integrate classical polyhedral tech-
niques for regular codes, with inspector/executor techniques [27] to support irregular or indirect
data access expressions. This inspector/executor technique exchanges control data before actual
communications to avoid traversing the whole iteration space of the parallelized loop on every
process. Unlike our approach, these solutions cannot be used, for example, in our Stencil-Opt
benchmark, where the communication pattern is recalculated on each iteration.

PGAS (Partitioned Global Address Space) models present an abstraction to work with mixed
distributed- and shared-memory environments similar to Trasgo. The PGAS language that is
more closely related to our work is Chapel [28]. It proposes a separation of domain and mapping
modules to generate distributed arrays. However, the best communication aggregation methods
presented so far for Chapel abstractions are restricted to specific operations, or domain mapping
properties. For example, the work in [29] is restricted to global array assignments with block or
cyclic distributions. The work in [30] presents a symbolic substitution of mapping attributes in
affine access expressions with the same inspiration as our approach. However, the Chapel runtime
cannot aggregate several expressions across different loops to generate the full task footprint.
Also, it needs to rely on non-aggregate communications when the whole set of data accessed by
an expression is not fully allocated in the same remote processor. It only works for cyclic or
block-cyclic distributions.

7. Conclusion

This paper presents an extension of the Trasgo parallel programming and compiling frame-
work. This extension includes techniques that, for affine expressions of parallelism on data
accesses, automatically determine at runtime ad-hoc communication patterns for distributed-
memory processes across two consecutive SPMD blocks. This new technique uses the results
of a partition policy to compute at runtime exact coarse-grained communication patterns for dis-
tributed message-passing processes. It is based on intersections of remote and local footprints
in terms of the results of the mapping functions chosen. Our approach allows the automatic
generation of pre-compiled multi-level parallel libraries or programs, that can adapt their com-
munication and synchronization structures to the target system. Experimental results, for several
representative cases of study, show that our technique produces efficient codes, despite the over-
head of our runtime communication calculation, compared with a compile-time state-of-the-art
tool that generates communication codes, and with manually implemented and optimized pure-
MPI references codes.

Future work includes the applicability of the transformation model in the context of current
polyhedral model frameworks, using more irregular domains, or extending it for non-completely
affine expressions. The new Trasgo framework is available at http://trasgo.infor.uva.es.

25

Acknowledgments

This research has been partially supported by MICINN (Spain) and ERDF program of the
European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H6 (TIN2016-81840-
REDT), COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NE-
SUS), and by the computing facilities of Extremadura Research Centre for Advanced Technolo-
gies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF). CETA-
CIEMAT belongs to CIEMAT and the Government of Spain.

References

[1] M. Claßen, M. Griebl, Automatic code generation for distributed memory architectures in the polytope model, in:
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, IEEE, 7–pp, 2006.

[2] U. Bondhugula, Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures, in: Proc. SC’2014,
ACM, Denver, CO, USA, 2014.

[3] R. Dathathri, C. Reddy, T. Ramashekar, U. Bondhugula, Generating efficient data movement code for heteroge-
neous architectures with distributed-memory, in: Parallel Architectures and Compilation Techniques (PACT), 2013
22nd International Conference on, IEEE, 375–386, 2013.

[4] T. Yuki, S. Rajopadhye, Parametrically Tiled Distributed Memory Parallelization of Polyhedral Programs, Tech.
Rep. CS13-105, Colorado State University, 2013.

[5] A. Gonzalez-Escribano, D. Llanos, Trasgo: A Nested-Parallel Programming System, The Journal of Supercomput-
ing 58 (2) (2011) 226–234.

[6] S. Mehta, G. Beeraka, P.-C. Yew, Tile size selection revisited, ACM Transactions on Architecture and Code Opti-
mization (TACO) 10 (4) (2013) 35.

[7] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface,
MIT Press, 2014.

[8] A. v. Gemund, The Importance of Synchronization Structure in Parallel Program Optimization, in: Proc. 11th ACM
ICS, Vienna, ISBN ACM ISBN: 0-89791-902-5, 164–171, 1997.

[9] K. Lodaya, P. Weil, Series-Parallel Posets: Algebra, automata, and languages, in: Proc. STACS’98, vol. 1373 of
LNCS, Springer-Verlag, Paris, France, 555–565, 1998.

[10] A. Moreton-Fernandez, A. Gonzalez-Escribano, D. R. Llanos, A New High-Level Parallel Portable Language
for Hierarchical Systems in Trasgo, in: Computational and Mathematical Methods in Science and Engineering
(CMMSE), 2015.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan, A Practical Automatic Polyhedral Program Optimiza-
tion System, in: ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
2008.

[12] A. Moreton-Fernandez, A. Gonzalez-Escribano, D. Llanos, Exploiting distributed and shared memory hierarchies
with Hitmap, in: Proc. HPCS’2014, Bologna (Italy), 278–286, 2014.

[13] A. Gonzalez-Escribano, Y. Torres, J. Fresno, D. Llanos, An extensible system for multilevel automatic data partition
and mapping, IEEE TPDS 25 (5) (2013) 1145–1154, (doi:10.1109/TPDS.2013.83).

[14] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, URL: http://www. cs. ucla. edu/˜ pouchet/soft-
ware/polybench/[cited July,] .

[15] R. Upadrasta, A. Cohen, Sub-polyhedral scheduling using (unit-) two-variable-per-inequality polyhedra, in: ACM
SIGPLAN Notices, vol. 48, ACM, 483–496, 2013.

[16] B. Pradelle, P. Clauss, V. Loechner, Adaptive runtime selection of parallel schedules in the polytope model, in:
Proceedings of the 19th High Performance Computing Symposia, Society for Computer Simulation International,
81–88, 2011.

[17] L. Cannon, A cellular computer to implement the kalman filter algorithm, Doctoral dissertation, Montana State
University Bozeman, 1969.

[18] Y. Barigou, E. Gabriel, Maximizing Communication–Computation Overlap Through Automatic Parallelization and
Run-time Tuning of Non-blocking Collective Operations, International Journal of Parallel Programming (2016) 1–
27.

[19] M. Kong, A. Pop, L.-N. Pouchet, R. Govindarajan, A. Cohen, P. Sadayappan, Compiler/runtime framework for
dynamic dataflow parallelization of tiled programs, ACM Transactions on Architecture and Code Optimization
(TACO) 11 (4) (2015) 61.

26

[20] M. Kong, L.-N. Pouchet, P. Sadayappan, V. Sarkar, PIPES: a language and compiler for task-based programming
on distributed-memory clusters, in: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE Press, 39, 2016.

[21] C. Bastoul, Code Generation in the Polyhedral Model Is Easier Than You Think, in: Proc. PACT’04, ACM Press,
7–16, 2004.

[22] C. Reddy, U. Bondhugula, Effective automatic computation placement and data allocation for parallelization of
regular programs, in: Proceedings of the 28th ACM international conference on Supercomputing, ACM, 13–22,
2014.

[23] A. Moreton-Fernandez, A. Gonzalez-Escribano, D. R. Llanos, On the run-time cost of distributed-memory com-
munications generated using the polyhedral model, in: High Performance Computing & Simulation (HPCS), 2015
International Conference on, IEEE, 151–159, 2015.

[24] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ramanujam, P. Sadayappan,
Parametric multi-level tiling of imperfectly nested loops, in: Proceedings of the 23rd international conference on
Supercomputing, ACM, 147–157, 2009.

[25] L.-N. Pouchet, P. Zhang, P. Sadayappan, J. Cong, Polyhedral-Based Data Reuse Optimization for Configurable
Computing, in: ACM/SIGDA FPGA’13, 29–38, 2013.

[26] O. Kwon, F. Jubair, R. Eigenmann, S. Midkiff, A hybrid approach of OpenMP for clusters, in: ACM SIGPLAN
Notices, vol. 47, ACM, 75–84, 2012.

[27] M. Ravishankar, R. Dathathri, V. Elango, L.-N. Pouchet, J. Ramanujam, A. Rountev, P. Sadayappan, Distributed
memory code generation for mixed Irregular/Regular computations, in: Proc. PPoPP’2015, ACM, 65–75, 2015.

[28] B. Chamberlain, S. Deitz, D. Iten, S.-E. Choi, User-Defined Distributions and Layouts in Chapel: Philosophy and
Framework, in: 2nd USENIX Workshop on Hot Topics in Parallelism, 2010.

[29] A. Sanz, R. Asenjo, J. López, R. Larrosa, A. Navarro, V. Litvinov, S.-E. Choi, B. Chamberlain, Global data re-
allocation via communication aggregation in Chapel, in: Proc. SBAC-PAD’2012, IEEE, 2012.

[30] A. Sharma, D. Smith, M. Ferguson, J. Koehler, R. Barua, Affine Loop Optimization Based on Modulo Unrolling in
Chapel, in: Proc. PGAS’2014, ACM, Eugene, OR USA, 2014.

27

