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Abstract

In this paper we point out some interesting properties of a class of decision rules
located between simple and unanimous majorities. These majority rules are based
on difference of votes: an alternative wins when the difference between the number
of votes obtained by this alternative and that obtained by the other is greater than
a previously fixed quantity. We also give some characterizations of these majority
rules by means of two properties well known in the literature: cancellation and
decisiveness.
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1 Introduction

In the last decades, the Social Choice Theory has experienced a great develop-
ment. The pioneer works of Black (1948), Arrow (1963) and May (1952) have
originated the analysis and characterization of numerous voting schemes. The
simplest situation happens when a group of individuals has to choose between
two alternatives. When we consider an egalitarian treatment between the al-
ternatives, one of the most common voting procedures is simple majority. In
the same way, other decision rules such as absolute majority —and, in general,
absolute special majorities such as two-thirds or three-fourths majorities— are
used when it is desired that the winning alternative have a “wide” support.
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However, such as it has been emphasized by Garćıa-Lapresta and Llamazares
(2001), these voting procedures have important drawbacks. For instance, under
simple majority rule an alternative can be elected with very poor support if a
lot of individuals are indifferent between the alternatives. Although absolute
special majorities solve the problem of minimum support, it is necessary a
large number of votes in order that an alternative may be elected. Therefore,
they have a problem of decisiveness. Since wide support and decisiveness are
conflicting concepts, it seems necessary to look for a balance between them.

On the other hand, simple and absolute majorities also have a problem of
stability because there are situations where the winning alternative can change
when a single “turncoat” alters their preference.

In order to avoid the previous drawbacks, Garćıa-Lapresta and Llamazares
(2001) consider in the context of fuzzy preferences a class of decision rules
based on difference of votes, the Mk majorities. These voting procedures had
been previously cited by Fishburn (1973, p. 18) and Saari (1990, p. 122),
but not analysis had been done of them. For Mk majorities, the winning
alternative is the one with a number of votes exceeding that obtained by the
other in a previously fixed quantity. We note that Mk majorities are found
between simple majority and unanimous majority.

The aim of this paper is to characterize this class of majority rules. For this,
we use two sets of properties. In the first set will be essential the cancellation
property. This property was used by Young (1974), with a equivalent formu-
lation, to characterize the Borda rule. In the second set, decisiveness (used
by Ferejohn and Grether (1974)) and stability will play a fundamental role.
In fact, we will prove that Mk majorities are the most decisive in a class of
stable majority rules.

The paper is organized as follows. Section 2 provides the basic definitions and
notation. In this section we also point out some drawbacks of well known ma-
jority rules. Section 3 contains some characterizations of Mk majorities based
on cancellation and p-Pareto properties. In Sections 4 we show some charac-
terizations of Mk majorities based on stability and decisiveness properties.
We conclude in Section 5.

2 Preliminaries and motivation

Let N = {1, . . . , n} be the set of voters, with n ≥ 3, and x, y two alterna-
tives. The individual preferences between the two alternatives are described
by a profile D = (d1, . . . , dn), where di is 1,−1 or 0 depending on whether
individual i prefers x to y, y to x or is indifferent between them. The set
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of profiles of preferences will be denoted by D.

Given D,D′ ∈ D and σ a permutation on N , we will use the following
notation: n+(D) = #{i ∈ N | di = 1}, n−(D) = #{i ∈ N | di = −1},
−D = (−d1, . . . ,−dn), Dσ = (dσ(1), . . . , dσ(n)) and D′ ≥ D means d′i ≥ di
for all i ∈ N . For all j ∈ N ∪ {0}, Ej will denote the following profile of
preferences:

eji =


1, if i ≤ j,

0, otherwise.

So, E0 = (0, . . . , 0) and En = (1, . . . , 1). Furthermore, U+, U− and U will
denote the sets of profiles of preferences where one individual is indifferent
between the alternatives and the rest agree that x is better than y, y is
better than x, and that an alternative is better than the other, respectively;
i.e.,

U+ = {D ∈ D | n+(D) = n− 1, n−(D) = 0},

U− = {D ∈ D | n+(D) = 0, n−(D) = n− 1},

U = U+ ∪ U−.

The collective preference is obtained by means of social welfare functions. A
social welfare function (SWF) is a mapping F : D −→ {−1, 0, 1}. The possible
values of F , −1, 0 and 1, have a similar interpretation that in the case of
individual preferences.

In this paper we focus our attention on SWF’s based on difference of votes.
This family of decision rules was noted by Fishburn (1973, p. 18), Saari (1990,
p. 122) and Garćıa-Lapresta and Llamazares (2001).

Definition 1 Given k ∈ {0, 1, . . . , n − 1}, the Mk majority is the SWF
defined by

Mk(D) =



1, if
n∑
i=1

di > k,

−1, if
n∑
i=1

di < −k,

0, otherwise.
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Since
n∑
i=1

di = n+(D)− n−(D), the Mk majority can also be defined by

Mk(D) =


1, if n+(D) > n−(D) + k,

−1, if n−(D) > n+(D) + k,

0, otherwise.

Therefore, for these SWF’s, an alternative is collectively preferred to another
if the number of individuals who prefer the first to the second exceeds those
who prefer the second to the first in a previously fixed quantity.

It is important to emphasize that simple and unanimous majorities are par-
ticular cases of Mk majorities. Thus, when k = 0 we obtain simple majority,
i.e.,

M0(D) = sgn
(
n+(D)− n−(D)

)
,

where sgn : R −→ {−1, 0, 1} is the sign function ( sgn(x) is 1 if x > 0, 0 if
x = 0 and −1 if x < 0); and when k = n−1 we obtain unanimous majority,
i.e.,

Mn−1(D) =


1, if D = En,

−1, if D = −En,

0, otherwise.

We now consider some properties of SWF’s that are well known in the litera-
ture: Anonymity, neutrality, monotonicity and weak and strong Pareto prin-
ciples. Anonymity, also referred to as equality and symmetry, means that col-
lective preference depends on only the set of individual preferences, but not
on which individuals have these preferences, i.e., all individuals are treated
equally. Neutrality, also referred to as duality, says that if everyone reverses
their preferences between x and y, then the collective preference is also re-
versed, i.e., the alternatives are treated equally. Monotonicity means that in-
creased support for an alternative does not hurt this alternative. Weak and
strong Pareto principles mean that when there exists a certain degree of con-
sensus among the voters, the society holds that preference. Weak Pareto prin-
ciple, also referred to as unanimity, says that if all individuals prefer one alter-
native over the other, then the collective preference agree with the individuals’.
Strong Pareto principle is similar to weak Pareto principle but without taking
into account the indifferent voters.
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Definition 2 Let F be a SWF.

(1) F is anonymous if for all permutation σ on N and all profile D ∈ D
we have F (Dσ) = F (D).

(2) F is neutral if for all profile D ∈ D we have F (−D) = −F (D).
(3) F is monotonic if for all pair of profiles D,D′ ∈ D such that D′ ≥ D

we have F (D′) ≥ F (D).
(4) F is weak Pareto if F (En) = 1 and F (−En) = −1.
(5) F is strong Pareto if for all profile D ∈ D,

(a) If n+(D) > 0 and n−(D) = 0, then F (D) = 1.
(b) If n−(D) > 0 and n+(D) = 0, then F (D) = −1.

Remark 3 If F is a neutral SWF, then:

(1) F (E0) = 0.
(2) F is characterized by the set F−1({1}), since

F−1({−1}) = {D ∈ D | −D ∈ F−1({1})},

F−1({0}) = D \
(
F−1({1}) ∪ F−1({−1})

)
.

Since the Mk majority is neutral, by Remark 3 we can define Mk as the
neutral SWF given by

Mk(D) = 1 ⇔ n+(D) > n−(D) + k.

In the same way, some of the most popular voting systems can be define using
neutrality. Next, we present some of them.

(1) The simple majority is the neutral SWF defined by

F (D) = 1 ⇔ n+(D) > n−(D).

There exist numerous references in the literature about simple major-
ity. Nevertheless, it is important to emphasize that the first axiomatic
characterization of it was given by May (1952).

(2) The absolute majority is the neutral SWF defined by

F (D) = 1 ⇔ n+(D) >
n

2
.

Absolute majority has been characterize by Fishburn (1973, p. 60) (he
called it weak majority).

(3) The unanimous majority is the neutral SWF defined by

F (D) = 1 ⇔ n+(D) = n.

Unanimous majority has been characterized by Woeginger (2003).
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(4) The Pareto majority is the neutral SWF defined by

F (D) = 1 ⇔ n+(D) > 0 and n−(D) = 0.

Pareto majority has been characterized by Sen (1970, p. 76).
(5) Given α ∈ [1/2, 1), the absolute special majority Aα is the neutral SWF

defined by

Aα(D) = 1 ⇔ n+(D) > αn.

These rules are found between absolute majority, for α = 1/2, and unan-
imous majority, for α ≥ (n−1)/n. Absolute special majorities have been
studied by Fishburn (1973, p. 67) (without neutrality assumption) and
Ferejohn and Grether (1974) (they called them α-rules).

(6) Given β ≥ 1, the relative special majority Rβ is the neutral SWF defined
by

Rβ(D) = 1 ⇔ n+(D) > βn−(D).

These rules are found between simple majority, for β = 1, and Pareto
majority, for β ≥ n− 1. Relative special majorities have been studied by
Craven (1971), Fishburn (1973, p. 68) (without neutrality assumption),
Ferejohn and Grether (1974) (with a equivalent formulation and they
called them extended α-rules) and Jain (1983, 1986a) (with the same
formulation than Ferejohn and Grether (1974)).

(7) Given δ ∈ [0, 1], the semi-strict majority Sδ is the neutral SWF defined
by

Sδ(D) = 1 ⇔ n+(D) >
1

2

(
δn+ (1− δ)(n+(D) + n−(D))

)
⇔ n+(D) >

δ

1 + δ
n+

1− δ
1 + δ

n−(D).

These rules are found between simple majority, for δ = 0, and absolute
majority, for δ = 1. Semi-strict majorities have been studied by Pattanaik
(1971, p. 54) (with a equivalent formulation and he called them M-rules)
and Jain (1986b).

We now point out some drawbacks of the previous SWF’s. For a sake of clear-
ness, we consider 101 voters. An ordered pair (n1, n2) will denote the result
of a ballot, where n1 and n2 will be the number of votes for x and y, respec-
tively. Suppose that the result of a ballot is (1, 0). In this case, under simple
majority voting, x wins. So, in simple majority an alternative can be elected
with very poor support. Moreover, in this situation —in fact, this happens
when the result is (n1 + 1, n1) or (n1, n1 + 1)— the winning alternative can
change when a single “turncoat” alters their preference.
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In order to avoid the problem of minimum support, we would be able to
consider using the absolute majority. In this case, the problem of minimum
support disappears but we continue to have a problem of stability when the re-
sult of the ballot is (51, 50) or (50, 51). Furthermore, a new drawback appears
because under absolute majority the winning alternative needs a lot of votes.
Consequently, there is a loss of decisiveness and, in many instances, there is
no winning alternative. On the other hand, if we use absolute majority so that
the winning alternative has a wide support, it is paradoxical that x wins if
the result of the ballot is (51, 50) but not when the result is (50, 0).

Pareto majority has similar drawbacks to simple and absolute majorities. Since
x wins when the result of a ballot is (1, 0), there are problems of minimum
support and stability. Moreover, there exists a winning alternative only if the
result of the ballot is (n1, 0) or (0, n1), with n1 ≥ 1; therefore, there is a
problem of decisiveness. For its part, unanimous majority has a large problem
of decisiveness: It is the least decisive neutral, monotonic and no constant
SWF.

In order to reduce the previous drawbacks, we can try to consider the SWF’s
that are dependent on parameters. However, absolute special majorities, Aα,
have a problem of decisiveness because the winning alternative needs at least
[α · 101] + 1 votes although the another alternative lacks support. Moreover,
this loss of decisiveness increases as α increases.

Relative special majorities, Rβ, have problems of minimum support and sta-
bility when the result of the ballot is (1, 0) or (0, 1). In relation to semi-strict
majorities, Sδ, we can vary the value of δ to get a balance between “wide”
support and decisiveness. For instance, if we consider δ = 1

3
, the winning al-

ternative needs at least 26 votes when the another alternative receives 0 or
1 vote, 27 votes when the losing alternative receives 2 or 3 votes and so on.
However, semi-strict majorities have a problem of stability when the result of
the ballot is (51, 50) or (50, 51).

In the case of Mk majorities, we can note that there is also a balance between
wide support and decisiveness, but these decision rules have less problems of
stability. Actually, as we will prove in Section 4, the Mk majorities are the
most decisive in a class of stable SWF’s. For instance, if we consider k = 25,
the winning alternative needs at least 26 votes when there is not support for
the another alternative, 27 votes when the losing alternative receives 1 vote
and so on. However, in this case, no coalition with less than 26 voters can
change the winning alternative.
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3 Characterizations of Mk majorities based on cancellation and p-
Pareto properties

In this section we consider two properties, cancellation and p-Pareto, to char-
acterize the Mk majorities. Cancellation says that if two individuals have
opposed preferences, i.e., one prefers x and another prefers y, then the col-
lective preference is the same than if both individuals are indifferent between
x and y. On the other hand, we introduce p-Pareto property to distinguish
among the different degrees of consensus that exist between strong and weak
Pareto principles, depending on the number of voters supporting an alterna-
tive.

Definition 4 Let F be a SWF.

(1) F is cancellative if for all pair of profiles D,D′ ∈ D such that di = 1,
dj = −1 and d′i = d′j = 0 for some i, j ∈ N , and d′l = dl for all
l ∈ N \ {i, j}, we have F (D) = F (D′).

(2) Given p ∈ {0, 1, . . . , n− 1}, F is p-Pareto if:
(a) For all profile D ∈ D,

(i) If n+(D) > p and n−(D) = 0, then F (D) = 1.
(ii) If n−(D) > p and n+(D) = 0, then F (D) = −1.

(b) If p ∈ {1, . . . , n − 1}, there exists D ∈ D such that it satisfies one
of the following conditions:
(i) n+(D) = p, n−(D) = 0 and F (D) < 1.

(ii) n−(D) = p, n+(D) = 0 and F (D) > −1.

In relation to the p-Pareto property, it is obvious that we obtain strong Pareto
principle when p = 0. Moreover, for all p ∈ {0, 1, . . . , n − 1}, any p-Pareto
SWF is weak Pareto. Reciprocally, given a weak Pareto SWF F there exists
p ∈ {0, 1, . . . , n− 1} such that F is p-Pareto.

Cancellation property was given by Young (1974) with a different formula-
tion, although in the same spirit, in order to characterize the Borda rule. On
the other hand, it is easy to check that if n = 2, then any anonymous and
neutral SWF is cancellative (for this reason we consider n ≥ 3). Moreover,
cancellation property has a narrow relation with anonymity, as it states the
following proposition.

Proposition 5 If F is a cancellative SWF, then F (Dσ) = F (D) for all
profile D ∈ D \ U and all permutation σ on N .

PROOF. Given D ∈ {D ∈ D \U | n+(D) = n−(D) +m}, with m ≥ 0, m 6=
n− 1, we are going to prove that F (D) = F (Em) (the case n+(D) < n−(D)
can be proven in a similar way). Since n+(Dσ) = n+(D) and n−(Dσ) =
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n−(D) for all permutation σ on N , we will have F (Dσ) = F (Em) = F (D).

Moreover, since F is cancellative there exists D∗ ∈ D \ U , with n+(D∗) =
m and n−(D∗) = 0, such that F (D) = F (D∗). Therefore, we can suppose
without loss of generality that n+(D) = m and n−(D) = 0.

We distinguish two cases:

(1) If m = n or m = 0, then D = Em and the result is obvious.
(2) If 1 ≤ m ≤ n − 2 and D 6= Em, then there exist j ∈ {1, . . . ,m} and

l ∈ {m + 1, . . . , n} such that dj = 0 and dl = 1. Since n+(D) ≤ n− 2,
there exists r ∈ N , r 6= j such that dr = 0. Now we consider the profiles
D′ and D′′ defined by

d′i =



1, if i = j,

−1, if i = r,

di, otherwise,

d′′i =


0, if i = r, l,

d′i, otherwise.

Since F is cancellative we have F (D) = F (D′) = F (D′′). If D′′ 6= Em,
then we can repeat the previous process and concluding that F (D) =
F (Em). 2

From definition, it is clear that any cancellative SWF is completely determined
by its values in the set of profiles where non-indifferent voters agree that an
alternative is better than the another, i.e., {D ∈ D | min(n+(D), n−(D)) =
0}. However, Proposition 5 allows us to reduce the previous set, as we show in
Corollary 6. Moreover, we can also know the set of profiles that characterize
a cancellative SWF when it satisfies other properties.

Corollary 6 If F is a cancellative SWF, then F is completely determined
by its values in the set U ∪ {Ej | j ∈ N ∪ {0}} ∪ {−Ej | j ∈ N}.

Corollary 7 Let F be a cancellative SWF.

(1) If F is anonymous, then F is completely determined by its values in the
set

{Ej | j ∈ N ∪ {0}} ∪ {−Ej | j ∈ N}.
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(2) If F is neutral, then F is completely determined by its values in the set

U+ ∪ {Ej | j ∈ N ∪ {0}}.

(3) If F is anonymous and neutral, then F is completely determined by its
values in the set

{Ej | j ∈ N ∪ {0}}.

(4) If F is p-Pareto, then F is completely determined by its values in the
set
(a) {E0}, if p = 0.
(b) {Ej | j ∈ {0, 1, . . . , p}} ∪ {−Ej | j ∈ {1, . . . , p}}, if p ∈ {1, . . . , n −

2}.
(c) U ∪ {Ej | j ∈ {0, 1, . . . , n − 2}} ∪ {−Ej | j ∈ {1, . . . , n − 2}}, if

p = n− 1.

It is important to emphasize that cancellative and strong Pareto SWF’s are
characterized by their value in the profile E0. This fact will be used in the
characterization of simple majority.

Now, from the previous results it is easy to characterize the class of Mk

majorities by means of independent properties.

Theorem 8 A SWF F is a Mk majority if and only if it is anonymous,
neutral, monotonic, weak Pareto and cancellative.

PROOF. It is easy to check that any Mk majority satisfies the properties.
Reciprocally, suppose that F is anonymous, neutral, monotonic, weak Pareto
and cancellative. By (3) of Corollary 7 F is determined by the set {Ej | j ∈
N ∪ {0}}. Since F is weak Pareto, F (En) = 1, and by (1) of Remark 3 we
also have F (E0) = 0. Moreover, F (Ei) ≥ F (Ej) for all i > j because F is
monotonic. Therefore, there exists k ∈ {1, . . . , n−1} such that F (Ek+1) = 1
and F (Ek) = 0; i.e., F is the Mk majority. 2

Remark 9

(1) The SWF F defined by

F (D) =



1, if D = En,

−1, if D = −En,

d1, if D ∈ U ,

0, otherwise,
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is neutral, monotonic, weak Pareto and cancellative, but not anonymous.
(2) The SWF F defined by

F (D) =


1, if D ∈ U+ ∪ {En},

−1, if D = −En,

0, otherwise,

is anonymous, monotonic, weak Pareto and cancellative, but not neutral.
(3) The SWF F defined by

F (D) =


1, if D ∈ U− ∪ {En},

−1, if D ∈ U+ ∪ {−En},

0, otherwise,

is anonymous, neutral, weak Pareto and cancellative, but not monotonic.
(4) The null SWF, i.e., F (D) = 0 for all D ∈ D, is anonymous, neutral,

monotonic and cancellative, but not weak Pareto. In fact, from the proof
of Theorem 8 it is easy to check that the null SWF is the only that satisfies
these conditions.

(5) The absolute majority, i.e.,

F (D) =


1, if n+(D) > n/2,

−1, if n−(D) > n/2,

0, otherwise,

is anonymous, neutral, monotonic and weak Pareto, but not cancellative.

Nevertheless, the class of Mk majorities is very wide and it includes some
decision procedures as different as simple and unanimous majorities. For this
reason, in the following theorems we characterize each Mk majority by means
of independent properties. We begin with simple majority, which is possibly
the most popular voting system. It has been widely studied in Social Choice
Theory and, consequently, there exist numerous characterizations in the con-
text of SWF’s that we can classify in three groups:

(1) Characterizations considering two alternatives and a fixed number of vot-
ers (a society) have been given by May (1952) and Fishburn (1973, p. 58,
1983).

(2) Characterizations considering two alternatives and a variable number of
voters (a set of societies) have been given by Aşan and Sanver (2002),
Woeginger (2003) and Miroiu (2004).
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(3) Characterizations considering three or more alternatives and a fixed num-
ber of voters have been given by Campbell (1982, 1988), Maskin (1995),
Campbell and Kelly (2000, 2003) and Yi (2005).

Our characterization is in the first group. However, we use the strong Pareto
principle, which is usual in the characterizations of the second group (see Aşan
and Sanver (2002) and Woeginger (2003)).

Theorem 10 A SWF F is the simple majority if and only if it is cancellative,
strong Pareto and F (E0) = 0.

PROOF. It is easy to check that simple majority satisfies the properties.
Reciprocally, suppose that F is cancellative, strong Pareto and F (E0) =
0. By item (4a) of Corollary 7 any cancellative and strong Pareto SWF is
determined by its value in the profile E0. Therefore, if F (E0) = 0, then F is
the simple majority. 2

Remark 11

(1) The SWF F defined by

F (D) =


1, if n+(D) > 0 and n−(D) = 0,

−1, if n−(D) > 0 and n+(D) = 0,

d1, otherwise,

is strong Pareto and F (E0) = 0 but it is not cancellative.
(2) The SWF F defined by F (D) = −M0(D) for all D ∈ D is cancellative

and F (E0) = 0 but it is not strong Pareto.
(3) The SWF F defined by

F (D) =


1, if n+(D) ≥ n−(D),

−1, if n−(D) > n+(D),

is cancellative and strong Pareto but F (E0) 6= 0.

By item (1) of Remark 3 we can obtain another characterization of simple
majority by replacing the condition F (E0) = 0 by neutrality.

Corollary 12 A SWF F is the simple majority if and only if it is cancella-
tive, strong Pareto and neutral.

The examples given in Remark 11 go to show that cancellation, strong Pareto
and neutrality are also independent properties.
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Next we characterize any Mk majority different from simple and unanimous
majorities. In this case, the properties are similar those given in Theorem 8,
but anonymity can be omitted and weak Pareto is replaced by k-Pareto.

Theorem 13 Given k ∈ {1, . . . , n − 2}, a SWF F is the Mk majority if
and only if it is neutral, monotonic, cancellative and k-Pareto.

PROOF. It is easy to check that the Mk majority satisfies the properties. Re-
ciprocally, suppose that F is neutral, monotonic, cancellative and k-Pareto.
By Proposition 5, F (Dσ) = F (D) for all D ∈ D \ U and all permutation σ
on N . Moreover, F (D) = 1 for all D ∈ U because F is k-Pareto. Therefore,
F is anonymous and by Theorem 8 we have that F is a Mj majority for some
j ∈ {1, . . . , n− 2}. Finally, F is the Mk majority because it is k-Pareto. 2

Remark 14 Let k ∈ {1, . . . , n− 2}.

(1) The SWF F defined by

F (D) =


1, if n+(D) > n−(D) + k,

−1, if n−(D) > n+(D),

0, otherwise,

is monotonic, cancellative and k-Pareto, but not neutral.
(2) The SWF F defined by

F (D) =


1, if n+(D) > n−(D) + k or n+(D) + k ≥ n−(D) > n+(D),

−1, if n−(D) > n+(D) + k or n−(D) + k ≥ n+(D) > n−(D),

0, otherwise,

is neutral, cancellative and k-Pareto, but not monotonic.
(3) The SWF F defined by

F (D) =


1, if n+(D) > n−(D) + k,

−1, if n−(D) > n+(D) + k,

d1, otherwise,

is neutral, monotonic and k-Pareto, but not cancellative.
(4) The SWF given in item (1) of Remark 9 is neutral, monotonic and can-

cellative, but not k-Pareto.
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Finally, we characterize unanimous majority. Again, the properties are similar
those given in Theorem 8, but cancellation is not necessary and weak Pareto
is replaced by (n− 1)-Pareto.

Theorem 15 A SWF F is the unanimous majority if and only if it is anony-
mous, neutral, monotonic and (n− 1)-Pareto.

PROOF. It is easy to check that unanimous majority satisfies the properties.
Reciprocally, suppose that F is anonymous, neutral, monotonic and (n− 1)-
Pareto. By the last property, F (En) = 1, F (−En) = −1 and there exists
D∗ ∈ U+ such that F (D∗) < 1 or D∗ ∈ U− with F (D∗) > −1. Assume
that D∗ ∈ U+ (the case D∗ ∈ U− can be proven in a similar way). Since F
is neutral, by (1) of Remark 3, F (E0) = 0, and by the monotonicity of F ,
F (D∗) = 0. Because F is anonymous, F (D) = 0 for all D ∈ U+, and by the
neutrality, F (D) is also zero for all D ∈ U−. Now, given D ∈ D\{En,−En},
there exist D′ ∈ U− and D′′ ∈ U+ such that D′ ≤ D ≤ D′′. Consequently,
by the monotonicity of F , F (D) = 0. 2

In order to show that anonymity, neutrality, monotonicity and (n− 1)-Pareto
are independent properties, we can consider the SWF’s given in items (1),
(2), (3) and (4) of Remark 9 by changing the term weak Pareto to (n − 1)-
Pareto. In the last case, it is possible to find SWF’s different from the null;
for instance, we can take any Mk majority where k ∈ {0, 1, . . . , n− 2}.

4 Characterizations of Mk majorities based on stability and deci-
siveness

We have seen in Section 2 that a drawback of simple majority is that the
winning alternative can change when only a voter alters their preference. This
problem can also happen in absolute majority, although this voting procedure
is less decisive that simple majority. To avoid this situation, it seems necessary
that the majority rules used have certain stability.

When we come to defining the notion of stability, it is necessary to bear in
mind that for any no constant SWF there exist profiles where an alternative
stops winning when a single voter changes their preference. We only show the
result for x because it can be obtained for y in a similar way.

Proposition 16 Let F be a no constant SWF such that F−1({1}) be no
empty. Then there exist D,D′ ∈ D such that #{i ∈ N | di 6= d′i} = 1,
F (D) = 1 and F (D′) < 1.
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PROOF. Since F−1({1}) 6= 0, there exists Dn ∈ D such that F (Dn) = 1.
Moreover, since F is not constant, there exists D0 ∈ D such that F (D0) < 1.
For j ∈ {1, . . . , n− 1} we consider the profile Dj defined by

dji =


dni , if i ≤ j,

d0i , if i > j.

Since F (D0) < 1 and F (Dn) = 1, there exists j ∈ {0, . . . , n − 1} such that
F (Dj) < 1 and F (Dj+1) = 1. Furthermore, #{i ∈ N | dji 6= dj+1

i } = 1. 2

Consequently, we consider that a SWF is stable of grade q ( q-stable) when
given any profile where there exists a winning alternative, q voters can change
their preferences without the another alternative being winner. Since the case
where an alternative can never win lacks interest, we also ask in the definition
of q-stability that there be profiles where the change in the opinion of q + 1
individuals produces the switch of the winning alternative.

Definition 17 Given q ∈ {0, 1, . . . , n−1}, a SWF F is q-stable if it satisfies
the following conditions:

(1) For all D,D′ ∈ D such that #{i ∈ N | di 6= d′i} ≤ q,

F (D) = 1 ⇒ F (D′) ≥ 0; F (D) = −1 ⇒ F (D′) ≤ 0.

(2) There exist D,D′ ∈ D such that #{i ∈ N | di 6= d′i} = q + 1 satisfying
F (D) = 1 and F (D′) = −1.

When both alternatives can win, any SWF can be classified in relation to its
stability. In the following proposition we give the grade of stability of Mk

majorities.

Proposition 18 Given k ∈ {0, 1, . . . , n− 1}, the Mk majority is k-stable.

PROOF. We are going to prove that the Mk majority satisfies the conditions
of Definition 17. Let D,D′ ∈ D such that #{i ∈ N | di 6= d′i} ≤ k. If
Mk(D) = 1, then n+(D) > n−(D) + k. Since n+(D′) ≥ n+(D) − k and
n−(D′) ≤ n−(D) + k, we have

n−(D′) ≤ n−(D) + k < n+(D) ≤ n+(D′) + k,

i.e., Mk(D
′) ≥ 0. The case Mk(D) = −1 can be easily proven by the neutrality

of Mk.
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On the other hand, in order to prove the second condition of Definition 17 it
is sufficient to consider Ek+1 and −Ek+1. 2

The stability, together with neutrality and monotonicity, require that the win-
ning alternative has at least a certain support. This result will become very
useful in the characterization of Mk majorities.

Proposition 19 Let q ∈ {0, 1, . . . , n − 1}, F be a neutral, monotonic and
q-stable SWF and D ∈ D. Then:

(1) If F (D) = 1, then n+(D) > q.
(2) If F (D) = −1, then n−(D) > q.

PROOF.

(1) This is proven by contradiction. Suppose n+(D) ≤ q and consider D′ ∈
D defined by

d′i =


−1, if di = 1,

di, otherwise.

Since F (D) = 1, −D ≥ D′, #{i ∈ N | di 6= d′i} ≤ q and F is neutral,
monotonic and q-stable we have

−1 = F (−D) ≥ F (D′) ≥ 0,

a contradiction.
(2) Since F is neutral, then F (−D) = 1, and by the previous case, n−(D) =

n+(−D) > q. 2

From this result, it is easy to obtain a characterization of unanimous majority
by means of independent properties.

Theorem 20 A SWF F is the unanimous majority if and only if it is neutral,
monotonic and (n− 1)-stable.

PROOF. It is easy to check that unanimous majority satisfies the properties.
Reciprocally, suppose that F is neutral, monotonic and (n−1)-stable. By the
last property, there exist D,D′ ∈ D such that F (D) = 1 and F (D′) = −1.
By Proposition 19, D = En, D′ = −En and F (D) = 0 for all D ∈ D \
{En,−En}, i.e., F is the unanimous majority. 2
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Remark 21

(1) The SWF F defined by

F (D) =


1, if n+(D) > n−(D) + (n− 2),

−1, if D = −En,

0, otherwise,

is monotonic and (n− 1)-stable, but not neutral.
(2) The SWF F defined by F (D) = −Mn−1(D) for all D ∈ D is neutral

and (n− 1)-stable, but not monotonic.
(3) M0 is neutral and monotonic, but not (n− 1)-stable.

We can not obtain similar characterizations for the remaining Mk majorities
because when k ∈ {0, 1, . . . , n−2} there exist neutral, monotonic and k-stable
SWF’s different from Mk. Nevertheless, when we consider the class of SWF’s
that satisfy the previous properties together with anonymity, the Mk majority
is the most decisive in the following sense: given a profile of preferences, if an
alternative is elected with an anonymous, neutral, monotonic and k-stable
SWF, then this alternative is also winner with Mk. This concept was called
strong by Ferejohn and Grether (1974).

Definition 22 A SWF F is as decisive as another SWF G if for all D ∈ D
we have

G(D) = 1 ⇒ F (D) = 1; G(D) = −1 ⇒ F (D) = −1.

Remark 23 Obviously, if F is as decisive as G, then F = G or there exists
D ∈ D such that G(D) = 0 and F (D) 6= 0, i.e., F is more decisive than G.

In the characterization of Mk majorities we will use the following remark.

Remark 24 If F is an anonymous and monotonic SWF, then for all pair
of profiles D,D′ ∈ D with the same number of non-indifferent voters, i.e.,
n+(D) + n−(D) = n+(D′) + n−(D′), we have

n+(D) ≤ n+(D′) ⇒ F (D) ≤ F (D′).

Theorem 25 Given k ∈ {0, 1, . . . , n − 2}, the Mk majority is the most de-
cisive anonymous, neutral, monotonic and k-stable SWF.

PROOF. By Remark 23, it is sufficient to prove that the Mk majority is as
decisive as any anonymous, neutral, monotonic and k-stable SWF F . Given
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D ∈ D, suppose F (D) = 1. By Proposition 19 we have n+(D) > k. Consider
D′ ∈ D obtained from D by changing the first k 1’s to −1, i.e.,

d′i =


−1, if di = 1 and #{j ≤ i | dj = 1} ≤ k,

di, otherwise.

By the k-stability and neutrality of F we have F (D′) ≥ 0 and F (−D) = −1.
Since F (D′) > F (−D), n+(D′) + n−(D′) = n+(−D) + n−(−D) and F is
anonymous and monotonic, by Remark 24, we have n+(D′) > n+(−D), i.e.,

n+(D)− k > n−(D),

and, consequently, Mk(D) = 1.

The case F (D) = −1 can be easily proven by the neutrality of F and Mk. 2

Since Mk is more decisive than Mk′ when k′ > k, we also have the following
result.

Corollary 26 Given k ∈ {0, 1, . . . , n− 2} and k′ ∈ {k, . . . , n− 1}, the Mk

majority is more decisive than any anonymous, neutral, monotonic and k′-
stable SWF.

Moreover, since M0 is more decisive than the null SWF and any neutral and
no null SWF is q-stable for some q ∈ {0, 1, . . . , n − 1}, we can also obtain
another characterization of simple majority.

Corollary 27 Simple majority is the most decisive anonymous, neutral and
monotonic SWF.

The results given in Theorem 25 (for k ∈ {1, . . . , n − 2}) and Corollary 27
are only satisfied on the respective classes of SWF’s. Thus, in the following
remark we show that if we drop one of the conditions then the previous results
are not valid.

Remark 28 Let k ∈ {0, 1, . . . , n− 2}.

(1) The SWF F where there exits an oligarchy constituted by the first k + 1
individuals, i.e.,

F (D) =


1, if di = 1 for all i ≤ k + 1,

−1, if di = −1 for all i ≤ k + 1,

0, otherwise,
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is neutral, monotonic and k-stable, but not anonymous. If we consider
D ∈ D defined by

di =


1, if i ≤ k + 1,

−1, otherwise,

then F (D) = 1 and Mk(D) < 1.
(2) The SWF F defined by

F (D) =


1, if n+(D) > n−(D) + (k − 1),

−1, if n−(D) > n+(D) + k,

0, otherwise,

is anonymous, monotonic and k-stable, but not neutral. In this case, we
have F (Ek) = 1 and Mk(E

k) = 0.
(3) The SWF F defined by F (D) = −Mk(D) for all D ∈ D is anonymous,

neutral and k-stable, but not monotonic. Here, we have F (−En) = 1
and Mk(−En) = −1.

(4) If k ∈ {1, . . . , n − 2}, M0 is anonymous, neutral and monotonic, but
not k-stable for k ∈ {1, . . . , n − 2}. In this case, M0(E

1) = 1 and
Mk(E

1) = 0 for all k ∈ {1, . . . , n− 2}.

5 Concluding Remarks

The axiomatic characterization of SWF’s is important to know their qualities.
In a similar way to the work of Young (1974), we use the cancellation prop-
erty to characterize the Mk majorities. Likewise, we also have proven that
these majority rules are the most decisive in the class of anonymous, neutral,
monotonic and k-stable SWF’s. This result is similar to that obtained by Fere-
john and Grether (1974) in relation to absolute and relative special majorities.
Moreover, it shows that these majority rules are the best choice when we look
for a balance between stability and decisiveness.

Since simple and unanimous majorities are particular cases of Mk majorities,
we also have obtained some characterizations of these majority rules by means
of independent properties. To be exact, we have obtained three new charac-
terizations of simple majority (Theorem 10 and Corollaries 12 and 27) and
two new characterizations of unanimous majority (Theorems 15 and 20).

From a practical point of view, the value of k can be given through a per-
centage of the total number of individuals. So, we can take k as the integer
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part of θn, k = [θn], where θ ∈ [0, 1), and we can define the Mk majorities
as the neutral SWF’s given by

M[θn](D) = 1 ⇔ n+(D) > n−(D) + θn.

In the same spirit, it is possible to define neutral SWF’s where we use a
percentage of the number of non-indifferent individuals instead of the total
number of individuals. In this case,

F (D) = 1 ⇔ n+(D) > n−(D) + θ(n+(D) + n−(D)),

where θ ∈ [0, 1). But this expression can be written as

F (D) = 1 ⇔ n+(D) > βn−(D),

where β = 1+θ
1−θ ≥ 1. Therefore, these neutral SWF’s are in fact relative special

majorities; or reciprocally, the relative special majorities admit the previous
interpretation.
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