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Abstract

Channel selection procedures are essential to reduce the
curse of dimensionality in Brain-Computer Interface
systems. However, these selection is not trivial, due to
the fact that there are 2 possible subsets for an N,
channel cap. The aim of this study is to propose a novel
multi-objective hybrid algorithm to simultaneously: (i) re-
duce the required number of channels and (ii) increase the
accuracy of the system. The method, which integrates
novel concepts based on dedicated searching and deter-
ministic initialization, returns a set of pareto-optimal
channel sets. Tested with 4 healthy subjects, the results
show that the proposed algorithm is able to reach higher
accuracies (97.00%) than the classic MOPSO (96.60%),
the common 8-channel set (95.25%) and the full set of 16
channels (96.00%). Moreover, these accuracies have been
obtained using less number of channels, making the
proposed method suitable for its application in BCI
systems.
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1 Introduction

Brain-Computer Interfaces (BCI) have proven to be able to
establish an effective communication system that allows
users to control applications using their own brain signals
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[1]. Due to the non-invasiveness, portability and low cost
characteristics of the electroencephalography (EEG), brain
signals are usually registered by placing several electrodes
(i.e., channels) on the users’ scalp [1]. In order to identify the
users’ intentions in real time, it is essential to employ a
recognizable control signal, such as the P300 evoked
potentials. These potentials are positive peaks of the EEG
mainly produced in the parietal cortex in response to infre-
quent and particularly significant stimuli at about 300 ms
after their onset [1]. The most common setup, known as
P300 Speller, allows users to spell words or select certain
commands [2]. The user just need to focus attention on one
of the character cells of a displayed matrix, while its rows
and columns are randomly flashing. Whenever the target’s
row or column are intensified, a P300 potential is produced
in the user’s scalp. Thus, the desired character can be
determined by computing the intersection where those P300
responses were found [2].

However, the inter-session variability and the low
signal-to-noise-ratio that are present in these event-related
responses make it difficult to obtain a reliable P300 potential.
Thus, it is necessary to compute an average of several
sequences, which may produce an over-fitting of the clas-
sifier, resulting in a spoiled system performance [3]. The
curse of dimensionality may be reduced by using a channel
selection procedure, which also reduces the power con-
sumption in wireless EEG caps, increases the users’ comfort
and assures suitable performances [3]. Nevertheless, this
selection is not trivial, owing to the fact that there are N
possible combinations for an N-channel cap, making the
exhaustive search intractable [3]. For this reason, most
P300-based studies omit this stage and use a combination of
8 typical channels in parietal and occipital positions as a
general rule of thumb [4]. Nonetheless, due to the intrinsic
inter-subject variability of the EEG, an optimization is
required for leveraging the system performance.

In this regard, metaheuristics based on evolutionary
computation have demonstrated excellent performances
solving complex optimization problems. Even though
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several methods have been successfully applied to
P300-based BCI systems, most of them have used

single-objective strategies, ignoring the trade-off between the
final number of selected channels and the system perfor-
mance [5, 6], or merging both trade-off objectives using
aggregation approaches [7-9]. However, a practical BCI
channel selection algorithm should simultaneously optimize
a two-fold purpose: (i) to maximize the performance of the
system, and (ii) to minimize the required number of chan-
nels. Multi-objective optimization algorithms, such as Non
Sorting Genetic Algorithm II (NSGA-II) [7, 10] or
Multi-Objective Particle Swarm Optimization (MOPSO)
[10] have been applied in this regard. Although all of them
have been proved to be suitable to its application in this
field, their inter-trial variability, as well as their lack of
deterministic approaches, hinder their full adaptation to
binary BCI systems.

In this study, a novel multi-objective hybrid algorithm
that merges the key aspects of MOPSO and forward selec-
tion (FS) is proposed for selecting the optimal channel sets
in BCI applications. The method, which performs a dedi-
cated local search over each channel, provides a set of Pareto
optimal solutions that minimizes the error of the system and
the required number of channels.

2 Subjects

The subject pool was composed of 4 male healthy subjects
(mean of 26.25 + 5.19 years) that were asked to spell a total
of 200 characters with the P300 Speller in 2 sessions [2] (i.e.,
half for training and half for testing). EEG signals were
recorded using a 16-channel cap with a g.USBamp amplifier
(g.Tec, Guger Technologies, Austria). Sampling rate was
fixed at 256 Hz and bandpass (0.1-60 Hz), notch (50 Hz)
and common average reference filters were applied.

3 Methods

In order to evaluate the usefulness of our proposed algorithm
for BCI systems, the method has been compared with the
traditional MOPSO, described in [11].

3.1 Processing Pipeline

The signal processing pipeline is detailed in the Fig. la. In
the feature extraction stage (i) a 0—-700 ms window from the
stimuli onset was selected; and a (ii) sub-sampling to 20 Hz
was computed. Then, the multi-objective algorithm is
applied to the training subset, returning sets of optimal
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combinations of channels. Finally, these sets are evaluated in
the testing dataset using a Linear Discriminant Analysis
(LDA) classifier and final accuracies are calculated. This
pipeline is repeated 20 times in order to discard stochastic
effects.

3.2 Two-Fold Objective

Multi-objective metaheuristics involve the optimization of
multiple conflicting objective functions at the same time. In
this case, our two-fold objective is:

. (Al =1-AUC(K)
min F(x) = {fz(x) _ Zx )

where x denotes a solution (i.e., particle position, a specific
set of channels where x. = {0, 1} with ¢ =1,...,N,) and
AUC denotes the area under ROC curve, derived from a
5-fold cross-validated LDA that is trained and tested with the
same solution x. Therefore, f (x) involves the minimization
of the error rate, whereas f,(x) the minimization of the
required number of channels.

(1)

3.3 SMOPSO/FS Algorithm

The proposed algorithm, dedicated MOPSO with FS
(OMOPSO/FS), whose pseudo-code is detailed in Fig. lc,
was developed to overcome the inter-trial variability and the
lack of search depth that binary MOPSO experiments when
is applied to BCI systems [10]. In order to achieve this
objective, the method provides a set of novel concepts, such
as (i) deterministic initialization, (ii) dedicated particle sub-
groups for each channel, (iii) leader selection based on
binary tournament, and (iv) three-fold mutation, which are
detailed below.

Deterministic initialization Forward selection is applied
in order to reduce the inter-trial variability due to stochastic
effects. Starting from an empty set, the algorithm tests each
channel for its inclusion based on the metric f; (x). Then, the
repository is filled with the non-dominated solutions.

Dedicated particles In order to perform a depth local
search and favor the convergence, MOPSO/FS dedicates
subgroups of N, particles focused on each possible number
of channels ¢ € 1, ..., N.. Thus, each particle’s position is
randomly initialized as long as > x =c¢, where ¢ is the
number of channels that belongs to its subgroup.

Leader selection Each particle should point to a reposi-
tory leader that has the same number of channels than the
particle’s subgroup. Thus, the leader selection is based on
binary tournament odds: each particle selects its
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Repository leaders

corresponding leader with probability p; and the rest of them
with probabilities p(1 — p)?, where d is the distance from its
leader. The procedure is illustrated in Fig. 1b.

Position updating Due to the dichotomous nature of the
problem, once the velocity of each particle is calculated, the
positions are updated on a transfer function basis. If the
transformed velocity in each dimension 7(v;) exceeds a
threshold ¢, the position is inverted, otherwise is maintained.

’v/\/vz—i— 1|,

The transfer function is v-shaped: T(v)
based on [12].

Three-fold mutation The mutation operator is similar to
[11], but applied to each subgroup of particles. Therefore,
each subgroup is divided in three parts, in which: (1) no
mutation is applied, (2) uniform mutation with probability
P,, is applied, and (3) non-uniform mutation is applied (i.e.,

probability P, = 1 — [(gen — 1)/ maxgen]s).

Repository update The repository (i.e., the set of Pareto
optimal solutions) is updated in each generation of the
algorithm as follows: (i) the current population X and the
repository R are merged into a new population R,,, (ii) fitness
is calculated in R, according to Eq.(1), and
(iii) non-dominated solutions of R, are stored into the new
repository. Due to the discrete nature of the channel selec-
tion problem, the repository keeps a maximum of N, solu-
tions, which provides a range of combinations to choose
from, depending on the number of channels that the user
would want to use.

18 return R;

4 Results

The proposed method has been compared with a traditional
binary MOPSO, described in [11]. Both of them have run a
fixed number of 500 generations in order to facilitate the
comparison between them. Optimal training phase Pareto
Fronts of both methods, as well as testing final accuracies of
the optimal channel sets, are depicted in Fig. 2. Moreover,
the highest reached accuracies using MOPSO/FS, MOPSO,
the classical 8-set [4] and the 16-channel full set are shown
in Fig. 3a. Finally, the Fig. 3b displays the averaged number
of times that each channel has been selected as a Pareto
Optimal solution across subjects.

5 Discussion and Conclusion

Although multi-objective metaheuristics have been proved
to be suitable for the channel selection procedure in BCI
systems, there is still room for improvement. Their lack of
deterministic approaches cause the algorithms to suffer from
stochastic effects, making necessary the computation of
several runs in order to reach the optimal solutions [7, 10].
As can be observed in Fig. 2, not only SMOPSO/FS reaches
more optimal Pareto Fronts than MOPSO, but also its con-
vergence is faster (mean of 96.36 generations for
OMOPSO/FS, and 417.70 for 6MOPSO). In addition, the
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Fig. 2 Optimal Pareto solutions for SMOPSO/FS (solid line) and
MOPSO (dashed line) for each user. The curves, composed by the
optimal solutions returned by both methods, depict the trade-off

(a)
SMOPSO/FS MOPSO 8-set 16-set
Acc. Ch. Acc. Ch. Acc. Acc.
U1100.0+0.07 99.14+0.311 99.0 99.0
U2 98.0+0.0 7 97.3+£0.514 94.0 97.0
U3 91.0+ 0.0 14 91.04+0.0 15 90.0 89.0
U4 99.0+£0.0 8 99.0+£0.012 98.0 99.0

Fig. 3 a Highest reached accuracies and their required number of
channels using different approaches. b Averaged normalized channel
ranks for the obtained Pareto optimal solutions (e.g., a value of 1

results indicate that the final SMOPSO/FS accuracies are
higher than that obtained with MOPSO and, furthermore, the
solutions use less number of channels. These accuracies are
also higher than that obtained using the common 8-set [4] or
the entire full set of channels, which reinforces the idea that
channel selection is beneficial for the system’s performance.
It is also noteworthy to mention that the standard deviation
of the final accuracies across trials for SMOPSO/FS is null,
which means that every single trial has converged to the
same set of solutions. This fact, in conjunction with the rapid
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between both objectives in training data. Final testing accuracies are
also show next to each solution
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indicates that the channel is selected in all the solutions that belongs to
the Pareto Front of every single user)

convergence of the algorithm, demonstrates that
OMOPSO/FS has successfully avoided the stochastic effects
and thus, it can assure the identification of global optima in a
single run, saving a high amount of computation time.
Moreover, the Fig. 3b shows that there are certain channels
that have been repeatedly selected along the Pareto Fronts of
the subject pool. These channels are mainly distributed over
the parietal and occipital regions, which reinforces the study
of Krusienski et al. [4], who stated that the P300 potentials
are mainly generated in those positions. It can also be
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noticed that the dispersion of the selected channels by
MOPSO is smoother than by SMOPSO/FS, which indicates
again that SMOPSO/FS successfully finds the same global
optima in each run.

Even though this new technique has been proved to be
suitable for use in P300-based BCI systems channel selection,
we can point out several limitations. Firstly, the algorithm
requires several hyperparameters to be fixed, whose optimiza-
tion lies on the user experience. Moreover, both MOPSO and
OMOPSO/FS use a transfer function for adapting them into
binary-based approaches. In order to overcome this limitations,
we contemplate the following future research lines: (i) to
implement a dynamic fixation of the hyperparameters, and
(ii) to apply these novel concepts to binary objected algorithms,
such as the ones that are based on genetic algorithms.

In conclusion, a novel swarm-based algorithm has been
proposed for selecting the optimal channel set in BCI
applications. The proposed algorithm, 6MOPSO/FS, has
been tested with 4 healthy subjects and compared with the
traditional binary MOPSO. Results show that SMOPSO/FS
is not only able to converge more faster than MOPSO, but
also to reach higher accuracies (mean of 97.00%) than that
obtained by using MOPSO (mean of 96.60%), the common
8-channel set (mean of 95.25%) and the full set of 16
channels (mean of 96.00%). Moreover, these accuracies are
obtained using less number of channels than MOPSO,
approximately the half of the full set. For these reasons, we
conclude that SMOPSO/FS is suitable for use in P300-based
BCI systems channel selection procedures.
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