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Abstract Dataflow programming consists in developing a program by de-
scribing its sequential stages and the interactions between them. The run-
times supporting this kind of programming are responsible for exploiting the
parallelism by concurrently executing the different stages as soon as their de-
pendencies are met.

In this paper we introduce a new parallel programming model and frame-
work based on the dataflow paradigm. It presents a new combination of fea-
tures that allows to easily map programs to shared or distributed memory,
exploiting data locality and affinity to obtain the same performance than op-
timized coarse-grain MPI programs. These features include: It is a unique one-
tier model that supports hybrid shared- and distributed-memory systems with
the same abstractions; it can express activities arbitrarily linked, including
non-nested cycles; it uses internally a distributed work-stealing mechanism to
allow Multiple-Producer/Multiple-Consumer configurations; and it has a run-
time mechanism for the reconfiguration of the dependences and communica-
tion channels which also allows the creation of task-to-task data affinities. We
present an evaluation using examples of different classes of applications. Ex-
perimental results show that programs generated using this framework deliver
good performance in hybrid distributed- and shared-memory environments,
with a similar development effort as other dataflow programming models ori-
ented to shared-memory.
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1 Introduction

The most common programming tools for parallel machines are based on mes-
sage passing libraries, such as MPI [1], or shared memory APIs like OpenMP [2].
These tools allow the programmers to exploit the capabilities of the machines
by explicitly define the parallel sections inserted in the sequential code and
program inter-process synchronizations and communications.

On the other hand, stream and dataflow libraries and languages (such as
FastFlow [3], CnC [4], OpenStream [5], or S-Net [6]) reduce the complexity
of creating a parallel program because the programmer only has to define the
sequential stages and its dependencies. It is the responsibility of the runtime
to control the sequential stages execution and perform the data synchroniza-
tions. However, these models do not present specific features to express some
computational patterns, or to obtain communication-efficient implementations
on distributed processes.

In this work we propose a novel combination of features for dataflow
programming models: (a) A single one-tier representation for shared- and
distributed-memory architectures; (b) Description of a program as a recon-
figurable network of activities and typed data containers arbitrarily intercon-
nected, with a generic system to represent distributed Multiple-Producer/Mul-
tiple-Consumer (MPMC) configurations; (c) Support for dependence struc-
tures that involve non-nested feedback loops; (d) A mechanisms to reconfigure
dependences at runtime without creating new tasks; and (e) A mechanism to
intuitively express task-to-task affinities which would allow a better exploita-
tion of data locality across state-driven activities. As a proof of concept we
have devised HitFlow, a new dataflow parallel programming model and frame-
work that extends a previous proposal [7] to include all these features. Table 1
shows a comparison of different dataflow solutions in terms of these features.

This combination of features allows the creation of networks of tasks that
can be mapped to message-passing processes with a fixed scheduling. The
capacity of reconfiguring the dependences and activities of a task allows the
runtime modification of the communication pattern used at each computation
stage, without the need of creating or scheduling new tasks. Tasks can allocate
on their local contexts buffers, or data parts assigned with a classical data
partition policy, that persist across different stages. In this way, data can
maintain the affinity with the message-passing processes and across related
tasks, avoiding costly migrations and optimizing the communications. This
scheme leads to implementations with similar performance and scalability than
programs manually developed and optimized using message-passing models,
such as MPI.

We present an evaluation of our proposal using examples of four differ-
ent application classes. We describe how they are represented in our model,
showing how to express different types of parallel paradigms including static
and dynamic synchronization structures. Experimental work has been carried
out to prove that the programs generated using our framework achieve good
performance in comparison with manually developed implementations using
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FastFlow CnC OpenStream S-Net HitFlow
Single tier model X X X
Reconfigure dependencies X X
Allows tasks affinities X
MPMC configurations X X X X
Feedback loops X X X X

Table 1: Comparison of dataflow libraries.

both message-passing libraries such as MPI, and state-of-the-art tools for par-
allel dataflow programming, like FastFlow [3] or CnC [4]. These experiments
show that the overheads introduced by the new abstractions do not have a
significant impact on performance. Finally, an analysis of different develop-
ment effort metrics shows that the cost of programming using our proposal,
targeting hybrid distributed- and shared-memory systems, is similar to other
shared-memory dataflow approaches, highly reducing the programming cost
comparing with using message passing directly.

The rest of the paper is organized as follows. Section 2 describes our pro-
posal. A discussion about its usage is given in Sect. 3 while Sect. 4 shows the
implementation details. Section 5 presents the experimental work carried out
to test the implementation. Section 6 describes some related work in the field.
Finally, the conclusions of the paper are in Sect. 7.

2 The HitFlow model

In this section we present HitFlow, a new parallel programming framework
implemented in C++ that exploits dataflow parallelism for both shared- and
distributed-memory systems. The HitFlow programming model takes its nota-
tion from Colored Petri nets [8]. A HitFlow program is a network composed of
two kinds of nodes, called places and transitions. The places are shared-data
containers that keep tokens, while the transitions are the sequential processing
components of the system. Transitions are connected by directed channels to
places, with the direction determining the input or output role of places for
each transition (see Fig. 1). A transition takes one token from each of its
input places and performs some activity with them. It may then add tokens
to any/all of its output places. This activity is repeated while there are tokens
arriving to the input places.

We propose the computation inside the transitions to be mode-driven. Us-
ing a mathematical notation, a program or computation is represented by
P = {p1, p2, . . . , pn} a finite set of places, and T = {t1, t2, . . . , tm} a finite set
of transitions.

The transitions are composed of modes: ti = {m1
i ,m

2
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o
i }. Each mode
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i is a tuple 〈f, I, O,next〉, where f is a sequential function, I ⊆ P are the

input channels, O ⊆ P are the output channels, and next ∈ {m1
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END is the mode that will be activated after the current mode mi ends.
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Fig. 1: Network example with modes. Transition A has two modes (A1 and
A2), each mode enables a different output channel connecting A with B or A
with C.

Modes are used to define mutually-exclusive activities inside the transi-
tions, and dynamically reconfigure the network. A mode enables a subset of
connections to input places or output places. The sequential function is exe-
cuted when tokens arrive in the input places of the active mode. A transition
changes its mode when all the tokens from the active mode have been pro-
cessed. To detect that there are no more tokens remaining or pending to arrive
to the input places, special signal tokens are used to inform of a mode change
(mode-change signal). The change of mode in a transition automatically sends
mode-change signals to all its output places. Thus, signals are propagated
automatically across the network, flushing tokens produced on the previous
mode, before changing further transition to the new mode. When a transition
change its mode, input and output places are reconfigured according to the
new mode specification. An example of a network with modes can be seen in
Fig. 1. The network has a transition (A) with two modes. On each mode, the
transition will send tokens to a different destination B or C.

Finally, the modes can be used to enable data locality, defining task-to-
task affinities. Tasks implemented as functions of different modes in the same
transition are mutually exclusive and are executed by the same thread so they
can share data structures. For example, data affinity is used in the Smith-
Waterman algorithm, which is one of the benchmarks discussed in the exper-
imental section. This benchmark performs a two-phase wavefront algorithm
(see Fig. 2). In the first phase, tasks calculate the elements of a matrix start-
ing from the top left element. The second phase is a backtracking search that
starts from the bottom-right element, and each task works on a part of the
the matrix obtained in the first phase. As it is shown in Fig. 2, it is possible
to create a network to model this kind of problems without using the modes.
However, using the modes, we can fold that network by adding two different
activities in the transitions, one for each phase of the algorithm. Thus, each
transition can perform the two required stages by sharing its assigned portion
of the matrix, avoiding communications of the matrix portions that would
imply sending big tokens through places.



HitFlow: A Dataflow Programming Model 5

Network without modes Network with modesMatrix
M1,0 M1,1 M1,2
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Fig. 2: Smith-Waterman network structure with and without modes.

3 Programming with HitFlow

We have developed a prototype of a framework to implement parallel programs
in accordance with the proposed model. The current prototype relies on POSIX
Threads Programming (Pthreads) and the standard Message Passing Interface
(MPI) to support both shared- and distributed-memory architectures. We de-
cided to use Pthreads in the prototype because the C++ Standard Library
threads where not fully supported at the time the development began. Porting
the current code to use native C++ threads would be straightforward.

This section explains the key features of the programming framework. It
contains a summary of the HitFlow API, a description of how to build a
program network, and details about the mode semantics. The main HitFlow
classes are shown in the UML diagram in Fig. 3. A table with the API methods
can be found in [9].

3.1 Building transitions

To use this framework, the user has to create a class which extends the provided
Transition class with the sequential activities of the program (See example
in Fig. 4). The init and end methods can be extended to execute starting
and ending actions before and after the execution of the program. The user
classes should introduce one or more new methods with arbitrary names to
encapsulate the code for particular mode activities. The association between
modes and activity methods is established when building the network (see
section 3.2).

The activity method is automatically called when there are tokens to be
processed in the input places declared for its mode. If there are no input
places for a particular mode, it will be called just once. The user-defined
activity methods can use the Transition::get or Transition::put methods
to retrieve tokens from, or append tokens to the current mode places. The get

method retrieves one token for each of the active input places. On each activity
method invocation, HitFlow ensures that the get method can be called once.
Additional calls to get will block until there is at least one token in each input
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<<bind>>

Place

# Place(string name, ReduceOp op)
+ setMaxSize(int s)

T

Net

add(Transition* t)
run()

Transition

+ addMethod(Method * method, string mode = "default")
+ addInput(Place * p, string mode = "default")
+ addOutput(Place * p, string mode = "default", bool feedback = false)
+ init()
+ end()
# get(T1* t1, [T2* t2=NULL,...])
# put(T& t, int placeid=0)
# mode(string name)

Place<int>

Mode

string name

User Transition

Fig. 3: UML diagram of the framework.

place. The put method adds a token to a specific output place. The output
place can be selected by its identifier using the second argument of the put

method. It can be omitted if there is only one active output place in the mode.
A mode automatically finishes when: (a) The producer transitions have

sent a mode-end signal indicating that they have finished the activity in that
mode; and (b) All the tokens that were generated in the previous mode have
been consumed from the input places. At this moment, the transition sends
end-mode signal tokens to the active output places and automatically evolves
to the next-programmed mode. The next-programmed mode can be changed
by calling the method Transition::mode at any time. If it is not changed by
the user, the default next mode is END, that is used to finish the computation.

The example in Fig. 4 extends the Transition class by declaring a user
activity method. The method retrieves a token from one place, processes it,
and sends the result to an output place.

The tokens are C++ variables of any type, handled using template meth-
ods. The marshaling and unmarshaling is done internally with MPI functions.
The basic types (char, int, float, ...) are enabled by default. User-defined
types require the programmer to declare a data type invoking the HitFlow
function (hitTypeCreate) that internally generates and registers the proper
MPI derived type.

3.2 Building the network

Once the transition classes are defined, the programmer builds the network in
the main function of the C++ program. This implies creating transition and
place objects, associating the activity methods, input, and output places to
modes on the transitions, and finally adding the transitions to a Net object.
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1 class MyTransition: public Transition {

2 public:

3 void execute(){ // User activity method

4 double intask;

5 get(&intask); // Retrieve a token from the place

6 double outtask = process(intask);

7 put(&outtask); // Put the token into the output

8 }

9 };

Fig. 4: HitFlow example of the creation of a Transition extending the basic
Transition class.

1 Place<double> placeA, placeB; // Declare the places

2 placeA.setMaxSize(10); // Set the place size

3

4 MyTransition transition;

5

6 // Add the method and places to modeA

7 transition.addMethod(&MyTransition::execute,"modeA");

8 transition.addInput(&placeA,"modeA");

9 transition.addOutput(&placeB,"modeA");

10 ...

11

12 Net net; // Declare the net

13 net.add(&transition); // Add the transition

14 net.run(); // Run the net

Fig. 5: HitFlow example of the network creation.

Fig. 5 shows a simple code to build a network using the previously shown
MyTransition transition.

The first step is to create the places that will be used in the application
(line 1). The Place class is a template class used to build the internal commu-
nication channels. The size of the place defines the granularity of the internal
communications: It is an optimization parameter that represents the num-
ber of packed tokens that will be transferred together. The user can set it in
accordance with the token generation ratio of the transition.

The next step is to set the activity method and the inputs and outputs
for each mode. The addInput, addOutput, and addMethod methods, have an
optional parameter to specify the mode. When this parameter is not specified,
a default END mode is implicitly selected. Lines starting at 7 set the activity
method, an input place, and an output place for the default mode. Multiple
calls to the addInput or addOutput for the same transition mode, allow MPMC
constructions to be built.

Finally, all the transitions are added to a Net class that controls the map-
ping and the execution (lines 12 and 13). Line 14 invokes the Net::run method
that starts the computation.
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3.3 Mapping

Using HitFlow, the programmer can provide a mapping policy to assign tran-
sitions to the available MPI processes. If it is not provided, there is a default
fallback policy implementing a simple round-robin algorithm. MPI processes
with more than one mapped transition automatically spawn additional threads
to concurrently execute all the transitions. HitFlow implementation solves the
potential concurrency problems introduced by synchronization and communi-
cation when mapping transitions to the same process (see Sect. 4.3). In the
current prototype, the mapping policies should provide an array associating
indexes of transitions to MPI process identifiers.

4 Implementation details

This section discusses some of the implementation challenges associated with
the model, and how they have been solved in the current framework imple-
mentation.

4.1 Targeting both shared and distributed systems

One of the main goals of the framework is to support both shared- and
distributed-memory systems with a single programming level of abstraction.
The user-defined transition objects that contain the logic of the problem are
mapped into the available MPI processes. Since there may not be enough pro-
cesses for all of the transitions, threads are spawned inside the processes if
needed. Only one thread is spawned for each transition, to execute the user
function and its port activities asynchronously to other transitions. The main
thread on each MPI process initializes the runtime data structures, launch the
threads for the transitions mapped to it, and wait for them to finish. Coordina-
tion between the spawned treads, to use the shared structures of the runtime
system, is done using mutexes and condition variables.

4.2 Distributed places

The HitFlow places are not physically located in a single process. Instead, they
are distributed token containers. A place is implemented as multiple queues
of tokens located in the transitions that use that place as input. When load
balance requires it, the tokens are transmitted and rearranged between the
queues on the transitions1. This solution builds a distributed MPMC queue
mechanism that exploits data locality, and is more scalable than a centralized

1 In the current implementation, MPI communications are always used to move tokens
from queue to queue, even when the queue objects are mapped into the same MPI process.
Although this simplifies the implementation, and MPI communications are highly optimized
in shared-memory, this decision clearly opens possibilities for further optimization.
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a) b) c) d)

WS

e)

Fig. 6: Translation from the model design to its implementation. WS: work-
stealing.

scheme where a single process manages all the tokens of a place. However, this
is a solution that introduces coordination challenges that will be discussed
below.

Internally, the distributed places are implemented using ports that manage
the movement of the tokens from the source to one of the destination tran-
sitions. Input and output ports are linked using channels. Fig. 6 shows how
the arcs of the model are implemented using ports. There are five possible
situations:

(a) When a place connects two transitions, a channel will be constructed to
send the tokens from the source to the destination.

(b) When there are two or more input places in a transition, the transition
will have several input ports, each of them connected to the corresponding
source.

(c) When two or more transitions send tokens to a common place, the des-
tination will have a single port that will receive tokens, regardless of the
actual source.

(d) If a place has several output transitions, any of them can consume the
tokens. To allow this behavior, when a place is shared by several destina-
tions, the source will send tokens in a round-robin fashion to each output
port. This can lead to load unbalance if the time to consume tokens in the
destinations is not compensated. To solve this, a work-stealing mechanism
is used to redistribute tokens between the destination transitions.

(e) When a transition uses the same place as input and output, the token will
flow directly to the input port for efficiency reasons.

4.3 Ports, buffers, and communications

This section describes the internals of the port objects and explains the details
about the communications and buffering. Fig. 7 shows an example of a two-
transition network. There is a producer that generates tokens which are sent
to a consumer using the place A. The consumer presumably performs a filter
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Producer ConsumerPlace
A

Place
B

Fig. 7: Small example network with two transitions.

operation on the tokens and sends some of them back to the producer using
the place B. Fig. 8 describes the internal structures of the previous example.

The internal communications are handled by Port objects. The transitions
have a port for every input or output place. The ports have a buffer where the
tokens are stored. The size of the buffer is determined by the maximum number
of tokens that can be stored at the same time in the place that it represents,
as defined by the user with the Place::setMaxSize method. The size of the
buffer also has an extra space for the message headers and other information
that must be sent along with the tokens. When tokens are sent to a place, they
are first stored in the output port buffer. The HitFlow runtime library decides
when to perform the actual communication. By default, it will try to maximize
the port buffer usage, packing as many tokens as possible to minimize the
number of MPI messages to be sent, without delaying communications.

In addition to the input port buffers, the transitions have queues to store
the tokens received. There is a queue for each input place. When an incoming
MPI message is received, the input port buffer associated to the channel is
used to retrieve the tokens and store them in the corresponding queue where
they can be accessed by the transition get method. Unlike the buffers, which
have a limited memory space assigned, the queues grow dynamically and are
only limited by the host memory.

In Fig. 8, the producer transition (2) and the consumer transition (2’)
are executed in two different processes (1 and 1’, respectively). Since both
transitions have only one input place, they have only one input queue (3 and
3’). The size of the place A is 5, thus the output port of the producer (5) and
the input port of the consumer (4’) have a buffer for 5 elements. In contrast,
the size of B is 3, so its port buffers (4 and 5’) have size 3. The figure also
represents the MPI communication buffers for the two processes (6 and 6’).
If there are several transitions mapped to the process, all the elements except
the MPI buffers (6 and 6’) are replicated for each transition, and they are
managed by its own thread.

The HitFlow runtime ensures a deadlock-free behavior due to port buffer
exhaustion, even in unbalanced networks with cycles. Consider for example
the network depicted in Fig. 8. Assuming that the producer and consumer
send tokens with a very unbalanced ratio, causing the port buffer of the two
transitions to become exhausted, it will not cause a deadlock. The runtime will
keep receiving messages and storing them in the local and unlimited transition
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Fig. 8: Description of the different buffers, data structures and control elements
involved in the communications. Legend: (1) MPI process. (2) User transition
object. (3) Internal token queue for the transition. (4) Input buffer port. (5)
Output buffer port. (6) MPI communication buffer.

queue. Thus, the only limitation will occur when one of the processes depletes
the host memory.

However, due to a limitation of the MPI-3 standard that only allows one
MPI buffer per process, it is possible to produce a deadlock when several tran-
sitions are mapped to the same MPI process using threads. If two transitions
are mapped to the same process, they share the same MPI buffer. Thus, the
messages of one transition could consume all the buffer memory, preventing
the other transition from performing its communications. This opens the pos-
sibility of producing a deadlock on the progression of the whole network. This
problem can be solved using new features that are proposed for MPI-4, such as
Allocate Receive communications [10], that allocate memory internally for in-
coming messages to eliminate buffering overhead when receiving unknown-size
messages, and Communication Endpoints [11] that allow the threads inside a
process to communicate as if they were at separate ranks.

4.4 Work-stealing

To solve load unbalances when a place has several output transitions, Hit-
Flow uses a work-stealing mechanism to redistribute tokens between the con-
sumers. The token queues that were presented in Sect 4.3 are in fact double-
ended queues. The user function retrieves the tokens from the bottom with the
Transition::get method, while the work-stealing mechanism takes or adds
tokens using the top end. When a transition consumes all the tokens in one
input queue, the HitFlow runtime will try to obtain more tokens. First it will
select a victim between the other transitions in the work-stealing group, and
then it will send a request message. Depending on the number of available
tokens in the victim, it can send some of its tokens back or send a message
denying the request. In order to determine when the tokens have been con-
sumed in all the distributed queues of a single place, and the work-stealing
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should stop, a distributed voting-tree scheme is performed. It also implements
a mechanism to distinguish tokens of different modes, and manage the signals
indicating both mode changes and computation end.

5 Case Studies: HitFlow Evaluation

In this section, four benchmarks representing four case studies are discussed
to show the expressiveness of the model for different kinds of applications, and
to check the performance of the framework.

5.1 Benchmarks

The first benchmark calculates the Mandelbrot set, an embarrassingly parallel
programming application that helps us to test the basic functionalities of our
proposal, detect potential overheads, and also to compare our implementation
with other solutions.

The next two benchmarks are two very different implementations of a real
application, the Smith-Waterman algorithm, that performs local alignments
of protein sequences. The first one is swps3 [12], a highly optimized imple-
mentation that extensively uses vector instructions whenever possible. It is
a simple task-farm application. The other one is a parallelization based on
the implementation developed by Clote [13], it represents a complex combina-
tion of wavefront and reduction operations. Finally, the last benchmark solves
the Poisson equation in a discretized 2D space using an iterative Jacobi solver.
This kind of benchmark is a typical kernel computation in many problems usu-
ally associated with data parallelism. It represents a static parallel structure,
not based on dataflow parallelism. The last two benchmarks are implemented
efficiently in MPI using a coarse-grain data partition, with fixed data affinities
across computation stages, and with dependence loops. HitFlow is specifically
designed to efficiently implement this kind of problems with a dataflow ap-
proach. We discuss below the problems encountered to implement them with
other chosen tools.

5.2 Performance study

Experimental work has been conducted to show that the implementation of
HitFlow achieves a good performance compared with manually optimized im-
plementations directly programmed using a message-passing paradigm, and
with other dataflow parallel programming frameworks. We use two different ex-
perimental platforms with different architectures: A multicore shared-memory
machine and a heterogeneous distributed cluster of shared memory multicores.
The shared-memory system, Heracles, has 4 AMD Opteron 6376 processors
with 16 cores each at 2.3 GHz, and 256 GB of RAM. The distributed system
is composed of 6 distributed nodes: a Intel Xeon (24 cores, 1.9 GHz), another
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Xeon (12 cores, 2.1 GHz), a Intel I7 (8 cores, 3.2 GHz), and three Quad Core
Intel processors at 2.4 GHz connected with Gigabit Ethernet network technol-
ogy. All the nodes in the two platforms use CentOS Linux release 7 and the
programs have been compiled using GCC version 4.8.3 with -O3 optimization
flag.

5.2.1 Mandelbrot set

For the Mandelbrot benchmark we compare the HitFlow version against a
manually developed MPI version, two versions using FastFlow [3] (one for
shared-memory and another one for distributed-memory), a version using Intel
CnC [4], and another one that uses OpenMP 3.0 tasks in the shared-memory
system. All the implementations use a farm structure that processes the grid
by rows. The HitFlow version uses a network with a producer transition and
several worker transitions connected by a single place. This is a very simple
benchmark used to test both the HitFlow channel implementation, and the
work-stealing mechanism. The FastFlow pure shared-memory version is the
implementation included in the distribution examples. We have developed the
distributed version using the two-tier model of the extended FastFlow library
that supports both shared and distributed memory using different classes [14].
The CnC version is the one provided in the distribution examples.

Fig. 9 shows the results of the Mandelbrot implementations. The programs
calculate the set in a grid of 214×213 elements. They use up to 1,000 iterations
to determine if each element belongs to the set, leading to many low-cost tasks
to be processed if fine grain parallelism is used. The granularity chosen is
100× 100 elements per task.

The FastFlow, CnC, and OpenMP versions obtain the same performance
in the shared-memory architecture. HitFlow and the manual version have an
overhead due to the use of the MPI communications instead of direct use of the
shared memory mechanisms. In the distributed architecture, all versions show
the same scalability except FastFlow, whose two-tier approach cannot take
advantage of the heterogeneous cluster because it uses a static task distribu-
tion. Previous experiments using a homogeneous cluster showed that FastFlow
achieved the same performance as HitFlow [15]. This shows that HitFlow chan-
nel and work-stealing implementation have a great scalability in distributed
environments, while there is still room for improvement in shared memory
machines. Specific shared-memory communication mechanisms should be used
internally between transitions mapped to the same MPI process. This can be
done without modifying the model features.

5.2.2 Smith-Waterman: Swps3

We use as reference the original version of swps3 [12], which is implemented
using pipe and fork system calls to create several processes in the same ma-
chine. We compare it with FastFlow, CnC, and HitFlow versions. The structure
of this benchmark is a farm with an emitter. For a fair comparison, we have
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Fig. 9: Mandelbrot set benchmark results.

developed the FastFlow, CnC, and HitFlow versions starting with the sequen-
tial code of the original swps3 benchmark to implement the tasks functions.
We have not used the original example included in FastFlow [16], since it uses
some memory allocation optimizations and it does not work for the big se-
quences chosen as input for our experiments, which are needed to generate
enough workload for our target systems. All the versions match a single pro-
tein sequence to all the proteins from a database of sequences. We have used
the UniProt Knowledgebase (UniProtKB) release 2014 04, a protein informa-
tion database maintained by the Universal Protein Resource (UniProt) [17].
This database consists of 544,996 sequences which minimum length is 2, its
maximum is 35,213, and its average is 355. Each sequence in the database is a
task that will be fed to a farm worker, so they can be matched concurrently.

Fig. 10 shows the experimental results for a representative case, the se-
quence named Q8WXI7, which has 22,152 proteins. Experiments with other
sequences showed similar behaviors. For the shared-memory machine, all ver-
sions except CnC show a similar performance. Using CnC leads to a very simple
implementation as there are no dependencies among the different calculations.
Results show reasonable scalability but very poor performance. This behavior
can also be noticed in other example applications provided with the CnC dis-
tribution, for example the Jacobi benchmark in Sect. 5.2.4. Like the previous
benchmark, FastFlow implementation shows worse scalability in the cluster
due to the heterogeneous architecture. We can conclude that HitFlow can be
used for this kind of real applications with minimum performance degradation
thanks to the proposed implementation.

5.2.3 Smith-Waterman: Clote’s algorithm

The third benchmark, CloteSW, is a different implementation of the Smith-
Waterman protein alignment that aims to compare two big sequences [13].
For this benchmark, we compare in the shared architecture two sequences
of 100,000 elements. They are bigger than any of the sequences used in the
previous experiment. For this case, the Smith-Waterman algorithm requires
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Fig. 10: Swps3 benchmark results using the protein sequence Q8WXI7 as in-
putset.

to compute the values of a matrix with 100,000 x 100,000. Due to memory
limitations in some of the distributed nodes, we use sequences of 30,000 ele-
ments in the cluster. The computation is broken down into pieces, following
a distributed wavefront structure. The benchmark has several phases: First,
it populates the alignment matrix following the wavefront structure. Then,
it performs a reduce operation to determine the maximum match sequence.
Finally, it uses a backtracking method to compose the sequence traversing the
wavefront structure in the reversed order. The backtracking stage can be im-
plemented as a different mode in the same transitions, creating data affinities
that avoid extra data communications or synchronizations (recall Fig. 2).

We have developed and executed versions for shared memory using Fast-
Flow, CnC, HitFlow. and C++ with MPI (Manual). The FastFlow version
for shared memory uses the FastFlow’s ff mdf dataflow skeleton which imple-
ments the macro dataflow pattern, responsible for scheduling, and that allows
the declaration of data dependencies.

The same C++/MPI and HitFlow programs can be used in distributed
memory. However we have not been able to obtain correct programs with the
other tools. The FastFlow distributed version was not possible to be imple-
mented due to the early stage of development of the distributed support. Some
dataflow constructions can only be used in shared-memory environments. As
it is stated in [14], more work is needed to allow the user to use distributed
versions of the different parallel skeletons.

The results are shown in Fig. 11. The CnC version obtains the worst re-
sults with a high difference. FastFlow shows the best performance in shared-
memory. The use of message passing in the HitFlow and the Manual versions
requires more time for the low-level marshalling and movement of data buffers.
However, they can be executed in distributed memory directly, obtaining the
same good performance and scalability.
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Fig. 11: Clote’s Smith-Waterman benchmark results.

5.2.4 2D Jacobi solver

The last benchmark tested is a Jacobi solver that performs 1,000 iterations of
a 4-point stencil computation in a 10,000 x 10,000 bidimensional grid. We
compare HitFlow against a manually developed version using C and MPI
(Manual) in the distributed-memory system, and we also compare against
OpenMP, FastFlow, and the version provided by CnC in the shared-memory
case. FastFlow benchmark is developed using the stencil data parallel skeleton
which, among other parameters, accepts the appropriate function to update
each cell. When trying to develop this benchmark using distributed FastFlow,
we encountered the same problems as in Clote’s version of Smith-Waterman
and we were unable to implement it. The Manual version is a classical sten-
cil implementation that divides the grid into portions and uses a neighbor
synchronization communication structure to exchange border data on each
computation iteration. The HitFlow version uses the same partition policy.
Each partition is assigned to a transition that communicates with its neigh-
bors, sending and receiving the data of the borders using places in two different
modes.

The results in Fig. 12 show that HitFlow obtains a similar performance
to manual C+MPI in distributed memory, and also similar to FastFlow, and
OpenMP versions for shared-memory. The implementation provided by CnC
does not show a good performance, and it is not prepared for running on dis-
tributed memory. As expected, the distributed experiments show a degradation
of performance when changing from one single node to several heterogeneous
nodes. However they obtain a good scalability when more nodes are added.
These results show that the HitFlow model can also be applied to problems
that are usually solved using static data parallel models.
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Fig. 12: Jacobi 2D results.

5.3 Code complexity

In this section, we use several code complexity and development-effort met-
rics to compare HitFlow codes with other proposals. For this comparison, we
use three classical development effort metrics: The number of code tokens,
McCabe’s cyclomatic complexity [18], and Halstead’s development effort [19].
The number of tokens detected by the programming-language parser, mea-
sures the code volume of C/C++ programs better than the number of code
lines. McCabe’s cyclomatic complexity is a quantitative measure of the num-
ber of linearly independent paths through a program’s source code. Finally,
the Halstead’s development-effort metric is also a quantitative measure based
on the number of operators and operands in the source code. They are related
to the mental activity needed by a programmer to develop the code, and to the
amount of test cases needed to check the program correctness. Low cyclomatic
complexity and Halstead’s development effort indicate codes which are simpler
to develop and debug. These metrics are typically used in the assessment of
software design complexity.

We have selected the Mandelbrot benchmark because it is a simple bench-
mark, and we have more implementations using different programming tools.
Table 2 shows the measures obtained for each metric, for the different versions
of the benchmark. The metrics clearly show that dataflow abstractions allow
the representation of the target program with less development effort than us-
ing directly MPI. The shared-memory FastFlow and CnC versions, followed
by the HitFlow version are the simplest implementations. However, the regu-
lar FastFlow version cannot be used in distributed-memory systems, and CnC
needs some tuning to run it in a distributed environment. The version that
uses the distributed-memory support of FastFlow leads to the bigger metrics
values. This is due to the use of the two-tier model, that forces to implement
separately the coordination logic for the distributed processes, and the logic
used for shared memory inside the nodes.

A full example of a simple pipeline application implemented in HitFlow,
and in FastFlow supporting only shared-memory, can be seen in Fig. 13. It
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Metric Manual MPI FastFlow Dist. FF CNC HitFlow
Tokens 552 471 935 565 518
McCabe 34 33 57 24 32
Halstead 8.65E+5 4.46E+5 13.1E+5 4.16E+5 4.93E+5

Table 2: Complexity comparison

can be observed that the codes for the nodes activities and coordination are
very similar, while FastFlow present neat higher-level abstractions. It reduces
the code complexity thanks to the use of skeletons to build the network. This
approach could also be used on top of HitFlow. This is furtherly discussed at
the end of the Related Work section.

The results indicate that, using the techniques presented in this work,
dataflow abstractions in general can efficiently exploit hybrid shared- and
distributed-memory using a one-tier programming model, and reducing the
development effort comparing with directly using message-passing interfaces.

6 Related work

In this section we first comment the differences between our current proposal
and the previous work of our group in the same research line. Then, we discuss
conceptual similarities and differences with other dataflow or task-network
oriented programming models. We focus the discussion on features that have
implications in the programming strategies, the implementation techniques
used, and the mapping of the tasks in the context of distributed processes.

HitFlow is a complement of Hitmap, a library for automatic but static
hierarchical mapping, with support for dense and sparse data structures [20,
21,22]. The Hitmap library focuses on data-parallel techniques and does not
have a native support for dataflow applications. In a previous work [7], we
introduced a first approach to a dataflow model that could be used as a Hitmap
extension. The model introduced in this paper generalizes several restrictions
of the previous one, introducing a complete generic model to represent any
kind of combinations of parallel structures and paradigms. The differences
with the previous Hitmap extension can be summarized as: (1) We present
a general MPMC system where consumers can consume different task types
from different producers. (2) It supports cycles in the network construction.
(3) The new model introduces a concept of mode inside the processing units to
reconfigure the network, allowing mutually exclusive functions in a transition,
and to intuitively define task-to-task affinity with an easier mapping to fixed-
scheduled MPI processes.

S-Net [6] is a declarative coordination language. It defines the structure of
a program as a set of connected asynchronous components called boxes. S-Net
only takes care of the coordination: The operations done inside boxes are de-
fined using conventional languages. Boxes are stateless components with only
a single input and a single output stream. From the programmers’ perspective,
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the implementation of streams on the language level by either shared memory
buffers or distributed memory message passing is entirely transparent.

HitFlow has several similarities with FastFlow [3], a structured parallel
programming framework targeting shared memory multi-core architectures.
FastFlow is structured as a stack of layers that provide different levels of
abstraction, providing the parallel programmer with a set of ready-to-use,
parametric algorithmic skeletons, modeling the most common parallelism ex-
ploitation patterns. HitFlow transition API is similar to FastFlow. Fig. 13
shows a full example of a simple pipeline application to compare both of
them. The main differences are that the HitFlow framework is designed to
support both shared- and distributed-memory with a single tier model. It in-
cludes a transparent mechanism for the correct termination of networks even
in the presence of feedback-edges, and mode-driven control to create affinity
between transitions in distributed memory environments. The FastFlow group
has developed an extension to FastFlow to target distributed nodes, using a
two tier model [14]. However, this solution forces the programmer to imple-
ment separately the coordination logic for the distributed processes, and the
logic used for shared memory inside the nodes. It uses a different mechanism
of external channels to communicate the tasks. In this sense, HitFlow makes
the program design independent from the mapping between shared-memory
and distributed-memory levels.

HitFlow networks are similar to CnC (Concurrent Collections [4]) graphs.
CnC is a parallel programming model where the computation is defined by se-
rial functions called computation steps and their semantic ordering constraints.
Like HitFlow transitions, CnC steps communicate through message-passing as
well as shared memory using shared entities called item collections. One of the
differences between HitFlow and CnC is that CnC allows the programmer to
give the scheduler hints about the thread affinity. However, CnC steps only
execute one activity each one with its own memory space. Thus it is not possi-
ble to define task to task affinities in the way HitFlow transitions do, to better
map the task networks to MPI processes without incurring in communication
cost penalties.

There are some proposals that support task parallelism introducing an-
notations in the sequential source code. For example, the OpenMP 3.0 task
primitives and the dependency extensions introduced in version 4.0 of the
standard [23]. The programmer exposes data flow information using pragmas
to define the stream input and output task. The runtime ensures the coordi-
nation of the different elements. Other dataflow proposals based on annota-
tions are: OpenStream [5], OmpSs [24], and StarPU [25]. All these proposals
simplify the development of task parallel programs in shared-memory, and
OmpSs and StarPU also support environments with accelerator devices, and
even distributed memory. These models rely in load balancing mechanisms
that dynamically map tasks with an arbitrary granularity level defined by the
programmer. On the other hand, our approach is designed to simplify the ex-
pression of task networks with a flexible granularity, and to allow the creation
of affinities between tasks and distributed processes. The tasks can reconfig-
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ure their activity and/or communication channels to change the computation
and communication structure across different stages. The purpose is to better
exploit locality and to reduce the communication costs.

Skeleton libraries present an approach that have a higher level of abstrac-
tion than our dataflow model, with flexible implementations for different target
architectures and hybrid platforms (see e.g. SkePU [26] or Muesli [27]). They
typically use a two-tier model, not related to the target platform, but to the
programming paradigm. They distinguishing between two different types of
skeletons (task- or data-parallel oriented). These types cannot be composed
in any form. Data-parallel skeletons can only be the leaves of the composition
tree. Data affinities across different stages, which means different hierarchies of
skeletons, are not properly defined. Finally, the amount of included skeletons
do not support all the applications classes supported by a generic dataflow
programming model that can express task or data-parallel computations with
the same abstraction, supporting arbitrarily connected transitions and places,
with dependences loops. In the context of HitFlow, skeletons could be used as
higher-level abstractions to transparently generate common tasks networks, by
combining a limited set of structures. FastFlow already exploits this approach
as we discussed at the end of the previous section.

7 Conclusions

This paper presents a parallel programming model and framework with a
novel combination of features designed to easily map dataflow programs to
distributed-memory processes. It allows programs to be described as a net-
work of communicating activities in an abstract form. The system allows the
implementation of applications from simple static parallel structures, to com-
plex combinations of dataflow and dynamic parallel programs. The description
is decoupled from the mapping techniques or policies, which can be efficiently
applied at runtime, automatically adapting static or dynamic structures to
different resource combinations. Our current framework transparently targets
hybrid shared- and distributed-memory platforms.

We present an evaluation with examples of different classes of dynamic and
static applications. Experimental performance results show that the overhead
introduced by our abstractions has minimal impact compared with manu-
ally developed implementations using MPI. Comparisons with other dataflow
programming tools show that HitFlow can better express some classes of pro-
grams designed for distributed environments, while its implementation can be
improved for shared-memory. Comparisons of development effort metrics indi-
cate that HitFlow codes have a similar development cost than other dataflow
abstractions. HitFlow codes present a much lower complexity than manually
developed MPI codes, and obtain the same performance and scalability.

This generic framework will allow us to focus our research on the best
mapping policies that can transparently target heterogeneous platforms for
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1 #include <hitflow.h>
2 using namespace hitflow;
3

4

5 class StageA: public Transition {
6 int numtasks;
7 public:
8 StageA(int t): numtasks(t){};
9

10 void create(){
11 long task;
12 for(int i=0; i<numtasks; i++){
13 task = i;
14 put(task);
15 }
16

17 }
18 };
19

20 class StageB: public Transition {
21 long sum;
22 public:
23 void init(){
24 sum = 0;
25

26 }
27 void process(){
28 long task;
29 get(&task);
30 sum += task;
31 }
32 void end(){
33 cout << "Sum " << sum << endl;
34 }
35 };
36

37 int main(int nargs, char * vargs[]){
38

39 HitFlow::init(&nargs, &vargs);
40

41 StageA st_a(10);
42 StageB st_b;
43

44 Place<long> place("long container");
45

46 st_a.addOutput(&place,"createTasks");
47 st_a.addMethod(&StageA::create,"createTasks");
48 st_b.addMethod(&StageB::process,"processTasks");
49 st_b.addInput(&place,"processTasks");
50

51 Net net;
52 net.add(&st_a); net.add(&st_b);
53 net.run();
54

55 return 0;
56 }

1 #include <ff/pipeline.hpp>
2 using namespace ff;
3

4 class StageA: public ff_node {
5 int numtasks;
6 public:
7 StageA(int t): numtasks(t){};
8

9 long * svc(void * intask){
10

11 for(int i=0; i<numtasks; i++){
12 long * task = new long(i);
13 ff_send_out(task);
14 }
15 return NULL;
16 }
17 };
18

19 class StageB: public ff_node {
20 long sum;
21 public:
22 int svc_init(){
23 sum = 0;
24 return 0;
25 }
26 long * svc(long * intask){
27 sum += *intask;
28 delete intask;
29 return GO_ON;
30 }
31 void svc_end(){
32 cout << "Sum " << sum << endl;
33 }
34 };
35

36 int main() {
37

38 ff_pipeline pipe;
39 pipe.add_stage(new StageA(10));
40 pipe.add_stage(new StageB());
41 if (pipe.run_and_wait_end()<0)
42 return -1;
43 return 0;
44 }

Fig. 13: A full pipeline example in both HitFlow (left) and shared-memory
only FastFlow (right) frameworks.
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specific or generic combinations of parallel paradigms, allowing us to build
powerful parallel patterns using a common and generic framework.
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