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Hyperspherical 6-6” potentials
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Abstract

The spherically symmetric potential a 6(r — ro) = ~&’(r — o) is generalised for the d-
dimensional space as a characterisation of a u..’ue s. adjoint extension of the free
Hamiltonian. For this extension of the Dirac delta. the spectrum of negative, zero
and positive energy states is studied in d - 2, providing numerical results for the
expectation value of the radius as a function ot .. » free parameters of the potential.
Remarkably, only if d = 2 the §-¢’ poter. al ) ,» .bitrary a > 0 admits a bound state
with zero angular momentum.
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1. Introduction

The presence of bour daric. “ac played a central role in many areas of physics for
many years. In this resr ect, oncerning the quantum world, one of the most significant
phenomenon is due to e .nter ction of quantum vacuum fluctuations of the electro-
magnetic field with .wo con." cting ideal plane parallel plates: the Casimir effect [1],
meassured by Spe na. 7 in 1959 [2]. Frontiers are also essential in the theory of quan-
tum black holes. where o..e of the most remarkable results is the brick wall model
developed by /.. °t {ooft [3, 4], in which boundary conditions are used to implement
the interactio.. of Juantum massless particles with the black hole horizon observed
from far av ay. In . 'dition, the propagation of plasmons over the graphene sheet and
the surpr’ ;ing scattering properties through abrupt defects [5] can be understood by
using boun. <y cr aditions to represent the defects. In all these situations, the physical
prope ucs of the frontiers and their interaction with quantum objects of the bulk are
mim cked by dlifferent boundary conditions. Many of these effects concerning con-
dense. matte quantum field theory can be reproduced in the laboratory.

Moreover, point potentials or potentials supported on a point have attracted much
ittention over the years (see [6] for a review). These kind of potentials, also called
cu ~“tact ateractions, enables us to build integrable toy-model approximations for very
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localised interactions. The most known example of such kind of .. “=racu. 2 is the
Dirac-6 potential, that has been extensively studied in the literatr . ‘see, « 3. [7-9]).
Since this potential admits only one bound state when it has neg- .ive  vu, “ng [8, 9], it
can represent Hydrogen-like nuclei in interaction with a classicai . ~ .kground. Dirac-§
potentials can also be used to represent extended plates in effr ... ve scai. quantum field
theories to compute the quantum vacuum interaction for se! 1i-transp rent plates in flat
spacetime or curved backgrounds [10—13].

From what has been mentioned above, it is intiutiv o1y clear that quantum bound-
aries and contact interactions are almost the same. Tk * ri- srou mathematical frame-
work to study them is the use of selfadjoint extens ~ns to rer esent extended objects
and point supported potentials (see [14—16] for a more | hysical point of view), such
as plates in the Casimir effect setup [17, 18], or ¢ «tact int ractions more general than
the Dirac-¢ in quantum mechanics and effectiv. auai. ~~. field theories [19-25]. The
theory of selfadjoint extensions for symmetric opera. s has been well known to math-
ematicians for many years. However, it only ~ecame a valuable tool for modern quan-
tum physics after the seminal works of Asorey e: . ' [15, 17, 18], in which the problem
was re-formulated in terms of physically mea - _ful quantities for relevant operators
in quantum mechanics and quantum field t. > ;ry [26-31].

One of the most immediate exten. . *< o1 ‘*he Dirac-¢ potential is the §’-potential
Vs = bd’(x). Over the last years, there h. < bcen some controversy about the definition
of this potential in one dimension | “=c u.. - ‘scussion in [32, 33]), and yet it is not clear
how Vs should be characterised. The a. » of this paper is not to discuss this definition
but to use the one introduced ir '32], including a Dirac-d to regularise the potential, and
study its generalisation as a typersy “erical potential in dimension d > 1. We will fully
solve the non-relativistic qu. ~tum mr :chanical problem associated with the spherically
symmetric potential

Vsg(r)- 0(r -ro)+b&(r—ry), a,beR, ry>0. (1)

Due to the radial ,yu. etry of the problem, we will end up having a family of one-
dimensional Hamiltonians (the radial Hamiltonian), for which a generalisation of the
definition give . in | !9, 32] is needed.

This pape. ‘< Jrganised as follows. Section 2 defines the spherically symmetric
0-0’ potent al in a1 *rary dimension based on the work for one dimensional systems
performe . in ".9]. Having determined the properties which characterise the potential,
we carry ou. « tho ough study of the bound states structure in Section 3 and of the zero-
mode aud scaticring states in Section 4. In the latter, we also compute some numerical
resul s concel \ing the mean value of the position (radius) operator. Through these two
sectio. ~ we < secially focus on the peculiarities of the two dimensional case. Finally, in
“ection 5 we present our concluding remarks.

2. 1uc 0-0’ interaction in the d-dimensional Schrodinger equation

We consider a non-relativistic quantum particle of mass m moving in R d =
2, 3,...) under the influence of the spherically symmetric potential Vs.5(r) given in




(1). The quantum Hamiltonian operator that governs the dynamics o1 . = sys..m is

2
H= 28, + Vi) @

2m
where Kd is the d-dimensional Laplace operator. To start v ith, let us analyse the di-
mensions of the free parameters a and b that appear in our s} stem. U: ng the properties
of the Dirac-¢ under dilatations and knowing that the ¢’ has .. »»>"_ the same units as
the formal expression dd(x)/dx it is straightforward tc see ' the dimensions of the

parameters a and b are

lal = L’T™*M, [b] = L*T 1. 3)
Hence, we can introduce the following dimensionles. «ua .cties:

2 2a br. mc
—H =—, - =, =—r 4
me2 0 0T he R TR )

With the previous definitions, the dimen: .. *~~< auantum Hamiltonian reads

h=

h=-A;+wyx—2x'+2w; 8 (x— xp). 5)
Introducing hyperspherical coordinates, ‘x,s.; = {01,...,04-2, ¢}), the d-dimensional
Laplace operator A, is written as
1 0 0 Aga-i
A — [T 6
x T ox (x Bx) x2 ©
where Agii = —L2 is the L. ~ac’ -Beltrami operator in the hypersphere S?~!, and

minus the square of the gen ‘ralised dimensionless angular momentum operator [34].
In hyperspherical coc. 'ins .es, * e eigenvalue equation for h in (5) is separable, and
therefore we can wr'.e the . v .ions as

Yar(x, Qq) = Rye(x)Y(Qy), (N

where Ry,(x) 7, the -adial wave function and Y;(Q,) are the hyperspherical harmonics
which are the " ~¢ (functions of Ags-1 with eigenvalue (see [35] and references therein)

xd,t) = -0(C+d-2). ®)

The decenera. " r « x(£,d) is given by [36]

(d+€-3) .
= (d+2(¢=1) if d#2 and €#0,
o ad, 0 =) @ A an N

1 if d=2 and £=0.

1. *hres dimensions we come up with y(3,¢) = —¢(€ + 1) and deg(3,¢) = 2 + 1 as
~-nected. Taking into account the eigenvalue equation for (5) and equations (7, 8) the
r «dial wave function fulfils

& d-1d €t+d-2)
- — +
dx? x dx x?

+ Vi.50(2) | Rag(x) = ARy, (10)




being
Vs.5(x) = wod(x — x0) + 2w 8" (x — x0). (11)
To solve the eigenvalue equation (10), we first need to defir the potendal Vss. In

order to characterise the potential Vs s (x) as a selfadjoint extension . ~lowing [19, 32],
we introduce the reduced radial function

3e(x) = x7 Rye(x), (12)

to remove the first derivative from the one dimensional rad’ .. o} *rators in (10). Taking
into account (10) and (12), we obtain the eigenvalue nroviem tb .t this function satisfies

(Ho + Vi.5(x)) tap(x) = Agtge(x (13)
where )
wy @203 2= 1)
Hy= -5+ . (14)

Thus, as in [19], we define the potentie! Vs th. ugh a set of matching conditions
on the eigenfunction of Hy at x = x7. .™e ¢ scussion for the one dimensional case
imposes that the wave function ¢ mus* belorn,_ to the Sobolev space W22(R \{0}) in order
to ensure that "/ (x) is a square integr"e “unction, i.e., the mean value of the kinetic
energy is finite. To generalise this condii. »n 10 higher dimensional Hamiltonians with
spherical symmetry, we need to im., "se w..t the domain of wave functions where the
operator H is selfadjoint when it is den. .ed on R is

W (Ho,To50) = A(x) € LAR0) (Ho) iy < 0}, (15)

where the expectation ve'ue o1 ¥ s defined as usual

"Ho) Efo F ) (Hof(x)) dx.

When we remove .he p. 1t x = x the operator H is no longer selfadjoint on the space
of functions W7\, R, ) = {f(x) € L*(R,,)| (Ho) px) < 00} since

rdxnﬁ(?-(ocp)—fdxcp(ﬂogb)* #0, ¢, 0 W(H)R,),
. 0

due to th. hcunda y terms appearing when integrating by parts twice. Nevertheless,
H, is «-mme. < on the subspace given by the closure of the LZ(RXO) functions with
comr act sup, ort in R,,. This situation generalises the initial conditions given in [19],
and 1 atches ne geometric view in [14, 15]. Hence, the domain of the selfadjoint
e~ asiou , «g + Vs of the operator H defined on R, is given by

@, Vi ={rewanrol [ 100 )= 5 O )( 1o )L ae

v here we have introduced the values

a=—"1 pg= . (17)




Now, using (12) in (16) we obtain the following matching conditio. ~ for .. e radial
wave function R y;:

( Rie(x} ):( a 0 )( Rae(xy) \) (18)
R (xg) B oot Ry () 7
where the effective couplings B and v, are
. @ -1)d-1) i =
ﬁzﬁ—( ) = W02 = Wyr —— G&ero. (19)
2axy 1 —wj X0

Observe that when we turn off the § contribution, w; 0 0. « = 1, the finite disconti-
nuity in the derivative that characterises the d-potential art: >s

Ri(xy) = Rae(xg) and R (xy, - Ry ) = woRae(xo).

On the other hand, when w; = +1 the matck*~- - ’._.on matrix is ill defined because
it does not relate the boundary data on x; with u._~se on x;. This case is treated in detail
in [10], where it is demonstrated that w; -1 leaas to Robin and Dirichlet boundary
conditions in each side of the singularity 2 = . Specifically,

4 _ .
Ra(xy) - ERM(X(J;) =, Ky(xg) =0 if w; =1,
i (20)
R,u?(xa) + FR;W()C(;) =v, ng(xa—) =0 if wp = —1,
0
where Wg = wop = 2(1 —d> xp. Re ently the potential (11) was studied for two and
three dimensions in [37] wi. “ the - 1atching conditions used for R, are those in (16)
instead of (18) which is salid un. _ the approximation Wy =~ wy, only satisfied if

Xo [wol > w1 21

Throughout the tey we will point out the equations that are valid even when the pre-
vious inequality coes nu hold.

A remark on s [fad sint extensions and point supported potentials
The operato. “ {j defined as a one dimensional Hamiltonian over the physical space
R,, is not self~djoi.. as we have seen. In order to define a true Hamiltonian as a
selfadjoi *top rator one has to select a selfadjoint extension of H, in the way explained
above for the na .icular case of the potential V.5 (x). More generally, the set of all
selfa’ joint e ftensions is in one-to-one correspondence with the set of unitary matrices
U(2) As wa demonstrated in [15], for a given unitary matrix G € U(2) there is a
urinue . '*vint extension H{ of H,. In this sense, the selfadjoint extension H{ can
»e thou_ht in a more physically meaningful way as a potential Vs(x — xo) supported
n a poi t xg for the quantum Hamiltonian H and write Hy + Vo(x — xo) = H 06.
Phy . _uly one would just think on Vg (x — xp) as a potential term in the same way as
u . —.rac-¢ potential [8]. In this view, once the operator H is fixed, the selfadjoint
Xtensions can be seen as potentials supported on a point, and the other way around
b. cause of the one-to-one correspondence demonstrated in [15] (and recently reviewed
in [14]).




3. Bound states with the free Hamiltonian and the singular intera. “ion

In this section we will analyse in detail the discrete spectrv a ot - ~~ative energy
states (bound states) for the §-¢” potential. In particular, we w.." oi* ¢ an analytic for-
mula for the number of them as a function of the parameters {** ,wy,.. . As the eigen-
value equation for the bound states is (10) with 4 < 0, we  efine 4 = —«* with k > 0,
and replace the subindex A by « in the wave functions all ovc - this se tion. The general
form of the solutions of equation (10) is

AT + B1 K, if xo 0,
Rl = o(kx) + By Ke(kx) if  x < (4, x0) 22)
Ay To(kx) + By Kp(kx) if  x < “xp, 00),

being 7 ,(z) and K;(z), up to a constant factor, the me *“fied ayperspherical Bessel func-
tions of the first and second kind respectively

1 . d-2
L@ = S I, K@= 5 A D) with v="35, (23)

Similarly from Eq.(12) the general form o1 ‘b . reduced radial function is

w) = Vi {Almy(mﬁ by “on(kx) if  x € (0, x0), o4

A lppy vy o P2 Koy (kx) if x € (X, 00).

The integrability condition on the reduced radial function

f |t (X)? dx < oo
0

imposes A, = 0. Mc eov ¢, th> solution multiplied by B; is not square integrable
except for zero angv'ar .. yme' aum in two and three dmensions [38]. The regularity
condition of the wr e functio. at the origin u(x = 0) = 0, sets By = 0 ford = 3. It
would seem that “.ae tw solutions in the inner region are admissible when d = 2, but
By # 0 would )~ 7 to a normalizable bound state with arbitrary negative energy [39].
In addition, fr. any wave function ¢, the following identity involving the mean value
of the kinetic e.. - zy operator:

1 1
2—(¢|P2|l!/> = —(yIP) - (Pl¥)), (25)
m 2m

holds 1f we mpose certain conditions on the wave function at the boundary x = 0,
whic * are nof satisfied by Kj. Hence, we conclude that B; should be zero for all the
caces, , 7*+ e previous analysis and (18) we obtain the matching condition

Kelkxo) \ a 0 T o(kxq)
Bz( Kk K (kxo) )_A] ( B a! )( Kk I (kxp) )’ (26)

f om which the secular equation is obtained

N d
=B+a! —log I (kx)

d
a — log K¢(kx)
x=xo dx

dx @7

X=X




The solutions for k > 0 of the previous equation give the energies o1 .= bou. d states
accounting for 1 = —«. The equation (27) can be written as

Liec1(0)  aKyreo1(yo)
al,¢(yo) K, e(yo)

where yo = «xp and the right hand side is independent of e energ ' and the angular
momentum. For d = 2,3 the results of [37] are obtained as o “**".ng case (xg|wo| >
|w1]). In particular, the secular equation for the 6-poter 1al (¢ 1 and 8 = wy) is

(Iv+£’—1(y0) Kyro-1 (o)
L ¢(yo) Ky ¢(vo) }

F(yo)E—yo( )—(a—a_l)€=2v(a» v_l)+,3xo, (28)

wo AQ).

3.1. On the number of bound states

Although equation (28) can not be solved analvu. ~lly in «, it can be used to char-
acterise some fundamental aspects of the se. ~f positive solutions of (28). The main
feature is the number of bound states that exist foi ' and ¢

N =nl (> (d, 0),

where n? is the number of negative ene, ~y < ~envalues and deg(d, £) is the degeneracy
associated with € in d dimensions ™ Tn vis way, we first delimit the possible values
of n?.

¢

Proposition 1. In the d-dim~  ‘onal quantum system described by the Hamiltonian
(5) the number n¢ is at mos one, i.c nd € {0, 1}.

Proof. From (28) and app,, ‘ng tb . properties of the Bessel functions, the derivative
of F(kxo) with respect t « is

n, 10Ky e0100) 1) 1( 1v+f—1(Yo)Iv+z+1(Yo))}
S —l|+a (1 > ;
AW_[(yQ) Iv+f(y0)

and, as it is proven in [40, .nd the references cited therein,

x0F' (o) = —yo [ (

Ko 00)Kni1(0) > Ku(o)*, if >0, n>-1/2,
Lo 01 (0) < Li(yo)?, if yo >0, neR.

In the pres. » casf n = v + € > 0, therefore we can conclude that
sgn (F'(yo)) = —sgn(a). (29)

Hence, =t for @ = 0 (ill defined matching conditions) F(yy) is a strictly monotone
anctio: and the proposition is proved. |

This result is in agreement with the Bargmann’s inequalities for a general potential in
t'.ree dimensional systems

00

_ 1
nd=3 x|V (x)| dx,




1

which guarantees a finite number of bound states when the integi.' is cu .vergent
[41]. Moreover, this inequality was generalised for arbitrary dime~ .. ‘nal sy ‘ems with
spherical symmetry [36]

1 00 00
n‘; < ML xlV(x)|dx if fo x|V(x)|dx <o and A+ 26-2>1.(30)

In the case d = 2 and ¢ = 0, a stronger condition is ir~ose. -~ e potential being
the upper bound of the inequality different [36]. In fac ., wh .. “he potential is a linear
combination of Dirac-d potentials sufficiently distant 1. .1 eac . other n‘; tends to the
r.h.s. of the inequality (30) (see Ref. [42]). The follov. ng 1e.ult also matches with the
properties of such potentials [8].

Proposition 2. The d-dimensional quantum sy. »m ac..«1bed by the Hamiltonian (5)
admits bound states with angular momentum ¢ if, an. ~aly if,

fmax * Lmax’ and (€ {Os 1, e p‘mx} (gmax > _])’ (31)

where
._‘1 —X()Wo/2 " 2-d
w? +1 27

gmax = LLmaxJ ’ LI In = (32)
being |- | the integer part. In additio. 1 4, = —K? is the energy of the bound state with
angular momentum ¢ the following ineq..ality holds

Adp < Adprr <> €€e{0,1,..., 00 — 1}
Proof. We analyse the oehavic ~ of F(yg) for yo ~ 0. The solutions of (22) satisfy

d y d d+(-2
lim — log T¢(ka = —, lim —1 ==
KLI(I)‘!r dk 08 f(K - X0 ’ KLI(];I* dk o8 W[(K XO) X0 ’

therefore the secular equ.. ‘on (27) for k — 0% becomes
Fo(f = Vin F(yo) = ald+t-2)+at=(a-a)d-2) +fx.  (33)

The funct on J ({) is a strictly monotone function of £, increasing if @ > 0 and de-
creasing 1. ~ < 0. "a addition, from (29) we can conclude that there are no bound states
for € ~ 7,4 L ag the definitions of (17), the solution of (33) is L, given by (32).
Fina y, with e previous analysis it is clear that x; > kz.. |
From 32), it .an be seen that as the dimension of the system increases, the maximum
? .gdlar mumentum reached by the system decreases. This happens because the cen-
rifugal | otential in (14) becomes more repulsive as d grows. In Fig.1 we plot two
¢ nfigur .tions in two dimensions which illustrate the results of Propositions 1 and 2.
‘Lne results obtained in [37] for d = 2 and d = 3 are recovered when |wg|xy > |wq|
(“or a = 3 there is minus sign and the integer part missing). To end this section, let us
‘viefly study the behaviour of the number of negative energy eigenvalues as a function




F(kxy) F(kxy)

Figure 1: Each curve represents F(k xp) in (28) for different values of v = angular momentum. The green
horizontal line is the r.h.s. of (28). LEFT:d =2, = 08,5 . -3 and ) =7. RIGHT:d =2, @ = -0.8,
B=3andxy =7.

of the dimension d and the angular momentum . As was shown above, the number of
bound states depends on deg(d, €) (9). T. . ... ~~ments with respect to d and ¢ are

(d+C-3)(d+20-3
deg(d +1,6) — deg(d, « At Chs )

C-Did-1nl
N d+=3)d+20-1)
deg(d,£’+ 1)—deg(u, Y = (f-{-l)'(d_s')' ’

therefore, both quantities arr pos. ‘ve if d > 3 and £ > 1. This ensures the growth of
the number of bound states with the limension and the angular momentum, except for
¢ = 0 where the degenera-y is . ay s 1 (ground state) and for d = 2 where deg(2, {) = 2
for€ > 1.

3.2. Special feature of two .~ ensions

It is known tt 4t u. existence of bound states with Vs = wyd(x — x¢) necessarily
imposes wy < (0 “ar any aumension d. This fact can be easily proved with the results
obtained abov . Th maximum angular momentum for this potential is

- 1" _d - 2—-d 2-d
bmax = ‘_gwh . Jsme= oy < <0 if wo>0, (34)

2 2

[\

which . :ans . ¢ there are no bound states if wy > 0. The next proposition shows
that * 1is conc tion on the coupling wy does not remain valid for all the cases when we
add t. » ¢’-po ential, allowing the existence of a bound state with arbitrary positive wy
f . d = 2 with £ = 0. This result is quite surprising taking into account the usual
nterprer tion of the Dirac-¢ potential as a infinitely thin potential barrier if wy > O.
"+ e kev point to understand it is that only for d = 2 and ¢ = 0 the centrifugal potential
in (14) is attractive (centripetal), sinced + 2 -3 = -1 < 0.

‘roposition 3. The quantum Hamiltonian (5) admits a bound state for any wy > 0 only
nd=2and ¢ =0.




Proof. From Proposition 2 we conclude that

Lipax =

I(Z—d— Xo Wo 2W1

> <12 it w2
2 w2+ 1 w%+1] / '

since 2w /(1 + w%) € [-1,1] w; € R. Therefore, bound aes witn £ > 1 are not
physically admissible. For higher dimensions this state can 10t be ac iieved since

Lyaxy <0 if d>3

The equality is reached only if wy = 0, w; = 1 and 7 = 3 be ng €0x = Lyax = 0.
In this case the selfadjoint extension of H( which ‘efines th potential Vs.5 can not
be characterised in terms of the matching conditions (.. In conclusion, with Vy.5
described by (18) this bound state appears only i» ' =2 an ¢ =0.

|
It is of note that the condition 2 w; > xo wg ensures u. existence of this bound state for
arbitrary wy > 0. In addition, we must menti. ~ that the appearance of such bound state
is significant because of two reasons. In one dime... ‘on, and with the definition of the ¢’
given by (16), this potential can not introc ice » «.. d states by itself [32]. Furthermore,
when wy > 0 the Dirac-6 potential wed(x — ) can be interpreted as an infinitely thin
barrier, which contributes to the disap . anc. of bound states from the system. The
result from Proposition 3 is illustrated in Fig.2. At the end of the next section we will
compute some numerical results t.. * vuw..  ut more differences with respect to the one
dimensional V.5 potential.

2

Figun 2: Plots 01 L4y (32), with xo = 1, as a function of wg and wi. LEFT: d = 2 showing Ly, = 0 (green
line) ai. * Lyqy = 1 (black curve). RIGHT: d = 3 showing L., = 0 (green curve). There is a bound state
v ... = 0w wo dimensions for wy > 0, but this is not the case in three or higher dimensions.

A Scattering states, zero-modes, and some numerical reuslts

~1. Scattering States
To complete the general spectral study of the potential (11) it is necessary to char-
acterise its positive energy states, i.e., the scattering states. These states are always

10




present in the system weather there exist negative energy states or .. ¢ In . ddition,
when the parameters wy and w; are such that the potential Vs d- .. not a nit bound
states, the Schrodinger Hamiltonian (5) can be re-interpreted as .he ¢ .c , “rticle states
operator of an effective quantum field theory (see e.g. [10, 12] an. - ferences therein),
where the scattering states are the one particle states of thr calar g intum vacuum
fluctuations produced by the field. With this interpretation the exp. cit knowledge of
the scattering states, specially the phase shifts, enables to ot ~in on’ loop calculations
of the quantum vacuum energy acting on the internal -.ua external wall of the singu-
larity at x = xo [43]. In this case, defining' Xk = VA > 0. ".ie g neral solution of (10)
is

Ru() = A1 Jekx) + By Ye(kx) it xe (U xp), 39)
o Ay Tokx) + By Yo(kx) i 4 xp, 00),

being J,(z) and Y,(z), up to a constant fac.. = tne hyperspherical Bessel functions of
the first and second kind respectively

1 1
Je(@) = Z—VJ€+ (@), 1) = Z—VY€+V(Z)~

Proposition 4. The phase shift #-(k) fo. the {-wave in a d-dimensional system de-
scribed by a central potential with 1.. te support V' is given by

Ny (Sg(k, V) = _Bext/Aexta (36)

where A,,; and B,,; are def.. ~d from the asymptotic behaviour of the radial function as

v 1
Rie(x) ~ )cJ “(A g co e+ Beysinpg), e =kx— g(f +v+ E). 37

—00

Proof. Faraway ~m the origin the central potential is identically zero, consequently
the scattering solution w."" be a linear combination of J,(kx) and Y,(kx) which satisfy

2 2
Telkx, ~ \/j(kx);_g cosur, Melkx) ~ \/j(kx);_g sin uug.
X— T X—00 JT

On the ¢ aer ' and. from partial wave analysis, the asymptotic behaviour of R,(x) is
proportiona. " cc, (ug + ) [44], where &, is the phase shift for the {-wave. Gathering
both - quations,

Acxt cos e + Bext Sin/,lg = Cox COS (,Ll( +6¢),

tom wh ch the result (36) is obtained. |
'\ = pre- ious result can be easily generalised to central potentials satisfying x> V(x) —
N ag x — oo (see [44]). For the potential Vy_s, the square integrability condition on the

1By using this definition we recover the usual relation between k (scattering states) and « (bound sates):
k — ik as we gofrom 1> 0to A <O0.
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radial wave function in any finite region sets B; = 0, except ford = 2 . ~d £ = ) where
the argument developed in Section 3, imposes By = 0 [39]. In thic .. v, usi.. 3 (18) and
(35) the exterior coefficients {A,, B,} can be expressed as

Az)_A Jelkxo)  Yelkxo) Y (@ 0 jﬁ,(w)
(B2 O kT kxo) kY kxo) B o' J(ka (kxo)
kY (kxo)  —Yelkxo) V= o J ( To(kxo) )

_ 1 d-1
= o5 kxo) Al[ ~k T kxo)  Telkxo) [ Poalt )\ kT (kxo)

From this result and (36) we get

Telkxo) (1 = ) ¥ Ty )+ BT ko))

tan oy(k, Vs.5) = — — .
T o) k) + Tl (LY kexo) — apY (k)

(38)

In the spherical wave basis, the scattering matrix 1, ‘iagonal and its eigenvalues can be
written as

exp (2i6,(k, Vs.s)) = (1 - Ditan *p — tan® 6,)/(1 + tan® 5,). (39)

Note that for the potential Vs, -« .~ r equation (28) can be re-obtained as the
positive imaginary poles of (39) using (38) (for details see [44]).

To complete this section, let us show explicit formulas of the phase shift for some
particular cases of the poter .al Vs, previously studied in the literature:

e The 6-potential (w; =, 8 = n) shase shift is

mwo Xo Jeay (kx0) 2

fan.. <, Vs = )
) 7w Xo Jeay (k x0) Yeuy (kxg) — 2

which matches for a 2,3 with the results obtained in [45] and [43] respectively.

e The hard hyv sers) 1ere defined as

0, X < Xp,

Vin(x) = {

0, x> xo,

im’ uses Diricalet boundary conditions for the wave function on the exterior region,
R(:5) = 0. "he same result can be obtained from the 6-0" potential setting w; — —1
(20,. Thu-, the phase shift is

. Jery (kxo)
ande(k, Vig) = lim tan (k. Vo.s) = %
1= +v

ru. two and three dimensional systems it coincides with [45] (hard circle) and [46]
(hard sphere) respectively.
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e When we turn off the Dirac-6 term (wp = 0 = S = 0) we have "hat t.re is an
effective ¢ potential coupling characterised by

_(a—a‘l)(d— 1)
2)(() ’

B=
therefore from (38) we obtain that the phase shift for the | ure ¢’ i

(1-0)Te@)(@ -1 Tez, 20))

tand,(k, Vs)) = — ,
(@2 = 1)(d - DT (z0)Y e(z0) + 2 (@2 Y~ )T o(20) = jé(Zo)yf(Zo))

where zo = kxp. As can be seen, d,(k, Vs) def ~nds on ti e energy through z, unlike
it happens with the scattering amplitudes for *he p. » £ potential in one dimension,
where there is no dependence on the energy |1. 32, 33]. Nevertheless, what is
maintained is the conformal invariance of < sysiem, i.e., the phase shift is invariant

under
k

X0 — AXo, ,—>~\, wi — wi. 40)
/

4.2. On the existence of zero-modes

In this section we will deducr “~= co itions which ensure the existence of states
with zero energy for the §-6" potenu. ' The presence of an energy gap between the
discrete spectrum of negative energy levels and the continuum spectrum of positive
energy levels is of great im” urta.. >e in some areas of fundamental physics (see, e.g.
[47]), specially when we r ‘omote r n-relativistic quantum Hamiltonians to effective
quantum field theories vader .. ~ i’ duence of a given classical background. To start
with, we solve (13) for (="

& 2-y4 - . _
~7 i M@ =0 with n=5-(d+20. (41)

The general so! .u. 1 of the zero-mode differential equation is given by

n-2 4-1 .
C1XZ +ecpx? if n#3,

Vi) = Uge(x) = . (42)
ciVx+cyxlogx if n=3.

It mus* _ > emp.. " sized that 7 = 3 corresponds to d = 2 and € = 0. In order to determine
the ir tegratio. constants of the general solution (42) we must impose two requirements.
The 1. st conc .tion is square integrability

f vy (X dx = f 0|v,7(x)|2dx+ f v, (X dx < oo, (43)
0 0 X0

w ... both integrals should be finite. The second one is the matching condition that
.efines the 0-0’ singular potential (16). Depending on 7, i.e., the angular momentum ¢
a. d the dimension of the physical space d, we can distinguish two cases.
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Case 1: 5 € {1,2,3}. After imposing (43) we end up with the reau ~d ra.’al wave
functions

Vx(cp +c; logx) if =3,
vp(x) = cL+ceyx if =2, for x<xp ar. v,(x)=0 for x> xo.

1 x3?

if n=1,

In this case the matching conditions of (16) are satisfi .d if. . 1only if, ¢; = ¢, = 0.
Therefore there are no zero energy states.

Case 2: 17 < 0. In this situation, the square integrable . ~lutic. - und matching conditions
result in

4-n -2 4
Cr X 2 X < Xp, X2 o 0 X2
Vn(X) ={ 2 cal % |= n -1 O o | (44
-2 5

-2 _o_n2
c1xT x> X, L2y T g B« 1,
A non trivial solution exists if, and only *“ e svstem satisfies
-2 +a’n+—4 _
B= iR - ~ad) W e =2 a e (45)
2axg
In addition, the regularity conditio.. au - is also satisfied: v,(x = 0) = 0. Hence, for

a given dimension d and an angular mo. *entum ¢ such that 5 < d + 2/, there is a zero
mode given by (44) with ¢, = "Z_Sa‘lcl if and only if the couplings a and S satisfy the

relation (45). Indeed, if the reviou. equation is inserted in (32) we obtain
—max = Cmax = €,

which is in agreement . ** 1 our previous analysis of the energy levels, i.e., if L, =
Cmax the left hand si e of the . cular equation (28), F(k, xp), reaches the right hand side
at k, = 0. The rev rsc "~ also true.

4.3. The mear vali > of the position operator

In this secu. - we will show some numerical results concerning the expectation
value of x .or the bound states that satisfy n < 0 (as a function of the parameters wy
and wy). ncr che ¢.mension d, the radius xy and the angular momentum ¢ are fixed, the
plane wa-w; . i 1ded into two zones: one in which the bounds states do not exist and
anotl cr one 1 which they do. The limit between these two zones corresponds to the
zero- node st: .es?. The existence of zero-modes is of critical importance to compute
nrmene ' .ne expectation value of the dimensionless radius x when the parameters

vo and ' are close to the common boundary of the regions mentioned.

For ¢ given bound state of energy A, = —K?, the general expression for the expec-
tauc_ .alue (x)p = (Piel x|Wye) is given in terms of the reduced radial wave function

2This is ensured by the condition 77 < 0. If 77 > O the limit between the two zones does not correspond to
a physically meaningful state as it was previously demonstrated.
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as

2
ke Xo alp,(kex <,
[ a7 2
<.X>K[= - 0 C+v\KEAQ K¢ Xo - - (46)

Ke KXo alp (kexo) Vo [
f 2}, (dz + (M) f K7, (222
0 K

Koy (kex0) A

The last expression does not depend explicitly on 8 (17), bu. it does through «,. If we
take the limit x, — 0 we obtain

n=1(,_ 2m-3)_ < -1
(X)oe (e n (n—6)(a2(n—5)’-”'—1)) =

—/— = lim =
00 n€{0,1,2,3}.

X0 k=0T Xo

As expected, this result coincides with the calculatio. »f the mean value for the zero-
modes, carried out with the wave functions 1.. ‘44). As can be seen, when there exist
zero-modes with 7 < 0, the expectation value (x)o, s finite, but when the system does
not admit them, or n = 0 the limit (x)g; » div:igent. Somehow, the zero-modes with
n = 0 are semi-bound states in the sense th. the expectation value is divergent. This
behaviour gives rise to three different s fu. “ion.:

e When there are zero-modes wit. + <~ © * e mean value (x),, for the bound states has
a finite upper bound

. {Xoe

1m —

wi 1

== D/n. (47)

e [f there is a semi-bound zei. mo .e, i.e., n = 0, the upper bound imposed by (x)o, is
infinite: (x),, diverge, as ; — U~ in the wy-wy plane.

e When there are n’ zer. ™o .es, (x),, does not have an upper bound and therefore,
as Ay goes to zer . +he expectation value goes to infinity. This fact can be interpreted
as the state disuppeai. o from the system: when 1, — 0~ the corresponding wave
function bec’ ... - identically zero.

In Fig.3 we ha = plotted the mean value of two configurations as a function of the
couplings - /o and w, for values of d and ¢ such that < O (there is a zero-mode). We
have dist agui .hed he region in which the expectation value of x lies outside the 6-¢’
horizon anu “e ¢ e with (x) < xy. The former, bearing in mind the original ideas by
G. 't 100ft I3, 4], would correspond to the states of quantum particles falling into a
blacl hole th: would be observed by a distant observer. Indeed, the amount of bound
states . -t and three dimensions is proportional to xy and x% respectively and as it
“s ment ~ned? in [37] these bound states would give an area law for the corresponding
‘ntropy 1 1 quantum field theory when they are interpreted as micro-states of the black
ho. *-.izon.

3Although the formulas for ¢,,,, presented in [37] are only valid when (21) is satisfied, the behavior
ot the total amount of bound states as a function of xo does not change (as long as xp is large enough).
Consequently, the argument for the area law remains valid.
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Figure 3: Mean value of the dimensionless radius operator (x)/xo . venin (46). LEFT: xg = 1, { =2 andd =
2beingn =-1. RIGHT: xyo = 1, { =2and d = 3be" .., — .. 1helimitx — 0T in (46) fits with (4.3).
The black curve satisfies L, = € in each case.

On the energy shifts produced by the ~'

It is worth mentioning two central 1« ~>nces between the present analysis in arbi-
trary dimension with the hyperspkerical o 4 potential (d > 2) and the one dimensional
point analog [32]. In the latter, tu. 4 by itself (wy = 0) only gives rise to a pure
continuum spectrum of positive energy .:vels (scattering states). In addition, for the
one dimensional case when * ,, 0 the appearance of the ¢’-term in the potential in-
creases the energies of the ! ound ste es because it breaks parity symmetry, which does
not happen for d > 2. Thesc “vo r operties are not maintained in general for d > 2.
For example, in two di- 1iens‘ons uiere is a bound state with energy Ao = —1.205 if
wy = 0.9 (xg = 0.15 ¢ *d, r { cor ise, wy = 0). Secondly, the previous case and all the
study of Section 3.2 prove “he . there are bound states with lower energy when the ¢’
is added to the ¢ p .. ntial. In view of the above, it could be thought that it only takes
place when wy > O (sinc the ¢ potential presents no bound states). However, if we
consider a thre: a1 ‘ensional system with xo = 1 and wy = —1.85, a single bound state
with energy . --o = —0.514 appears when w; = 0.437 and with A,y = —0.482 if we
turn off the 5. W. -t we can conclude from the numerical results is that the 5-0” poten-
tial can gi e ri- ¢ to a lower energy fundamental state than if it has only the ¢ potential
ford > Z.

5. Cncludir ; remarks

Vur study provides novel results with 6-6" hyperspherical potentials. Firstly, on
he basis of this paper in arbitrary dimension, a careful study of the applications that
w hav already reported (and others) can be performed. The special attention paid
~= hound states is justified: as was shown in [37] the bound states can be thought of,
i« a quantum field theoretical view, as photon states falling into a black hole for an
< hserver far away from the event horizon. In this sense, the §-¢” potential generalises
the brick wall model by G. 't Hooft [3, 4]. In addition, the knowledge of the bound
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state spectrum of the system plays an essential role in the study of flu. atio... around
classical solutions and in the Casimir effect when the Schodinger . vator Ay + Vsg
is reinterpreted as the one particle Hamiltonian of an effective g’ antu . 1. 'd theory.

Our first achievement is the generalisation of the results give. "a [19] for the one
dimensional ¢’-potential. We have introduced a rigorous ar . consisic it definition of
the potential Vs.g = wod(x — xp) + 2w’ (x — Xp) in arbitrary dimens. 'n, characterizing
a selfadjoint extension of the Hamiltonian H (14) definec ~n R. . In doing so, we
have corrected the matching conditons in [37] for the t vo and three dimensional Vj_5
potential. We have shown that the Dirac-¢ coupling re: uir- ., a r -definition which also
depends on the radius x and the 8’ coupling w.

We have also characterised the spectrum of bouna . “ates in arbitrary dimension,
computing analytically the amount of bound sta. < for an values of the free param-
eters wy, w and xp that appear in the Hamiltc ~ian. O+ . of the most interesting and
counterintuitive results we have found is the existe..~= of a negative energy level for
d = 2 and ¢ = 0 when the Dirac-6 coupli.._ wy 1s positive. In such a situation, the
Dirac-4 potential wyd(x — xg), with wy > 0, is an .. finitely thin potential barrier, there-
fore bound states in the regime wy > ( e, .= ~xpected (as it happens for the one
dimensional analog [10]).

As a limiting case of the spectru.” ~f b 'nd states for the Hamiltonian (5), we
have obtained the spectrum of zero-mo ‘es uf the system in terms of the parameter
n = 5-(d+2¢). We have shown th.." *uc . -~ litions on wy, w; and x, for the existence of
zero-modes are {4y = Ly and 71~ 2 In addition, we have computed numerically
the expectation value (x),/x~ for the bound states with energy 1 = —«* and angular
momentum ¢ as a function ¢ . wy an.” wy. This calculation has enabled us to realise that
the zero-modes with 7 < v “ehave is bound states in the sense that (x)p, < oo, and
the zero-modes correspe 1ding to - = 0 behave as semi-bound states due to (x)o; = co.
These results determir - the ope'ogical properties of the space of states of the system
since the existence 0 ze.. mor :s characterises the space of couplings.

To complete o1 * study o1 the Hamiltonian (5) we have obtained an analytical ex-
pression for all tt ¢ pha. ~ shifts which describe all the scattering states of the system.
This calculatior " ~f central importance when we promote (5) to an effective quantum
field theory (s .e [1 /]) under the influence of a classical background. In this scenario,
the knowledge « © he phase shifts allows us to compute the zero point energy [43]. In
addition, 7, it i< sho.wn in [43] the phase shifts contain in their asymptotic behaviour
all the he 't ke nel - vefficients of the asymptotic expansion of the heat trace.

Furfther v ~+k (or the future could usefully be to add a non-singular hyperspheri-
cal b .ckgrou nd potential Vj(x) to the Vs s(x). For example, the spectrum of |x| plus
the & % poten .al at the origin is studied for one dimensional systems in [30]. For these
cacas, 1.+~ all, we would have to define the selfadjoint extension which characterizes
/5.5 ¢6. sidering H v = H, + Vo(x) instead of H. If Vy(x) satisfies the hypothesis

f the Kr .0-Rellich theorem, the selfdadjointness of an is guaranteed by the selfdad-
joru...s8 of H [48]. In this way, for this kind of potentials it seems reasonable that
u . . alysis carried out in Section 3 can be generalised by just exchanging the modified
“typerspherical Bessel functions (Vy = 0) by the corresponding general solutions of the
b. ckground potential Vy(x). Of course, most potentials can not be solved analytically
[49], but it is worth exploring the (solvable) Coulomb potential Vy(x) = —y/x with
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vy € R, in arbitrary dimension. In addition to its known applications . a mu. itude of
disciplines, this potential has recently been shown to play a centr . »le 1. “ondensed
matter physics to mimic impurities in real graphene sheets and - cher .w. “imensional
systems [50-52]. For the Coulomb potential, the general soluu. = can be written in
terms of Whittaker functions which are closely related to '.c modin.d Bessel func-
tions studied in the free case [38, 53]. Some important diff :rences . ‘ith respect to the
latter are expected, e.g., an infinite number of negative energ " levelc (£,,,, — o0) with,
possibly, an accumulation point not necessarily at zero .uergv
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