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Abstract

Neuroscience is a field in constant evolution. From Ramon y Cajal’s works, we
recognize neuronal synapses as the basis for brain communication and coordina-
tion. These electric connections make up a tangle of pathways of extraordinary
density. Until recently, the sophisticated techniques needed for acquiring these
complex interactions, mapping their sources and analyzing them with advanced
mathematical tools were out of our reach. It is now the right moment in which the
technology and the state of the research provide us an opportunity to disentangle
the underpinnings of the brain.

In this context, this Doctoral Thesis is focused on the study, development and
assessment of a specific framework to investigate neural interactions from the per-
spective of Complex Network Theory. Particularly, the new measures and the novel
models provided in this Thesis are aimed at improving our current knowledge of
schizophrenia disorder. Schizophrenia is a disabling mental disorder characterized
by disintegration of the process of thinking, contact with reality and emotional re-
sponsiveness. People with a large variety of symptoms can currently be considered
patients with schizophrenia. It is not clear that they all share a common physi-
ological substrate though. The heterogeneity of this illness could be the problem
to find the adequate treatment for each one. This problem is accentuated since
its prevalence is around 0.5% and patients have a 20% decrease in life expectancy
compared with the general population. Genetics, child abuse or cannabis con-
sumption are some of the risk factors of schizophrenia. Nevertheless, not much
is known about brain coordination and communication in this disorder compared
to general population. As seen throughout this Thesis, Complex Network Theory
can significantly contribute in this regard.

Neural oscillations can be considered as the main contributing mechanism for
enabling coordinated activity during normal brain functioning. Alterations in neu-
ral oscillations have been observed in schizophrenia using electroencephalographic
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(EEG) recordings. Aberrant relevance assignment to stimulus is a common finding
in several studies, which could be assessed using event-related potentials (ERPs).
Schizophrenia has been also identified as a dysconnectivity syndrome; a concept
related to the reduced capacity to integrate information among different brain
regions. The concept of connectome and the use of graph theory to model, es-
timate and simulate the topology and dynamics of the brain network reduce the
complexity of this problem with a remarkably flexible representation. Despite the
growing use of graph theory in neuroscience in the last decade, only a handful of
studies focused on brain dynamics using graphs (chronnectomic) and, to the best
of our knowledge, the studies presented here are among the first ones in using this
approach for assessing brain dynamics in schizophrenia.

All the studies that comprise this Doctoral Dissertation use the neuroelec-
trical signal from EEG recordings during an auditory oddball task to assess the
schizophrenia underpinnings. In particular, a 3-stimulus auditory-oddball paradigm
was used for examining cognitive processing as response to both relevant and ir-
relevant stimuli. Two incremental databases were used in the studies: the former
reaching a total of 48 patients with schizophrenia and 87 healthy controls with
16 electrodes; the latter including 39 patients and 78 healthy controls with 32
electrodes.

Using local and network measures, changes of the brain activation from pre-
stimulus to cognitive response were characterized. The main findings in this
Thesis include: (i) a hyper-segregated state in schizophrenia during the expec-
tation of stimulation; (ii) a deficit in the change from pre-stimulus to response
activity in local and network features linked to the previously mentioned hyper-
segregated state; (iii) a non-remarkable correlation between structural connec-
tivity (obtained by diffusion magnetic resonance imaging, dMRI) and functional
connectivity (EEG-based); and (iv) a noticeable reinforcement in the secondary
pathways, i.e., pathways weakly connected during pre-stimulus, followed by most
of the controls, but the patients’s behavior is split between primary and secondary
pathways reinforcement. Additionally, two genuine novelties were introduced: (i)
a new measure of graph complexity based on the balance of the edge weights that
does not need surrogate data, and (ii) a dynamical network model for the assess-
ment of changes in the synchronization of brain regions during cognition, useful
both for healthy and diseased brain interactions.

Our findings are consistent with previous reports in schizophrenia, revealing
an abnormal salience assignment and disorganized internal representation, as well
as desynchronized coupling in long-range brain interactions. On the other hand,
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the studies of this compendium of publications show a hyper-activation of the pre-
stimulus interval accompanied by reduced entropy followed by a deficit of change
during cognition. This highlights that the higher the range of the available fre-
quencies during pre-stimulus (spectral entropy), the higher flexibility or capability
to change during the subsequent stimulus, providing a novel link between local
and network features, in which patients with schizophrenia show abnormalities.
The lack of findings related to the association between structural and functional
connectivity, as well as the mentioned division in the behavior of the network
dynamics during cognition in schizophrenia, supports the likely heterogeneity in
schizophrenia disorder. Further studies must be addressed to corroborate this
hypothesis, which could involve a breakthrough in this field. In summary, this
Doctoral Thesis evaluates dynamical network features in schizophrenia during an
auditory cognitive task, resulting in a reliable characterization of dynamical neural
patterns. For this purpose, local measures based on the spectral distribution from
the EEG, as well as network characteristics were estimated. Novel network mea-
sures and a new network modeling during cognition were presented. The findings
of this Thesis reinforce previous works, whereas open the door to new frameworks
to study the heterogeneity of schizophrenia.
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Chapter 1

Introduction

The current Doctoral Thesis focuses on characterizing brain network dynamics by
means of Complex Network Theory to elucidate neural substrates in schizophre-
nia disorder. Electroencephalographic (EEG) signals, acquired during a cognitive
task, were used to obtain connectivity matrices that describe the functional brain
network. Graph measures were computed from these matrices using coherence and
phase-based measures. These investigations have led to results which have been
published, or accepted for publication, in journals indexed in the Journal Cita-
tion Reports from Thomson Reuters Web of Science

TM
(JCR-WOS). Specifically,

up to five papers were published between July 2015 and August 2018. Addition-
ally, one more paper was accepted for publication (April 2018). This scientific
productivity has allowed writing this work as a compendium of publications. The
thematic consistency of the papers included in the Thesis is justified in this intro-
ductory chapter (Subsection 1.1). The general context of Biomedical Engineering
and neural signal processing is briefly described in Subsection 1.2. Subsection 1.3
is devoted to schizophrenia disorder. Subsection 1.4 is oriented to explain phys-
iological underpinnings of the EEG recordings. In Subsection 1.5, the basis of
neural oscillations and their generation is explained. Subsection 1.6 is focused on
Event-Related Potential (ERP) and its usefulness in research. Finally, Subsection
1.7 provides the basis for understanding the current tendency to model brain in-
teractions as a graph. The latter, indeed, motivates the research problem and,
subsequently, the research questions.

Of note, this document is not intended to provide an exhaustive description
of the studies carried out. That description is already provided by the papers,
which passed a peer review process in high impact indexed journals. Therefore,

1
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this document, according to the normative of the University of Valladolid, provides
the framework of this Doctoral Thesis, summarizes the most relevant results and
offers joint discussion. In this way, the conclusions of this document would not
necessarily have been obtained by each paper separately.

1.1 Compendium of publications: Thematic con-

sistency

For over a century, the notion that connections among neurons are the basis for
the coordination of nearby and distant brain regions has been the cornerstone
of neuroscience. One of the most influential contribution supporting this insight
comes from Ramon y Cajal’s work. He provided clear evidence of intricate neural
circuits in the brain, which exchange information via electrical signals. However,
even today, it is not well-known how these neural circuits interact among them.
The necessary sophisticated tools for recording and mapping functional brain net-
works, as well as the advanced and novel mathematical methods for analyzing the
resulting networks, have been slow to emerge. All this has changed in recent years.
Improved technologies for accurately acquiring electric interactions among large-
scale neural systems have led us to develop new reliable techniques for answering
the question for several years kept in our mind: How can we get the fundamentals
of brain functioning and its dynamical organization?

Beyond the knowledge of brain functioning, which is important itself, the an-
swer to previous questions will provide a framework for improving the understand-
ing and, consequently, the treatment of psychiatric disorders. In this context, the
present Doctoral Thesis focuses on analyzing the physiological underpinnings in
schizophrenia during a cognitive task performing. This is the common thread
shared by the papers included in the compendium of publications. A scheme de-
picting the thematic consistency and the relationship among the studies of this
Thesis is shown in Figure 1.1.

Given that previous studies have reported a disconnection syndrome in schizophre-
nia (Friston, 1998) – later renamed as disconnectivity syndrome (Whalley, 2005) –
the first paper in chronological order (Gomez-Pilar et al., 2015) aims at character-
izing neural network organization in healthy subjects and patients with schizophre-
nia using wavelet entropy to check the validity of this hypothesis. After proving
new insights that support the findings of previous studies by using two comple-
mentary techniques, the two following papers investigate the possible causes of
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Figure 1.1: Schematic diagram illustrating the relationship of the papers included
in the compendium of publications. The spatial distribution of the papers repre-
sents the level of abstraction (vertical axis) and the type of connectivity studied
(horizontal axis). Acronyms of the journals: Entropy, Entropy; PN&BP, Progress
in Neuro-Psychopharmacology & Biological Psychiatry; HBM, Human Brain Map-
ping; NIC, Neuroimage:Clinical; IJNS, International Journal of Neural Systems;
SR, Schizophrenia Research
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such disconnectivity. In one of them, we look for abnormalities in the changes
of functional brain network during cognition using graph measures from Complex
Network Theory (Gomez-Pilar et al., 2017). In the other paper, the relation-
ship between EEG functional connectivity and structural connectivity measured
by diffusion magnetic resonance imaging (dMRI) is assessed (Gomez-Pilar et al.,
2018a). This association is compared between healthy controls and patients with
schizophrenia to look for abnormalities in the disease. In the fourth paper (Gomez-
Pilar et al., 2018b), we propose that functional and structural graph-derived net-
work measurements would predict task-related entropy changes found in the first
paper. As we will see, this provides direct evidence about the important effect of
local features on the whole brain network. The aim of the fifth paper is to present
a novel and reliable measure of network complexity (Gomez-Pilar et al., 2018c). It
helps us in characterizing the neural dynamics of healthy and pathological brain
networks during a cognitive task. This measure, based on the edge weight distribu-
tion balance, can be used not only in brain networks, but also in any enough large
network (typically over 30 nodes). Thanks to this measure, we find abnormalities
in the secondary functional neural pathways in patients with schizophrenia during
a cognitive task. Finally, in the sixth paper (Gomez-Pilar et al., 2018c), the pre-
dictive capability of a proposed brain network modeling based on the pre-stimulus
neural activity (e.g., prior to stimulus perception) provides the basis to present
the brain as a complex system, which reinforces particular connections during a
cognitive task. This paper also supports the hypothesis of abnormal connectiv-
ity in schizophrenia associated with weak connections and shows evidence of the
schizophrenia heterogeneity.

Another of the connections among the papers is the strategy conducted to
study brain dynamics, which is also one of the novelties of the study. While most
of the state-of-the-art researches focus on a static approach (Rubinov et al., 2009;
Stam et al., 2009; Uhlhaas and Singer, 2006), we studied the variation (or mod-
ulation) between the pre-stimulus EEG activity and the activity during cognitive
response. The pre-stimulus serves as an objective baseline or reference to infer
the importance of the change between brain states. This could be one of the first
attempts in the literature to converge in the chronnectome approach (Dimitriadis
and Salis, 2017; Nomi et al., 2017). Thus, although this specific term was not used
in the Thesis’ papers, the study of the neural coupling was assessed not only using
a static approach, usually called connectome, but also from a dynamic perspective,
recently called chronnectome.

In summary, neural network dynamics in healthy and diseased brain were as-
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sessed along these studies. In addition, a novel brain complexity measure graph-
theory-based was developed, as well as a new model of brain network dynamics
for enabling a better understanding of the neural processes in the healthy brain
and the abnormalities in schizophrenia.

Due to the nature of the present Doctoral Thesis, the Appendix A, in which
the papers comprised in the compendium are included, is of crucial importance
for a comprehensive understanding of this manuscript as a whole.

Titles, authors, and abstracts of the papers encompassed in Appendix A, as
well as the scientific journals where these were published, are shown below, sorted
as previously mentioned:

• Neural network reorganization analysis during an auditory oddball
task in schizophrenia using wavelet entropy. (Gomez-Pilar et al.,
2015)

Javier Gomez-Pilar, Jesús Poza, Alejandro Bachiller, Carlos Gómez, Vicente
Molina, and Roberto Hornero. Entropy, 2015, 17, 5241-5256. Impact factor:
1.743 (reference year: 2015). Q2 in “Physics, Multidisciplinary” (25/79),
(JCR-WOS).

Abstract: The aim of the present study was to characterize the neural net-
work reorganization during a cognitive task in schizophrenia (SCH) by means
of wavelet entropy (WE). Previous studies suggest that the cognitive impair-
ment in patients with SCH could be related to the disrupted integrative func-
tions of neural circuits. Nevertheless, further characterization of this effect
is needed, especially in the time-frequency domain. This characterization
is sensitive to fast neuronal dynamics and their synchronization that may
be an important component of distributed neuronal interactions; especially
in light of the disconnection hypothesis for SCH and its electrophysiological
correlates. In this work, the irregularity dynamics elicited by an auditory
oddball paradigm were analyzed through synchronized-averaging (SA) and
single-trial (ST) analyses. They provide complementary information on the
spatial patterns involved in the neural network reorganization. Our results
from 20 healthy controls and 20 SCH patients showed a WE decrease from
baseline to response both in controls and SCH subjects. These changes were
significantly more pronounced for healthy controls after ST analysis, mainly
in central and frontopolar areas. On the other hand, SA analysis showed
more widespread spatial differences than ST results. These findings suggest
that the activation response is weakly phase-locked to stimulus onset in SCH
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and related to the default mode and salience networks. Furthermore, the less
pronounced changes in WE from baseline to response for SCH patients sug-
gest an impaired ability to reorganize neural dynamics during an oddball
task.

• Functional EEG network analysis in schizophrenia: Evidence of
larger segregation and deficit of modulation (Gomez-Pilar et al.,
2017)

Javier Gomez-Pilar, Alba Lubeiro, Jesús Poza, Roberto Hornero, Marta
Ayuso, César Valcárcel, Karim Haidar, José A. Blanco, Vicente Molina.
Progress in Neuropsychopharmacology & Biological Psychiatry, 2017, 76,
116-123. Impact factor: 4.185 (reference year: 2017). Q1 in “Clinical Neu-
rology” (39/197), “Pharmacology & Pharmacy” (38/261), and “Psychiatry”
(28/142), (JCR-WOS).

Objective: Higher mental functions depend on global cerebral functional
coordination. Our aim was to study fast modulation of functional networks
in schizophrenia that has not been previously assessed.

Methods: Graph-theory was used to analyze the electroencephalographic
(EEG) activity during an odd-ball task in 57 patients with schizophrenia
(18 first episode patients, FEPs) and 59 healthy controls. Clustering coeffi-
cient (ClC), characteristic path length (PL) and small-worldness (SW) were
computed at baseline ([-300 0] ms prior to stimulus delivery) and response
([150 450] ms post-stimulus) windows. Clinical and cognitive assessments
were performed.

Results: ClC, PL and SW showed a significant modulation between baseline
and response in controls but not in patients. Patients obtained higher ClC
and SW at baseline, lower ClC and higher PL at response, and diminished
modulation of ClC and SW as compared to controls. In patients, ClC and
SW modulation were inversely associated to cognitive performance in execu-
tive tasks and directly associated to working memory. Similar patterns were
observed in FEPs. ClC and SW during the baseline were inversely associated
to their respective modulation magnitudes.

Conclusions: Our results are coherent with a hyper-segregated network at
baseline (higher ClC) and a decreased modulation of the functional connec-
tivity during cognition in schizophrenia.
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• Relations between structural and EEG-based graph metrics in
healthy controls and schizophrenia patients (Gomez-Pilar et al.,
2018a)

Javier Gomez-Pilar, Rodrigo de Luis-García, Alba Lubeiro, Henar de la Red,
Jesús Poza, Pablo Núñez, Roberto Hornero, Vicente Molina. Human Brain
Mapping, 2017, in press. Impact factor: 4.927 (reference year: 2017). Q1 in
‘Neurosciences” (48/261), “Neuroimaging” (2/14), and “Radiology, Nuclear
Medicine & Medical Imaging” (16/128), (JCRWOS).

Our aim was to assess structural and functional networks in schizophrenia pa-
tients; and the possible prediction of the latter based on the former. The pos-
sible dependence of functional network properties on structural alterations
has not been analyzed in schizophrenia. We applied averaged path-length
(PL), clustering coefficient, and density (D) measurements to data from dif-
fusion magnetic resonance and electroencephalography in 39 schizophrenia
patients and 79 controls. Functional data were collected for the global and
theta frequency bands during an odd-ball task, prior to stimulus delivery
and at the corresponding processing window. Connectivity matrices were
constructed from tractography and registered cortical segmentations (struc-
tural) and phase-locking values (functional). Both groups showed a sig-
nificant electroencephalographic task-related modulation (change between
prestimulus and response windows) in the global and theta bands. Patients
showed larger structural PL and prestimulus density in the global and theta
bands, and lower PL task-related modulation in the theta band. Struc-
tural network values predicted prestimulus global band values in controls
and global band task-related modulation in patients. Abnormal functional
values found in patients (prestimulus density in the global and theta bands
and task-related modulation in the theta band) were not predicted by struc-
tural data in this group. Structural and functional network abnormalities
respectively predicted cognitive performance and positive symptoms in pa-
tients. Taken together, the alterations in the structural and functional theta
networks in the patients and the lack of significant relations between these al-
terations, suggest that these types of network abnormalities exist in different
groups of schizophrenia patients.

• Deficits of entropy modulation in schizophrenia are predicted by
functional connectivity strength in the theta band and structural
clustering (Gomez-Pilar et al., 2018b)
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Javier Gomez-Pilar, Rodrigo de Luis-García, Alba Lubeiro, Nieves de Uribe,
Jesús Poza, Pablo Núñez, Marta Ayuso, Roberto Hornero, Vicente Molina.
Neuroimage-Clinical, 2018, 18, 382-389. Impact factor: 4.242 (reference year:
2017). Q1 in “Neuroimaging” (3/14), (JCRWOS)

Spectral entropy (SE) allows comparing task-related modulation of electroen-
cephalogram (EEG) between patients and controls, i.e. spectral changes of
the EEG associated to task performance. A SE modulation deficit has been
replicated in different schizophrenia samples. To investigate the underpin-
nings of SE modulation deficits in schizophrenia, we applied graph-theory to
EEG recordings during a P300 task and fractional anisotropy (FA) data from
diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy con-
trols. Functional connectivity was assessed from phase-locking values among
sensors in the theta band, and structural connectivity was based on FA val-
ues for the tracts connecting pairs of regions. From those data, averaged
clustering coefficient (ClC), characteristic path-length (PL) and connectiv-
ity strength (CS, also known as density) were calculated for both functional
and structural networks. The corresponding functional modulation values
were calculated as the difference in SE and ClC, PL and CS between the
pre-stimulus and response windows during the task. The results revealed a
higher functional CS in the pre-stimulus window in patients, predictive of
smaller modulation of SE in this group. The amount of increase in theta
CS from pre-stimulus to response related to SE modulation in patients and
controls. Structural ClC was associated with SE modulation in the patients.
SE modulation was predictive of negative symptoms, whereas ClC and PL
modulation was associated with cognitive performance in the patients. These
results support that a hyperactive functional connectivity and/or structural
connective deficits in the patients hamper the dynamical modulation of con-
nectivity underlying cognition.

• Quantification of graph complexity based on the edge weight distri-
bution balance: Application to brain networks (Gomez-Pilar et al.,
2018c)

Javier Gomez-Pilar, Jesús Poza, Alejandro Bachiller, Carlos Gómez, Pablo
Núñz, Alba Lubeiro, Vicente Molina, Roberto Hornero. International Jour-
nal of Neural Systems, 2018, 28(1), 1750032. Impact factor: 4.580 (reference
year: 2017). Q1 in “Computer Science, Artificial Intelligence” (13/132),
(JCR-WOS).
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The aim of this study was to introduce a novel global measure of graph
complexity: Shannon graph complexity (SGC). This measure was specifically
developed for weighted graphs, but it can also be applied to binary graphs.
The proposed complexity measure was designed to capture the interplay
between two properties of a system: the ’information’ (calculated by means
of Shannon entropy) and the ’order’ of the system (estimated by means of a
disequilibrium measure). SGC is based on the concept that complex graphs
should maintain an equilibrium between the aforementioned two properties,
which can be measured by means of the edge weight distribution. In this
study, SGC was assessed using four synthetic graph datasets and a real
dataset, formed by electroencephalographic (EEG) recordings from controls
and schizophrenia patients. SGC was compared with graph density (GD),
a classical measure used to evaluate graph complexity. Our results showed
that SGC is invariant with respect to GD and independent of node degree
distribution. Furthermore, its variation with graph size (N ) is close to zero
for N > 30. Results from the real dataset showed an increment in the
weight distribution balance during the cognitive processing for both controls
and schizophrenia patients, although these changes are more relevant for
controls. Our findings revealed that SGC does not need a comparison with
null-hypothesis networks constructed by a surrogate process. In addition,
SGC results on the real dataset suggest that schizophrenia is associated with
a deficit in the brain dynamic reorganization related to secondary pathways
of the brain network.

• Altered predictive capability of the brain network EEG model in
schizophrenia during cognition (Gomez-Pilar et al., 2018d)

Javier Gomez-Pilar, Jesús Poza, Carlos Gómez, Georg Northoff, Alba Lubeiro,
Benjamín B. Cea-Cañas, Vicente Molina, Roberto Hornero. Schizophrenia
Research, 2017, in press. Impact factor: 3.958 (reference year: 2017). Q1 in
“Psychiatry” (33/142), (JCR-WOS).

The study of the mechanisms involved in cognition is of paramount im-
portance for the understanding of the neurobiological substrates in psychi-
atric disorders. Hence, this research is aimed at exploring the brain net-
work dynamics during a cognitive task. Specifically, we analyze the predic-
tive capability of the pre-stimulus theta activity to ascertain the functional
brain dynamics during cognition in both healthy and schizophrenia subjects.
Firstly, EEG recordings were acquired during a three-tone oddball task from
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fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly,
phase-based coupling measures were used to generate the time-varying func-
tional network for each subject. Finally, pre-stimulus network connections
were iteratively modified according to different models of network reorga-
nization. This adjustment was applied by minimizing the prediction error
through recurrent iterations, following the predictive coding approach. Both
controls and schizophrenia patients follow a reinforcement of the secondary
neural pathways (i.e., pathways between cortical brain regions weakly con-
nected during pre-stimulus) for most of the subjects, though the ratio of
controls that exhibited this behavior was statistically significant higher than
for patients. These findings suggest that schizophrenia is associated with
an impaired ability to modify brain network configuration during cognition.
Furthermore, we provide direct evidence that the changes in phase-based
brain network parameters from pre-stimulus to cognitive response in the
theta band are closely related to the performance in important cognitive
domains. Our findings not only contribute to the understanding of healthy
brain dynamics, but also shed light on the altered predictive neuronal sub-
strates in schizophrenia.

1.2 Context: Biomedical Engineering and neural

signal processing

This Doctoral Thesis arises in the context of Biomedical Engineering, which is
defined as an interdisciplinary field that focuses on altering, controlling, or under-
standing biological systems by applying engineering principles (Bronzino, 1999).
This covers a wide range of activities, including theoretical and experimental re-
search. Given the growth of the computational branch in the last decades, biomed-
ical signal processing is becoming one of the most relevant activities in this field.
Human body produces a large number of physiological signals, which reflect its
physiological underpinnings. The study of these signals, let us to identify a wide
range of pathological conditions (Bronzino, 1999). Unfortunately, the information
contained in biomedical signals is usually not directly interpretable. Therefore,
a processing step is needed to attribute meaning to the biomedical raw signals.
Particularly, neural signal processing is getting an astonishing development in re-
cent years, especially since the concept of connectome is being used to refer to the
neural interactions in the human brain (Sporns et al., 2005). Consequently, neural
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signal processing has become an essential tool for extracting the hidden basis of
brain behavior.

This Thesis is mainly focused on the bioelectric signals of the brain. Electroen-
cephalography (EEG) is a useful tool to acquire the oscillatory electrical waves
produced by the firing of synchronized neural bunches in the brain cortex. In
order to help in the characterization of dynamical neural activity associated with
schizophrenia, EEG signals recorded during the performance of an auditory cog-
nitive task have been analyzed. Similarly, novel time-frequency signal techniques
followed by complex-network-theory-based measures have been applied and stud-
ied. Hence, all the aforementioned background reflects the framework in which
this Doctoral Thesis is encompassed.

1.3 Schizophrenia

Schizophrenia is a chronic mental disorder characterized by an array of symptoms,
including disintegration with the process of thinking, contact with reality and
emotional responsiveness (American Psychiatric Association 2013). The chronic
course of this disease along with its early onset make schizophrenia a disabling
disorder for the patients and their relatives.

Prior to the fifth edition of the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-V) in 2013 (American Psychiatric Association, 2013), schizophrenia
diagnosis was categorized into five different subtypes: (i) paranoid schizophrenia,
(ii) disorganized, or hebephrenic schizophrenia, (iii) catatonic schizophrenia, (iv)
childhood schizophrenia, and (v) schizoaffective disorder. However, according to
the American Psychiatric Association (APA), due to the limited diagnostic stabil-
ity, low reliability, and poor validity, the method of classification was modified to
bring all these categories under a single heading: schizophrenia.

With the DSM-V (American Psychiatric Association, 2013), a new way of
schizophrenia diagnosis also arises. Nowadays, a person with schizophrenia must
have at least two of the following symptoms1:

• Delusions.
• Hallucinations.
• Disorganized speech (e.g., frequent derailment or incoherence).

1Only one of these symptoms is required if delusions are bizarre or hallucinations consist of
a voice keeping up a running commentary on the person’s behavior or thoughts, or two or more
voices conversing with each other (American Psychiatric Association, 2013).
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• Grossly disorganized or catatonic behavior.
• Negative symptoms, i.e. affective flattening, alogia, or avolition.

Note that with the previous protocol of diagnosis, two people may have schizophre-
nia but not share any symptoms. This makes rather difficult to find common neu-
ral substrates in this disorder, which in part gives rise to the justification of this
Thesis. In fact, increasing tendency to consider schizophrenia as a hodgepodge of
different diseases is growing up (Lubeiro et al., 2016; Barch and Sheffield, 2014).

Epidemiologically, the prevalence rates of schizophrenia depend upon a whole
range of factors, including the availability of a response to treatment (Bhugra,
2005) and low socio-economic status (Lewis and Lieberman, 2000). Depending
on the study, the global life span prevalence of this disorder ranges from 0.26%
to 0.51% (Simeone et al., 2015). Schizophrenia patients have a 20% decrease
in life expectancy compared with the general population (Laursen et al., 2014).
Nevertheless, the gender is a non-differentiating feature of schizophrenia (Bhugra,
2005). This suggests that schizophrenia has an important relationship to the
environment and it is not only associated with genetic factors.

1.3.1 Aetiology

The causes of the schizophrenia remain unknown. Although it is clear that the
genetic predisposition is an important risk factor (Harrison and Owen, 2003),
other aspects have demonstrated to be involved in the disorder. Among them,
viral infections (Brown, 2008), childhood antecedents (Welham et al., 2009) and
substance abuse (Swartz et al., 2006) have proven to play an important role in the
development of the illness.

Different hypotheses have been proposed to find the underlying cause of this
psychiatric disorder: genetic/epigenetic hypothesis, executive function failure hy-
pothesis, environmental hypothesis, among others (Orellana and Slachevsky, 2013).
However, this Thesis is focused on the neurotransmitter dysfunction hypothesis,
since it provides the basis for understanding the synaptic abnormalities in the
brain (Javitt and Sweet, 2015). This hypothesis involves three aspects about three
different neurotransmiters: (i) glutamate, (iii) GABA, and (iii) dopamine. The
excess concentration of these neurotransmiters (glutamate), the deficit (GABA),
or the dysregulation (dopamine) produces dysconnectivity, impaired inhibitory
process and aberrant salience attributions, respectively (Javitt and Sweet, 2015).
These abnormalities have a direct influence in the electric signal of the brain.
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Thus, the use of the EEG is appropriate for characterizing and assessing the neu-
ral coupling and its abnormalities in schizophrenia.

Neurotransmitter model, therefore, involves three neurochemical models: (i)
glutamatergic (ii) GABAergic and (iii) dopaminergic. All of them are focused on
prefrontal cortex, hippocampus and temporal lobes (Javitt and Sweet, 2015):

i) Glutamate receptors could link schizophrenia symptoms to neurocognitive
deficits. It is known the role of glutamate blocking neurotransmission at
N-methyl-D-aspartate (NMDA) receptors (Stone et al., 2007), which is asso-
ciated with poorer global performance and a possible disconnection syndrome
in the prefrontal cortex (Friston, 1998).

ii) By reducing neuronal excitability throughout the nervous system, GABA is
the main inhibitory neurotransmitter in mammals. GABAergic dysfunctions
are linked to abnormal brain activity in high frequencies (Javitt and Sweet,
2015). Since cognitive memory has been linked to fast oscillations, GABA
reductions may be linked to the deficits in schizophrenia related to task with
cognitive memory demands (Lewis and Lieberman, 2000).

iii) Dopamine model suggests that a dysregulation of this neurotransmitter could
generate hallucinations and delusions in schizophrenia, through the aber-
rant attribution of abnormal salience to normal internal and external events
(Kapur, 2003). This is the basis of antipsychotic drug action. Thus, to re-
duce psychotic symptoms, antipsychotic drugs are prescribed, which block
dopamine receptors, preventing from hallucinations (Carlsson et al., 2004).

1.3.2 Diagnosis

To date, schizophrenia diagnosis is based on the fifth version of DSM (DSM-V).
The criterion A for its diagnosis includes the presence of different symptoms (at
least one), as previously mentioned. However, other factors must be considered
before the final diagnosis. One of them is the duration of the illness, since a
duration of less than one month must be diagnosed as schizophreniform disorder.
Other criteria describe complementary considerations in diagnosis, such as the
impact in the daily live, duration of the prodromal phase, differential diagnosis to
discriminate schizophrenia from bipolar or schizoaffective disorders, disturbance
not attributable to substance abuse and additional considerations for people with
autism (American Psychiatric Association, 2013).
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During prodromal phase, schizophrenia exhibits specific behavioral and cog-
nitive characteristics that are considered precursors to an episode of psychosis
(Klosterkotter and Schultze-Lutter, 1998). Symptoms during the prodromal phase
include reduced concentration and attention, depressed mood, brief psychotic
symptoms and sleep disturbance (Yung and McGorry, 1996). After that, symp-
toms are diverse resulting on a variety of manifestations for the same illness. It
is thought that these differences in symptom manifestations could be related to
different underpinnings of the disorder, which could be studied by the EEG or
other biological signals (Gomez-Pilar et al., 2018a,b). Although schizophrenia pa-
tients could have a remission of their symptoms with no further relapse, periods
of relapse or no remission at all are also usually showed (American Psychiatric
Association, 2013).

1.3.3 Treatment

The most common treatment in schizophrenia is the use of antipsychotic medica-
tion (Buckley, 2008). The typical (or traditional) antipsychotic drugs are chlorpro-
mazine and haloperidol. They are usually based on dopamine antagonism, which
interacts with the neurotransmitter (dopamine) receptors (Edwards and Smith,
2009).

The effectiveness of these drugs mainly affects to positive symptoms, but the
usefulness in the treatment of negative and cognitive symptoms is more reduced
(Buckley, 2008). Another concern on the use of antipsychotic medication is toler-
ability problem. While the tolerance of some patients to the drugs is very high,
others can show problems with tardive dyskinesia and extrapyramidal motor side-
effects (Patterson and Leeuwenkamp, 2008). Due to these problems, a new gener-
ation of antipsychotics are being contemplated for the treatment. Among them,
risperidone, olanzapine, clozapine and quetiapine have demonstrated to be at least
as effective as traditional antipsychotic drugs, but with a lower propensity for in-
ducing some types of adverse events (Patterson and Leeuwenkamp, 2008). On
the other hand, the tendency of increasing triglycerides and cholesterol due to the
use of these medication must be followed and controlled (Kapur and Remington,
2001).

Given the different responses by the patients to medication, physicians and
patients must work together in order to fit the right doses and type of medication
for controlling the symptoms and improving the quality of live (Buckley, 2008).
For that purpose, EEG studies can be the basis for future advances in this field.
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Figure 1.2: International 10-10 EEG electrode location system. Picture adapted
from (Chatrian et al., 1985).

1.4 Electroencephalogram

In 1929, Hans Berger developed the EEG as a neurophysiological exploration sys-
tem based on the recording of bioelectrical activity of the brain cortex. EEG
acquires electrical signals of the pyramidal neurons of the brain working together
in large and synchronized assemblies. These coordinated firing produces an electric
field strong enough to be measurable by scalp electrodes. Therefore, EEG is the
electrical signal or time-varying voltages produced by the brain and recorded over
the human scalp (Nunez and Srinivasan, 2006a). As all the voltage-based measure-
ments, each channel of the EEG measures electric potential differences between
two sensors or electrodes, usually placed in an elastic cap following 10-20 or 10-10
international system (Chatrian et al., 1985). These systems provide the location
of up to 21 electrodes in the case of 10-20 system, or up to 81 electrodes for 10-10
system (see Figure 1.2). Both of them maximize the covered area of the scalp,
whereas equispaced electrodes are placed. Since 1929, EEG has been thoroughly
used as a clinical tool. However, it is not until the eighties/nineties that improved
technologies for accurately acquiring electric interactions among large-scale neural
systems have clearly emerged.

EEG has become a suitable tool for assessing brain processing, since cognitive
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Figure 1.3: Schematic representation of the source effect and field spread, which
are inherent phenomena of EEG recordings.

changes produce electric changes in the cortex in the range of milliseconds (Co-
hen, 2014). Therefore, the high temporal resolution of the EEG allows to capture
the direct electric consequences of the neurological processes. Besides the tem-
poral resolution, the low cost and the portability, the widespread use in clinical
assessment confers the EEG the category of being one of the most important tools
to measure brain activity. Despite these important advantages, EEG recordings
have two main drawbacks that merit special attention. The first one is the source
effect. The electrical activity generated by the cortex was partially distorted and
attenuated when it passes through the cortex, meninges and skull. It produces
that EEG signal has small amplitudes and spatially poorly localization (Wang,
2010). The second disadvantage is the volume conduction or field spread effect.
When the bioelectrical signal of the brain arrives at any surface, such as the scalp,
it spreads out the surface, producing a linear mixture of multiple brain sources
recorded by the same electrode. Therefore, signals are affected by three effects:
attenuation, expansion and noise contamination (Nunez and Srinivasan, 2006b)
(see Figure 1.3).

More accurate measurements could be obtained invasively using subdural elec-
trocorticogram (ECoG) with the electrodes directly placed on the cortical surface.
Other technique to directly measure brain activity is the stereoelectroencephalo-
graphy (sEEG), which records EEG signals via electrodes surgically implanted into
the brain tissue. Despite the quality of the EEG signals using these techniques,
both of them are invasive and/or require surgery. For that reason, EEG using
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scalp electrodes is becoming a growing technique in the clinical practice. In com-
parison to other brain-imaging tools, EEG allows to directly assess neurocognitive
processes (Cohen, 2014). The EEG oscillations reflect electric neural oscillations
in the cortex, whereas brain-imaging techniques do not directly measure neural
events. That is the case of functional MRI (fMRI), which measures the blood-
oxygen-level-depended signal. However, these techniques are usually suited for
studies in which precise spatial localization is important (Cohen, 2014).

1.5 Neural oscillations

EEG signals can be divided into ongoing activity and task-related activity. On-
going or spontaneous activity is brain activity in the absence of an explicit task,
and hence also referred to as resting-state activity. Ongoing activity is not usually
considered for the study about the stimulus processing. However, it is known that
plays an important role during brain development, such as in network formation
and synaptogenesis (Buckner et al., 2008). On the other hand, task-related ac-
tivity can modulate neural synchronization. During many years, the relationship
between ongoing and task-related activity was believed as completely linear, i.e.
neural activity during a task is a simple superposition of spontaneous and task-
related activity (Arieli et al., 1996). However, important and recent evidences have
demonstrated that evoked and spontaneous brain activities are not independent
but rather interact nonadditively and, further, the interaction can be characterized
as a negative interaction (Huang et al., 2017). These findings show that the study
of the task-related activity must also consider the activity during the spontaneous
fluctuations (e.g., taking into account the brain activity prior to a task).

The oscillations that characterize both spontaneous and task-related brain ac-
tivity have different frequency ranges and spatial distributions. EEG oscillations
can be further subdivided into five different rhythms according to the frequency
band of the signal (Cohen, 2014):

• Delta band (δ, 1-4 Hz): High-amplitude waves typically found in deep slow
wave sleep, mainly observed in the frontal regions in adults. In pathological
brain, delta waves are involved with epileptic seizures.

• Theta band (θ, 4-8 Hz): It is associated with drowsiness and is increased
during sleep. Theta rhythms are found in the frontal midline region and
they have been associated with inhibition of elicited responses.
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• Alpha band (α, 8-13 Hz): It is the predominant rhythm in awaked subjects
in a relaxed or reflected state with eyes closed condition. They are most
pronounced in parietal and occipital regions. They have been usually related
to the EEG activity that reflects gating by inhibition (Jensen and Mazaheri,
2010).

• Beta band (β, 13-30 Hz): With reduced amplitudes as compared to alpha
waves, beta rhythms are associated with states of active concentration, anx-
iety or tension. Beta band is commonly divided into β1 and β2 sub-bands,
which include the frequency ranges (13-19 Hz) and (19-30 Hz), respectively.

• Gamma band (γ > 30 Hz): It is associated with both basic sensory and
higher cognitive processing. It has been suggested that the neurochemical ba-
sis of gamma-band oscillatory activity is related to interactions between ex-
citatory and inhibitory neurotransmitter concentrations (Fuchs et al., 2007).

Note that all these frequencies simultaneously co-occur during a regular EEG
recording of the brain activity, but usually only one of them predominates among
the others. Although the research community has paid special attention to the
different frequencies of the brain oscillations for a long time, it has recently gained
popularity the study of how these oscillations relate to cognition and behavior
(Lopes da Silva, 2013). In this regard, ERPs are presented as an alternative to
the classic studies of resting-state activity, since they link brain activity with a
cognitive response.

1.6 Event-related potentials

ERPs provide a suitable method for exploring the psychophysiological processes
during a mental task. ERPs are the brain response, averaged across trials, to
a specific somatosensory, cognitive or motor event. They emerge as a series of
peaks and troughs that interact to ongoing EEG activity in a nonadditive way
(Huang et al., 2017). ERPs are classically considered as an indicator of the degree
of involvement of the cortical areas to the event of the task (Niedermeyer and
da Silva, 2005).

An ERP signal is comprised by different signals that can be classified as phase-
locked and non-phase-locked, as well as time-locked and non-time-locked. Phase-
and time-locked signals are usually named evoked activity, whereas non-phase-
locked but time-locked signals are named induced activity. A third case is a signal
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whose activity are neither phase-locked nor time-locked, i.e. the background ac-
tivity also existing during resting but unrelated to the task. This can be removed
using a baseline normalization, thus allowing to focus on task-related dynamics
(Cohen, 2014). The three types of brain activity can be analyzed in the time-
frequency domain. However, induced and background activity cannot be exam-
ined using time-domain averaging, since they are not phase-locked. Therefore,
they have no representation in the ERP.

The relation between these three kinds of activity remains unresolved. The
classic model about how ERPs can emerge from ongoing activity is the additive
model. This model proposes that ERP reflects a signal that is elicited by an exter-
nal stimulus (externally-guided activity) or by an internal event (internally-guided
activity). In this model, the task-related activity is linearly added to ongoing
background oscillations (Cohen, 2014). However, recent studies pose the idea that
there is a nonadditive interaction between spontaneous and task-related activity
(Huang et al., 2017). Ultimately, this debate may be never resolved due to the
variety of neural origins of the ERPs, which complicates the understanding of their
neurophysiological mechanisms (Cohen, 2014).

Different methods can be used to compute phase-locked and non-phase-locked
activity. Among them, two are highlighted in the literature due to their widespread
usage: (i) Synchronized-averaging (SA) approach (also named time-averaging ap-
proach) and (ii) single-trial (ST) approach. Figure 1.4 summarizes the two ap-
proaches, later described. Other methods, such as non-phase-locked-power, in-
volve subtraction of the ERP from the total signal (Cohen, 2014). This only could
be right if the interaction between the different brain activities was nonadditive,
which remains under debate as previously mentioned.

1.6.1 Synchronized-averaging (SA) approach

SA approach obtains the ERP wave as the average of a set of trials acquired in the
same electrode and time-locked to an event (internally- or externally-guided). The
non-phase-locked activity is canceled out and, thus, evoked ERPs are the voltage
deflections that survive this averaging process (Roach and Mathalon, 2008).

With a simple experimental design, auditory oddball task is one of the most
extended approaches to evaluate the different ERP components. After time-
averaging, ERPs show well defined deflections (see Figure 1.5). Among them,
P300 component is the most extensively ERP component explored. P300 wave
includes two components (Polich, 2007):
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Figure 1.4: Schematic overview of the processing steps in synchronized-averaging
and single-trial approaches. This process must be followed for each of the elec-
trodes in order to obtain the connectivity among all of them
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Figure 1.5: ERP waves at parieto-central region (Pz channel) for controls (blue)
and patients with schizophrenia (red). Mean (bold line) and standard error (trans-
parent area) are depicted (left panel). ERP amplitude for pre-stimulus and P3b
response for both groups (right panel). Parieto-occipital brain regions are mainly
activated during P3b for both groups. However, patients with schizophrenia show
a reduced activation (right panel).

i) P3a represents the response to unexpected deviant stimuli or distractor as-
sociated with a shift of the attention (novelty). It is associated with frontal-
dopaminergic neurotransmitters; therefore, the usual activity is a negative
deflection in frontal regions.

ii) P3b is a component associated with the parietal-norepinephrine neurotrans-
mitter action and, therefore, observable as a positive deflection mainly in
parieto-occipital brain regions (see right panel of the Figure 1.5). It is usu-
ally linked to the neural processing of a novel and relevant stimuli during a
task of sustained attention, such as the auditory oddball task.

Traditionally, ERPs have been studied in the temporal domain by assessing
the amplitude or latency of different components (Polich, 2007). In this regard,
schizophrenia disorder shows a significant reduction in the P300 amplitude and,
sometimes, an increase in the P300 latency compared to healthy controls (Jeon
and Polich, 2003; Mathalon et al., 2000; O’Donnell et al., 2004). However, further
studies are needed in order to localize the neural origins of the P300, as well as
the networks and hierarchical frequency-related organization involved in the P300
during cognition.
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1.6.2 Single-trial (ST) approach

Although SA approach provides useful insights about the neural dynamics during
cognitive processes, this method only examines the phase-locked activity, leaving
out induced activity that could play an important role in cognition (Cohen, 2014).
In addition, temporal approaches could not be enough for a complete description
of the neural processes, which involve changes in the range of milliseconds. For
that reason, time-frequency analyses applied to the whole ERP (phase-locked and
non-phase locked components) are needed (Makeig et al., 2004). Additional infor-
mation about the true nature of the neural dynamics in healthy and underlying
pathological processes, such as schizophrenia, can be obtained using ST analyses
together with time-frequency representations (Roach and Mathalon, 2008).

The study of the ERP in a ST way allows decomposing neural oscillations
into magnitude and phase information in the time-frequency plane (Makeig et al.,
2004). As a result of these studies, oscillations at low frequency ranges (delta,
theta and alpha) have been associated with long-range coordination of neural
assemblies (Gomez-Pilar et al., 2015; Uhlhaas and Singer, 2010; Von Stein and
Sarnthein, 2000). On the contrary, frequencies related to faster oscillations (beta
and gamma) reflect synchronization in both local (Womelsdorf et al., 2007) and
large-scale networks (Roux et al. 2013). Impairments in any of these oscillations
(both low or high frequencies) may contribute to generalized network dysfunction
in schizophrenia (Uhlhaas and Singer, 2010), causing functional disconectivity be-
tween brain regions (Friston, 1998; Gomez-Pilar et al., 2017). However, the un-
derlying neural mechanisms of these alterations remain hidden; for that reason,
novel proposals using Complex Network Theory approaches for modelling network
brain dynamics may be appreciated in this field (Gomez-Pilar et al., 2018d).

1.7 Complex Network Theory in neuroscience

In 1735, Euler resolved the “Königsberg walk” problem using graphs. He proved
that it was impossible to find any route around the city that crossed each and
every bridge only one. Since then, we have seen how the graph theory plays an
integral role in recent efforts to characterize network structure and function of the
brain. Indeed, the Complex Network Theory has been applied to micro-, meso-
and macro-scale brain models (Bullmore and Sporns, 2009). Graphs provide us a
simple way to represent complex connectivity patterns from entangled brain con-
nections. However, as a quote attributed to Albert Einstein claims, “everything
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must be as simple as possible, but not simpler”. Therefore, models must be as
simple as possible, but no so simplistic that they lose sight of the underlying phys-
iological bases. The answer to this question can be addressed by the apparently
ubiquitous macroscopic behavior in the brain despite the significant differences in
microscopic details. These findings have been replicated in the neural structure
of a worm (Watts and Strogatz, 1998), a cat (Scannell et al., 1991), a macaque
(Felleman and Van Essen, 1991) and several times in humans (Sporns, 2013). All
of them discovered that the networks of the neural structure are “small-world” net-
works (also named Watts-Strogatz structure), following the theoretical principle of
Cajal’s conservation law (Ramón y Cajal, 1995). This law can be stated in terms
of a balance between minimization of path length and maximization of integrative
topology. In Cajal’s words: “the various conformations of the neuron are simple
morphological adaptations governed by laws of conservation for time, space and
material” (Ramón y Cajal, 1995).

This finding is only the first step towards a comprehensive understanding of
these networks, as well as how other complex structures, such as Albert-Barabási
(Barabási and Albert, 1999) or Erdös-Rényi networks (Erdös and Rényi, 1959), are
involved in the brain connectome. Efforts should be also carried out to model the
dynamics of complex networks and quantify complementary topological features
of brain systems as complexity, regularity, integration, segregation, strength or
centrality, among others.

1.7.1 Brain network structures

Network structures can be classified in several ways, being the one based on node
degree distribution the most widespread. Following this kind of classification, the
following networks have been related to brain functioning (see also Figure 1.6):

i) Lattice networks (or mesh graphs). This kind of networks corresponds with
a graph whose drawing forms a regular tiling. Although these networks have
not been directly related to brain interactions, they are the starting point for
further and more complex comparisons, as those related to the “small-word”
concept (see point iv). Figure 1.6 shows an example of lattice network with
50 nodes and its typical degree distribution. Note that all nodes have the
same degree in a lattice network.

ii) Random networks (or Erdös-Rényi networks). They are networks in which
any two independent nodes have the same probability to be connected to
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Figure 1.6: Example of four typical networks for 50 nodes (top) and their node
degree distribution (bottom). k represents the node degree of the network.

a third node. The node degree (number of connections incident to a node)
distribution of this kind of graphs follows a gaussian distribution (Erdös and
Rényi 1959). Figure 1.6 shows an example of random network with 50 nodes
and its typical degree distribution. Note that node degree distribution is
gaussian for an enough large number of nodes.

iii) Scale-free networks (or Albert-Barabási networks). These networks follow a
power-law distribution (Barabási and Albert, 1999). They do not completely
fit the brain topology, since their node degree distributions are usually trun-
cated (Bullmore and Sporns, 2009). However, the similarities of the brain
with this kind of networks have been reported (Eguíluz et al. 2005). Fig-
ure 1.6 shows an example of scale-free network with 50 nodes and its typical
degree distribution. Note that node degree distribution is an exponentially
decreasing function for an enough large number of nodes.

iv) “Small-world” networks. These networks combine a high level of segrega-
tion (local clustering among neural assemblies) and a short characteristic
path length (paths that globally link all nodes of the network) (Watts and
Strogatz, 1998). Currently, brain networks cannot be described without
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the concept of the “small-world” property. Being small-world the network
with more similarities with human brain, functional interaction cannot be
explained using only this model (van den Heuvel et al., 2010). Figure 1.6
shows an example of small-world network with 50 nodes and its typical de-
gree distribution. Note that node degree distribution is midway between the
distribution of a lattice and a random network.

“Small-world” property is not incompatible with scale-free property, so much
so that a large evidence of small-world attributes and scale-free features have been
reported in a wide range of fMRI studies (Eguíluz et al., 2005). In this manner,
scale-free distributions of functional connections have been found in different hu-
man brain regions (Eguíluz et al., 2005). In addition, characteristic path length
showed to be small (Gomez-Pilar et al., 2017) and comparable with those of equiv-
alent random networks (Watts and Strogatz, 1998), whereas clustering coefficient
is usually larger than its equivalent Erdös-Rényi networks (Watts and Strogatz,
1998). Therefore, these properties characterize human brain as a scale-free small-
world network, in which a “rich-club”, i.e., well-connected nodes also connected to
each other, usually appears (van den Heuvel et al., 2010).

1.7.2 Network measures

There is large variety of network measures (Bullmore and Bassett, 2011; Rubinov
and Sporns, 2010). Despite this large diversity, most of them has a high correla-
tion among each other, since they usually serve to characterize the same network
feature. In other words, there exist several measures to characterize the same
(or very similar) feature of a network, such as: (i) integration (e.g. path length,
global efficiency, eccentricity, network radius or network diameter); (ii) segrega-
tion (e.g. clustering coefficient, local efficiency or transitivity); or (iii) centrality
(e.g. degree, closeness, betweenness or eigenvector centrality), among others. It
is needed, therefore, to develop graph measures that summarize complementary
network characteristics (Gomez-Pilar et al., 2017). In the context of the current
Thesis, some steps have been done to provide novel graph measures, such as regu-
larity or complexity (Gomez-Pilar et al., 2018c), and to characterize brain network
dynamics in a comprehensive way (Gomez-Pilar et al., 2018d).

Graph measures can also be classified as nodal and global measures. On the
one hand, nodal measures refer to a node or edge features based on the links to
adjacent nodes. On the other hand, global measures describe the network as a
whole, i.e., consider the characteristics of the nodes in the entire network. In this
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Doctoral Thesis, we mostly consider global measures, since EEG provides a non-
high spatial resolution and therefore limits the ability to precisely localize hubs or
important links in the brain space.

Finally, graphs measures can also be categorized as weighted, semi-weighted
or binary, depending on the type of links between the nodes of the network. Most
brain graph studies use binary connections between nodes, i.e. a threshold is ap-
plied to dichotomize the edge weights (Bullmore and Bassett, 2011). Although,
binary graphs are an apparently simple model, these graphs are interpretable in re-
lation to general principles of complex system organization (Bullmore and Bassett,
2011). On the other hand, weighted networks introduce the concept of connection
strength between nodes. It can be considered a more realistic approach of the
physiological properties of brain networks (Ansmann and Lehnertz, 2012). Unfor-
tunately, the use of weighted graphs is not exempt from methodological concerns,
which have not been completely solved yet (Ansmann and Lehnertz, 2012). Other
possible approach is to remove those links with nonsignificant connections (but
maintaining the links with their weights in the rest of the nodes). In the present
Thesis, we used weighted graphs, since we consider it a more reliable and realistic
approach, but knowing the limitations about the existence of possible spurious
connections.

1.7.3 Brain networks on cognition

A comprehensive understanding of the neuropsychological mechanisms of the cog-
nition ultimately depends on knowledge of brain organization. During many years,
it was assumed that cognitive tasks depend on a specific and isolated brain region.
However, a large evidence supports nowadays the notion that cognitive functions
are based on the dynamic interaction of large and distributed brain areas operating
as a coordinate large-scale network.

Underlying “cognitive networks”, functional networks have been postulated as
the central core of the communication and coordination of large neuron assem-
blies (Petersen and Sporns, 2015). Functional networks are, in turn, based on the
anatomical linkage of their neurons, i.e., the structural networks underlie func-
tional ones. Communication is only possible when two regions (let we name it
‘nodes’) have a real link. On the contrary, a link between regions can exist with-
out being necessary a communication between them. Similarly, the existence of
structural connectivity is a necessary but not sufficient condition for the existence
of functional connectivity. As shown, the relationship between them occurs, but
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it is not obvious. Nevertheless, only a small amount of studies is focused on this
issue. To the best of our knowledge, one of the papers of this Doctoral Thesis is
the first attempt to relate them in the schizophrenia disorder using a combination
of EEG and dMRI techniques (Gomez-Pilar et al., 2018a). Further efforts should
be done in future studies to precisely disentangle the basis of cognition.





Chapter 2

Hypotheses and objectives

The neural mechanisms of the brain and, particularly, the neural networks involved
in pathological behavior as in the schizophrenia disorder, have become a relevant
research topic. Hence, the proposal developed in this Doctoral Thesis is focused
on analyzing EEG recordings to characterize the underlying neural mechanisms of
the brain aimed at finding altered neural substrates in schizophrenia.

In order to obtain a comprehensive characterization of human neural networks,
EEG data were examined using a three-level analysis: (i) local-activation; (ii) func-
tional interactions, and (iii) network organization. Local-level activation was as-
sessed using an information-theory-derived measure, Spectral Entropy (SE), which
applied to the wavelet transform is usually named Wavelet Entropy (WE). Func-
tional integration was analyzed by means of magnitude-squared coherence (MSCH)
and phase-locking value (PLV). Finally, network organization was studied using
graph-derived measures, such as clustering coefficient (ClC), characteristic path
length (CPL), connectivity strength or graph density (D), as well as two novel
measures proposed in this Thesis: Shannon Graph Entropy (SGE) and Shannon
Graph Complexity (SGC).

The following schedule was conducted in the studies of this compendium of
publications:

i) EEG acquisition.
ii) EEG segmentation and preprocessing.
iii) Time-frequency decomposition using wavelet transform.
iv) Local activation analyses.
v) Brain interactions/coupling analyses.
vi) Brain graph analyses.

29
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vii) Statistical analyses.
viii) Assessment of how these measures translate into behavior and/or cognition.

This research proposal is substantiated by the hypotheses and objectives de-
scribed below.

2.1 Hypotheses

Schizophrenia has been associated with a failure in the information integration in
long-range scales of the brain during cognition (Friston, 1998). Complex Network
Theory provides an adequate framework to characterize this funcional disruption
among brain regions. Therefore, graph analyses of the neural activity could be
useful for understanding the brain processes underlying the altered cognitive func-
tions in schizophrenia. Cognitive tasks elicit rapid responses in the brain in the
range of milliseconds. Furthermore, previous studies showed that schizophrenia
is accompanied by an aberrant salience attribution of relevant stimulus (Kapur,
2003; Bachiller et al., 2014), which could affect the neural coupling among brain
areas during cognition (Bachiller et al., 2015). Hence, high temporal resolution
techniques, such as the EEG, acquired during an auditory oddball task, can be used
to characterize brain dynamics at network level in schizophrenia.

Cognitive tasks depend on global dynamics of cerebral networks that involve
changes in the coupling balance among regions, which is likely disrupted in mental
disorders. It is therefore reasonable to hypothesize that the analysis of the connec-
tion weight balance can provide the basis for revealing relevant information of the
neural substrates affecting the pathological brain. Although the abnormalities in
schizophrenia are ultimately related to disrupted brain network, local activation
irregularities could influence on interrelations among functional regions. There-
fore, sensor-level activation may be related to long-range interactions in which
particular brain regions are involved. These interactions may not only be related
to functional connectivity, but also to structural connectivity or ‘physical’ path-
ways of the brain. Indeed, functional network alterations might be secondary to
structural abnormalities. Therefore, the assessment of the relationship between
functional and structural networks in schizophrenia may help characterizing the
neural substrates of the cortical dysfunction in this disorder.

Because of the amount of factors involved in brain coordination, the difficulty
to characterize the brain network in a comprehensive way makes difficult to model
the brain dynamical behavior. In addition, several network measures are strongly
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related between them, which ultimately does not provide a global view of how
the neural networks are reorganized during a cognitive task. Hence, the use of
complementary network measures to assess brain dynamics during a cognitive task
can shed light to develop new models of cognition.

In order to validate these hypotheses, this Doctoral Thesis proposes the use
of the Complex Network Theory applied to the EEG and to other structural tech-
niques to obtain a meaningful framework for assessing and, eventually, modeling
the dynamic brain interactions presumably altered in schizophrenia.

2.2 Objectives

The general goal of this Doctoral Thesis is to study, to design and to apply biomedi-
cal signal processing methodologies to explore and characterize the neural substrates
altered in schizophrenia using EEG. This functional data were examined using
Complex Network Theory with the aim of achieving a reliable characterization of
dynamical dysfunctions of the neural network interactions in schizophrenia. In
order to achieve the main objective, the following specific objectives arise:

1) To review the bibliography and state-of-the-art related to biomedical signal
processing methodologies, useful to characterize EEG data. Particularly,
this objective is focused on identifying appropriate graph theory methods to
comprehensively characterize neural dynamics.

2) To build a database, including EEG recordings, socio-demographic data and
clinical variables from adult patients with schizophrenia and healthy controls.

3) To select and implement the more suitable methods to reduce the noise of the
ERP signals, to obtain local and network measures of the brain dynamics
(from the literature or new ones) and to characterize the brain network
behavior during cognition using EEG.

4) To conduct statistical analyses of the results to explore the brain dynamics,
the relationship between local and network measures and the association
between functional and structural connectivity, as well as to identify the
pathophysiological patterns in schizophrenia. This objective also includes
the construction of a novel dynamical network probabilistic-based model
during cognition to explain the neural network changes at individual level.

5) To compare and discuss the results to extract appropriate conclusions. This
objective includes the comparison with the state-of-the-art ERP studies and
the comparison of our findings with the results obtained using other tech-
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niques, such as magnetoencephalography (MEG) or fMRI.
6) To disseminate the main results and conclusions of the research in high-

impact journals, as well as in international and national conferences.



Chapter 3

Materials and methods

In this compendium of publications, different methods and databases were used.
To avoid redundancy, a brief summary of the methods followed and the databases
used is provided in this chapter. However, a detailed explanation of them is
described in the papers of the compendium of publications (see Appendix A).

3.1 Subjects’ databases

Different databases were used as the number of subjects was growing throughout
this Thesis. This is clearly shown in Table 3.1, which summarizes the number of
subjects in each study, as well as the number of electrodes of EEG recordings. In
order to increase the spatial resolution of the analyses, the EEG acquisition system
was replaced during the development of the Thesis by a new one with the double
number of electrodes (from 16 to 32). Having improved the spatial resolution, the
number of subjects of the database decreases though. Thus, two databases were
analyzed after completing the Thesis: (i) the former one with 16 electrodes consists
of 87 controls and 48 patients with schizophrenia, and (ii) the latter one with 32
electrodes comprises 78 controls and 39 patients with schizophrenia. See Table 3.2
and Table 3.3 for a detailed description of the clinical and socio-demographic data
of the participants of each dataset.
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Table 3.1: Number of subjects for each group and number of electrodes used in
each study included in the Thesis.

Study Schizophrenia Controls EEG
electrodes

Gomez-Pilar et al. (2015) 20 12 16
Gomez-Pilar et al. (2017) 57 59 16

(FE: 18; CH: 39)
Gomez-Pilar et al. (2018d) 48 87 16
Gomez-Pilar et al. (2018b) 28 51 32

(FE: 23; CH: 25)
Gomez-Pilar et al. (2018c) 35 51 32
Gomez-Pilar et al. (2018a) 39 78 32

(FE: 20; CH: 19)
CH: Chronic patients;

FE: First episode patients

Table 3.2: Socio-demographic, clinical and cognitive characteristics of the database
of 16 active electrodes. Values are expressed as: mean (SD). The significant sta-
tistical differences between both groups were marked with an asterisk (p < 0.05,
Student t-test).

Schizophrenia Controls
N 48 87

Age (years) 33.58 (9.27) 30.51 (10.77)
Gender (Male:Female) 25:23 44:43
Dose of CPZ (mg/d) 377.92 (196.94) NA

Illness duration (months) 97.84 (116.94) NA
Education (years) 14.19 (3.60) 16.56 (2.25)

PANSS Positive symptoms 11.63 (3.39) NA
PANSS Negative symptoms 18.03 (7.52) NA

PANSS Total symptoms 54.35 (18.56) NA
IQ * 91.22 (14.19) 111.83 (11.87)

Verbal memory * 33.92 (12.74) 51.65 (8.26)
Working memory * 15.81 (5.01) 21.46 (3.90)

Motor speed * 58.14 (14.41) 68.59 (17.84)
Verbal fluently * 17.99 (5.70) 27.13 (5.33)

Processing speed * 42.83 (15.78) 68.79 (13.25)
Problem resolution capacity * 15.40 (4.64) 17.54 (2.72)
WCST perseverative errors * 27.31 (47.43) 10.17 (5.81)

WCST completed categories * 4.39 (1.87) 5.79 (0.72)
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Table 3.3: Socio-demographic, clinical and cognitive characteristics of the database
of 32 active electrodes. Values are expressed as: mean (SD). The significant sta-
tistical differences between both groups were marked with an asterisk (p < 0.05,
Student t-test).

Schizophrenia Controls

N 39 78
Age (years) 33.05 (8.80) 30.95 (10.84)

Gender (Male:Females) 23:16 46:32
Dose of CPZ (mg/d) 377.90 (196.93) NA

Illness duration (months) 95.17 (117.39) NA
Education (years) 14.19 (3.60) 16.56 (2.25)

PANSS Positive symptoms 11.70 (3.43) NA
PANSS Negative symptoms 17.571 (7.31) NA

PANSS Total symptoms 53.810 (18.89) NA
IQ * 91.061 (14.53) 113.21 (11.09)

Verbal memory * 34.262 (12.89) 51.11 (8.19)
Working memory * 16.151 (5.01) 21.63 (3.62)

Motor speed * 58.879 (13.78) 72.61 (16.58)
Verbal fluently * 18.352 (5.73) 27.86 (5.15)

Processing speed * 43.700 (15.36) 69.59 (14.38)
Problem resolution capacity 15.253 (4.62) 17.52 (2.57)
WCST perseverative errors * 17.92 (10.12) 9.80 (5.14)

WCST completed categories * 4.42 (1.88) 5.85 (0.61)

All controls and patients gave their informed written consent to be included
in each of the studies of this Thesis. The study protocols were approved by the
research board of the Clinical University Hospital of Valladolid (Spain) and were
conducted in accordance with the Declaration of Helsinki guidelines.

3.2 Acquisition protocol

The EEG acquisition protocol was similar across all the studies. It consists in a
13 minutes three-tone P300 oddball task. Recordings were performed while the
participants were sat, relaxed and with their eyes closed. The auditory oddball
task consisted in random series of 600 tones whose duration was 50 ms, intensity
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being 90 dB and inter-stimulus interval (ISI) between tones was randomly jittered
between 1.16 s and 1.44 s. Three different tones were presented: target (500 Hz
tone), distractor (1000 Hz tone) and standard (2000 Hz tone) with probabilities
of 0.20, 0.20 and 0.60, respectively. The participants were asked to press a mouse
button with their right hand whenever they detected the target tones. Only target
tones followed by the mouse click, i.e. attended target tones, were considered for
further analyses.

EEG recordings were acquired at a sampling frequency of 500 Hz in 16/32
electrodes with a BrainVision c©equipment (Brain Products GmbH; Munich, Ger-
many) while the participants underwent the previously mentioned oddball task.
Electrode impedance was always kept under 5 kΩ and each channel was referenced
over Cz electrode.

The general methodology starts with an initial preprocessing stage proposed
to minimize undesirable noise and artifacts. It is described in the next section.

3.3 Signal preprocessing

In order to remove undesirable artifacts, signals were filtered between 1 and 70 Hz
by means of a band-pass Finite Impulse Response (FIR) filter. A 50 Hz notch FIR
filter using a Hamming window was also used to remove the power line artifact.
Lastly, a three-steps artifact rejection algorithm was applied to minimize, mainly,
electrooculographic and electromyographic contamination (Bachiller et al., 2015):

i) Firstly, Independent Component Analysis (ICA) was carried out. After vi-
sual inspection, ICA components associated with artifacts were discarded.

ii) Secondly, after ICA reconstruction, EEG data were divided into trials of 1
second length ranging from 300 ms before to 700 ms after stimulus onset,
which ensures no overlapping with subsequent trials (the minimum ISI is
1.16 s).

iii) Finally, an automatic and adaptive trial rejection was performed by applying
a statistical-based thresholding method in order to remove ERP trials dis-
playing amplitudes that exceeded a statistically based local threshold. The
mean and standard deviation of each channel was computed. Then, trials
that exceeded mean ± 4 standard deviation in at least two channels were
discarded (Bachiller et al., 2015; Núñez et al., 2017).
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3.4 Continuous Wavelet Transform

EEG recordings are non-stationary signals, whose properties may change over
time. Hence, methods that require stationary time series, like Fourier Transform,
are not suitable to analyze their time-varying properties. For that reason, a time-
frequency approach was used. Specifically, the Continuous Wavelet Transform
(CWT), with a complex Morlet as mother wavelet, was selected. It provides a
suitable alternative to describe the dynamic properties of EEG. Wavelet analysis
relies on the introduction of an appropriate basis of functions. A wavelet is a zero
mean function characterized by its localization in time (∆t) and frequency (∆t)
(Roach and Mathalon, 2008). The complex Morlet wavelet was chosen as ‘mother
wavelet’ in all the studies of the compendium, since it provides a biologically
plausible fit to ERP data (Roach and Mathalon, 2008). Complex Morlet wavelet
is defined as follows (Mallat, 1999):

φ(t) =
1√
π · Ωb

ej2Ωct · e
−t2

Ωb , (3.1)

where Ωb is the bandwidth parameter and Ωc represents the wavelet center fre-
quency. In this study, both were set to 1 in order to obtain a balanced relationship
between ∆t and ∆f at low frequencies (Bachiller et al., 2015).

The CWT of each trial is defined as the convolution of the trial, x(t), with a
scaled and translated version of the complex Morlet wavelet:

CWT (k, s) =
1√
s

∫ ∞

−∞
x(t) · φ∗

( t− k
s

)
dt, (3.2)

where s represents the dilation factor (s = {si, i = 1, . . . ,M}), k is the translation
factor and * denotes the complex conjugation. The dilation factor was set in order
to include frequencies from 1 Hz (s1) to 70 Hz (sM ) in equally-spaced intervals of
0.5 Hz (Bachiller et al. 2015).

Several previous studies did not consider the effect of edges in the time-frequency
plane (very important especially with short length windows, as in those associated
with ERPs) (Roach and Mathalon, 2008). In this Thesis, however, a cone of
influence (COI) was defined in order to avoid these edge effects. In particular,
two windows were always defined: pre-stimulus (also called baseline in the first
two studies) from -300 to 0 ms and response from 150 to 450 ms with respect to
the stimulus onset. Thus, the spectral content must be only considered into the
time-frequency regions delimited by their respective COIs. Figure 3.1 shows the
CWT for a single EEG channel averaged across trials from a control subjects. Two
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Figure 3.1: Example of the normalized wavelet coefficients at Pz electrode aver-
aged across trials in a control subject from the database of 32 electrodes. The
transparency outline represents the limits of the COI in the baseline and response
windows, where the spectral content is not affected by edge effects. Figure from
Gomez-Pilar et al. (2018c)

.

COIs related to the time windows are represented.

3.5 Connectivity matrices

After time-frequency decomposition, connectivity matrices were constructed using
two different measures of coupling: Coherence and PLV. The choice between them
was determined by the specific objective of the study. Both metrics provide a
measure of the degree of coupling among brain regions, with values ranging from
0 to 1.

3.5.1 Coherence

From CWT decomposition, Coherence was computed to assess linear functional
interactions (Nunez et al., 1997). Coherence is useful to identify coherent activity
between cognitive networks (Yener and Başar, 2013), since it is a measure of the
degree of coordination between assemblies of neurons triggered by a cognitive task.
Coherence was calculated for each pair of electrodes (i and j) to obtain a global
similarity measure for each time window:
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Cohij(s) =
|WCSij(s)|2

WCSii(s) ·WCSjj(s)
, (3.3)

where WCS is the wavelet cross-spectrum between two EEG trials, as follows:

WCSij(k, s) = CWTi(k, s) · CWT ∗j (k, s), (3.4)

Coherence is analogous to the squared Pearson correlation, which reflects the
amount of variance of electrode i in each frequency that can be explained by a lin-
ear transformation of the wavelet coefficients in electrode j (Roach and Mathalon,
2008).

3.5.2 Phase-locking value

The PLV has become a useful tool to quantify the phase steadiness between pairs
of electrodes (Lachaux et al., 1999), given its sensitivity to measure the neural
synchronization, even between EEG oscillations with relatively small amplitude
(Spencer et al., 2003). Being able to use different approaches for computing the
PLV, the CWT was used to extract the phase information from each trial (Bob
et al., 2008). First, the extraction of the instantaneous phase of each signal in
a narrow bandwidth was performed. The CWT can be used to perform filtering
and phase extraction in a single step (Bob et al., 2008). Thus, the instantaneous
phases ϕx(k, s, τ) and ϕy(k, s, τ) of two EEG signals, x(t) and y(t), can be used
to define the phase difference as follows:

∆Φxy(k, s, τ) = Φx(k, s, τ)− Φy(k, s, τ), (3.5)

where τ indexes each artifact-free trial.
After phase extraction, PLV estimates the variability of the phase differences

across successive trials, as follows:

PLVxy(k, s) =
1

Nt
|
Nt∑

τ=1

e∆Φxy(k,s,τ)|, (3.6)

where Nt is the total number of artifact-free trials.

3.5.3 Adjacency matrices

After Coherence or PLV computation, adjacency matrices can be obtained as the
coupling or synchronization between all possible pair of channels. These func-
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Figure 3.2: Averaged connectivity matrices from 35 controls and 51 patients with
schizophrenia. The connectivity matrices are shown for controls and patients with
schizophrenia from the database of 32 electrodes before (from -300 to 0 ms) and
after (from 150 to 450 ms) stimulus onset. Figure from Gomez-Pilar et al. (2018d).

tional connectivity matrices contain the values of the graph connection weight
(wij), which are ranged between 0 and 1 (weighted network). A value of 1 is ob-
tained with completely synchronized signals and a value of 0 implies an absence of
synchronization. Of note no threshold was applied. This has the advantage that
all the connections are considered (even the lower ones), but the computational
cost increases comparing to a semi-weighted network. We are aware of the limita-
tions of this method, but we consider it a more realistic approach to describe the
physiological properties of brain networks. Two examples of connectivity matri-
ces from Gomez-Pilar et al. (2018d) are depicted in Figure 3.2 using PLV in two
different temporal windows of the cognitive oddball task.

3.6 Graph parameters

A large variety of graph measures exist in the literature (Rubinov and Sporns,
2010). However, most of them are strongly correlated, since they represent the
same network property (Rubinov and Sporns, 2010). For that reason, this Doc-
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toral Thesis uses three complementary and well-known graph measures to char-
acterize three key aspects of the network: (i) connectivity strength (using D),
(ii) network integration (using CPL) and (iii) network segregation (using ClC).
In addition, a widely extended measure named small-world index (SW) was used
to compare with previous findings. SW is defined as the ratio between ClC and
CPL, when both of them have been corrected by the same measures computed in
a random network. Specifically, surrogate data were obtained by means of reshuf-
fling the connections of the network. This procedure is explained in detail in the
“3.8.3 Surrogate data” subsection. The conventional graph parameters that were
used to quantify the network properties can be formally defined as follows:

• The connectivity strength was computed using the network density as follows
(Gomez-Pilar et al., 2018c):

D =

N∑

i=1

∑

j>i

wij

T
, (3.7)

where wij represents the connection weight between nodes i and j, N is the
number of nodes in the network and T = N(N−1)

2 is the total number of
connections in an undirected graph.

• The integration of the network was characterized by means of the CPL. It
is defined as the average shortest path length between all pairs of nodes in
the network (Rubinov and Sporns, 2010):

CPL =
1

N

∑

i∈n

∑

i∈n,j 6=i
dij

n− 1
, (3.8)

where dij indicates the minimum distance, i.e. the inverse of PLV or the
Coherence depending on the study of the compendium, between electrodes
i and j.

• The segregation of the network was quantified by the averaged ClC (Rubinov
and Sporns, 2010). In the case of weighted networks, the averaged clustering
coefficient can be generalized as follows to avoid the influence of the main
connection weights:

ClC =

(
N

3

)∑

i∈n

∑

j,k∈n
(wijwihwjh)

1
3 . (3.9)
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Finally, the present Thesis also aimed at presenting two new graph measures
of the network. These measures were applied to characterize the regularity (SGE)
and complexity (SGC) of the brain network. Both rely in the concept that, for
a fixed topology, the weight distribution of a complex network is directly related
to its reliability and amount of information stored. Therefore, these novel graph
measures were defined based on the following requirements: (i) they should be able
to measure the interplay between reliability and amount of information stored in
the system, (ii) they should be independent of the network topology, and (iii) they
should not require a comparison with null-hypothesis networks.

Formally, the irregularity and the complexity of the network were defined in
(Gomez-Pilar et al., 2018c), as follows:

• The irregularity of the brain network was characterized by the Shannon
Graph Entropy, defined in our previous work as follows (Gomez-Pilar et al.,
2018c):

SGE =
−1

log2 T

N∑

i=1

∑

j>i

wij
W

log2

wij
W

, (3.10)

where W is the sum of all weights of the graph and log2 T is a normalization
factor introduced to ensure that 0 ≤ SGE ≤ 1.

Thus, the more uniform the distribution of the graph weights, the higher the
SGE. The opposite situation, a very narrow distribution of the weight values,
implies a minimum value of SGE. Both situations are considered simple ones.
Therefore, the balance between those situations is considered the point with
maximum complexity in terms of SGC. An example of this behavior is shown
in Figure 3.3 for a simple graph with 4 nodes.

• The complexity of the brain network was estimated using the Shannon Graph
Complexity, defined in our work (Gomez-Pilar et al., 2018c) as follows:

SGC = SGE ·
√

1

T − 1
· σ
x̄
, (3.11)

where x̄ is the average of all connection weights of the graph and σ is the
standard deviation of those values.

In summary, up to five complementary graph parameters were used depending
on the study to further characterize the brain network structure and topology in
healthy controls and patients with schizophrenia.
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Figure 3.3: Examples of simple graphs with 4 nodes (N = 4) and their values
of graph irregularity (SGE), graph complexity (SGC) and connectivity strength
(D). For a completely weight-balanced network (left), SGE is maximum and SGC
is minimum. A high weight-unbalanced network (right) yields low SGE and SGC
values. On the opposite, neither a very weighted-balanced nor weighed-unbalanced
network (center) reach higher SCG values.

3.7 Network modeling

Network parameters may not be sufficient to properly characterize brain dynamics.
For that reason, one of the objectives of this Doctoral Thesis includes the “con-
struction of a novel dynamical network probabilistic-based model during cognition
to explain the neural network changes”. Due to the intrinsic neural variability,
this model should be individually identified for each subject. For this purpose, six
different models of brain dynamics were considered. Being posible to propose a
huge number of possible models, these six models were selected for being intuitive
and easy to explain in physiological terms. We are aware that changes in the brain
network are probably more complex, but a model must be as simpler as possible
without loosing its generalization capability.

Three of the proposed models consist in iterative reinforcement of the network
connections until reaching the minimum error with the graph parameters of the
real brain network. These three models are the following:

i) Reinforcement of primary connections. This model assumes that the
primary connections of the brain, i.e. connections with higher values of
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connectivity during pre-stimulus, will be reinforced during the cognition with
higher probability.

ii) Reinforcement of secondary connections. This model assumes that
the secondary connections of the brain, i.e. connections with lower values
of connectivity during pre-stimulus, will be reinforced during cognition with
higher probability.

iii) Reinforcement of random connections. This model assumes that all
the brain connections during pre-stimulus will be reinforced with the same
probability during cognition.

Three similar models were also studied, but considering a decrease of the edge
values:

iv) Weakening of primary connections.
v) Weakening of secondary connections.
vi) Weakening of random connections.

The algorithm to model the network changes during cognition consists in the
following steps:

1) To compute graph parameters in the pre-stimulus and in the cognitive re-
sponse windows.

2) To select a specific connection, wij , of the pre-stimulus connectivity matrix.
3) To modify the value of the connection with a probability P . The value

of P depends on the specific model being considered, as we explain below.
In addition, the connection is reinforced or weaked also depends upon the
model.

4) To compute the network features in the modified connectivity matrix.
5) To compute the Mean Square Error (MSE) of the obtained network features

with respect to the network parameters in the response window (computed
in the first step).

6) To repeat the steps 2), 3) 4) and 5) 5000 times1 and the MSE is stored for
each iteration.

7) To select the connectivity matrix that minimizes the MSE.

The previous procedure was repeated six times (one for each model). As afore-
mentioned, the value of P and how it was modified depend on the model:

i) Reinforcement of primary connections: The value of the selected connection

1The simulations showed that the MSE is a concave function with a minimum that varies
for each subject. We checked that the minimum was always achieved before 5000 repetitions.
Of note, the number of iterations required for reaching the minimum MSE is different for each
subject.
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is increased in 1% with probability P = wij (wij ranges from 0 to 1).
ii) Reinforcement of secondary connections: The value of the selected connec-

tion is increased in 1% with probability P = 1− wij .
iii) Reinforcement of random connections: The value of the selected connection

is increased a 1% with probability P = 1.
iv) Weakening of primary connections: The value of the selected connection is

decreased a 1% with probability P = wij .
v) Weakening of secondary connections: The value of the selected connection

is decreased a 1% with probability P = 1− wij .
vi) Weakening of random connections: The value of the selected connection is

decreased a 1% with probability P = 1.

The percentage of change (1%) was heuristically determined as a compromise
between goodness of fit and computational cost. Due to the stochastic nature of
the algorithm, all the experiment was repeated 100 times and MSE results were
averaged across repetitions. We observed that the variability among experiments
for each subject was negligible. A general scheme of the procedure is shown in
Figure 3.4.

3.8 Statistical analyses

3.8.1 Statistical hypothesis tests

Statistical analyses of this Thesis were mainly focused on statistical hypothe-
sis tests. First, statistical hypothesis testing was used to assess data normality
(Kolmogorov-Smirnov test), as well as to evaluate homoscedasticity (Leneve test).
The previous test results can show that data meet (or did not meet) parametric
assumptions. When data did not meet the parametric assumtions (the most usual
situation in the studies of this Thesis), non-parametric statistical significance tests
(Mann-Whitney or Wilcoxon tests) were used to assess the level of statistical sig-
nificance. Of note that, with multiclass extension, Kruskal-Wallis test was used
for comparison among three groups (chronic patients, first episodes and controls)
or among the different models of cognition. On the other hand, related-samples
t-tests or independent-samples t-tests were used for further analyses in the cases
that data met the parametric criteria. Finally, Chi-squared test was used for com-
parisons when one or more variables were categorical, such as gender or type of
reorganization model.
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Figure 3.4: Overview of the network modeling procedure. After the EEG acqui-
sition, the pre-stimulus window and the response window were segmented. Dur-
ing the signal processing step, graph parameters in each window were computed
from the connectivity matrix. In the modeling step, the pre-stimulus connectivity
matrix was modified by applying the six different cognitive models under study.
Finally, in the model selection step, the cognitive model and the iteration that
obtained the minimum Mean Square Error (MSE) with respect to the network
parameters in the response window were selected. (Gomez-Pilar et al., 2018d)
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3.8.2 Correlation analyses

Following the same procedure as for statistical hypothesis testing, before any corre-
lation analysis, normality and homoscedasticity of the data were assessed. Pearson
correlation coefficient was used for parametric data, whereas Spearman correlation
coefficient was used in other case.

3.8.3 Surrogate data

The statistical significance of the network parameters must be considered by com-
paring them with null-hypothesis networks, i.e. networks constructed by a surro-
gate process. Null models are often used as a reference point to determine whether
a graph displays a topological feature to a greater extent than expected by chance.
These null-hypothesis networks are usually modeled as networks with the same ba-
sic characteristics as the original network (number of nodes, D, and node degree
distribution), but with different topology (Rubinov and Sporns, 2010). How-
ever, all of these requirements cannot be met with weighted graphs at the same
time. For that reason, different alternatives have been proposed (Ansmann and
Lehnertz, 2012).

To date, the two most used weighted null-hypothesis networks are: (i) weight-
preserving null-hypothesis that preserve the number of nodes, D, and edge weight
distribution by means of a connection reshuffling process (Stam et al., 2009) and
(ii) null-hypothesis networks that preserve N , D and the degree of each node
(Nakamura et al., 2009). It is important to note that none of the two models pre-
serve node degree distribution for weighted graphs, especially if the weight distri-
bution is nonhomogeneous (Ansmann and Lehnertz, 2012). These two approaches
have been previously compared, concluding that weight-preserving approach could
segregate the influence of basic parameters more accurately than degree-preserving
network model and the model performed without any surrogate process (Ansmann
and Lehnertz, 2012).

In view of these findings, this Doctoral Thesis follows the weight-preserving
null-hypothesis approach. Thus, surrogate random networks were generated by
randomly reshuffling the weights of 50 randomized graphs (de Haan et al., 2009).
We are aware that this method is not bias-free, but it provides a rapprochement
to the real data.





Chapter 4

Results

This chapter summarizes the most relevant results displayed in the compendium
of publications. They have been split according to the different hypotheses of the
“2 Hypotheses and Objectives” Section, which has an almost direct correspondence
with the papers included in this Thesis (see Appendix A).

4.1 Regularity patterns at sensor-level in controls

and patients with schizophrenia

Regularity patterns of the EEG signal at sensor level were assessed by WE us-
ing two different approaches: SA and ST analyses (Gomez-Pilar et al., 2015).
A reduction in WE was observed during a cognitive task both in healthy and
schizophrenia groups. However, that reduction was significantly more noticeable
for controls using both SA and ST approaches (see Figures 4.1 and 4.2). This
is a finding reiteratively observed in this Thesis: changes in schizophrenia from
pre-stimulus (also called baseline in the first two papers of the compendium) to
cognitive response are statistically lower compared to controls.

Within-group analyses showed a widespread decrease of WE for controls from
pre-stimulus to active response, mainly using SA approach. This reduction affects
to more regions that in ST analysis. This decrease can also be observed in patients
with schizophrenia, but it was less widespread for both approaches. Regarding
between-group analyses, statistically nonsignificant differences were found in the
pre-stimulus window for SA or ST. However, statistical differences were found
for active response window using SA approach. Although both groups showed a

49
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Figure 4.1: Sensor-level topographic maps of the statistics computed for the
Wavelet Entropy using synchronized-averaging approach between controls and
patients with schizophrenia. Right column shows within-group differences from
pre-stimulus to response windows (Wilcoxon signed-rank test), whereas bottom
row shows between-group differences for each window (Mann–Whitney U -test).
The corrected p-values are obtained controlling false discovery rate (FDR). Figure
from Gomez-Pilar et al. (2015).

decrease in WE during the cognitive response, it was more noticeable for controls,
mainly in left parieto-occipital regions.

Taken together, differences in the regularity between groups are more marked
in central and frontal regions, with a distribution linked to default mode network.
The diminished response in schizophrenia is usually manifested in all the frequency
bands. Theta band reveals the more prominent differences between groups though.

4.2 Network abnormalities in schizophrenia and re-

lationship with regularity

By analyzing different and incremental databases, robust results revealed statis-
tically significant changes in several network features from pre-stimulus to cog-
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Figure 4.2: Sensor-level topographic maps of the statistics computed for the
Wavelet Entropy using single trial approach between controls and patients with
schizophrenia. Right column shows within-group differences from pre-stimulus
to response windows (Wilcoxon signed-rank test), whereas bottom row shows
between-group differences for each window (Mann–Whitney U -test). The cor-
rected p-values are obtained controlling false discovery rate (FDR). Figure from
Gomez-Pilar et al. (2015).

nitive response in controls but not in patients (or at least a less noticeable vari-
ation) (Gomez-Pilar et al., 2017, 2018a,b,c,d). An example of this is shown in
the Figure 4.3, which depicts the clustering coefficient distribution for the differ-
ent groups under study and the within- and between-group statistical differences.
Of note, non-significant differences were found between first episode patients and
chronic patients. This supports that the differences between controls and patients
are not secondary to medication.

This and the following connectivity findings were analyzed in the theta fre-
quency band. Accordingly with the literature, we observed important differences in
the oscillations, frequently related to long-range interactions (Uhlhaas and Singer,
2010).

Several network measures were used in order to characterize brain network be-
havior, obtaining differences between patients and controls. For example, patients
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Figure 4.3: Nodal clustering maps depicting the spatial distribution of within-
group (comparison between pre-stimulus and response) and between-group differ-
ences in ClC (C: Controls; SP: patients with schizophrenia; FEP: First episode
patients; CP: Chronic patients). Figure from Gomez-Pilar et al. (2017).

obtained higher ClC and SW at pre-stimulus, lower ClC and higher PL at response,
and a diminished variation of ClC and SW as compared to controls (Gomez-Pilar
et al., 2017). Changes in these graph measures were inversely correlated to some
dimensions of behavior and cognition (as executive tasks and working memory).
Importantly, ClC and SW during the pre-stimulus were inversely associated to
their respective variations during the cognitive task (Gomez-Pilar et al., 2017).

Established the network abnormalities in schizophrenia, the focus of atten-
tion turned to their causes. To investigate the underpinnings of functional and
structural abnormalities, WE and graph parameters were computed in the same
population formed by chronic and first episode patients, as well as by controls.
Results revealed an inversely correlated relationship between WE and the change
from pre-stimulus to response windows of functional connectivity strength both
for patients and controls (see Figure 4.4). Additionally, WE was positively corre-
lated with functional connectivity strength in the pre-stimulus window for patients
(see Figure 4.5) (Gomez-Pilar et al., 2018b). On the contrary, structural ClC was
negatively related to WE changes in patients (see Figure 4.5) (Gomez-Pilar et al.,
2018b).
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Figure 4.4: Scatterplots showing the association between modulation of functional
connectivity strength and first factor (principal component analysis) of WE change
for patients (top) and between modulation of functional connectivity strength
and first factor of WE change for controls (bottom). Open circles: First episode
patients; solid circles: Chronic patients; stars: Healthy controls). Figure from
Gomez-Pilar et al. (2018b).

4.3 Functional and structural relationship

The previously mentioned results showed an association between local regular-
ity from the EEG and functional and structural connectivity (Gomez-Pilar et al.,
2018a). This association seems to be altered in schizophrenia, but the relation
between functional and structural connectivity remained to be unexplored. In
fact, we present a completely novel study. To the best of our knowledge, it rep-
resents the first attempt to characterize functional and structural relationship in
schizophrenia (Gomez-Pilar et al., 2018a). Figure 4.6 depicts a schematic pipeline
of the graph measures computation derived from EEG and dMRI data.

Results showed statistically significant differences between controls and schi-
zophrenia patients in several graph properties both in functional and structural
networks (see Figure 4.7). Despite of this, the deficit in the dynamical properties
in the theta band for schizophrenia patients is independent of the deviation from
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Figure 4.5: Scatterplots showing the association in the patients between pre-
stimulus theta density and first factor (principal component analysis) of WE
change (top) and between structural clustering coefficient and first factor of WE
change (bottom). Open circles: First episode patients; solid circles: Chronic pa-
tients. Figure from Gomez-Pilar et al. (2018b).

normal structural network properties (Gomez-Pilar et al., 2018a). This lack of
association can be due to several aspects, described in the “5 Discussion” Section.

4.4 Brain complexity

The use conventional graph measures did not provide a comprehensive view of the
neural mechanisms. For that reason, a novel measure of graph complexity was
proposed. Neural network complexity was computed using SGC, a measure of the
balance of the edge weight distribution in a graph (Gomez-Pilar et al., 2018c).
Brain graphs were constructed based on the Coherence in the EEG conventional
frequency bands. However, only the complexity in the theta band showed sta-
tistically significant differences between controls and patients with schizophrenia
(see Figure 4.8). In particular, the complexity change from pre-stimulus to cogni-
tive response is lower in schizophrenia compared to controls (Gomez-Pilar et al.,
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Figure 4.6: Schematic overview for the network analyses from the structural and
functional data. Figure from Gomez-Pilar et al. (2018b).

2018c).
The entropy of the brain network was also assessed by measuring the distribu-

tion of the graph weights. For that purpose, SGE, a novel graph measure defined
in (Gomez-Pilar et al., 2018c), was used. As can be seen in Figure 4.9, both
controls and patients with schizophrenia reduced their SGC, whereas SGE was
increased during the cognitive task performance. Following our previous studies,
these changes from pre-stimulus to cognitive response were statistically reduced in
schizophrenia compared to controls.

4.5 Functional network model during cognition

Previous findings, mainly the ones related to complexity, lead us to hypothesize
that neural connections strength changes during a cognitive task in a way that
depends on the value of that connection during the stimulus expectation (Gomez-
Pilar et al., 2018d). This results was the basis for a new study proposal in which
different reorganization models during cognition were assessed using graph mea-
sures (Gomez-Pilar et al., 2018d).

Depending on the main network behavior during the cognitive task, each sub-
ject was assigned to one among three different models: (i) reinforcement of the
primary connections, (ii) reinforcement of the secondary connections and (iii) ran-
dom reinforcement. The prediction capability of the network model is shown in the



56 CHAPTER 4. RESULTS

Figure 4.7: Error bars corresponding to the graph properties with statistically
significant differences between patients and controls. Circles represent the mean
value, while bars indicate the confidence interval (95%). Figure from Gomez-Pilar
et al. (2018a).

Figure 4.10. Using only the information of the network during pre-stimulus, the in-
dividualized modeling obtains similar values of the five graph measures during the
cognitive response. We also took into account three additional models, which are
similar to previous models but considering a decrease in the edge values. However,
these models were only selected in 15% of the subjects.

From the model of each subject, we inferred that controls showed a marked
tendency of reinforcement of secondary connections during cognition. On the other
hand, patients were divided in a similar way between reinforcement of primary and
secondary connections (see Figure 4.11). This behavior can be also observed in
Figure 4.12. On average, both controls and patients reinforce their connections.
However, secondary connection are the more reinforced pathways during cognition,
mainly for healthy controls.

Finally, the dynamics of the change during cognition detected in our previous
studies were evaluated using five complementary graph parameters (see Figure
4.13). In this case, these changes were studied in a more comprehensive way,
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Figure 4.8: Shannon Graph Complexity (left) and connectivity strength (right)
values for each group, window and frequency band. Values are depicted as mean
and standard error. * indicates p < 0.01, while ** indicates p < 0.001 (Mann-
Whitney U -test). Figure from Gomez-Pilar et al. (2018c).

since dynamical changes were assessed. The brain network dynamics across time
(recently named chronnectomics in the literature) showed significant differences
mainly between 150 ms to 300 ms from the stimulus onset, at the beginning of the
response window.
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Figure 4.9: Detailed plot of the complexity dynamics from pre-stimulus to response
in the theta frequency band for controls (blue arrow) and patients with schizophre-
nia (red arrow). The small figure represents the total range of SGC values for this
network size (30 nodes/electrodes). The square in the small figure corresponds to
the zoomed area in the large figure. SGE increases and SGC decreases for both
groups, but the behavior is more remarkable for controls than for patients with
schizophrenia. Figure from Gomez-Pilar et al. (2018c).
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Figure 4.10: Prediction capability of the network modeling from the pre-stimulus
window. Grand-average normalized network parameters for the pre-stimulus win-
dow (yellow) and the real response window (dark orange). The network measures
prediction obtained by the model from the phase information of the pre-stimulus
window is also shown (light orange). The model fitting for both the controls
and the patient groups is computed by minimizing the mean square error (MSE).
Figure from Gomez-Pilar et al. (2018d).
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Figure 4.11: Histogram of the selected models. Percentage of subjects that best
fit each model for controls and patients with schizophrenia. The reinforcement of
the secondary connections is the most frequently selected model for both groups;
however, statistically significant differences between the histograms of controls
and patients were found and marked with an asterisk (χ2 = 6.6874, p < 0.05;
Chi-square test). Figure from Gomez-Pilar et al. (2018d).
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Figure 4.12: Averaged brain networks for controls and patients with schizophrenia
before and after stimulus onset. Both groups show an increase in the edge weight
values from the pre-stimulus (from -300 ms to the stimulus onset) to the response
window (from 150 ms to 450 ms after the stimulus), though this increase is more
noticeable for controls. To facilitate the visualization of the networks, a threshold
was applied: only those connections with phase-locking values higher than 0.5 were
depicted. The brain networks were visualized using the BrainNet Viewer Xia et al.
(2013). Figure from Gomez-Pilar et al. (2018d).
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Figure 4.13: Time evolution of the network parameters. At the left panel, mean
and standard error of the network parameters for controls (blue) and patients (red).
Control subjects exhibit higher changes from pre-stimulus (yellow) to cognitive re-
sponse (orange) compared to patients. Statistically significant differences between
the network parameter evolution across time of both groups are highlighted by
a black rectangle. At the right panel, distribution of the averaged change of the
network parameters from pre-stimulus (yellow transparency in the left panel) to
cognitive response (orange transparency in the left panel) for both groups. The
degree of statistically significant differences between groups is indicated with one
asterisk (p < 0.05, Mann-Whitney U -test) or two asterisks (p < 0.01, Mann-
Whitney U -test). Figure from Gomez-Pilar et al. (2018d).
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Discussion

In this Doctoral Thesis, the characterization of the altered functional network
structure and neural dynamics in schizophrenia during a cognitive task has been
addressed. Firstly, new evidences for the dysconnectivity hypothesis and the aber-
rant salience hypothesis in schizophrenia were found. Abnormal response to novel
and relevant stimulus (aberrant salience) was recurrently found in patients with
schizophrenia in this Thesis. This abnormal response was accompanied by a di-
minished integration among brain regions connected by long-range interactions.
Secondly, novel findings about possible underpinnings of these anomalies were
provided by means of the study of the structural network and functional local
measures based on regularity. Importantly, a hyperactivation focused on segre-
gated assemblies of neuronal entities during the stimulus expectation can suppose
the main difference between the odd response during cognition in schizophrenia.
Thirdly, a novel graph measure of network complexity was developed. SCG pro-
vides an estimation of the ratio between the order of the network and the amount
of information stored in it. The measure is insensitive to changes in connectivity
strength and network size for networks large enough (N > 30). Having shown its
virtues, SCG provides new clues about brain network dynamics in schizophrenia
during cognition. Finally, the previously mentioned findings using SGC allow us
to propose a novel network modeling to describe the brain network dynamics and
the main differences between healthy and schizophrenia subjects. This network
modeling identifies different reorganization strategies of the brain network as re-
sponse to an oddball task for patients with schizophrenia, which could be the basis
for new studies focused on the heterogeneity in this disorder.

In this Chapter, the aforementioned findings will be further discussed following
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the logical order of this Thesis. Finally, the main limitations of the study are
presented.

5.1 Confirming the well-established hypotheses in

schizophrenia

With a large number of hypotheses proposed in different schizophrenia studies,
two of them are currently accepted by most of the scientific community: the
dysconnectivity hypothesis (Friston, 1998) and the aberrant salience hypothesis
(Kapur, 2003). The first one refers to an abnormal integration of information in
schizophrenia, explicitly showed by a diminished connectivity (functional and ef-
fective), mainly in long-range interactions. Novel findings on this insight have been
provided in the papers of this compendium of publications. The main of them is
the statistically significant larger path length of the brain network showed by the
patients during the response to an oddball task. Regarding the aberrant salience
hypothesis, it states that schizophrenia symptoms may arise out of the aberrant
assignment of salience to external objects and internal representations (Kapur,
2003). This altered state in schizophrenia has been proposed to be related to alter-
ations in dopaminergic concentrations. A dysregulation of this neurotransmitter
could generate aberrant attributions of abnormal salience, which in turn could be
the basis for the hyper-segregation during the pre-stimulus found in this Thesis.
An example of this is the reduced change in schizophrenia using WE both for
SA and for ST methodologies (Gomez-Pilar et al., 2015). Therefore, the present
findings are in line with the previous evidences in the literature, which suppose a
control measure for the later results.

5.2 Determining possible causes of dysconnectivity

in schizophrenia

To formally analyze the possible causes of dysconnectivity in schizophrenia, two
studies were carried out. In the first one, we looked for a relationship between
local regularity of the EEG and connectivity strength in the functional network
(Gomez-Pilar et al., 2018b). Interestingly, high levels of irregularity change (from
pre-stimulus to response activity) of the EEG activity are strongly associated to
high change of connectivity during cognition. High values of WE are linked to a
more uniform power spectrum. Measured during the pre-stimulus, the higher WE,
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the higher flexibility or predisposition to change during the cognitive response,
since a wide range of frequencies are available. Measured during the response,
a high WE means lower specificity of the task, which leads to an aberrant and
diminished relevance assignment to the stimulus, likely related to a disorganized
internal representation. In this way, the spectral flexibility can lead to a stronger
functional connectivity between regions. Although this is only a hypothesis, it is
feasible, and it would explain how the reduced level of entropy in schizophrenia is
related to the disconnection hypothesis.

The second paper (Gomez-Pilar et al., 2018a), focused on determining the
causes of functional dysconnectivity, seeks the answer in the structural abnormal-
ities in schizophrenia. However, despite the statistically significant differences in
the graph features of the structural network in schizophrenia compared to controls,
no important relationship was found between structural and functional abnormal-
ities. This lack of relationship suggests the existence of different clusters within
the schizophrenia syndrome (Gomez-Pilar et al., 2018a).

5.3 A novel measure for characterizing network com-

plexity

A common problem in graph analyses is the bias of many graph measures due
to the high dependence with the network size or the average of the connectivity
strength. The use of surrogate data and comparisons with null-hypothesis net-
works become, then, of paramount importance. However, these procedures do not
completely remove the bias (Ansmann and Lehnertz, 2012) and the computational
cost exponentially increases with the number of comparisons due the high number
of permutations needed.

These concerns incited us to design and propose a novel measure of complexity.
SGC relies on the concept of the order of the network and the amount of infor-
mation stored in it, providing a ratio between them (Gomez-Pilar et al., 2018c).
Furthermore, the measure is insensitive to changes in connectivity strength and
network size for networks large enough (N > 30).

SGC can be applied to any kind of graph derived from any network (biological,
molecular, logistic or social network), quantifying the system complexity. The
application of the measure to the EEG brain network in patients with schizophrenia
provided us a new vision of the brain dynamics, showing important differences in
the secondary pathways of the brain with respect to control subjects (Gomez-
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Pilar et al., 2018d). This study was the starting point for the last study of the
Thesis, in which we propose a novel model of brain dynamics during a cognitive
task (Gomez-Pilar et al., 2018d).

5.4 Towards a model of cognition

Not many cognitive models have been proposed in the literature to explain the
brain behavior and the differences found between healthy controls and patients
of any pathology. In addition, the few models proposed suffer from important
deficiencies, such as the high computational cost or the complex optimization of
several parameters (Gomez-Pilar et al., 2018d). Furthermore, the complexity of
these models makes it difficult to draw a direct relationship to brain networks
without a strong ‘a priori’ hypotheses. For these reasons, we proposed an intuitive
and reliable model focused on explaining the observed neural network dynamics
during a cognitive task (Gomez-Pilar et al., 2018d). In this model, the error
between the modeled network and the real brain network is recurrently minimized.
Thus, the brain network during the pre-stimulus activity determines the brain
network during cognition.

In our previous studies, we found a hyper-segregated state in schizophrenia
during the stimulus expectation (Gomez-Pilar et al., 2017) and a relationship
between local measures during the pre-stimulus and changes in graph measures
during the cognitive task (Gomez-Pilar et al., 2018b). Therefore, the association
between pre- and post-stimulus exists, but the formal link between them had
not been determined before. Now, we can state that the main differences in the
functional dynamical changes in a healthy brain during cognition are due to the
reinforcement of the secondary pathways, i.e. pathways weakly connected during
pre-stimulus window. The fact that only a subgroup of patients with schizophrenia
fits this model suggest us the existence of schizophrenia subgroups. This hypothesis
has been recently proposed in parallel studies (Lubeiro et al., 2016). However, the
concept is not currently widely accepted by the psychiatric community. Further
studies in this line should be carried out, which could suppose a breakthrough in
the established paradigm of schizophrenia. This could improve patient-care and
contribute to achieve better long term outcomes, since specific medication must
be provided upon the physiopathological underpinnings of particular schizophrenia
subgroups.
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5.5 Limitations of the study

This Doctoral Thesis showed the utility of graph theory applied to EEG data for
characterizing the neural dynamics underlying cognitive processing in schizophre-
nia. Several limitations, however, merit additional considerations. First, a larger
sample size would enhance the statistical power of the results. As we can observe
in Table 3.1, after the mandatory change from 16 to 32 electrodes, the number
of subjects under study was progressively increased in each study. The increase
of the number of electrodes allow us to improve the accuracy of the spatial reso-
lution. However, the sample collection started from zero, which was reflected in
a lower number of subjects under study. Even so, the sample size is comparable
with other studies and statistical power analyses indicated that this sample size is
large enough for obtaining statistically significant results. Nevertheless, a larger
database would be particularly beneficial in the case of future studies focused on
identifying clusters of patients with schizophrenia. The second consideration is re-
lated to the number of electrodes. Graph analyses are more accurate using as many
nodes as possible. In addition, with larger number of electrodes, source analysis
could be performed and volume conduction effects would be removed from the re-
sults. To address this problem, we rely on the assumption that volume conduction
affects the connectivity estimates in a similar way in two different experimental
contrasts, such as pre-stimulus and response conditions (Bastos and Schoffelen,
2016). This approach of comparing these two conditions minimizes the bias. For
that reason, it was followed in all the studies of this Doctoral Thesis. Nonetheless,
the use of higher density EEG recordings could improve the obtained findings.
Third, in the papers of this compendium of publications, all EEG connectivity
parameters are measures of functional connectivity, i.e. the statistical dependence
between electrical brain activations. Although this was compared to structural
MRI connectivity, i.e. the physical neural connections, it would be also desirable
to assess its relationship with effective connectivity, i.e. the causal inference of
one activation to another. Finally, the drugs prescribed to the patients is an im-
portant confounding factor. In the studies of the Thesis, this effect was controlled
by considering the medication doses or comparing to a third group (first episode
patients). However, the best way to discard this effect is by means of the inclu-
sion of a group with the same or similar drug prescription but different disease.
Our research group is currently working in this matter by recruiting a new group
formed by bipolar patients. Therefore, this procedure will be considered in our
future studies.
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patients with schizophrenia



Chapter 6

Conclusions

All the studies of this Doctoral Thesis share a common thread: the use of analyses
based on graph-theory for enhancing the established knowledge about dynamical
connectivity properties of noticeable neural assemblies and their abnormalities
in schizophrenia. These studies are intended to be a starting point for a future
breakthrough in the study of schizophrenia, in which subgroups inside of this
disorder with unique and particular biological characteristics will be identified.
The heterogeneity in schizophrenia is a reiterative finding in several studies. This
may be a reason for obtaining, sometimes, contradictory results and hindering the
replication of results with different databases.

Based on functional connectivity, we found a common and reproducible behav-
ior for most of the patients with schizophrenia. However, specific brain dynamics
during a cognitive task differ from one patient to another (Gomez-Pilar et al.,
2018d). Therefore, tough it is possible that schizophrenia has a shared neurophys-
iologic underpinning, some peculiarities of specific subgroups could be eliciting
specific neuronal patterns with respect to each other. By averaging these features,
we would be hiding important aspects of the pathology. This would explain the
different response to treatment among patients with ‘the same’ illness. Far from
being proven, this hypothesis must be addressed in future studies. Nonetheless,
this Thesis is a first step for further and more complex multimodal studies in which
EEG, dMRI, fMRI, genetic variables, as well as different neurotransmitter-related
factors could be jointly analyzed.

Taken together, the advanced computational techniques used in this Doctoral
Thesis endorse the creation of a framework for analyzing EEG data from an au-
ditory oddball paradigm in schizophrenia. In particular, the analysis of time-
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frequency dynamics of the brain network between the stimulus expectation and
the response to a cognitive task time windows allows improving the understanding
of schizophrenia disorder mechanisms. In this chapter, the original contributions
of this Doctoral Thesis to the state-of-the-art are highlighted. Then, the main con-
clusions extracted from this compendium of publications are indicated. Finally,
several questions emerged from this investigation and future research lines will be
listed.

6.1 Original contributions

Next, the main original contributions provided by this Doctoral Thesis are listed:

1) Direct comparison of the regularity brain patterns in healthy control subjects
and patients with schizophrenia between synchronized-averaging and single-
trial approaches. To the best of our knowledge, this is the first time that
phase-locked and non-phase-locked entropies were directly compare (Gomez-
Pilar et al., 2015). Although a few studies compared evoked and induced
responses, none compared their regularity dynamical patterns during cogni-
tion.

2) Application of time-varying measures of the brain network for assessing fast
network modulation during cognitive activity in schizophrenia. The use of
dynamical graph measures provided new clues of the hyper-segregated state
during the pre-stimulus in schizophrenia (Gomez-Pilar et al., 2017).

3) Application of local regularity measures and graph measures for character-
izing schizophrenia brain dynamics at local and network level, respectively.
The underpinnings of network phase-based mechanisms were related to the
regularity at local level (Gomez-Pilar et al., 2018b).

4) Application of functional and structural connectivity measures to the same
schizophrenia population to assess the relationship between them. This is
the first attempt to look for an association between graph measures derived
from EEG and from dMRI in schizophrenia (Gomez-Pilar et al., 2018a). The
conducted study provides a better characterization of the neural substrates
in schizophrenia.

5) Definition, development and application of a new measure of network com-
plexity based on the equilibrium between network order and amount of in-
formation stored by the system. SGC was used to estimate the ratio between
graph entropy and graph disequilibrium in synthetic and real brain graphs
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derived from patients with schizophrenia (Gomez-Pilar et al., 2018c). It
provided new insights to understand network dynamics in schizophrenia.

6) Proposal of a novel model of brain network dynamics during cognition.
This new network model was assessed in healthy controls and patients with
schizophrenia. Importantly, different subgroups of patients with schizophre-
nia were identified, reinforcing the idea of the schizophrenia heterogeneity
(Gomez-Pilar et al., 2018d).

7) Development of a Matlab toolbox to provide a framework for the analysis
of different brain signals (EEG, MRI or others) from the graph theory per-
spective. The software has been registered – Intellectual Property Rights
(IPR) for computer software protection – as ‘GABA’, Graph Analysis of
Brain Activation.

6.2 Main conclusions

The analysis of the results as a whole leads us to the next main conclusions of this
Doctoral Thesis:

• Single trial analyses, as well as the study of ERPs, provide valuable in-
formation about the contribution of different cortical areas to the coordi-
nated brain activity. Despite the almost overcome skepticism, the usefulness
of EEG recordings in understanding neural dynamics has been reinforced
throughout this Thesis.

• The synchronized activity of large neural assemblies can be measured using
phase-based connectivity measures. This coordinated response constitutes
the main via of information exchange between brain areas. Abnormalities in
this coordination imply disrupted network properties.

• Schizophrenia shows abnormalities both in functional and structural net-
work properties. However, these abnormalities seem not to be as linked as
one might suppose ‘a priori’. This could be explained due to the possible ex-
istence of schizophrenia subgroups, which hamper the relationship between
structural and functional features of the brain.

• Local regularity of the brain activity plays an important role in the net-
work characteristics. Therefore, alterations in specific regions, as it has been
observed in schizophrenia, could affect to the whole network, producing a dis-
connection between brain areas and contributing to the abnormal capacity
to integrate the neural information.
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• Schizophrenia shows a hyper-segregated network prior to the stimulus, i.e.,
higher clustering coefficient during the pre-stimulus, which is linked to a
decreased change of the functional connectivity during cognition. This al-
tered state is likely related to the well-known aberrant assignment of relevant
stimuli in schizophrenia (aberrant salience hypothesis).
• Network changes on dynamical brain activity during an auditory oddball

task were related to cognitive and behavioral characteristics in schizophrenia.
Particularly, higher changes in connectivity strength were related to higher
cognitive performance. Network segregation and integration, as well as local
entropy, were also related to cognitive characteristics.
• The use of five complementary network measures, in terms of information

provided on the topology of the network, contributes to comprehensive char-
acterize EEG functional connectivity. Our findings suggest that graph theory
analysis is appropriate for summarizing the properties of long-range interac-
tions and phase-based synchrony of the brain network.
• Subjects with the same disorder, schizophrenia, can reorganize their neural

activity during a cognitive task following different strategies. Whereas a
subgroup of patients reinforces secondary neural pathways during cognition
in a similar way as controls, other subgroup suffers a reinforcement of its
primary connections. This brings out the heterogeneity of this disorder and
open new lines to further explore this finding.

6.3 Future research lines

Several questions derived from this research can be further studied in the future.
These questions are out of the scope of the present Doctoral Thesis, but can
complement its findings. Below, a number of suggestions for future research lines
are listed:

• The possibility of the existence of different tangled subgroups named under
the same concept ‘schizophrenia’ leads us to encourage further efforts to
identify such clusters. Conducting new research aimed at sorting out likely
schizophrenia subgroups could suppose a breakthrough in this field.

• A large database is always desirable to improve the statistical power. Fol-
lowing the previously mentioned future research line, this is of paramount
importance in future studies in which clustering analyses would be the cen-
tral core.
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• Future work must be done to increment the number of electrodes of the EEG.
High density EEG recordings with 64 or more electrodes would be desirable
to enhance the spatial resolution.

• Volume conduction was listed as one of the limitations of this study. In
order to overcome this issue, source analyses would be helpful for localizing
the spatial source of electrical abnormalities. In this regard, increasing the
number of electrodes would be also required to accurately determine the
source of the electric fields acquired by the EEG.

• The assessment of the directionality in connectivity measures is another in-
teresting future line of investigation, which is under development in newer
Doctoral Theses of our group. These studies will provide casual inference to
determine the information flow in the brain.

• Finally, most of the methodology here described can be applied to other sig-
nals, such as MEG or fMRI, and other pathologies. In this regard, patients
with bipolar disorder are usually treated with similar drugs, which can serve
to discard possible confounding factors due to medication. In three of the
studies, first episode patients were used to control for treatment. Neverthe-
less, the use of a different disorder with similar medication will be even more
useful. Currently, efforts in this sense are being made.

In summary, the analysis of the response during a cognitive task was used to
gain further insights into the neural mechanisms underlying cognitive dysfunc-
tions in schizophrenia. Graph theory analyses based on synchrony and connectiv-
ity among brain regions provide a sensitive framework to describe schizophrenia
alterations. Our research supports previous findings, such as aberrant salience
and disconnection hypotheses, whereas showed a deficit in the change from pre-
stimulus to cognitive response brain activity. The brain dynamics assessed by
Complex Network Theory highlight the heterogeneity of the schizophrenia dis-
order. This provides direct evidence of the possible existence of schizophrenia
subgroups. However, further efforts must be addressed to clarify this question.
Multivariate methods are likely to play a greater role in the future of the connec-
tome and chronnectome.
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Abstract: The aim of the present study was to characterize the neural network 

reorganization during a cognitive task in schizophrenia (SCH) by means of wavelet 

entropy (WE). Previous studies suggest that the cognitive impairment in patients with SCH 

could be related to the disrupted integrative functions of neural circuits. Nevertheless, 

further characterization of this effect is needed, especially in the time-frequency domain. 

This characterization is sensitive to fast neuronal dynamics and their synchronization that 

may be an important component of distributed neuronal interactions; especially in light of 

the disconnection hypothesis for SCH and its electrophysiological correlates. In this work, 

the irregularity dynamics elicited by an auditory oddball paradigm were analyzed through  

synchronized-averaging (SA) and single-trial (ST) analyses. They provide complementary 

information on the spatial patterns involved in the neural network reorganization. Our 

results from 20 healthy controls and 20 SCH patients showed a WE decrease from baseline 

to response both in controls and SCH subjects. These changes were significantly more 
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pronounced for healthy controls after ST analysis, mainly in central and frontopolar areas. 

On the other hand, SA analysis showed more widespread spatial differences than ST 

results. These findings suggest that the activation response is weakly phase-locked to 

stimulus onset in SCH and related to the default mode and salience networks. Furthermore, 

the less pronounced changes in WE from baseline to response for SCH patients suggest an 

impaired ability to reorganize neural dynamics during an oddball task. 

Keywords: wavelet entropy; schizophrenia; neural reorganization; physiological signal 

processing; neuroscience 

PACS Codes: 89.70.Cf; 87.19.L; 87.19.le; 87.85.Ng 

 

1. Introduction 

Schizophrenia (SCH) is a psychiatric disorder characterized by positive and negative symptoms, 

frequently accompanied by impaired cognitive processing [1]. An early SCH diagnosis is crucial, since 

the longer the period of untreated psychosis, the worse the outcome [2]. In this regard, SCH prevalence 

is estimated around 0.5%–1% [1], although this estimation could be overstated [3]. In addition, life 

expectancy is 11–20 years shorter in SCH patients compared to general population [4]. Therefore, 

SCH characterization is of paramount importance. 

It has been proposed that cerebral substrates in SCH may be modified, at least in some cases, by a 

deficit in neural network reorganization during simple and complex tasks [5]. In this context, several 

studies addressed the characterization of neural disconnectivity abnormalities in SCH [6–11]. Most of 

these studies assessed brain differences by means of structural magnetic resonance imaging  

(MRI) [6,9], functional MRI [10] or diffusion tensor imaging [8,11]. It is noteworthy that neural 

mechanisms underlying cognitive dysfunctions in SCH are related to fast changes in the spatio-

temporal patterns of neuronal modulation [12]. Thus, these techniques do not provide enough time 

resolution to study brain dynamics. On the other hand, electroencephalography (EEG) is a non-invasive 

technique, which provides high temporal resolution in the time range of milliseconds. Therefore, EEG 

can be then used to study fast interactions (e.g., changes from baseline to response windows). In this 

regard, event-related potentials (ERPs) have been used to assess cognitive processing in SCH. A P300 

amplitude reduction [13] and an increase of P300 latency [14] have been usually reported in SCH. In 

addition, several studies showed the robust finding that mismatch negativity (MMN) response is 

diminished in patients with SCH [15,16]. MMN is an important paradigm for SCH research, because it 

could be linked to altered dopaminergic neurotransmission [17]. Nevertheless, it is necessary a deep 

study of the spectral and spatial brain dynamics to further understand the neural substrates underlying 

this pathology [12,18–21]. 

Different entropy measures have been used to describe the alterations in neural modulation 

associated with SCH. Takahashi et al. [22] computed the multiscale entropy. They identified abnormal 

EEG signal complexity patterns in anterior brain areas, which were related to disturbed cortical 

dynamics in SCH. Taghavi et al. [23] analyzed the EEG activity from SCH patients and healthy 
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subjects using approximate entropy. In a recent study, Shannon’s entropy was used to classify controls 

and SCH patients from functional MRI [24]. The results did not show significant differences between 

both groups. However, they only studied resting state conditions, but no dynamical changes during a 

cognitive task. ERPs neural dynamics in SCH were analyzed by Bachiller et al. [25,26] by means of 

spectral entropy. In those studies, a widespread increase of signal regularity was obtained for SCH 

subjects [25,26]. 

It is noteworthy that most of the previous studies used an entropy definition based on short-time 

Fourier transform (STFT). Nevertheless, other time-frequency representations can be also considered. 

In this regard, continuous wavelet transform (CWT) has demonstrated to be a useful tool to perform 

the spectral characterization of ERPs [27]. CWT provides a good time resolution for high frequencies, 

as well as good frequency resolution for short time windows [28]. In addition, CWT is suitable for  

non-stationary time series, like biological signals [29]. In this study, wavelet entropy (WE) was 

calculated from CWT. WE is a particularization of Shannon’s entropy [30]. Hence, WE is useful to 

assess the dynamic irregularity patterns of electrophysiological signals, providing a measure of 

transient features for non-stationary ERP data [31]. 

The aim of the study was to characterize the neural network reorganization as a response to a 

cognitive task in SCH by means of WE. For this purpose, we analyzed the spectral changes elicited by 

an auditory oddball paradigm. Specifically, we assessed the dynamic irregularity patterns through  

synchronized-averaging (SA) and single-trial (ST) analyses. Few studies addressed the characterization 

of neural dynamics considering these two approaches jointly [32]. Furthermore, to the best of our 

knowledge, irregularity patters using these two approaches have never been studied in SCH. 

2. Materials 

2.1. Subjects 

Twenty chronic SCH patients and 20 healthy controls with normal hearing participated in the study. 

SCH patients were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 

5th edition [1] (DSM-V) criteria. The clinical status of the patients was scored using the Positive and 

Negative Syndrome Scale (PANSS) [33]. On the other hand, healthy controls (age- and gender-

matched) were recruited through newspaper advertisements and remunerated for their cooperation. To 

discard major psychiatric antecedents (personal or family background) and current symptoms or 

treatments in the control group, semi-structured psychiatric interviews were performed prior to the 

study. The exclusion criteria can be summarized as follows: (i) neurologic illness or major head trauma 

that would result in abnormal EEG; (ii) electroconvulsive therapy; (iii) past or present alcohol or drug 

abuse, except for nicotine; (iv) for the patients, presence of any other current psychiatric process; and 

(v) for the controls, any current or past psychiatric diagnosis, or current treatment with drugs known to 

act on the central nervous system. Socio-demographic and clinical data for both groups are presented 

in Table 1. 

It is noteworthy that all participants gave their informed consent prior to their participation in the 

study. Moreover, the study protocol was approved by the local Ethics Committee of University 
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Hospitals from Valladolid and Salamanca (Spain) according to the code of ethics of the World Medical 

Association (Declaration of Helsinki). 

Table 1. Socio-demographic and clinical characteristics. Values are shown as mean ± 

standard deviation (SD). NA represents “not applicable”. 

Characteristic SCH Patients Controls 

Age (years)* 35.45 ± 12.07 33.35 ± 12.26 
Gender (Male:Female) 14:6 14:6 

PANSS-Positive 18.87 ± 4.39 NA 
PANSS-Negative 20.93 ± 5.76 NA 

PANSS-Total 74.47 ± 17.70 NA 

* Non-significant differences were found in age (Mann–Whitney U-test, p > 0.05). 

2.2. Recording and Preprocessing of ERP Signals 

Data acquisition was carried out using an EEG system (BrainVision, Brain Products GmbH; 

Munich, Germany). Electrode placement followed the 10/20 system, with 17 electrodes at Fp1, Fp2, 

F3, F4, F7, F8, C3, C4, P3, P4, O1, O2, T5, T6, Fz, Pz and Cz. Impedances were kept below 5 kΩ 

during ERP acquisition. ERP recordings were performed while the participants were sat, relaxed and 

with their eyes closed. The auditory oddball task consisted in random series of 600 tones whose 

duration was 50 ms, intensity being 90 dB and inter-stimulus interval between tones randomly jittered 

between 1.16 and 1.44 s. Three different tones were presented: target (500 Hz tone), distractor (1000 Hz 

tone) and standard (2000 Hz tone) with probabilities of 0.20, 0.20 and 0.60, respectively. 

ERP signals and stimulus markers were continuously recorded at a sampling frequency of 250 Hz, 

during 13 min of auditory oddball task. Data were re-referenced over Cz electrode to the average 

activity of all active sensors in order to minimize the effect of microsaccadic artifacts [34,35]. Then, 

signals were filtered using a band-pass finite impulse response filter with a Hamming window between 

1 and 70 Hz. In addition, a 50 Hz notch filter was used in order to remove the power line artifact. 

Finally, a three-steps artifact rejection algorithm was applied to minimize oculographic and 

myographic artifacts [29]: (i) components related to eyeblinks, according to a visual inspection of the 

scalp maps and their temporal activations from independent component analysis (ICA), were discarded; 

(ii) segmentation into 1 s-length trials ranging from −300 ms before stimulus onset to 700 ms after 

stimulus onset; and (iii) automatic and adaptative trial rejection using a statistical-based thresholding 

method. Only target tones were considered for further analysis. The average number of selected trials 

for target condition was 80.85 ± 20.62 for SCH patients and 88.75 ± 10.12 for healthy controls  

(mean ± SD). 

3. Methods 

ERPs can be analyzed using two different approaches: SA analysis and ST analysis [36,37]. SA 

analysis is based on the averaging of all trials. It provides a measure of the evoked response, which is 

phase-locked to the stimulus onset. On the other hand, ST analysis is useful to jointly analyze the 

evoked and the induced response, which is non-phase-locked to the stimulus onset. This different 
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behavior is related to the phase-resetting hypothesis, which implies an interaction between stimulus-

related response and ongoing activity [38]. In summary, SA suppresses induced responses that are not 

time locked to the stimulus, while ST analyses retain both evoked and induced responses. These two 

methodologies can be helpful to further understand the neural network reorganization in SCH during 

an oddball task [36]. 

In SA analysis, the target trials were firstly averaged over time to obtain the evoked response. Then, 

WE was computed. In ST analysis, WE was calculated for each artifact-free trial. Then, WE was averaged 

across trials. A descriptive diagram of data acquisition and processing steps is shown in Figure 1, both 

for SA (left panel) and ST (right panel) analyses. It is noteworthy that both SA and ST analyses are 

based on similar processing steps, like time-frequency estimation, WE computation and statistical 

analysis. These methods are described in the following sections. 

 

Figure 1. Descriptive diagram corresponding to SA and ST analyses. 
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3.1. Continuous Wavelet Transform 

ERP recordings are non-stationary signals, whose properties may change over time [39]. Hence, 

methods that require stationary time series, like Fourier transform, are not suitable to analyze their 

time-varying properties. CWT provides an alternative way to describe the dynamic properties of ERPs. 

Wavelet analysis relies on the introduction of an appropriate basis of functions. A wavelet is a zero 

mean function characterized by its localization in time (Δt) and frequency (Δf) [40]. In this study, the 

complex Morlet wavelet was chosen as “mother wavelet”, since it provides a biologically plausible fit 

to ERP data [36]. Complex Morlet wavelet is defined as follows [28]: 
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where Ωb is the bandwidth parameter and Ωc represents the wavelet center frequency. In this study, 

both were set to 1, in order to obtain a balanced relationship between Δt and Δf at low frequencies [29]. 

A wavelet family is a set of elementary functions generated by dilations and translations of the 

mother wavelet [41]. Thus, the CWT of each trial is defined as the convolution of the trial, x(t), with a 

scaled and translated version of the complex Morlet wavelet: 

( ) ( ) ,
1

,CWT * dt
s

kt
tx

s
sk 






 −⋅⋅= 

+∞

∞−

ϕ  (2)

where s represents the dilation factor (s = {si, i = 1, …, M}), k is the translation factor and * denotes 

the complex conjugation. The dilation factor was set to include frequencies from 1 Hz (s1) to 70 Hz 

(sM) in equally-spaced intervals of 0.5 Hz [29]. 

The wavelet energy is a simple way to represent the magnitude of EEG oscillations at specific 

scales [41]. The wavelet scalogram (WS) summarizes the distribution of the signal energy in the  

time-frequency plane. It is obtained as the squared modulus of the wavelet coefficients [28].  

In this study, WS was normalized (WSn) to range from 0 to 1. Thus, it can be interpreted as a probability 

density function: 
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Once the WSn was obtained for each target 1 s-length trial, two windows of interest were 

considered: (i) the baseline window, [−300, 0] ms before the stimulus onset; and (ii) the response window, 

[150, 450] ms after stimulus onset [29]. 

On the contrary to the analyses based on Fourier transform, CWT has a variable time-frequency 

resolution [28]. Shorter time windows are related to higher frequencies, while longer time windows are 

associated with lower frequencies [28,42]. It is important to note that ERP signals are finite and  

short-time recordings. Therefore, edge effects are not negligible [40]. A cone of influence (COI) was 

defined in order to avoid edge effects [40]. In the present research, two windows were defined: 

baseline and response (see Figure 1). Thus, the spectral content must be only considered into the time-

frequency regions delimited by their respective COIs. Specifically, spectral content between 4 Hz and 
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70 Hz was considered for further analysis. Thereby, delta band, between 1 and 4 Hz, was not analyzed, 

since it is associated with a wavelet duration of hundreds of milliseconds [29]. 

3.2. Wavelet Entropy 

Shannon’s entropy was defined in 1958 [30]. Similarly, WE provides an estimation of the signal’s 

irregularity. The time-dependent WE can be defined as follows [41]: 

( ) ( ) ( ) ( )[ ],,WSlog,WS
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WE nn sksk
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In the present study, WE(k) was computed for all subjects from −300 ms to 700 ms from stimulus 

onset. Then, WE(k) was averaged in the time domain to obtain a single WE value on each window: 

baseline (i.e., from −300 ms to the stimulus onset) and response (i.e., from 150 ms to 450 ms  

post-stimulus). The following equation summarizes the averaging of WE for each window of interest: 
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where K represents the number of samples in the analyzed window and w denotes the corresponding 

window: baseline (b) or response (r). It is important to note that WE computation for SA analysis  

( SAWE ) was directly obtained, because the synchronized trial averaging was previously carried out. 

However, in the case of WE for ST analysis ( STWE ), WE values were averaged across trials  

(see Figure 1). 

Thus, if a signal has few spectral components, there will be few non-zero energy components in the 

spectrogram. As a consequence, WE will be close to zero. On the other hand, a signal with several 

spectral components, like white noise, will have the energy distributed over the whole time-frequency 

plane. Thus, WSn will be similar for all resolution levels and the WE will yield a maximum value of 1. 

3.3. Statistical Analysis 

A descriptive analysis was initially performed to explore data distribution (normality and 

homoscedasticity). Variables did not meet the parametric assumptions. Hence, nonparametric tests 

were used to analyze the results. Wilcoxon signed-rank test was used to compare baseline and response 

values for within-group analyses. Mann–Whitney U-test was used for between-group analyses. Finally, 

in order to deal with the multiple-comparison problem, p-values obtained from both tests were 

corrected with the false discovery rate (FDR) method [43]. 

4. Results 

4.1. Single-Trial ERP Analysis 

Initially, ST
bWE  and ST

rWE  were averaged over all sensors and trials to obtain a single value per 

subject. Figure 2 summarizes the global results of STWE . Pairwise comparisons indicated that controls 

exhibited a statistically significant decrease of ST
rWE compared to ST

bWE  (p = 7.21 × 10−3, Wilcoxon 

signed-rank test). Non-significant differences were found between baseline and response windows in 
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SCH patients (p > 0.05, Wilcoxon signed-rank test). In addition, non-significant differences were 

found in ST
bWE  and ST

rWE  between both groups (p > 0.05, Mann–Whitney U-test). 

Spatial analyses of the same (un-pooled) data are summarized in Figure 3. It depicts the ST
bWE  and 

ST
rWE  spatial distributions for both groups. Statistical analyses showed a widespread decrease of 
STWE for controls from baseline to active response. Although this decrease can also be observed in 

SCH patients, it was less evident. Non-significant differences were found either in the baseline or in 

the response window between both groups. Nevertheless, between-group analysis showed a more 

pronounced STWE  decrease for controls than for SCH patients. Controls showed a widespread 

decrease of STWE , while SCH patients only exhibit a slight and non-significant decrease. The most 

significant differences between both groups were found in central regions (Mann–Whitney U-test). 

 

Figure 2. Mean and standard errors corresponding to the grand-average STWE  across subjects 

for each group (controls and SCH patients) in the baseline and the response windows. 

 

Figure 3. Sensor-level topographic maps of the statistics computed for STWE  between 

controls and SCH patients. Right column shows within-group differences from baseline to 

response windows (Wilcoxon signed-rank test), whereas bottom row shows between-group 

differences for each window (Mann–Whitney U-test). The corrected p-values are obtained 

controlling FDR. 
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4.2. Synchronized-Averaging ERP Analysis 

In a first step, SA
bWE  and SA

rWE  were averaged over all sensors to obtain a single value per subject. 

Figure 4 depicts the boxplots corresponding to the grand-averaged SAWE  values for each group. In the 

case of the controls, SA
rWE  was significantly lower than SA

bWE  (p = 8.86 × 10−8, Wilcoxon  

signed-rank test). Significant differences were also found between baseline and response windows in 

SCH patients (p = 1.40 × 10−4, Wilcoxon signed-rank test). Between-group comparisons showed  

non-significant differences in SA
bWE  (p > 0.05, Mann–Whitney U-test). Nevertheless, comparisons for 

SA
rWE  values between both groups showed significant differences (p = 8.32 × 10−3, Mann–Whitney  

U-test). 

Spatial patterns of un-pooled SAWE  are summarized in Figure 5. SA
bWE  and SA

rWE  are depicted 

for both groups. Within-group analyses showed a widespread decrease of SAWE  for controls from 

baseline to active response. This reduction affects to more regions that in ST analysis. Changes in 
SAWE  were significant in all channels (Wilcoxon signed-rank test). This SAWE  decrease can also be 

observed in SCH patients, but it was less widespread again. Regarding between-group analysis, non-

significant differences were found in the baseline window, but these differences were significant in the 

response window, mainly in central and frontal electrodes (Mann-Whitney U-test). Decrease in SAWE  

values is more evident for controls group than for SCH patients. However, SCH patients also exhibit a 

widespread decrease of SAWE , though this reduction is less significant, especially in left parieto-

occipital regions. 

 

Figure 4. Mean and standard errors corresponding to the grand-average SAWE  across 

subjects for each group (controls and SCH patients) in the baseline and the response windows. 

5. Discussion 

In this study, we analyzed neural dynamics in SCH during an auditory oddball task by means of WE. 

We found that SCH patients showed lower changes in their irregularity patterns during the active response 

compared to controls for the two analyzed approaches: ST and SA. This abnormal spectral modulation 

suggests that a neural network reorganization deficit can be associated to SCH [44]. ST and SA 

analyses provided complementary information on the spatial patterns of neural network reorganization. 

SA approach captures stimulus-evoked processes whose oscillations were phase-synchronized from 

experimental events [36]. Neurophysiological evidences have linked evoked power to sensory 

registration procedures, as well as “top-down” cognitive processing during the active perception [36,37]. 
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On the other hand, ST approach obtains event-related changes in ERP activity that are time-locked, but 

not phase-locked to the stimulus onset. Brain’s information processing is characterized by oscillations 

at various frequencies reflecting multiple neural processes at the same time [36]. Therefore, ST analysis 

may provide a measure of integrative and dynamically adaptive information processing [36,37]. 

 

Figure 5. Sensor-level topographic maps of the statistics computed for SAWE  between 

controls and patients. Right column shows within-group differences from baseline to 

response windows (Wilcoxon signed-rank test), whereas bottom row shows between-group 

differences for each window (Mann–Whitney U-test). The corrected p-values are obtained 

controlling FDR. 

ST results showed a significant WE decrease from baseline to response window in controls (central 

and frontopolar areas) and SCH patients (only in central areas). Between-group analyses did not show 

statistically significant differences during the baseline and the response windows. These findings are 

consistent with previous studies, which found similar spatial patterns using spectral entropy [25,26] or 

analyzing the power in different frequency bands [45]. 

Regarding SA results, WE exhibits a similar behavior to ST analysis: (i) widespread decrease from 

baseline to response window for both groups; (ii) more pronounced modulation for controls compared 

to SCH patients; and (iii) non-significant between-group differences in the baseline window. However, 

SA analysis showed that several brain regions were involved in the neural network reorganization: 

central, frontal and temporal areas. This result can be due to the fact that only evoked response is 

considered in SA analysis. If the induced response was similar in baseline and response windows, it 

could contribute to reduce within-group differences in ST analysis. The oscillatory activity, which was 

observed in SA analysis, is related to the long-range cortical oscillatory events [46]. On the contrary, 

the smaller change in irregularity that we observed in ST analysis should correspond to a strong  

phase-locked variation, partially canceled out by some components non-phase-locked. Likewise, ST 
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analysis is a useful tool to study phase/synchrony of ERPs [36]; nevertheless, WE is related to the 

power spectrum distribution. In this regard, phase synchronization was suggested as a key mechanism 

of dynamical neuronal communication, and can provide a useful measure of neural integration in 

sensory task-relevant procedures [47]. These findings are consistent with another study that showed 

greater differences between controls and SCH patients in the assessment of the evoked response than in the 

evaluation of the total response (induced and evoked) in delta band [32]. Therefore, the significant 

reduction of the irregularity in the evoked response for controls and the less evident difference in the 

evoked response for SCH patients reveals that activation response is weakly phase-locked to stimulus in 

schizophrenia. 

It is important to understand the reasons of WE reduction from baseline to active response in ST 

and SA analyses. Previous studies found a reduction of the P300 amplitude in SCH patients, which 

was related to a decrease of relative power in alpha frequency band [42,48]. An increase of power in 

theta band during the P300 window has also been reported [49]. It was associated to the transitory 

coordination of EEG activity among distant regions [50]. In addition, high frequency bands are more 

influenced by the induced response than low frequency bands [51]. Thus, following these previous 

studies, it can be inferred that evoked response produced an increase in the concentration of low-frequency 

power (mainly around theta band [49]) at the expense of alpha and higher frequencies during the 

response window [42,48,51]. This result causes a reduction of the WS uniformity, mainly related to a 

decrease in power in the alpha band [48]. Although, the present study did not focus on spectral changes 

in specific frequency bands, these previous findings could provide a reasonable explanation for the 

decrease in WE that we observed. Low frequencies, like alpha band, are related to long-range 

interactions [20], suggesting that impaired activation response of long-range interactions might 

contribute to the pathological process. The lower irregularity reduction in the cognitive response of 

SCH patients seems to be associated with an abnormal information processing, as well as it could be 

related to the disrupted integrative functions of local and distributed neural circuits [32]. This result 

suggests that SCH is accompanied by a disrupted network reorganization of neural functions 

responsible of the P300 generation, mainly in long-range interaction. 

Previous studies reported interesting findings regarding tone comparisons in SCH [25,52]. Their 

conclusions support the notion that bioelectrical responses to both distractor and target tones during an 

oddball task were attenuated in SCH patients compared to controls. In the present study, similar 

findings were found using WE. Thus, widespread significant differences were only found in the study 

of the target tone when comparing between-groups responses. In addition, higher differences between 

target and standard tones were obtained for controls than for SCH patients when target and standard 

tones were compared during the response window. Other studies reported similar results [25,36,52]. 

The standard tone is more likely to occur than the target tone, but lacks the novelty and relevance that 

characterize the target. Therefore, while the standard tone is similarly processed by SCH patients and 

controls, the target tone produces a diminished response in SCH patients compared to controls [25]. 

These outcomes are in line with the disconnection hypothesis in SCH. This hypothesis poses the idea 

that the SCH pathology is expressed at the modulation level of the associative plasticity for memory, 

which is more related to target than to non-target tones [5]. 

The default mode network (DMN) is an important brain network, which is active at rest, but  

de-activates during the performance of most cognitive tasks [53]. The middle-line of the brain includes 
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the main cerebral areas associated with DMN [54]. A larger activity in this network is consistent with 

the spatial patterns at baseline window in both SA and ST approaches (Figures 3 and 5). During the 

performance of a cognitive task, salience network is active. Some studies suggest that aberrant activity 

related to salience network can play a cardinal role in psychosis [55]. This network mainly includes 

insula an anterior cingulate cortex [55,56]. Figures 3 and 5 show that the main differences in a 

cognitive response appear in these regions. However, this modulation process is more evident in the 

control group, suggesting that SCH patients show an impaired ability for reconfiguring functional 

brain networks during a cognitive task. It is noteworthy that our analyses are based on low-density 

EEG recordings. High-density EEG would be desirable to infer accurate spatial conclusions on neural 

networks, like DMN or salience networks. 

Some limitations of the study merit special attention. It could be appropriate to increase the sample 

size, including patients with other pathologies different than SCH, like bipolar disorder. The study of 

the delta band could be interesting to complement the reported results. For that purpose, it would be 

necessary to change the acquisition protocol in order to increase the window length. Nevertheless, 

some studies reported the difficulty of including delta band, since the response window must contain a 

minimum number of oscillation periods to obtain an accurate spectral estimation [47,57,58]. Likewise, 

other entropy measures, like multiscale entropy, could provide further information on the neural 

dynamics associated with SCH. Other features related to connectivity or cross-frequency coupling 

could complement the information obtained from WE. In this regard, ST analysis would merit special 

attention, since a deeper study of the phase and synchrony of the signals would be required. 

6. Conclusions 

ST and SA analyses provided complementary information on dynamic patterns of irregularity 

during a cognitive task. The less pronounced difference in the cognitive response in ST analysis 

suggests that the active response is weakly phase-locked to stimulus in SCH, mainly in long-range 

interactions. It is noteworthy that both evoked and induced responses involve the coordinated activity 

of different brain regions, including dynamic neural networks associated with resting (DMN) and 

cognitive performance (salience network). In addition, WE proved to be an appropriate measure to 

characterize ERP dynamics. Hence, WE between-group differences evidenced that irregularity patterns 

observed in ERP can be associated with an abnormal network reorganization in SCH during an 

auditory oddball task. 
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A B S T R A C T

Objective: Higher mental functions depend on global cerebral functional coordination. Our aim was to study fast
modulation of functional networks in schizophrenia that has not been previously assessed.
Methods: Graph-theory was used to analyze the electroencephalographic (EEG) activity during an odd-ball task
in 57 schizophrenia patients (18 first episode patients, FEPs) and 59 healthy controls. Clustering coefficient
(CLC), characteristic path length (PL) and small-worldness (SW) were computed at baseline ([−300 0] ms prior
to stimulus delivery) and response ([150 450] ms post-stimulus) windows. Clinical and cognitive assessments
were performed.
Results: CLC, PL and SW showed a significant modulation between baseline and response in controls but not in
patients. Patients obtained higher CLC and SW at baseline, lower CLC and higher PL at response, and diminished
modulation of CLC and SW as compared to controls. In patients, CLC and SW modulation were inversely
associated to cognitive performance in executive tasks and directly associated to working memory. Similar
patterns were observed in FEPs. CLC and SW during the baseline were inversely associated to their respective
modulation magnitudes.
Conclusions: Our results are coherent with a hyper-segregated network at baseline (higher CLC) and a decreased
modulation of the functional connectivity during cognition in schizophrenia.

1. Introduction

Mental functions depend on global dynamic coordination of cere-
bral networks (Dehaene and Changeux, 2011; Varela et al., 2001),
whose characteristics can be assessed using methods derived from
graph-theory. Previous studies in the normal brain revealed structural
and functional small-world properties as an efficient way to balance
local specialization and integration (Latora and Marchiori, 2001;
Sporns et al., 2004). These network properties can be jointly summar-
ized in the “small-worldness” parameter (SW), which is defined as the

ratio between the global clustering coefficient (CLC) and the character-
istic path length (PL) of the network. In a binary network, local CLC is
the ratio between the number of triangles in which a given node
participates and the maximum possible number of triangles including
that node. This measure, averaged across the nodes of the entire
network, can be used as an indicator of the network segregation and
of local efficiency of information transfer, probably related to specia-
lization. PL is the average of shortest distances for all possible pairs of
nodes. It is usually interpreted as a metric of information integration
across areas. Both parameters are of interest in the study of schizo-
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phrenia, given the abnormal integration of cerebral networks observed
in this psychiatric disorder (de Jong et al., 2013; Friston, 1998;
Kaufmann et al., 2015; Touskova and Bob, 2015).

Quickly evolving patterns of interaction (in the order of hundreds of
milliseconds) are likely to underlie cognitive function in real time
(Bressler and Tognoli, 2006), (Sporns, 2011b). Considering such rapid
modulation of cortical activity (Bressler et al., 1993; Dehaene and
Changeux, 2011), the high temporal resolution of electroencephalo-
graphy (EEG) and magnetoencephalography (MEG), combined with a
complex network analysis, can be useful for assessing global connec-
tivity dynamics in normal and altered cognition. In healthy subjects, a
MEG study showed that the cognitive effort drives normal brain
networks to a less clustered configuration and more long-range
synchronization (Kitzbichler et al., 2011). Using the EEG we observed
in healthy subjects a significant SW increase from baseline (−300 to
0 ms prior to stimulus onset) to response (150 to 450 ms post-stimulus)
windows during an odd-ball task (Martin-Santiago et al., 2016).

However, most EEG or MEG network analyses published in schizo-
phrenia did not take into account temporal dynamics or compared
parameters during different tasks. Using graph theory analyses from
resting EEG signals, lower CLC and shorter PL were reported in
schizophrenia (Rubinov et al., 2009). Also, a lower SW index was
reported in 20 chronic patients at rest, whereas decreased CLC and
increased PL values were appreciated during a working memory test
(Micheloyannis et al., 2006). More recently, globally reduced segrega-
tion and integration were described in 34 schizophrenia patients during
an odd-ball task (Shim et al., 2014), without discriminating between
windows in the task. In a functional magnetic resonance (fMRI) study, a
lower SW index in schizophrenia patients when compared to controls
was reported both at rest and during an odd-ball task (Ma et al., 2012).
Shorter PL values during task performance were also observed in 20
schizophrenia patients performing a contextual paradigm (Fogelson
et al., 2013). These previous studies are in line with an abnormal neural
synchrony in schizophrenia, which involves dysfunctional integration
among neural systems (Friston, 1998). In this context, graph theory
would predict in schizophrenia a smaller modulation of the whole
network, observable in the small-world characteristics of the brain.

Thus, deficits in the fast modulation of network properties might be
found in schizophrenia. In particular, our working hypotheses were that
(i) patients would exhibit altered modulation of functional network
properties with cognitive activity across the brain; and (ii) such
modulation would correlate with patient's symptoms and/or cognitive
performance. We analyzed stimulus-evoked oscillations given its asso-
ciation with “top-down” cognitive processing (Makeig et al., 2004). Due
to the fact that the odd-ball task is relatively easy to perform, it was
used for the analyses of the dynamical changes in brain network
properties. Thus, differences in performance are unlikely to hamper
the data interpretation. Furthermore, it is well-known that oddball tasks
activate a relatively large neural network (Bledowski et al., 2004;
Linden et al., 1999) and an extensive literature supports their relevance
in schizophrenia (Bramon et al., 2004).

1.1. Aims of the study

To assess the fast dynamic modulation of brain network properties
during a cognitive task in schizophrenia using network parameters
summarizing segregation and integration of this network.

2. Materials and methods

2.1. Participants

Fifty-nine healthy controls and 57 schizophrenia patients (39
chronic and 18 first-episode (FE) patients) with normal hearing were
included in the study. Exclusion criteria were: (i) any neurological
illness; (ii) history of cranial trauma with loss of consciousness longer

than one minute; (iii) past or present substance abuse, except nicotine
or caffeine (iv) total intelligence quotient (IQ) smaller than 70; and (iv)
for patients, presence of any other psychiatric process, and (v) for
controls, any current psychiatric or neurological diagnosis or treatment.

Patients were diagnosed according to the Diagnostic and Statistical
Manual of Mental Disorders, 4th edition. They were on antipsychotic
monotherapy. Chronic patients received stable doses of atypical anti-
psychotics. FEP only received antipsychotics for< 72 h prior to EEG
acquisition followed by a wash-out period of 24 h. Hence, the possible
bias due to the selection of acutely ill patients able to cooperate during
EEG acquisition without any prior treatment was avoided. Symptoms
were scored using the Positive and Negative Syndrome Scale (PANSS)
(Kay et al., 1987). Healthy controls were recruited through newspaper
advertisements. Demographic and clinical characteristics are shown in
Table 1.

Cognitive data from patients and controls were collected using: the
Wechsler Adult Intelligence Scale, WAIS-III (IQ); the Trail-Making Test,
TMT ((time part B – time part A)/time part A); the Wisconsin Card
Sorting Test (WCST; completed categories and percentage of persevera-
tive errors); and the Spanish version of the Brief Assessment in
Cognition in Schizophrenia Scale (BACS) (Segarra et al., 2011).

Written informed consent was obtained from all participants after
full printed information. The ethical committees of the participating
hospitals approved the study.

2.2. Electroencephalographic recordings

EEG data were recorded using a 17-channel EEG system
(BrainVision®, Brain Products GmbH). Active electrodes were placed
in an elastic cap at Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, O1, O2, T5,
T6, Fz, Pz and Cz (international 10–20 system). Impedance was kept
under 5 kΩ. Thirteen minutes of eyes-closed EEG was obtained during
an auditory odd-ball 3-stimulus paradigm, which consisted of 600
random sequences of target (500 Hz-tone, probability 0.2), distractor
(1000 Hz-tone, probability 0.2), and standard (2000 Hz-tone, probabil-
ity 0.6) tones. The tone duration was 50 ms, rise and fall time being
5 ms and intensity being 90 dB. Inter-stimulus interval between tones

Table 1
Demographic and clinical characteristics. Significant differences with respect to controls.

Schizophrenia
patients (n= 57)

First episode
patients
(n= 18)

Controls
(n= 59)

Age (years) 34.1 (8.4) 28.4 (8.5)⁎⁎ 35.0 (11.6)
Sex (male:female) 29:28 12:6 32:27
PANSS-positive 11.6 (4.8) 11.3 (3.7) NA
PANSS-negative 18.0 (8.5) 21.2 (9.3) NA
PANSS-total 55.2 (22.6) 59.8 (25.6) NA
Total IQ 88.1 (16.4) 87.7 (16.6) 104.9 (10.0)
BACS list of words 36.0 (11.7)⁎⁎ 34.3 (12.2)⁎⁎ 55.5 (7.7)
BACS digits 16.5 (5.1)⁎⁎ 15.3 (5.7)⁎⁎ 22.8 (3.2)
BACS motor speed 46.5 (19.3)⁎⁎ 40.0 (17.8)⁎⁎ 57.0 (15.4)
BACS verbal fluency 17.2 (6.0)⁎⁎ 17.5 (5.1)⁎⁎ 25.4 (4.6)
BACS execution speed 36.7 (15.6)⁎⁎ 33.9 (14.1)⁎⁎ 67.7 (10.7)
BACS Tower of London 14.1 (5.4)⁎⁎ 12.7 (5.7)⁎⁎ 18.6 (2.6)
WCST completed
categories

3.8 (2.0)⁎⁎ 3.5 (2.2)⁎⁎ 5.8 (0.8)

WCST perseverative
errors (%)

20.4 (13.3)⁎⁎ 22.9 (9.8)⁎⁎ 9.6 (4.8)

TMT (time B-A/A) 1.9 (1.4)⁎⁎ 2.4 (1.7)⁎⁎ 0.9 (0.6)
Oddball task accuracy
(%)

93.0 (9.0) 94.2 (7.4) 97.9 (4.4)

Oddball task reaction
time (ms)

223 (77) 220 (66) 247 (32)

P300 amplitude in Pz
(μV)

1.1 (0.5) 1.7 (0.6) 2.2 (0.8)

P300 latency in Pz (ms) 375 (87) 370 (60) 357 (45)

⁎⁎ p < 0.001.
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randomly jittered between 1.16 and 1.44 s. The participants were asked
to press a button whenever they detected the target tones. Target tones
were considered ‘attended tones’ when they were followed by a button
press. Only ‘attended’ target tones were taken into account for further
analysis (Gomez-Pilar et al., 2015). Alertness differences across groups
were controlled by comparing accuracy of target responses.

EEG signals were recorded using a sampling frequency of 500 Hz
and referenced over Cz electrode. EEG recordings were subsequently re-
referenced to the average activity of all sensors in order to minimize the
effect of microsaccadic artifacts (Bledowski et al., 2004). Data were
filtered using a finite impulse response (FIR) band-pass filter (1–70 Hz,
Hamming window) and a notch filter to remove the power line
frequency interference (50 Hz, Butterworth filter). Artifact rejection
was conducted following a three-step approach (Bachiller et al., 2015,
Gomez-Pilar et al., 2015). Firstly, an independent component analysis
(ICA) was carried out to decompose each EEG recording into a total of
17 components (Delorme and Makeig, 2004). After a visual inspection
of the scalp maps and the temporal activation, components related to
eye-blinks and muscle artifacts were discarded. Secondly, continuous
EEG data were segmented into 1 s-length trials ranging from −300 ms
before target stimulus onset to 700 ms after onset. Thirdly, trials with
artifacts were automatically rejected if their amplitude exceeded a
statistical-based local adaptive threshold (Bachiller et al., 2015).

2.3. Signal similarity across sensors: event-related coherence

Continuous wavelet transform (CWT) was computed to obtain a
time-frequency representation of EEG recordings. Complex Morlet
wavelet was used because it provides a biologically plausible fit to
the signal being modeled (Roach and Mathalon, 2008). The scaling
factor was set to include frequencies from 1 to 70 Hz (Bachiller et al.,
2015, Gomez-Pilar et al., 2015, Tallon-Baudry et al., 1996). Thus, 1 s-
length evoked responses ([−300–700] ms) were decomposed using
CWT into two windows: (i) baseline ([−300 0] ms to stimulus onset);
and (ii) response ([150 450] ms after stimulus onset) (Bachiller et al.,
2015, Gomez-Pilar et al., 2015). These windows were chosen to
summarize the underlying temporal dynamics between resting (inter-
stimulus) and the cognitive processing (centered around the usual P300
peak) windows. We previously showed a significant modulation of
graph parameters between these windows in healthy subjects (Martin-
Santiago et al., 2016). It is noteworthy that edge effects are not
negligible, since EEG trials are finite and short-time recordings. Hence,
two cones of influence (COIs) were defined around baseline and
response windows to avoid border distortion (Torrence and Compo,
1998).

From CWT decomposition, event-related Coherence (ERC) was
computed to assess linear functional interactions (Nunez et al., 1997).
ERC is useful to identify coherent activity between cognitive networks
(Yener and Basar, 2013), since it is a measure of the degree of
coordination between assemblies of neurons triggered by a cognitive
task (Basar et al., 2016). In this study, ERC was calculated for each pair
of electrodes and its values were averaged in the 4–70 Hz frequency
band to obtain a global similarity measure for each time window.
Changes in ERC between resting and active windows allowed the
assessment of task-related modulation in graph parameters for each
group. Since we had no a priori hypothesis regarding modulation
deficits in any particular band, network analyses were performed in the
whole frequency band to avoid an inflation of the number of compar-
isons.

Further description of CWT and ERC is detailed in the
Supplementary material.

2.4. Graph parameters

In order to model a system as a graph, nodes should represent the
dynamical units and their links should be the interactions between

them (Boccaletti et al., 2006). Thereby, the brain can be assimilated to a
complex network with functional connectivity units that can be altered
due to a pathological process (Stam and van Straaten, 2012). The linear
interaction between the neural activity in different cerebral regions can
be used to represent the brain as a graph. Each electrode would
correspond to a vertex (or node) and the relationships between
electrodes would be the links (or edges) between them. In the present
study, we used ERC to set the weights of the links. ERC could be useful
in patients with cognitive impairment, such as schizophrenia, to study
whether sensory and cognitive networks are manifested in topologically
different places and in different frequency windows (Yener and Basar,
2013). Completely filled ERC matrices were then used as adjacency
matrices. Hence, the generated fully connected network was composed
of N = 17 nodes, corresponding to the electrodes, and network weights
set by the ERC values between electrodes.

Networks can be described by several parameters. The present study
focused on two complementary features of the brain network: segrega-
tion and integration, together with their fast modulation during a
cognitive task. In order to characterize the segregation of the network,
we computed CLC (Rubinov and Sporns, 2010). In the case of weighted
networks, CLC has been generalized as follows in order to avoid the
influence of the mean edge weight:

( ) ∑ ∑CLC N w w w= 3 ( ) ,
i n j h n
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b
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where wxy denotes the edge weight between electrodes i and j.
To quantify the integration of the network, we computed PL. It is

defined as the average shortest path length between all pairs of nodes in
the network (Rubinov and Sporns, 2010):
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where dij indicates the minimum distance (i.e. the inverse of ERC)
between electrodes i and j. It is noteworthy that the previous definition
takes into account that some of the paths with minimum distance can
be formed of multiple edges.

To facilitate the comparison with previous research, the balance
between CLC and PL was computed. This ratio (known as SW) is useful
to assess the small-world properties of the network. Small-world
networks are defined as those significantly more clustered than random
networks, yet have approximately the same PL as random networks
(Rubinov and Sporns, 2010). SW index is defined as the ratio between
segregation and integration, where CLC and PL have been normalized in
order to eliminate the dependence on basic parameters of the network,
such as network size, or density (Stam et al., 2009):

γ CLC
ClC

= ,
random (3)

λ PL
PL

= ,
random (4)

SW γ
λ

= ,
(5)

where 〈ClC〉random and 〈PL〉random denote CLC and PL averaged over an
ensemble of 50 surrogate networks, which were computed from a
randomization of the original network by reshuffling its connections
(Stam et al., 2009).

2.5. Parameter baseline correction (modulation)

The baseline correction process was applied to achieve a stimulus-
independent characterization (Bachiller et al., 2015) and to quantify
the dynamical changes during the evoked response (i.e. modulation).
Network parameters were computed for each temporal window (base-
line and response), providing meaningful information about the
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temporal evolution of network properties (Bachiller et al., 2015).
Modulation in each parameter (Pc) was assessed as the result of the
following baseline correction procedure:

P P P P γ λ SW= − , = { , , },C RES BL (6)

where PBL and PRES represent the parameter averaged for the baseline
and the response windows. Negative or positive values indicate
decreases or increases from baseline to response, respectively.

2.6. Statistical analyses

After testing normality and homoscedasticity of the distribution of
network parameters (using Kolmogorov-Smirnov and Levene's tests,
respectively), the following analyses were performed:

i. Network parameters at baseline and response windows were
compared between groups using a multivariate analysis of covar-
iance (‘group’ as fixed factor, and ‘sex’ and ‘age’ as covariates) with
Bonferroni correction. Using a similar multivariate analysis of
covariance, modulation of network parameters (γ, λ and SW
changes between baseline and response windows) was compared
between groups. Effect sizes were assessed using Cohen's d when
statistically significant differences were found. This was followed by
univariate within-group analyses of network parameters using
paired t-tests (significance level: α= 0.009).

ii. The statistical significance of possible associations between baseline
network parameters and the corresponding modulation values in
patients, (only where significant between-group differences in
modulation were detected) was assessed using Pearson correlation.
In order to discard a major role for long-term treatment and
chronicity, these and the previous analyses were repeated only for
FEP.

iii. We also assessed the significance of the association between
modulation of network parameters (only those that showed sig-
nificant between-group differences) and clinical and cognitive data.
Spearman's correlation was used, since cognitive data distribution
did not meet parametric assumptions.

iv. Finally, spatial analyses of the network changes were performed
using nodal CLC, paired and independent t-test for within and
between group comparison respectively.

3. Results

3.1. Between- and within group differences in network parameters

3.1.1. Between-groups differences at baseline and response windows
There was a significant multivariate effect for ‘group’ (Wilk's

lambda = 0.87; F= 2.24; df= 6109; p= 0.045) but not for ‘age’ or
‘sex’. The inter-subject effects tests (Table 2) revealed statistically
significant differences in SW, normalized clustering coefficient (γ)
and normalized path length (λ). During the baseline, SWBL and γBL
were higher for patients than for controls. In the case of the response,
patients obtained smaller γRES values and larger λRES values than
controls. There were no statistically significant differences between
FEP and chronic patients in mean network parameters.

3.1.2. Between- and within-group differences in network modulation
There was a significant multivariate effect for ‘group’ but not for

‘age’ or ‘sex’ on mean network modulation (Wilk's lambda = 0.98;
F = 3.64; df = 3112; p= 0.040). The inter-subject effects tests re-
vealed statistically significant differences with moderate effect sizes for
modulation (values at response minus baseline windows) in path
length, clustering coefficient and small-worldness (γc, λc and SWc,
respectively) with smaller values in patients (see Table 2).

Controls showed statistically significantly positive changes for γc
(i.e. a statistically significant increase from baseline to response
windows) (t= 3.38, df= 58, p = 0.001), λc (t= 2.84, df= 58,
p = 0.006) and SWc (t= 3.27, df= 58, p = 0.002). In patients, non-
significant changes were observed for γc (t= −0.96, df= 56,
p = 0.340), λc (t = 0.74, df= 56, p = 0.460) and SWc (t= −0.34,
df= 56, p = 0.700). FEP showed similar deficits of modulation in γc
(t= −0.85, df = 17, p = 0.410), λc (t= −1.07, df= 17, p = 0.30)
and SWc (t= 0.37, df= 17, p = 0.720) (Table 2).

3.2. Association between baseline parameters and modulation

In patients, baseline parameters (γBL, λBL and SWBL) were negatively
associated with the corresponding modulation values, i.e. γc (all
patients r =−0.569, p < 0.0001; FEP r =−0.535, p = 0.022), λc
(all patients r =−0.602, p < 0.0001; FEP r = −0.821, p < 0.001)
and SWc (all patients r = −0.525, p < 0.0001; FEP r = −0.647,
p = 0.004). Therefore, higher values at baseline were associated with
smaller task-related modulation of the corresponding network para-
meter (Fig. 1).

3.3. Association between network modulation and cognitive performance

In patients, modulation in path-length values (λc) was inversely
associated to completed categories (all patients: r = −0.348,
p = 0.015; FEP r =−0.325, p = 0.219) and directly to the percent
of perseverative errors in WCST (all patients: r= 0.316, p = 0.029; FE:
r = 0.022, p > 0.05). Modulation in small-worldness values (SWc) was
inversely associated to performance in the Tower of London test (all
patients: r= −0.338, p= 0.004; FEP r= −0.382, p = 0.118) and

Table 2
Mean network parameters for each group and summary of the statistical results obtained after comparing schizophrenia patients and controls. Effect sizes for within- and between-group
significant differences are shown (Cohen's d).

Controls Schizophrenia patients (n= 57) Type III square sum; F; p Effect-size (patients vs controls) First episodes (n = 18)

SW baseline (SWBL)⁎ 1.021 (0.015) 1.027 (0.013) 0.001; 6.627; 0.011 0.427 1.024 (0.014)
SW response (SWRES) 1.030 (0.019) 1.027 (0.160) 0.000; 1.340; 0.249 1.027 (0.016)
SW modulation (SWc)⁎⁎ 0.010 (0.020) 0.000 (0.018) 0.003; 7.484; 0.007 0.525 0.003 (0.021)
Effect size (within-group) 0.525 0.000 0.199
CLC baseline (λBL)⁎ 1.050 (0.022) 1.059 (0.020) 0.003; 5.733; 0.018 0.428 1.048 (0.019)
CLC response (λRES)⁎ 1.065 (0.030) 1.056 (0.023) 0.002; 3.025; 0.085 0.336 1.056 (0.026)
CLC modulation (λc)⁎⁎ 0.015 (0.034) −0.003 (0.027) 0.009; 10.155; 0.002 0.586 0.009 (0.031)
Effect size (within-group) 0.587 0.139 0.351
PL baseline (γBL) 1.033 (0.013) 1.030 (0.011) 0.000; 2.432; 0.122 1.033 (0.013)
PL response (γRES)⁎ 1.028 (0.009) 1.031 (0.011) 0.000; 3.758; 0.055 0.298 1.027 (0.009)
PL modulation (γc)⁎ −0.005 (0.016) 0.002 (0.014) 0.001; 4.635; 0.033 0.456 −0.006 (0.016)
Effect size (within-group) 0.447 0.090 0.536

⁎ p < 0.05.
⁎⁎ p < 0.01.
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completed categories in WCST (all patients: r= −0.373, p = 0.009;
FE: r= −0.389, p= 0.0136). Consequently, higher increases in SW
and γc from baseline to response can be related to a poorer performance
in schizophrenia patients, although this was not confirmed in the FEP
subgroup (Fig. 1).

γc was inversely related to normalized scores in TMT (all patients;

r = −0.298, p= 0.044; FE: r= −0.512, p = 0.043), suggesting a
direct association with working memory performance (Fig. 1).

In controls, no significant associations were found for network
modulation or cognitive performance.

There was no association between symptom scores and network
modulation.

Fig. 1. A) Association between baseline and modulation values in schizophrenia patients for: (a1) SW, and (a2) normalized CLC. B) Significant relationships between cognitive
performance and modulation of network parameters for patients: b1, b2 and b3 depict associations with modulation of CLC; b4 depicts an association with SW modulation: larger values
in Tower of London, completed categories in WCST and less perseverative errors in WCST indicate better executive function. Lower values in adjusted TMT indicate better working
memory.Filled circles: chronic patients; empty circles: FEP.
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3.4. Spatial analyses

Controls showed bilateral frontal and right temporoparietal in-
creases from baseline to the response window, γ not found in patients.
Patients showed a statistically significantly lower widespread γ value
during the response window (Fig. 2).

4. Discussion

In our study, a modulation deficit in all network parameters was
found in schizophrenia patients during a P300 task. Moreover, CLC and
SW values were higher at baseline and lower in response windows,
whereas PL was higher in the response window for patients during the
task. In this group, an inverse relationship between positive modulation
of CLC and SW and performance in executive function tests was found.
This relationship likely indicates that the larger increases of clustering
between baseline and response hamper executive functions in schizo-
phrenia patients, which might be related to higher baseline clustering
values (γBL) for patients.

Previous evidences in humans (Varela et al., 2001) and animals
(Bressler et al., 1993) showed that rapid and transient modulation of
coherence and functional integration play a role in cognition, which
may be hampered in schizophrenia patients according to the present
data. Our analyses support the notion that schizophrenia can be
associated with a deficit to reconfigure the brain network during a
cognitive task. The particular brain sources driving such deficit may be
further explored.

The larger baseline CLC in patients may reflect more segregated
cortical activity in comparison to controls prior to stimulus onset.
Previous results on clustering in schizophrenia using graph analyses are
discrepant. In the resting state, a larger clustering was observed with
fMRI in 19 schizophrenia patients (Yu et al., 2011), as well as non-
significant differences in clustering using MEG (Rutter et al., 2013). By
means of EEG, a reduced clustering was seen in 34 schizophrenia
patients performing an odd-ball task (Shim et al., 2014) and in 40
patients looking at a stationary dot (Rubinov et al., 2009). Ma et al.
(2012) reported with fMRI a reduced clustering in schizophrenia both
at rest and during and odd-ball task, with shorter path length at rest but
longer during the task. Our findings support the notion that both
increased (larger CLC values during the baseline) and reduced (smaller
CLC values during the response) clustering may be found in schizo-
phrenia patients at different temporal points depending on the time of
cognitive processing. This result could correspond to respectively
increased and decreased functional segregation in patients during
baseline and response windows.

The temporal resolution of fMRI would not allow discriminating

between resting and active windows as defined in the present study.
This may contribute to the discrepancies with previous reports of
reduced clustering in schizophrenia using fMRI (Lynall et al., 2010).
However, information from fMRI studies may help to explain the
reconfiguration deficit observed in our study. Fewer hubs (i.e. highly
connected nodes) have been reported with fMRI in schizophrenia in the
resting state (Lo et al., 2015) and during an odd-ball task (Ma et al.,
2012), along with a significant randomization of global network
metrics (Lo et al., 2015). Such reduction in the number of highly
connected nodes may explain the network reconfiguration deficit and
the larger PL in the response window in our patients. Likewise, it would
be also coherent with the less globally coordinated mode of brain
connectivity in schizophrenia, reported with fMRI (Lynall et al., 2010).

Baseline clustering was higher for patients, and its positive modula-
tion (i.e., its increase from baseline to response windows) was
associated to poorer performance in executive function. Thus, addi-
tional increases of CLC over baseline levels predicted worse perfor-
mance on executive tasks in patients but not in controls. This result
indicates that a larger basal (i.e. pre-stimulus) segregation hinders
cognition in schizophrenia. Thus, larger increases in clustering above a
hyper-segregated basal state could hamper the more complex cognitive
capacities, for which a larger integration of cortical activity among
distant brain regions is needed (Dehaene and Changeux, 2011, Varela
et al., 2001). Hypothetically, this might be related to the fewer number
or strength of hubs, which could hamper cortical integration. Cognitive
demands of the P300 task are low, but more demanding tasks drive the
transitory formation of long-range integrative networks (Kitzbichler
et al., 2011). However, CLC modulation was directly related to working
memory. Therefore, larger segregation could provide some advantage
for working memory performance when network modularity was more
important than integration In a previous fMRI study modularity, but not
SW, predicted working memory performance (Stevens et al., 2012).

Patients also showed larger PL values in the response window,
which might result from the structural long-range connectivity deficits
reported in schizophrenia (Zalesky et al., 2011). Such deficits in
network integration might also conceivably contribute to the deficit
of modulation in functional clustering.

The investigation of baseline hyper-clustering in patients is beyond
our research, but speculatively might be related to inhibitory deficits in
schizophrenia (Gonzalez-Burgos and Lewis, 2012; Lewis et al., 2012).
CLC quantifies the linear similarity degree between the neighbors of
each node and most short-range cortico-cortical (Hellwig, 2000) and
recurrent (Douglas et al., 1995) connections are excitatory. As a
consequence, inhibitory cortical deficits might drive a basal hyper-
synchronization secondary to mutual excitation among pyramidal
neurons, which could be reflected in larger local phase and power

Fig. 2. Nodal clustering maps depicting the spatial distribution of intra- (comparison between baseline and response) and inter-group differences in CLC (C: controls; SP: schizophrenia
patients; FEP: first episode patients; CP: chronic patients).
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coupling (and therefore in larger CLC values). This possibility seems
consistent with previous EEG studies in schizophrenia that showed an
increased neural noise (i.e. the amount of spontaneous, non-task evoked
EEG power) (Diez et al., 2013; Diez et al., 2014; Winterer et al., 2004;
Winterer et al., 2000). In this context, spontaneous neural activity is not
stochastic noise, but rather exhibits patterns largely conditioning by
evoked responses (Sporns, 2011a).

Husserl's phenomenology (and Aristotle's “koine aesthesis” κοινε
αεστεσισ) proposes the “synthesis” of multiple mental processes as the
basis of conscious experience. Conscious and subliminal perception
seem to be different by a larger extension of synchronization in the
former (Dehaene and Changeux, 2011). Therefore, a dysfunction in that
integrative process (suggested in our cases by the larger basal CLC and
the modulation deficits in CLC and PL) may disturb the conscious
experience in patients with schizophrenia. The neural representation of
internal and external events may be based on the transitory conforma-
tion of distributed synaptic assemblies (Buzsáki, 2006). Thus, network
deficits, such as those found in our study, might contribute to
schizophrenia. This possibility seems to be in line with phenomenolo-
gical accounts, such as “disturbed ipseity”, one of whose facets is hyper-
reflexivity. It is defined as “exaggerated self-consciousness, a tendency
to objectifying attention towards processes and phenomena that would
normally be ‘inhabited’ or experienced as part of oneself” (Saas and
Parnas, 2007). An excess of functional segregation accompanied by a
deficit in network modulation might be compatible with increased
consciousness of these phenomena. Cortical hyper-segregation may
hamper an adequate phenomenological integration of elements of
mental life, leading to misinterpretation or hindered cognition.

We did not find any significant correlation between symptoms
scores and network properties. We speculate that these properties could
be closer to more elementary phenomena than symptoms, such as those
described in the former paragraph (i.e., disturbed ipseity), while PANSS
scores may be influenced by other factors that may obscure their
possible association to cerebral networks (such as environmental
characteristics or cooperativeness of the patients). Moreover, other
kinds of biological factors, such as dopaminergic activity, may have a
more direct association to some kind of symptoms than to network
properties.

Our study has strengths and limitations. The sample size is larger
than previous network studies. Furthermore, this is the first study that
assesses fast network modulation during cognitive activity in schizo-
phrenia. However, EEG recordings are hampered by the shared
variance among contiguous sensors, though the comparison of different
conditions may help to overcome this problem. In addition, our
analyses are based on low-density EEG recordings; nonetheless, func-
tional characteristics of dynamic brain networks can be explored using
low-density EEG recordings (Qin et al., 2010). Larger CLC at baseline in
patients may reflect a more segregated brain or a more regular pattern
of connections (i.e. diffuse hyperconnectivity). Measures of network
segregation may help to elucidate these possibilities by balancing the
density between intra- and inter-module connections (Newman, 2006).
EEG activity was recorded with eyes closed. Thereby, a larger con-
tribution of alpha rhythms can be expected, but this should not have
influenced the results on modulation between windows. Finally, it is
uncertain whether the present results, obtained in narrow experimental
setting, can be generalized to a network modulation deficit in more
complex and/or real-life situations.

In conclusion, our findings support a relevant decrease in the ability
to integrate cortical networks in schizophrenia, which may be based on
a hyper-segregated basal state and a deficit of network modulation
during cognitive activity.
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Time-frequency representation using wavelet transform

Electroencephalographic (EEG) recordings are non-stationary signals. Accord-
ingly, their properties change over time. This issue can be clearly seen during a
sensory-cognitive task, in which different neural networks are involved. In order
to accurately assess spectral dynamics, methods that do not require stationarity
are recommended. In this regard, wavelet transform is a suitable time-frequency
(or time-scale) representation to carry out a time-varying spectral analysis.

In this study, the complex Morlet wavelet was used as basis function, since it
provides a plausible biological fit to EEG data (Roach and Mathalon, 2008). It is
characterized by its location in time (∆t) and frequency (∆f). Complex Morlet
function is defined in the time domain as follows:

φ(t) =
1√
π · Ωb

ej2Ωct · e
−t2

Ωb , (A.1)

where Ωb and Ωc represent the bandwidth and wavelet center frequency parame-
ters, respectively. They were set to 1 to obtain an adequate balance between (∆t)
and (∆f) (Bachiller et al., 2015).

Wavelet coefficients are calculated as the convolution of each EEG trial of 1 s,
x(t), and the complex Morlet function:

CWT (k, s) =
1√
s

∫ ∞

−∞
x(t) · φ∗

( t− k
s

)
dt, (A.2)

where s and k denote the dilation and translation factors and * represents the
complex conjugation. Finally, the wavelet cross-spectrum (WCS) between two
EEG trials of 1 s was computed as follows:

WCSij(k, s) = CWTi(k, s) · CWT ∗j (k, s), (A.3)

where subscripts i and j identify two electrodes. Once WCS was obtained for all
pairwise electrode combinations, WCS was averaged across trials in two windows
of interest: (i) the baseline window ([300, 0] ms before the stimulus onset); and
(ii) the response window, ([150,450] ms after the stimulus onset). It is noteworthy
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that in order to avoid edge effects, the spectral content was only considered into
the time-frequency regions delimited by their respective cones of influence (COIs)
(Torrence and Compo, 1998). Thus, delta band was not analyzed because it is
associated with a wavelet duration higher than the length of the baseline and
response windows (i.e. 300 ms) (Bachiller, Poza, 2015, Roach and Mathalon,
2008). In this regard, it is recommended the use of 6 cycles to estimate the wavelet
coefficients, but fewer cycles have been also used at the expense of frequency
resolution (Roach and Mathalon, 2008). In this study, we used 2 cycles taken into
account that the wavelet coefficients corresponding to the frequencies close to 4 Hz
could have a small bias due to the frequency resolution (i.e., edge effects) (Roach
and Mathalon, 2008).

Assignment of weights to brain graphs

In this study, graph weights were obtained by the event-related Coherence (ERC).
ERC is used to represent the similarity between the spectral content of two elec-
trodes i and j (Bachiller, Poza, 2015, Basar et al. , 2016):

ERCij(s) =
|WCSij(s)|2

WCSii(s) ·WCSjj(s)
, (A.4)

ERC is analogous to the squared Pearson correlation, which reflects the amount
of variance of electrode i in each frequency that can be explained by a linear
transformation of the wavelet coefficients in the electrode j (Roach and Mathalon,
2008). Hence, ERC represents the linear relationship between the amplitude of
two signals in the spectral domain (Basar, Golbasi, 2016, van Diessen et al. ,
2015).

ERC was chosen because it is a straightforward method, commonly used in
previous EEG studies. Nonetheless, some concerns merit special attention (van
Diessen, Numan, 2015). Firstly, nonlinear relationships are not considered. Sec-
ondly, ERC does not evaluate the causality, making impossible to make a dis-
tinction between direct and indirect relations. Finally, it is sensitive to volume
conduction.

ERC was obtained for each time sample and each frequency (or scale). To
assess the global behavior of network dynamics, ERC was averaged over all fre-
quency range under study (4-70 Hz). Two adjacency matrices, which contain all
connections between nodes, were obtained for each subject: one for the baseline
window and other one for the response window. Thus, modulation of network



dynamics from baseline to response can be evaluated.

It is noteworthy that for subsequent analyses related to distance measures, such
as path length, a distance matrix was computed as the inverse of the adjacency
matrix. The adjacency matrix did not contain zero-valued edge weights, but for
the diagonal. Therefore, there were not any infinite distances between nodes.

References

Bachiller A, Poza J, Gomez C, Molina V, Suazo V, Hornero R. A compara-
tive study of event-related coupling patterns during an auditory oddball task in
schizophrenia. Journal of Neural Engineering. 2015;12:016007.

Basar E, Golbasi BT, Tulay E, Aydin S, Basar-Eroglu C. Best method for analysis
of brain oscillations in healthy subjects and neuropsychiatric diseases. IInterna-
tional Journal of Psychophysiology: Official Journal of the International Organi-
zation of Psychophysiology. 2016;103:22-42.

Roach BJ, Mathalon DH. Event-related EEG time-frequency analysis: an overview
of measures and an analysis of early gamma band phase locking in schizophrenia.
Schizophrenia Bulletin. 2008;34:907-26.

Torrence C, Compo GP. A Practical Guide to Wavelet Analysis. Bulletin of the
American Meteorological Society. 1998;79:61-78.

van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman
D, et al. Opportunities and methodological challenges in EEG and MEG resting
state functional brain network research. Clinical neurophysiology : official journal
of the International Federation of Clinical Neurophysiology. 2015;126:1468-81.





Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Deficits of entropy modulation in schizophrenia are predicted by functional
connectivity strength in the theta band and structural clustering

Javier Gomez-Pilara,1, Rodrigo de Luis-Garcíab,1, Alba Lubeiroc, Nieves de Uribed, Jesús Pozaa,e,f,
Pablo Núñeza, Marta Ayusog, Roberto Horneroa,e,f, Vicente Molinac,d,e,⁎

a Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
b Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
c Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
d Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain.
eNeurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007, University of Salamanca, Spain
f IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
gNeurophysiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain

A R T I C L E I N F O

Keywords:
Schizophrenia
Entropy
Graph-theory
Connectivity
Fractional anisotropy
Negative symptoms

A B S T R A C T

Spectral entropy (SE) allows comparing task-related modulation of electroencephalogram (EEG) between pa-
tients and controls, i.e. spectral changes of the EEG associated to task performance. A SE modulation deficit has
been replicated in different schizophrenia samples. To investigate the underpinnings of SE modulation deficits in
schizophrenia, we applied graph-theory to EEG recordings during a P300 task and fractional anisotropy (FA)
data from diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy controls. Functional con-
nectivity was assessed from phase-locking values among sensors in the theta band, and structural connectivity
was based on FA values for the tracts connecting pairs of regions. From those data, averaged clustering coef-
ficient (CLC), characteristic path-length (PL) and connectivity strength (CS, also known as density) were cal-
culated for both functional and structural networks. The corresponding functional modulation values were
calculated as the difference in SE and CLC, PL and CS between the pre-stimulus and response windows during the
task. The results revealed a higher functional CS in the pre-stimulus window in patients, predictive of smaller
modulation of SE in this group. The amount of increase in theta CS from pre-stimulus to response related to SE
modulation in patients and controls. Structural CLC was associated with SE modulation in the patients. SE
modulation was predictive of negative symptoms, whereas CLC and PL modulation was associated with cognitive
performance in the patients. These results support that a hyperactive functional connectivity and/or structural
connective deficits in the patients hamper the dynamical modulation of connectivity underlying cognition.

1. Introduction

Mental functions are partially based on the dynamic coordination of
cerebral networks (Dehaene and Changeux, 2011; Tanaka, 1996; Varela
et al., 2001) whose interactions evolve in hundreds of milliseconds
(Bressler and Tognoli, 2006; Sporns, 2011). The temporal resolution of
electroencephalography (EEG) allows the assessment of this dynamic
coordination, which can be applied to the study of functional under-
pinnings of mental disorders. Measurements summarizing the EEG
properties and their modulation with cognition can be useful for that
purpose. One of these measurements is Spectral Entropy (SE), a para-
meter derived from information theory that estimates regularity by

quantifying the degree of uncertainty in a signal (Duff et al., 2013).
Larger SE values correspond to more uniform spectra whose frequency
content is broader (i.e., more random), and low SE values to spectra
with only a few frequency components (i.e., more regular).

In schizophrenia, we have described a SE modulation deficit during
a P300 task in response to relevant tones (Bachiller et al., 2014). SE
decreased in healthy controls secondarily to task-related increased
theta power, and both SE decrease and theta power increase were of
smaller magnitude in patients (Bachiller et al., 2014), which seems
coherent with the expected increase in theta band power during P300
(Mazaheri and Picton, 2005). Later, we replicated the same SE mod-
ulation deficit in schizophrenia in a larger and completely different
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sample (Molina et al., 2017a), showing its relation to cognition and
symptoms. In these reports we defined modulation as the difference in
SE values between the pre-stimulus and the response windows of the
P300 task being performed by the subjects. Neither treatment dose nor
illness duration were associated to the SE deficit, also found in first
episode patients.

Given the apparent robustness of the SE modulation deficit, we
considered it worthy to attempt to characterize it. This could help de-
scribing a reliable functional alteration in schizophrenia. Since cogni-
tion during P300 involves a global network rather than focal engage-
ment (Bledowski et al., 2004), we hypothesized that the analysis of
global properties of the functional network would help to identify un-
derpinnings of the SE modulation deficit in schizophrenia. Global net-
work properties can be assessed at system level using graph theory.
Thus, parameters derived from graph-theory can help assessing both
basal network properties predictive of SE modulation and properties of
global network dynamics associated to SE modulation deficits.

Among the graph parameters of interest to this purpose, local
clustering coefficient (CLC) is related to the degree of local con-
nectivity. Specifically, clustering coefficient is the ratio between the
number of triangles in which a node is included and the total number of
possible triangles that include the node. This measure, when averaged
across the network, indicates the segregation and local efficiency for
information transfer. In turn, characteristic path length (PL) is the
average of shortest distances for all possible pairs of nodes. Thus, PL is
related to information integration across areas. Mean connectivity
strength (CS, sometimes also known as density) in a weighted graph can
be interpreted as the average of connections among nodes in a network.
The application of these parameters to functional connectivity analyses
is based on the degree of similarity of signals, based in turn on phase-
locking values (PLV) of the signals between regions or (for the EEG)
sensors. These parameters can be also applied to structural connectivity
measurements derived from diffusion magnetic resonance imaging
(dMRI), such as fractional anisotropy (FA), which may allow a de-
scription of the dependence of functional connectivity modulation on
structural connectivity. Although a direct relation between both con-
nectivity dimensions could seem intuitive, functional connections are
found between regions without direct anatomical connections (Honey
et al., 2009).

Our hypotheses are that functional (prior to cognitive activity) and
structural graph-derived network measurements would predict task-
related SE modulation and that the dynamics of functional network
parameters would be associated to SE modulation. As in previous re-
ports (Bachiller et al., 2014; Mazaheri and Picton, 2005) modulation
will be defined and the corresponding EEG change (for SE and func-
tional network parameters) associated to task performance. These ideas
could reveal relevant insights on the functional deficits in schizo-
phrenia. Based on previous findings supporting a smaller increase of
theta power in patients in the response to target (Bachiller et al., 2014)
and the relevance of theta power for the task used, the P300 (Mazaheri
and Picton, 2005), we focused our analyses on the theta EEG band.

2. Subjects and methods

We included 48 schizophrenia subjects (of them, 23 first episodes
(FE) and 87 healthy subjects with normal hearing. Patients were diag-
nosed according to the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition. They were receiving stable doses of anti-
psychotic monotherapy. Of them, MRI data were also collected in 33
patients (20 males) and 24 controls (15 males). Out of the sample, 42
patients and 65 controls were included in a previous report on SE
modulation deficit in schizophrenia (Molina et al., 2017a).

First episode patients were treated with antipsychotics for less than
72 h. prior to MRI and EEG data acquisition, with a wash-out period of
24 h prior to the acquisitions to avoid possible bias due to the selection
of patients able to cooperate during EEG acquisition without prior

treatment.
Exclusion criteria were: (i) any neurological illness; (ii) history of

cranial trauma with loss of consciousness; (iii) past or present substance
abuse, except nicotine or caffeine (iv) intelligence quotient (IQ) smaller
than 70; and (iv) for patients, any other psychiatric process, and (v) for
controls, any psychiatric or neurological diagnosis or treatment.

Schizophrenia symptoms were scored using the Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987). Healthy controls
were recruited through advertisements. Demographic and clinical data
are shown in Table 1.

Cognitive data for both groups were collected using: the Wechsler
Adult Intelligence Scale, WAIS-III (IQ), the Wisconsin Card Sorting Test
(WCST; completed categories and percentage of perseverative errors),
and the Spanish version of the Brief Assessment in Cognition in
Schizophrenia Scale (BACS)(Segarra et al., 2011).

After receiving full printed information, subjects gave their written
informed consent. The ethical committees of the Hospital Clínico de
Valladolid endorsed the study.

2.1. EEG processing

2.1.1. EEG acquisition and preprocessing
EEG recordings were obtained following MRI scans, after a resting

period of 30 minutes. Data were recorded using a 17-channel EEG
system (BrainVision®, Brain Products GmbH). Active electrodes were
placed in an elastic cap at Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, O1,
O2, T5, T6, Fz, Pz and Cz (international 10–20 system). Impedance was
kept under 5 kΩ. Sampling frequency was 500 Hz. During EEG acqui-
sition, each channel was referenced over Cz electrode and re-referenced
to the average activity of all active sensors (Bledowski et al., 2004;
Gomez-Pilar et al., 2018). Thirteen minutes of eyes-closed EEG was
obtained during an auditory odd-ball 3-stimulus paradigm, which
consisted of 600 random sequences of target (500 Hz-tone, probability
0.2), distractor (1000 Hz-tone, probability 0.2), and standard (2000 Hz-
tone, probability 0.6) tones. The tone duration was 50ms, rise and fall
time being 5ms and intensity being 90 dB. Inter-stimulus interval be-
tween tones randomly jittered between 1.16 and 1.44 s. The partici-
pants were asked to press a button whenever they detected the target
tones. Target tones were considered ‘attended tones’ when they were
followed by a button press. Only ‘attended’ target tones were taken into
account for further analysis (Gomez-Pilar et al., 2015). Alertness dif-
ferences across groups were controlled by comparing accuracy of target
responses.

Table 1
Demographic, clinical and cognitive characteristics of patients and controls, as well as
latency and amplitude of the P300 (P3b) potential. Between-group statistically significant
differences were marked with asterisks: ⁎⁎⁎p < 0.001.

Controls Patients

Age (years) 30.51 (10.77) 33.58 (9.27)
Antipsychotic dose (CPZ equivalents) N/A 377.92 (196.94)
Duration (months) N/A 97.84 (116.94)
Sex 44/43 25/23
Positive symptoms N/A 11.63 (3.39)
Negative symptoms N/A 18.03 (7.52)
Total PANSS score N/A 54.35 (18.56)
Verbal memory⁎⁎⁎ 51.65 (8.26) 33.92 (12.74)
Working memory⁎⁎⁎ 21.46 (3.90) 15.81 (5.01)
Motor speed⁎⁎⁎ 68.59 (17.84) 58.14 (14.41)
Verbal fluency⁎⁎⁎ 27.13 (5.33) 17.99 (5.70)
Performance speed⁎⁎⁎ 68.79 (13.25) 42.83 (15.78)
Problem solving⁎⁎⁎ 17.54 (2.72) 15.40 (4.64)
Total IQ⁎⁎⁎ 111.83 (11.87) 91.22 (14.19)
WCST (perseverative errors)⁎⁎⁎ 10.17 (5.81) 27.31 (47.43)
WCST (completed categories)⁎⁎⁎ 5.79 (0.72) 4.39 (1.87)
P3b amplitude (microvolts)⁎⁎⁎ 3.20 (1.76) 1.92 (1.21)
P3b latency (miliseconds) 472.28 (67.54) 461.53 (87.57)
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A three-step artifact rejection algorithm was applied to minimize
electrooculographic and electromyographic contamination (Bachiller
et al., 2015a): (i) an Independent Component Analysis (ICA) was car-
ried out to discard noisy ICA components; (ii) after ICA reconstruction,
EEG signals were divided into trials of 1 s length (ranging from 300ms
before stimulus onset to 700ms after stimulus onset); and (iii) an au-
tomatic method was applied to reject trials whose amplitude exceeded
an adaptive statistical-based threshold (Nunez et al., 2017). In this last
method, the mean and standard deviation of each channel and for each
stimulus was computed. Then, trials that exceeded mean ±
4× standard deviation in at least two channels were discarded. This
ensures to obtain artifact-free trials for all channels.

Signals were band-pass filtered between 1 and 70 Hz. In addition, a
50 Hz notch filter was used to remove the power line artifact.

2.1.2. EEG entropy
Entropy is a thermodynamic function adapted from information

theory. Entropy can be seen as a measure of the irregularity of a signal,
estimating the degree of disorder by assessing the distribution of its
spectral components. In this study, the continuous wavelet transform
was used to compute the entropy of the signals. The spectral entropy
(SE) can be defined as follows:

∑= ∙ ∙SE k
M

WS k s log WS k s( ) 1
log( )

( , ) [ ( , )],
s

n n
(1)

where WSn is the normalized wavelet scalogram, k is the time interval,
and s the scaling factor of the mother wavelet. In order to avoid edge
effects in continuous wavelet transform (CWT), the cone of influence
(COI) for pre-stimulus and response time windows was computed. The
SE was computed in the broadband, i.e. between 1 Hz and 70 Hz, since
we want to describe the overall SE dynamics.

2.1.3. EEG brain graphs
EEG brain graphs provide a useful tool to characterize the functional

brain network. Using this approach, network nodes are represented by
electrodes, whereas network edges are set by computing the neural
coupling between pairs of electrodes. Different methods can be used to
estimate the neural coupling. In this study, we selected the PLV across
successive trials (Lachaux et al., 1999), since it is sensitive to both low-
amplitude oscillatory EEG components (Spencer et al., 2003) and
nonlinearities (van Diessen et al., 2015). PLV can be computed using
different methodologies. We used the CWT to compute the phase in-
formation from each trial (Bob et al., 2008). As in the SE computation,
cones of influence were also considered.

Functional connectivity matrices were constructed using PLV values
to characterize the neural coupling between each pair of electrodes.
With no thresholding applied, these matrices ranged between 0 and 1,
thereby, functional connectivity matrices were also constrained based
on PLV ranged between 0 and 1: a value of 0 is obtained when signals
do not show any synchronization and a value of 1 is observed when two
signals are perfectly synchronized.

2.1.3.1. Graph parameters. After using CWT approach to perform
filtering and phase extraction in one operation, the PLV between two
signals x(t) and y(t) can be obtained evaluating the variability of the
phase difference across successive trials:

∑=
=

∆PLV k s
Nt

e( , ) 1 ,xy
n

N
k s n

1

φ ( , , )xy

(2)

where Nt is the number of trials, ∆φxy is the instantaneous phase
difference between x and y signals, k is the time interval, and s the
scaling factor of the mother wavelet.

Firstly, the event-related wave was computed for each subject by the
synchronized averaging of all the trials corresponding to attended
target tones. Secondly, a low-pass finite impulse response filter with

cut-off frequency of 8 Hz was applied to the evoked wave in order to
obtain only the components related to delta and theta frequency bands.
Thirdly, the maximum amplitude of the low-pass filtered evoked wave
in the Pz channel was located into a window ranging from 250 to
550ms from the stimulus onset (Bachiller et al., 2015b). The corre-
sponding sample to the maximum amplitude was used as a central time
sample of the response window. Finally, the response window was set
on±150ms around the central time sample.

Normalized CLC and PL can be defined as:

=CLC C
C

,random (3)
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L
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where C and L can be defined as:
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Finally, the connectivity strength was computed using the network
density as:

=
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N
j i ij1

(7)

In the previous equations, wij refers to PLV between nodes i and j
(for functional analyses) or to the structural connectivity between two
regions using the streamlines from MRI (for structural analyses). N is
the total number of nodes of the network (17 in EEG analyses, 84 in
MRI). Lij is defined as the inverse of the network edge weight wij (Stam
et al., 2009). Finally, in Eq. (7), T=N(N− 1)/2, which is the total
number of connections in an undirected graph.

2.1.4. Segmentation of the EEG response
The modulation of the graph parameters along the odd-ball task was

assessed by considering two windows: (i) the pre-stimulus window,
which is a period of expectation before the stimulus onset, ranging from
-300ms to the stimulus onset; and (ii) the response window, chosen to
capture the P3b response (150 to 450ms after stimulus onset).

2.2. MRI acquisition and processing

A Philips Achieva 3 Tesla Unit (Philips Healthcare, Best, The
Netherlands) at the MRI facility from Valladolid University was em-
ployed. Acquisitions consisted of a T1-weighted (anatomical) image
and diffusion weighted images. A pipeline processing was carried out in
order to obtain structural connectivity matrices (structural con-
nectomes), as described in (Molina et al., 2017b).

For the T1 images, a turbo field echo (TFE) sequence was employed,
and parameters included the following: 256× 256 matrix size,
1× 1×1mm3 of spatial resolution and 160 slices covering the whole
brain.

With regard to the diffusion weighted images (DWIs), a single shot
EPI (echo planar imaging) spin echo sequence was employed. 61 gra-
dient directions and one baseline volume were acquired, with b-
value= 1000 s/mm2, 2× 2×2mm3 of voxel size, 128× 128 matrix
and 66 axial slices covering the entire brain.

From the acquired images, a processing pipeline was designed in
order to employ both the T1-weighted and the diffusion images for the
construction of structural connectivity matrices. This pipeline is com-
posed of several steps and uses different freely available software tools
(FSL, Freesurfer, MRTRIX).

The processing pipeline of the acquired MRI volumes is designed to
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obtain structural connectivity matrices by using both the anatomical
(T1-weighted) and diffusion images.

Firstly, non-brain structures were removed from the T1 images by
means of BET, a brain extraction tool from the FSL software (http://fsl.
fmrib.ox.ac.uk) (Smith, 2002). Next, 84 cortical structures were seg-
mented using Freesurfer (https://surfer.nmr.mgh.harvard.edu) (Fischl
et al., 2004; Desikan et al., 2006). Also starting from the same T1
images, gray matter, white matter and cerebrospinal fluid (CSF) were
also segmented, and subcortical gray matter structures were delineated
using FAST and FIRST utilities from FSL, respectively (Patenaude et al.,
2011; Zhang et al., 2001), and combined into a volume called 5tt (5-
tissue-type) image.

At the same time, and starting from the diffusion weighted images
(DWI), the brain was extracted using DWI2MASK tool from MRtrix
(www.mrtrix.org) (Dhollaner and Connelly, n.d.). Afterwards, orienta-
tion distribution functions were estimated from the diffusion data using
spherical deconvolution, employing DWI2RESPONSE and DWI2FOD
tools from MRtrix (Tournier et al., 2007). This method allows the use of
diffusion information beyond the tensor model, thus overcoming tra-
ditional problems of tensor-based tractography such as its bad behavior
in fiber crossings and kissings, which are abundant in the white matter.
The method of choice for fiber tracking (anatomically-constrained
tractography, using TCKGEN -ACT) uses both the diffusion data and the
5tt image (after registration) in order to discard streamlines that are
anatomically unfeasible. Two million streamlines were generated for
each subject.

In order to describe the diffusion at each voxel, diffusion tensors
were estimated using a least squares method (Salvador et al., 2005),
and Fractional Anisotropy (FA) volumes were computed from the dif-
fusion tensors using DTIFIT tool from FSL. FA quantifies the amount of
anisotropy in the diffusion tensor or, equivalently, how much it de-
viates from a totally isotropic diffusion. FA is usually interpreted as a
descriptor of white matter integrity, and decreases in FA have been
related to alterations in the white matter due to several factors (de-
myelination and axonal destruction, among others).

Finally, connectivity matrices were constructed from the tracto-
graphy results and the (registered) cortical segmentations using
TCK2CONNECTOME tool from MRtrix. When streamlines (tractography
output) connecting two cortical regions were found, this tool computes
the average FA for that specific connection. Thus, 84× 84 connectivity
matrices were obtained using FA as connectome metrics. A threshold
was not applied to the connectivity matrices; however, some matrix
coefficients can be equal to zero when streamlines are not found for that

particular connection.
Similar dMRI analyses have been reported in schizophrenia (Di

Biase et al., 2017) and other neurocognitive conditions (Jones et al.,
2015).

2.3. Graph-theory parameters

From both the structural and functional connectivity matrices, we
calculated three graph-theory parameters to characterize global prop-
erties of the brain network: (i) connectivity strength by means of net-
work density (CS), (ii) network segregation using CLC, and (iii) network
integration by means of PL (Rubinov and Sporns, 2010). CLC and PL
were computed over an ensemble of 50 surrogate random networks,
which were used to normalize CLC and PL values obtained from the
original networks (Stam et al., 2009). This widespread method is useful
to obtain graph parameters independent of the network edge weights
and the network size.

As opposed to the broadband approach used to compute de SE,
functional parameters were computed into the theta frequency range
during pre-stimulus and task-related modulation (i.e. difference be-
tween the response and the pre-stimulus windows) and will be referred
to as EEG-PLPRE, EEG-CSPRE and EEG-CLCPRE, for the pre-stimulus
parameters, and as EEG-PLMOD, EEG-CSMOD and EEG-CLCMOD, for the
modulation-related parameters. On the other hand, structural para-
meters will be referred to as dMRI-PL, dMRI-CS and dMRI-CLC.

The present data do not duplicate our published EEG network
analyses in schizophrenia (Gomez-Pilar et al., 2017), since those were
performed in a different sample using evoked response instead of
single-trial analyses.

A schematic overview for the network analyses both for functional
and for structural data is shown in Fig. 1.

3. Statistics

After testing parametric test assumptions, demographic, cognitive
and P300 latency and amplitude values were compared between pa-
tients and controls using Chi-square and t tests.

Network measurements were also compared between patients and
controls using t tests. When significant differences were found between
groups, the corresponding values were compared between chronic and
FE patients.

To test the main study hypothesis, in a first step we applied a
principal component analysis (PCA) with varimax rotation to individual

Fig. 1. Schematic overview for the network analyses from the structural and functional data.
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SE modulation values, thus reducing the number of SE modulation
measurements (one per electrode) to one or few factors capturing most
of the corresponding variance for each case. The resulting individual
factor scores were saved for further analyses. We compared these SE
modulation factor scores between patients and controls using t tests.
Nodal SE values were compared between patients and controls in pre-
vious reports (Bachiller et al., 2014; Molina et al., 2017a) and therefore
not shown here.

Then, after testing for normality and homoscedasticity in the dis-
tribution of graph parameters, we applied two stepwise multivariate
regression models to assess: (i) the baseline predictors of entropy
modulation, and (ii) the correlates of entropy modulation. In both
cases, the dependent variables were the SE modulation factor scores.
For all the analyses, the level of significance was set to 0.05.

In the first analysis, we introduced the pre-stimulus graph para-
meters with significant between-group differences as independent
(predictive) variables. For the second analysis, independent variables
were modulation values in these parameters, showing significant dif-
ferences between patients and controls. These analyses were separately
performed in patients and controls, since previous analyses showed a
statistically significant difference between groups for both entropy and
graph-parameters (Bachiller et al., 2014; Molina et al., 2017a; Gomez-
Pilar et al., 2017) and we hypothesized different associations in both
groups. We discarded relevant collinearity effects with tolerance values.

When significant between-groups differences were found we re-
peated the comparisons including only FE patients and controls to
discard that differences were merely an effect of chronicity and/or
treatment.

In the group with dMRI data, we studied the associations between
structural graph parameters and SE modulation. Since the distribution
of structural graph parameters differed from normality in the patients,
their association with SE modulation was assessed by means of
Spearman correlations.

Clinical and cognitive correlates of graph parameters were assessed
using multivariate stepwise regression models, where predictive vari-
ables were graph parameters with significant differences between
groups. We also calculated the possible relationships between treatment
doses, illness duration and functional parameters.

A database with the main data supporting the present results is
available (Mendeley Data doi:10.17632/g9crh5b6bz.2).

4. Results

There were no significant differences in age or sex distribution be-
tween patients and controls. Patients showed a significant generalized
cognitive deficit and reduced P300 amplitude (table 1).

Factor analysis for SE modulation yielded a two-factor solution
factor (Table 2) that explained 67.11 % of total variance. The first
factor was positively contributed by frontal anterior and medial (Fp1,
Fp2, F3, F4, Fz), central (C3, C4, Cz) temporal (T5, T6), occipital (O1,
O2), sensors (eigenvalue 10.10, 59.44% of variance), while the second
factor was contributed by frontal lateral (F7, F8) and parietal (P3, P4,
Pz) sensors (eigenvalue 1.41, 8.33% of variance). Scores for the first
factor were significantly higher for the patients (t=4.20, df=133,
p < 0.001), reflecting a smaller modulation at the sensors included in
this factor (since SE values decreased at the response window and thus
the difference should be negative). FE patients alone also showed more
positive values for the first factor (i.e., smaller SE modulation) than
controls (mean 0.206, sd 0.695, t=2.03, df=108, p=0.04)

4.1. Comparison of functional network parameters

Patients showed larger connectivity strength values at the pre-sti-
mulus window (EEG-CSPRE) for the theta band (t=3.03, df=133,
p=0.003), and smaller modulation values: EEG_CLCMOD (t=−2.42,
df=133, p=0.017), EEG-PLMOD (t=−2.77, df=133, p=0.006)

and EEG-CSMOD (t=−2.89, df=133, p=0.004) in that band
(Table 3). Those values were used as predictors in further analyses.
Chronic patients showed significantly larger EEG-CSPRE values than FE
patients, but not significant differences for EEG_CLCMOD, EEG-PLMOD

and EEG-CSMOD were found between chronic and FE patients (Table S1,
see Supplementary material).

4.2. Prediction of SE modulation

4.2.1. Functional predictors
In controls, pre-stimulus graph parameters were not predictive of

factor scores summarizing SE modulation. In patients, theta band EEG-
CSPRE directly predicted scores of the first factor for SE modulation
(R2=0.188, df=1,46; F=10.65; β=0.43; p=0.01; Fig. 2). Thus, a
larger average strength of pre-stimulus functional connections in this
band was associated with smaller SE modulation (since SE decreased
from pre-stimulus to response).

In the FE patients considered alone, pre-stimulus EEG-CSPRE did not
predict SE modulation.

4.2.2. Structural predictors
In controls, no significant associations were found between struc-

tural brain network parameters and SE modulation
(−0.10 < R < 0.20). In patients, first factor scores for SE modulation
were negatively associated to structural dMRI-CLC (R2= 0.144,
p=0.03). Thus, larger structural clustering was associated to better
task-related SE modulation (Fig. 3).

Table 2
Factor structure resulting from the principal components analysis of SE mod-
ulation values for each sensor. Factor loads are shown.

Component

1 2

FP1 0.604 0.551
FP2 0.602 0.527
F3 0.841 0.276
F4 0.739 0.345
C3 0.576 0.492
C4 0.542 0.529
P3 0.282 0.853
P4 0.267 0.764
O1 0.720 0.375
O2 0.704 0.372
F7 0.377 0.705
F8 0.324 0.751
T5 0.666 0.420
T6 0.629 0.378
Fz 0.918 0.098
Cz 0.715 0.374
Pz 0.268 0.844

Table 3
Spectral entropy (factor scores) and graph parameters (pre-stimulus and modulation) in
patients and controls. Statistically significant differences are marked using asterisks:
⁎p < 0.05; ⁎⁎p < 0.01; ⁎⁎⁎p < 0.005.

Controls Patients

Entropy modulation factor scores (Factor 1)⁎⁎⁎ -0.31 (1.13) 0.44 (0.66)
Entropy modulation factor scores (Factor 2) 0.06 (1.12) -0.13 (0.53)
EEG-CLCPRE 1.01 (0.00) 1.01 (0.01)
EEG-PLPRE 1.10 (0.02) 1.10 (0.03)
EEG-CSPRE⁎⁎ 0.34 (0.04) 0.36 (0.04)
EEG-CLCMOD

⁎ 0.00 (0.01) 0.00 (0.01)
EEG-PLMOD

⁎⁎ 0.01 (0.02) 0.00 (0.02)
EEG-CSMOD

⁎⁎⁎ 0.02 (0.03) 0.01 (0.02)
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4.3. Underpinnings of entropy modulation

In controls, first factor scores for SE modulation were inversely as-
sociated to EEG-CSMOD (R2= 0.171, df=1,85; F=17.58; β=−0.414,
p < 0.0001; Fig. 3). Therefore, larger increases of EEG-CSMOD (i.e.,
larger global connectivity increases in the theta band from pre-stimulus

to response) were associated with more negative values of SE mod-
ulation. In other words, larger increases of theta connectivity strength
were associated to a higher task related SE modulation, since an SE
decrease from pre-stimulus to response is the expected task-related
response. SE modulation scores for the sensors included in the second
factor were not predicted by network modulation properties in controls.

In patients, SE modulation for the electrodes included in the first
factor was similarly inversely associated to EEG-CSMOD in the theta
band (R2= 0.380, df=1,46; F=28.21; β=−0.617 p < 0.0001;
Fig. 3). Therefore, larger increases of theta band EEG-CSMOD were also
associated with higher SE modulation in patients.

In the FE patients considered alone, SE modulation for the first
factor was also inversely associated to theta band EEG-CSMOD

(R2= 0.318, df=1,21; F=9.32; β=−0.564; p=0.006; Fig. 3).
As in controls, SE modulation scores for the sensors included in the

second factor were not predicted by network modulation properties.

4.4. Clinical and cognitive correlates

In the patients, EEG-CSMOD was inversely associated with negative
symptoms (R2= 0.117, df=1,46; F=5.58; β=−0.343 p=0.023).
In this group, EEG-CLCMOD predicted verbal memory (R2= 0.102,
df=1,46; F=4.54; β=0.319, p=0.039), working memory
(R2=0.208, df=1,46; F=10.25; β=0.456 p=0.003) and verbal
fluency (R2= 0.121, df=1,46; F=4.85; β=0.348, p=0.035) per-
formance, and EEG-PLMOD predicted problem solving performance
(R2= 0.190, df=1,46; F=8.92; β=0.507 p=0.005).

In controls, modulation of theta network properties was unrelated
to cognitive performance.

There were no significant associations between treatment doses or
duration and, on the other hand, SE modulation and network para-
meters.

5. Discussion

In this study, SE modulation at frontal anterior, central, temporal
and occipital electrodes (contributing to most of SE variance) was in-
versely associated with the pre-stimulus functional connectivity
strength (EEG-CSPRE) in patients. Moreover, a larger theta CS increase
from pre-stimulus to response windows (EEG-CSMOD) leads to higher SE
modulation.

Our data also reveal a large pre-stimulus theta EEG-CSPRE in pa-
tients. This result, considered together with the smaller change of theta
EEG-CS modulation (i.e., in the patients, this parameter increased from
pre-stimulus to response windows to a smaller degree than in controls),
suggests that a hyperactive baseline contributes to a smaller capacity
for modulation.

It worth mentioning that the first factor in the PCA included the
sensors where significant entropy modulation differences were found in
our previous SE comparison between patients and controls (F3, C3, C4,
Fz and Cz) (Molina et al., 2017a). Thus, the first factor summarized the
modulation in the sensors with significant between-group differences.
This would imply that theta EEG-CS (both at baseline and its task-re-
lated modulation) is relevant to explain the modulation deficits found
in schizophrenia.

Connectivity strength represents an average of the graph functional
connections. The direct association in the patients between EEG-CSPRE
and SE modulation suggests that a larger number of global functional
connections in the pre-stimulus period (in the theta band of the func-
tional network) is associated with a smaller task-related change in SE.
This seems coherent with a previous finding at the sensor-lever: larger
values of noise power (likely reflecting induced activity) were asso-
ciated to smaller entropy modulation in a different sample (Molina
et al., 2016). Larger broadband (Winterer et al., 2004) and gamma
(Diez et al., 2013) noise power was earlier reported in schizophrenia.
Taken together, these results support a functional hyper-connectivity

Fig. 2. Scatterplot showing the association in the patients between A) pre-stimulus theta
density and SE modulation for the sensors included in the first factor from the principal
components analysis and B) between structural clustering coefficient and SE modulation
(first factor).

Fig. 3. Scatterplot showing the association of theta band density modulation and SE
modulation (first factor) in patients (A) and controls (B). Open circles: FE patients; solid
circles: chronic patients; stars: healthy controls). In both groups, the modulation of
connectivity strength was inversely associated with SE modulation, but pre-stimulus
connectivity strength was associated with SE modulation only for patients (see text).
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state in schizophrenia patients that may hamper modulation in the
functional network, which also seems coherent with previous data with
functional magnetic resonance (Manoach, 2003).

Our functional network analysis is based on connectivity derived
from PLV between sensors. Since phase synchrony likely reflects the
coordinated activation of neural ensembles between regions (Roach and
Mathalon, 2008), the larger density values at baseline in the patients
might reflect an over-activation of neural ensembles, which, according
to their inverse association with SE modulation, hampers the flexibility
of neural assemblies with task demands. One possible reason behind
these findings might be related to the described inhibitory hypofunction
of the cortex in schizophrenia (Lewis et al., 2012), given the role of
GABA cells in the appropriate building of transitory neural assemblies
underlying cognition (Buzsáki, 2006). Values of EEG-CSMOD were as-
sociated to entropy modulation in both control and schizophrenia
groups, whereas in the case of patients, EEG-CS was higher at pre-sti-
mulus and its pre-post stimulus modulation was smaller. Therefore, a
quantitative difference seems more likely than a qualitative, categorical
difference in the underpinnings of such modulation between patients
and controls.

It is interesting that negative symptoms were predicted by EEG-
CSMOD, but cognitive performance was instead predicted by modulation
in EEG-CLCMOD and EEG-PLMOD. This may imply that cognitive abilities
are underpinned by a reorganization of network properties more
readily reflected in graph parameters. For instance, local and inter-re-
gional changes in connectivity may be more easily captured by CLC
than by SE modulation, even if the latter was previously reduced to two
factors and thus likely reflects a more global effect.

The association found in the patients between SE modulation and
structural network properties (dMRI-CLC) suggests that density and
integrity of short-distance structural connections (clustering reflects the
connections among regions connected to a given node) facilitates the
modulation of functional connectivity. Structural properties (FA) of
interregional connections may thus facilitate the formation of neural
assemblies underlying task response. Widespread alterations of white
matter integrity (which likely produce structural connectivity deficits)
have been reported in schizophrenia using dMRI (Ellison-Wright and
Bullmore, 2009).

Our work has limitations, most notably the absence of a treatment-
naïve group. However, FE patients showed similar patterns of func-
tional connectivity differences and treatment doses did not relate to
entropy or graph parameters. Also, since both entropy and density
modulation were obtained from the same dataset, it might be con-
sidered that their relation would result from data redundancy.
However, both parameters reflect completely different properties of
EEG dynamics and connectivity strength measurements help char-
acterizing SE deficit in the patients. In addition, EEG is not completely
free of volume conduction, even using a reference average approach as
in the present study. Nevertheless, dMRI data can be used as control for
the field spread effect. Finally, the number of EEG sensors was low, but
this may be a relatively minor problem since we did not attempt to
localize sources.

In conclusion, our findings suggest that an excess of pre-stimulus
functional connectivity in the theta band and a deficit of structural
clustering hamper SE modulation of the EEG, and this deficit might be
underpinned by a smaller reorganization of connectivity, with a re-
duced formation of transitory functional connections.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.02.005.
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Supplementary material of the paper: “Deficits of

entropy modulation in schizophrenia are predicted

by functional connectivity strength in the theta band

and structural clustering”

Table A.1: Comparison between chronic and first episode (FE) patients of the
values with significant differences between patients and healthy controls. Values
are shown as mean (SD). Statistical significance was assessed using Mann-Whitney
U -tests. Entropy modulation factor scores were significantly higher in both chronic
and FE patients as compared to healthy controls (see main text).

Chronic patients (n = 26) FE patients (n = 22)
EEG-CSPRE* 0.370 (0.046) 0.347 (0.030)
EEG-CLCMOD -0.001 (0.004) 0.000 (0.004)
EEG-PLMOD -0.001 (0.018) 0.001 (0.020)
EEG-CSMOD 0.001 (0.023) 0.017 (0.021)
Entropy modulation factor
scores (Factor 1)*

0.634 (0.576) 0.206 (0.695)

*Indicates significant difference (p < 0.05).
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Abstract
Our aim was to assess structural and functional networks in schizophrenia patients; and the possi-

ble prediction of the latter based on the former. The possible dependence of functional network

properties on structural alterations has not been analyzed in schizophrenia. We applied averaged

path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion mag-

netic resonance and electroencephalography in 39 schizophrenia patients and 79 controls.

Functional data were collected for the global and theta frequency bands during an odd-ball task,

prior to stimulus delivery and at the corresponding processing window. Connectivity matrices

were constructed from tractography and registered cortical segmentations (structural) and phase-

locking values (functional). Both groups showed a significant electroencephalographic task-related

modulation (change between prestimulus and response windows) in the global and theta bands.

Patients showed larger structural PL and prestimulus density in the global and theta bands, and

lower PL task-related modulation in the theta band. Structural network values predicted prestimu-

lus global band values in controls and global band task-related modulation in patients. Abnormal

functional values found in patients (prestimulus density in the global and theta bands and task-

related modulation in the theta band) were not predicted by structural data in this group. Structural

and functional network abnormalities respectively predicted cognitive performance and positive

symptoms in patients. Taken together, the alterations in the structural and functional theta net-

works in the patients and the lack of significant relations between these alterations, suggest that

these types of network abnormalities exist in different groups of schizophrenia patients.

K E YWORD S

brain network, diffusion magnetic resonance, dysconnectivity, electroencefalography, graph-

theory, schizophrenia

1 | INTRODUCTION

Mental functions depend on global dynamics of cerebral networks

(Dehaene & Changeux, 2011; Varela, Lachaux, Rodriguez, & Martinerie,

2001), whose functional and structural characteristics can be assessed

in vivo using methods derived from graph-theory (Bullmore & Sporns,

2009). In this context, underpinnings of syndromes like schizophrenia

likely involve distributed networks rather than regional alterations, as

supported by studies using functional magnetic resonance imaging

(fMRI) that revealed network alterations in the resting state (Lo et al.,
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2015; Yu et al., 2011) and during task performance (Ma, Calhoun,

Eichele, Du, & Adalı, 2012; Shim, Kim, Lee, & Im, 2014) in this syn-

drome. However, considering the rapid and transient change of func-

tional integration of diverse cerebral regions in cognition in humans

(Varela et al., 2001) and animals (Bressler, Coppola, & Nakamura,

1993), assessing fast change of cerebral networks in schizophrenia

holds a great interest. Techniques with high temporal resolution are

useful to this purpose: change of network properties using electroen-

cephalographic (EEG) during a cognitive task was significantly

decreased in schizophrenia patients (Gomez-Pilar et al., 2017). Using

relative power analyses, we also reported lower EEG task-related

change in theta but not in faster bands during an odd-ball task in schiz-

ophrenia (Bachiller et al., 2014).

As mentioned, methods derived from graph-theory are useful to

assess the properties of cerebral networks, which can be summarized

in parameters such as clustering coefficient (CLC) and characteristic

path length (PL). In a binary network, local CLC is the ratio between

the number of triangles in which a given node participates and the

maximum possible number of triangles including that node. When CLC

is averaged across the nodes of a network, it quantifies network segre-

gation and local efficiency of information transfer. In turn, PL is the

average of shortest distances for all possible pairs of nodes; it is likely

related to information integration across areas. These network parame-

ters provide complementary information about the properties of the

whole brain network. Therefore, the use of these parameters instead

of their corresponding nodal versions, allows to characterize the global

and predominant changes of the network. A recent meta-analysis of

functional graph-analytical studies in schizophrenia revealed significant

decreases in measures of local organization (CLC) with preservation in

short communication paths (PL) (Kambeitz et al., 2016).

Abnormalities in structural connectivity are also prevalent in schiz-

ophrenia (Ellison-Wright & Bullmore, 2009). These abnormalities are

likely reflected in structural network properties, since longer structural

PL values were found in schizophrenia at frontal and temporal regions

using dMRI (van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol, 2010)

and may be associated to genetic liability to this disorder (Bohlken

et al., 2016). Thus, the possibility exists that functional network altera-

tions might be secondary to structural abnormalities in schizophrenia.

Indeed, in this syndrome, a relationship has been reported between a

reduction in “rich-club density” (i.e., connections among high-degree

hub nodes) and global efficiency of functional connectivity in the rest-

ing state using fMRI (van den Heuvel et al., 2013). Similarly, connectiv-

ity deficits in rich-club hubs have been described in young offspring of

schizophrenia patients associated to disruption of the functional con-

nectome (Collin, Scholtens, Kahn, Hillegers, & van den Heuvel, 2017).

However, functional connectivity alterations in schizophrenia are not

necessarily determined by structural connectivity, since functional con-

nections in the resting state can be found between regions without

direct anatomical connections (Honey et al., 2009).

The application of graph-theory parameters to functional and

structural measurements can yield complementary information and

help uncovering hidden relationships (Sui, Yu, He, Pearlson, & Calhoun,

2012). Using diffusion MRI (dMRI), graph-theory parameters may

inform about structural connectivity differences between anatomical

structures, revealing highly connected hubs (Honey, Thivierge, &

Sporns, 2010). Graph-theory parameters applied to functional analysis

may reveal baseline network characteristics and its dynamic modulation

during cognition of signals such as synchrony of the bold-oxygen level

dependent signal between regions, or magneto-electrical signals

between sensors. Considering the millisecond-scale of modulation of

cortical activity during cognition (Bressler et al., 1993; Dehaene &

Changeux, 2011), the combination of network analyses with temporal

resolution of EEG recordings can be useful to assess this task-related

modulation. Indeed, using EEG in healthy subjects, we reported a sig-

nificant task-related modulation of network parameters from prestimu-

lus (from 2300 to 0 ms prior to stimulus onset) to response (from 150

to 450 ms poststimulus) windows (Martin-Santiago et al., 2016) during

an odd-ball task.

To our knowledge, no previous study has assessed the relationship

between structural and EEG networks in schizophrenia. Such investiga-

tion may help identifying the substrate of the cortical dysfunction in

schizophrenia. Therefore, this study was aimed at characterizing the

properties of structural and EEG-based functional networks in schizo-

phrenia and assessing the relationships between properties of those

networks in this syndrome, particularly between structural connectivity

and EEG modulation.

2 | SUBJECTS AND METHODS

2.1 | Subjects

A total of 39 schizophrenia (19 stable chronic and 20 first-episode, FE)

patients and 78 healthy controls with normal hearing were included.

Demographic, clinical, cognitive and EEG data were collected for each

participant (Table 1). In addition, dMRI data were also available in 33

patients (16 FE) and 27 controls (Table 1). One of the psychiatrists in

the group (VM) diagnosed the patients according to the Diagnostic and

Statistical Manual of Mental Disorders, 5th edition. Chronic patients

received atypical antipsychotics, 30 of them in monotherapy (12

received antidepressants and 7 benzodiazepines). FE patients were

receiving stable doses of antipsychotics for <15 days, with a wash-out

period of 24 hr prior to EEG acquisition. This was so done to minimize

the possible effects of treatment in this group, given their relatively

short exposure to antipsychotics. Symptoms were scored using the

Positive and Negative Syndrome Scale (PANSS) (Kay, Fiszbein, & Opler,

1987). Exclusion criteria were: (a) any neurological illness; (b) history of

cranial trauma with loss of consciousness longer than 1 min; (c) past or

present substance abuse, except nicotine or caffeine; (d) total intelli-

gence quotient (IQ) smaller than 70; (e) for patients, any other psychiat-

ric process; and (f) for controls, any current psychiatric or neurological

diagnosis or treatment.

The population here included overlaps in part with that of previous

reports of our group in schizophrenia on functional networks based on

evoked response (Gomez-Pilar et al., 2017), graph complexity (Gomez-

Pilar et al., 2018) and structural connectivity of specific tracts of the

prefrontal region (Molina et al., 2017)
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We obtained written informed consent from all participants after

full printed information. The ethical committee of the University Hospi-

tal of Valladolid approved the study.

2.2 | Cognitive assessment

Cognitive data from patients and controls were collected using: the

Wechsler Adult Intelligence Scale, WAIS-III (IQ); the Wisconsin Card

Sorting Test (WCST; completed categories and percentage of persever-

ative errors); and the Spanish version of the Brief Assessment in Cogni-

tion in Schizophrenia Scale (BACS) (Segarra et al., 2011).

2.3 | MRI acquisition and processing

Acquisitions were carried out using a Philips Achieva 3 Tesla MRI unit

(Philips Healthcare, Best, The Netherlands) at the MRI facility at Valla-

dolid University, including anatomical T1-weighted and diffusion-

weighted images. For the T1-weighted images, acquisition parameters

were: turbo field echo sequence, 256 3 256 matrix size, 1 3 1 3

1 mm3 of spatial resolution and 160 slices covering the whole brain.

About the diffusion-weighted images (DWIs), the acquisition protocol

parameters were: 61 gradient directions and one baseline volume, b-

value51,000 s/mm2, 2 3 2 3 2 mm3 of voxel size, 128 3 128 matrix

and 66 slices covering the entire brain. Total acquisition time was

18 min.

The processing pipeline of the acquired MRI volumes is designed

to obtain structural connectivity matrices by using both the anatomical

(T1-weighted) and diffusion images (Figure 1).

First, nonbrain structures were removed from the T1 images, using

BET, the brain extraction tool from the FSL software suite (http://fsl.

fmrib.ox.ac.uk) (Smith, 2002). After that, the segmentation of 84 corti-

cal structures was performed employing Freesurfer (https://surfer.nmr.

mgh.harvard.edu) (Desikan et al., 2006; Fischl et al., 2004). From the

same T1 images, gray matter, white matter, and cerebrospinal

fluid were also segmented, and subcortical gray matter structures

were obtained using FMRIB’s Automated Segmentation Tool (FAST)

and FMRIB’s Integrated Registration and Segmentation Tool (FIRST)

utilities from FSL, respectively (Patenaude, Smith, Kennedy, & Jenkin-

son, 2011; Zhang, Brady, & Smith, 2001), and combined into a volume

called 5tt (5-tissue-type) image.

In parallel, the brain was extracted from the DWIs using DWI2-

MASK tool from MRtrix (www.mrtrix.org) (Dhollaner & Connelly,

2016). Also employing MRtrix, orientation distribution functions were

estimated from the diffusion data using spherical deconvolution (Tour-

nier, Calamante, & Connelly, 2007), which were later employed to gen-

erate anatomically constrained tractography using both the diffusion

data and the 5tt image (after registration). Two million streamlines

were generated for each subject.

In order to characterize diffusion at each voxel, diffusion tensors

were estimated using a least squares method (Salvador et al., 2005),

TABLE 1 Demographic, clinical and cognitive data in patients and controls

Schizophrenia Controls

Schizophrenia
(EEG, n5 39)

Schizophrenia
(EEG1 dMR; n5 33)

Controls
(EEG; n578)

Controls
(dMR1EEG; n527)

Age 33.053 (8.801) 33.059 (8.951) 30.948 (10.839) 34.668 (11.150)

Sex (M:F) 23:16 19:14 46:32 18:9

CPZ equivalents (mg/d) 377.901 (196.934) 374.802 (193.419) NA

Duration(months) 95.169 (117.388) 83.86 (117.456) NA

Education years 14.191 (3.600) 14.882 (3.051) 16.561 (2.254) 17.427 (2.866)

PANSS positive symptoms 11.702 (3.427) 11.388 (3.457) NA

PANSS negative symptoms 17.571 (7.309) 15.450 (5.057) NA

Total symptoms 53.810 (18.892) 53.313 (18.913) NA

Total IQ 91.061 (14.528)*** 94.701 (11.789)*** 113.209 (11.088) 109.458 (12.165)

Verbal memory 34.262 (12.889)*** 35.315 (12.345)*** 51.115 (8.194) 53.000 (7.274)

Working memory 16.151 (5.010)*** 17.074 (4.148)*** 21.626 (3.621) 23.140 (2.723)

Motor speed 58.879 (13.781)*** 62.538 (12.041)*** 72.610 (16.583) 85.503 (8.154)

Verbal fluency 18.352 (5.730)*** 19.613 (4.799)*** 27.856 (5.155) 28.827 (5.177)

Processing speed 43.700(15.360)*** 45.641 (14.672)*** 69.588 (14.378) 69.251 (14.841)

Problem solving 15.253 (4.622) 16.317 (3.418) 17.524 (2.571) 17.042 (2.641)

WCST perseverative errors (%) 17.921 (10.123)*** 21.152 (17.077)*** 9.801 (5.141) 8.221 (3.573)

WCST completed categories 4.419 (1.878)*** 4.812 (1.711)** 5.847 (0.610) 5.879 (0.478)

Significant differences with respect to controls are shown for patients *p< .05; **p< .001; ***p< .001
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and scalar fractional anisotropy (FA) volumes were computed from the

diffusion tensors. FA quantifies the amount of anisotropy in the diffu-

sion tensor, that is, how much it deviates from a totally isotropic diffu-

sion. FA is usually interpreted as a descriptor of white matter integrity,

and decreases in FA have been related to alterations in the white mat-

ter due to several factors (demyelination and axonal destruction, among

others).

Finally, connectivity matrices were constructed from the tractogra-

phy results and the (registered) cortical segmentations. When a stream-

line between two cortical segmentations was found, the averaged FA

was computed. Thus, 84 3 84 connectivity matrices were obtained

using FA as connectome metrics (Figure 2). A threshold was not applied

to the obtained matrices; however, some matrix coefficients were

equal to zero when a streamline was not found.

Similar connectomics analyses have been reported in schizophrenia

(Di Biase et al., 2017) and other neurocognitive conditions (Jones et al.,

2015)

2.4 | EEG recordings and processing

2.4.1 | EEG acquisition and preprocessing

EEG recordings were obtained following MRI scans, after a resting

period of 30 min. Participants performed a 13 min three-tone P300

oddball task (for a detailed description see (Gomez-Pilar et al., 2017).

FIGURE 1 Processing pipeline yielding FA values to be used in graph-theory calculations

FIGURE 2 (a) The 29 EEG channel labels superposed on the structural ROIs. EEG nodes (filled in white) were used to generate functional
connectivity matrices from PLV values between each pair of electrodes. The figure illustrates the approximate placement of the EEG electrodes
over the ROIs. The list of the 29 electrodes used in the study according to international 10-10 system is: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1,
FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz and O2. (b) Schematic depiction (axial and sagittal views) of
the relevant tracts (streamlines) from which FA was calculated to generate structural connectivity matrices. Streamlines were calculated between
each pair of the 84 nodes corresponding to the cortical segmentation are shown as spheres (their sizes are proportional to the actual size of the
corresponding ROI). For the sake of clarity, only tracts linking PFC with anterior cingulate, superior temporal, insular, and superior parietal cortices
and hippocampus and caudate are drawn [Color figure can be viewed at wileyonlinelibrary.com]
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Electrode impedance was always kept under 5 kX. Ground was placed

at Fpz electrode and each channel was referenced over Cz electrode

and re-referenced to the average activity of all active sensors (Bledow-

ski et al., 2004; Gomez-Pilar et al., 2018), yielding a total of 29

channels.

The P300 task has several advantages for assessing functional net-

work modulation in schizophrenia. In addition to its widespread previ-

ous use in the field: (a) it is easy to perform, thus decreasing bias

related to lack of subject’s cooperation; (b) its performance activates a

large cerebral network (Bledowski et al., 2004; Linden et al., 1999); and

(c) differences in EEG global activation patterns have been reported in

schizophrenia using this paradigm (Gomez-Pilar et al., 2017).

Signals were band pass filtered between 1 and 70 Hz. In addition,

a zero-phase 50 Hz notch filter was used to remove the power line

artifact. A three-step artifact rejection algorithm was applied to mini-

mize electroculographic and electromiographic contamination (Bachiller

et al., 2015a): (a) an independent component analysis (ICA) was carried

out to discard noisy ICA components; (b) after ICA reconstruction, EEG

signals were divided into trials of 1 s length (ranging from 300 before

to 700 ms after stimulus onset); and (c) an automatic method was

applied to reject trials whose amplitude exceeded an adaptive

statistical-based threshold, which consists of two stages. First, the

mean and standard deviation of each channel was computed. Then, tri-

als that exceeded mean64 3 SD in at least two channels were dis-

carded (Nunez et al., 2017). After this adaptive artifact rejection,

91.21611.28 trials for controls—with a median (interquartile range) of

91 (85 97) trials—and 86.33614.13 – with a median (interquartile

range) of 86 (76.75 94)—were left for further analyses (p5 .051, Mann-

Whitney U-test).

In order to describe the event-related potential (ERP) waveforms,

Supporting Information Figure S1 has been include in the Supplemen-

tary material. ERPs in the midline electrodes are shown in Supporting

Information Figure S1A. Supporting Information Figure S1B shows the

channel grand average waveforms. Finally, Supporting Information Fig-

ure S1C depicts scalps maps with the P300 peak amplitude for both

groups.

2.4.2 | EEG brain graphs

The functional brain network was characterized using EEG graphs.

Electrodes were used to represent network nodes, whereas network

edges were set by computing the neural coupling between pairs of

electrodes. Specifically, neural coupling was established using the

phase-locking value (PLV) across successive trials (Lachaux, Rodriguez,

Martinerie, & Varela, 1999). PLV in sensible to small oscillations of the

EEG (Spencer et al., 2003) and takes into account nonlinearities (van

Diessen et al., 2015), which is an intrinsic feature of EEG recordings.

PLV can be computed using different approaches. In this study, the

continuous wavelet transform (CWT) was used to extract the phase

information from each trial (Bob, Palus, Susta, & Glaslova, 2008). Edge

effects in CWT were considered by computing the cone of influence

(COI) for prestimulus and response time windows. Only wavelet coeffi-

cients inside the respective COI were considered for the analyses to

avoid edge effects. We refer to our previous studies (Gomez-Pilar

et al., 2018) for detailed explanations about how wavelet coefficient

were computed, the wavelet parameters were configured and the COIs

were applied to the CWT decomposition in order to minimize edge

effects. After using CWT approach to perform filtering and phase

extraction in one operation (Bob et al., 2008), the PLV between two

signals x(t) and y(t) can be obtained evaluating the variability of the

phase difference across successive trials:

PLVxy k; sð Þ5 1
Nt

j
XN

n51

eDuxy k;s;nð Þj; (1)

where Nt is the number of trials, Duxy is the instantaneous phase dif-

ference between x and y signals, k is the time interval, and s the scal-

ing factor of the mother wavelet (see Bachiller et al., 2015a,b for

details).

Thus, functional connectivity matrices based on PLV ranged

between 0 and 1, where a value of 1 is obtained with completely

synchronized signals and a value of 0 implies an absence of synchroni-

zation. Following the same methodology as in the structural data, func-

tional connectivity matrices were not thresholded.

2.4.3 | Segmentation of the EEG response

In order to assess the task-related modulation of the graph parameters

along the odd-ball task, two-time windows were considered for com-

parison. On the one hand, the prestimulus window (i.e., a period of

expectation before the stimulus onset) ranges from 2300 ms to the

stimulus onset. On the other hand, the response window was selected

to capture the P3b response. In order to take into account, the inter-

individual variability of the P3b response, the response window was

adaptively set for each participant. First, the event-related wave was

computed for each subject by the synchronized averaging of all the tri-

als corresponding to attended target tones. Second, a low-pass finite

impulse response filter with cut-off frequency of 8 Hz was applied to

the evoked wave in order to obtain only the components related to

delta and theta frequency bands. It is noteworthy that this filter was

only applied to estimate the time window related to the EEG response.

Thirdly, the maximum amplitude of the low-pass filtered evoked wave

in the Pz channel was located into a window ranging from 250 to 550

ms from the stimulus onset (Bachiller et al., 2015b). The corresponding

sample to the maximum amplitude was used as a central time sample

of the response window. Finally, the response window was set on

6150 ms around the central time sample.

2.5 | Graph-theory parameters

From both the structural and functional connectivity matrices, we cal-

culated three graph-theory parameters to characterize global properties

of the brain network: (a) connectivity strength (i.e., mean network

degree) by means of network density (D), also named network strength

(b) network segregation using CLC, and (c) network integration by

means of PL (Rubinov & Sporns, 2010). For the sake of comparability

and to obtain results independent of network size and network

strength, CLC and PL were computed over an ensemble of 50
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surrogate random networks, which were used to normalize CLC and PL

values obtained from the original networks (Stam et al., 2009).

Therefore, normalized CLC and PL can be defined:

CLC5
C

Crandom
; (2)

PL5
L

Lrandom
; (3)

where C and L can be defined as follows:

C5
1
N

XN

i51

P
i 6¼j

P
i 6¼ l

j 6¼ l

wijwilwjl

P
i6¼j

P
i 6¼ l

j 6¼ l

wijwil
; (4)

L5
N N21ð Þ

PN
i51

PN
j 6¼i

1
Lij

; (5)

In Equation 4, wij can be referred to PLV between nodes i and j

(for functional analyses) or the structural connectivity between two

regions using the streamlines from MRI. N is the total number of nodes

of the network (29 in EEG analyses, 84 in MRI). Finally, Lij is defined as

the inverse of the edge weight (Stam et al., 2009).

With regard to the EEG functional network, parameters were com-

puted into two frequency ranges. They were selected based on their

relevance for the task-related modulation of the EEG during P300 tasks

shown in schizophrenia in previous studies: the global band (from 1 to

70 Hz) (Gomez-Pilar et al., 2017) and the theta band (from 4 to 8 Hz)

(Bachiller et al., 2014; Doege et al., 2009). A diminished task-related

modulation of theta activity during an oddball task was found in schizo-

phrenia, but not in faster frequency bands (Bachiller et al., 2014). In

addition, the assessment of the theta band showed abnormalities in

the brain network reconfiguration in the secondary functional path-

ways in schizophrenia (Gomez-Pilar et al., 2018). On the other hand,

the global band could be also useful to assess the specificity of the

theta band.

Functional network parameters during prestimulus and its corre-

sponding task-related modulation (i.e., difference between the

response and the prestimulus windows) were used for statistics.

Structural connectivity network parameters will be referred to as

dMRI-PL, dMRI-D, and dMRI-CC, and functional network parameters

as EEG-PL, EEG-D, and EEG-CLC.

2.6 | Statistics

We compared socio-demographic data (age, sex, education years, and

parental education) between patients and controls (t or v2 tests when

appropriate). Each subgroup of patients (i.e., those with only EEG and

those with EEG plus dMRI data) was compared with the corresponding

controls.

2.6.1 | Comparisons of graph-theory parameters

After testing normality and homoscedasticity of data distribution using

Kolmogorov-Smirnov and Levene tests, we compared functional (EEG-

based) and structural (dMRI-based) graph-theory parameters between

patients and controls using Student’s t-tests. Within-group changes in

functional network parameters were assessed using t-tests for related

samples. After Bonferroni adjustment, p level was set to .05/155 .003.

For the sake of interpretability, we studied the relationship

between structural connectivity parameters (dMRI-PL, dMRI-D, and

dMRI-CLC) and the average FA values in identifiable relevant white

matter tracts. With this analysis, it could be easier to interpret the

results of graph-theory data in terms of integrity of white matter tracts.

To do this, we used the methodology employed in a previous study

(Molina et al., 2017), in which FA was assessed in tracts connecting

prefrontal cortex (PFC) with other relevant regions. Correlation coeffi-

cients between structural connectivity network parameters and FA val-

ues in these tracts were computed, with Bonferroni adjustment with p

set to .001.

When statistically significant differences in network parameters

were found between patients and controls, we compared the corre-

sponding values between FE and stable chronic patients using Mann-

Whitney U-tests for independent samples, to discard a major effect of

chronicity in those differences.

2.6.2 | Association between structural and functional

networks

The main hypothesis of the study was that the structural connectivity

of the brain network would determine the prestimulus functional net-

work properties and/or its task-related modulation. This was studied

using stepwise multivariate regression models. Since significant correla-

tions between different structural variables were found, to avoid colli-

nearity effects we performed principal component analyses (PCAs)

separately with structural (dMRI) and functional (EEG) variables for

global and theta bands. This allowed a priori reducing the number of

comparisons for further analyses, thus reducing the Type I errors risk.

Individual structural and functional network factor scores were intro-

duced respectively as independent and dependent variables in the

regression model aimed to predict functional properties from structural

network data.

2.6.3 | Clinical and cognitive correlates

Next, we studied the cognitive and clinical correlates of graph-theory

parameters for the patients using stepwise multivariate regression

models (for structural and functional data). To calculate a global score

summarizing cognition, individual cognitive scores were introduced in a

PCA. The resulting individual scores were saved and introduced as

dependent variables in the model. Possible associations between

graph-theory parameters and symptoms were similarly assessed.

To discard major confounders, correlation coefficients were calcu-

lated between graph-theory parameters and both illness duration and

current treatment doses.

3 | RESULTS

There were no statistically significant differences between patients and

controls in age and sex distribution in the whole sample, nor between
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patients and controls with dMRI data. Patients had fewer study years

and a generalized cognitive deficit (Table 1).

3.1 | Comparison of graph-theory parameters

3.1.1 | Structural parameters

Patients showed statistically significant longer mean dMRI-PL values

than controls (t52.20, df558, unadjusted p5 .03; Figure 3).

Values of dMRI-PL were inversely associated to FA values in rele-

vant tracts linking PFC with anterior cingulate, superior temporal, insu-

lar and superior parietal cortices and hippocampus and caudate.

Moreover, dMRI-CLC and dMRI-D values were directly associated to

FA values in these tracts (see Section 3.2.3).

3.1.2 | Functional parameters

Both EEG-PL and EEG-CLC in the global band and EEG-D in the theta

band showed a significant increase from prestimulus to response within

patients and control groups, which remained significant only in the con-

trols after Bonferroni adjustment (Table 2). Controls, but not patients,

showed a significant increase in EEG-CLC and EEG-PL values in the

theta band from prestimulus to response (Table 2). Therefore, a

significant positive task-related modulation of EEG-CLC and EEG-PL

values was found in this band only in controls.

In the global band, prestimulus window EEG-D was significantly

higher for patients (t52.52, df5115, unadjusted p5 .03; Figure 3;

Table 2), without significant differences in the corresponding task-

related modulation.

In the theta band, prestimulus EEG-D was higher (t52.637,

df5115, p5 .010), and EEG-PL task-related modulation was

lower (t522.128, df5115, p5 .035) for patients (Figure 3;

Table 2)

Between-group differences in functional and structural graph-

theory parameters had medium effect sizes (Cohen’s d; Table 2),

although these differences would not survive after Bonferroni

adjustment.

3.1.3 | Comparison between FE and chronic patients

As compared with the FE subgroup, we found larger structural PL

in the chronic patients, while no differences were obtained

between patient subgroups in global and theta band prestimulus

density nor in theta band modulation (Supporting Information

Table S3).

FIGURE 3 Error bars corresponding to the graph-theory parameters with statistically significant differences between patients and controls
(from left to right, structural PL, functional prestimulus D at the global and at the theta bands, and functional PL task-related modulation at
the theta band). Circles represent the mean value, while bars indicate the interval of confidence (95%)
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3.2 | Association between structural and functional

networks

3.2.1 | Correlations among graph-theory parameters: PCA

Correlations were high among graph-theory parameters based on

structural (dMRI-CLC vs. dMRI-D r5 .802, p< .001; dMRI-CLC vs.

dMRI-PL r5–.515, p< .001) and functional data in the global (EEG-

CLC vs. EEG-PL r5 .791, EEG-CLC vs. EEG-D r5 .512, p< .001) and in

the theta bands (EEG-CLC vs. EEG-PL r5 .919, p< .001; EEG-CLC vs.

EEG-D r5 .631, p< .001). Therefore, independent variables for the

regression models were calculated from PCAs. Eigenvalues higher than

the unit and scree-plots were used to select the number of factors, sav-

ing individual factor scores. PCA results are summarized in Supporting

Information Table S2.

The PCA for structural parameters yielded one factor explaining

73.07% of variance (eigenvalue 2.192), with positive coefficients for

dMRI-CLC and dMRI-D and negative for dMRI-PL. Factor scores were

statistically significant lower for patients (mean 20.235, SD 1.125) than

for controls (mean 0.294, SD 0.769; df554, t52.01, p5 .049).

PCA of EEG graph-theory parameters in the global band yielded a

three factors solution explaining 88.49% of variance, respectively con-

tributed by EEG-CLC, EEG-PL, and EEG-D task-related modulation

(42.40% variance, eigenvalue 2.544), prestimulus EEG-PL and EEG-CLC

(25.39% variance, eigenvalue 1.52) and both prestimulus and task-

related modulation of EEG-D (20.70% variance, eigenvalue 1.242).

Scores for the third factor were significantly larger for patients (mean

0.300, SD 1.138) than for controls (mean 20.134, SD 0.893, t52.26,

df5115, p5 .026).

In the theta band, a two-factor solution was found. The first was

positively related to task-related modulation of EEG-CLC, EEG-PL and

EEG-D (53.07% variance, eigenvalue 3.18), whereas the second factor

was positively related to prestimulus EEG-CLC, EEG-PL, and EEG-D

(23.55% variance, eigenvalue 1.41). Scores for the first factor were

smaller at trend level for patients (mean 20.294, SD 0.759) than for

controls (mean 0.119, SD 1.090, t521.86, df5115, p5 .065).

3.2.2 | Prediction of functional scores based on structural

scores

For the healthy controls, structural factor scores predicted functional

global band prestimulus (EEG-PL and EEG-CLC) scores (R250.222,

df51,24, F56.86, b520.472, p5 .015). This relation was not signifi-

cant for patients (R25 .008, df51,29, F50.23, b520.090, p5 .606).

In the patients, structural factor scores inversely predicted values

of the first factor in the global band (task-related modulation of EEG-

PL and EEG-CLC) (R25 .172, df51,29, F56.03, b520.415, p5 .02;

Figure 4a). Therefore, in the patients, larger dMRI-CLC and dMRI-D

values were associated to smaller task-related modulation of EEG-PL

and EEG-CLC. Since dMRI-PL contributed negatively to the structural

factor, that negative association between structural and functional fac-

tors implies that shorter dMRI-PL will predict larger EEG-PL and EEG-

CLC task-related modulation.

In the patients structural factor scores did not predict functional

parameters that had shown significant differences with controls: task-T
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related modulation in the theta band (R250.001, df51,29, F50.006,

b50.015, p5 .93), prestimulus EEG-D in the global band (R250.024,

df51,29, F5 .075, b520.15, p5 .42) and prestimulus (EEG-CLC,

EEG-PL, and EEG-D) in the theta band (R250.008, df51,29,

F50.244, b50.091, p5 .34).

For the sake of interpretability, we calculated Pearson�s correlations

between individual d-MRI and EEG graph parameters. dMRI-CLC was

negatively associated in the patients to task-related modulation of

EEG-PL (r5–.383, p5 .03) and EEG-PL (r5–.495, p 5.005) in the

global band. There were no significant correlations between task-

related modulation in theta band parameters and individual dMRI-

based graph parameters (–.28> r> .166).

3.2.3 | Structural networks and specific tracts

Structural PL was inversely associated to FA (n555) in the tracts link-

ing homolaterally dorsolateral PFC with right cingulate (r5–.299,

p5 .028), left cingulate (r5–.357, p5 .008), right hippocampus

(r5–.499, p< .001), left caudate (r5–.446, p5 .001), left parietal

(r5–.394, p5 .003), left superior temporal (r5–.359, p5 .007), right

superior temporal (r5-0.478, p<0.001), left insula (r5–.322, p5 .016)

and right insula (r5–.359, p5 .007). No positive correlations were

found between structural PL and FA values.

Structural CLC was directly related to FA in the tracts linking

homolaterally dorsolateral PFC with right hippocampus (r5 .508,

p< .001), left parietal (r5 .392, p5 .003) and right parietal (r5 .273,

p5 .044). Similarly, structural density was directly related to FA in the

tracts linking homolaterally dorsolateral PFC with left hippocampus

(r5 .328, p5 .016), right hippocampus (r5 .404, p5 .002), left thala-

mus (r5 .337, p5 .013), left caudate (r5 .268, p5 .050), left parietal

(r5 .542, p< .001), right parietal (r5 .435, p5 .001), left superior tem-

poral (r5 .331, p5 .014), right superior temporal (r5 .475, p< .001),

left insula (r50.316, p50.019) and right insula (r5 .424, p5 .001).

FIGURE 4 Scatterplots showing the association between (a) factor scores resulting from the PCA of structural graph-theory parameters (X axis)
and scores of the second factor resulting from the PCA of functional graph-theory parameters in the global band (modulation; Y axis); (b) factor
scores for the first factor from the PCA of functional graph-theory parameters at the theta band (modulation) and factor scores from the PCA
summarizing cognitive scores; (c) positive PANSS scores and global band PL and CLC task-related modulation and (d) structural network (right)
Solid dots represent chronic patients, open dots represent FE patients [Color figure can be viewed at wileyonlinelibrary.com]
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Only associations at p� .001 were significant after Bonferroni

adjustment.

3.3 | Cognitive and clinical correlates

The factor analysis of cognitive scores yielded a single factor (eigen-

value 3.449), with positive coefficients for all but percent of persevera-

tive errors, explaining 54.11% of the total variance.

Scores of the first factor in the theta band (modulation) directly

predicted cognitive performance in the patients (R250.312, df51,28,

b50.558, F512.22, p5 .002; Figure 4b). Structural values were not

associated to cognition in patients.

Positive symptoms were inversely associated to structural network

factor scores (R250.329, df51,29, F513.21, b520.573, p5 .001;

Figure 4c), therefore positively associated to dMRI-CLC and dMRI-D

and inversely to dMRI-PL. The first factor in the global band (task-

related modulation of EEG-PL and EEG-CLC) positively predicted posi-

tive symptoms (R250.235, df51,35, F510.74, b521.274, p5 .002;

Figure 4d). To further clarify this point, we calculated the partial corre-

lation coefficients between positive symptoms and structural factor

scores controlling for global band task-related modulation (r5–.459,

p5 .006) and between positive symptoms and global band task-related

modulation controlling for structural network values (r5 .432, p5 .01),

supporting the independence of the associations.

3.4 | Confounding factors

Duration of illness was inversely associated to structural factor scores

(r5–.599, p5 .001). Thus, larger duration would imply smaller dMRI-

CLC and dMRI-D as well as longer dMRI-PL. Current antipsychotic

dose was not significantly related to structural (–.069< r< .148, p5 n.

s.) nor functional (–.040< r< .183, p5 n.s.) graph-theory parameters.

4 | DISCUSSION

Global band network characteristics a baseline in control and its task-

related modulation in patients were predicted by structural network

parameters. EEG-PL and EEG-CLC in the global band and EEG-D in the

theta band showed a significant task-related modulation only in con-

trols after adjustment for multiple comparisons. Although unadjusted,

patients showed larger dMRI-PL, higher prestimulus EEG-D at both

global and theta bands and reduced functional task-related modulation

of EEG-PL at the theta band, without any significant association

between these structural and functional alterations. In patients, struc-

tural connectivity and theta task-related modulation respectively pre-

dicted positive symptoms and cognition.

Network parameters have been calculated from scalp sensors in

this work. Therefore, the connectivity estimates are not derived from

true sources of the corresponding activity involved in task processing.

Volume conduction effects imply that signals from different sources

arrive to different sensors, hampering the estimation of the connectiv-

ity among the original activity sources (Brunner, Billinger, Seeber,

Mullen, & Makeig, 2016; Van de Steen et al., 2016). Our functional

estimates are therefore to be considered just a global outline of the

functional network characteristics and their modulation with cognitive

activity. However, this outline may contain useful information regard-

ing characteristics such as local clustering, mean PL and density of

functional connections. They can be relevant to understand differences

between patients and controls in terms of prestimulus network organi-

zation and their change with cognition. Source estimates using proce-

dures such as low-resolution tomography might allow identifying

activity sources from which PLV values could be calculated and among

which structural connectivity could be assessed. This approach would

be useful to describe effective connectivity relations among these sour-

ces, which can be of interest for the pathophysiology of psychosis.

Those procedures, however, are not completely reliable, and the

inverse solution problem remains unsolved. Therefore, the functional

global outline here describe can hold a significant value, in particular its

fast modulation with cognition; although only indirectly reflecting the

characteristics of the underlying sources.

We calculated structural connectivity parameters using FA values

from white matter tracts linking anatomical regions and functional con-

nectivity using phase similarity of EEG signals between sensors. Both

measurements summarized the same properties of the respective net-

works, and the prediction of global band prestimulus (controls) and

task-related modulation (patients) functional values from structural

scores supports the relation of both kinds of networks. Caution is nec-

essary when considering these relations, given the above mentioned

possible influence of volume conduction effects. Remarkably, abnor-

malities in structural and functional networks were unrelated in the

patients.

The lower factor scores in the patients for structural connectivity

(positively loaded for dMRI-CLC and dMRI-D and inversely related to

dMRI-PL), suggest a reduced integrity of white matter connectivity in

schizophrenia among nearby (reflected in lower CLC) and distant (lon-

ger PL) regions. The larger dMRI-PL in our patients is coherent with

reports of reduction of global communication paths (Griffa et al., 2015;

van den Heuvel et al., 2013) and lower FA in schizophrenia, likely

reflecting alterations of long-range tracts (Ellison-Wright & Bullmore,

2009; Patel et al., 2011).

To our notice, no previous study has explored the structural under-

pinnings of alterations of fast task-related modulation in functional net-

works in schizophrenia. Odd-ball task performance involves the

coordination of different brain regions (Linden et al., 1999). For both

groups, EEG-PL and EEG-CLC in the global band increased from presti-

mulus to response windows, which imply that widespread local task-

related activations elongate mean EEG-PL and increase EEG-CLC. In

our cases, factor scores summarizing structural network (positively

associated to dMRI-CLC and dMRI-D, and negatively to dMRI-PL)

inversely predicted EEG-PL and EEG-CLC task-related modulation in

the global band in patients. Thus, patients with smaller dMRI-CLC and

dMRI-D, and larger dMRI-PL, would show a smaller global band EEG-

CLC and EEG-PL modulation. However, as compared with controls,

patients did not show a deficit of functional EEG-PL task-related modu-

lation in the global band, raising doubts about the significance for
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schizophrenia of that association between structural connectivity and

global band modulation.

Instead, we found task-related modulation deficits in patients in

the theta band. However, modulation in the global band was not

decreased in patients, which may relate to the relatively larger involve-

ment of theta oscillations in P300 performance as shown by relative

power and median frequency analysis during this task (Bachiller et al.,

2014). Using different methodologies, smaller increases of theta power

have been found for schizophrenia patients during P300 tasks (Bachil-

ler et al., 2014; Doege et al., 2009). Taken together, this suggests a

higher impact on theta than global band connectivity in schizophrenia.

Since theta oscillations have a role in synchronization between distant

regions (von Stein, Chiang, & Konig, 2000), the task-related modulation

deficit in theta suggests a decreased capacity for integrating activity

across cortical regions in schizophrenia, which would be not closely

associated to anatomical connectivity deficits according to our results.

Such relative independence of structural and functional connectiv-

ity alterations surprised us, but could be explained by data showing

that functional connectivity exists between regions without direct ana-

tomical connection (Adachi et al., 2012; Honey et al., 2009). Thus, defi-

cits of functional integration (in the theta band) would not require

altered structural substrates. Coordination of activity between distant

regions may be established indirectly, since functional connectivity is

high among regions with common efferences to third regions, which

may convey information to higher regions and may also receive similar

afferences (Adachi et al., 2012). Therefore, the alteration in relevant

cortical hubs reported in schizophrenia (van den Heuvel et al., 2013)

may hamper the synchronization of regions not directly linked via with

matter tracts. Although other data using anatomical and functional MRI

show a substantial correspondence between the corresponding net-

works (Hagmann et al., 2008), this relation had not been assessed yet

with EEG data. Considering all this, we must underline that structural

deficits were found in our patients (larger dMRI-PL and lower factor

scores) and were predictive of positive symptoms. This suggests the

coexistence of alterations in both structural and functional networks (in

the theta band) within schizophrenia, but not necessarily in the same

cases. In other words, either both unrelated functional and structural

networks alterations are found in schizophrenia or they are characteris-

tics of different schizophrenia subgroups. The latter possibility seems

favored by recent reports supporting that structural connectivity values

can segregate biologically valid clusters within schizophrenia (Lubeiro

et al., 2016; Sun et al., 2015; Wheeler et al., 2015). Using EEG, both no

difference (Jhung et al., 2013; Rubinov et al., 2009) and a decrease

(Micheloyannis et al., 2006) of CLC at rest were reported in schizophre-

nia, which may be coherent with that possibility.

Remarkably, prestimulus EEG-D is higher in the patients. The den-

sity is the mean network degree (i.e., a measure of the network

strength), implying a functional over-connectivity at rest in schizophre-

nia. This result is in agreement with the increased prefrontal functional

connectivity reported in schizophrenia (Anticevic et al., 2015). The dif-

ferent patterns of dMRI-D and EEG-D in patients, and the lack of a sig-

nificant relation between them, support the independence of the

alterations in both networks. Speculatively, the increased EEG-D might

relate to the deficit in GABA function observed in schizophrenia (Gon-

zalez-Burgos, Fish, & Lewis, 2011; Thakkar et al., 2017), which could

lead to hyper-synchronization. In our study, functional connectivity is

based on PLV values; thus, larger prestimulus theta EEG-D values sug-

gest and excess of synchronization in the patients in this band,

which could have a ceiling effect on task-related synchronization and

might hamper theta EEG-D modulation. Therefore, an inhibitory trans-

mission deficit could justify both the increased baseline D values and

the lower modulation in the theta band, given its large implication in

P300 task performance (Bachiller et al., 2014; Doege et al., 2009). This

possible dependence on inhibitory function might also justify the

lack of a significant prediction of theta modulation by structural

connectivity.

The increase in theta task-related modulation values (i.e., larger

functional density, CLC and PL in this band) predicted better cognition

in the patients. There was only one cognitive factor, which is not sur-

prising since the assessment instrument (BACS) included the dimen-

sions where performance was previously found decreased in

schizophrenia. That predictive relationship suggests that cognitive defi-

cit is secondary to the decreased capacity of modulating the functional

network in the theta band, perhaps indicating a lesser capacity to inte-

grate the activity of different areas in a task.

Our study is limited by the sample size of patients with both struc-

tural and functional network data available. A larger sample would be

needed to test the hypothesis of distinct schizophrenia clusters based

on structural connectivity. In addition, the assessment of nodal parame-

ters could be of interest. However, connectivity analysis at the sensor

level is very problematic due to effects of field spread (Schoffelen &

Gross, 2009). Therefore, future studies should also be focused on

increasing the number of EEG electrodes to provide more accurate

results. Moreover, we cannot rule out an effect of treatment, although

antipsychotic doses were unrelated to structural and functional graph

parameters. It must be also noted that all EEG measures are influenced

by volume conduction. In order to minimize this effect, a well-known

strategy is based on the assumption that volume conduction

affects the connectivity estimates in a similar way in two different

experimental contrasts, such as prestimulus and response conditions

(Bastos & Schoffelen, 2016). With regard to the use of dMRI-based

connectivity, the accuracy of the cortical segmentation and the choice

of the tractography method influence the obtained connectivity matri-

ces. Although FA is the most usual dMRI descriptor for white matter

integrity, it cannot identify the ultimate origin of connectivity

alterations.

We may conclude that task-related modulation deficit in the

theta band in schizophrenia is independent from deviation from

normal structural network properties. This, considered together with

the different correlates of functional and structural connectivity altera-

tions, might support different clusters within the schizophrenia

syndrome.
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Table A.2: Factor structure of connectivity networks and cognitive scores. Re-
sults of the principal components analyses performed to obtain factor scores for
structural and functional (global band and theta band) networks and cognitive
performance. The variables included in each component are boldfaced.

Factor 1

CLC 0.928
PL -0.725
D 0.897
Structural network

Factor 1 Factor 2

CLC pre-stimulus -0.167 0.935
PL pre-stimulus -0.088 0.934
D pre-stimulus -0.229 0.570
CLC modulation 0.889 -0.302
PL modulation 0.870 -0.253
D modulation 0.856 -0.029
Functional theta band
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Factor 1 Factor 2 Factor 3

CLC pre-stimulus 0.059 0.900 0.388
PL pre-stimulus 0.131 0.960 -0.110
D pre-stimulus -0.085 0.158 0.923
CLC modulation 0.936 0.163 0.080
PL modulation 0.929 0.037 0.081
D modulation 0.429 -0.014 0.739
Functional global band

Factor 1

Verbal memory 0.783
Working memory 0.794
Motor speed 0.505
Verbal fluency 0.710
Performance speed 0.806
Tower of London 0.654
Perseverative errors -0.608
Cognitive scores

Table A.3: P300 latency and amplitude at Pz electrode.

Schizophrenia Controls p-value

P300 amplitude (µV ) 2.15± 1.56 2.9863± 1.62 0.0086
P300 latency (ms) 435.38± 70.35 454.68± 71.89 0.1698



Figure A.1: (A) P300 waveforms in the middle line of the brain scalp (Fz, Cz and
Pz electrodes) for controls (blue) and patients (red). (B) Scalp map depicting the
P300 peak amplitude at Pz for controls and patients around the latency of both
groups (450 ms).

Table A.4: Mean values and comparison between first episode (FE) and chronic
(CH) schizophrenia patients for the network variables with significant differences
between patients and healthy controls. * Significantly higher in chronic patients
(Mann-Whitney U -test, p = 0.009)

Structural PL Global band D Theta band D Theta band modulation

FE 1.014(0.005) 0.313 (0.064) 0.346 (0.029) 0.001 (0.020)
CH 1.023 (0.112)* 0.338 (0.083) 0.373 (0.047) -0.001 (0.190)
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Figure A.2: Upper row: Lateral and superior views of the regions from which the
structural connectivity matrix was built. Lower row: Lateral and superior views
of hypothetical dMRI network based on segmented regions.
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The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph
complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied
to binary graphs. The proposed complexity measure was designed to capture the interplay between two
properties of a system: the ‘information’ (calculated by means of Shannon entropy) and the ‘order’
of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that
complex graphs should maintain an equilibrium between the aforementioned two properties, which can
be measured by means of the edge weight distribution. In this study, SGC was assessed using four
synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from
controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure
used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and
independent of node degree distribution. Furthermore, its variation with graph size (N) is close to zero
for N > 30. Results from the real dataset showed an increment in the weight distribution balance
during the cognitive processing for both controls and schizophrenia patients, although these changes
are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-
hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset
suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to
secondary pathways of the brain network.

Keywords: Graph theory; brain networks; brain complexity; entropy.

1. Introduction

The application of graph-theoretical analyses to

study brain networks constitutes an evolving field

with a high impact in neuroscience. The character-

ization of brain networks in terms of integration,

segregation, regularity or complexity has become of

paramount importance to identify the underlying

processes of the functional neural organization in the

brain. In order to understand brain network behav-

ior, previous works conducted resting-state activity
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analyses1,2 as well as task-related activity ones.3–5

Both together provide an overall view of brain net-

works generated under different conditions. Func-

tional complex brain networks are usually depicted

by a set of nodes (vertices) and connections (edges

or links). These connections represent the statisti-

cal dependence between neural activity in different

brain areas, obtained by correlations, mutual infor-

mation or coherence, among others.6,7 Most brain

graph studies use binary connections between nodes

(i.e. a threshold is applied to dichotomize the edge

weights).8 Although this is an apparently simple

model, these graph analyses are interpretable in rela-

tion to general principles of complex system organi-

zation.8 On the other hand, weighted network anal-

ysis introduces the concept of connection strength

between nodes. It can be considered a more realistic

approach of the physiological properties of brain net-

works.8,9 Unfortunately, the use of weighted graphs

is not exempt from methodological concerns, which

have not been completely solved yet.9

A high amount of measures have been proposed

to describe the organization and function of brain

networks.10–12 These network measures are usually

defined for binary graphs and, when possible, gen-

eralized for more complex graphs such as weighted

and/or directed graphs. Roughly speaking, network

measures can be divided into two classes, depend-

ing on the nodes involved: (i) local measures, related

to a single node or edge (for the computation other

nodes/edges can be involved, even all of them), and

(ii) global measures, which describe the properties

of the entire network. Usually, global network mea-

sures are strongly influenced by basic properties such

as network size (N), graph density (GD) and node

degree distribution.9 For instance, consider a graph

A, as a complete, binary and undirected graph with

N = 10 nodes, and a graph B with equal basic char-

acteristics (complete, binary and undirected), but

with N = 100 nodes. Node degree distributions are

similar for both cases, and the maximum GD possible

for each respective N is reached for these two graphs.

Although both graphs have similar topology and

their main difference is N , the characteristic path

length (i.e. the average shortest path length between

all pairs of nodes in the network13) of graph A is

much lower than that of graph B because of the net-

work size. Consequently, the statistical significance

of the network parameters must be considered by

comparing them with null-hypothesis networks (i.e.

networks constructed by surrogate process).11 Null-

hypothesis networks can be modeled as networks

with the same basic characteristics as the original

network (N , GD and node degree distribution), but

with different topology.11 Null models are often used

as a reference point to determine whether a graph

displays a topological feature to a greater extent than

expected by chance. To date, the most widespread

method to construct null-hypothesis weighted net-

works is based on applying a random rewiring pro-

cess.1 Although there are several ways to gener-

ate these null-hypothesis networks, none of them is

bias-free for weighted graphs.9 There are even graph

methodologies that remove nonrelevant connections

from the brain graphs by means of techniques based

on the percentile14 or the p-value,15 making surro-

gate processes completely necessary, even when the

same electrode configuration is used.

It is generally accepted that the brain is a

well-designed anatomical network, which exhibits

an optimal balance between functional integration

and segregation.6,16 On the other hand, pathological

networks are usually accompanied by diverse alter-

ations and/or deficits in network functions. How-

ever, contradictory results have been found after

computing measures of integration or segregation

when some specific diseases were studied. Discrep-

ancies in brain network properties can occur due to

several reasons: the method of edge weight assign-

ment, the thresholding method used to construct

binary graphs (when these are considered instead

of weighted graphs) or the surrogate process used

to compare with null-hypothesis networks, among

others. Nevertheless, there is consensus about the

high complexity of the brain when compared with

other networks, such as regular or random configu-

rations.17 Although the study of complex networks

has provided us with a further understanding of

brain coupling dynamics,18–21 the underlying con-

cern is that there is not a widely accepted scien-

tific definition of graph complexity. Several complex-

ity measures have attempted to capture the intuitive

notion of complexity by emphasizing the idea that

complex systems are neither completely regular nor

completely random.22 In this context, a number of

graph complexity measures have been proposed to

assess brain behavior. This is the case of the study

of Ahmadlou et al.,23 which proposed the power of



December 9, 2017 9:2 1750032

scale-freeness of a graph structure and the maxi-

mum eigenvalue of the adjacency matrix of a graph

as features to measure graph complexity. For that

purpose, they used visibility graph similarity (VGS)

a recently introduced concept to accurately quan-

tify the overall synchronization in both identical and

nonidentical couplings of time series.24 Machta and

Machta25 proposed the computational complexity

of a parallel algorithm, to evaluate brain behavior.

Meyer-Ortmanns26 associated the complexity of the

network with the number of topologically nonequiv-

alent graphs generated by selecting vertices and par-

titioning the edges of the original vertex among the

new vertices. There are even measures that define

graph complexity in the context of information the-

ory22,27,28 Tononi et al.22 reported an elaborate new

concept of complexity based on mutual information,

which relies on the coexistence of functional spe-

cialization and integration. Morabito et al.28 used

mutual information to construct the connectivity

matrix. Claussen27 defined off-diagonal complexity,

computed by the entropy of a vertex-vertex edge

correlation matrix. Nonetheless, all these measures

are influenced by network topology, making surro-

gate processes necessary. This implies an additional

source of possible confusion that it is convenient to

avoid. To date, none of them has been generalized

for weighted graphs. In our opinion, the weighted

graph model is more appropriate than the binary one

to analyze brain dynamics, as it provides a realistic

framework to address the characterization of the neu-

ral substrates of the brain. Thus, a new and comple-

mentary graph complexity measure, not influenced

by network topology, is pertinent.

The main objective of this study was to introduce

Shannon graph complexity (SGC), a novel graph

measure based on the assumption that a complex

network is a system that can be modeled as a graph

that should maintain equilibrium between the ‘order’

and the amount of ‘information’ stored. SGC should

meet three requirements: (i) it should be able to

measure the aforementioned interplay, (ii) it should

be independent of the network topology and (iii) it

should not require a comparison with null-hypothesis

networks. Our primary hypothesis for the mathe-

matical definition of SGC states that, for a fixed

topology, the weight distribution of a complex net-

work is directly related to its reliability and informa-

tion propagation speed. The second objective of the

present study was to assess the usefulness of SGC

in determining the properties of the real brain net-

works. Specifically, real graphs were obtained from

the electroencephalographic (EEG) signals of con-

trols and schizophrenia patients during an auditory

oddball task. In this regard, we hypothesize that

pathological neural substrates affecting network con-

nectivity29 can be characterized by analyzing the

balance of the weight distribution by means of SGC.

This paper is divided into six sections. In Sec. 2,

the theoretical ground of SGC is introduced. Sec-

tion 3 describes the four synthetic and the real EEG

datasets used in the study. The simulation results for

synthetic data and the results obtained from EEG

recordings are shown in Sec. 4. Finally, we discuss

the implications of these results and summarize the

main conclusions of the study.

2. Complex Network Measures

2.1. Null-hypothesis models and
traditional global measures

Several null-hypothesis networks have been proposed

to accurately assess brain graphs. The two most

used weighted null-hypothesis networks are: (i) null-

hypothesis networks that preserve N , GD and edge

weight distribution by means of a connection reshuf-

fling process1 and (ii) null-hypothesis networks that

preserve N , GD and the degree of each node.30 It

is important to note that none of the two null-

hypothesis networks preserves node degree distribu-

tion for weighted graphs, especially if the weight

distribution is nonhomogeneous.11 Ansmann and

Lehnertz9 compared these two kinds of surrogate

processes and the nonsurrogate model. They con-

cluded that weight-preserving null-hypothesis net-

works could segregate the influence of basic parame-

ters more accurately than degree-preserving network

model and the model performed without any surro-

gate process. However, all the previous methods are

not bias-free.9 Even though the bias is always present

in any measure, the bias introduced via surrogate

data must be reduced as much as possible for pre-

venting inappropriate conclusions.9 Specifically, this

bias could be the reason of the previously mentioned

contradictory results in graph measures when some

specific diseases were studied. To overcome this issue,

three options can be proposed. The first one is to

accept the bias introduced by the weight-preserving
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surrogate process; nonetheless, this additional source

of bias could yield contradictory results. The sec-

ond option is to design a new nonbiased method,

although some researches claim that an ‘unbiased

method for empirical data does not exist’.31 Due to

the drawbacks of the previously mentioned options,

we chose the third one: to define a global graph mea-

sure that does not need a surrogate process.

Indeed, there are network measures, such as GD,

that do not need a surrogate process, when com-

paring networks with the same N . GD values are

identical in the original network and in the null-

hypothesis networks constructed using the weight-

preserving approach. Thereby, this measure does not

depend on the node degree distribution and normal-

ization is not required. GD is then an appropriate

measure to validate SGC, not only because a sur-

rogate process is not needed to compute both mea-

sures, but also because GD can be used to estimate

network complexity.10,12 In fact, Bonchev and Buck

renamed GD for binary graphs as ‘normalized edge

complexity’.12 In addition, GD indicates the con-

nectivity of the network, as it provides a measure

of the average weight of the graph edges. For undi-

rected, weighted networks without self-loops, GD can

be mathematically defined as follows:

GD =

∑N
i=1

∑
j>i wij

T
, (1)

where wij represents the edge weight between nodes

i and j and T = N(N − 1)/2 is the total number of

connections in an undirected graph.

2.2. Shannon graph complexity

Most of the complexity definitions proposed in pre-

vious studies have different drawbacks: (i) high com-

putational cost; (ii) difficulty to be generalized for

weighted graphs and (iii) influence of network topol-

ogy. This influence is not a problem by itself but,

to segregate the influence of the topology, a compar-

ison with null-hypothesis networks becomes neces-

sary, especially for small networks typically derived

from the study of functional connectivity using EEG

signals.9 In order to overcome these limitations, we

introduce a novel definition of complexity that is

independent of network topology. In our prelimi-

nary study,32 we defined a novel graph complexity

measure based on information theory; nevertheless,

the dependences on basic network parameters were

not assessed. SGC is based on analyzing the weight

distribution balance of the network. This statistical

complexity measure considers that the weight distri-

bution of a graph can be measured in terms of ‘order’

and ‘information’. To capture this interplay, SGC

was defined as the product of the Shannon graph

entropy (H) and the statistical disequilibrium (D):

SGC = H ·D. (2)

First, for the computation of H , we rely on the

definition of Shannon entropy,33 as a measure of the

stochastic edge weight distribution. H is given by the

following formula12:

H =
−1

log2 T

N∑

i=1

∑

j>i

wij

W
log2

wij

W
, (3)

where W is the sum of all weights of the graph and

log2 T is a normalization factor introduced to ensure

that 0 ≤ H ≤ 1.

Secondly, D is defined as the statistical distance

in the probability space between the equilibrium dis-

tribution and the weighted distribution of the graph

under study.34 It is noteworthy that the distribu-

tion with uniform weights (i.e. weights with the same

value) is considered as the equilibrium distribution

in Gibbs’ statistical mechanics.34 Thereby, a highly

balanced weighted graph (such as a graph with all

weights equally valued) yields a maximum Shannon

graph entropy, Hbalanced = 1, and a value of D

equal to zero. On the contrary, a highly unbalanced

weighted graph distribution gives Hunbalanced ≈ 0

and a high D value. In this study, the Euclidean dis-

tance was used to compute D as follows:

D =

√
1

T − 1
· σ
w
. (4)

where w is the average of all edge values of the graph

and σ is the standard deviation of those values.

In Eq. (4), D was normalized to take values in

the 0-1 interval, dividing by its maximum value.34

In a different context, this concept of complex-

ity was defined by López-Ruiz et al.35 The authors

defined a statistical measure of complexity as a bal-

ance between ‘order’ and amount of ‘information’.

They proposed that a crystal might have maximum

‘order’ and minimum ‘information’ (the structure

can be described using two or three parameters).

Conversely, an ideal gas would have minimum ‘order’

and maximum ‘information’. They are examples of
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simple models and, therefore, systems with zero com-

plexity.35 The parallelism between a lattice graph

and the description of a crystal in terms of ‘informa-

tion’ and ‘order’ is clear. On the other hand, an ideal

gas can be seen as an unbalanced graph. Therefore,

it is expected that these two kinds of graphs have

complexity values close to zero.

It is noteworthy that, by definition, SGC depends

on bothN and the weight distribution balance, but it

is normalized with respect to GD and is independent

of node degree distribution. To illustrate these issues,

four synthetic datasets were generated by varying

different network properties.

3. Simulated and Real Data

To perform the simulations of synthetic graphs and

to analyze the real data, we used Matlab r© R2013b

(MathWorks Inc., USA) by means of custom scripts

and the available functions on Statistics and Machine

Learning Toolbox and Signal Processing Toolbox. In

addition, EEGLAB toolbox was used to carry out

the independent component analysis (ICA) over the

EEG data in order to remove artifacts.

Fig. 1. Dataset construction examples for N = 5. Each row exemplifies the construction of one of the datasets.

3.1. Synthetic graphs

In this section, we describe four synthetic graph

datasets. Synthetic graphs were generated by vary-

ing: (i) N ; (ii) the unbalancing factor, UF (i.e. a mea-

sure of the unbalancing strength, which is defined as

the number of times the largest graph edge value is

greater than the lower one); (iii) GD and (iv) the

node degree distribution (i.e. distribution of the sum

of the weights reaching to each node). The datasets

were constructed in order to study the SGC depen-

dences on the previous variables in terms of weight

balance. Figure 1 illustrates the construction process

for the four datasets.

DATASET-1: In order to determine the SGC

dependence on N and UF, DATASET-1 was gener-

ated as follows:

(i) Consider a weighted and undirected graph with

size N in which all the edges, except one, have

a fixed value of 1. The remaining edge was set

to the UF value.

(ii) An edge with a value 1 was randomly chosen

and replaced by the UF value, obtaining a new

graph.
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(iii) Step (ii) was repeated until all edges were set

to the UF value. The last graph is defined as a

completely balanced graph.

(iv) The process was repeated for all combinations of

network sizes with N ∈ {2, 3, . . . , 128} and dif-

ferent values of UF ∈ {2, 10, 102, 103, 104, 105}.
The maximum value of N was selected for being

the typical value of the number of electrodes

in high-density EEG recordings. On the other

hand, UF was chosen in order to comprise a

range of values large enough to accurately assess

SGC dependences.

This dataset is comprised of 6
∑128

N=2 N(N −
1)/2 = 2, 097, 024 adjacency matrices with sizes

between 2 × 2 and 128 × 128, 6 different UF val-

ues and a single change in each of their connections

(there are a total of N(N − 1)/2 connections in each

graph).

DATASET-2: This dataset was used to char-

acterize the graph complexity when N and UF

change, but GD remains constant. Construction

of DATASET-2 is similar to the generation of

DATASET-1, except that all graphs were normal-

ized by their GD. Thus, edge weights in DATASET-2

were proportional to DATASET-1, but their GD was

fixed to 1.

DATASET-3: The purpose of this dataset was to

determine the dependence of SGC on the node degree

distribution. The generation of DATASET-3 can be

summarized as follows:

(i) Consider a weighted and undirected graph with

fixed size (N = 31), where all the edges val-

ues are randomly distributed. The value of N

was chosen in order to coincide with the number

of EEG electrodes in the DATASET-real (see

Sec. 3.2 for details).

(ii) A new graph was constructed by randomly

reshuffling the edge weights. By means of this

process, different node degree distributions were

obtained, but maintaining the same weight dis-

tribution.

(iii) Step (ii) was repeated 999 times, obtaining a

total of 1000 graphs with the same weights, but

different node degree distributions.

(iv) All the previous steps were performed for three

different distributions of edge values: a uniform

distribution from 0 to 1 edge values, a nor-

mal distribution (0.5 ± 0.1, mean ± standard

deviation, SD) and a bimodal distribution con-

structed as the mixture of two normal distribu-

tions (1/3± 0.1 and 2/3± 0.1, mean± SD).

It is important to note that we ensured that all

edge values ranged from 0 to 1. Thus, 3000 (1000 of

each type) graph formed this DATASET-3.

DATASET-4: The purpose of this dataset was to

study the behavior of SGC for graphs with different

number of connections. The DATASET-4 construc-

tion is summarized as follows:

(i) Consider an empty graph (edgeless graph) with

size N .

(ii) An aleatory edge between two disconnected

nodes was set to a random value from 0 to 1

(edge values were uniformly distributed between

those values).

(iii) Step (ii) was repeated until all edges were con-

nected. The last graph is defined as a fully con-

nected graph.

(iv) The process was repeated for all combinations

of network sizes with N ∈ {2, 3, . . . , 128}. As in
DATASET-1 and DATASET-2, the maximum

value of N was selected for being a common

value of the number of electrodes in high-density

EEG recordings.

This dataset comprised
∑128

N=2 N(N − 1)/2 =

349, 504 adjacency matrices with sizes between 2× 2

and 128× 128.

3.2. Real EEG data

As an example of application on real graphs, a real

dataset (DATASET-real hereinafter) was included

in this study. Connectivity patterns come from

the EEG recordings of 51 healthy controls and

28 schizophrenia patients. Diagnosis was made by

an expert clinician involved in the treatment of

the patients according to Diagnostic and Statisti-

cal Manual of Mental Disorders, 5th edition crite-

ria.36 The clinical status of schizophrenia patients

was scored using the Positive and Negative Syn-

drome Scale.37 Demographics and clinical charac-

teristics of schizophrenia patients and controls are

summarized in Table 1. In order to avoid medical

conditions, which might influence the results, con-

trols and schizophrenia patients were selected using

inclusion/exclusion criteria based on clinical history

and structured interviews (see Refs. 3 and 4 for a
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Table 1. Demographic and clinical characteristics.

Characteristic SCH patients Controls

Age (years) 31.19 ± 10.43 29.31 ± 9.74
Gender (M:F) 13 : 15 24 : 27
PANSS-positive 11.39 ± 3.40 NA
PANSS-negative 18.26 ± 8.24 NA
PANSS-total 54.00 ± 21.47 NA

Note: Values are shown as mean±standard deviation

(SD). NAmeans ‘not applicable’. M: male; F: female.

complete description). No significant between-group

differences (p > 0.05) were found in age (Wilcoxon

signed-rank test) or gender (χ2 test). All participants

gave their informed consent prior to their participa-

tion in the study. Moreover, the study protocol was

approved by the local Ethics Committee of Clinical

University Hospital of Valladolid (Spain), according

to the code of ethics of the World Medical Associa-

tion (Declaration of Helsinki).

Data acquisition and preprocessing were per-

formed in an identical way as described by Nakamura

et al.30 In summary, the acquisition was performed

using an EEG system (BrainVision, Brain Products

GmbH, Munich, Germany). The electrode placement

followed the 10/10 system, with 32 active elec-

trodes. Impedances were kept below 5 kΩ. Event-

related potentials (ERPs) were recorded while the

participants were sitting with their eyes closed. The

auditory oddball task consisted of random series of

600 tones with three different kinds of tones: target

(500Hz tone), distractor (1000Hz tone) and stan-

dard (2000Hz tone) with probabilities of 0.20, 0.20

and 0.60, respectively. Only attended target tones

(i.e. target tones followed by a mouse click from

the participants) were considered. ERP signals were

recorded at a sampling frequency of 500Hz during

13min of an auditory oddball task. After a visual

inspection, signals from TP9 and TP10 electrodes

were removed because of muscle artifacts. Data were

re-referenced to the average activity of all active sen-

sors obtaining 31 channels. Signals were filtered using

a band-pass finite impulse response filter between 1

and 70Hz, as well as a 50Hz notch filter. Finally,

a three-step artifact rejection algorithm was applied

to minimize ocular noise and myographic artifacts:

(i) ICA was carried out and, after visual inspec-

tion, ICA components associated with artifacts were

discarded; (ii) reconstruction and segmentation of

the data into trials of 1 s length ranging from 300ms

before to 700ms after stimulus onset and (iii) auto-

matic and adaptive trial rejection using a statistical-

based thresholding method.4

In order to study the dynamical changes in

the EEG, the single trial approach was used.38,39

Each trials of 1 s length was divided into two time

windows: baseline window ([−300 0]ms from the

stimulus onset) and response window ([150 450]ms

after the stimulus onset).3,4 The baseline window

is related to the resting prior to the stimulus and

the response window corresponds to the cognitive

response of the P300 task processing. Accordingly,

the auditory oddball task is useful to analyze the

dynamical neural reorganization during a cognitive

processing.3,4

Continuous wavelet transform (CWT) was used

in order to generate brain graphs. Wavelet transform

is a useful method to accurately assess the changes

of electrophysiological signals in the time-frequency

plane.40 In this study, the complex Morlet wavelet

was used as ‘mother’ function, as it provides a plau-

sible biological fit to EEG data.38 It is characterized

by the bandwidth (Ωb) and the wavelet center fre-

quency (Ωc) parameters. They were set to 1 to obtain

an adequate balance between the temporal and fre-

quency resolution.4 Complex Morlet can be defined

as follows:

φ(t) =
1√

π · Ωb

· e−j 2π·Ωc·t2
Ωb . (5)

To obtain the CWT coefficients, the convolution

of each 1 s length EEG trial, x(t), and the complex

Morlet function must be calculated as:

CWT(k, s) =
1√
s
·
∫ ∞

−∞
x(t) · φ ∗

(
t− k

s

)
· dt, (6)

where s and k denote the dilation and translation

factors and ∗ represents the complex conjugation. It

is important to note that edge effects are not negligi-

ble, as the trials are finite short-length time series.38

Contrary to Fourier analysis, CWT has a variable

time-frequency resolution.36 In this regard, a Heisen-

berg box can be introduced. It is defined as a con-

stant area rectangle whose height and width depend

on the frequency (∆f) and the time (∆t) resolution,

respectively.36 Following previous studies, the size of

the Heisenberg box was chosen to be two times ∆t
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Fig. 2. Example of the normalized wavelet coefficients at Pz electrode averaged across trials in a control subject. The
transparency outline represents the limits of the COI in the baseline and response windows, where the spectral content is
not affected by edge effects.

and ∆f .37 The influence of the edge effect changes

across that representation, because ∆t and ∆f are

not constant in the time-frequency plane. Hence, in

order to overcome the errors at the beginning and the

end of the wavelet power spectrum, zero padding was

introduced at the extremes of each EEG trial. Never-

theless, this introduces discontinuities at the edges.

Thus, the spectral content must only be considered in

the time-frequency regions delimited by their respec-

tive cones of influence (COIs), where the edge effect

can be ignored (Fig. 2). In this study, target tri-

als of 1 s length were decomposed into the baseline

and response windows. Therefore, it is necessary to

define one COI for each of the aforementioned time

window.

The analysis of the delta band was not performed

because it could be affected by a significant bias,

resulting in an inaccurate time-frequency estimation.

In this regard, some studies recommend six cycles

to accurately estimate wavelet coefficients;41 never-

theless, two cycles can also be used at the expense

of frequency resolution.42 In this study, this latter

approach was used in order to study a maximum

range of the spectral content, taking care with the

lower frequencies because of the possible bias intro-

duced due to the time-frequency resolution. Thereby,

the CWT from 4 to 70Hz was divided according

to the conventional EEG frequency bands: theta

(4–8Hz), alpha (8–13Hz), beta-1 (13–19Hz), beta-

2 (19–30Hz) and gamma (30–70Hz).

Graph edge weights were obtained from the WC

without the application of any threshold to obtain

the adjacency matrices. Each node of the graph

corresponds to an electrode (N = 31) and each edge

weight corresponds to the WC between the signals of

the considered pair of electrodes. To obtain the WC,

the wavelet cross-spectrum (WCS) between two 1 s

length ERP trials was computed as follows:

WCSij(k, s) = CWTi(k, s) ·CWT∗
j (k, s), (7)

where subscripts i and j identify a pair of electrodes.

Once WCS was obtained for all pairwise electrode

combinations, it was averaged across trials in two

windows of interest: (i) the baseline window and (ii)

the response window. Finally, WC between two given

electrodes i and j was calculated as follows4,43:

WCij(s) =
|WCSij(s)|2

WCSii(s) ·WCSjj(s)
, (8)

WC is a straightforward method, commonly used

in previous EEG studies.43–45 It represents the linear

relationship between the amplitude of two signals in

the spectral domain (nonlinear relationships are not

considered).44 WC was obtained for each frequency

(or scale) and then averaged across scales in the pre-

viously defined frequency bands. Hence, one adja-

cency matrix was obtained for each frequency band,

subject and time window (i.e. 10 adjacency matrices

per subject). As a result, 790 graphs were obtained

for the DATASET-real: 79 subjects ×2 time windows

(baseline and response) ×5 frequency bands. Graph

edge weights range from 0 to 1, as a thresholding

method was not applied to the WC values.
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4. Results

4.1. Results on synthetic graphs

Figure 3 shows the changes in SGC and GD for

DATASET-1 and DATASET-2 for different values

of UF, N and the number of edges set to UF (ES-

UF). The last parameter, ES-UF, reflects the bal-

ance of the edge weight distribution. When only one

edge value is set to UF (and UF is large enough),

the unbalance strength reaches its maximum; on the

contrary, when all the edge values are set to UF, the

edge weight distribution is completely balanced.

The first row show SGC values for DATASET-1

and DATASET-2. SGC values are exactly the same

for both datasets, which implies that SGC is density-

invariant (the only difference between DATASET-1

and DATASET-2 is that graphs in DATASET-2 were

normalized by their GD). SGC plots show that there

is little variation in the complexity values forN > 30.

Furthermore, there is a strong dependence between

UF and the number of ES-UF needed to reach an

equilibrium between a completely weight balanced

distribution and a strongly weight unbalanced dis-

tribution (i.e. the maximum value of SGC when N

is fixed).

On the contrary, GD behavior is completely dif-

ferent for these two datasets, as it directly depends

on weight values but not on the weight distribution.

The two bottom rows in Fig. 3 show the GD depen-

dences for these two datasets. For DATASET-1, GD

increases with the number of ES-UF. In addition, GD

becomes higher as UF increases (note the logarithmic

scale on z-axis). It is important to note that all the

GD plots of the DATASET-1 have the same shape,

but it is not evident as all plots have the same scale

in the axes. On the other hand, GD remains constant

and equal to 1 for DATASET-2, as each graph was

normalized by their own GD. Therefore, the behavior

of GD for DATASET-1 is completely different from

that for DATASET-2, contrary to SGC. It is note-

worthy that SGC and GD cannot be computed for

all N and number of ES-UF, as it is impossible to

generate an undirected graph of size N with more

than N(N − 1)/2 ES-UF. That is the reason why

some SGC and GD values were not plotted.

The results for DATASET-3 showed that SGC

and GD values were constant for each distribution.

Therefore, SGC and GD are invariant with respect

to the node degree distribution. These measures only

depend on the value of the edge weights, but not on

the degree of each node. Additionally, SGC provided

complexity values of 0.026 for a uniform distribution,

0.020 for a bimodal distribution and 0.015 for a nor-

mal distribution (Table 2). On the contrary, GD was

not able to differentiate between these distributions.

The DATASET-4 was constructed to analyze the

behavior of SGC for graphs with different numbers

of connections. The SGC and GD results are shown

in Fig. 4. Similar to DATASET-1 and DATASET-2,

SGC showed little variation for N > 30. On the other

hand, GD showed an important dependence on the

number of connections.

Finally, Fig. 5 depicts SGC as a function of H

and UF for N = 31 (number of nodes in DATASET-

real). The graphs used to generate Fig. 5 are the

same as those used in DATASET-1, but with several

more values of UF in order to obtain a compact rep-

resentation of SGC. Figure 5(a) is useful to visualize

SGC as a function of H and UF, while the maximum

and minimum values of SGC are easily observed in

Fig. 5(b).

4.2. Results on real brain graphs:
Application to schizophrenia

We computed SGC for real ERP signals recorded

from healthy controls and schizophrenia patients.

Complexity values were compared between time

windows (baseline and response) and groups (con-

trols and patients) in the five frequency bands

under study. Prior to this, an exploratory analy-

sis was carried out to analyze data distribution.

The Kolmogorov–Smirnov and the Levene tests were

used to check normality and homoscedasticity of

data distributions. Nonparametric tests were applied

to assess statistical differences, since parametric

assumptions were not met: (i) Wilcoxon signed-rank

test was used to compare baseline and response net-

work measures for within-group analyses and (ii)

Mann–Whitney U -test was used for between-group

analyses. In addition, Bonferroni correction for mul-

tiple comparisons was applied. Thus, the significance

level was set to α = 0.01.

Within-group analyses for SGC values on each

group and window are shown in Fig. 6(a). Only the

theta band exhibited statistical differences between

baseline and response windows (Z = −5.37, p =

7.83E − 8, in the control group; Z = −3.05, p =
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Table 2. SGC and GD values for all the graphs
of DATASET-3. SGC and GD are independent of
node degree distribution.

Uniform Normal Bimodal
distribution distribution distribution

GD 0.500 0.500 0.500
SGC 0.026 0.015 0.020

2.28E− 3, in the schizophrenia group). On the other

hand, GD was computed to validate the performance

of SGC (Fig. 6(b)). Within-group analyses showed a

statistically significant increase from the baseline to

the response window in the theta band for both con-

trols (Z = 5.75, p = 8.65E − 9) and schizophrenia

patients (Z = 3.37, p = 7.51E − 4). No significant

differences were found on the other frequency bands.

In view of these results, only the theta band was con-

sidered for further analyses.

SGC and GD were baseline-corrected (i.e. com-

plexity values during baseline window were sub-

tracted from their values during response win-

dow).3,38 Between-group analyses showed a marked

reduction on SGC values during the response win-

dow for both controls and schizophrenia patients.

However, no significant differences were found in

between-group comparisons using corrected SGC

Fig. 4. SGC and GD values for DATASET-4. Note that GD results are represented in logarithmic scale, due to the high
dependence of GD on the number of connections.

after Bonferroni correction though (Z = −1.95, p =

5.01E − 2). Nevertheless, controls showed a more

marked decrease in SGC values during cognitive

response than patients. Regarding GD analysis,

results indicated that controls exhibited a statisti-

cally significant more prominent increase in corrected

GD values during the response than schizophrenia

patients (Z = 2.64, p = 8.31E− 3). Hence, for both

networks, changes from baseline to response were

more prominent in controls than in schizophrenia

patients.

It is interesting to note that H increased dur-

ing the response window for both controls and

schizophrenia patients. This indicates that the reduc-

tion of SGC, which is a measure of the equilibrium

between balanced and unbalanced edge eight distri-

bution, is due to an increase in the weight balance of

the network. To evaluate brain complexity dynamics

during the auditory oddball task, the change of SGC

as a function ofH from baseline to response windows

for controls and schizophrenia patients is represented

in Fig. 7.

5. Discussion

The main objective of this study was to propose a

novel graph complexity measure and to assess its

behavior under different conditions using synthetic

and real datasets. SGC is essentially normalized
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(a)

(b)

Fig. 5. (a) 3D and (b) 2D plots corresponding to SGC
as function of H and UF, when N = 31. Maximum and
minimum values of SGC are also depicted in (b).

with respect to GD and independent of node degree

distribution. Additionally, the influence of network

size on SGC seems to be small for N > 30 when UF

takes small values. Hence, the need to make compar-

isons with null-hypothesis networks was not required

for networks of the same size. On the other hand, sta-

tistically significant differences in network reorgani-

zation dynamics after an auditory oddball task were

(a)

(b)

Fig. 6. (a) SGC and (b) GD values for each group, win-
dow and frequency band. Values are depicted as mean
and standard error. ∗ indicates p < 0.01, while whereas
∗∗ indicates p < 0.001.

found between controls and schizophrenia patients

with SGC.

5.1. SGC dependences: Synthetic
graphs

Four synthetic datasets were generated by varying

basic network characteristics, such as N , UF, GD

and node degree distribution. DATASET-1 showed

that SGC and GD depend on N and the number of

ES-UF. It is important to note that a high UF value
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Fig. 7. Detailed plot of the complexity dynamics from
baseline to response in the theta frequency band for con-
trols (blue arrow) and schizophrenia patients (red arrow).
The small figure represents the maximum and minimum
possible SGC values for this network size. The square
in the small figure corresponds to the zoomed area in
the large figure. H increases and SGC decreases for both
groups, but the behavior is more remarkable for controls
than for schizophrenia patients.

yields weighted graphs with similar behavior than

binary graphs. Binary graphs have some connections

set to 1 and others set to 0. Their behavior is similar

to weighted graphs with connections set to a high

UF value and others set to 1. Therefore, when SGC

is applied to binary graphs, the behavior is similar

to the previously shown performance. This is a sig-

nificant advantage with respect to other complexity

measures, which cannot always be applied to binary

and weighted graphs.25–27 On the contrary, SGC can

be directly applied to binary and weighted graphs.

Figure 3 shows that the maximum of SGC for

each N is always obtained for a number of ES-UF

lower than N(N − 1)/2. This is an important dif-

ference compared to GD, where the maximum is

reached for ES-UF = N(N − 1)/2. Therefore, SGC

introduces a graph complexity definition more intu-

itive than GD, as graph complexity is considered

as an equilibrium between ‘order’ and ‘information’

stored. If graph complexity is measured by means of

GD,12 a complete graph (i.e. a graph with all their

nodes connected) with network connections set to the

maximum value always has the highest complexity.

However, this does not correspond to the intuitive

notion of graph complexity, where some connections

(and thus pathways) are more important than oth-

ers, creating a tangled mesh of paths.46

DATASET-2 was assembled similarly to

DATASET-1. The only difference was that the

DATASET-2 graphs were normalized by their own

density. That is the reason for the constant GD val-

ues shown in the bottom row of Fig. 3. Neverthe-

less, graphs with proportional weights show the same

H and D values by construction; therefore, SGC is

also the same. In this regard, the same SGC val-

ues were reached for DATASET-1 and DATASET-2

(Fig. 3). This is another advantage of SGC in com-

parison with GD. In addition, it is not necessary to

normalize the graphs by their density to compare the

complexity among them, enabling the comparability

between studies.

Results obtained from DATASET-3 proved that

both SGC and GD are independent of node degree

distribution. This implies that SGC is independent

of network topology, which suggests that this mea-

sure provides complementary information to network

measures based on topology. Two graphs with dif-

ferent node degree distribution or GD, but with

the same set of weights, would have the same SGC

value. Therefore, comparisons with null-hypothesis

networks become unnecessary for networks with the

same N . Furthermore, as we mentioned previously,

the change of SGC is small for N > 30, when UF

takes small values and ES-UF is fixed. Hence, the

possible bias introduced when comparing with net-

works of different sizes is minimized in relation to

other topology-based graph measures. DATASET-3

also provides an important difference between the

two measures of graph complexity analyzed in this

study. GD took the same value for the three dif-

ferent distributions. However, SGC results indicated

that a uniform distribution of the edge weights had a

higher complexity value than a normal or a bimodal

distribution. This advantage of SGC with respect

to GD is based on the ‘order’ of each distribution.

A graph with maximum ‘order’ (a complete graph

with the same value of all edges) corresponds to

a delta distribution. In that case, SGC would pro-

vide a value equal to zero. The more the distribution

under study resembles the distribution of maximum

‘order’, the lower the value of complexity provided
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by SGC. For that reason, the minimum complex-

ity value was obtained with the normal distribution,

with a value of 0.015 (Table 2). The bimodal distri-

bution achieved a SGC value of 0.020, whereas the

uniform one obtained a value of 0.026.

Regarding DATASET-4, our results showed that

the SGC behavior with not fully connected graphs

is similar to that observed for fully connected ones,

since there is little variation of SGC for N > 30. On

the other hand, GD has an important dependence on

the number of connections in the graph.

Finally, it is important to note that graphs with

the same size and edge values, but different topol-

ogy, achieve the same value of SGC. Therefore, from

the point of view of ‘order’ and amount of ‘informa-

tion’ stored by the system, there are no differences

between, for example, scale-free and small-world net-

works (if they have the same size and edge values).

In addition, the computational cost of SGC is

significantly lower than other complexity measures

based on several iterations of mutual information22

or on generating motifs from the original network.26

SGC is based on Shannon entropy, and it only needs

one iteration to be computed. This is another impor-

tant difference with previously proposed complexity

measures.22,26

5.2. Brain dynamics using SGC: Real
graphs

The results derived from DATASET-real showed

that SGC is a metric that may allow differentiat-

ing the brain networks of controls and schizophrenia

patients. For both groups, SGC decreased during the

response window, which suggests a reduction of the

equilibrium between ‘order’ and amount ‘informa-

tion’ stored by the system. In addition, Fig. 6 showed

higher values of H during the response window for

both groups. Therefore, the ‘order’ decreased while

the amount of ‘information’ stored by the system

increased in the subjects’ brain networks during the

cognitive task. However, the variation of SGC from

the baseline to the response window is more promi-

nent in controls, specifically in the theta band, which

could evidence a deficit in the reorganization pat-

terns in schizophrenia. In this regard, results showed

that only theta band exhibited statistical differences

in within-group analyses. In addition, the changes

between baseline and response windows were lower

in schizophrenia patients. Previous studies reported

a decrease of the relative power in the alpha fre-

quency band in schizophrenia patients47,48 and an

increase of power in the theta band.49 Furthermore,

oscillations in low frequency ranges (such as theta)

are related with the modulation of the long-range

synchronization,50,51 whereas high frequency ranges

(such as beta and gamma) reflect synchronization in

large-scale networks.52 Thus, it can be inferred that

impaired activation response of long-range interac-

tions might contribute to the pathological process

of schizophrenia, which usually shows an integration

deficit among distant brain areas.29 In view of these

results, the present study reports similar ideas to

previous ones, which suggested that schizophrenia

is accompanied by a disrupted network reorganiza-

tion of neural functions, mainly in long-range inter-

actions.3,53,54

Our results also agree with previous studies

that linked impaired network reorganization capac-

ity with the aberrant salience and the disconnection

hypotheses.55,56 In this regard, Bachiller et al.4 posed

the idea that schizophrenia patients failed to change

their coupling dynamics between stimulus response

and baseline when performing a stimulus process-

ing. It can be related to a diminished ability to

optimize the neural synchronicity leading to a func-

tional disconnection. This idea was clearly shown by

GD results. Controls showed a significant increase

in GD during the response, which implies a global

increment of connectivity patterns. As reported in

task-related studies,4,57 an increase of ERP syn-

chronicity on the theta frequency band is observed

during cognitive processing. Nonetheless, schizophre-

nia patients usually show a failure to modulate syn-

chronous activity, particularly when asked to attend

to target stimuli.4,58 This modulation deficit pro-

duces lower WC values for schizophrenia patients

than for controls. Therefore, it seems reasonable that

schizophrenia patients exhibited lower GD values

during the response window.

There are important aspects that indicate the

complementarity of SGC and GD. On the one hand,

SGC (jointly with H) showed that the weight distri-

bution is more balanced during the response com-

pared with baseline (Fig. 6). Taking into account

only SGC results, the increased balance could be

a consequence of: (i) a prominent increase in the

value of weak connections (i.e. secondary neural
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pathways); (ii) a decrease in the value of the con-

nections with higher values or (iii) the combined

effect of the previous two points. On the other hand,

GD showed an increase, on average, of the edge

weights during the response window. Therefore, the

increase of edge values for the secondary neural

pathways should have a higher effect than a possi-

ble decrease in the connections with higher values

(option (i)). Furthermore, SGC modulation is higher

for controls, but statistically significant differences

were not found between the baseline windows of both

groups. Thus, it is likely that secondary neural path-

ways can be strengthened in controls compared with

schizophrenia patients during cognitive processing.

This strengthening balances the weight distribution,

which could increase the reliability and the infor-

mation propagation speed in the brain. Therefore,

controls can reorganize their brain network between

different areas in a flexible and transient way in order

to coordinate the response to the cognitive task. The

previous inferences have only been possible due to

the complementary information provided by SGC

and GD. Although the statistical differences between

healthy subjects and schizophrenia patients are more

marked for GD than for SGC, it is important to note

that the second objective of this study is to assess the

usefulness of SGC in determining the properties of

the real brain networks. In this regard, SGC provided

different and complementary information to that of a

classical measure of graph complexity, GD, meeting

the second objective of the study.

The idea of classifying brain graph connections

in different topological levels (primary and sec-

ondary connections) is in line with a recent con-

cept introduced in neuroscience to model the brain

network: the minimum spanning tree (MST).46,59

MST is an acyclic subgraph that connects all nodes

using exactly N − 1 edges while minimizing dis-

tance between nodes (i.e. maximizing the connec-

tion strength).60 It represents a critical backbone

of information flow in weighted networks, provid-

ing information about how the brain structures

the information in different topological levels. The

nodes involved could be similar to those forming

the weighted ‘rich club’ (i.e. a subset of high-degree

nodes that are connected by a larger fraction of

the most highly weighted edges in the graph that

expected by chance),61 Thus, the brain network is

modeled as a two-topological level structure. The

first topological level is formed by the main con-

nections (i.e. the MST backbone and the ‘rich club’

motifs). The second topological level is formed by

secondary neural pathways, which are removed in

the MST model. Thus, this idea supports our con-

cept of network complexity: the brain is a network

halfway between a completely balanced and unbal-

anced weight distribution, where the higher-level

topologies are part of the previously mentioned MST

backbone. SGC is useful to evaluate the relationship

between primary and secondary pathways in terms

of weight balance, which can support the existence

of ‘rich club’ assemblies in the brain network. In this

regard, it is commonly accepted that the archetypal

brain network is sparsely connected between nodes

in different modules.62 In this study, SGC showed

that weak connections increase their strength dur-

ing the response window, generating new alterna-

tive pathways that should work to increment net-

work integration. It is noteworthy that several EEG

studies reported an increase in brain network integra-

tion during cognitive processing.63,64 This integra-

tion, usually measured by means of the path length,

is reduced in schizophrenia patients compared with

controls during an oddball task,5 which is again in

agreement with the disconnection hypothesis.29 The

present results support an altered information pro-

cessing in schizophrenia, which may not characterize,

however, all the patients in this syndrome, given its

likely heterogeneous biological substrate.65

5.3. Limitations and future lines of
research

Some methodological issues of this study merit con-

sideration. First, SGC does not provide information

about graph topology. Although this is an important

advantage because the requirement for a surrogate

process is avoided by comparing networks with the

same N , the lack of this information requires the

use of complementary measures in order to obtain a

global vision of the network. Nonetheless, the need

for various measures to fully characterize a graph

is commonly accepted.66,67 Individually, topological

features do not provide information on the connec-

tivity balance or the strength of the functional neural

connections. In our opinion, this edge weight distri-

bution balance has a very important role in the anal-

ysis of the impact of network complexity. Therefore,



December 9, 2017 9:2 1750032

the lack of this information could lead to ignoring

important aspects of the brain network.

The second methodological issue is related to the

intrinsic SGC property as an entropy-based mea-

sure. Previous studies suggested that entropy quanti-

fiers might overestimate the irregularity in the brain

network.68 This could explain why entropy values

obtained from brain networks reached values close

to 1, as shown in Fig. 7. Different entropy mea-

sures could provide different degrees of disorder esti-

mation. Future works should address this concern

by quantifying the irregularity by means of other

entropy measures. Likewise, different disequilibrium

measures based on more complex measures of dis-

tance (Euclidean distance was used in this study)

could provide complementary results.

Thirdly, the methods used to estimate the con-

nectivity between brain areas could have a high

impact on measures that are strongly dependent on

edge weights. DATASET-real was obtained by apply-

ing WC to EEG recordings. The choice of this con-

nectivity measure was motivated by its widespread

use as a method for weight estimation in func-

tional brain graphs.44 Coherence is a straightforward

method that assesses the linear relation between the

amplitude of two signals in the frequency domain.

However, it is sensitive to volume conduction,44

which could lead to an erroneously high estimation

of connectivity between two network nodes.44,69 In

this regard, a statistical threshold to remove spu-

rious connections could help to clarify the results.

Future works should be carried out to evaluate SGC

behavior in graphs obtained using metrics that do

not overestimate the connectivity between nodes,

such as phase-based measures. In addition, it could

be interesting to apply multivariate approaches for

causal interactions between nodes, as directed edges

can be interpreted in a more physiological way. The

application of SGC in these conditions would not

need any reformulation, as it is applicable to directed

graphs. Nonetheless, it is important to note that the

proposed measure is an extension of a metric origi-

nated in information theory by considering normal-

ized weights as probabilities. For that reason, it is not

possible to compute SGC when a graph takes nega-

tive edge weights. In this regard, an interesting future

line of research could be a more theoretical approach

of the interpretation of the proposed metric. It would

provide more meaningful and general results.

6. Conclusions

Several pieces of evidence suggest that the edge

weight distribution of complex brain networks is

directly related to reliability aspects and to its infor-

mation propagation speed. Therefore, graph mea-

sures that evaluate the weight distribution are fully

justified. SGC was introduced as a useful alterna-

tive to GD and other graph complexity measures. In

this study, we proved the independence of SGC with

respect to basic graph characteristics, in addition to

an almost small dependence on N when UF takes

small values.

Our results from real brain graphs indicate that

SGC is particularly useful to determine the intrin-

sic properties of neural dynamics during a cognitive

task. Specifically, SGC results suggest that the audi-

tory oddball task elicits an increment of the connec-

tion weights, mainly in the edges related to secondary

neural links. This provides alternative pathways to

the neural backbone. Another important remark is

the prominent change in SGC and GD observed

in controls compared with schizophrenia patients.

These insights are in line with the disconnection and

aberrant salience hypotheses. They involve a deficit

in neural network reorganization during cognitive

processing that could lead to a lower functional inte-

gration of the brain network.
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The study of themechanisms involved in cognition is of paramount importance for the understanding of the neu-
robiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dy-
namics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity
to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly,
EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five
schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying func-
tional network for each subject. Finally, pre-stimulus network connectionswere iterativelymodified according to
different models of network reorganization. This adjustment was applied by minimizing the prediction error
through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients
follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly
connected during pre-stimulus) formost of the subjects, though the ratio of controls that exhibited this behavior
was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with
an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct ev-
idence that the changes in phase-based brain network parameters frompre-stimulus to cognitive response in the
theta band are closely related to the performance in important cognitive domains. Our findings not only contrib-
ute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal sub-
strates in schizophrenia.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-established that disturbed cognition is a core feature of
schizophrenia. Schizophrenia patients often exhibit global IQ deficits
(Zanelli et al., 2010) and impairments in several cognitive domains,
such as semantic memory (Rossell and Batty, 2008), executive function
(Simonsen et al., 2011), and sustained attention (Sánchez-Morla et al.,
2009), among others (Sheffield and Barch, 2016; Vöhringer et al.,
2013). These impairments are likely related to alterations in prefrontal
neural network dynamics in schizophrenia (Mukherjee et al., 2016;
Poppe et al., 2016). However, the exact relationship between neural
network abnormalities and cognitive impairment remains unclear.

Cognition has not only been exhaustively studied using a neuropsy-
chiatric approach both in healthy individuals (Leech and Sharp, 2014)
and in schizophrenia patients (Moustafa and Gluck, 2011; Vöhringer
et al., 2013), but also from a neuroscientific perspective (Li et al.,
2016; van den Heuvel and Fornito, 2014). In this context, a dynamical
causal model of the brain behavior has been previously proposed
(Friston et al., 2003). Despite the number of virtues of the model, dy-
namical causalmodeling requires a high computational cost and the ad-
justment of several parameters (Thai et al., 2009). Additionally, the
complexity of this model makes it rather difficult to draw direct rela-
tionship to brain networks without a strong a priori hypothesis. For
these reasons, intuitive models focused on explaining the observed
neurodynamics, could be helpful. In this regard, the framework of the
predictive coding could be the basis to provide a Bayesian inference of
the observed environment (Kilner et al., 2007). Predictive coding is
based on minimizing prediction error through recurrent interactions
among cortical hierarchy levels (Kilner et al., 2007). The neural activity
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encoding a particular brain state determines where the current dynam-
ics are within the hierarchical sequence (Friston and Kiebel, 2009).
Therefore, the encoding of a particular state would have a predictive
capability of the subsequent state. Perceptual alterations could be then
explained by abnormalities in the dynamic mechanisms of predictive
coding (Hohwy et al., 2008).

In this study, we propose an intuitive and reliable model of neural
network dynamics during a cognitive task, in which the error between
the modeled network and the real brain network is recurrently mini-
mized. Thus, the brain network during the pre-stimulus activity (i.e.,
prior to stimulus presentation or perception) determines the brain
network during the subsequent state. It is necessary, therefore, to char-
acterize the brain network in different moments of the task. One ap-
proach being considered would be to directly compare these network
parameters, i.e. an arithmetic difference, which would summarize the
brain dynamics. This approach can be useful to characterize the network
changes, but not the underlying neural mechanisms of such changes. A
probabilistic model is, therefore, required in order to identify the neural
underpinnings associated with the cognitive task. For that purpose,
graph-theoretical analyses combined with EEG can be used to provide
a mathematical representation of the functional brain network for
studying rapid changes in the coordination and synchronization be-
tween different regions. Based on previous evidence about the impor-
tance of rapid changes in the cognitive processing (Varela et al., 2001),
EEG becomes a suitable tool to analyze brain network changes in the
range of milliseconds, unreachable by other neuroimaging techniques,
such as fMRI. In addition, it is crucial the use of complementary network
measures to obtain a comprehensive characterization of the functional
brain network (Rubinov and Sporns, 2010). It is generally accepted
that functional brain network is well-connected (Power et al., 2013)
and complex (Liu et al., 2008). Furthermore, it exhibits an optimal bal-
ance between integration and segregation (Deco et al., 2015), as well
as between regularity and irregularity (Tononi et al., 1998). Abnormal-
ities in the previously mentioned brain network features have been re-
ported in schizophrenia (Liu et al., 2008; van den Heuvel and Fornito,
2014; Yeo et al., 2016). Therefore, a combination of the previous
network characteristics should be helpful to characterize brain network
dynamics related to cognition in schizophrenia.

Dysfunctional interactions between brain areas have been repeat-
edly suggested as a relevant contribution to explain the mental alter-
ations in schizophrenia (Bjorkquist et al., 2016; Friston and Frilh,
1995; Whalley, 2005). Within this framework, disrupted connectivity
in long-range interactions plays a central role in this disorder
(Dickerson et al., 2010; Friston et al., 2016; Gomez-Pilar et al., 2015;
Sigurdsson et al., 2010). It is noteworthy that a relationship between
long-range interactions and low frequency bands, such as delta and
theta, has been proposed (Uhlhaas and Singer, 2010). Therefore, it is
not surprising that noticeable findings have been usually reported in
the literature about the strong association between schizophrenia and
brain connectivity in the low EEG frequency bands (Ford et al., 2002;
Koenig et al., 2001; Uhlhaas and Singer, 2010). Alterations on low fre-
quency bands have been related to a temporal misalignment ofworking
memory function in schizophrenia (Kikuchi et al., 2007). In this regard,
it was suggested that the neural activity underlying working memory
may be abnormally dominated by slow frequencies in schizophrenia
(Northoff and Duncan, 2016). Similarly, theta oscillations were pro-
posed to be the basis for memory integration (Buzsáki, 2005) and top-
down processing (Uhlhaas et al., 2008), both impaired in schizophrenia
patients (Clare, 1993; Rossell and Batty, 2008). In addition, it has been
suggested that cognitive control deficits may contribute to episodic
memory deficits in schizophrenia (Barch and Sheffield, 2014), in
which hippocampal and prefrontal regions could play an important
role. This, jointly with our previous studies (Bachiller et al., 2015;
Gomez-Pilar et al., 2018c), lead us to claim the importance of theta
band to characterize the dynamical cognitive network. The analysis of
the electric brain activity at low frequencies during the performance

of an oddball task (related to working memory function and top-
down processing) could then enhance our understanding of memory
mechanisms in schizophrenia.

In the last decade, several studies assessed the brain network changes
during a cognitive task in schizophrenia and healthy individuals, some of
thembymeans of an oddball task (Bachiller et al., 2015; Reijneveld, 2011;
Shim et al., 2014). They reported differences in connectivity and/or net-
work features during the cognitive processing. However, for the sake of
comparability, it would be appropriate to go a step further and identify
a cognitive network model to explain the observed neural dynamics. In
a previous study (Gomez-Pilar et al., 2018c), we suggested that network
differences between a healthy and a schizophrenia brain could be related
with secondary pathways (i.e., pathways between nodes weakly
connected) of the brain network during the pre-stimulus activity. These
pathways would be strongly reinforced during the cognitive processing,
while other connections would remain almost unchanged. These differ-
ences could be specifically linked to frequency bands related to memory
and hippocampal activity (i.e. low frequency bands).

Hence, the present study aimed at elucidating the dynamical network
model during a cognitive task that betterfits the brainnetwork changes in
a healthy population, as well as the possible abnormalities in schizophre-
nia. To avoid inter-subject variability, we performed an individualized
approach that provides a specific network model for each subject.

2. Methods and materials

2.1. Study subjects

Thirty-five schizophrenia patients were recruited from the Psychia-
try Department at the University Hospital of Valladolid (Spain). Diagno-
ses were made according to the Diagnostic and Statistical Manual of
Mental Disorders, 5th edition (DSM-V) criteria (American Psychiatric
Association, 2013). Fifty-one healthy control subjects, keeping a non-
statistically significant age and gender ratio, were also included in the
study. Inclusion/exclusion criteria were undertaken identically as in
our previous studies (Bachiller et al., 2014; Gomez-Pilar et al., 2018c;
Gomez-Pilar et al., 2017) (see Supplementary material for details). Cog-
nitive data were collected using the Spanish version of the Brief Assess-
ment in Cognition in Schizophrenia (BACS) (Segarra et al., 2011).
Clinical and sociodemographic characteristics, as well as antipsychotic
doses equivalents for patients, are summarized in Table 1.

All controls and patients gave their informed consent to be included
in the study. The study protocol was approved by the research board of
the University Hospital of Valladolid (Spain) and was conducted in ac-
cordance with the Declaration of Helsinki guidelines.

2.2. Cognitive EEG task

All participants performed a three-stimulus oddball task. During the
13-minutes of the auditory oddball paradigm, participants heard binau-
ral tones bursts presented in random series of 600 tones with an inter-
stimulus interval randomly jittered between 1.16 and 1.44 s. Three dif-
ferent tones were presented: target (500 Hz-tone; probability; 0.2),
distractor (1000 Hz-tone; probability; 0.2) and standard (2000 Hz-
tone; probability; 0.6). The participants were asked to keep their eyes
closed and to press a button with their right hand whenever they de-
tected the target tones. Only attended target tones were considered
for further analyses. The behavioral performance of both groups is in-
cluded in Table 1. After preprocessing, the number of trials for target
condition was 97.41± 9.98 for controls and 89.26± 17.04 for patients.

2.3. EEG network estimation and model reconstruction

2.3.1. Acquisition protocol and network analysis
EEG recordings were acquired at a sampling frequency of 500 Hz in

28 electrodes with a BrainVision® equipment (Brain Products GmbH;
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Munich, Germany) while the participants underwent the previously
mentioned oddball task. Electrode impedance was always kept under
5 kΩ and each channelwas referenced over Cz electrode. After a prepro-
cessing to reduce the noise in the EEG recordings (see Supplementary
material for details), brain networks were estimated.

The connectivity values of the functional brain network were com-
puted using the phase-locking value (PLV) across successive trials in
the theta frequency band (4–8 Hz). Once the connectivity matrices
were obtained, five complementary network features were assessed:
(i) integration, (ii) segregation, (iii) connectivity strength, (iv) com-
plexity, and (v) irregularity. Theywere quantified bymeans of the char-
acteristic path length, the clustering coefficient, the graph density, the
Shannon graph complexity and the Shannon graph entropy, respec-
tively. Since the last two measures have been recently introduced,
they do not have widespread use. In summary, the graph irregularity
of the brain network was characterized by the Shannon Graph Entropy,
defined as follows (Gomez-Pilar et al., 2018c):

H ¼ −1
log2T

∑N
i¼1∑ jNi

wij

W
log2

wij

W
; ð1Þ

whereW is the sum of all weights of the graph and log2T is a normaliza-
tion factor introduced to ensure that 0 ≤ H ≤ 1. On the other hand, graph
complexity was estimated using the Shannon Graph Complexity, de-
fined as follows (Gomez-Pilar et al., 2018c):

SGC ¼ H �
ffiffiffiffiffiffiffiffiffiffiffi
1

T−1

r
� σ
w
: ð2Þ

wherew is the average of all edge values of the graph and σ is the stan-
dard deviation of those values. More details about network matrices
generation and network parameter definitions have been included in
the Supplementary material.

To evaluate brain network changes during the cognitive task, net-
work measures were computed during the pre-stimulus of each trial
(i.e., time interval ranging from 300 ms before to the stimulus onset)
and during the subsequent brain response (from the stimulus onset to
700 ms after it), with special attention on the brain response related
to P3 potential (i.e., a time window of 300 ms centered on 300 ms)
(Gomez-Pilar et al., 2017). This procedure is also useful to avoid
confounding factors due to volume conduction effects (Bastos and
Schoffelen, 2016).

2.3.2. Dyanmical network modeling during cognition
The dynamical network model was individually identified for

each subject. We considered six different models of brain dynamics.
Among all possible models, the six models explained below were
selected for being intuitive and easy to explain in physiological
terms. As we will discuss later, we are aware that changes in the
brain network are probably more complex. The considered models
are the following:

i) Reinforcement of primary connections. This model assumes that
the primary connections of the brain (i.e. connectionswith higher
values of connectivity measured by PLV) during pre-stimulus
will suffer more marked changes during the cognition.
Specifically, the connection values are increased during the
cognitive processing.

ii) Reinforcement of secondary connections. This model assumes
that the secondary connections of the brain (i.e. connections
with lower values of connectivity measured by PLV) during
pre-stimulus will suffer a more marked increase during
cognition.

iii) Reinforcement of a connection at random. This model assumes
that the increase of the brain connections during the pre-stimulus
can randomly occur.

We also took into account three additionalmodels,which are similar
to models i), ii) and iii) but considering a decrease in the edge values:

iv) weakening of primary connections,
v) weakening of the secondary connections and
vi) weakening of a connection at random.

In order to determine the dynamical network model for each sub-
ject, an iterative algorithm was used. The schematic overview of the
procedure is shown in Fig. 1. In summary, the algorithm modified the
connections of the pre-stimulus activity following the models previ-
ously described. After repeating the algorithm for each of the sixmodels,
the model with the lowest mean square error (MSE) between the real
and the modeled response was selected. It ensures that the selected
model is the one that better fits the cognitive response. All the steps of
the algorithm are detailed in the Supplementary material.

Table 1
Sociodemographic and clinical characteristics of schizophrenia patients and healthy control subjects.

Controls Patients Comparison

Mean SD Mean SD t p

Demographic data Age (years) 29.31 9.74 32.68 10.37 −1.510 0.135
Gender (male:female) 23:28 20:15 χ2 = 0.851 0.356

Symptom scale scores PANSS + – – 12.63 7.53 – –
PANSS − – – 18.26 8.24 – –
PANSS total – – 54 21.47 – –

BACS scale Working memory 20.67 4.00 15.79 5.31 4.601 b0.001
Processing speed 70.00 14.10 42.45 15.42 8.055 b0.001
Executive function 17.18 2.63 15.57 3.44 2.311 b0.05
Verbal memory 51.61 8.57 34.76 11.25 7.457 b0.001
Motor speed 72.16 14.11 47.34 14.69 4.415 b0.001
Verbal fluently 27.89 5.77 17.44 6.39 7.103 b0.001

Illness Drug equivalence (mg/d) – – 351.29 270.10 – –
Duration (months) – – 84.45 117.40 – –

Oddball task Reaction time (ms) 242.43 33.06 277.23 47.32 −4.018 b 0.001
Precision (%) 98.70 2.13 89.82 16.11 3.897 b 0.001
Amplitude Pz (μV) 3.35 1.48 2.29 0.95 3.725 b 0.001
Latency Pz (ms) 448.78 86.22 457.49 117.11 −0.397 N 0.05

PANSS: Positive and Negative Syndrome Scale.
BACS: Brief Assessment in Cognition in Schizophrenia.
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2.4. Statistical analysis

Statistical analysis was donewith SPSS (version 19) andMatlab ‘Sta-
tistics and Machine Learning’ Toolbox (version 2013b). After checking
that parametric assumptions were not meet, group differences in gen-
der and age distribution were tested using the Chi-squared test and
the Mann–Whitney U test, respectively. Network measures showed a
non-Gaussian distribution. Thus, depending on the number of groups,
between-group differences were tested using the Mann–Whitney
U test or Kruskal–WallisH test. The effects of age, gender and psychoac-
tive drugs on PLV, network measures and cognitive data were assessed
using Spearman's bivariate correlation test (see “Confounding factors”
of the Supplementary material for further details), which is robust
against spurious since it deals with monotonic associations in a flexible
manner. This test was also used for correlation analyses between graph
parameters, cognition and symptoms. Finally, Chi-squared test was
used for the between-group comparison of the model distributions.

For all the tests, a significance level of α = 0.05 was used. The
Bonferroni correction was applied to control the multiple comparisons
problem in the correlation analyses between network parameters and
cognition. No correction for multiple comparison was performed
when comparing graph parameters, since measures were obtained at
network level, i.e. one value for each network.

3. Results

3.1. Network dynamics

A visual comparison of the averaged brain networks before and after
the stimulus onset (see Fig. 2) shows a global increase of the edge
weight values for both groups, though this increase is more noticeable
for controls. The brain networks were visualized using the BrainNet
Viewer (Xia et al., 2013). To assess network evolution across time, a slid-
ingwindow approach was used. Windows of 300ms with an overlap of
90% were selected for network measures computation. Fig. 3A shows
the associated dynamics for each network parameter and group. Statis-
tically significant between-group differences for each time window

were marked with black rectangles. The main differences were found
around the N2 and P3 event-related potentials.

Fig. 3B depicts violin plots with the distribution of the averaged
change of the network parameters from pre-stimulus to cognitive
response for both groups. Statistically significant differences be-
tween groups for the change from pre-stimulus activity to cognitive
response were obtained: integration (U(84) = 619; p b 0.05), segre-
gation(U(84) = 553.0; p b 0.01), connectivity strength (U(84) =
559.5; p b 0.01), complexity (U(84)= 670.5; p b 0.05) and irregularity
(U(84) = 670.5; p b 0.05). In summary, brain network during pre-
stimulus window has lower changes in the response window in
schizophrenia patients compared to healthy controls.

3.2. Modeling the network changes

Network modeling with the three different scenarios (primary, sec-
ondary and random connection models) was applied to data obtained
from the pre-stimulus window. Thus, the model that better predicts
the cognitive response network using the pre-stimulus networkwas se-
lected individually for each subject. The behavior of the modeling is
shown in Fig. 4. On average, the MSE between the network parameters
in pre-stimulus window and the response windowwas 10.69% for con-
trols and 2.96% for patients (from yellow to orange lines). Furthermore,
the MSE between the predicted model and the cognitive response was
0.21% for controls and 0.07% for patients, which serves to exemplify
the accuracy of the model.

The procedure selected a singlemodel for each subject. The distribu-
tion of the model for each group is shown in Fig. 5A. Secondary
reinforcement model was selected for most of the subjects, especially
in the control group. Models based on weakening network connections
were selected only in 15% of the subjects (thirteen subjects: seven
controls and six schizophrenia patients; more details are indicated
in the Supplementary material). Statistically significant differences
between groups in the model selection distribution were obtained
(χ2(2, N = 73) = 6.6874, p b 0.05; Chi-square test). Likewise, MSE
distribution of the network parameters in each cognitive model was
also assessed for both groups (Fig. 5B).Within-group comparisons indi-
cate that controls exhibited a statistically significant different MSE

Fig. 1. Cognitive network modeling procedure. After the EEG acquisition, the pre-stimulus window and the response window were segmented. During the signal processing step, graph
parameters in eachwindowwere computed from the phase-locking value (PLV) connectivitymatrix. In themodeling step, the pre-stimulus connectivitymatrixwasmodified by applying
the different cognitivemodels under study. Finally, in themodel selection step, the cognitivemodel and the iteration that obtained theminimumMean Square Error (MSE)with respect to
the network parameters in the response window were selected.
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distribution (χ2(2, N = 44) = 22.0032, p b 0.001), but not schizo-
phrenia patients (χ2(2, N = 29) = 2.6302, p N 0.05). In summary,
the higher change from pre-stimulus activity to cognitive response
for controls, the higher probability to model their behavior by a rein-
forcement of the secondary connections. The schizophrenia patients
do not follow this tendency, as they do not exhibit a relevant change
from pre-stimulus activity to the post-stimulus period during the
cognitive response.

3.3. Cognitive correlates

Interest in the assessment of correlations between cognition and
brain functioning is growing, as it is becoming increasingly evident
that it is a useful way to evaluate the heterogeneity of schizophrenia
(Sheffield and Barch, 2016). As shown in Fig. 6, there was a noticeable
relationship between connectivity strength modulation (measured as
the percent of change from pre-stimulus to cognitive response) and
cognitive parameters (z-score corrected).

Specifically, the connectivity strength was statistically significant
correlated to processing speed (r = 0.472, p b 0.001), verbal fluency
(r= 0.499, p b 0.001) and verbal memory (r= 0.423, p b 0.001) after
Bonferroni correction. The positive correlations indicate that the greater
susceptibility to change in the pre-stimulus, the better cognitive perfor-
mance. No other statistically significant correlations were found after
Bonferroni correction.

Additionally, we performed correlations between cognition and
symptoms, as well as between network parameters and symptoms. All
these correlations are shown in the Supplementary material.

4. Discussion

To the best of our knowledge, this is thefirst study that combine net-
work modeling and EEG recordings to determine a model of network
dynamics during cognition for healthy and schizophrenia subjects. The
proposed network modeling effectively predicts the functional brain
network of the cognitive response from the pre-stimulus activity.

4.1. Disrupted brain dynamics of the phase-based mechanisms in
schizophrenia

Schizophrenia has been characterized by abnormal brain network
reconfigurations, commonly described in the literature (Gomez-Pilar
et al., 2017; Shim et al., 2014). These abnormal dynamics (see Fig. 3)
suggest a disrupted phase-based mechanisms during the cognitive pro-
cessing (Lakatos et al., 2013).

In this study, a significant reduced dynamic capability of thenetwork
during the pre-stimulus was observed in patients. This reduction is
driven by the phase of the EEG theta band. The lack of change in schizo-
phrenia patients was characterized by complementary network param-
eters. All of them showed statistically significant reduced changes,
which involves an impaired ability to modify the main topological fea-
tures of the brain network. The reduced flexibility of the network inte-
gration and connectivity strength during the task supports an
impaired capability of the communication among brain network,
which is in agreement with the results obtained by previous studies
(Bob et al., 2008; Friston, 1998; Kim et al., 2003). The lower change on
segregation in functional brain networks indicates lower local

Fig. 2. Averaged brain networks for both groups before and after stimulus onset. Both groups show an increase in the edge weight values from the pre-stimulus (from−300 ms to the
stimulus onset) to the response window (from 150 ms to 450 ms after the stimulus), though this increase is more noticeable for controls. To facilitate the visualization of the
networks, a threshold was applied: only those connections with phase-locking values higher than 0.5 were depicted. The brain networks were visualized using the BrainNet Viewer
(Xia et al., 2013).
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communication or less segregated neural processing (Rubinov and
Sporns, 2010). Finally, a reduced change in graph regularity and
graph complexity was also found for patients. The physiological in-
terpretation of this result could be related to abnormalities in
small-world structure (Liu et al., 2008; Micheloyannis et al., 2006)
and, therefore, a reduced network efficiency (Bassett and Bullmore,
2006; Boccaletti et al., 2006).

The underlying biological mechanisms that influence the abnormal
dynamics can have different explanations. From the graph theory
point of view, a fMRI study reported a diminished number of hubs
during a cognitive task in schizophrenia (Ma et al., 2012). These well-
connected nodes typically increase the global integration and connec-
tivity, as well as local segregation. Therefore, the lower the number of
hubs in schizophrenia during a cognitive task, the lower the global

integration, connectivity and segregation. From a physiological perspec-
tive, this lack of change can be related to the abnormal oscillatory be-
havior during a cognitive task in schizophrenia, which could elicit a
lower synchronization between brain regions in comparison to healthy
subjects. It could be explained by an abnormal balance between
inhibitory GABAergic interneurons (Lewis et al., 2005; Moghaddam,
2003) and pyramidal neurons producing dysfunctionalities between
excitation and inhibition processes, which is reflected in the phasemea-
sures. This affects to the neural pathways in long-range synchronization
(Dickerson et al., 2010), providing abnormal phase-based network
measures. Hence, the result that the diminished EEG response was
observable in complementary network parameters (see Figs. 3 and 4)
suggests that different brain network domains are significantly affected
by schizophrenia.

Fig. 3. Time evolution of the network parameters. (A) Mean and standard error of the network parameters for controls (blue) and patients (red). Control subjects exhibit higher changes
from pre-stimulus (yellow) to cognitive response (orange) compared to patients. Statistically significant differences between the network parameter evolution across time of both groups
are highlighted by a black rectangle (p b 0.05,Mann–WhitneyU test). The results indicate an impaired ability in patients tomodify the functional brain network during an oddball task. (B)
Boxplots and violin plots showing the distribution of the averaged change of the network parameters from pre-stimulus (yellow transparency in A) to cognitive response (orange
transparency in A) for both groups. Statistically significant differences between groups are indicated with one asterisk (p b 0.05, Mann–Whitney U test) or two asterisks (p b 0.01,
Mann–Whitney U test). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Reinforcement of the secondary pathways as a predominant model

The results show (Fig. 5A) that the predominant model of brain net-
work dynamics during cognition in healthy and schizophrenia subjects
involves a reinforcement of the secondary pathways of the pre-stimulus
network (i.e., connections with lower phase synchronization between
brain areas prior to stimulus perception). However, there are statisti-
cally significant differences in the model distribution between groups.

In order to provide a reason of these differences, we rely on the pre-
dictive coding (Hohwy et al., 2008). In this study, we constructed gener-
ative models that minimize the error at each iteration following the
main neurocomputational principle for the brain perception of the envi-
ronment (Hohwy et al., 2008). The recurrent error minimization until
the most likely model has been obtained is formally equivalent to em-
pirical Bayesian inference (Kilner et al., 2007). This implies that abnor-
malities in the dynamical process of the brain reconfiguration would

Fig. 4. Prediction capability of the network modeling from the phase information of the theta band during the pre-stimulus window. Grand-average normalized network parameters for
the pre-stimuluswindow (yellow) and the real responsewindow (dark orange). The networkmeasures prediction obtained by themodel from the phase information of the pre-stimulus
window is also shown (light orange). The model fitting for both the controls and the patient groups is computed by minimizing the mean square error (MSE). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Histogram of the selected models and mean square error (MSE) distribution for each model. (A) Percentage of subjects that best fit each model for controls and schizophrenia
patients. The reinforcement of the secondary connections is the most frequently selected model for both groups; however, statistically significant differences between the histograms
of controls and patients were found and marked with an asterisk (χ2 = 6.6874, p b 0.05; Chi-square test). (B) Change from pre-stimulus to cognitive response of the network
parameters measured by means of the mean square error (MSE) and grouping by the network model. Differences among models were statistically significant for controls and marked
with an asterisk (χ2(2, N=73)= 22.0032, p b 0.001; Kruskal–Wallis test), but not for patients (χ2(2, N=73)= 2.6302, p N 0.05; Kruskal-Wallis test).
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have a strong impact on the subsequent state. Following the aberrant
salience hypothesis (Kapur, 2003), schizophrenia leads to an aberrant
assignment of salience to the elements of one's experience. It suggests
that the relevance assignment to the unexpected stimulus in an oddball
task would be disrupted in schizophrenia and, as a consequence, would
cause an increase in the prediction error. Therefore, the observed
disrupted brain dynamics in schizophrenia patients yield a higher pre-
diction error in schizophrenia subjects compared to controls. The abnor-
malities in the response network in schizophrenia, in turn, account for
the cognitive deficits in this disorder.

Additionally, for controls, it was found a statistically significant
relationship between the amount of change from pre-stimulus to
cognitive response and the model that better predicts the cognitive
network. Fig. 5B shows that the secondary pathway reinforcement
modeling is linked to a higher network reconfiguration in controls,
which could be considered the ‘normal behavior’. However, schizo-
phrenia patients did not show that trend. This was observed in the
theta band, which supports the concept of the impaired top-down
processing in schizophrenia (Uhlhaas et al., 2008). This lack of
activation of the connections with low synchronization during pre-
stimulus in several schizophrenia patients could be due to several
reasons. Thereby, it could be related with abnormal structural con-
nectivity networks (Gomez-Pilar et al., 2018a), with hyperactive
functional connectivity in the patients during the pre-stimulus
(Gomez-Pilar et al., 2018b), or with deficits in the inhibitory/excitatory
circuits, usually linked to glutamate neurotransmission (Moghaddam,
2003), which could elicit abnormalities in the synchronization between
brain regions.

Glutamatergic abnormalities could not only be related to the long-
range synchronization in the theta band, but also to the way of organiz-
ing the connections during a cognitive task. While subjects are waiting
for the next relevant stimulus, the brain is in a state of alert related to
glutamate resting-state concentration in the perigenual anterior cingu-
late cortex (PACC) (Bai et al., 2015). This level of glutamatergic activity
has a strong relationship with the pre-stimulus oscillations. Therefore,
possible abnormalities of glutamatergic concentrations in schizophrenia

would affect to the predisposition to change of the pre-stimulus net-
work (Bai et al., 2015). Furthermore, a special association between
pre-stimulus activity levels and stimulus-induced activity has been sug-
gested in previous studies (Bai et al., 2015). We can speculate that the
aberrant network dynamics during cognition in schizophrenia may be
driven by underlying abnormalities in the glutamate resting-state con-
centration in the PACC. Could these abnormalities impact on the cogni-
tive networkmodel of schizophrenia patients? Could it be the reason for
the almost dichotomous distribution of the selected models in the
schizophrenia group?

A plausible hypothesis for explaining the heterogeneity of the se-
lected models could be the extended concept that schizophrenia is a
complex and heterogeneous disorder with distinguishable genotypes
(Sheffield and Barch, 2016) and network abnormalities (Gomez-Pilar
et al., 2018a), which can influence the cognitive traits. Schizophrenia
heterogeneity should not be related to the symptoms, but to underlying
neural mechanisms, which are maybe phase-related. To address this
heterogeneity, wemeasured the correlation between network topology
features and the cognitive variables.

4.3. Relationship between topological network measures and cognitive
variables

Our results showed a positive correlation between the modulation
(i.e., change from pre-stimulus to cognitive response) of the connectiv-
ity strength and three cognitive domains measured by means of the
BACS: processing speed, verbal fluency and verbal memory. Conse-
quently, the higher averaged values of change in synchronization be-
tween brain regions would involve a better performance in the
measured cognitive traits. Due to the novelty of our approach, we only
have notice of one study that previously assessed the association be-
tween the modulation of network parameters and cognitive data in
schizophrenia (Gomez-Pilar et al., 2017). Despite the difficulty to com-
pare the correlations observed in this study with previous findings
and for the sake of brevity, we link the present findings with previous
works in the Supplementary material.

Fig. 6. Correlations between cognition and network parameter. Statistically significant correlations after Bonferroni correction for the comparison between cognition and network
parameters: (i) normalized processing speed and change in connectivity strength (r= 0.472, p b 0.001; Spearman's rank correlation coefficient); (ii) normalized verbal fluency and
change in connectivity strength (r=0.499, p b 0.001; Spearman's rank correlation coefficient) and; (iii) normalized verbal memory and change in connectivity strength (r=0.423, p
b 0.001; Spearman's rank correlation coefficient).
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4.4. Further steps towards a comprehensive neural cognitive model

Despite the clues provided in this study to obtain a reliable model of
the brain network dynamics during cognition, a number of questions re-
main unresolved. First, brain functioning is complex; probably it ismore
complex than the proposed model. It could result in losing relevant in-
formation about brain interactions likely related to the heterogeneity
among subjects. For instance, complementary processes could be taking
place, such as changes in specific connections or deactivations of a few
well-connected pathways during pre-stimulus. Therefore, an almost in-
finite number of combinations of changes in synchronization could be
analyzed to individually improve the model adjustment, but the gener-
alization capability of the model would be likely lost.

Second, the present study was focused on the theta frequency band.
Knowing the importance of other frequency bands in the brain func-
tioning, we focused on theta band because of its close relationship
with memory processes, top-down control and long-range interactions
in the brain, all of them involved in core features of the schizophrenia
pathology. Additionally, it was not feasible to simultaneously determine
the model for all the frequency bands due to the high computational
cost for individually adjusting the more confident model. Future
works should investigate network dynamics in other frequency bands
to ascertain the predisposition to change of the pre-stimulus activity.

Finally, a hierarchical clustering analysis using both the graph mea-
sures and the cognitive/behavioral data could be useful to check the
schizophrenia subgroups found by the proposed EEG model. However,
a large number of observations would be needed for this kind of analy-
sis, being insufficient the number of subjects of the present study. Fu-
ture studies with larger number of subjects should address this issue.

5. Conclusions

We provided direct evidence of the predictive capability of the pro-
posed model to ascertain the functional brain behavior during cognition.
Our results support the idea that schizophrenia is associated with signifi-
cant abnormalities in the relation between neural dynamics during the
pre-stimulus and cognitive response, which are directly related to cogni-
tive performance. Furthermore, we presented a new model of network
organization during cognition based on graph theory measures, which
could be used to differentiate behavioral phenotypes of schizophrenia.
Our findings not only contribute to a further understanding of healthy
neural dynamics during cognition, but also provide new insights for iden-
tifying the altered neural underpinnings of schizophrenia.
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Supplementary material of the paper: “Altered pre-

dictive capability of the brain network EEG model

in schizophrenia during cognition”

For the sake of replicability and completeness, additional methodological details
and further analyses are included in this Supplementary material.

Inclusion/exclusion criteria

Among all the subject under study, exclusion criteria were: (i) any neurological
illness; (ii) history of cranial trauma with loss of consciousness longer than one
minute; (iii) past or present substance abuse, except nicotine or caffeine; (iv)
total intelligence quotient (IQ) smaller than 70; and (iv) for patients, any other
psychiatric process, and (v) for controls, any current psychiatric or neurological
diagnosis or treatment.

Preprocessing

Signals were filtered between 1 and 70 Hz by means of a band-pass finite impulse
response filter. A 50 Hz notch filter was also used to remove the power line ar-
tifact. Lastly, a three-steps artifact rejection algorithm was applied to minimize,
mainly, electrooculographic and electromyographic contamination (1): (i) Inde-
pendent Component Analysis (ICA) was carried out and, after visual inspection
of a specialist, ICA components associated with artifacts were discarded (2); (ii)
after ICA reconstruction, EEG data were divided into trials of 1 second length
ranging from 300 ms before to 700 ms after stimulus onset, which ensures no over-
lapping with subsequent trials; and (iii) an automatic and adaptive trial rejection
was performed by applying a statistical-based thresholding method.

Continuous wavelet transform and edge effects

EEG recordings are non-stationary signals with changing properties over time.
Wavelet transform takes into account these changes, providing an appropriate
alternative to Fourier transform.

In this study, complex Morlet was used as mother wavelet. It provides a bio-
logically plausible fit to EEG data (3). Complex Morlet wavelet is characterized
by its localization in time (∆t) and frequency (∆f). In this study, ∆t and ∆f

were set to 1 to obtain a balanced relationship at low frequencies (1).
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The coefficients of the continuous wavelet transform (CWT) are computed as
the convolution between the EEG signal in each artifact-free trial, x(t), and scaled
and translated versions of the mother wavelet, φ(t):

CWT (k, s) =
1√
s

∫ ∞

−∞
x(t) · φ∗

( t− k
s

)
dt, (A.5)

where s represents the dilation factor (s = {si, i = 1, . . . ,M}), k is the translation
factor and the asterisk denotes the complex conjugation. The dilation factor was
set to include frequencies from 1 Hz (s1) to 70 Hz (sM ) in equally-spaced intervals
of 0.5 Hz (1). Nevertheless, as we explained in the main text, only theta frequency
band (4-8 Hz) was considered for the analyses.

EEG trials are finite and short-time recordings. Therefore, edge effects are not
negligible (4). In this study, a cone of influence was defined in order to delimitate
the time-frequency regions that included the biased wavelet coefficients (4).

Brain network estimation

Connectivity matrices were obtained by means of phase-locking value (PLV). The
PLV has become a useful tool to quantify the phase steadiness between pairs of
electrodes (5), given its sensitivity to measure the neural synchronization, even
between EEG oscillations with relatively small amplitude (6). As previously men-
tioned, this study was aimed at analyzing cognitive network dynamics. Thereby,
the PLV was calculated in the theta frequency band (4-8 Hz).

Being able to use different approaches for computing the PLV, the CWT was
used to extract the phase information from each trial (7). First, to calculate PLV
between two signals, it is necessary to extract the instantaneous phase of each
signal in a narrow bandwidth (8). CWT can be used to perform filtering and
phase extraction in a single step (7). Thus, the instantaneous phases φx(k, s, τ)

and φy(k, s, τ) of two EEG signals, x(t) and y(t), can be used to define the phase
differences as follows:

φxy(k, s, τ) = φx(k, s, τ)− φy(k, s, τ), (A.6)

where τ represents each artifact-free trial.
Detailed procedures about the wavelet parameters and the minimization of the

edge effects were reported in our previous studies (1, 9, 10).
PLV estimates the variability of the phase differences across successive trials,

as follows:
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PLVxy(k, s) = wij(k, s) =
1

Nt
|
Nt∑

τ=1

e∆Φxy(k,s,τ)|, (A.7)

where Nt is the total number of artifact-free trials.
Functional connectivity matrices based on PLV were obtained by comparing

the synchronization between all EEG channels. The values of the connectivity ma-
trix (wij) ranged between 0 and 1 (weighted network). A value of 1 was obtained
with completely synchronized signals and a value of 0 implied an absence of syn-
chronization. It means that no threshold was applied. This has the advantage that
all the connections are considered (even the lower ones), but the computational
cost increases comparing to a semi-weighted network.

Network parameters

Networks can be described by several parameters. The present study was focused
on five complementary features of the brain network: integration, segregation,
connectivity strength, complexity and irregularity. The parameters that were used
to quantify the previous network features are the following:

• The integration of the network was characterized by means of the character-
istic path length. It is defined as the average shortest path length between
all pairs of nodes in the network (11):

PL =
1

N

∑

i∈n

∑

i∈n,j 6=i
dij

n− 1
, (A.8)

where dij indicates the minimum distance (i.e. the inverse of PLV) between
electrodes i and j. Of note, N represents the number of nodes in the network
(N = 29).

• The segregation of the network was quantified by the averaged clustering
coefficient (11) . In the case of weighted networks, the averaged clustering
coefficient can be generalized as follows to avoid the influence of the main
connection weights:

CLC =

(
n

3

)∑

i∈n

∑

j,k∈n
(wijwihwjh)

1
3 , (A.9)

where wij denotes the connection weight between electrodes i and j.
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• The connectivity strength was computed using the network density as follows
(10):

GD =

N∑

i=1

∑

j>i

wij

T
, (A.10)

where wij represents the connection weight between nodes i and j, and
T = N(N−1)

2 is the total number of connections in an undirected graph.

• The irregularity of the brain network was characterized by the Shannon
Graph Entropy, defined in our previous work as follows (10):

H =
−1

log2 T

N∑

i=1

∑

j>i

wij
W

log2

wij
W

, (A.11)

where W is the sum of all weights of the graph and is a normalization factor
introduced to ensure that 0 ≤ H ≤ 1.

• The complexity of the brain network was estimated using the Shannon Graph
Complexity, defined in our previous work as follows (10):

SGC = H ·
√

1

T − 1
· σ
w̄
, (A.12)

where w̄ is the average of all edge values of the graph and σ is the standard
deviation of those values.

Importantly, Shannon Graph Entropy and Shannon Graph Complexity do
not depend on the connectivity strength. Therefore, changes in these mea-
sures ensure that the network changes in the other parameters are not only
due to changes in the connectivity strength.

Dynamical network modeling

The steps of the proposed algorithm, individually adjusted for each subject, can
be summarized as follows:

1. A specific connection (usually named as wij in graph theory context) of the
pre-stimulus connectivity matrix is randomly selected.

2. The value of the connection, wij , is eventually modified with a probability
P. Both the value of P and how it is modified depend on the specific model
being considered, as we explain below.



165

3. The network features are computed for the modified connectivity matrix.

4. The MSE between the network parameters of the connectivity matrix in 3)
and those of the connectivity matrix associated to the cognitive response is
computed.

5. The steps 1), 2) 3) and 4) are repeated 5000 times and the MSE is stored
for each iteration.

6. The connectivity matrix that minimizes the MSE is selected. The simulations
showed that the MSE is a concave function with a minimum that varies for
each subject. We checked that the minimum was always achieved before
5000 repetitions. Of note, the number of iterations required for reaching the
minimum MSE is different for each subject.

The previous procedure was repeated six times (one for each model). The value
of P and how it was modified depend on the model being considered as follows:

1. Reinforcement of primary connections: The value of the connection randomly
selected is increased a 1% with probability P = wij (wij ranges from 0 to 1).

2. Reinforcement of secondary connections: The value of the connection ran-
domly selected is increased a 1% with probability P = 1− wij .

3. Reinforcement of a connection at random. The value of the connection ran-
domly selected is increased a 1% with probability P = 1.

4. Weakening of primary connections: The value of the connection randomly
selected is decreased a 1% with probability P = wij .

5. Weakening of secondary connections: The value of the connection randomly
selected is decreased a 1% with probability P = 1− wij .

6. Weakening of a connection at random. The value of the connection randomly
selected is decreased a 1% with probability P = 1.

The percentage of change (1%) was heuristically determined as a compromise
between goodness of fit and computational cost.

As previously mentioned, the dynamical cognitive network model randomly
selected a node in each iteration. In order to minimize the possible bias due to the
intrinsic stochastic behavior of the algorithm, all the experiment was repeated 100
times and MSE results were averaged across repetitions in each subject. Never-
theless, we observed that the variability among experiments for each subject was
negligible.
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Discarding confounding factors

Studies of mental disorders through the EEG are prone to obtain inaccurate results
due to the number of confounding factors. In order to avoid misinterpretation and
prevent inappropriate conclusions, the influence of potential confounding factors
on the clinical and network features was assessed. Thus, we found that the age
and gender distributions, as well as the doses of the prescribed medication, did
not produce a significant effect on PLV values, network measures or cognitive data
(p > 0.05; Spearman’s bivariate correlation test).

It must be noticed that all EEG measures are influenced by volume conduction.
In order to minimize this effect, a well-known strategy is based on the assumption
that volume conduction affects the connectivity estimates in a similar way in two
different experimental contrasts (12). Spurious estimates can then effectively get
rid by comparing both conditions (12). This is the approach followed in our study:
comparing pre-stimulus and response during the cognitive task, both acquired
during the performance of the oddball task, but in two different moments. In
addition, short-scale synchronization is more influenced by volume conduction
(5). However, we focused on theta band, which is associated with long-range
interactions (13).

In order to discard possible influence of abnormal shape of the event-related
potentials (ERPs), they are represented in the Figure A3. In addition, P3b peak
and latency for both groups are shown in the Table 1 of the main text. Finally,
connectivity matrices are shown in the Figure A4.

Weakening network models

Most of the subjects fitted a reinforcement model; however, in the case of 15%
of the subjects (seven controls and six schizophrenia patients), a model based on
weakening the connections was selected. For these thirteen subjects, Figure A5
shows the distribution of the selected model for each group. Due to the low number
of subjects, statistical analyses were not performed in this case.

The relationship between cognition and network parameters

Relationship between cognition and brain functioning was assessed by means of the
correlations between results of the cognitive tests (z -scores corrected) and values
of network measures (measured as the percent of change from pre-stimulus to
cognitive response). For that purpose, Spearman’s bivariate correlation test was
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Figure A.3: (A) P300 waveforms at Pz electrode for controls (blue) and patients
(red). (B) Scalp maps depicting the P3b peak amplitude (from 300 ms to
550 ms) for controls and patients.
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Figure A.4: Averaged connectivity matrices. The connectivity matrices are
shown for controls and schizophrenia patients before (from -300 to 0 ms) and after
(from 150 to 450 ms) stimulus onset.

Figure A.5: Histogram of the selected models and mean square error
(MSE) distribution for each model. Only the subjects that follow a model
based on weakening the network connections were depicted in this histogram.
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Integration Segregation Connectivity
strength

Complexity Irregularity

Verbal
memory

r −0.196 0.218 0.423 −0.190 0.169
p-value 0.042 0.027 < 0.001 0.048 0.070

Working
memory

r 0.005 0.023 0.199 0.042 -0.034
p-value 0.484 0.422 0.040 0.357 0.383

Motor
speed

r 0.044 −0.017 0.153 0.073 −0.062
p-value 0.352 0.442 0.090 0.264 0.296

Verbal
fluently

r −0.285 0.331 0.499 −0.160 0.159
p-value 0.007 0.002 < 0.001 0.087 0.087

Processing
speed

r −0.244 0.261 0.472 −0.178 0.166
p-value 0.016 0.010 < 0.001 0.060 0.073

Executive
function

r −0.029 −0.012 0.103 0.121 −0.137
p-value 0.402 0.459 0.186 0.147 0.118

Table A.5: Correlation coefficient and p-values for all the possible comparisons
between cognition and network parameters. Three correlations remain statistically
significant after Bonferroni correction (p < 0.001, highlighted in bold).

used. Bonferroni correction was applied to correct for multiple testing (p-values
were multiplied by 6 cognitive domains x 5 network parameters = 30). All the
performed correlations are shown in Table A5. Statistically significant correlations
after Bonferroni correction (p < 0.05) are highlighted in bold.

The relationship between cognition and symptoms

Symptoms were assessed by means of the PANSS (z -scores corrected). Correlation
between cognition and symptoms was studied by Spearman’s bivariate correlation
test. The performed correlations are shown in Table A6. Statistically significant
correlations (p < 0.01) are highlighted in bold. The symptoms, summarized as the
PANSS-total, are negatively correlated to verbal memory and processing speed
(i.e., more symptoms are related to poorer cognitive performance).

These findings agree with the intuitive notion that more pronounced symptoms
are usually linked to poorer cognitive performance (14). It was suggested that
the negative and disorganized symptom dimensions are the reason for the strong
correlation between symptoms and cognitive dysfunction in schizophrenia (14).

The relationship between network parameters and symptoms

We also assessed the relationship between symptoms and network measures (as the
percent of change from pre-stimulus to cognitive response) by Spearman’s bivariate
correlation test. The performed correlations are shown in Table A7. Significant
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Verbal
memory

Working
memory

Motor
speed

Verbal
fluently

Processing
speed

Executive
function

PANSS-
positive

r −0.177 −0.224 0.173 −0.106 −0.134 0.171
p-value 0.193 0.136 0.199 0.319 0.257 0.207

PANSS-
negative

r −0.282 -0.150 −0.03 −0.283 -0.354 0.033
p-value 0.081 0.233 0.433 0.101 0.038 0.439

PANSS-
total

r −0.459 −0.319 0.061 −0.281 −0.478 0.155
p-value < 0.01 0.056 0.384 0.103 < 0.01 0.230

Table A.6: Correlation coefficient and p-values for all the possible comparisons
between cognition and symptoms. Two correlations are statistically significant
(p < 0.01, highlighted in bold).

Integration Segregation Connectivity
strength

Complexity Irregularity

PANSS-
positive

r 0.153 −0.273 −0.314 0.413 −0.434
p-value 0.206 0.068 0.043 0.011 < 0.01

PANSS-
negative

r 0.254 −0.331 −0.290 0.215 −0.178
p-value 0.084 0.035 0.057 0.123 0.170

PANSS-
total

r 0.280 −0.4614 −0.413 0.465 −0.445
p-value 0.064 < 0.01 0.010 < 0.01 < 0.01

Table A.7: Correlation coefficient and p-values for all the possible comparisons
between symptoms and network parameters. Four correlations are statistically
significant (p < 0.01, highlighted in bold).

correlations (p < 0.01) are highlighted in bold. The symptoms, summarized as
the PANSS-total, are negatively correlated to segregation and irregularity, but
positively correlated to complexity. On the other hand, positive symptoms, sum-
marized as PANSS-positive, are negatively correlated to irregularity.

Topological network measures and cognitive variables: com-
parison with previous findings

Comparisons between network measures and cognitive variables are usually per-
formed using a resting-state approach (15, 16) and sometimes during a cognitive
task (17), but it is not usually assessed by analyzing the predisposition to change
of the pre-stimulus activity. In our previous study (9), segregation was inversely
associated with executive function and directly associated with working memory.
Although, the same trend was found in this study, non-significant associations were
found between such parameters after Bonferroni correction. This discrepancy can
be easily explained due to the number of differences between both studies: (i)
connectivity strength was not computed in the previous research; (ii) network
parameters were computed using event-related coherence, which is not strictly
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a synchronization measure; and (iii) low-density EEG recordings were used (17
channels).

Despite the difficulty to compare the correlations observed in this study with
previous findings, it seems natural that a direct correlation between global brain
synchronization and cognitive performance exists. In fact, although Pachou et
al. (2008) did not evaluate the change from pre-stimulus to cognitive response,
they found a correlation in patients between working memory load and global syn-
chronization. This result could indicate that the cognitive effort required higher
synchronization of the whole brain. The empirical evidence regarding the associ-
ation between cognitive functions and network parameters was not so widespread
some years ago (18). Nowadays, however, it is well-stablished that the architecture
of functional brain networks is related to cognitive performance (19).
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B.2 International research stay during the Doc-

toral Thesis

• Four-month research stay at the Institute of Mental Health Research, Uni-
versity of Ottawa, Ottawa, Canada

i Purpose of the stay

The main purpose of the stay at the Institute of Mental Health Research
was to deepen into advanced methods of processing neuronal activity
from the electroencephalogram (EEG) and functional magnetic reso-
nance imaging (fMRI), in order to characterize schizophrenia disorder.
To carry out this general objective, the following specific objectives
were proposed: i) Multimodal analysis of new biomedical recordings
from different signals related to neuroimaging, such as EEG and fMRI;
ii) Deepening the automatic characterization of schizophrenia through
new methods and techniques of processing; iii) Validation of the meth-
ods developed by our research group in new databases; and iv) Appli-
cation of the knowledge acquired to the study of other schizoaffective
pathologies, such as depression and bipolar disorder. Another impor-
tant purpose of the stay was to promote the collaboration of the Uni-
versity of Valladolid with prestigious Canadian institutions, such as the
University of Ottawa. This would not only improve the quality of the
research, but also favor future collaborations on international research
projects. In addition, this stay would allow the student to opt for the
mention of “International Doctor” at the conclusion of the Thesis.

ii Indicators of Quality of the Center

The stay was held at the Institute of Mental Health Research (IMHR)
of the University of Ottawa under the supervision of Professor Georg
Northoff, MD, PhD, Member of the Royal College of Physicians of
Canada (FRCPC) and director of the “Mind, Brain lmaging and Neu-
roethics Research Unit”. With more than 150 years of history, the
University of Ottawa currently has more than 5,000 students and is rec-
ognized as one of the most innovative institutions in higher education
in Canada. Its education plan has been widely acclaimed in academic
circles, leading to a great expansion of the scope of this University. In
2016, according to the ranking of Shanghai, this University was placed
between positions 101 and 150, with a marked upward trend in recent
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years.

The IMHR is the third largest mental health research center in Canada.
In close association with the prestigious Royal Ottawa Health Care
Group, the IMHR focuses on innovation in research, patient care and
education. It is involved in 107 clinical research projects and 28 basic
research projects, generating a total of 180 research articles in first-rate
journals in 2017.

The director of the research stay, Professor Georg Northoff, conducts
the studies from a multidisciplinary perspective using three comple-
mentary points of view of brain behavior: neuroscientific, neuropsychi-
atric and neurophilosophical. Given its membership in the IMHR and
its close collaboration with the Royal Ottawa Health Care Group, the
Professor Northoff’s research unit is in the possession of vast databases
of different brain biological signals. This allows them a deep knowl-
edge of different methodological aspects completely aligned with the
area of specialization in which the research stay is framed. Finally,
Proffesor Northoff is the scientific director of the “Mind, Brain lmaging
and Neuroethics Research Unit” of the IMHR. Its curriculum accredits
more than 280 scientific publications in the field of neuroscience and
neuropsychiatry, reaching an h index of 48 (48 publications with 48 or
more citations). In 2000 he received the “Senior Research Award on
Research on Schizophrenia” for his excellent contribution in the field
of characterization of schizophrenia. Likewise, in 2010 he received the
special “Arnold Pfeiffer Prize” from the International Society for Neu-
ropsychoanalysis of the USA. To date, he has directed more than 30
predoctoral studies.
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B.3 Intellectual property protection for computer

software

1. Software property registration

Title: “Domo-BCI”

Authors:
Roberto Hornero Sánchez, Rebeca Corralejo
Palacios, Daniel Álvarez González and Javier
Gómez Pilar

Code: VA-99-2015
Date of register: 16/04/2015

2. Software property registration

Title: “GABA”

Authors:
Javier Gómez Pilar, Jesús Poza Crespo,
Carlos Gómez Peña and Roberto Hornero
Sánchez

Code: VA-107-2018
Date of register: 25/04/2018

3. Software property registration

Title: “Nonlinear C-Tool”

Authors:

Carlos Gómez Peña, Susana Visus Hernández,
Jesús Poza Crespo, Javier Gómez Pilar,
María García Gadañon and Roberto Hornero
Sánchez

Code: VA-106-2018
Date of register: 25/04/2018
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B.4 Awards and honors

02/2018: Innovative Solutions for improving the Quality of Life Award in the
group ‘Ageing’ modality, organized by the Campus de Excelencia In-
ternacional (CEI) Triangular E-3, for the project: “Plataforma Brain-
Computer Interface de Entrenamiento Cognitivo para Atenuar los
Efectos del Envejecimiento”, conducted by Víctor Martínez-Cagigal,
Javier Gomez-Pilar y Roberto Hornero, 2017.

05/2017: Award for the best oral presentation at the 3rd PhD Conference in
Information and Communication Technologies for the study “Towards
a Brain Connectivity Model and its Relevance in Schizophrenia” (Val-
ladolid, Spain, May 5, 2017).

06/2016: Conference support grant from the University of Valladolid to attend
at the 38th Annual International Conference of the IEEE-EMBS (Or-
lando, USA, August 15-20, 2016).

11/2015: Second place (“Jose María Ferrero Corral” award) in the XXXIII Con-
greso Anual de la Sociedad Española de Ingeniería Biomédica (CA-
SEIB 2015) for the study entitled ‘Caracterización de la Dinámica en
la Eficiencia de la Red Neuronal en Esquizofrenia en Tarea Cogni-
tiva Auditiva’, Javier Gomez-Pilar, Jesús Poza, Alejandro Bachiller,
Carlos Gómez, Vicente Molina and Roberto Hornero, 2015.

06/2015: Conference support grant from the University of Valladolid to attend
at the 7th Annual National CEA Symposium (Málaga, Spain, June
20-22, 2015).

11/2014: Second place (“Jose María Ferrero Corral” award) in the XXXII Con-
greso Anual de la Sociedad Española de Ingeniería Biomédica (CA-
SEIB 2014) for the study entitled ‘Caracterización de Potenciales Evo-
cados del EEG en Esquizofrenia mediante Teoría de Redes Complejas’,
Javier Gomez-Pilar, Alejandro Bachiller, Jesús Poza, Carlos Gómez,
Vicente Molina and Roberto Hornero, 2014.
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09/2014: Finalist in the Annual BCI Research Award 2014 for the project:
‘Neurofeedback training by motor imagery based-BCI improves neu-
rocognitive areas in elderly people’, carried out by Javier Gomez-Pilar,
Rebeca Corralejo, Daniel Álvarez and Roberto Hornero, 5th Interna-
tional Brain-Computer Interface Meeting, University of Technology,
Graz (Austria), 2014.

09/2013: First place in the Young Investigator Competition at the XIII Mediter-
ranean Conference on Medical and Biological Engineering and Com-
puting (MEDICON 2013) for the study entitled ‘AdaBoost Classifica-
tion to Detect Sleep Apnea from Airflow Recordings’, Gonzalo César
Gutiérrez Tobal, Daniel Álvarez González, Javier Gómez Pilar, Félix
del Campo Matías and Roberto Hornero Sánchez, 2013.

07/2013. Telecomunication Engineering Association (COIT) 2013 Award for the
Finalist of best Degree Final Project in Engineering and Medicine
(ASISA category) by Javier Gómez-Pilar, entitled ‘Análisis Espectral
y No Lineal de la Variabilidad del Ritmo Cardiaco para la Ayuda al
Diagnóstico del Síndrome de Apnea-Hipopnea del Sueño’. Advisor:
Roberto Hornero and Daniel Álvarez, 2013.



Apéndice C

Resumen en castellano

C.1 Antecedentes

C.1.1 Introducción a la esquizofrenia

La esquizofrenia es un trastorno mental crónico caracterizado por diversos sín-
tomas, entre los que destacan la disociación del pensamiento, alteraciones en la
percepción, trastornos afectivos y, usualmente, una deficiencia cognitiva. El curso
crónico de esta enfermedad junto con su inicio temprano hace que la esquizofrenia
sea un trastorno incapacitante para los pacientes y sus familiares.

Antes de la quinta edición del “Diagnostic and Statistical Manual of Menral Di-
sorders” (DSM-V) en 2013, el diagnóstico de esquizofrenia estaba clasificado en cin-
co subtipos diferentes: (i) esquizofrenia paranoide, (ii) esquizofrenia desorganizada,
(iii) esquizofrenia catatónica, (iv) esquizofrenia indiferenciada y (v) esquizofrenia
residual. Sin embargo, de acuerdo con la Asociación Americana de Psiquiatría,
debido a la limitada estabilidad diagnóstica, el método de clasificación se modificó
para agrupar todas estas categorías bajo un mismo título: esquizofrenia. Con el
DSM-V también surgió una nueva forma de diagnóstico de esquizofrenia. Hoy en
día, una persona con esquizofrenia debe mostrar al menos dos de los siguientes
síntomas:

• Delirios.
• Alucinaciones.
• Habla desorganizada.
• Comportamiento desorganizado o catatónico.
• Síntomas negativos, es decir, indiferencia afectiva, alogia o abulia.

191
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Según este procedimiento diagnóstico, dos personas pueden tener esquizofrenia,
pero no compartir ningún síntoma. Esto hace bastante difícil encontrar sustratos
neuronales comunes en esta enfermedad, lo que dificulta su tratamiento, siendo és-
ta la justificación de esta Tesis Doctoral. De hecho, hay una tendencia creciente a
considerar la esquizofrenia como una amalgama de diferentes enfermedades. Desde
el punto de vista epidemiológico, la tasa de prevalencia de la esquizofrenia depen-
de de una amplia variedad de factores. Dependiendo del estudio, la prevalencia de
este trastorno oscila entre 0.26% - 0.51%. Además, los pacientes con esquizofrenia
tienen una disminución del 20% de la esperanza de vida en comparación con la po-
blación general. No se han encontrado diferencias en la prevalencia en relación con
el género. Sin embargo, el bajo nivel socio-económico sí que se ha asociado con una
mayor probabilidad de padecer la enfermedad. Esto sugiere que la esquizofrenia
tiene una relación importante con el ambiente y no solo con factores genéticos.

La controversia en los factores desencadenantes de la esquizofrenia se extiende
también a la fisiopatología de la enfermedad. Aunque existen diversos estudios cen-
trados en comprender los sustratos neuronales alterados en la enfermedad, parece
que la comunidad científica aún no ha llegado a un consenso. Hacia donde parecen
converger bastantes estudios desde diferentes enfoques es en que la esquizofrenia
está asociada a una deficiencia en la actividad cerebral que engloba a varias áreas
corticales, así como la interconexión entre ellas. Estos resultados refuerzan la hi-
pótesis de desconexión de la esquizofrenia, la cual asocia a la enfermedad con una
reducida capacidad de integrar la información procedente de diferentes regiones
cerebrales alejadas. Asimismo, la esquizofrenia se ha asociado con una asignación
aberrante de los estímulos externos.

Pese a la identificación de algunos factores fisiopatológicos que parecen ser co-
munes a una gran mayoría de pacientes con esquizofrenia, aún no se han encontrado
marcadores biológicos que permitan caracterizar y comprender en mayor medida
este desorden, quedando patente que aún estamos lejos de soluciones globalmente
aceptadas. Este hecho ha motivado el estudio de la actividad eléctrica generada
en la corteza cerebral con el fin de encontrar anomalías en la red neuronal que nos
permitan hacer inferencias fiables, así como caracterizar la enfermedad con propie-
dad y en profundidad. Puesto que la esquizofrenia es un trastorno cognitivo, cabe
esperar que las peculiaridades derivadas de la enfermedad puedan verse reflejadas
en la actividad eléctrica cerebral. En concreto, los potenciales eléctricos de la res-
puesta evocada por estímulos externos puede estar afectada en esquizofrenia. El
electroencefalograma (EEG) se convierte entonces en una herramienta útil para
caracterizar la dinámica neuronal relativa a la realización de una tarea cognitiva.
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C.1.2 Teoría de Redes Complejas en neurociencia

En los últimos años, se ha visto cómo la Teoría de Redes Complejas comienza a
desempeñar un papel primordial en los esfuerzos para caracterizar la estructura de
la red cerebral. De hecho, la Teoría de Redes Compleja se ha aplicado a diferentes
niveles y escalas cerebrales. Los grafos nos facilitan la interpretación de los patro-
nes de conectividad, al tiempo que guardan una estrecha similitud con procesos
reales. Todo esto facilita la relación directa de entidades: los nodos de un grafo se
corresponden con regiones cerebrales corticales concretas, mientras que la relación
entre ellas se representa en un grafo mediante el peso de las conexiones.

Estudios recientes han demostrado mediante teoría de grafos que las redes cere-
brales en personas sanas siguen una distribución de “pequeño mundo” (small-world
networks en inglés, también denominadas estructura de Watts-Strogatz). Estos pa-
trones se encuentran alterados en pacientes con esquizofrenia, lo que podría dar
lugar al antes mencionado síndrome de desconexión. Este hallazgo es solo el primer
paso hacia una comprensión integral de estas redes, que podrían estar compuestas
por otras redes complejas, como redes libres de escala o de Albert-Barabási. Por
tanto, renovados esfuerzos son necesarios para modelar la dinámica de las redes
cerebrales, así como sus características topológicas. Esta Tesis, por tanto, trata
de cuantificar y caracterizar sus propiedades mediante medidas complementarias
como complejidad, regularidad, integración, segregación, fuerza o centralidad.

C.2 Hipótesis y objetivos

La esquizofrenia se ha asociado con un déficit en la integración de la información
entre regiones cerebrales en interacciones de larga distancia durante la cognición.
La Teoría de Redes Complejas proporciona un marco adecuado para caracterizar
esta alteración funcional. Por lo tanto, los análisis de la actividad neuronal basados
en la teoría de grafos podrían ser útiles para comprender los procesos cerebrales
subyacentes a las funciones cognitivas alteradas en la esquizofrenia. Se sabe que
las tareas cognitivas producen respuestas rápidas en el cerebro en el rango de
milisegundos. Además, estudios previos han demostrado que la esquizofrenia está
acompañada de una atribución anómala y superlativa de los estímulos relevantes,
lo que podría afectar al acoplamiento neuronal entre las áreas cerebrales durante
la una tarea cognitiva. Por lo tanto, técnicas de alta resolución temporal, como el
EEG, adquiridas durante una tarea auditiva ‘oddball’, podrían ser utilizadas para
caracterizar la dinámica cerebral a nivel de red en la esquizofrenia.
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Los procesos cognitivos dependen de la dinámica global de la red cerebral, lo
que implica cambios en el equilibrio de acoplamiento entre regiones. Este equilibrio
probablemente se vea alterado en los trastornos mentales. Por lo tanto, es razona-
ble hipotetizar que el análisis del balance de los pesos de las conexiones cerebrales
pueden proporcionar la base para descubrir información relevante acerca de los
sustratos neuronales que afectan a los procesos cerebrales patológicos. Aunque las
anomalías descritas en esquizofrenia parecen estar relacionadas en última instan-
cia con una red cerebral alterada, irregularidades en la activación local podrían
influir en las interrelaciones entre las regiones funcionales. Por lo tanto, la activa-
ción a nivel de sensor puede estar relacionada con interacciones de largo alcance
en las que está involucrada una región concreta del cerebro. Estas interacciones
pueden estar relacionadas no solo con la conectividad funcional, sino también con
la conectividad estructural, es decir, las vías “físicas”. De hecho, las alteraciones
funcionales de la red pueden tener una relación causal con anomalías estructurales.
Por lo tanto, la evaluación de la relación entre las redes funcionales y estructura-
les en la esquizofrenia puede ayudar a caracterizar los sustratos neuronales de la
disfunción cortical en este trastorno.

Debido a la cantidad de factores involucrados en la coordinación cerebral, la
dificultad para caracterizar la red neuronal de una manera exhaustiva hace que
sea difícil modelar el comportamiento dinámico del cerebro. Sin embargo, el uso
de medidas de red complementarias para evaluar la dinámica del cerebro durante
una tarea cognitiva puede arrojar luz para desarrollar nuevos modelos de cogni-
ción. Para validar estas hipótesis, esta Tesis Doctoral propone el uso de la Teoría
de Red Compleja aplicada al EEG para proporcionar un entorno de trabajo pa-
ra evaluar y finalmente modelar la dinámica de las interacciones cerebrales que
presumiblemente están alteradas en la esquizofrenia .

Definidas las hipótesis, el objetivo general de esta Tesis es estudiar, diseñar
y aplicar novedosas medidas derivadas de la Teoría de Redes Complejas, así co-
mo nuevos modelos matemáticos de caracterización de redes para identificar los
sustratos neuronales alterados en la esquizofrenia.

Para llevar a cabo este objetivo, se han seguido los siguientes pasos, correspon-
dientes a objetivos específicos en distintas fases de la Tesis:

1) Revisar la bibliografía y los últimos avances relacionados con el procesado
de señales biomédicas útiles para caracterizar el EEG. En particular, este
objetivo está enfocado a identificar los métodos apropiados de la teoría de
grafos para caracterizar de forma exhaustiva la dinámica neuronal.

2) Construir una base de datos que incluya registros EEG, datos socio-demográficos
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y variables clínicas de pacientes adultos con esquizofrenia y controles sanos.
3) Seleccionar e implementar los métodos más adecuados para minimizar el

ruido de los potenciales relacionados con eventos (event-related potentials,
ERPs), obtener medidas locales y de la dinámica de la red cerebral (de la
literatura o proponer nuevas) y caracterizar el comportamiento de la red
cerebral durante la cognición utilizando la señal EEG.

4) Llevar a cabo análisis estadísticos de los resultados para explorar la diná-
mica neuronal, la relación entre las medidas locales y de red y la asociación
entre la conectividad funcional y estructural, así como para identificar los
patrones fisiopatológicos en la esquizofrenia. Este objetivo también incluye
la construcción de un nuevo modelo probabilístico de la dinámica de la red
cerebral durante una tarea cognitiva para explicar los cambios de dicha red
en cada individuo.

5) Comparar y discutir los resultados para extraer conclusiones apropiadas. Es-
te objetivo incluye la comparación con los estudios más novedosos de ERP
y la comparación de nuestros hallazgos con los resultados obtenidos utili-
zando otras técnicas, como la magnetoencefalografía (MEG) o la resonancia
magnética funcional (functional magnetic resonance imaging, fMRI).

6) Difundir los principales resultados y conclusiones de la investigación en re-
vistas de alto impacto, así como en conferencias internacionales y nacionales.

C.3 Materiales

Durante el proceso de realización de la presente Tesis Doctoral, se usaron dos ba-
ses de datos cuya potencia estadística fue en incremento. La primera de las bases
estaba compuesta por registros de 16 electrodos activos y llegó a constar de 48
pacientes con esquizofrenia (25 crónicos y 23 primeros episodios) y 87 controles.
Debido a la conveniencia de realizar análisis de grafos con una alta resolución
espacial, se optó por cambiar el equipo de registro a uno más moderno con 32 elec-
trodos activos. Dicha base llegó a estar formada en el último de los estudios de esta
Tesis por 39 pacientes con esquizofrenia (19 crónicos y 20 primeros episodios) y 78
controles. Las Tablas C.1 y C.2 muestran los principales datos socio-demográficos,
clínicos y cognitivos de los pacientes y controles de las dos bases de datos. Los
registros fueron adquiridos con la colaboración de personal clínico perteneciente
al grupo de investigación ‘Sustratos Neuronales de la Psicosis’ de la Universidad
de Valladolid dirigidos por el Dr. Vicente Molina. Todos los registros fueron obte-
nidos mediante un electroencefalógrafo de electrodos activos (BrainVision, Brain
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Tabla C.1: Características socio-demográficas, clínicas y cognitivas de la ba-
se de datos completa de 16 electrodos activos. Valores expresados como me-
dia(desviación típica). Las diferencias estadísticas significativas entre ambos gru-
pos están marcadas con un asterisco (p < 0.05, test t de Student).

Schizophrenia Controls
N 48 87

Edad (años) 33.58 (9.27) 30.51 (10.77)
Género (Varón:Mujer) 25:23 44:43
Dosis of CPZ (mg/d) 377.92 (196.94) NA

Duración de la enfermedad (meses) 97.84 (116.94) NA
Educación (años) 14.19 (3.60) 16.56 (2.25)

PANSS Síntomas positivos 11.63 (3.39) NA
PANSS Síntomas negativos 18.03 (7.52) NA

PANSS Síntomas totales 54.35 (18.56) NA
IQ * 91.22 (14.19) 111.83 (11.87)

Memoria verbal * 33.92 (12.74) 51.65 (8.26)
Memoria de trabajo * 15.81 (5.01) 21.46 (3.90)

Velocidad motora * 58.14 (14.41) 68.59 (17.84)
Fluencia verbal * 17.99 (5.70) 27.13 (5.33)

Velocidad de procesamiento * 42.83 (15.78) 68.79 (13.25)
Capacidad de resolución de problemas * 15.40 (4.64) 17.54 (2.72)

WCST errores perseverativos * 27.31 (47.43) 10.17 (5.81)
WCST categorías completadas * 4.39 (1.87) 5.79 (0.72)

Products GmbH; Munich, Germany) con una frecuencia de muestreo de 500 Hz,
de forma que se aseguraba la compatibilidad entre registros.

Los registros se realizaron bajo un protocolo definido de paradigma auditivo
para valorar los potenciales evocados (event-related potentials, ERP) asociados al
proceso cognitivo de identificación de estímulos novedosos y relevantes. El paradig-
ma consistió en la presentación de 3 estímulos auditivos con distinta probabilidad
de aparición: estímulo estándar (2000 Hz; 60% de probabilidad), estímulo distrac-
tor (1500 Hz, 20% de probabilidad) y estímulo diana (500 Hz, 20% de probabi-
lidad). Los sujetos debían presionar un botón únicamente al escuchar el estímulo
diana, de forma que se producía un potencial evocado P3b.

C.4 Métodos

El EEG es una señal eléctrica cerebral cuyas características varían con el tiem-
po. Es por ello que su análisis requiere métodos que analicen de forma conjunta
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Tabla C.2: Características socio-demográficas, clínicas y cognitivas de la ba-
se de datos completa de 32 electrodos activos. Valores expresados como me-
dia(desviación típica). Las diferencias estadísticas significativas entre ambos gru-
pos están marcadas con un asterisco (p < 0.05, test t de Student).

Schizophrenia Controls
N 39 78

Edad (años) 33.05 (8.80) 30.95 (10.84)
Género (Varón:Mujer) 23:16 46:32
Dosis of CPZ (mg/d) 377.90 (196.93) NA

Duración de la enfermedad (meses) 95.17 (117.39) NA
Educación (años) 14.19 (3.60) 16.56 (2.25)

PANSS Síntomas positivos 11.70 (3.43) NA
PANSS Síntomas negativos 17.571 (7.31) NA

PANSS Síntomas totales 53.810 (18.89) NA
IQ * 91.061 (14.53) 113.21 (11.09)

Memoria verbal * 34.262 (12.89) 51.11 (8.19)
Memoria de trabajo * 16.151 (5.01) 21.63 (3.62)

Velocidad motora * 58.879 (13.78) 72.61 (16.58)
Fluencia verbal * 18.352 (5.73) 27.86 (5.15)

s Velocidad de procesamiento * 43.700 (15.36) 69.59 (14.38)
Capacidad de resolución de problemas 15.253 (4.62) 17.52 (2.57)

WCST errores perseverativos * 17.92 (10.12) 9.80 (5.14)
WCST categorías completada * 4.42 (1.88) 5.85 (0.61)

las variaciones tiempo-frecuencia. En la presente Tesis Doctoral se ha utilizado
la transformada wavelet (Wavelet Transform, WT), la cual es apropiada para la
caracterización de señales pseudo-estacionarias. A partir de esta transformación se
han calculado medidas locales (como la entropía), así como medidas de conectivi-
dad (como la coherencia) u otras medidas de conectividad basadas en la sincronía
dinámica de fase de la señal de EEG, como la medida del acoplamiento de fa-
se (Phase-Locking Value, PLV). Una vez obtenidas las medidas de conectividad
fue posible obtener las características de la red cerebral. Para ello se realizó un
procesado en tres etapas:

i) Etapa de pre-procesado. Comprende la eliminación de segmentos ruidosos,
filtrado de frecuencias no deseadas, descomposición mediante análisis de
componentes independientes (Independent Componet Analysis, ICA) y su
posterior reconstrucción, segmentación en épocas relativas a cada estímulo
auditivo, así como el rechazo automático y adaptativo de épocas ruidosas.

ii) Etapa de obtención de las matrices de conectividad. En ella se obtiene la
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transformada tiempo-frecuencia de la señal de EEG procedente de la ante-
rior etapa de pre-procesado. Además, se calcula la matriz de conectividad
asociada a la fase o a la potencia de la señal mediante medidas como la
coherencia y el PLV.

iii) Etapa de caracterización de red. En esta etapa se calculan los parámetros
de grafos que caracterizan la red en su conjunto. Para ello, se seleccionan
medidas de grafos que aporten información relevante y complementaria en
la caracterización de la red.

Estas etapas son el preámbulo del posterior análisis estadístico en el que se
tratan de buscar diferencias entre los grupos de control y de esquizofrenia con
el objetivo de identificar anomalías que definan el desorden psiquiátrico de la
esquizofrenia.

C.5 Resultados y discusión

Mediante el procesado previamente descrito, fue posible identificar particularida-
des de la actividad cerebral en la esquizofrenia, tanto a nivel local (mediante la
entropía) como a nivel de red (mediante medidas de grafos).

En relación con la caracterización a nivel local, se observó un menor cambio
en los patrones de irregularidad en los pacientes con esquizofrenia. Partiendo de
valores similares de entropía durante el pre-estímulo, los pacientes con esquizofre-
nia mostraron una mayor entropía durante la respuesta al estímulo. Esta mayor
entropía está relacionada con un espectro más plano, es decir una mayor varie-
dad de oscilaciones neuronales desorganizadas durante la tarea, lo que lleva a una
asignación aberrante y disminuida de la relevancia al estímulo, probablemente re-
lacionada con una representación interna desorganizada de dicho estímulo.

En cuanto a las medidas de caracterización de la red cerebral mediante grafos,
en primer lugar se observó una capacidad de adaptación al cambio reducida en la
esquizofrenia. Este menor cambio entre pre-estímulo y respuesta cognitiva parece
venir ligado a una mayor activación/conectividad local estimada mediante el coefi-
ciente de agrupamiento (Clustering Coefficient, ClC) durante el intervalo temporal
previo al estímulo. En otras palabras, una anormal y elevada conectividad de de-
terminados conjuntos neurales impide la sincronización y comunicación de la red
cerebral en relaciones de larga distancia durante el procesamiento cognitivo. En
segundo lugar, gracias a la colaboración con el Dr. Rodrigo de Luis del ‘Laboratorio
de Procesado de Imagen’ de la Universidad de Valladolid, fue posible relacionar
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las medidas funcionales de grafos, obtenidas mediante el EEG, con medidas de
conectividad estructural procedentes de registros de resonancia magnética por di-
fusión (diffusion Magnetic Resonance Image, dMRI). Contrariamente a nuestras
primeras expectativas, no se encontró una elevada correlación entre las medidas
de conectividad funcional y estructural. Debido a la novedad del estudio (no tene-
mos constancia de ningún estudio anterior en esquizofrenia en el que se comparen
medidas procedentes del EEG y de MRI), no fue posible una comparación directa
con anteriores hallazgos de la literatura. Sin embargo, una posible causa podría
deberse a la gran heterogeneidad de la esquizofrenia que se ha observado a lo largo
de todos los artículos de esta Tesis por compendio. La existencia de clusters dentro
de la enfermedad enmascararía mutuamente los efectos de los distintos subgrupos,
evitando hallar relaciones entre conectividad estructural y funcional.

La propuesta de una nueva medida de complejidad de red (Shannon Graph
Complexity, SGC) dio lugar a la observación de una reorganización anormal de
la red cerebral en la esquizofrenia. Se propuso, por tanto, un nuevo modelo de
reorganización dinámica de red durante una tarea cognitiva, lo que mostró dife-
rencias en el comportamiento entre controles y pacientes. En concreto, las cone-
xiones funcionales secundarias (caminos neurales débilmente conectados durante
el pre-estímulo) se veían fuertemente reforzadas durante el proceso cognitivo en
controles sanos. El mismo comportamiento fue observado en un conjunto bien di-
ferenciado de pacientes. Sin embargo, otro conjunto relevante de ellos (42%) veía
fuertemente reforzadas principalmente las vías primarias, siguiendo un patrón de
comportamiento claramente diferenciado. Esto, junto a los anteriores hallazgos,
nos llevan a sugerir la posibilidad de la existencia de subgrupos dentro de la en-
fermedad de la esquizofrenia. Pese a que esta hipótesis ya ha sido recientemente
propuesta en estudios paralelos, no es un concepto aceptado por toda la comuni-
dad científica. Por tanto, estudios adicionales a este respecto serán necesario en el
futuro.

C.6 Conclusiones

El análisis de los resultados de esta Tesis Doctoral en su conjunto nos lleva a las
siguientes conclusiones:

• La actividad sincronizada de grandes conjuntos neuronales se puede medir
utilizando medidas de conectividad basadas en la fase y/o la potencia de la
señal de EEG. Esta respuesta coordinada supone la vía principal de inter-
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cambio de información entre las áreas cerebrales.
• La regularidad local de la actividad cerebral tiene un papel importante en

las características de la red en su conjunto. Así, alteraciones en regiones
específicas, como las observadas en la esquizofrenia, podrían afectar a toda la
red, produciendo la desconexión entre áreas y contribuyendo a una capacidad
anormal de integrar la información en la esquizofrenia.
• Los pacientes con esquizofrenia muestran una red hiper-segregada antes del

estímulo, la cula está vinculada a un cambio reducido de la conectividad
funcional durante la cognición.
• El uso de diferentes medidas de red complementarias entre sí, en términos

de información proporcionada, contribuye a una caracterización completa de
la red funcional. Nuestros hallazgos sugieren que un enfoque basado en la
teoría de grafos es apropiado para medir las interacciones y la sincronía de
la red cerebral funcional durante una tarea cognitiva.
• La esquizofrenia muestra alteraciones en las propiedades de red funcional en

la banda de 4 a 8 Hz, así como en la red estructural cerebral. Sin embargo,
estas anormalidades parecen no estar tan vinculadas como podría suponerse
a priori. Las alteraciones halladas podrían estar vinculadas a la existencia
de diferentes grupos de pacientes con esquizofrenia.
• Pacientes con el mismo trastorno, esquizofrenia, muestran patrones de res-

puesta cerebral bien diferenciados ante un estímulo externo. Mientras que
un subgrupo de pacientes refuerza las vías neuronales secundarias durante
el procesamiento cognitivo (de forma similar a como lo hacen los controles),
otro subgrupo sufre un refuerzo de sus conexiones primarias. Los hallazgos
ponen de manifiesto la heterogeneidad de este trastorno, así como la posibili-
dad de la existencia de subgrupos de la enfermedad. Esto abre nuevas líneas
futuras de investigación para confirmar este hallazgo.

En resumen, en esta Tesis Doctoral por compendio de publicaciones, el aná-
lisis de la actividad cerebral durante una tarea cognitiva se utilizó para obtener
información sobre los mecanismos neuronales subyacentes a las disfunciones cog-
nitivas de la esquizofrenia. Los análisis de la teoría de redes complejas basados en
la sincronía y el acoplamiento entre las regiones cerebrales proporcionan un marco
de trabajo adecuado para describir las alteraciones de la esquizofrenia. Nuestra
investigación respalda hallazgos previos, como la hipótesis de respuesta aberrante
y la hipótesis de desconexión, a la vez que muestra un déficit en el cambio de
la actividad cerebral desde el intervalo pre-estímulo a la respuesta cognitiva. La
reorganización de la red cerebral y sus cambios topológicos están claramente di-
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ferenciados entre diferentes subgrupos de pacientes. Esto nos proporciona nuevas
evidencias sobre la posible existencia de subgrupos dentro de la esquizofrenia.
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