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INTRODUCTION 

The cardiovascular system, composed of the heart and blood vessels, is responsible 

for the transport and distribution of nutrients, oxygen and other essential 

substances to the entire body. It is also responsible for removing the associated 

metabolic products. Blood flows through arteries, capillaries and veins, allowing a 

rapid exchange between tissues and vessels. Therefore, a fine control of both heart 

and blood vessels is crucial to maintain the entire body homeostasis. When this 

homeostasis is spontaneously disrupted due to heart or vascular disorders, 

compensatory mechanisms activate to physiologically restore homeostasis. 

However, when the problem persists or when the organism is not capable to adapt, 

pathological changes occur leading to cardiovascular diseases, such as chronic 

cardiac failure, heart attack, stroke and hypertension, among others. Blood vessels 

play a significant role in keeping the homeostatic equilibrium, due to their 

involvement in the control of blood flow and arterial pressure. 

 

1. The Vascular wall 

The vascular wall of arteries and veins is a heterogeneous, three-layered structure 

comprising the tunica intima, the tunica media and the tunica adventitia (Figure I1), 

surrounded by perivascular adipose tissue (PVAT). Each layer presents specific 

histological, biochemical and functional properties, providing different mechanisms 

and signaling pathways that contribute to the maintenance of vascular homeostasis 

and to the regulation of vascular responses in cardiovascular pathologies. 

Moreover, there are changes in the relative amount of each layer related to arterial 

size, which also determines the vessel function. Large, conduit arteries are an 

elastic pressure reservoir, showing a strong adventitia with abundant elastic fibers. 

On the contrary, resistance vessels (small arteries and arterioles of 100-500 μm and 

10-100 μm of diameter in humans, respectively) have a diminished adventitia and a 

very well developed tunica media.  The strong muscular wall of resistance vessels is 

particularly important due to their capability to alter blood flow in response to 

metabolic needs. 

Tunica adventitia 

The tunica adventitia is the complex and heterogeneous outer layer of vascular 

walls consisting of an extracellular matrix scaffold which contains fibroblasts, 

lymphatic and blood vessels (“vasa vasorum”), nerves, progenitor cells and immune 

cells. The adventitia layer regulates many vascular responses in an outside-in way 

by sensing different cues and directing responses to adventitial cells as well as to 

media and intima cells (Stenmark et al., 2013). Of special interest is the presence of 

sympathetic neuronal nerve endings containing varicosities, where Noradrenaline 
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(NA) and other neurotransmitters are released to regulate local contractility and 

blood flow (Herring and Paterson, 2018). 

Tunica media 

In peripheral vessels, the tunica media is located under the adventitia, separated 

from it by the fenestrated outer elastic lamina (mainly composed by elastin). In 

arterioles, the tunica media consists of a single layer of smooth muscle cells, while 

in resistance arteries of larger caliber, cells are arranged in multiple layers 

organized in spiral form (McGrath et al., 2005). In addition, the tunica media is in 

close contact with endothelia through myoendothelial gap junctions, providing a 

functional interaction between both layers (Levy and Pappano, 2007). 

Tunica intima 

The tunica intima is separated from the media by a fenestrated inner elastic lamina 

and is composed by a monolayer of endothelial cells. Endothelial cells play crucial 

roles in many vascular functions, such as vascular permeability, local vascular 

control, angiogenesis and homeostasis regulation. Therefore, endothelial 

dysfunction induces several pathological disorders including hypertension, 

atherosclerosis, stroke and inflammatory syndromes (Herring and Paterson, 2018). 

 

 

Figure I1. Structure of arterial vascular wall showing tunica adventitia, 
tunica media and tunica intima with their associated principal cells 
(adapted from Martinez-Lemus, 2012). 
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2. Biology of Vascular Smooth Muscle Cells (VSMCs) 

The vascular wall is an adapting structure that can respond to mechanical, 

hemodynamic, and neurohumoral challenges. In this way, there is an active control 

of tissue blood flow that relies largely on the role of the vascular smooth muscle 

cells (VSMCs). Owing to their contractile properties, VSMCs are responsible for 

determining the diameter of resistance vessels, controlling blood flow and 

contributing to the regulation of blood pressure and vascular tone.  

2.1 Structure of VSMCs 

To carry out their function, VSMCs present several specific structures with different 

physiological roles: the contractile unit, the sarcoplasmic reticulum, cell junctions 

and caveolae (Figure I2). 

Contractile unit 

The cytosol of VSMCs contains thin actin filaments whose endings are interweaved 

with thick myosin filaments. Unlike the well aligned sarcomeric structure of cardiac 

or skeletal myocytes, actin filaments in VSMCs are disposed in a lengthwise way 

and are anchored to both plasma membrane and cytoplasm through dense bands 

and dense bodies, respectively. These dense bands and bodies, in turn, are linked 

by intermediate filaments composed of desmin and vimentin proteins. In addition, 

dense bands are attached to the extracellular matrix by integrins. Altogether, this 

cytoskeleton structure allows VSMCs to distribute the contraction force through 

the entire vascular wall (Aaronson, Ward and Wiener, 2004; Gunst and Zhang, 

2008). Furthermore, the contractile unit allows VSMCs to maintain a partial 

contracted state, giving rise to the physiological basal tone that determines vessel 

resting diameter. Modulation of such tone upon stimulation leads to vasodilator or 

vasoconstrictor responses. 

Sarcoplasmic reticulum (SR) 

In VSMCs, SR occupies ~2-6% of cell volume and contains high concentrations of 

Ca2+ (~50 mM). Elements of SR are in close proximity to areas of cell membrane, 

where several types of ion channels and proteins involved in excitation-contraction 

coupling have been found (Aaronson, Ward and Wiener, 2004). 
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Cell junctions and caveolae 

Plasma membrane of VSMCs presents numerous tiny invaginations or caveolae 

involved in cell signaling. Moreover, gap junctions connecting adjacent VSMCs 

allow the transmission of depolarizations between cells, so that VSMCs form a 

functional syncytium. In addition, myoendothelial junctions allow the transmission 

of regulatory signals from endothelial to VSMCs and vice versa, providing complex 

integrated signaling mechanisms to the control of contractility and vascular tone 

(Herring and Paterson, 2018). 

 
Figure I2. Structure of a vascular smooth muscle cell. 

 

2.2. Vascular smooth muscle function and regulation 

The vascular system plays very important roles in the regulation of the nutrients 

and oxygen distribution through the entire body. Propelled by the cardiac force, 

blood flows through arteries, arterioles and capillaries to get to the most distant 

cells and tissues. Total blood flow (L·min-1) in the cardiovascular system, which is 

known as cardiac output (CO), represents the blood flow pumped out by the heart. 

CO depends on the gradient of pressure generated by the heart and on the 

resistance that the whole vascular system offers to flow. This relationship is known 

as Darcy´s Law (Herring and Paterson, 2018): 

𝐶𝑂 =
(�̅�𝑎 − 𝐶𝑉𝑃)

𝑇𝑃𝑅
 

Where �̅�𝑎  is the mean arterial pressure (mmHg), 𝐶𝑉𝑃  is the central venous 

pressure and 𝑇𝑃𝑅 is the total peripheral resistance. Since 𝐶𝑉𝑃 is nearly zero, this 

expression can be simplified to the following equation: 

𝐶𝑂 =
�̅�𝑎

𝑇𝑃𝑅
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Arterial pressure rises steeply and reaches its maximum with the ventricle ejection. 

This is called systolic pressure (𝑃𝑠). After that, it gradually declines to a minimum 

that matches the end of the diastole. This is called diastolic pressure (𝑃𝑑). Since 

diastole is longer than systole, mean arterial pressure (�̅�𝑎) can be defined as 

follows: 

�̅�𝑎 = 𝑃𝑑 + (𝑃𝑠 − 𝑃𝑑)/3 

𝑇𝑃𝑅 is defined as the resistance to laminar flow and following Poiseuille´s Law, 

which describes the hydraulic resistance of a tube: 

𝑅 = 8𝜂 ∙ 𝐿/𝜋𝑟4 

Where, 𝑅 is the resistance to a laminar flow of a fluid of 𝜂 viscosity through a tube 

of 𝐿  length and 𝑟  radius. Although Poiseuille´s Law was deduced from the 

behaviour of Newtonian fluids with laminar flow in rigid tubes, it properly defines 

the factors that determine 𝑅 in the circulation, so that it can also be applied with 

some restrictions to blood vessels. Combining this equation with Darcy´s Law and 

rearranging terms, 

∆𝑃𝑎 = 𝑄 ∙
8𝜂 ∙ 𝐿

𝜋𝑟4
 

From this equation it is evident that small changes in radius result in big effects on 

mean arterial pressure, constituting an extremely powerful mechanism by which 

blood vessels regulate both local blood flow and mean arterial pressure (Herring 

and Paterson, 2018). Smooth muscle cells in the tunica media are the cells 

responsible for changes in the vascular radius through their contraction-relaxation 

capabilities. Since the vascular tone defines the vessel radius, VSMCs finely control 

both �̅�𝑎 and blood flow. 

2.3. Smooth muscle control of vascular tone. 

As mentioned before, vascular tone is defined as the state of contractile tension in 

the vessel walls, which can be maintained even in the absence of sympathetic 

innervation. The molecular mechanisms underlying this contractile state are very 

dependent on the fine control on the membrane potential (Vm) of VSMCs. K+ 

channels and L-type Ca2+ channels (LTCCs, the most dominant isoforms of voltage-

operated Ca2+ channels (VOCCs) in VSMCs) are the main channels participating in 

this control. K+ channels closing leads to membrane depolarizations, causing LTCCs 

channels-dependent Ca2+ influx, increase of intracellular calcium concentrations 

([Ca2+]i) and vasoconstriction, while opening of K+ channels causes 

hyperpolarization, LTCCs closing, decrease in [Ca2+]i and vasodilation (Jackson, 

2000; Tykocki, Boerman and Jackson, 2017). 
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Figure I3. Regulation of vascular tone by K
+
 channels and VOCCs channels. In VSMCs 

(top), K
+
 channels-triggered Vm changes regulate VOCCs-mediated Ca

2+
 influx, causing 

changes in [Ca
2+

]i that lead to vasoconstriction or vasodilation (bottom) of vessels, 
thus regulating basal vascular tone (adapted from Jackson, 2000). 

 

In addition to voltage dependent K+ and Ca2+ channels, VSMCs have additional 

channels involved in the autoregulation of vascular tone. Several members of 

different K+ channels families, Ca2+-conducting channels, Cl- channels, non-selective 

cation channels and receptor-operated channels (ROCs) expressed in VSMCs have 

been found to be relevant in this regard (Figure I4). The negative membrane 

potential of VSMCs (~-50-60 mV) is defined by the intracellular and extracellular 

[K+], [Na+] and [Cl-] and their relative permeability (~10:4:2, respectively). K+ 

channels play crucial roles in the control of vascular tone by influencing membrane 

potential and so the activity of Ca2+ channels. Interestingly, the high [Cl-]i in VSMCs 

(~30-50 mM) determines an ECl (-26 mV) above the membrane potential, so that 

activation of chloride channels has a depolarizing effect  (Kitamura and Yamazaki, 

2001). In the case of ROCs, the main pathway present in VSMCs starts with the 

activation of a phospholipase-C (PLCβ) dependent of Gq/11 coupled receptors. 

Membrane PIP2 is cleaved by the phospholipase into IP3 and DAG. IP3 activates its 

specific IP3R receptor on the SR leading to Ca2+ release to the cytosol 

(pharmacomechanical coupling). DAG activates ROCs both, directly and through 

the PKC signaling pathway, leading to membrane depolarization, VOCCs opening 

and a further increase of [Ca2+]i and contraction. Ca2+ released from the SR can also 

activate Ca2+-activated channels (K+ and Cl-), finely tuning the changes in Vm 
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(electromechanical coupling) and therefore the activation of VOCCs, the final level 

of [Ca2+]i and the magnitude of contraction (Herring and Paterson, 2018). The 

structure, function and role of K+, Ca2+, Cl- and ROCs families of channels in the 

vasculature will be discussed in detail in the next sections. 

 

Figure I4. Contribution of vascular smooth muscle channels to electromechanical and pharmacological 
coupling in VSMCs. 

 

Since vascular tone is the key determinant of vessel diameter, it is fine-tuned by 

intrinsic and extrinsic mechanisms that regulate vessels resistance by inducing the 

appropriate vasoconstriction or vasodilation. The intrinsic mechanisms are those 

driven by the vascular wall itself and include smooth muscle- and endothelium-

derived self-adjusting mechanisms, while extrinsic mechanisms are driven by 

extravascular mechanisms such as perivascular vasomotor nerves and endocrine 

factors. 

Intrinsic control of vascular tone 

Among the intrinsic mechanisms that regulate vascular basal tone, temperature, 

myogenic response (defined as the vasoconstriction in response of an increase in 

the arterial pressure), endothelial-derived molecules (NO, PGI2, endothelium-

derived hyperpolarizing factor -EDHF-, and endothelin) and vasoactive autacoids 

constitute the main ones. NO is synthesized from L-arginine by endothelial nitric 

oxide synthase (eNOS) and diffuses into smooth muscle where it activates guanylyl 

cyclase (GC) which in turn catalyzes cyclic guanosine monophosphate (cGMP) 

production from guanosine triphosphate (GTP). cGMP then activates protein kinase 
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G (PKG) which reduces [Ca2+]i causing vasodilation. PGI2, produced from arachidonic 

acid, and EDHF act as potent vasodilators on smooth muscle, while endothelin 

causes vasoconstriction (Herring and Paterson, 2018). 

Extrinsic control of vascular tone 

Extrinsic control of vascular tone is mainly due to the activity of vasomotor nerves 

and circulating hormones. 

The sympathetic vasoconstrictor nerves contain many varicosities that release NA, 

adenosine triphosphate (ATP) and neuropeptide Y. NA and ATP acting mainly 

through α-adrenergic Gq-protein coupled receptors (GPCRs) and purinergic 

ionotropic receptors, respectively, promote vasoconstrictor responses (Herring and 

Paterson, 2018, see below). Likewise, a fall in the sympathetic activity causes 

vasodilation. In addition, in a limited number of tissues, the resistance arteries are 

innervated by vasodilator fibers together with the ubiquitous sympathetic 

vasoconstrictor fibers. These vasodilator fibers can be sympathetic, 

parasympathetic or sensory fibers (Herring and Paterson, 2018). In this regard, it is 

well established that cutaneous substance P-containing sensory fibers are 

associated with blood vessels and are, at least in part, responsible for mediating 

antidromic phenomena such as vasodilation and plasma extravasation. Stimulation 

of nociceptive C-fibers causes vasodilation due to the release of substance P and 

calcitonin gene-related peptide (CGRP), leading to the flare responses to a damage. 

The stimulation of these fibers leads also to mast cells stimulation and histamine 

release, which potentiates the flare response by increasing microvascular 

permeability. This spreading flare, together with the local redness and swelling is 

an important component of the Lewis triple response (the reaction of skin to a mild 

trauma). 

Regarding circulating hormones, the main ones involved in the control of vascular 

tone are: Adrenaline, Vasopressin, Angiotensin II (Ang II) and atrial natriuretic 

peptide (ANP). Adrenaline induces vasoconstriction through activation of vascular 

smooth muscle α-adrenergic receptors (or vasodilation in the skeletal muscle 

through activation of β-adrenergic receptors); vasopressin, also called antidiuretic 

hormone, is a potent vasoconstrictor; angiotensin II, produced by the renin-

angiotensin-aldosterone system (RAAS), acts directly as a vasoconstrictor agent on 

vascular smooth muscle and indirectly by enhancing sympathetic activity. It also 

has an extensive cross-talk with endothelial factors, which is crucial for the 

angiotensin converting enzyme (ACE) signaling pathway. Finally, ANP acts as a 

potent vasodilator (Herring and Paterson, 2018). 
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Therefore, a complex system of different intercommunicated signaling mechanisms 

is constantly activated to regulate the contractility of VSMCs. The failure of this 

integrated system leads to specific cardiovascular disorders (v.g. heart attack, 

stroke, hypertension) or contributes to aggravate systemic syndromes such as 

obesity or diabetes. The relationships between these diseases and vasculature are 

complex and multifaceted, including changes in the vessels that directly contribute 

to the progression of the disease, changes  that result from disease progression, 

and even changes that represent compensatory mechanisms (Tykocki, Boerman 

and Jackson, 2017). 

 

3. Hypertension 

Hypertension is a multifactorial cardiovascular disorder characterized by a chronic, 

usually progressive, raise in the arterial mean pressure that if it is not properly 

treated leads to multi-organ lesions in heart, brain and kidneys. Since individual 

pressure measurements vary individually, repeated values of Ps and Pd exceeding 

140/90 mmHg, respectively, are used to diagnose chronic hypertension (Table I1). 

Classification 
Ps 

(mmHg) 
 

Pd 

(mmHg) 

Normotension <120 and <80 

Elevated 120-129 and <80 

Grade 1 hypertension 130-139 or 80-89 

Grade 2 hypertension ≥140 or ≥90 

Table I1. Classification of adult blood pressure (adapted from 
Whelton et al., 2018). 

Hypertension can be divided into essential or primary hypertension, involving 90% 

of cases, and secondary hypertension, involving the remaining 10%. Essential 

hypertension is a symptomless, multifactorial genetic disorder, in which inheritance 

of abnormal genes predisposes an individual to high blood pressure, especially if 

environmental influences are present, such as salt and alcohol intake, sedentary 

lifestyle and obesity (Aaronson, Ward and Wiener, 2004). In contrast, secondary 

hypertension has an identifiable pathologic cause, including hyperaldosteronism 

and renovascular diseases, which impair volume regulation and activation of renin-

angiotensin-aldosterone system; pheochromocytoma, which raises pressure 

through α-adrenoceptor activation; and pre-eclamptic toxemia, which develops 

during pregnancy (Herring and Paterson, 2018). 
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3.1. Etiology of hypertension 

Arterial pressure rises because of an imbalance between cardiac output (CO) and 

total peripheral resistances (TPR). In the early stages, hypertension could be 

associated with a CO increase with normal or slightly raised TPR, but over time CO 

reverts to normal values while TPR becomes permanently increased. The 

molecular, functional and structural changes that lead to this chronic elevation of 

TPR are not fully understood. Several hypothesis including neurogenic induced 

hypertension through augmented sympathetic innervation, and also renin-

angiotensin-aldosterone induced hypertension have been suggested (Herring and 

Paterson, 2018). Due to the crucial roles that vascular ion channels play in the 

control of vascular tone and contractility through their contribution to set resting 

Vm, the altered expression and function of these VSM channels may contribute to 

vascular dysfunction and to the pathogenesis of hypertension. However, it is not 

clear whether these changes occur as part of the disease progression or as 

compensatory mechanisms to maintain homeostasis. Although there is a huge 

knowledge about the contribution of VSM channels to the pathophysiology of 

hypertension, our understanding of their specific roles in vascular dysfunction 

remains unclear. Some of the difficulties arise from the lack of specific 

pharmacological blockers against some channels, the huge macromolecular 

complexes where these channels interact with a wide range of additional proteins, 

and the broad heterogeneity between vascular tissues and species. Understanding 

the specific role of a given ion channel to the pathogenesis of hypertension 

requires the selection of a suitable animal model and the use of multiple 

approaches. 

3.2. Animal models used to study essential hypertension 

Due to the complexity of essential hypertension disease, different animal models 

have been developed to study the molecular mechanisms involved in the 

hypertension etiology and treatment. These models can be grouped into genetic 

and non-genetic (Table I2). 

Genetic models are in turn divided in genotype-driven models, created by gene 

overexpression (transgenic) or deletion (knockout) to focus in a gene involved in 

hypertension, and phenotype-driven models, which involve selective breeding of 

hypertensive strains and their maintenance over generations. The latter models 

include the spontaneously hypertensive rat (SHR) model, the salt-sensitive Dahl rat 

model and the blood pressure high (BPH) mouse model (Lerman et al., 2005). 

Non-genetic models have been broadly used to study the effects of induced 

hypertension on end-organ damage in different species. These models include: 1) 
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surgically induced hypertension, such as the hypertensive models developed by 

unilateral constriction of renal artery (1K1C and 2K1C models); 2) 

pharmacologically induced hypertension, such as deocorticosterone (DOCA)-salt rat 

model, Angiotensin II- and other vasoactive peptide-infused models; and 3) 

environmental-induced hypertensive models, such as salt diet- and stress-induced 

hypertensive models (Lerman et al., 2005). 

  Animal model 
Pa increase 

(mmHg) 

Time to 
establish 

(weeks) 

Hypertension type 

G
e

n
e

ti
c 

M
o

d
e

ls
 

 

Genotype-driven 

 

Transgenic 

 

Variable 

 

Variable 

 

Essential 

Phenotype-driven 

 

 

SHR 40-60 4-6 

Essential Salt-Dahl rats >30 2 

BPH mice >30 birth 

N
o

n
-G

e
n

e
ti

c 
M

o
d

e
ls

 

Surgically-induced 2KIC >50 4 Vascular renal 
disease 

1KIC >70 4 

Pharmacologically-
induced 

 

DOCA-salt >20-35 3 Hyperaldosteronism 

Angiotensin II >40-50 4-10 days Essential 

NOS inhibitors >5-25 4-6 Essential 

Environmentally-
induced 

 

 

High salt diet-
induced 

>10 4-5 days 

Essential 
Stress-induced 10-20 4-6 months 

Cold-induced 20-40 3 

Table I2. Different experimental animal models to study hypertension (Lerman et al., 2005). 

 

BPH mice as a model of essential hypertension 

Among these possible models to study hypertension and due to the interest of our 

research group in the study of the pathophysiology of essential hypertension, we 

chose the BPN/BPH. The phenotype-driven hypertensive (BPH/2J) mouse model of 

essential hypertension and its normotensive control (BPN/3J) was early developed 

by crossbreeding of eight different mouse strains showing high and normal blood 

pressure measured by the tail-cuff method. Early studies using the high blood 

pressure (BPH) mouse strain also showed increased heart rate and early mortality 

(Schlager, 1981; Schlager and Sides, 1997), and later studies found a reduction in 

the NA content in hypothalamus, amygdala and cerebellum (Schlager, Freeman and 
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El Seoudy, 1983) and greater contents in the preoptic area and in the superior 

cervical ganglion (Denoroy et al., 1985), consistent with a neurogenic form of 

hypertension. Furthermore, evidences of an overactive sympathetic nervous 

system (SNS) in the BPH strain associated with circadian rhythms confirmed the 

involvement of neurogenic mechanisms leading to hypertension (Davern et al., 

2009, 2010). Additionally, changes in the expression pattern of genes involved in 

hypertension-related systems, such as adrenal catecholamines and sympathetic 

function, steroid hormone synthesis and sensitivity, oxidative stress and 

intermediary metabolism have been described. Some of these gene expression 

profiles shared a common direction of expression in the two different hypertensive 

SHR and BPH models, while other revealed differences between the two models, 

such as adrenal catecholamines synthesis (depressed in SHR, but enhanced in BPH), 

and the glucocorticoid dependence of SHR (Friese et al., 2005). Furthermore, 

findings of genes differentially expressed between males and females in the BPH 

strain suggested that differences in sex hormones influenced the mechanisms that 

are involved in the onset of hypertension in this mouse model (Chiu et al., 2014), 

reinforcing the multifactorial and complex nature of hypertension. These 

observations, together with the existence of a good control strain of the BPH strain 

(BPN strain), indicate that BPH is a suitable model to study essential hypertension. 

The examination in detail of the gene expression profile and its associated 

functional properties in this BPH mouse model could contribute to unravel the 

mechanisms associated with human essential hypertension. 

 

4. Ion channels in VSMCs. 

VSMCs exhibit a large variety of ion channels in their membrane that are involved 

in the autoregulation of contractility and vascular tone (Tykocki, Boerman and 

Jackson, 2017). These channels can be grouped in several families: K+-channels, 

including voltage-dependent (KV), Ca2+-activated (KCa) and inward rectifying K+ 

channels (KIR or classical inward rectifiers, and KATP or ATP-dependent); Ca2+ 

channels, including L-type (LTCCs), T-type, N-type, P/Q-type and R-type subfamilies 

of channels; receptor-operated channels (ROCs) and stretch-activated channels 

(SOCs), including transient receptor potential channels (TRPs); and Cl--channels. 

4.1. K+-channels 

In resting VSMCs, [K+]i is higher than [K+]o due to the electrogenic activity of the 

Na+-K+ pump (~150 mM vs. 5 mM). Driven by this electrochemical gradient, 

outward K+ flux contribute to set the negative Vm of VSMCs due to the relative 
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large permeability to K+ in resting conditions, thus influencing vascular tone by 

controlling Vm. Up to four families of K+ channels have been found in VSMCs. 

4.1.1. Voltage-dependent K+ channels (KV) 

KV channel family comprises up to twelve members (KV1-12) arranged in the plasma 

membrane as tetramers of four pore forming α-subunits. Each subunit has six 

transmembrane α-helices (S1-S6), with S4 containing the voltage sensor and the P-

loop between S5 and S6 forming the channel pore (Figure I5). The N- and C-termini 

reside in the cytosol and are related with fast and slow channel inactivation, 

respectively. Differences in the functions of KV channels depend not only on the 

structural differences of each family member, but also on their ability to form 

heteromultimers or to associate with accessory and regulatory subunits (Gutman et 

al., 2005). These channels are activated in response to membrane depolarizations 

leading to the K+ efflux responsible of the consequent return to resting Vm. 

Therefore, KV channels can contribute to control the resting Vm and vascular tone. 

In addition, several vasodilators can activate KV channels through cAMP-PKA, 

cGMP-PKG and other endothelium-dependent signaling pathways. They are also 

responsible of the effect of several vasoconstrictors that close KV channels through 

protein Gq/11-mediated PKC activation and [Ca2+]i increase. 

The role of KV channels expression and function in the development of 

hypertension remains unclear. Electrophysiological and expression studies have 

reported increased, decreased and no changes in expression and KV channels 

mediated currents, however, the bulk of literature points to a reduced expression 

and function of these channels in hypertension, depending on the animal model, 

vascular bed and type of hypertension (Cox, Folander and Swanson, 2001; Berg, 

2003; Cox et al., 2008; Moreno-Domínguez et al., 2009; Jepps et al., 2011). 

 

Figure I5. Structure of the α-subunit of voltage-dependent K
+
 

channels (KV) showing the membrane domains S1-S6 with the 
voltage sensor in S4 and the pore forming P-loop between S5 and 
S6 (adapted from Jackson, 2017). 
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4.1.2. Inward rectifying K+ channels (KIR) 

Inward rectifying K+ channels (KIR) derive their name from the characteristic 

rectification that appears in the current-voltage (I/V) relationship of the currents 

they carry out (Figure I6). Inward currents (obtained at Vm more negative than the 

EK) are much larger than outward currents (obtained at Vm more positive than EK). 

This family of K+ channels comprises the large conductance inward rectifiers (KIR) 

and the ATP dependent channels (KATP) (Hibino et al., 2010). 

4.1.2.1. Large conductance KIR channels 

Large conductance KIR channels are tetramers constituted by four α-subunits, all of 

which are formed by two transmembrane α-helices (M1 and M2) linked by a P-loop 

which constitutes the ion-conducting pore. The N- and C-termini domains are 

localized in the cytosol. The C domain is involved, along with the M2 helix, in the 

blockade of outward K+ flux by intracellular Mg2+ and polyamines at Vm more 

depolarized than EK. Among the seven subfamilies of KIR channels, only KIR2.1 

(KCNJ2) and KIR 2.2 (KCNJ12) have been found to be highly expressed in VSMCs 

(Bradley et al., 1999; Zaritsky et al., 2000; Smith et al., 2008). 

It is known that several vasoconstrictors acting on the Gq/11-coupled PLCβ-DAG-PKC 

signaling cascade can block KIR channels, enhancing vasoconstrictors-induced 

depolarization and contraction of VSMCs. On the other hand, KIR channels located 

at the endothelium could also amplify small hyperpolarizations caused by other 

channels or by small increases in extracellular K+  concentration, , contributing to 

the vasodilator response of some stimuli (William F. Jackson, 2017). Although KIR 

channels are named for the inward rectification of current, it is the small outward 

“hump” in the current-voltage relationship (i.e., the region of negative slope 

conductance, figure I6) that is present between the EK and the resting Vm (~−40 to 

−30 mV) of endothelial cells that is important for their physiological function. This 

negative slope conductance allows outward KIR current to be activated by 

membrane hyperpolarization, permitting KIR channels to amplify hyperpolarization 

induced by other K+ channels and ion transporters. Also, increases in extracellular 

K+ concentration activate KIR channels, which transduce this change into membrane 

hyperpolarization. As endothelial cells have high membrane resistance at resting 

membrane potential, activation of only a few KIR channels can effectively modulate 

their membrane potential. 

In general, reduced expression and function of KIR channels have been reported in 

hypertension, although in some cases this KIR channels dysregulation has been 

accompanied by compensatory mechanisms to maintain homeostasis (Tajada et al., 

2012). 
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Figure I6. Structure of inward rectifying K
+
 channels (KIR) showing the α-subunit composed by the 

two membrane domains M1 and M2 linked by P-loop (left) and the top view of four α-subunits 
with K

+
 ion in the middle of the tetramer (bottom). The associated KIR channels behavior depending 

on the Vm is also depicted (right) (adapted from Jackson, 2017). 

 

4.1.2.2. ATP-dependent K+ channels (KATP) 

ATP-dependent K+ channels (KATP) are named for their sensitivity to ATP, linking 

membrane excitability and metabolism. A decrease in the [ATP]i induces the 

opening of KATP channels and the consequent hyperpolarization. However, their 

functional activity can be modulated by additional signaling pathways in an ATP 

independent manner. The structure of KATP channels consists of a hetero-octamer 

composed of a tetramer of pore-forming KIR6.1 subunits associated with a tetramer 

of sulphonylurea receptors (SURs) 2B. SUR2B monomers are formed by seventeen 

transmembrane α-helices clustered in three groups (TMD0, TMD1 and TMD2) with 

two intracellular nucleotide-binding fold domains (NBF1 and NBF2) and N- and C-

termini outside and inside the cell, respectively (Figure I7) (Babenko, Aguilar-Bryan 

and Bryan, 1998; Hibino et al., 2010).The KIR6.1 subunits have two transmembrane 

spans and form the channel’s pore. The SUR subunits allow nucleotide (ATP and 

ADP)-mediated regulation of the channel through their NBFs, and are critical in the 

role of the channel as a sensor of metabolic status. These SUR subunits are also 

sensitive to sulfonylureas, MgATP, and some other pharmacological channel 

openers (Foster and Coetzee, 2016). Besides intracellular ATP, KATP channel activity 

can be inhibited by vasoconstrictors through several mechanisms: 1) PKC-triggered 

alteration of channel gating and channel internalization; 2) calcineurin (PP2B)-

induced dephosphorylation and 3) Gi-triggered adenylate cyclase (AC) inhibition. 

Moreover, KATP channels can also contribute to the action of vasodilators through 

the cAMP-PKA and cGMP/PKG signaling pathways (Tykocki, Boerman and Jackson, 

2017). Several evidences suggest a contribution of the reduced expression and 
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function of KATP channels to the genesis of hypertension (Tajada et al., 2012), 

although another set of studies showed no changes in KATP channels function in 

some hypertensive animal models (Tykocki, Boerman and Jackson, 2017). 

 

Figure I7. Structure of ATP-dependent K
+
 channels (KATP). Four KIR6.1 subunits associated to four 

SUR2B subunits comprise the functional hetero-octamer of a KATP channel (adapted from Babenko, 
Aguilar-Bryan and Bryan, 1998; Jackson, 2017). 

 

4.1.3. Ca2+-activated K+ channels (KCa) 

KCa are K+ channels activated by increases in [Ca2+]i. KCa channels comprises two 

subfamilies according to single channel conductance, voltage sensitivity and 

pharmacological properties: 1) The large-conductance Ca2+- and voltage-activated 

channels (BKCa), which are the most abundant K+ channels expressed in VSMCs, and 

2) the small-conductance Ca2+-activated channels (SKCa), also found in several 

vascular beds and mainly expressed in the endothelium . An additional subfamily of 

intermediate-conductance Ca2+-activated channels (IKCa) has been reported, but 

they are only expressed in proliferating VSMCs (Tykocki, Boerman and Jackson, 

2017). The structure of the pore-forming α-subunit of BKCa channels consists of 

seven transmembrane α-helices (S0-S6) with the P-loop between S5 and S6 forming 

the ion-conducting pore and several charged residues in S2, S3 and S4 determining 

the voltage sensor. N-terminus faces the outside of cell, while C-terminus is 

localized in the cytosol and shows two, tandem regulator of conductance K+ 

domains (RCK1 and RCK2) which constitute the Ca2+ sensor. Moreover, additional 

regulatory subunits, such as β1- and γ-subunits, have been reported to associate 

with BKCa channels (Figure I8). β1-subunits enhance the Ca2+ sensitivity and 

trafficking of α-subunit and the channel activation, while γ-subunits, which are 

leucine-rich-repeat containing proteins (LRRCs), increase the voltage and channel 

activators sensitivities (Tykocki, Boerman and Jackson, 2017). KCa channels play a 
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central role in the control of membrane potential and vascular tone and 

contractility as a coupled unit with VOCCs and Ryanodine receptor (RyR) channels 

in many VSMCs. Considering the close proximity between plasma and SR 

membranes, Ca2+ influx through VOCCs channels locally activates RyR channels 

leading to unitary Ca2+ release events (Ca2+ sparks) from SR. These Ca2+ sparks have 

been shown to regulate KCa channel open probability leading to K+ efflux in the 

form of spontaneous transient outward currents (STOC), causing membrane 

hyperpolarization, VOCCs channels closing and global [Ca2+]i decrease. Therefore, 

this Ca2+ spark-STOC pathway seems to be an important negative feedback system 

in the regulation of membrane potential, vascular tone and contractility (Nelson et 

al., 1995; Jaggar et al., 1998). Likewise, despite several controversial studies, 

evidences showed a BKCa contribution not only to the resting Vm both in health and 

disease, but also to agonists-induced vasoconstriction by preventing vasospasm in 

a negative feedback way (Jackson, 2000). In hypertensive animal models, both 

increase and decrease in the expression and functions of BKCa channels have been 

reported to be dependent on animal strains, vascular beds and methodological 

differences (Tajada et al., 2013; Tykocki, Boerman and Jackson, 2017). 

 

Figure I8. Structure of large-conductance K
+
 channels (BKCa). α-subunit showing its seven 

membrane domains (S0-S6) with the voltage sensor in S2, S3 and S4, and its Ca
2+

 sensor in C-
terminus along with the regulator conductance K

+
 domains (RCK1 and RCK2). Additional 

regulatory β1- and γ-subunits are also depicted (adapted from Jackson, 2017). 

 

4.1.4. K+ channels remodeling in BPH mice 

Using BPN and BPH mice, our group has previously determined the functional 

expression of K+ channels and their contribution to VSMC excitability. Our results 

showed that in mesenteric VSMCs of BPH mice there is a remodeling of Kv2 

currents, leading to a decreased Kv mediated current amplitude which contributes 

to the hypertensive phenotype (Moreno-Domínguez et al., 2009). However, while 
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VSMCs from BPH mice were significantly more depolarized than BPN VSMCs, there 

were no changes in the contribution of Kv currents to resting Vm, suggestng that 

the remodeling of Kv2 currents was an adaptative mechanism to prevent larger 

vasoconstrictor responses. In adition, we found that VSMCs from BPH mesenteric 

arteries exhibited a significant decrease in the mRNA expression of KIR2.1, KIR4.1, 

KIR6.x and SUR2, and a decrease in the current amplitudes mediated by both KIR and 

KATP channels. The decreased expresion of both channels did contribute to the 

more depolarized resting Vm of BPH cells, but only the response to KATP channel 

blockers and activators was impaired when arterial tone was tested. Altogether, 

our data indicate that changes in KATP channels in resistance arteries could be an 

important determinant of the hypertensive phenotype in the BPH model (Tajada et 

al., 2012). 

4.2. Voltage-operated Ca2+ channels (VOCCs) 

Voltage-operated Ca2+ channels (VOCCs) are broadly distributed in many tissues 

and cells. They transduce membrane depolarization into an increase in [Ca2+]i by 

activating a Ca2+ influx down its large electrochemical gradient. By increasing [Ca2+]i, 

VOCCs play important roles in the regulation of contractility, vascular tone and 

gene expression in VSMCs (Jackson, 2000; Ghosh et al., 2017). 

4.2.1. Classification of VOCCs 

VOCCs were first divided in six different families according to their pharmacology 

and the electrophysiological characteristics of their currents. L-type Ca2+ currents 

present relative high voltage of activation (from -40 to -30 mV), high single channel 

conductance, slow voltage-dependent inactivation and are blocked mainly by 

dihydropyridines. T-type Ca2+ currents present more negative voltage of activation 

(from -70 to -60 mV), rapid voltage-inactivation, small single channel conductance 

and are relatively insensitive to organic Ca2+ blockers. The additional N-, P-, Q- and 

R-type Ca2+ currents, less common in VSMCs, present intermediate currents 

between L- and T-type and are sensitive to the blockade with several toxins, except 

R-type currents. These different types of currents have been grouped, in turn, into 

three subfamilies according to the genes encoding the α1-subunit responsible of 

carrying the currents: 1) the CaV1 subfamily comprising four members (CaV1.1-1.4) 

and carrying the high-voltage-activated, long lasting L-type Ca2+ currents; 2) the 

CaV2 subfamily, including channels carrying P/Q-(CaV2.1), N-(CaV2.2) and R-type 

(CaV2.3) currents; and 3) the CaV3 subfamily including members (CaV3.1-3.3) 

carrying low-voltage-activated, transient T-type Ca2+ currents (Tykocki, Boerman 

and Jackson, 2017). 
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4.2.2. Structure of VOCCs 

The general structure of VOCCs consists of a complex of α1, α2, β, γ and δ subunits 

in such a way that the principal α1-subunit (190 kDa) associates with a disulfide-

linked α2δ dimer (170 kDa), an intracellular phosphorylated β-subunit (55 kDa) and 

a transmembrane γ-subunit (33 kDa) (Figure I9) (Catterall, 2011). 

The α1-subunit is organized in four repeated motifs (I-IV), each of which containing 

six transmembrane α-helices (S1-S6) with a loop between S5 and S6 forming the 

pore. The S4 helix of each motif serves as the voltage sensor and their 

conformational changes lead to channel opening. The intracellular β-subunit has no 

transmembrane segments and binds to the intracellular loop between I and II 

motifs of α1-subunit, while γ-subunit is a glycoprotein with four transmembrane 

domains and N- and C-termini in the cytosol. The extracellular α2-subunit is 

attached to the membrane through disulfide linkage to δ-subunit, which is 

anchored to the membrane through glycophosphatidylinositol. Although α1-

subunit is sufficient to render channel functionality, α2δ and specially β-subunits 

enhance the channel expression and confer more physiological gating properties 

(Catterall, 2011). 

 

Figure I9. Structure of L-type Ca
2+

 channels (LTCCs) showing the pore forming α1-subunit, the 
intracellular regulatory β-subunit, the extracellular disulfide-linked α2δ dimer and the 
transmembrane γ-subunit (adapted from Catterall, 2011).  

 

4.2.3. Function of L-type and T-type Ca2+ channels in VSMCs 

As previously mentioned, L-type Ca2+ channels constitute the dominant VOCC 

channel expressed in VSMCs cells, although evidences of functional T-type Ca2+ 

channels have been also reported. The principal role of these channels is their 

contribution to the regulation of vascular tone by Vm: depolarizations open L-type 

Ca2+ channels leading to Ca2+ influx, increase in [Ca2+]i and vasoconstriction, 

whereas hyperpolarization closes these channels, decreases [Ca2+]i and causes 
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vasodilation. In addition, L-type Ca2+ channels play important roles in the control of 

myogenic tone and vasomotion (Tykocki, Boerman and Jackson, 2017, see for 

refrences). Moreover, these channels are regulated not only by changes in Vm but 

also by additional signaling mechanism, including vasoconstrictor- and vasodilator-

dependent signaling pathways. Several evidences showed a directly Gq/11-induced 

activation of L-type Ca2+ channels independently of changes in Vm and likely 

through PKC-induced increase of their open-state probability, thus enhancing the 

agonists-induced vasoconstriction (Del Valle-Rodríguez, López-Barneo and Ureña, 

2003; Ureña, del Valle-Rodríguez and López-Barneo, 2007). On the other hand, 

both activation and blockade of L-type Ca2+ channels have been reported in the 

presence of vasodilators. While, cGMP-PKG signaling pathways appears to block L-

type Ca2+ channels contributing to vasodilation, vasodilator-induced cAMP-PKA-

dependent mechanisms lead to both activation and inhibition of L-type Ca2+ 

channels (Xiong and Sperelakis, 1995). 

4.2.4. Remodeling of L-type Ca2+ Channels in BPH mice 

Strong evidences support an increased expression and function of CaV1.2 channels 

in hypertension that contributes to the increased myogenic tone and contractility 

and to the decreased vasodilator activity, all of which contributing to the increased 

peripheral vascular resistances. The molecular mechanisms by which hypertensive 

patients show increased functional expression of LTTCs channels remains unclear, 

but may be related to an increased trafficking of α-subunit to cell membrane 

through an increased expression of the modulatory α2δ and β subunits and also 

through the activation of PiP3K-γ mediated by G12/13-coupled receptors (Bannister 

et al., 2012; Kharade et al., 2013; Tykocki, Boerman and Jackson, 2017). Using the 

BPH mouse model, we found a decrease in the global smooth muscle Ca2+ influx 

due to fewer CaV1.2 channels. However, these CaV1.2 channels were hyperactive in 

BPH cells, leading to a larger local Ca2+ influx at rest that triggered an increased Ca2+ 

release from intracellular stores (sparks). Moreover, since BKCa channels from BPH 

myocytes showed reduced Ca2+ sensitivity, their activation by the increased [Ca2+]i 

was impaired. The decreased CaV1.2 currents but higher CaV1.2 triggered sparks 

found in BPH VSMCs have been related to differences in the subunit composition of 

these channels (Tajada et al., 2013). Our results suggest that changes in the 

molecular composition of both CaV1.2 and BKCa channels could explain vascular 

dysfunction during hypertension in BPH mice. 
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4.3. Other channels: Receptor-operated (ROCs) and stretch-operated (SOCs) 

channels and Cl--conducting channels 

In addition to the important roles that both, K+-conducting channels and voltage-

dependent Ca2+ channels play to the contribution of membrane potential, vascular 

tone and contractility, many other families of ion channels have been found to be 

functionally expressed in VSMCs. In this context, non-selective cation channels and 

Cl--conducting channels have been the principal families of ion channels widely 

studied both, in health and disease. 

Non-selective cation channels comprise several families of agonists-activated and 

stretch-activated channels which are permeable only to cations (K+, Na+ and Ca2+). 

Both, the agonist or the stretching stimulus can activate the channel either directly 

or indirectly. In the direct activation, the channel is the receptor itself, such as the 

P2X ATP receptors. In contrast, the indirect activation involves a second messenger 

chain triggered by an agonist-activated receptor. In this context, several GPCR 

receptors and the transient receptor potential (TRP) channels, which behave as 

ROCs, are widely expressed in VSMCs and have been found to be involved in the 

physiopathology of the vascular system. Receptor activation increases [Ca2+]i (see 

above, section 2.3), and the consequent activation of Ca2+ sensitive channels 

modulate membrane potential, the activity of VOCCs and the final contractile 

responses. As described above, KCa channels behave as brakes, hyperpolarizing Vm 

and limiting VOCCs activation. However, Ca2+ sensitive Cl- channels have the 

opposite effect, producing a membrane depolarization or amplifying in some cases 

the depolarization induced by ROCs activation, potentiating the activation of VOCCs 

and generating in some cases action potentials (v.g. in the portal vein). This role of 

Cl--conducting channels in the VSMCs arises from the fact that these cells present a 

high [Cl-]i and then, a more depolarized ECl (above membrane potential) compared 

to other cell types. Thus, activation of Cl--conducting channels results in Cl- efflux 

and VSMCs depolarization. 

Since this Thesis focuses on TRP channels, Ca2+ activated Cl- channels and Purinergic 

signaling in BPN/BPH mice, a more detailed description of the structure, function 

and action mechanisms of these receptors and channels will be discussed in the 

following sections. 
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5. Receptor-dependent contraction signaling pathways 

It has been broadly described that the transmitters released from perivascular 

nerves and also several factors released from endothelial cells dually contribute to 

vascular tone control. Most of these molecules modulate vascular tone through the 

activation of both metabotropic and ionotropic receptors (see above, section 2.3). 

Although several differences in the regulatory mechanisms have been found in 

different vascular beds and in different species, the purinergic signaling has an 

important dual role in the control of vascular tone and remodeling. Purine and 

pyrimidine nucleotides lead to complex integrated responses due to the activation 

of the nineteen different types of purinergic receptors characterized so far, which 

are divided in two main families: adenosine P1 and P2 receptors (Burnstock, 1978, 

1980). 

5.1 Adenosine P1 receptors 

Adenosine P1 family comprises A1, A2A, A2B and A3 receptors and are coupled to Gi/o 

(A1 and A3) and to Gαs (A2A and A2B) proteins, leading to a reduced and increased 

cAMP production, respectively. However, evidences showed A1, A2B and A3 

receptors couple also to Gq/11 leading to PLCβ signaling cascade activation. A1 and 

A3 receptors display a ~49% of sequence identity, while A2A and A2B receptors are 

~45% identical. Adenosine receptors present a typical GPCR structure, consisting in 

an extracellular N-terminus, seven α-helical membrane spanning domains and an 

intracellular C-terminus. Consensus sites for N-glycosilation and cysteine containing 

sites are localized in the extracellular loops. An additional cysteine residue localized 

in the C-terminus of A1, A2B and A3, but not A2A, has been found to be post-

transcriptionally modified. Additionally, the intracellular third loop plays an 

important role in the AC activity and in the receptor internalization (Olah and Stiles, 

2000). Besides the differences on species and vascular beds, all adenosine P1 

receptors have been found in perivascular nerves, smooth muscle and endothelial 

cells with A2A and A2B receptors being the most commonly expressed. P1 receptors 

contribute mostly to vasodilation responses via inhibitory, pre-junctional 

modulation and also enhancing cAMP-mediated NO production (Burnstock and 

Ralevic, 2013). 

5.2 Purine and pyrimidine P2 receptors 

Since the first description of the purinergic signaling by Drury and Szent-Györgyi in 

1929 and the first definition of purinergic receptors by Burnstock in 1976, several 

studies have focused on a possible receptor subdivision based on pharmacological 
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approaches. Purinergic receptor were divided into P1 and P2 families by Burnstock 

in 1978 and some time later the P2 family was subdivided into ionotropic P2X 

receptors and G-protein-coupled P2Y receptors (Burnstock and Kennedy, 1985). 

5.2.1 P2X receptors 

P2X receptors comprise P2X1-7 isoforms, all of which having intracellular N- and C-

termini linked by two transmembrane domains (TM1, involved in channel gating; 

and TM2, lining the ion pore) and a extracellular loop (Brake, Wagenbach and 

Julius, 1994; Valera et al., 1994; Burnstock, 2007). P2X receptors are ligand-gated 

channels with variable affinity for ATP and variable conductance for Na+, K+ and 

Ca2+. P2X activation causes widespread cellular responses depending on their 

cellular subtype expression and on the homo and/or heteromeric structures they 

form (P2X2/P2X3, P2X4/P2X6, P2X1/P2X5) (North and Surprenant, 2000). Among P2X 

receptors, P2X1 is the protein most expressed in smooth muscle, followed by P2X2, 

P2X4 and P2X7, while P2X3, P2X5 and P2X6 receptors are usually absent. In contrast, 

all the P2X isoforms have been found in endothelial cells with P2X4 receptors being 

the dominant protein (Ralevic and Dunn, 2015). 

5.2.2 P2Y receptors 

P2Y family comprises eight isoforms grouped according to their sequence similarity 

and to their G-protein selectivity (Table I3): P2Y1-like receptors (P2Y1, P2Y2, P2Y4, 

P2Y6 and P2Y11) present a 28-52% sequence identity and couple mainly with Gq, 

while P2Y12-like receptors (P2Y12, P2Y13 and P2Y14) share 45-50% sequence identity 

and couple mainly with Gi/o. However, most of the Gq receptors link also to other G-

proteins, such as Gi/0 and G12/13 or Gs (P2Y11) and show a complex cross-talk with 

other membrane receptors and channels (Erb and Weisman, 2012). 

The structure of P2Y receptors consists of an extracellular N-terminus, seven 

transmembrane spanning domains involved in the ligand binding, three 

intracellular loops involved in the G-protein coupling and an intracellular C-

terminus containing several protein kinases binding sites. 

P2Y receptors are broadly expressed in different tissues and cellular subtypes so 

that their cellular responses vary based on their ligand specificity, G protein 

coupling and second messenger system. P2Y1, P2Y2, P2Y4 and P2Y6 receptors are 

commonly expressed in smooth muscle cells and their coupling to Gq/11 protein 

leads to PLC-mediated [Ca2+]i increase and contraction. In endothelial cells, P2Y1, 

P2Y2 and P2Y6 are the most abundant receptors, with some vessels expressing P2Y4, 

and are related to [Ca2+]i increase and subsequently NO, EDHF and PGI2 co-

releasing, leading to vasodilation. However, vasoconstrictor effects mediated by 
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P2Y receptors expressed in the endothelial cells have been also described when the 

endothelium is damaged, leading to local vasospasm (Burnstock and Ralevic, 2013) 

Ligand-stimulated activation of P2Y receptors is rapidly desensitized and proteins 

internalized due to the GPCR kinases (GRK1-7) mediated phosphorylation of 

intracellular Ser/Thr residues, which are then targeted by β-arrestins (β-Arr1-4) 

leading to receptor endocytosis and recycling. Although all P2Y receptors are β-Arr 

desensitized and internalized, several differences have been found based on the 

receptor subtype: all P2Y receptors interact with β-Arr2, while P2Y2 and P2Y4 

receptors interact with both β-Arr1 and β-Arr2 (Hoffmann et al., 2008). 

The variabilities in the ligand specificity, in the G-protein coupling and the 

possibility to form homo- or heteromers with P2Y receptors and other proteins 

lead to a wide variety of P2Y receptor mediated cellular processes, many of them 

quite relevant in cardiovascular, inflammation and neurotransmission disorders. 

P2YRs Agonist G protein- Main effector 

P2Y1 ADP Gq- PLCβ, Rac, Rho 
activation 

P2Y2 UTP=ATP Gq- PLCβ activation 

Go- PLCβ, Rac activation 

G12- Rho activation 

P2Y4 UTP=ATP Gq- PLCβ activation 

Go- PLCβ activation 

P2Y6 UDP Gq- PLC activation 

G12/13- Rho activation 

P2Y11 ATP Gq- PLCβ activation 

Gs- AC activation 

P2Y12 ADP Gi/o- AC inhibition; PLCβ, 
RhoA activation 

P2Y13 ADP Gi/o- AC inhibition; PLCβ, 
RhoA activation 

P2Y14 UDP-Glucose Gi/o- AC inhibition; PLCβ 
activation 

Table I3. P2Y receptors subtypes, their main agonists and G-
protein coupling. 
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5.3 Role of P2X and P2Y receptors in the control of vascular tone 

Because of the differences found in the expression of purinergic receptors in VSMC 

and endothelial cells, purinergic signaling can elicit both vasoconstrictor and 

vasodilator responses. Common to most vessels is that ATP co-released with 

noradrenaline (NA) from the sympathetic perivascular nerves produces vascular 

constriction. However, ATP released from endothelium leads to NO and 

endothelium-derived hyperpolarizing factor (EDHF) production and vasodilation. In 

addition, UTP and UDP co-released from platelets and damaged endothelial cells 

lead to vasoconstriction. Obviously, the final response depends on the balance 

among all these pathways. 

ATP and NA are separately co-stored in the perivascular nerves varicosities and are 

released to the adventitia layer as co-transmitters in variable proportions. ATP is 

released earlier than NA and induces the initial phase of contraction, while NA is 

responsible of the long-lasting vasoconstrictions (Burnstock and Ralevic, 2013). 

Although there are evidences of the expression of both P2X and P2Y receptors in 

vascular smooth muscle, the availability of good pharmacological tools and the 

development of genetic KO mice have allowed to describe P2X1 receptors as the 

main mediators of the fast vasoconstrictor response to ATP released from 

sympathetic perivascular nerves (Vial and Evans, 2002; Burnstock and Ralevic, 

2013). In addition, clusters of P2X1 receptors have been found in close proximity to 

sympathetic nerve varicosities (Hansen et al., 1999). The ATP-triggered P2X1 

activation leads to channel opening, increase of Na+, K+ and Ca2+ conductance, 

membrane depolarization and subsequent VOCCs channels-mediated Ca2+ entry 

and contraction, whereas NA triggered responses are slower due to the G-protein 

coupling and second messenger involvement. Furthermore, both pressure and 

vessel size are important determinants of the magnitude of the purinergic 

response: P2X1-triggered contractions dominated in small and medium size 

arteries, whereas the noradrenergic component dominated in large vessels 

(Gitterman and Evans, 2001). Likewise, the ATP component in the constriction 

response was significantly reduced at low arterial pressures (Rummery et al., 2007). 

The rapid smooth muscle depolarizations arising from the actions of 

neurotransmitters are known as fast excitatory junction potentials (EJPs) and are 

maintained by the continuously release of ATP quanta, while slow depolarizations 

have a noradrenergic component (Ralevic and Dunn, 2015). On the other hand, NA 

acting on α1-adrenergic receptors can promote additional ATP release from smooth 

muscle cells through pannexin-1 channels (Figure I10), contributing to the 

integrated complex vasoconstriction response (Billaud et al., 2011). Some of the 

ATP released can directly act through pre-junctional, inhibitory autoreceptors, such 

as P2Y receptors and  A1 adenosine receptors, the latter after being rapidly 
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metabolized to adenosine by ectonucleotidase triphosphate diphosphohydrolases 

(E-NTPDases) of the VSMCs membrane (Kauffenstein et al., 2010) and by soluble 

ATPases released from the sympathetic nerves (Figure I10) (Burnstock and Ralevic, 

2013). 

Purines released from perivascular nerves can also activate endothelial cells via P2Y 

and P2X4 receptors, leading to NO, EDHF and PGI2 release, vasodilation and 

inhibition of platelet aggregation. Furthermore, ATP-triggered ATP release in 

endothelial cells by shear stress and hypoxia can also activate this vasodilation 

response in a paracrine way (Figure I10) (Burnstock and Ralevic, 2013). Evidences 

showed that endothelial dysfunction promotes platelets aggregation and 

leukocytes accumulation, leading to ATP, ADP and UTP release, which induces local 

vasospasm through smooth muscle P2Y receptors (Burnstock and Ralevic, 2013). 

Smooth muscle cells also express P2Y receptors, which are activated by pyrimidine 

nucleosides and nucleotides. Although several isoforms (P2Y1,2,4,6) have been found 

in smooth muscle, evidences point to an important contribution of P2Y2 and mainly 

P2Y6 to the UTP- and UDP-triggered vasoconstrictions (Figure I10) (Vial and Evans, 

2002; Bar et al., 2008; Koltsova, Maximov, et al., 2009). Of note, P2Y6 involvement 

in the control of vascular tone has been recently related to its dimerization with 

AT1 receptors, promoting Ang II-induced hypertension dependent on age 

(Nishimura et al., 2016). As in the case of ATP, UTP causes vasodilation when acting 

in endothelial cells through P2Y2 and P2Y4, but not P2Y6 receptors, via EDHF 

mechanism (Burnstock and Ralevic, 2013). 
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Figure I10. Summary of the purinergic signaling control of vascular tone. 1, ATP co-released with NA 
from varicosities enhances EJPs and induces P2X1-mediated depolarization, VOCCs activation, [Ca

2+
]i 

increase and vasoconstriction. 2, ATP released is rapidly metabolized by E-NTPDases to adenosine, 
which has pre-junctional, inhibitory activities via P2Y and A1 autoreceptors. 3, ATP is also released 
from smooth muscle cells via pannexin1. 4, UDP and UTP contribute to vasoconstriction via G-protein 
coupled P2Y2,4,6 receptors. 5, ATP acting on P2Y and P2X1,4 receptors in endothelia has vasodilator 
effects via AC activation of cAMP-triggered NO, EDHF and PGI2 production. 6, ADP, ATP and UTP 
released from endothelial and platelets cells contributes to endothelia-mediated vasodilation. 
However, purines and pyrimidines released from aggregating platelets cause P2X- and P2Y-triggered 
vasoconstriction. 8, ADP, ATP and UTP have inhibitory effects on platelets in a paracrine way. 

 

5.4 Role of purinergic signaling in hypertension 

Using different in vitro and in vivo models of hypertension, evidences have shown 

the physiological contribution of different components of the purinergic signaling 

to the control of vascular tone, rendering purinergic signaling components as new 

possible therapeutic targets. In this context, several different evidences support a 

contribution of the purinergic signaling to hypertension development: 

 Essential hypertension has been associated with an increased sympathetic 

nerve activity and with hyperplasia and hypertrophy of arterial walls. 
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Moreover, purinergic receptors expressed on neuronal tissues mediate 

sympathetic activity. Antagonists of these receptors are centrally acting 

potential agents to the treatment of hypertension (Burnstock and Ralevic, 

2013). 

 

 Both, the increased contribution of the ATP released from sympathetic 

perivascular nerves and the purinergic pre-junctional, inhibitory 

modulation caused EJPs enhancement and a subsequent augmented 

vasoconstriction. Conversion from a balanced contribution to a potentiated 

response of ATP over NA has been found in hypertensive subjects, leading 

to enhanced vasoconstrictions. These findings pointed to a possible use of 

P2X1 antagonists to the hypertension treatment (Burnstock and Ralevic, 

2013). 

 

 ATP released from endothelial cells during shear stress exerted by changes 

in blood flow acts as a vasodilator through endothelial P2X4 and P2Y 

receptors, providing new possible treatments to hypertension (S. Wang et 

al., 2015). 

 

 Recent studies pointed to P2X3 antagonists as promising tools for 

hypertension treatment by inhibiting sympathetic nerve activity involving 

the carotid body (Pijacka et al., 2016). Furthermore, P2X7 involvement in 

hypertension through increased inflammation have been described, 

pointing to P2X7 antagonists as clinical hypertensive agents (Burnstock, 

2017). 

 

 There are evidences showing that adenosine activates renin-angiotensin-

aldosterone (RAAS) system in hypertensive subjects. Considering 

differences in the G protein coupling of P1 receptors, adenosine A1 

antagonists and A2A and A2B agonists have been proposed as possible 

therapeutic agents to hypertension treatment (Nayak et al., 2015). 

 

 Changes in the functional expression of P1 and P2 receptors in smooth 

muscle, endothelial and even vascular circulating cells of hypertensive mice 

models evoked mainly potentiated vasoconstrictor responses. Extracellular 

purines and pyrimidines also contributed to the hypertensive phenotype 

not only by their increased release and receptor activation, but also by 

enhancing proliferation and hypertrophy (Burnstock and Ralevic, 2013). 
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6. TRP channels 

Since the first discovery and characterization of a transient receptor potential (trp) 

gene encoding a cation channel (TRP) related with defective vision in a Drosophila 

trp mutant, several efforts have demonstrated the biodiversity of these channels in 

terms of tissue distribution, physiological functions and their association with 

pathological disorders. Twenty-eight mammalian TRP homologs have been 

described so far and characterized as cationic non-specific channels involved in 

sensory and signal transduction processes in excitable and non-excitable cells. 

These TRP channels have been grouped into seven subfamilies, according to their 

sequence homology (Figure I11): TRPC (canonical), TRPV (vanilloid), TRPM 

(melastatin), TRPA (ankyrin), TRPML (mucolipin) and the TRPP (polycystin). The 

additional TRPN (NOMP-C homologues) subfamily is not found in mammals, but 

expressed in invertebrates and cold-blooded vertebrates (Earley and Brayden, 

2015). 

 

Figure I11. Phylogenetic tree of the mammal TRP family of channels 
(adapted from Nilius and Owsianik, 2011). 

 

6.1 Structure 

All TRP channels share a general transmembrane structure consisting of six 

spanning domains (S1-6) with a pore-forming loop between S5-S6. The intracellular 

N- and C-termini differ in length and amino acid sequence, providing several well-

described motifs involved in channel assembly, activation and regulation. While 
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numerous ankyrin motifs are present on the N-terminus of TRPC, TRPV and TRPA 

subunits, calmodulin/IP3R-binding motifs, Ca2+-binding EF hands, serine-threonine 

kinase motifs and even a PDZ motif (TRPC4) are present in the C-terminus (Figure 

I12). 

Functional channels arise from the association of four TRP subunits in a homomeric 

or heteromeric way. The TRPC subfamily has been the most widely studied in terms 

of subunit assembly: TRPC1 can heteromultimerize with TRPC3, TRPC4, TRPC5, 

TRPC6 or TRPC7 subunits; TRPC4 and TRPC5 can form heteromultimeric channels as 

can combinations of TRPC3, TRPC6 and TRPC7 subunits (Hofmann et al., 2002; 

Earley and Brayden, 2015). Functional associations between TRPV5/TRPV6, 

TRPM6/TRPM7, and TRPML1/TRPML3 have been also reported. On the other hand, 

association between subunits of different subfamilies, such as TRPC1/TRPV4 and 

TRPV1/TRPA1, have also been reported with less supported evidence (Earley and 

Brayden, 2015). 

 

Figure I12. Membrane topology of the different TRP subfamilies of 
cationic channels (adapted from Minghui, Yong and Jian, 2011). 

 

With the electron microscopy advances, a detailed structure of members of 

different TRP subfamilies, such as TRPC3, TRPM2, TRPV1 and TRPV4 have been 

described. For TRPC3 subunit, cryoelectron microscopy studies showed an odd 

high-resolution structure compared to the other TRP channels studied. The overall 

structure of TRPC3 (200x200x240 Å, 388 kDa for protein and 40.8 kDa for attached 

glycan) is divided into two components: a dense globular inner core and a sparse 

outer shell with a mesh-like structure containing many aqueous spaces (Figure I13). 
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This expanded structure could explain the multi-modal activation, regulation and 

even association of TRPC3 subunits (Mio et al., 2007; Minghui, Yong and Jian, 

2011). 

 

Figure I13. Cryo-EM of TRPC3 structure. Blue lines indicate 
putative transmembrane region (Mio et al., 2007). 

 

6.2 Physiological roles of TRP channels in VSMCs 

TRP channels have an important role in several biological processes, such as muscle 

contraction, cell proliferation, secretion, nociception and many other important 

processes, by controlling the ion flux across the cell membrane. In addition, several 

TRP members (TRPP2, TRPM8, TRPV1 and TRPA1) are expressed in intracellular 

organelles, where participate as modulators of protein trafficking and vesicular 

ionic homeostasis (Earley and Brayden, 2015). Although TRP channels are described 

as non-selective cation channels, their relative permeability to different ions (PNa: 

PK: PCa) determine their functional role: while monovalent Na+ and K+ cations are 

particularly important for the control of membrane potential and excitability, 

divalent Ca2+ and Mg2+ cations play important roles as second messengers and 

cofactors. Therefore, the activity of TRP channels can contribute to membrane 

potential regulation (TRPC, TRPM4), Ca2+ signaling (TRPC, TRPV and TRPA1) and 

Mg2+ homeostasis (TRPM6 and TRPM7). 

Many studies have identified the functional expression of members of TRPC 

(TRPC1,3,4,5,6), TRPV (TRPV1-4), TRPM (TRPM4,8), TRPA (TRPA1) and TRPP (TRPP2) 

families in smooth muscle and endothelial cells and their involvement in the 

control of vascular tone, reactivity, permeability and angiogenesis (Earley and 

Brayden, 2015). Again, TRP-triggered vascular responses depend on the vascular 

bed, cellular subtype and TRP family. Here we will focus on the roles of TRPC 

channels in the vasculature. 
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Membrane potential regulation 

Cation influx through TRPC channels promotes different and even opposite vascular 

responses depending on their cellular subtype expression. Usually, in smooth 

muscle cells, increased Na+ and Ca2+ permeabilities associated with TRPC channels 

activation results in membrane depolarization, leading to VOCC channels-triggered 

Ca2+ entry and contraction (Figure I14). TRPC1,3,4,5,6 are the principal channels found 

in VSMCs of different vascular beds and their GPCR receptor- and swelling (TRPC6)-

triggered activation have been associated to increased vascular contractility (Earley 

and Brayden, 2015). Interestingly, TRPC3 channels have been found to be 

constitutively active, further contributing to resting Vm and myogenic tone (Albert 

et al., 2006). On the other hand, TRPC1,3,4,5,6 channels found in endothelial cells 

induced endothelium-dependent vasodilation via eNOS-triggered NO production. 

 

Figure I14. Scheme of the TRPC-triggered control of vascular tone. 1, agonists-activated GPCRs 
induce PLC-triggered PIP2 cleavage leading to IP3 and DAG production. IP3 activates IP3R receptors 
on ER/SR leading to Ca

2+
 release to cytosol. DAG and also shear stress (2) directly activate 

TRPC3,6,7 leading to cation influx, membrane depolarization and LTTCs channels-mediated Ca
2+

 
influx. [Ca

2+
]i increase leads to contraction of VSMCs. 3, upon agonist stimulation, Ca

2+
-depleted 

stores induce SOCE through STIM1/Orai1 complex and TRPC channels. This TRPC-triggered SOCE 
has been also proposed to directly activate VSMC constriction. 4, in endothelial cells, TRPC-
mediated cation influx, specially Ca

2+
, leads to eNOS-induced NO, EDHF and PGI2 production 

leading to VSMC relaxation.    

 

Ca2+ signaling 

Changes in [Ca2+]i regulate many biological processes, such as muscle contraction, 

hormone secretion, gene expression and proliferation. Changes in [Ca2+]i are 

regulated by the extracellular Ca2+ influx, by Ca2+ release from intracellular 
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compartments and by Ca2+ extrusion performed by plasma and organelle 

membrane proteins. In this context, TRP channels with Ca2+ permeability influence 

[Ca2+]i and subsequent cellular processes acting as ionotropic, metabotropic or 

store-operated Ca2+ channels (Earley and Brayden, 2015). 

Agonist-induced GPCR receptor activation causes biphasic changes in [Ca2+]i: the 

initial transient increase results from the release of Ca2+ from the ER/SR, while the 

second sustained plateau phase is due to Ca2+ influx through ROCs. In this context, 

all members of TRPC family can be activated after stimulation of GPCR receptors 

and receptor tyrosine kinases (RTKs), through PLCβ and PLCγ, respectively 

(Clapham, 2003). The PLC-induced cleavage of membrane PIP2 produces IP3 and 

DAG. IP3 activates its specific IP3R receptor on ER/SR, leading to Ca2+ release to 

cytosol, while DAG activates PKC and also TRPC3/6/7 channels and heteromeric 

channels including these subunits in a PKC-independent way (Figure I14) (Hofmann 

et al., 1999). 

SOCE, defined as store-operated Ca2+ entry, is another signaling pathway 

associated to TRP channels, consisting of the refilling of intracellular Ca2+ stores 

upon sustained stimulation of membrane receptors or pharmacologic agents-

induced blocking of SERCA. In this context, early studies described several 

members of the TRPC family, such as TRPC1, TRPC4 and TRPC5 as the SOCE 

channels. Other members of the TRPC family have also been reported to be 

involved in the SOCE signaling pathway, such as TRPC3 and TRPC6. However, after 

the discovery of the STIM1/Orai1 complex formation upon Ca2+ store depletion and 

their characterization as the responsible of SOCE, the consideration of TRPC as 

SOCE channels have been widely discussed. Later studies focused on the possibility 

of a direct or indirect interaction of STIM1/Orai1 complex with TRPC channels. 

Direct interactions between STIM1 and TRPC1, TRPC4 and TRPC5 have been 

described in different cellular subtypes. These studies described that upon Ca2+ 

stores depletion, the activation of STIM1 proteins lead to their migration toward 

plasma membrane and direct interaction with TRPC1, enhancing SOCE via TRPC1 

channels (Huang et al., 2006; López et al., 2006). On the other hand, indirect 

interaction between STIM1/Orai1 and TRPC channels has been described for TRPC3 

and TRPC6. In this case, STIM1 activation and membrane translocation induced the 

TRPC1/TRPC3 heteromultimerization, behaving as the SOCE channels. In the same 

way, TRPC4 and TRPC6 associations induced by the activation and membrane 

trafficking of STIM1 was also described, pointing to TRPC4/TRPC6 as SOCE 

channels. This study, however, specified that STIM1 is required only for activation 

of TRPC channels by agonists, but not for channel activity, thus proposing a new 

definition of SOCE as channels regulated by store depletion-mediated STIM1 

clustering. In this context, all TRPC channels, except TRPC7, behave as SOCE 
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channels (Yuan et al., 2009). However, another set of studies failed to demonstrate 

the TRPC involvement in STIM1/Orai1-triggered SOCE pathway, both in 

heterologous and native systems (Dehaven et al., 2009). Regarding differences 

obtained in different cell lines and animal models about the role of TRP channels as 

SOCE channels and their coupling to STIM1/Orai1 complex, more precise functional 

studies are required. Therefore, considering TRP family as SOCE channels is still in a 

controversial debate. 

6.3. TRPC channels and hypertension 

Evidences showed that TRPC3 and TRPC6 channels are the main TRPC members 

whose dysfunction plays an important role in essential hypertension. Several 

studies in hypertensive animal models reported a functional increased expression 

of TRPC3 (Liu et al., 2009; Chen et al., 2010; Noorani, Noel and Marrelli, 2011; 

Wang et al., 2017) and TRPC6 (Yu et al., 2004; Pulina et al., 2010; Zulian et al., 

2010) channels which correlate with enhanced agonists-induced Ca2+ influx and 

contraction. However, whether this increased expression of TRPC channels is cause 

or consequence of the hypertension remains unclear. 

Contrary to what it was expected, TRPC6-/- mice (Dietrich et al., 2005) showed 

increased vascular tone and increased sensitivity of smooth muscle to 

vasoconstrictor agonists that resulted in a higher increased mean arterial blood 

pressure. However, these mice exhibit a clear upregulation of TRPC3 channels that 

can compensate in different ways the TRPC6 knockout phenotype. TRPC channels 

also play essential roles in the regulation of myogenic tone, as it was shown by the 

involvement of TRPC6 channels to the pressure-induced depolarization in cerebral 

arteries (Welsh et al., 2002). Moreover, increased coupling between TRPC3 and 

TRPC6 channels with additional proteins, such as other TRP channels, IP3R 

receptors (Adebiyi et al., 2010, 2012), Ca2+-activated Cl- channels (Wang et al., 

2016) and many others, enhanced Ca2+ influx, contraction and subsequently blood 

pressure, while the coupling with serine-threonine kinase WNK4 reduced TRPC3-

triggered Ca2+ entry (Woo et al., 2011). 

Therefore, changes in the functional expression of some subtypes of TRPC channels 

could influence the mechanisms by which VSMCs control vascular tone and 

contractility, thus promoting vascular dysfunction and increased blood pressure, 

leading to hypertension. The development of selective pharmacological blockers of 

TRPC channels could present a potential strategy to prevent and treat essential 

hypertension (Earley and Brayden, 2015). 
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7. Chloride channels 

In contrast to ions like Na+ and K+, in many cell types the electrochemical gradient 

of Cl− across the plasma membrane is close to its electrochemical equilibrium, 

which is expected from a passive distribution across the plasma membrane. 

However, within VSMCs, the ECl is normally at a potential more positive than the 

resting Vm because of active Cl− accumulation. Hence, opening of Cl− channels in 

the plasma membrane causes Cl− efflux, membrane depolarization, and increased 

contractile force. VSM Cl− transporters and Cl− channels significantly contribute to 

the physiological regulation of vascular tone and arterial blood pressure, so that 

changes in their expression and activity could contribute to vascular 

pathophysiology. 

7.1 Classification and structure of Cl- channels 

Cl- channels are structurally very heterogeneous and no official classification exists. 

Therefore, following the International Union of Basic and Clinic Pharmacology 

(IUPHAR) Guides (Alexander et al., 2017), there have been described up to five 

different families: 

 Voltage-gated Cl- channels (ClC1-7, ClCKa and ClCKb). ClC1, ClC2 and the two 

ClCk isoforms are expressed in the plasma membrane. The rest are 

expressed in endomembranes and behave as Cl-/H+ exchangers. ClCs are 

mainly involved in cell excitability, transepithelial transport, extracellular 

ion homeostasis, endocytosis and lysosomal function (Jentsch, 2015; 

Poroca, Pelis and Chappe, 2017). 

 

 Cystic fibrosis transmembrane conductance regulator (CFTR). This channel 

is a membrane ATP-gated Cl- channel involved in the transepithelial 

transport of water and electrolyte whose dysfunction leads to cystic 

fibrosis (Linsdell, 2014). 

 

 Volume-regulated anion (VRAC) channels. This family of Cl- channels 

participates in the decrease of cell volume upon swelling stimuli by 

conducting Cl- efflux. They also participate in membrane excitability, 

transcellular Cl- transport, angiogenesis, cell proliferation and so many 

other cell functions (Nilius and Droogmans, 2003). 

 

 Large conductance (maxi) Cl- channels. This maxi-anion channel, which is 

widely expressed in many tissues, is activated by swelling stimuli and it has 

been involved in the control of membrane potential, secretion and cell 
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volume regulation. Additionally, due to its ability to release small amounts 

of ATP and glutamate molecules, it has been associated to signal 

transduction between cells (Sabirov and Okada, 2009). 

 

 Ca2+-activated Cl- channels (CaCC). This family comprises the anoctamin 

(ANO1-10) and bestrophin (BEST1-4) subfamilies. These subfamilies have been 

well characterized and are involved in numerous cellular functions, 

including transepithelial transport, control of neuronal and cardiac 

excitability and regulation of smooth muscle contraction (Matchkov, 

Boedtkjer and Aalkjaer, 2015). Their structure, vascular function and 

involvement in hypertension will be discussed in the next sections. 

These families of Cl- channels have been found to be widely expressed in the 

plasma cell membrane in many tissues, in intracellular membranes and in the 

cytosol together with an additional family of intracellular Cl- channels (ClIC1-4). This 

family comprises both soluble and integral membrane isoforms and are likely to 

have enzymatic and intracellular membrane structural functions (Edwards and 

Kahl, 2010; Littler Dene et al., 2010). 

7.2 CaCCs channels 

 

7.2.1 Bestrophins 

BEST channels have been found to form dimers, tetramers and pentamers. Each 

single protomer comprises four short transmembrane α-helices (TM1-4) and a long 

intracellular domain formed by five α-helices together with the C-terminus. N- and 

C-termini are localized in the cytosol, the latter likely involved in Ca2+ regulation 

(Figure I15 A). When pentamerizing, an hydrophilic single pore formed by TM2 

domain is followed by an hydrophobic neck involved in the channel gating (Yang et 

al., 2014). BEST channels are permeable to NO3
->Br->Cl- and permeability to SCN-, 

HCO3
-, GABA and even glutamate has also been reported (Dickson, Pedi and Long, 

2014). Of special interest is the BEST3 channel due to its expression in VSMCs from 

different vascular tissues and its role in the membrane potential regulation by 

coupling intracellular Ca2+ and NO/cGMP pathways through Cl- outward currents 

(Matchkov et al., 2008). 

7.2.2 Anoctamins 

Anoctamin family (ANO or also TMEM16) comprises ten different members, most 

of them behaving as Ca2+-dependent phospholipid scramblases. However, 

ANO1/TMEM16A and ANO2/TMEM16B are bona-fide Ca2+-activated Cl- channels 
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(CaCCs) (Whitlock and Hartzell, 2017). These CaCCs are formed by eight 

transmembrane domains with N- and C-termini in the cytosol. The N-terminus 

presents several calmodulin binding and dimerization motifs, while the C-terminus 

presents a highly conserved region of unknown functions called Anoctamin 

domain. Differences in the transmembrane domains linking loops have been 

proposed: the TM5-TM6 long extracellular loop which reenters the membrane 

early described has been questioned and replaced by another model proposing a 

long intracellular loop which also reenters the membrane between TM6-TM7 

(Figure I15 B). In any case, this loop have been proposed as the direct Ca2+ sensor of 

the channel (Pedemonte and Galietta, 2014). 

ANO1 (TMEM16A) and ANO2 (TMEM16B) appear as closely related members 

belonging to the same subfamily, while ANO3,4,9 (TMEM16C,D,J) and ANO5,6 

(TMEM16E,F) form two separated subgroups, and ANO7,8,10 (TMEM16G,H,K) are 

distant paralogs of ANO1 (Pedemonte and Galietta, 2014). Evidences showed that 

ANO channels are activated not only by cytosolic Ca2+, but also by membrane 

potential in a positive feedback way. More precisely, membrane depolarization 

enhanced Ca2+ sensitivity of the channels. 

 

 

Figure I15. Structures of BEST and ANO subfamilies of CaCC channels. A, structure of 
BEST protomer (left) and the outside membrane view (right) of the pentamer form 
(from Yang et al., 2014). B, structure of ANO1 channel based on the more recently 
proposed model (adapted from Pedemonte and Galietta, 2014). 
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7.3 CaCCs and NKCC cotransporters in vasculature 

In addition to the important role of VOCCs on the depolarization-triggered Ca2+ 

entry and contraction of VSMCs, Cl- conductance through VSMCs have been widely 

explored, although little is still known. As mentioned above, [Cl-]i (~50 mM) and Cl- 

conductance in VSMCs are larger compared to other cells, such as skeletal and 

cardiac muscle cells. Intracellular Cl- accumulation is due in part, but not 

exclusively, to the activity of the sole isoform of cation-Cl--cotransporter found in 

VSMCs, the Na+/K+/2Cl--cotransporter NKCC1. The equilibrium potential for Cl- in 

VSMCs cells (~-26 mV) is less negative than their resting potential but is high 

enough to activate VOCCs and high enough to block spontaneously generated 

actions potentials in excitable cells. Many studies showed the role of Cl- 

conductance activated upon agonists stimulation in the smooth muscle contraction 

response, however, the exact mechanisms still remain unknown (Kitamura and 

Yamazaki, 2001). 

Both BEST and ANO families of CaCCs have shown to be expressed in vascular 

vessels, however, their relative contribution to agonists-triggered contraction are 

different. It has been shown that BEST downregulation has no effect on NA-induced 

vasoconstriction, suggesting their sole contribution to membrane potential, while 

downregulation and pharmacological inhibition of ANO1 abolished vasoconstrictor 

responses (Matchkov, Boedtkjer and Aalkjaer, 2015). Therefore, ANO family, and 

mainly ANO1 channel, have been the focus of the more recently studies about 

CaCCs in the vasculature and its associated disorders. 

Upon agonist-dependent stimulation, Ca2+ released from the intracellular stores 

activates Cl- efflux (IClCa) through ANO1 channels, contributing to membrane 

depolarization, LTTCs-triggered Ca2+ influx and further [Ca2+]i increase. In addition, 

ANO1 channels also influenced the stretch-activated Ca2+ influx, which is crucial for 

the myogenic tone response (Bulley et al., 2012). Moreover, the role of ANO1 

channels is largely influenced by phosphorylation mechanisms involving Ca2+-

dependent kinases and phosphatases, such as CaMKII and calcineurin, respectively, 

confirming the importance of the amplitude and kinetics of intracellular Ca2+ 

transients to ANO1 functions (Pedemonte and Galietta, 2014). However, it is not 

clear if a direct phosphorylation of ANO channels leads to IClCa or an additional 

regulatory subunit is involved. In this context, Cl- Channel Accessory (ClCa) family of 

proteins, such as ClCa1 and ClCa2, has been found to influence the Ca2+-dependent 

ANO1 activation. ClCa1, described in mammals as a secreted metalloprotease, have 

been found to enhance ANO1-dependent IClCa by directly engaging and stabilizing 

dimeric ANO1 proteins at the membrane surface without increasing its expression 

(Sala-Rabanal et al., 2015). In contrast, ClCa2 protein, which was found to be 

anchored to the plasma membrane through C-terminus, directly interacted with 
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STIM1/Orai1 complex, enhancing SOCE-activated ANO1-dependent IClCa (Sharma et 

al., 2018). Another protein-protein interaction involving ANO1 channels was found 

for TRPC6 channels in cerebral arteries (Wang et al., 2016). In this study, TRPC6 and 

ANO1 channels were found in close spatial proximity at the plasma membrane and 

agonist-induced TRPC6 activation lead to local Ca2+ signals that activated ANO1-

triggered IClCa and vasoconstriction. 

For NKCC1 cotransporter, its main roles in vascular physiology are related to [Cl-]i 

regulation. By controlling [Cl-]i/[Cl-]o ratio, NKCC1 cotransporter regulates Vm and 

excitation-contraction coupling. Indeed, NKCC1 blockade attenuated basal tone, 

myogenic tone and agonists-induced vasoconstriction through Cl--dependent 

hyperpolarization and suppression of VOCCs activity (Orlov et al., 2015). These 

NKCC1-dependent vascular functions were also confirmed using NKCC1-/- KO mice, 

suggesting the important role of this cotransporter in the vasculature (Koltsova, 

Kotelevtsev, et al., 2009; Koltsova, Maximov, et al., 2009). 

In endothelial cells, IClCa contributes to cell volume and membrane potential. 

However, little is known about the endothelial [Cl-]i. Thus, the hyper- or 

depolarizing effects of endothelial-triggered IClCa in the intact vascular wall remains 

unclear (Matchkov, Boedtkjer and Aalkjaer, 2015). 

7.4 Role of ANO1 channels and NKCC1 cotransporter in hypertension 

Regarding the role of IClCa for vascular tone and contractility, several studies have 

identified some CaCCs, namely ANO1 channels, as potential targets to the 

treatment of hypertension, although the available data are contradictory. ANO1 

upregulation has been characterized and correlated to increases in blood pressure 

in two different rat models of pulmonary hypertension (Leblanc et al., 2015), as 

well as in spontaneous hypertension (B. Wang et al., 2015). On the other hand, 

hypertension-associated downregulation of ANO1 channels due to an increase in 

the activity of CaMKII was also reported (Wang et al., 2012). Finally, in a mouse 

model with smooth muscle-specific ANO1 KO, arterial blood pressure was 

decreased and the development of Ang II-induced chronic hypertension was less 

severe (Heinze et al., 2014). 

The role of NKCC cotransporters in the pathogenesis of hypertension have been 

differentiated according to primary and secondary hypertension. NKCC1 

cotransporter plays an important role in the physiopathology of primary 

hypertension since is the only isoform expressed in VSMCs, and several 

mechanisms underlying its role have been proposed. In SHR rats model, both 

NKCC1 mRNA and protein levels were increased, which involved the NKCC1-

dependent [Cl-]i regulation, affecting VSMCs contraction and SNS activity. Indeed, 
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bumetanide-induced NKCC1 blockade on α-adrenergic-dependent vasoconstriction 

were higher compared to normotensive controls (Lee et al., 2010). Moreover, the 

higher mRNA and proteins levels also observed in paraventricular nucleus of SHR 

rats correlated with the higher [Cl-]i found in these neurons, resulting in a 

decreased activity of GABAergic neurons in SHR, compared to controls (Ye et al., 

2012). Studies focused on epigenetic regulation of NKCC1 in SHR model concluded 

that hypomethylation of NKCC1 promoter resulted in its augmented expression and 

subsequently augmented [Cl-]i, membrane depolarization and contraction, leading 

to blood pressure increase (Lee et al., 2010). Moreover, increased activity of NKCC1 

cotransporter was also observed in erythrocytes from SHR rats and hypertensive 

patients, contributing to the long-term increase of blood-pressure. On the other 

hand, studies performed in NKCC1-/- KO mice revealed a significant decreased in the 

blood pressure of these animals (Meyer et al., 2002). 
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8. Hypothesis of study. 

Our group has been exploring the contribution of different VSM ion channels to the 

molecular mechanisms involved in the physiopathology of essential hypertension. 

Using a genetic, phenotype-driven mouse model of essential hypertension (BPH 

and their BPN control mice), the functional expression of different families of 

channels, including K+ channels and VOCCs, and their contribution to the 

hypertensive phenotype have been widely explored. However, the contribution of 

many other families of receptors and ion channels, such as ROCs and SOCs channels 

are still unknown. 

This Thesis aims to explore the role of some ROCs and some GPCR, specifically TRPC 

channels and P2Y receptors in the genesis of the hypertensive phenotype in 

BPN/BPH model of essential hypertension. 

Since sympathetic nerve activity is increased in this model (see section 3.2), we 

hypothesize that changes in the activation of the purinergic signaling pathway 

could be directly contributing to changes in the resting membrane potential and 

Ca2+ influx in VSMCs, leading to [Ca2+]i increase and promoting the subsequent 

increased vascular tone and contractility, characteristic of hypertension. The 

differences between of BPN and BPH in the purinergic response may be the result 

of changes in the purinergic receptors and/or may be generated by differences in 

the expression or/and functional activity of TRPC and Ca2+ activated Cl- channels, 

working downstream in the signaling pathway and fine-tuning the changes in Vm 

that activate VOCCs opening and vascular contraction. 

 

Figure I16. Scheme of the hypothesis of the purinergic signaling contribution to essential 
hypertension. 
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OBJECTIVES 

This Thesis explores the contribution of Receptor Operated Channels and G protein 

coupled receptors to the molecular mechanisms involved in hypertension using a 

genetic mouse model of essential hypertension, the BPN/BPH model. The study 

focuses specifically in the differences between BPN and BPH mice in the functional 

contribution of TRPC channels to the hypertensive phenotype at rest and in the 

context of the activation of the purinergic signaling pathway. The specific goals 

include: 

1. The characterization of ROCs contribution to modulate resting Vm and 

contractility of BPH mice.  To achieve this objective we explored: 

1.1. The functional expression of members of the TRPC family in BPN and 

BPH mice, and their contribution to vessel contractility. 

1.2. The heteromultimerization profile of TRPC3 and TRPC6 channels and 

their association with the hypertensive phenotype. 

1.3. The functional expression of members of CaCCs and Cl- conductance 

cotransporters involved in the control of Vm and contractility of VSMCs 

and their functional association with the hypertensive phenotype. 

2. The characterization of the purinergic signaling pathway in VSMCs and its 

relationship with the physiopathology of hypertension. To achieve this 

objective we explored: 

2.1. The expression profile of several members of P2X and P2Y families of 

purinergic receptors in VSMCs of BPN and BPH mice. 

2.2. The functional contribution of the purinergic receptors explored to the 

increased vascular tone and contractility of BPH compared to BPN 

mice. 
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1. Mouse model of essential hypertension 

Colonies of hypertensive mice BPH (Blood Pressure High) and their controls BPN 

(Blood Pressure Normal) from Jackson Laboratories (Jackson Laboratories, Bar 

Harbor, ME, USA) were maintained by inbreeding crossing  in the animal facility of 

the School of Medicine of Valladolid, under temperature controlled conditions 

(21°C) and with unlimited access to water and food. 

The development of the BPH and BPN strains was performed by crossbreeding of 

eight different mouse strains that were subjected to phenotypic selection 

performed by tail-cuff blood pressure measurements. BPH mice showed high blood 

pressure early in life compared to BPN, which was associated with strain 

differences in heart rate, heart weight, left ventricular mass, kidney weight and 

hematocrit (Schlager and Sides, 1997). The development of hypertension in these 

strains led to an increased heart and left ventricular size (compared to body 

weight) and an increased heart rate that represented adaptive mechanisms to cope 

with the increased arterial pressure maintaining the cardiac output. In addition, 

BPH mouse strain showed lower levels of renin, aldosterone and angiotensin and a 

short lifespan, compared to BPN (Schlager, 1981; Schlager and Sides, 1997). 

All animal protocols were approved by the Institutional care and Use Committee of 

the University of Valladolid and are in accordance with the European Community 

guiding principles with respect to the care and use of animals (Directive 

2010/63/UE) (Directive, 2010). 

 

2. Tail-cuff measurements 

To confirm that BPH and BPN mouse strains maintained their phenotype, blood 

pressure levels were measured using the CODA® High Throughput Noninvasive 

Blood Pressure system (Kent Scientific Corporation, Torrington, CT, USA, Figure 

M1). In addition to the CODA controller, the system has also a far-infrared warming 

platform, animal holders of different sizes, tail-cuff kits and a computer with 

database software. 

Briefly, aware mice were placed into the animal nose cone holder and carefully 

secured to avoid the animal being able to turn around, providing unrestricted 

breathing during measurements. Next, the holders were placed onto the warming 

platform and the tails were cuffed with the VPR (Volume Pressure Recording) 

sensor and the occlusion cuff kit without force. The VP recording method consists 

of inflating the occlusion tail cuff to occlude blood flow and while it is slowly being 
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deflated, the VPR cuff sensor measures the tail swelling. Systolic blood pressure (Ps) 

corresponds to the first appearance of tail swelling, while diastolic blood pressure 

(Pd) is calculated from the rate of tail swelling, and both are identified as the first 

and second inflections, respectively, of the recording line in the real-time blood 

pressure graph (Krege et al., 1995; Wang, Thatcher and Cassis, 2017). Mice were 

acclimated to 32-35°C during 15 min prior to data acquisition. Sessions of recorded 

measurements were carried out daily during 4-6 consecutive days at the same 

time. Each session consisted of a total of 40 cycles of inflating steps to a maximum 

occlusion pressure of 250 mmHg followed by deflating steps of 15 s. The first 5 

cycles were used for acclimation and were not included for the analysis. Values of 

15 μL were fixed as the minimum tail volume for data acquisition. Mice were first 

trained at least 2 days prior to data acquisition, as we found that this was enough 

to ensure extreme reliable and reproducible measurements from session to 

session.  

 

Figure M1. CODA® High Throughput Noninvasive Blood Pressure system 

 

3. Animals surgery 

BPN and BPH mice ranging from 16 to 58 weeks old (average 36.2 ± 2.4 weeks for 

BPN and 34.6 ± 1.7 weeks for BPH) and weighing 29.33 ± 0.23 g for BPN and 24.37 ± 

0.24 g for BPH (n=69-80, P<0.001) were anesthetized by isoflurane inhalation (5% 

O2 at 2.5 Lmin-1) and sacrificed by cervical dislocation. Mesenteric arteries were 

obtained as described previously (Moreno-Domínguez et al., 2009). Briefly, a 

laparotomy was performed to obtain the small intestine, which was placed in a 

Sylgard®-coated plate filled with ice cold (4°C) oxygenated (95% O2-5% CO2) smooth 

muscle dissociation solution (SMDS)- 10μM Ca2+ (Table M1). 
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Composition 
SMDS 
(mM) 

SMDS 
10 μm Ca

2+
 

(mM) 

NaCl 120 120 
KCl 4.2 4.2 
NaCHO3 25 25 
KH2PO4 0.6 0.6 
MgCl2·6H2O 1.2 1.2 
Glucose 11 11 
CaCl2 - 0.010 

pH 7.4 

Table M1. Smooth muscle dissociation solution. 

 

Subsequently, arteries were cleaned of connective and adipose tissues under a 

dissecting microscope. The characteristic V-shaped intersection of arteries was 

taken into account to distinguish them from the veins (Figure M2). 2nd and 3rd 

order mesenteric arteries were collected and processed in different ways: 1) Frozen 

at -80°C for further RNA extraction, 2) used directly for myography studies and 3) 

used to obtain freshly isolated VSMCs. 

 

Figure M2.  V-and U-shaped intersection of artery and vein. 

 

 

 

4. RNA isolation and real-time PCR 

To explore the mRNA expression pattern of receptors and channels, real-time PCR 

was performed in mesenteric arteries from BPN and BPH mice. The protocols used 

consist of several consecutive steps: 
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a) RNA samples homogeneization and isolation 

Total RNA isolation was carried out using the TRIzol® Reagent (Ambion, Life 

Technologies Corporation) and the Precellys® (Bertin Instruments, France) 

homogenization methods followed by the PureLink® DNase treatment (Ambion, 

Life Technologies Corporation), following the manufacturer´s instructions (Figure 

M3). Briefly, 2nd and 3rd mesenteric arteries from 4-5 mice were denuded of 

endothelial layer by scraping with a pipette tip and cut in fragments less than 3 mm 

length. Then, samples were homogenized in TRIzol® Reagent using the CK14 and 

CK28 Precellys® kit, which consists of tubes containing two sizes of ceramic beads 

designed for hard tissue homogenization, and a Precellys® tissue homogenizer. By 

adding chloroform, RNA was then separated in an aqueous layer and precipitated 

using isopropanol. After washing twice, PureLink® DNase treatment (Ambion, Life 

Technologies Corporation) was carried out following the manufacturer´s 

instructions. Finally, RNA was stored at -80°C or used within the day to check the 

RNA purity and integrity. 

 

Figure M3. Total RNA isolation scheme. 

 

 

b) RNA quantification 

To obtain high efficiency and purity in RNA during the isolation step, many factors, 

such as the type of tissue, sample handling during surgery, extraction and storage, 

have to be considered. To check the correctness of these procedures, the quality of 

the purified RNA was confirmed both by agarose gel electrophoresis and by 

measuring the absorbance using a spectrophotometer (NanoDrop ND-1000, 

Thermo Scientific). The equation of Beer-Lambert correlates absorbance to 

concentration as following: 
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𝐴 = 𝐸 ∙ 𝑏 ∙ 𝑐 

Where, 𝐴 is the measured absorbance (or optical density, OD, in absorbance units 

A), 𝐸 is the molar extinction coefficient (in M-1 ·cm-1), 𝑏 is the sample thickness (in 

cm) and 𝑐 is the analyte concentration (mol·L-1). 

When measuring nucleic acids concentration, this equation is rearranged to: 

𝑐 =
𝐴 ∙ 𝑒

𝑏
 

Where 𝑐 is the nucleic acid concentration (in ng·μL-1), 𝐴 is the absorbance (in 

absorbance units, A), 𝑒 is the molar extinction coefficient (in ng·cm·μL-1) and 𝑏 is 

the sample lenght (in cm). 

Values of optical density ratio A260/280>2 are generally accepted as “pure RNA”, 

while ratio values less than 2 are indicative of contamination. Finally, quantified 

RNA was treated with RNAse-Free DNAse I (Ambion) to remove possible genomic 

DNA contamination from the samples. 

c) Reverse transcription 

The reverse transcription reaction was used to obtain cDNA (RT+) from purified RNA 

samples using the reverse transcriptase enzyme MuLvRT, allowing more stable 

samples to be obtained. With MuLvRt enzyme, a complementary cDNA strand of a 

single-stranded RNA template is created using the reaction mix described in table 

M2 (in PCR buffer): 

Composition 
RT

+
 

Reaction mix 
RT

-
 

Reaction mix 

Purified RNA 500-700 ng 200-350 ng 
Random hexamers 2.5 μM 2.5 μM 
MgCl2 5 mM 5 mM 
dNTPs 4 mM 4 mM 
RNAse inhibitor 1 u μL

-1
  

MuLvRT 2.5 u μL
-1

  

Table M2. Reaction mix for experiment (RT
+
) and genomic control (RT

-
) conditions. 

The final volume of the reaction was 80 µl for the RT
+
 and 20µl for RT

- 
 

 The reaction mixture was subjected to the following temperature-controlled 

reverse transcription cycle (Figure M4): 10 min at 25°C, 60 min at 42°C, and finally 5 

min at 99°C. The amplified cDNA (RT+) was immediately stored at -20°C. 
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Figure M4. cDNA synthesis protocol working scheme 

 

d) Amplification by real-time PCR 

Gene relative expression was explored by real-time PCR using the TaqMan Assay 

(Applied Biosystems, Life Technologies), which is based on the 5´ nuclease activity 

of the Taq polymerase on a fluorogenic-labeled probe (Figure M5). This TaqMan 

probe is constructed with a fluorescent dye and a quencher, both bound to the 5´ 

and 3´ ends, respectively. While the probe is intact, the quencher reduces the 

fluorescence emitted by the dye by fluorescence resonance energy transfer. When 

the probe anneals to the target DNA and the 5´ nuclease activity of Taq polymerase 

cleaves the reporter dye, the emitted fluorescence increases. This fluorescence 

intensity is proportional to the amount of target DNA accumulated during PCR 

reaction. 

 

Figure M5. TaqMan probe action mechanism. 

 

The previously obtained cDNAs were processed at the Genomic Service of the 

Parque Científico de Madrid (Spain) using TaqMan Low Density Arrays (TLDA, 

Applied Biosystems, Life Technologies Corporation). The selected receptor and ion 

channels genes to explore are described in Table M3. The array also included an 

endogenous control gene (18S rRNA) to correct for the amount of cDNA, and a 
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smooth muscle marker (calponin) and an endothelial cell marker (eNOS), to check 

the purity of smooth muscle tissue. 

Gen name Protein 
Applied Biosystems 

identification number 

P2rx1 P2RX1 Mm00435460_m1 

P2rx4 P2RX4 Mm00501787_m1 

P2ry1 P2RY1 Mm02619947_s1 

P2ry2 P2RY2 Mm00435472_m1 

P2ry2s1 P2RY2 Mm02619978_s1 

P2ry4 P2RY4 Mm00445136_s1 

P2ry6 P2RY6 Mm01275473_m1 

P2ry6s1 P2RY6 Mm02620937_s1 

Trpc1 TRPC1 Mm00441975_m1 

Trpc2 TRPC2 Mm00441984_m1 

Trpc3 TRPC3 Mm00444690_m1 

Trpc4 TRPC4 Mm00444284_m1 

Trpc6 TRPC6 Mm01176083_m1 

Trpc7 TRPC7 Mm00442606_m1 

Clca1 CLCA1 Mm01320697_m1 

Clca2 CLCA2 Mm00724513_m1 

Clcn3 CLCN3 Mm01348786_m1 

Slc12a2 NKCC1 Mm01265951_m1 

Tmem16a TMEM16A/ANO1 Mm00724407_m1 

Cnn1 (Calponin 1, smooth muscle) CNN1  Mm00487032_m1 

Gapdh (Glyceraldehide-3P-dehydrogenase) GAPDH Mm99999915_g1 

Nos3 (Nitric oxide synthase 3, endothelial) NOS3 Mm00435217_m1 

Gus (β-glucuronidase) Gus ** 

Table M3. Genes whose relative expression was explored using TLDA assay. ** Probes designed in 
our laboratory. 
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A small fraction of cDNAs were used to explore gene expression using TaqMan 

probes designed in our laboratory in a Rotor-Gene RG3000 (Corbett Life Science, 

Quiagen) and the results were then compared to those obtained using TLDA arrays. 

The designed primer sets and TaqMan probes were: 

mGAPDH Primer 5´-3´ 
Primer 3´-5´ 

5’‐TGTGTCCGTCGTGGATCTG‐3’ 
5’‐ GATGCCTGCTTCACCACCTT‐3 

TaqMan probe 
 

5’‐FAM‐TGGAGAAACCTGCCAAGTATGATGACATCA‐BHQ2‐3 

mGus 
 

Primer 5´-3´ 
Primer 3´-5´ 

5’‐CAATGGTACCGGCAGCC‐3’ 
5’‐AAGCTAGAAGGGACAGGCATGT‐3’ 

TaqMan probe 5’‐FAM‐TACGGGAGTCGGGCCCAGTCTTG‐BHQ2‐3 

   

RPL18 
 

Primer 5´-3´ 
Primer 3´-5´ 

5’‐CAATGGTACCGGCAGCC‐3’ 
5’‐AAGCTAGAAGGGACAGGCATGT‐3’ 

TaqMan probe 5’‐FAM‐TACGGGAGTCGGGCCCAGTCTTG‐BHQ2‐3 

 

Amplifications were performed in a total volume of 20 μL, using 10 μL of Absolute 

qPCR mix (ABgene, Thermo Fisher Scientific Inc.), 1 μL of each forward and reverse 

primers, 1 μL of probe and 1 μL of cDNA. The reaction conditions used were as 

indicated in Figure M6. 

 

 

Figure M6. Amplification protocol. 

 

e) Relative quantification and quality control 

For the analysis of the TaqMan assay, a cycle threshold (Ct) for each curve is 

determined.  At the beginning of the qPCR reaction, a basal unspecific fluorescence 

is detected. Setting a threshold over this background signal within the exponential 

phase of the amplification curve provides Ct, or the cycle number at which the 

emitted fluorescence surpasses (cuts) the threshold (Figure M7). Ct is defined as 
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the number of cycles required to produce a significant fluorescence increase 

compared to the baseline signal, and it is inversely proportional to the initial 

amount of cDNA. 

 

Figure M7. Example of 
qPCR amplification plots for 
the endogenous control 
RPL18 with serial dilution of 
a sample, providing a 
different starting number of 
cDNA copies. Fluorescence 
is plotted in a log scale and 
the threshold value can be 
manually adjusted. 

 

Data analysis was performed using the relative quantification method (Livak and 

Schmittgen, 2001), known as fold-increase method or 2-Ct, based on the 

comparison of the Ct values of different genes normalized to those of the 

endogenous controls (Housekeeping genes), such as rRNA 18S and Gapdh. 

∆𝐶𝑡 =  𝐶𝑡,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝐶𝑡,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

In order to perform this normalization, the efficiency of the amplification of both, 

the experimental gene and the endogenous control must be close to 1 and differ 

less than 10%. An efficiency of 1 means that the amount of DNA template doubles 

in each cycle. To determine the efficiency of the reaction, we performed a PCR with 

serial dilutions of one sample and obtained the Ct value for each dilution. 

Representing Ct against the number of copies of each dilution, we can fit a line to 

these data and calculate its slope (Figures M7 and M8). From this slope, we obtain 

efficiency as described in figure M8. The expression TLDA assays used were 

validated by the manufacturer. According to their specifications, the efficiency of 

the amplification reactions for all genes was 1, and differed by less than 10%. 

 

 

 

Figure M8. An example of a standard 
curve showing the threshold cycle (Ct) 
on the y-axis and the starting quantity 
of cDNA target on the x-axis. Slope 
value is used to calculate the efficiency 
of the reaction as indicated in the 
equation. Gene studied was Gapdh. 
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After obtaining for each gene its relative expression (∆𝐶𝑡 value) in preparations, 

(BPN and BPH tissues) we compared them to get ∆∆𝐶𝑡 with the following equation: 

∆∆𝐶𝑡 =  ∆𝐶𝑡,𝑠𝑎𝑚𝑝𝑙𝑒 − ∆𝐶𝑡,𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟 

Where the sample represents the experimental tissue (BPH) and the calibrator is 

the control tissue (BPN). With this quantification method, we define a calibrator (in 

our case BPN tissue) and we determine the changes in our “problem” preparation 

(the BPH samples) as fold increase or fold decrease with respect to the expression 

values of the calibrator. To represent these values, we used the logarithm of 2-Ct. 

Hence, a value of 0 means that there is no change in expression; whilst positive 

values indicate a higher expression in BPH and negative values indicate a higher 

expression in BPN tissue. 

For statistical comparisons, the ∆𝐶𝑡  obtained in each sample ( ∆𝐶𝑡,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 −

 ∆𝐶𝑡,𝑐𝑜𝑛𝑡𝑟𝑜𝑙) were subtracted from the mean ∆𝐶𝑡 of the calibrator to provide S.E.M. 

Each data point was obtained from duplicate determinations from at least three 

different assays. In the cases where gene expression was not detected in one of the 

conditions, a 𝐶𝑡 value of 40 was used in order to do the comparisons. 

 

5. Pressure Myography 

 
5.1. Pressure Myography fundaments 

Pressure Myography is a technique that allows studying the pathophysiological 

properties and functions of vascular vessels in vitro. By cannulating a small 

segment of a vessel, pressure myography simulates the physiological conditions of 

temperature, pH and intraluminal pressure of in vivo vessels. Designing different 

protocols, this system allows investigation of myogenic tone, of effects of 

endothelial secretions or the pharmacological effects on vasoconstrictor and 

vasodilator responses to different drugs and stimuli. Although the pressure 

myography mounting procedure could stress the vascular tissue, the vessels still 

retain many of their in vivo characteristics, which allow extrapolating the results to 

the in vivo behavior of the entire vascular bed. 

In this study, the pressure myography technique has been applied to investigate 

the role of different molecular components of the VSMCs membrane to the 

vascular tone. Using pharmacological approaches, vascular responses of mouse 

mesenteric arteries were investigated under near physiological conditions. Both 



 

 

- 59 - 
 

MATHERIAL AND METHODS 

constriction and dilation could be readily measured as changes in the vessel´s 

diameter via digital video-edge detection. 

5.2. Pressure Myography System 

The pressure myograph system (Danish Myo Technology, Aarhus, Denmark) used 

to study the functional responses of mesenteric arteries consists of several parts: 

myography pressure unit, pressure regulator interface, vacuum system, DMT 

microscope and DMT Software (Figure M9). 

 

Figure M9.  Scheme of the complete Pressure Myograph System (Model 111P). 

 

5.2.1. Myography pressure unit 

The pressure myography unit contains a bath chamber with two removable glass 

pipettes with a tip of 0.5 mm. Each pipette is connected to a pressure transducer 

(P1 and P2 in figure M10) that generates an electrical signal as a function of the 

pressure imposed by the liquid inside each pipette, based on a Wheatstone bridge 

circuit. The intraluminal liquid pressure is generated by the external pressure 

regulator interface connected to the perfusion inlet and outlet of the pressure unit. 

In addition, the force transducer coupled to the outlet pipette senses changes in 

the longitudinal force. Finally, the myo chamber cover includes ports for 
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superfusion, vacuum and oxygenation, also allowing the access for temperature or 

pH probes or application of reagents and drugs. 

 

Figure M10. Myography pressure unit scheme. 

 

5.2.2. Pressure regulator interface 

The perfusion flow is controlled by the Pressure Regulator via the Myo-interface 

and the MyoViewTM Software. The system consists of two separated circuits, one 

for air and the other one for buffer that transfers the flow and pressure setting 

signals from the Myo-interface to the pressure unit by the control of the air 

pressure in each circuit. 

5.2.3. Vacuum system 

The vacuum system includes a vacuum pump connected to the Myo chamber cover 

via a suction bottle, maintaining a constant Myo chamber volume of 6 ml. 

5.2.4. DMT microscope 

The DMT microscope (model 111P) is an inverted microscope equipped with a Zeiss 

Achromat 10X/0.25 objective and build-in CCD camera. The pressure unit is 

coupled above the DMT microscope and secured with a lever. The three micro 

positioners on the front adjust the objective focus in the X Y Z directions. The DMT-

microscope has a build-in infrared light source to avoid the influence of background 

light of the surroundings. 
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5.2.5. DMT Software 

The data acquisition and analysis was carried out using the MyoViewTM Software. 

This software obtains real-time images by measuring the differences in light 

intensity passing through the walls of a vessel mounted in the pressure unit. In 

addition, it allows controlling the pressure regulator interface, the force 

transducer, temperature and pH. 

5.3. Pressure Myography procedure 

Segments of 2nd and 3rd order of mesenteric arteries cleaned of connective and 

adipose tissues were mounted in the pressure myograph unit as following:  First, 

the Myo chamber was filled with preheated (37°C) and oxygenated (5% CO2-95% 

air) physiological saline Myography Solution (Table M4) and the inlet and outlet 

glass pipettes were purged of air by imposing a negative pressure using the vacuum 

system. Next, the arteries were cannulated and fixed to the P1 inlet pipette and, 

after removing the endothelial tissue by passing air bubbles through the artery 

segment, they were filled with Myography Solution. Then, the arteries were 

cannulated and fixed to the P2 outlet pipette avoiding stretching and stressing the 

vessels. After that, the pressure myograph unit was coupled to the DMT 

microscope and the Myo chamber cover was carefully placed. The oxygenated 

superfusion and the vacuum system were connected to control the final chamber 

volume (6 ml) and the temperature sensor was placed to maintain 37°C during the 

whole experiment. The arteries were slowly pressurized from 10 to 70 mmHg in 

oxygenated (5% CO2-95% air) Myography Solution. This gradually pressurization 

was carried out in 10 mmHg pressure increase steps every 5 min, reaching the final 

physiological pressure of 70 mmHg. We choose this value because it is a pressure 

slightly below the mean arterial pressure and most likely closed to the physiological 

pressure values in the mesenteric bed (Fenger-Gron, Mulvany and Christensen, 

1995). Then, the arteries were incubated at 37°C without intraluminal flow for at 

least 20 min to equilibrate before starting the data acquisition. 
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Composition 
Myography 

Solution 
(mM) 

Myography 
Solution-
60mM K

+
 

(mM) 

NaCl 120 65 
KCl 5 60 
NaCHO3 25 25 
Na2HPO4 1.18 1.18 
MgSO4 1.17 1.17 
Glucose 10 10 
EDTA 1 1 
CaCl2 2.5 2.5 

pH 7.4 

Table M4. Myography Solutions. 

 

The viability of the mounted arteries was evaluated by their vasoconstriction effect 

in response to Myography-60 mM KCl Solution or 0.5-1μM Phenylephrine, and 

endothelium removal was confirmed by the absence of dilation in response to 10 

μM Acetylcholine. 

5.4. Pressure Myography protocols 

The myography protocols performed in this study were based on the analysis of 

external diameter changes of the mounted arteries elicited by different drugs. To 

normalize the vasoconstrictor or vasodilator effects of the drugs, 10 μM of 

Nifedipine was added at the end of the experiment to determine the maximal 

vessel diameter upon relaxation and Myography-60 mM KCl Solution was used to 

determine the minimal diameter. When the vasoconstrictor response of drugs was 

tested, the following equation was used: 

𝑣𝑎𝑠𝑜𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 (%) =
𝐷𝑁𝑖𝑓𝑒𝑑𝑖𝑝𝑖𝑛𝑒 − 𝐷𝑥

𝐷𝑁𝑖𝑓𝑒𝑑𝑖𝑝𝑖𝑛𝑒 − 𝐷𝐾+
∙ 100 

Where 𝐷𝑁𝑖𝑓𝑒𝑑𝑖𝑝𝑖𝑛𝑒 is the maximal vessel diameter, 𝐷𝑥 is the diameter reached in 

presence of the drug and 𝐷𝐾+  is the diameter value reached by Myography-60 mM 

KCl Solution. 

To test the vasodilation response, a previous vasoconstriction state of the artery 

was performed using 1-10 μM Phe or UTP followed by the addition of the 

vasodilator drugs. In this case, the normalization was performed using the 

equation: 

𝑣𝑎𝑠𝑜𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 (%) =
𝐷𝑥 − 𝐷𝑃ℎ𝑒/𝑈𝑇𝑃

𝐷𝑁𝑖𝑓𝑒𝑑𝑖𝑝𝑖𝑛𝑒 − 𝐷𝑃ℎ𝑒/𝑈𝑇𝑃
∙ 100 
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Where 𝐷𝑥 is the diameter reached by the drug, 𝐷𝑃ℎ𝑒/𝑈𝑇𝑃 is the diameter value of 

the previous vasoconstriction state and 𝐷𝑁𝑖𝑓𝑒𝑑𝑖𝑝𝑖𝑛𝑒 is the maximal vessel diameter. 

The analysis of pressure myography data and the fitting of concentration-response 

curves of the drugs were performed using Origin® 7 Software. 

 

6. VSMC isolation 

Mesenteric arteries were subjected to a two sequential enzymatic incubations at 

37°C to obtain freshly isolated VSMCs, according with previously described 

protocols (Moreno-Domínguez et al., 2009; Tajada et al., 2012). After a first 

incubation in a 37°C preheated SMDS-Ca2+ free solution containing 0.8 mg·ml-1 

papain, 1 mg·ml-1 BSA and 1 mg·ml-1 dithiothreitol (Table M5, solution A) during 15 

min, arteries were transferred to a 37°C preheated SMDS-10 μM Ca2+ solution 

supplemented with 0.6 mg·ml-1 collagenase F and 1 mg·ml-1 BSA (Table M5, 

solution B) during 6 min. Then, arteries were washed three times with ice cold 

SMDS-10 μM Ca2+ solution and were mechanically dissociated using a wide-bore 

glass pipette to obtain freshly isolated VSM cells. Single cells were maintained at 

4°C and used within the same day for either protein expression assays or 

electrophysiological recordings. 

Composition 
A solution 

(mg ml
-1

 SMDS) 
B solution 

(mg ml
-1

 SMDS-10μM Ca
2+

) 

BSA 1 1 
DTT 1 - 
Papain 0.8 - 
Collagenase F - 0.6 

pH 7.4 
time 15’ 6’ 

Table M5.  A and B SMDS solutions to VSMCs dissociation. 

 

7. Protein expression 

The study of the protein expression profile of molecular components of the VSMCs 

contributes to elucidate their role in the vascular vessels properties and functions. 

Based on the specific strong association antibody-epitope, different antibodies 

have been used alone or in combination to investigate the protein expression, 

localization and association of several molecular components of VSMCs. The 

primary and secondary antibodies used are listed in Table M6. 
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Protein expression studies have been carried out both in native VSMCs and in 

heterologous expression systems (CHO: Chinese Hamster Ovary cell line). Several 

techniques have been used, including immunocytochemistry (ICC), co-

immunoprecipitation (coIP), Proximity Ligation Assay (PLA) and Ground State 

Depletion Superresolution (GSD). 

Antibody Source Reference Applications 

p
ri

m
ar

y 

anti-TRPC3 goat ACC-016 
(Alomone Labs) 

ICC, coIP, PLA, 
GSD 

anti-TRPC3 rabbit NBP1-70352 
(Novus Biologicals) 

PLA, GSD 

anti-TRPC6 Goat NBP1-00142 
(Novus Biologicals) 

PLA, GSD 

anti-TRPC6 rabbit ACC-017 
(Alomone Labs) 

ICC, coIP, PLA, 
GSD 

anti-P2Y6 rabbit APR-011 
(Alomone Labs) 

PLA, GSD 

anti-ANO1 (S-20) goat sc-69343 
(Santa Cruz Biotechnology) 

GSD 

se
co

n
d

ar
y 

Alexa 594 anti-rabbit goat 
 

A-11012 
Molecular Probes 

ICC 

Alexa 488 anti-goat donkey A-11055 
Molecular Probes 

ICC 

Alexa 568 anti-rabbit goat Molecular Probes GSD 

Alexa 647 anti-goat donkey Molecular Probes GSD 

Peroxidase-
conjugated 
anti-rabbit  

goat Dako coIP 

nuclei Hoechst  33342  (Life Technology) ICC, 

Table M6. Primary and secondary antibodies used. ICC: Immunocytochemistry; PLA: Proximity Ligation 
Assay; Co-IP: Co-Immunoprecipitation; GSD: Ground State Depletion. 

 

 

7.1. Immunocytochemistry 

The immunocytochemistry technique allows detecting protein expression pattern. 

In addition, nuclear staining with Hoechst facilitates interpretation of the image 

results. Using primary monoclonal or polyclonal antibodies that specifically 

recognize their epitopes and fluorescence-coupled secondary antibodies 
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recognizing the first ones, the signal can be amplified and easily detected. We used 

the following primary and secondary antibodies and the nuclei staining at the 

indicated concentrations: rabbit anti-TRPC3 (4.5 μg·ml-1), rabbit anti-TRPC6 (4.5 

μg·ml-1), rabbit anti-P2Y6 (4.5 μg·ml-1), goat Alexa 594 anti-rabbit (1:1000) and 

Hoechst 33342 (1:2000). 

7.1.1. Immunocytochemistry procedure 

For the staining of CHO cells overexpressing some of the proteins of interest, 

transfected CHO cells plated on 12 mm diameter poly-lysine coated coverslips were 

fixed with freshly made 4% paraformaldehyde in PBS for 15-20 min. After washing 

three times with PBS 1X, cells were permeabilized in PBTx (0.1% Triton X-100 in 

PBS) for 20 min and blocked with 1% BSA in PBTx during 10 min. Then, cells were 

incubated with the primary antibodies for 1-2 hour in a humidified chamber, 

washed three times with blocking solution and incubated with the secondary 

antibodies for 30-60 min protected from light, both incubations in blocking 

solution. After three washes with PBS and one with ddH2O, the nuclei were labelled 

with Hoechst 33342 and coverslips were mounted using Vectashield (Vector 

Laboratories, Inc., Burlingame, CA, USA). 

For native VSM cells, several modifications of the above protocol were introduced: 

1) Fresh isolated VSMCs were plated on 12 mm poly-lysine coverslips during 1 hour 

before starting. 2) After fixing the cells as described, samples were incubated in 100 

mM Glycine solution for 15 min before washing and permeabilization. 3) The 

blocking step was performed with PLA Blocking Solution (Duolink® In Situ Kit, 

Sigma-Aldrich) at 37°C for 1 hour. 4) Primary antibodies were diluted in 0.01% 

Odissey® Blocking Buffer in PBS and incubation was carried out overnight at 4°C.  

Samples were maintained at 4°C protected from light until visualization at the 

appropriate wavelengths using confocal microscopy. 

7.2. Co-immunoprecipitation (coIP) 

Co-immunoprecipitation (coIP) is an extension of the classical immunoprecipitation 

(IP) technique that allows detecting protein-protein interactions. Based on the 

strong protein-antibody interaction, natural protein associations or overexpressed 

complex can be jointly precipitated and analyzed with immunoblot. With proteins 

carrying an epitope tag that can be easily detected with commercially available 

antibodies or beds, coIP technique allows to easily purify the tag protein as well as 

other macromolecules bound to the target. Therefore, IP is focused on the primary 

target or antigen and coIP is focused on secondary targets or interacting proteins. 
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In this study, coIP assays were performed using agarose GFP-Trap_A beads 

(Chromotek, Planegg-Martinsried, Germany) that recognized the YFP of the 

hTRPC3-YFP fusion protein (see CHO cell line section). For the immunoblotting 

assays, the primary antibodies used were rabbit anti-TRPC3 (4.5 μg·ml-1) or rabbit 

anti-TRPC6 (4.5 μg·ml-1), and the secondary antibody used was horseradish 

peroxidase-conjugated anti-rabbit (dilution 1:20000). 

7.2.1. CoIP procedure 

CoIP assays were performed in CHO cells transfected with hTRPC3-YFP and TRPC6 

plasmids, alone or in combination, using agarose GFP-Trap_A beads following the 

manufacturer’s instructions (Chromotek, Planegg-Martinsried, Germany). CHO 

transfected cells were collected in Modified RIPA Buffer (MRB, Table M7) 

supplemented with Proteases Inhibitor Cocktail (Roche, Basel, Switzerland) and 

incubated on ice for 15 min. Then cells were centrifuged at 12000 g, at 4°C for 10 

min to obtain the CHO cell lysate. This cell lysate was incubated with gentle shaking 

at 4°C for 2-3 h with the GFP-Trap_A beads previously equilibrated in MRB. Cell 

lysate was washed with MRB (3x) and then with high NaCl-MRB buffer (3x) and 

stored in MRB buffer at -20°C. 

Composition 
MRB 
(mM) 

MRB-750 mM 
NaCl 
(mM) 

NaCl 150 750 
Tris pH 8 50 50 
NP-40 1% 1% 
Sodium deoxycholate 0.2% 0.2% 

pH 7.5 7.5 

Table M7. CoIP solutions. 

 

For the immunoblot analysis, the cell lysate was diluted in XT Reducing Agent and 

XT Sample Buffer (Bio-Rad, Hercules, CA, USA) and incubated at 95°C for 5 min. 

Then, a SDS-PAGE electrophoresis was carried out on 10% polyacrylamide gels to 

separate the different co-purified proteins. After that, proteins were transferred 

onto a nitrocellulose membrane and blocked with 5% non-fat dry milk in TTBS 

buffer (0.1% Tween 20 in Tris-buffered saline) for 1 h. Membranes were then 

incubated with primary antibodies at 4°C overnight and then with secondary 

antibodies for 1 h, both incubations in blocking solution. Finally, protein signals 

were detected using a VersaDoc 4000 Image System (Bio-Rad) with 

chemiluminiscence reagents (SuperSignal West Femto Maximum Sensitivity 

Substrate; Pierce, Rockford, IL, USA) and quantification was carried out by 
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densitometric analysis of each antibody band normalized to its corresponding β-

actin signal using Quantity One software (Bio-Rad). 

  

Cell lysate 

GFP-Trap 
beads 

incubation 

Centrifugation 

steps 
Immunoblot analysis 

Figure M11. CoIP working scheme. 

 

7.3. Proximity Ligation Assay (PLA) 

The Proximity Ligation Assay (PLA) is a technique for detection of protein or 

macromolecules associations. This technique identifies association of the target 

molecules in the order of zeptomoles (40·10-21 mol) (Fredriksson et al., 2002). In a 

more detailed way (Figure M12), samples are fixed, blocked and incubated with 

two primary antibodies against the targets raised in different species. When adding 

the secondary antibodies which have complementary PLA probes attached, if they 

are in close proximity (at least 40 nm), a hybridization using Ligase can be 

performed. Then, a rolling-circle amplification (RCA) reaction is performed using 

fluorescence labelled nucleotides and Polymerase. Finally, the signal from each pair 

of PLA probes can be easily detected as individual spots by fluorescence 

microscopy. 

    
Primary antibody 

incubation 
Secondary antibody 

incubation 
Ligation Amplification 

Figure M12. Working scheme of PLA assay technique. 
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PLA is a highly specific technique (Fredriksson et al., 2002) that can be used for 

detection and quantification of protein interactions. In this study, PLA technique 

has been used to identify the composition of multimeric channels (defining homo 

and heteromeric channel associations) as well as interactions between ion 

channels, receptors and cotransporters in native VSMCs. The primary antibodies 

and the working concentrations used were: rabbit anti-TRPC3 (4.5 μg·ml-1, 

Alomone), goat anti-TRPC3 (dilution 1:200, Novus Biologicals), rabbit anti-TRPC6 

(4.5 μg·ml-1, Alomone), goat anti-TRPC6 (dilution 1:200, Novus Biologicals), rabbit 

anti-P2Y6 (4 μg·ml-1, Alomone), goat anti-ANO1 (dilution 1:200, Santa Cruz). 

7.3.1. PLA procedure 

Protein associations were explored with PLA technology using Duolink® In Situ Kit 

(Sigma-Aldrich) following the manufacturer´s instructions. Briefly, freshly isolated 

VSMCs were settled in 12 mm diameter coverslips, at room temperature for 1 

hour. Then VSMCs were fixed with 4% paraformaldehyde for 20 min and then 

treated with 100 mM Glycine during 15 min. After washing three times with PBS 

1X, cells were permeabilized using PBTx (0.1% Triton X-100 in PBS) during 20 min 

and then blocked with Duolink® In Situ Blocking Solution, at 37°C during 20 min. 

Afterwards, samples were incubated with two primary antibodies (dilution 1:200 in 

0.01% Odissey® Blocking Buffer in PBS) raised in different species, at 4°C overnight. 

For negative controls, samples were incubated only with one primary antibody. 

After washing three times with Wash Buffer A, cells were incubated with the 

Duolink® In Situ PLA Probes (PLUS and MINUS), at 37°C during 1 hour. Then, cells 

were washed three times with Wash Buffer A, 1U/μl Ligase was added (dilution 

1:40) and samples were incubated at 37°C during 30 min. After washing with PBS 

(3x), amplification was performed using 10U/μl Polymerase (1:80 dilution in 

Duolink® In Situ Detection Reagents Orange) at 37°C during 100 min. After that, 

samples were washed twice in wash Buffer B for 10 min and once in 0.01% wash 

Buffer B for 1 min. Finally, samples were completely dried, mounted using Duolink® 

In Situ Mounting Medium and kept at 4°C protected from light until visualization 

using confocal microscopy. 

The immunofluorescence image acquisition was performed using a SP5 Confocal 

Microscope (Leica Microsystems, Wetzlar, Germany) at the appropriate 

wavelength. For comparisons between different conditions, image acquisition was 

performed using the same settings for all the conditions studied. ImageJ (Fiji 1.51g) 

software was used for image analysis.  
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7.4. Ground State Depletion (GSD) Super-resolution microscopy 

 

7.4.1. GSD Super-resolution fundaments 

Ground State Depletion (GSD) microscopy is a super-resolution technique that 

allows localizing single molecules with high precision and create a high resolution 

image below the diffraction limit. The principle of single-molecule detection-based 

super-resolution is based on the different states of energy in which activated 

fluorophores can be (Figure M13). In conventional fluorescence microscopy, 

delocalized electrons of fluorophores can be transferred from a ground state (S0) to 

an excited state (S1) and, as they oscillate back into the S0, they emit fluorescence. 

In GSD Super-resolution technique, this oscillation cycle is modified by switching 

the fluorophores to off-states, reducing the amount of simultaneously emitting 

excitable fluorophores that become spatially and temporally distinct from 

neighboring fluorophores. Then, the fluorophores in off-states can return back to S0 

and fluoresce again, while other molecules switch to off-states (Fölling et al., 2008; 

Dixon et al., 2017). 

 

 Figure M13. GSD Super-resolution microscopy based principle. 

 

The burst of fluorophores can be fitted to a Gaussian curve whose centroid 

corresponds to the exact position of each fluorophore and, by collecting all the 

single fluorophore information of several thousands of separated images, a GSD 

Super-resolution image with sub-diffraction-limit resolution is reconstructed 

(Figure M14). The quality of the GSD Super-resolution images obtained depends on 

the numerical aperture (NA) of the lens, the wavelength of light used for excitation 

and, crucially, the fluorophore properties: number of photons per switched event, 

the on-off duty cycle, photostability and number of switching cycles. Using 

fluorophores with high photon yield per switching event and low on-off duty cycle 
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provides both high localization precision and density. Furthermore, the imaging 

buffer conditions and properties can modified the switching properties of 

fluorophores and the quality of the reconstructed image (Dempsey et al., 2011; 

Dixon et al., 2017). 

 

Figure M14. Scheme of ON-OFF switching cycles and GSD Super-resolution image reconstruction. 

 

GSD Super-resolution technique was used to explore the exact localization of single 

molecules, such as purinergic receptors and TRPC channels, on the membrane of 

VSMCs. In addition, the association and clustering properties of these membrane 

proteins was also studied. Using immunocytochemistry fundaments with different 

antibody combinations, it was possible to obtained GSD reconstructed images 

showing the protein distribution of these receptors and channels with high 

resolution. 

7.4.2. GSD Super-resolution System 

The GSD Super-resolution system used in this study consists of several parts: 

inverted microscope, TIRF/GSD module, high power lasers, external light source 

and acquisition software (Figure M15). 
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Figure M15. GSD Super-resolution system. 

 

a) Inverted microscope 

A DMI6000B inverted microscope (Leica Mycrosystems, IL, USA) was used for 

Super-resolution measurements. Images were acquire using 160x HCX PL APO 

(NA=1.47) oil-immersion lens and an Andor iXon3 897 EMCCD Camera coupled to 

the inverted microscope. The inverted microscope with all of the attached 

components were placed on an anti vibration table. 

b) TIRF/GSD module 

A DMi8 S TIRF module (Leica Mycrosystems, IL, USA) coupled to the inverted 

microscope was used to switch from TIRF to GSD conditions. This TIRF/GSD module 

enables to control the TIRF penetration depth and the illumination angle of the 

samples, allowing the acquisition of super-resolution images with high power 

illumination options. 

c) Sample SuMo stage 

A sample Suppressed Motion (SuMo) 11888439 stage (Leica Mycrosystems, IL, 

USA) coupled to the inverted microscope was used to minimize possible drifts, 

ensuring stability during acquisition. 
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d) High power lasers 

The GSD Super-resolution system is equipped with high-power lasers with the 

following wavelengths: 488 nm, 532 nm and 642 nm. The measured intensities at 

the focal plane of each one are 1.4 kW·cm-2, 2.1 kW·cm-2 and 2.1 kW·cm-2, 

respectively. In addition, the system comprises a 405 nm laser to control the single 

molecule switching behaviour (backpumping). 

e) External light source 

An external EL6000 light source (Leica Mycrosystems, IL, USA) connected to the 

inverted microscope via a liquid light guide was used to enhance fluorescence 

imaging. By using an alignment-free, mercury metal halide bulb, it keeps heat away 

from the sample and the microscope. 

f) Acquisition software 

For the image acquisition, LAS X (Leica Mycrosystems, IL, USA) software was used. 

This software allows controlling the focus in all the XYZ directions, switching 

between TIRF and GSD imaging modes, and stablishing the setting conditions for 

acquiring images. In addition, it allows analyzing the high resolution reconstructed 

images. 

7.4.3. GSD Super-resolution procedure 

GSD Super-resolution requires labelling the proteins of interest with fluorophores, 

which can be done with the conventional immunocytochemistry technique. Using 

commercial primary and secondary antibodies, specific mounting media and GSD 

Super-resolution software, the on-off duty cycles of fluorophores can be easily 

controlled to obtain a single molecule reconstructed GSD image. 

a) GSD Super-resolution immunostaining protocol 

Freshly isolated VSMCs were settled on 25x25 mm square coverslips at room 

temperature during 1 h and then cells were fixed with PFA-GA (3% 

paraformaldehyde-0.1% glutaraldehyde in PBS) at room temperature for 10 min. 

After washing three times with PBS, cells were reduced with 0.1% NaBH4 in ddH2O 

at room temperature during 5 min. Then, cells were blocked with SBTx blocking 

solution (20% Sea Block-0.25% Triton-X 100 in PBS) for 1 h at room temperature. 

After removing SBTx solution, samples were incubated with 10 μg·mL-1 of the 

primary antibodies: rabbit anti-P2Y6, goat anti-TRPC3, rabbit anti-TRPC3 and rabbit 

anti-TRPC6, in SBTx solution, at 4°C overnight. After washing three times, cells were 
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incubated with 2 μg·mL-1 of the secondary antibodies Alexa  647 donkey anti-goat 

and Alexa 568 goat-anti rabbit, at room temperature for 1 h protected from light. 

Then, samples were washed three times with PBS and postfixed using 0.25% GA in 

PBS at room temperature during 10 min. Finally, samples were washed three times 

with PBS and kept at 4°C in 3 mM azide and protected from light until image 

acquisition. 

b) GSD Super-resolution sample mounting 

In GSD Super-resolution, fluorophores are required to be fluorescent only a fraction 

of time to be individually localized. For this purpose, the imaging buffer contains 

two components: β-Mercaptoethylamine (MEA, Cysteamine, Sigma Aldrich), to 

induce photoswitching of the fluorophore, and an oxygen-scavenging system 

(Glucose-oxidase+Catalase), to reduce the effects of photobleaching. The 

previously described (Dempsey et al., 2011) imaging buffer used in this study was 

prepared as following (Table M8): 

Composition 
MEA 
(mM) 

Diluting 
buffer B 

(mM) 

GLOX 
(mM) 

Imaging buffer 
10 mM 
(mM) 

MEA 100   GLOX 
Glucose oxidase 
Catalase 

 
0.56 mg mL

-1
 

0.34 μg mL
-1

 
Glucose  10% w/v  
NaCl  10  
Tris 1M pH 8  50 10 MEA 10 
Glucose oxidase   56 mg mL

-1
 Buffer B Vf 

Catalase   3.4 mg mL
-1

   
pH 8 (HCl)     

Table M8. Imaging buffer components for GSD Super-resolution microscopy. Left, separately 
stored aliquots of the components of the imaging buffer. Right, imaging buffer, freshly prepared. 

 

100 mM-MEA aliquots of 1mL were stored frozen at -20°C, and centrifuged-(14000 

rpm, 3 min) GLOX (Glucose-oxidase+Catalase) aliquots were kept at 4°C, both used 

within 1-2 weeks. The imaging buffer has to be freshly prepared and used within 1-

2 h due to the acidification caused by the enzymatic reactions, preventing changes 

in the photophysics properties of the fluorophores. 

To mount the samples, slides of 76x26x1.5 mm with a depression of 15-18 mm 

diameter and 0.6-0.8 mm depth (neoLab®, Germany) were used. Firstly, imaging 

buffer was placed on the depression and then coverslips with cells were carefully 

mounted, avoiding formation of air bubbles. Finally, coverslip was fixed using the 

yellow and blue components of silicone-glue Twinsil® (Picodent, Wipperfürth, 
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Germany), previously mixed in a 1:1 volume quantity. After 5-10 min, the glue was 

hardened and samples were mounted on the inverted microscope. 

c) GSD Super-resolution acquisition protocol 

For the GSD Super-resolution acquiring, images were acquired firstly with 642 laser 

and then with 532 laser, using a penetration depth of 130 nm and a TIRF angle of 

66.32°. For VSMCs cells, the threshold value to eliminate background, nonspecific 

signals, was stablished in 85 events·pixel-1 and the minimum number of events per 

image were fixed at 8. A minimum of 30000 images per laser were acquired to 

obtain the GSD reconstructed image. 

7.4.4. GSD Super-resolution analysis 

Three different analyses were performed from the GSD reconstructed images: 

shortest intermolecular distance analysis and cluster size and density analysis. 

a) Shortest intermolecular distance analysis 

An object-based analysis to measure the shortest distance between purinergic 

receptors and TRPC channels was performed using the JACoP plug-in of the ImageJ 

software (National Institute of Health, NIH). This previously described analysis is 

based on image segmentation by connexity analysis (Henis et al., 2003; Bolte and 

Cordelieres, 2006; Mercado et al., 2014). Briefly, all the adjacent pixels of a 

reference pixel with intensity above a set threshold limit are considered to be part 

of the same structure as the reference pixel. After segmentation, these individual 

particles are represented by centroids, defined as the geometrical centre of each 

particle including its global shape. With JACoP plugin, the shortest distances 

between centroids are analyzed for each laser-activated GSD reconstructed image. 

Analyzing the data using frequency histograms fitted to a Gaussian curve of two or 

three components, these measurements allowed stablishing colocalization 

between particles. 

b) Cluster size and density analysis 

Cluster size (in μm2) and density (in particles·μm2) analysis were performed using 

the ImageJ software for each individual laser-activated GSD reconstructed image. 
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8. CHO cell line culture and maintenance 

Chinese Hamster Ovary (CHO) cell line was used as an in vitro model to explore the 

role of different transfected ion channels present in native cells. This epithelial-like 

cell line was initiated in 1957 (Gamper, Stockand and Shapiro, 2005) and several 

subclones have been developed since then. Their easy culture and maintenance, 

high transfection efficiency and very low expression of endogenous ion channels 

make CHO cells specially valuable for electrophysiological studies. 

CHO cells were maintained in Dulbecco´s modified Eagle´s medium supplemented 

with 10% fetal bovine serum, penicillin-streptomycin (100 U·ml-1 each) and 2 mM L-

glutamine at 37°C in a 5% CO2 humidified atmosphere. CHO cells were grown as a 

monolayer in poly-lysine-coated coverslips prior to transiently transfection using 

TransIT-X2® System (Mirrus, Madison, WI, USA) following the manufacturer´s 

instructions. Cells were trasnfected with: 1 μg of DNA of hTRPC3-YFP (yellow 

fluorescent fusion protein) kindly provided by Dr Klauss Groschner, (University of 

Graz, Austria), 1 μg of a bicistronic plasmid expressing ratTRPC6 and green 

fluorescent protein (GFP) as separate proteins (a gift from DR Jason Yuan, 

University of Arizona, USA), or 0.5 μg of each. Cells were used within 24-72 h 

postransfection for immunocytochemistry, coIP and electrophysiological studies. 

 

9. Electrophysiology: patch-clamp technique 

 
9.1. Patch-clamp fundamentals 

Patch-clamp is a technique used to study ionic currents in individual isolated living 

cells. An electrical potential difference (𝑉𝑚) across the cell membrane is generated 

by the selective ion permeability of the membrane, and it is maintained by the Na+-

K+ pump. The ion channels and transporters of the lipid membrane behave as 

conductors (𝐺𝑚), meaning that they represent the pathways for ionic current (𝐼) to 

flow. These three parameters (Vm, I and Gm) are related by the Ohm´s law: 

∆𝑉𝑚 = 𝐼𝑅𝑚 =
𝐼

𝐺𝑚
 

In resting conditions, the ∆𝑉𝑚 between the inner and outer sides of lipid membrane 

depends on the concentrations of ions to which the membrane is permeable and 

on their permeabilities (𝑝𝑖𝑜𝑛). In most mammalian cells, K+, Na+ and Cl- make the 

largest contribution to the resting membrane potential (𝑉𝑚), described as the 

steady-state condition with no net flow of electrical current across the membrane. 

Therefore, 𝑉𝑚 follows the Goldman-Hodgkin-Katz (GHK) equation: 
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𝑉𝑚 =
𝑅𝑇

𝐹
ln (

𝑝𝐾[𝐾+]𝑜 + 𝑝𝑁𝑎[𝑁𝑎+]𝑜 + 𝑝𝐶𝑙[𝐶𝑙−]𝑖

𝑝𝐾[𝐾+]𝑖 + 𝑝𝑁𝑎[𝑁𝑎+]𝑖 + 𝑝𝐶𝑙[𝐶𝑙−]𝑜
) 

For performing the patch-clamp recordings, a micropipette (a glass tube filled with 

an electrolyte solution and containing an AgCl recording electrode connected to an 

amplifier) is brought into contact with the cytosol of an isolated cell. Another 

electrode (reference or bath electrode) is placed in a bath surrounding the cell. An 

electrical circuit can be formed between the recording and reference electrode 

with the cell of interest in between, and changes in ion flows across the cell 

membrane can be measured. 

9.2. Patch-clamp set-up 

 

a) Perfusion chamber 

The perfusion chamber consists of a polycarbonate chamber (RC-24E, Warner 

Instruments, Hamden, CT, USA) attached to an aluminum platform (P1, Warner 

Instruments) and a glass coverslip perfectly sealed to the bottom of the chamber. 

The small volume (~200 μL) of the chamber is controlled by an inlet and an outlet 

connected to a perfusion system, allowing quick solution changes. Cells are placed 

on the bottom of the chamber either directly or previously attached to glass 

coverslips. 

b) Perfusion system 

The perfusion system consists of six reservoirs controlled by electrovalves. 

Solutions from reservoirs perfuse by gravity at a rate of 1-2 ml·min-1 through 

silicone tubes and converge in one tube to reach the perfusion chamber. The outlet 

tube connected between the chamber and the vacuum pump system facilitates the 

quick solution changes of the chamber. 

c) Inverted microscope 

IX70 (Olympus, Tokyo, Japan) and Eclipse TE300 (Nikon, Tokyo, Japan) inverted 

microscopes were used for patch-clamp experiments. pE-100 Light Source systems 

(CoolLED, UK) attached to each microscope were used when patching transfected 

CHO cells. Both microscopes were also adapted with a support for the electrode 

holder (2.0 mm 64-840 QSW, Warner Instruments), the perfusion chamber and the 

macro and micromanipulation system. The macro manipulator system is attached 

to the holder through the amplifier headstage (AU CV201, Axon Instruments). 
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d) Micro and macromanipulators 

The macro (PSC-500 Series, Burleigh, Newton, NJ, USA) and micromanipulators 

(423 Series, Newport, Irvine, CA, USA) used for electrophysiological studies allows 

finely controlling the distance between the micropipette and the cell. The macro 

manipulator allows localizing the micropipette and moving it closer to the cell and 

the micromanipulator permits stablishing contact between the pipette tip and the 

cell membrane. Adjustments in the three XYZ spatial axes can be performed. 

e) Vibration isolation table 

The vibration isolation table (63-544 microg, TMC, Peabody, MA, USA) works based 

on air cushions placed on the table legs that support a heavy table top. This table 

top is kept afloat using a gas source from a nitrogen tank. The inverted microscope 

is placed on the table top, isolating it from external vibrations. The vibration 

isolation table is essential for stable recordings to avoid crushing the pipette to the 

bottom of the chamber or detaching the pipette from the cell. Moreover, the 

microscope, the perfusion system and the macro and micromanipulators are 

placed inside a Faraday cage to isolate from external electric fields. 

f) Amplifiers 

The Axopatch-200 and the Multiclamp 700A (Axon Instruments, Inc., Foster City, 

CA, USA) amplifiers used in this study allow amplifying the signal and also to control 

several recording settings: current/voltage clamp switching, offset control, 

capacitance and series resistance compensations, holding potential settings, gain 

and other useful controls. 

g) Digitizers 

Digidata 1322A and 1440A (Axon Instruments) were the devices used to convert de 

analogical recorded data (AD) to digital data (DA) and vice versa. In addition, these 

interfaces enable the communication between the cell signals, the amplifier and 

the computer software, by using AxoScope software. Analogical signals generated 

by cells are converted to digital format by the analog-digital converter of digitizers. 

Similarly, digital signals and protocols generated by the computer are converted to 

analogic by the digital-analog converter of Digidata. 

h) Patch-clamp software 

pClamp 10.2® software (Axon Instruments) was used to communicate the AD/DA 

conversion interface to the computer and to perform the patch-clamp data 
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analysis. This software comprises several subroutines, and we used mainly two of 

them: Clampex® subroutine, to design stimulation protocols and acquire the data, 

and Clampfit® subroutine to analyze the recorded data. 

9.3. Micropipette manufacturing system 

Borosilicate glass capillaries with outer and inner diameters of 2.00 and 1.12 mm, 

respectively, and an inner filament (1B200F-4, World Precision Instruments, Inc., 

UK) were used as for making micropipette electrodes. The inner filament helps with 

the filling of the pipette by increasing capillary properties and avoiding bubble 

formation. Two micropipettes were obtained from each capillary by pulling them, 

and after that, the tips were fire-polished to obtain a smooth surface and increase 

their resistance. 

PP-83 vertical puller (Narishige, Tokyo, Japan) and P-97 automatic puller (Sutter 

Instruments, Novato, CA, USA) were used to stretch borosilicate glass capillaries. 

The vertical puller heats the capillaries using a heating coiled resistance and 

stretches them in two successive steps. With the automatic puller, the capillaries 

are clamped at both ends and a resistance placed between the clamps heats and 

stretches the capillaries following a previously fixed cycle protocol. This protocol 

consists of several heating and successive stretching cycles by setting several 

parameters, such as pulling, velocity, resistance cooling time and air flow pressure. 

By controlling these parameters, electrodes can be obtained with a greater 

reproducibility. 

9.4. Patch-clamp procedure 

Electrophysiological recordings were carried out in CHO transfected cells and in 

native VSMCs from mesenteric arteries. Freshly isolated VSMCs were placed in the 

perfusion chamber and allowed to adhere to the chamber bottom at room 

temperature for 15 min. For CHO cells, the coverslip of transfected cells was 

directly placed in the chamber. Then, the perfusion system, previously purged with 

the bath solutions, was connected to the inlet of the chamber and the vacuum was 

activated. The glass micropipette filled with internal solution (Tables M11 and M12) 

was attached to the AgCl electrode and fixed to the pipette holder. Using the 

macromanipulator, the micropipette electrode was placed above the selected cell 

and, with the micromanipulator, got in contact with the cell to make a high 

resistance (GΩ) seal. We monitored the resistance of the pipette using the 

subroutine Seal Test of the software Clampex®, which continuously records the 

current in response to a pulse of -10 mV (Figure M17). After gigaseal formation, the 

holding potential was made negative, close to resting membrane potential of cells 
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(-40 mV for VSMCs and -60 mV for CHO cells). At this point we are in the cell-

attached configuration of the patch-clamp technique. Patch-clamp technique can 

be used in several different configurations (Figure M16). In this work we use the 

whole-cell configuration for voltage-clamp measurements and the perforated-

patch configuration for current-clamp studies. 

 

Figure M16.  Different configurations of the patch-clamp technique. 

 

With the voltage-clamp, we control the membrane potential with an electronic 

feedback system that measures the cell membrane potential and compares it with 

the potential established in the experimental protocol. Differences between both 

potentials are immediately corrected with an injection of current, that mirrors 

(with opposite direction) the ionic current that we are registering. To reach the 

whole-cell configuration we start from the point in which we got the gigaseal 

formation (cell-attached configuration). After this, a negative pressure is applied to 

the tube connected to the micropipette electrode, disrupting the seal and allowing 

the access to intracellular solution. This can be detected by the large capacitative 

transient that appears when the gigaseal is broken (Figure M17). The amplitude 

and the time course of these peaks were used to estimate the series resistance or 

access resistance (Ra) and membrane capacitance (Cm) of the cells. A good 

recording typically has a stable seal over 1 GΩ, Ra of less than 20 MΩ (and usually 

much smaller, below 10 MΩ) and constant cell capacitance and resistance during 

all recording. In this configuration we achieve electrical continuity between the 

recording electrode and the inside of the cell. Since the cell volume is negligible 

compared to the volume of the internal solution in our pipette, we considered the 

composition of the medium in the intracellular side of the membrane identical to 

that of our internal solution. 

Cell-attached 

_
_

C

O

Inside-Out 

Outside-Out

_
_

C

O

Inside-Out

_
_

C

O

Perforated-Patch 

Whole-Cell



 

- 80 - 
 

MATHERIAL AND METHODS 

 

Applying suction Gigaseal Capacitative transient 

Figure M17. Current response vs time when forming the GΩ seal and accessing the patched cell. 

 

9.5. Patch-clamp protocols 

The patch-clamp protocols are different depending on whether we use voltage-

clamp measurements (fixing the membrane potential to study ionic currents) or 

current-clamp (fixing the currents to study membrane potential variations). 

9.5.1. Voltage-clamp measurements 

To study changes in currents across the membrane, voltage-clamp (Vclamp) 

technique was used in whole-cell configuration, as previously described. As 

mentioned above, using whole-cell configuration, the pipette solution directly 

contacts cytoplasm and replaces it, so it is important to use pipette solutions 

similar to intracellular one with the appropriate modifications to study the ion 

conductance of interest. 

The voltage-protocols used with Vclamp technique consisted mainly on voltage-

ramps (Figure M18). 1s depolarizing ramps from -150 mV to +80 mV from a holding 

potential of -10 mV were applied every 10 s under control conditions or in the 

presence of agonists or blockers. When this protocol was used with intracellularly 

applied antibodies, the access resistance (Ra) and the membrane capacitance (Cm) 

were continuously monitored and recorded by applying the membrane test 

algorithms of Clampex 10 software throughout the experiment. Only cells with GΩ 

seal and stable Ra and Cm values were considered for analysis. Data were acquired 

at a frequency of 5 kHz and filtered at 2 kHz. 

 
 

Figure M18. Ramps protocol used for Vclamp measurements in whole-cell configuration. 



 

 

- 81 - 
 

MATHERIAL AND METHODS 

9.5.2. Current-clamp measurements 

To study changes in the membrane potential induced by agonists and blockers, 

current-clamp (Iclamp) technique was used in perforated-patch configuration. With 

Iclamp technique, if we do not inject current (I=0) we record the resting membrane 

potential. Unlike in the voltage clamp mode, where the membrane potential is held 

at a level determined by the experimenter, in current-clamp mode the membrane 

potential is free to vary, and the amplifier records the  voltage the cell generates 

either spontaneously or as a result of stimulation. 

 

Figure M19. Stablishment of perforated-patch configuration. The gigaseal is 
formed at t=0 min. The patch initially appears to become leaky and then the 
capacitative transients are developed (modified from Molleman, 2003). 

 

Using amphotericin B, small holes permeable to monovalent ions (but not larger 

molecules and second messengers) are formed on the cell membrane, allowing the 

contact between both sides of membrane while preserving the intracellular milieu. 

Thus, when the GΩ seal is stablished, the presence of amphotericin B (300 μg·mL-1) 

in the pipette solution leads to the perforated-patch configuration within minutes, 

and this can be monitored by the slow increase of the capacitative transients 

together with the decrease of the Ra through the pipette (Figure M19). Recording 

of membrane potential changes in response to different agonists and blockers was 

initiated when the Ra values fall below 20 MΩ. At this point, the amplifier can be 

switched to current-clamp mode (I=0) to record membrane potential. The high Ca2+ 

content of the pipette solution ensures the correct performance of the perforated-

patch technique, as accidental rupture of the patch (changing to whole-cell 

configuration) leads to a sudden Ca2+ load and cell death. These recordings were 

carried out in a gap-free acquisition mode. 

 

Figure 3.11
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9.6. Patch-clamp solutions 

The bath and pipette solutions used to study the contribution of purinergic 

receptors, TRPC channels and chloride channels currents in VSMCs and CHO cells 

are described in the following sections. 

a) Solutions for TRPC current recordings 

External solution. The TRPC external solution was designed to explore unspecific 

cationic currents in VSMCs and includes nicardipine to block VOCCs channels, CsCl2 

to block Kv currents and DIDS and Niflumic acid to block Ca2+-activated Cl- currents. 

For CHO cells, standard solution 1X was used (Table M9). 

Internal solution. The TRPC internal solution was designed to let 100 nM of free 

Ca2+ and includes CsCl2 to block Kv currents. This solution was prepared adding all 

components but Mg-ATP and setting a pH of 7.0. Next, keeping the solution at 4°C 

on ice, ATP was added and pH was brought to 7.2 using KOH. Aliquots of 1 mL were 

stored at -80°C. Internal solution was filtered before use and always kept on ice. 

When intracellularly antibodies were needed, the antibody (4.5 μg·mL-1) was added 

to the filtered internal solution (Table M10). 

Composition 
TRPC external 

solution 
(mM) 

STD 1X 
solution 

(mM) 

NaCl 141 141 
CaCl2 1.8 1.8 

MgCl2·6H2O 1.2 1.2 

KCl  4.7 
CsCl2 5  

Glucose 10 10 

Hepes 10 10 
Nicardipine 5 μM  
DIDS 100 μM  

Niflumic acid 100 μM  

pH 7.4 (NaOH) 

Table M90. Bath solutions for TRPC recordings. 
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Composition 
TRP internal 

Solution 
(mM) 

Perforated-patch 
internal solution 

(mM) 

CsCl2 10  

Cs-Aspartate 110  

NaCl 10  
CaCl2 3.2 8 

Mg-ATP 2  
KCl  10 
K-Glutamate  95 
Hepes 10 10 
BAPTA 10  

Amphotericin B  300 μg mL
-1

 

pH 7.2 (CsOH) 7.2 (KOH) 

Table M10. Intracellular solutions for TRPC recordings. 

 

b) Solutions for Ca2+-activated Cl- current (IClCa) recordings 

External solution. The IClCa external solution was designed to explore the Ca2+-

activated Cl- currents in VSMCs. This solution includes CsCl2 and 

tetraethylammonium chloride (TEA) to block K+ currents and nicardipine to block 

VOCCs channels (Table M11). 

Internal solution. The IClCa internal solution was designed to let 500 nM of free Ca2+ 

and includes CsCl2, Cs-Aspartate and TEA to block K+ currents. ATP was added to 

ice-cold solutions and then pH was adjusted. Aliquots of 1 mL were stored frozen at 

-80°C and filtered before filling the pipette electrode (Table M11). 

c) Solutions for perforated-patch recordings  

For Iclamp measurements, we used the standard solution 1X in the bath (Table M9) 

and the perforated-patch internal solution (Table M10) in the pipette. This internal 

solution could be stored at 4°C as it does not contain ATP. When filling the pipette 

electrode, the pipette tip was first dipped in filtered perforated-patch internal 

solution (without amphotericin B) and then backfilled with the same solution 

containing amphotericin B. Amphotericin-B solutions were prepared freshly every 2 

hours by adding 4 µl of a stock 50 µg/µl of Amphotericin B in DMSO to 500 µl of 

filtered internal solution. The solution was then sonicated to allow amphotericin to 

come into solution and kept at room temperature protected from light. 
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Composition 
IClCa external 

Solution 
(mM) 

IClCa internal 
Solution 

(mM) 

NaCl 131  

CaCl2 1.8 7.22 

MgCl2·6H2O 1.2  
CsCl2 5 10 

Cs-Aspartate  110 

TEA Cl 10 10 
Mg-ATP  2 
Glucose 10  

Hepes 10 10 

EGTA  10 
Nicardipine 5 μM  

pH 7.4 (NaOH) 7.2 (CsOH) 

Table M11. Electrophysiological solutions for Ca
2+

-activated Cl
-
 

channels. 

 

9.7.  Data processing and analysis 

Electrophysiological data acquisition and part of the analysis were performed with 

the Clampfit subroutine of the pCLAMP software (Axon Instruments) and with 

Origin 7.5 software (OriginLab Corp., Northampton, MA, USA). 

 

10.  Statistical analysis 

Statistical analysis was performed using R software (R Foundation for Statistical 

Computing, Austria). Data are expressed as mean values ± standard error of the 

mean (SEM) from several different experiments. 

For pressure measurements, pressure myography, electrophysiology and PLA data, 

statistical comparisons were performed using the Student´s two-tailed t-test for 

paired or unpaired data or ANOVA with Bonferroni tests, depending on 

experimental design. For quantitative PCR data, Student´s t-test was performed in 

the case of normal distribution (i.e. a Saphyro-Wilks test with p>0.05), whilst a 

pairwise Mann-Whitney-Wilcoxon test (i.e. a non-parametric test) was applied to 

determine whether the differences between groups of pooled data were 

statistically significant. All through the Results section, values of p<0.05 are 

represented with one asterisk, while values of p<0.01 and p<0.001 were 

represented with two and three asterisks, respectively. 
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1. Essential Hypertension mouse model. 

The contribution of purinergic receptors, TRPC and Ca2+-activated chloride (CaCCs) 

channels to the increased vascular tone in hypertension was explored using the 

BPN/BPH mice model of essential hypertension. 

 
Figure R1. Systolic, diastolic and mean arterial blood pressures 
and pulse pressure in BPN and BPH mice. Each bar represents 
the mean ± SEM, n=24 and n=16 of BPN and BPH mice, 
respectively. *** P<0.001 compared to BPN. 

 

BPN and BPH arterial blood pressures were measured by Volume Pressure 

Recording method using a tail-cuff system. Systolic, diastolic, mean pressures and 

pulse pressure were obtained from BPN and BPH mice between 10 and 40 weeks of 

age and were consistently higher (~30 mmHg) in BPH compared to BPN mice 

(Figure R1). Within the ranges of age studied, no time-dependent changes in blood 

pressure were observed in either group. 

1.2. Characterization of vascular reactivity to sympathomimetic agonists in 

BPH phenotype. 

BPH VSM cells have a more depolarized resting membrane potential when 

compared with BPN cells. The values obtained in this work, measured in BPN and 

BPH freshly isolated VSMCs under current-clamp (I=0) perforated-patch 

configuration were -48.8 ± 1.1 and -40.7 ± 0.7 mV respectively (n=76 cells from 35 

BPN, and n=97 cells from 38 BPH) , in good agreement with previous data obtained 

in our laboratory (Moreno-Domínguez et al., 2009; Tajada et al., 2012). 

Mesenteric arteries from BPH mice showed also a higher myogenic tone compared 

to BPN vessels (Tajada et al., 2012). The role of different ionic channels underlying 

these differences between BPN and BPH arteries has been thoroughly 

characterized in our laboratoty (all references from the lab). However, vascular 
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tone is physiologically regulated by many modulators that activate Gq-coupled 

receptors, and the possible differences between BPN and BPH mice have not been 

studied yet. The sympathetic nervous system (SNS) is a main regulator of vessel 

tone by releasing Noradrenaline (NA) that stimulates VSMCs contraction activating 

the α1-adrenergic receptors present in these cells. Nevertheless, activation of these 

receptors does not entirely mimic the physiological activation of sympathetic 

neuronal contraction due to the release of other neurotransmitters such as ATP 

(Hirst and Edwards, 1989; Mulvany and Aalkjaer, 1990; Wier and Morgan, 2004). In 

order to explore the differences between BPN and BPH responses to NA, the effect 

of Phenylephrine (PHE), a specific α1-adrenergic receptor agonist, on vessels tone 

was investigated by pressure myography using segments of 2nd and 3rd order 

mesenteric arteries pressurized to 70 mmHg (Figure R2). 

 

Figure R2. Vasoconstriction response elicited by PHE. 
Dose-response curves of PHE were obtained in BPN (blue) 
and BPH (red) mesenteric arteries. Data represents mean 
± SEM, n=5-12 BPN mice and n=3 of BPH mice. **p<0.01 
when applying ANOVA and Bonferroni tests. 

 

Concentration-response curves of the PHE-elicited vasoconstrictor effects were 

obtained in BPN and BPH mice (Figure R2) and fitted to a Hill function curve as 

follows: 

𝐸 = 𝐸𝑚𝑎𝑥 ∙
[𝑃𝐻𝐸]𝑛

𝐸50
𝑛 + [𝑃𝐻𝐸]𝑛

 

Where, 𝐸𝑚𝑎𝑥 represents the maximum vasodilator effect, 𝐸50 represents the [PHE] 

that gives the 50% of the maximum effect and 𝑛 represents the Hill coefficient. BPH 
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arteries are more reactive to PHE, evidenced by a higher Emax (40.3% vs. 31.2%) and 

a lower E50 (2.51 μM vs. 6.64 μM). In both cases, the Hill coefficient (0.99 and 0.90) 

and the correlation R2 coefficient (0.99 and 0.99), the last related to the fitting 

method, were close to 1.  

These results demonstrate that BPH arteries exhibit a greater reactivity to an α1-

adrenergic agonist, pointing to differences in the signaling pathway between BPN 

and BPH mice not explored yet. For that reason, we decided to explore ion 

channels participating in the α1-adrenergic signaling pathway-induced contraction 

which could contribute to the more depolarized Vm and the greater reactivity in 

BPH cells, such as the transient receptor potential classic (TRPC1-7) family of 

channels. 

 

2. Role of TRPC channels in essential hypertension. 

 
2.1. mRNA expression profile of TRPC channels 

In order to study the contribution of the non-specific cationic TRPC channels to the 

BPH phenotype, their mRNA expression profile was explored by qPCR. Resistance 

vessels, such as mesenteric arteries, and femoral and aorta tissues from BPN and 

BPH mice were used. The genes explored included members of the TRPC family 

(TRPC1-7) and several control genes, such as calponin as a control of VSMC, 

endothelial nitric oxide synthase (eNOS) as a control of endothelial contamination, 

and ribosomal protein 18S (RP18S) as an endogenous control for the qPCR 

technique. We explored both the relative abundance (expressed as 2−∆𝐶𝑡) and the 

differences in expression observed in BPH mice compared to BPN (expressed as 

log 2−∆∆𝐶𝑡). 

All members of the family, with the exception of TRPC5 and TRPC7, were expressed 

in the three vascular beds, although channel expression was larger in resistance 

(mesenteric) than conduit (femoral and aorta) arteries (See figure R3 and note the 

different scale for the femoral an aorta data). While TRPC1 expression was 

dominant in conduit arteries, expression of TRPC1, 3, 4 and 6 was very similar in 

mesenteric arteries. When differences in expression between BPN and BPH were 

studied (Figure R3, right panel), the only channel overexpressed in BPH cells was 

TRPC3. Differences in expression are represented as log 2−∆∆𝐶𝑡, so that 0 values 

indicate no change in mRNA expression, positive values mean higher expression in 

BPH and negative values mean the opposite. 
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Figure R3. Changes in the mRNA expression profile of TRPC family of channels in BPN and 
BPH arteries. Left panels show the relative abundance of TRPC family channels in VSMC 
of mesenteric, femoral and aorta arteries expressed as 2-

ΔCt
, where ΔCt=Ctchannel – Ct18S. 

Right panels show differences in the TRPC channels expression in BPH arteries using BPN 
as calibrator calculated as 2

-ΔΔCt
, where ΔCt=ΔCtBPH – ΔCtBPN. Positive values mean 

increased expression whilst negative values mean decreased expression. Each bar is 
mean±SEM, n=10. **P<0.01. 

 

Since TRPC channels expression is higher in resistance vessels (which functionally 

contribute more to set blood pressure), and TRPC3 is overexpressed in those 

vessels in BPH mice when compared with BPN, we decided to explore the possible 

contribution of TRPC3 channels to the hypertensive phenotype in mesenteric 

arteries. We used a pharmacological approach, testing several pyrazole compounds 

(Pyr3, Pyr6 and Pyr10) that have been described as putative blockers of the TRPC 

channels (Kiyonaka et al., 2009; Schleifer et al., 2012), to explore the contribution 

of TRPC3 channels to vascular tone using pressure myography and 

electrophysiology. While Pyr3 and Pyr10 have been proposed as selective blockers 

of DAG-activated TRPC3 channels, Pyr6 seems to exhibit greater potency inhibiting 

Orai-mediated Ca2+ entry (Schleifer et al., 2012). 
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2.2. TRPC3 contribution to vascular tone. 

Endothelium-denuded arteries were pressurized to 70 mmHg and precontracted 

with PHE (5-10 μM) in order to activate TRPC channels and assess the vasodilatory 

response elicited by the pyrazole compounds. Pyr applications at different 

concentrations were performed in the continuous presence of PHE, and at the end 

of the experiment nifedipine (10 μM) was applied to determine the maximum 

passive vessel diameter (Figure R4 A). 

 

Figure R4. Effects of Pyr compounds on the vascular tone in BPN and BPH mesenteric arteries. A, 
representative examples of the vasodilator effect of Pyr3 in BPN (left) and BPH (right) mesenteric 
arteries. Arteries were pressurized to 70 mmHg and precontracted with PHE (5 μM) before Pyr 
applications at the indicated concentrations (μM). At the end of the experiment, Nif (10 μM) was 
added to obtain the maximum passive diameter. B, concentration-response vasodilator effect of 
Pyr10, Pyr3 and Pyr6 in BPN (blue) and BPH (red) PHE-precontracted mesenteric arteries. Data were 
normalized to the maximal diameter values obtained with Nif and expressed as percentage of 
relaxation (see Methods). Each point is mean ± SEM, n=5-9 arteries in each group. *p<0.05, **p<0.01 

Concentration-response curves were obtained for each Pyr compound in BPN and 

BPH arteries, and data were fitted to a Hill function (Figure R4 B). Pyr3 and Pyr10 

elicited a concentration-dependent vasodilator response which was more effective 

in BPN mesenteric arteries. In fact, the Hill fitted curves for Pyr3 and Pyr10 in BPN 

arteries were best fitted with two different components (Table R1), being the high-

affinity one responsible for ~ 30% of the total response. This high-affinity 

component was not present in BPH. We hypothesized that this component 
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represents the specific blockade of TRPC3 channels described in the literature, 

while the low-affinity corresponds to some unspecific effect. In contrast to the 

effects seen with Pyr3 and Pyr10, Pyr6 vasodilation was less potent and no 

significant differences between BPN and BPH at lower concentrations were found. 

 

 

 

 

If we assume that the main target of Pyr3 and Pyr10 are TRPC3 channels, the larger 

vasodilator effects of these drugs at concentrations ≤10 μM in BPN arteries would 

suggest an increased functional role of TRPC3 channels in these arteries. These 

results were certainly not anticipated by the mRNA expression studies, although 

several facts could explain the apparent discrepancy. First, it is possible that mRNA 

changes in expression do not correlate with changes in protein. Second, the 

differences in the Pyr3/10 effects could reflect differences not only in the number 

of channels present in the membrane but also in the subunit composition of the 

TRPC tetramers. Since TRPC6 and TRPC1 expression was smaller in BPH mesenteric 

arteries (see figure R3), and it is well known that TRPC3 and TRPC6 form 

heteromultimers in physiological conditions (Hofmann et al., 2002; Earley and 

Brayden, 2015), we decided to explore the second possibility using 

electrophysiological and immunocytochemical approaches, previously validated in 

heterologous expression system. 

2.3. Characterization of the Pyr10 sensitivity of TRPC3 and TRPC6 channels in 

a heterologous expression system. 

The dependence of the effect of Pyr10 on the composition of the TRPC tetramers 

was explored by characterizing the effect of Pyr10 on the non-selective cationic 

currents recorded in the CHO cell line overexpressing TRPC3, TRPC6 or both 

(TRPC3/6). Depolarizing ramps from -150 mV to +80 mV were used in transfected 

and mock transfected CHO cells in resting conditions and in the presence of Pyr10 

(10 μM). In addition, as TRPC3 and TRPC6 mediated currents can be activated by 

several GPCR as well as by pressure-induced membrane stretch (Gonzales et al., 

2014; Wilson and Dryer, 2014), we tested the effect of Pyr10 on currents activated 

by a hypotonic stimulus (70% STD 1X solution, HS, see Methods). 

 BPN BPH 
Kd1 (µM) Kd2 (µM) R

2
 Kd (µM) R

2
 

Pyr3 0.013
 

8.3 0.99 20 0.99 
Pyr10 0.067

 
5.97 0.99 10 0.99 

Pyr6 - 8.16 0.95 20 0.98 

Table R1. Kd values (μM) for each Pyr compound. Kd1 values refer to the 
high affinity component of the Hill fitted curve. 
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Figure R5. Functional contribution of TRPC3 and TRPC6 channels to basal and stretch-activated, non-
selective cation currents in CHO cells. A, representative traces of currents recorded in unstimulated 
CHO cells transfected with TRPC3, TRPC6 or TRPC3/6 channels. The effect of the Pyr10 (10 μM) 
application (Pyr10, green) and the subtracted Pyr10-sensitive current (C-Pyr10, red) are also shown. B, 
bar plots showing averaged currents amplitudes (pA/pF) measured at -150 mV (lower bars) and +80 
mV (upper bars) in each condition and also in mock cells. Data are mean ± SEM, n=7-23 cells in each 
condition. C, representative time course experiment showing the effect of Pyr10 on the stretch-
activated currents recorded at -150 mV and +80 mV in a TRPC3/6 transfected CHO cell. D, summary of 
the Pyr10 effect on stretch-activated currents recorded at -150 mV (lower bars) and +80 mV (upper 
bars) for each condition. Data are mean ± SEM, n=13-22 cells in each condition. 

Cationic currents of variable amplitudes were recorded in mock transfected CHO 

cells and in cells transfected with TRPC3, TRPC6 or TRPC3/6 channels. In all cases, 

basal currents were significantly larger in transfected cells (Figure R5 B). Figure R5 

A shows representative current traces of cells transfected with TRPC3, TRPC6 or 

both, in control conditions and in the presence of Pyr10 (10 μM). The figure also 

shows the Pyr10-sensitive currents (red), obtained by subtracting the current 

obtained in the presence of Pyr from the current obtained in the absence of the 

blocker (C-Pyr10). Control currents were higher in TRPC3 than in TRPC6 transfected 

cells and showed an intermediate behavior in TRPC3/6 transfected cells. Regarding 

the effect of Pyr10, data showed that only cells expressing TRPC6 channels (alone 

or with TRPC3) were sensitive to Pyr10 (figure R5 B). Since TRPC3 and TRPC6 are 

activated when cells are stretched, we also tested the effect of Pyr10 on stretch-

activated CHO cells. Typical traces obtained in whole-cell experiments recording 
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the current peak density at -150 mV and +80 mV, before and after Pyr10 

application, are shown in figure R5 C. As expected, HS application elicited a 

reversible increase in the recorded currents similar in the three conditions studied 

(TRPC3-, TRPC6- and TRPC3/6-transfected cells), significantly larger than the 

obtained in untransfected cells. Interestingly, as in the case of basal currents, the 

blocking effect of Pyr10 (10 μM) on HS-activated currents was obtained only when 

TRPC6 channels were present (figure R5 D). 

Taken together, these data strongly suggested that Pyr10 is actually a TRPC6 

channel blocker, in clear disagreement with previous data in the literature where 

Pyr10 has been described as specific for TRPC3 channels (Schleifer et al., 2012). In 

our hands, Pyr10 is indeed a TRPC6 blocker, and since this blockade occurred either 

in TRPC6 or TRPC3/6 transfected cells, it could be hypothesized that Pyr10 behaves 

as a TRPC current blocker of TRPC6 homotetramers and also of TRPC6 

heteromultimers with other TRPC channels, such as the TRPC3. 

In order to confirm the presence of those heteromultimers in the CHO cells 

transfected with TRPC6 and TRPC3 channels, we performed co-

immunoprecipitation assays using GFP-Trap® beads that bind to the TRPC3-YFP 

fusion protein. The antibodies against TRPC3 and TRPC6 channels used for the 

immunoblotting step were first tested with immunocytochemistry in TRPC3- or 

TRPC6-transfected CHO cells. Figure R6 shows the specificity of both antibodies as 

well as the membrane expression of both TRPC channels. 

 

Figure R6. Immunostaining evidence of the location and association of TRPC3 and TRPC6 channels 
in CHO cells. Representative confocal images of immunolabelling using anti-TRPC3 and anti-TRPC6 
antibodies (middle images) in TRPC3-YFP (left) and TRPC6-GFP (right) transfected (upper images) 
CHO cells. Immunostaining was predominant at the cell membrane and correlated with YFP (fusion 
protein)-labelling for TRPC3 (lower images). No cross-reactivity was observed in either case. 
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Figure R7 shows a typical co-immunoprecipitation experiment in which TRPC3 

channels could be detected in the pull-downs obtained from both TRPC3 and 

TRPC3/6 transfected cells, strongly suggesting that TRPC3 and TRPC6 associate to 

form heteromultimers. As expected, TRPC6 could only be detected in the pull-

downs obtained from the TRPC3/C6 transfected cells. 

 

Figure R7. TRPC3-YFP and TRPC3-YFP/TRPC6 transfected cells were co-
immunoprecipitated using GFP-Trap beads and immunoblotted with 
anti-GFP (as load control), anti-TRPC3 and anti-TRPC6. Data are 
representative of two independent experiments. 

 

These experiments demonstrate that Pyr10 is a tool for studying TRPC6 channels, 

either as homo or heteromultimers. To our knowledge, there is not a similar 

pharmacological tool to explore specifically TRPC3 channel function. However, 

since anti-TRPC3 antibodies have shown a good specificity when tested in 

immunocytochemical and western-blot experiments, we decided to explore if they 

could affect functionally TRPC3 channels when applied intracellularly in a patch-

clamp pipette. Therefore, whole-cell patch-clamp experiments were performed in 

transfected and mock CHO cells adding to the pipette solution anti-TRPC3 or anti-

GFP/RFP (as negative control, see Methods). 
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Figure R8. Use of antibodies to determine functional contribution of TRPC3 and TRPC6 channels in 
CHO cells. A, blocking effect of the intracellularly applied antibodies on whole-cell currents in 
TRPC3-transfected (right) and mock CHO (left) cells. Bars are average basal current densities at -
150 mV (lower bars) and +80 mV (upper bars) after 5-10 min of recording in control pipette 
solution or in presence of the indicated antibodies. Data are mean ± SEM, n=9-14 cells from at 
least four different experiments. The inset plots show representative current traces obtained at the 
indicated times in a mock (left) or in a TRPC3-transfected (right) cell with anti-TRPC3 in the pipette 
solution. B, same protocol of intracellularly applied antibodies used on stretch-activated currents 
with HS solution in TRPC3- and TRPC3/6-transfected cells. Bars are mean ± SEM, n=8-10 cells. 

 

No changes in basal current amplitudes were observed in transfected and mock 

cells when using control antibodies up to 10 min of recording, while a significantly 

reduction in transfected cells was observed when dialyzing with anti-TRPC3 (Figure 

R8 A). Similar results were obtained when the effect of antibodies was tested on 

HS-activated currents (Figure R8 B). The effect of anti-TRPC3 antibodies was also 

tested in cells transfected with TRPC3/6 (Fig R8 B). In this case, the effect was also 

evident, suggesting that the antibody was also effective on heteromultimeric 

channels. 
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2.4. Characterization of TRPC3/6 heteromultimers in VSMCs from BPN and 

BPH mice. 

We have shown that Pyr10 and anti-TRPC3 antibodies were good tools for 

exploring TRPC6 and TRPC3 mediated currents, respectively, although they could 

not provide information about possible changes in heteromultimeric composition 

when both channels are present. This is the case of native VSMCs from mesenteric 

arteries. However, the larger expression of TRPC3 and lower expression of TRPC6 

mRNA in BPH cells could translate into a different composition of TRPC3/6 

heteromultimers in these cells, and this could have functional consequences in the 

control of vascular tone. To test this hypothesis, Proximity Ligation Assays (PLA, see 

Methods) were carried out in freshly isolated VSMCs from BPN and BPH mesenteric 

arteries using combinations of anti-TRPC3 and anti-TRPC6 antibodies raised in 

different species. Since PLA gives positive signals with proteins that are closer than 

40 nm, it can detect the presence of heteromultimers in the membrane, although 

the existence of clusters of channels can not be excluded (see the Discussion 

section). Nevertheless, and for the sake of simplicity, the possible associations that 

could be found in a single tetramer, and how they would be detected with the 

three tested combinations of antibodies (C3/C3, C6/C6 and C3/C6), are depicted in 

the figure R9. Briefly, the combination C3/C6 labels only the heteromultimers, 

whilst the combinations C3/C3 and C6/C6 detect not only homomultimers but also 

heteromutimers with more than one subunit of the corresponding channel. 

 

Figure R9. Scheme of the C3-C3, C6-C6 and C3-C6 possible 
associations that can be recognized using PLA. 

 

Figure R10 A shows representative confocal images of the punctae distribution 

obtained in BPN and BPH native cells for the three tested combinations of 

antibodies. Labelling the cells with two different anti-TRPC3 antibodies (C3-C3 

combination) or combining anti-TRPC3 and anti-TRPC6 antibodies (C3-C6 
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combination) produced a significantly higher number of puncta per cell in BPH than 

in BPN cells. In contrast, the labelling with two different TRPC6 antibodies (C6-C6 

combination) was significantly smaller. Average values of the punctae density 

normalized to the cell size for all the described combinations are depicted in figure 

R10 B. Since C3/C3 and C6/C6 labelling are mutually exclusive, and the combination 

of both would label all possible associations of TRPC3 and TRPC6 channels, the 

percentage of heteromultimers with more than a TRPC3 (C3>1) or TRPC6 (C6>1) in 

BPN and BPH cell can be estimated from the C3/C3 and C6/C6 data (Figure R10 C). 

 

Figure R10. Differences in TRPC assembly in BPN and BPH mesenteric VSMCs. A, representative 
confocal images of the punctae distribution in BPN (upper) and BPH (lower) native VSMC cells. B, bar 
plot showing the average of density punctae of each condition represented in (A). Data are mean ± 
SEM, n=36-64 cells in each condition from four different experiments. *p<0.05, **p>0.01 compared to 
BPN. C, interpretation of the summary data, considering 100% as the sum of C3-C3 or C6-C6 and 
assuming C3-C6 is included in both. 

Although these experiments do not provide accurate information about the total 

expression of TRPC3 or TRPC6 channels in the cells, they allow us to conclude that 

heteromultimers are more abundant in BPH cells, and that the TRPC3/TRPC6 ratio 

in those multimers is higher than in BPN cells. 

2.5. Characterization of the functional contribution of TRPC3 and TRPC6 

multimeric associations in native VSMC cells from BPN and BPH mice. 

All data presented so far suggest a higher TRPC3 contribution, either as homo or 

heteromultimers, to the BPH phenotype. To test this hypothesis from a functional 

point of view, we characterized the TRP mediated currents in freshly isolated native 

VSMCs with the whole-cell configuration of the patch-clamp technique using Pyr 
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compounds (to block TRPC6 channels) or intracellular anti-TRPC3 antibodies (to 

block TRPC3 channels). Cationic currents were elicited with a ramp voltage protocol 

(see Methods) either on non-stimulated VSMCs (basal currents) or after the 

application of different agonists activating GPCRs (Receptor Operated Currents, 

ROCs). 

2.5.1. Characterization of basal TRPC currents. 

Ionic currents were recorded in the presence of TRP bath solution (see Methods). 

Basal current amplitudes at -150 mV were significantly larger in BPH than in BPN 

cells, even when current amplitudes were corrected for cell size (-8.1 ± 0.5 pA/pF in 

BPH vs. -6.4 ± 0.7 pA/pF in BPN, figure R11 B), since BPH cells were significantly 

larger than BPN (16.9 ± 0.6 pF, n=61 cells from 25 BPH; vs. 13.9 ± 0.5 pF, n=36 cells 

from 16 BPN). On the contrary, the effect of Pyr3 and Pyr10 on current amplitude 

was smaller in BPH cells. Figure R11 A shows representative records obtained in 

cells from both mice, and Figure R11 C represents the Pyr3 ad Pyr10 sensitive 

currents expressed as percentage of total current, measured at -150 mV. 

 
Figure R11. Pyr sensitivity of TRPC-mediated basal currents in native VSMCs. A, 
representative current-voltage traces of a BPN and a BPH native cells in TRP solution 
(C), in presence of Pyr10 (10 μM) and after washout of the blocker (R). B, bar plot 
showing averaged current amplitudes at -150 mV for BPN and BPH cells. Data are 
mean ± SEM, n=40-60 cells from 16-25 mice in each condition. *p<0.05. C, bar plot 
showing the average fraction of Pyr3- and Pyr10- sensitive current at -150 mV. Data 
are mean ± SEM, n=10-23 cells from 7-13 mice in each condition.**p<0.01; 
***p<0.001. 
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For these recordings, the composition of intra and extracellular solutions was 

designed to minimize or block any other currents (see Methods). Also, particular 

care was taken to study inly cells with high resistance seals and very good access, 

so that the contribution of other unspecific, leak conductances is negligible. With 

these assumptions, the larger TRP currents recorded in BPH cells could certainly 

contribute to the more depolarized Vm characteristic of that phenotype, and the 

Pyr effects suggested a smaller contribution of TRPC6 channels to the cationic 

currents in BPH cells, in clear agreement with the results obtained in the PLA 

experiments and with the smaller expression of TRPC6 mRNA in VSMCs from 

mesenteric arteries. Those experiments also suggested a higher contribution of 

TRPC3 channels in BPH cells. To confirm this last point, the effect of intracellularly 

applied anti-TRPC3 antibody on whole-cell currents was analyzed in native BPN and 

BPH cells. A ramp protocol from -150 mV to +80 mV was applied in cells where the 

antibody anti-TRPC3 (or an antibody control, anti-RFP) was included in the pipette 

solution. Ramps were applied every 10 s, and the time course of the current 

amplitudes at -150 mV and +80 mV was studied, being t=0 the beginning of the 

whole-cell recording (figure R12 A). In the presence of anti-TRPC3 antibody in the 

pipette, basal current amplitude of BPH cells decreased by 25% and by 39% after 5 

and 10 min of recording, respectively. No changes were observed when applying 

anti-RFP or no antibody. The effects of the anti-TRPC3 antibody were very small in 

BPN cells, being only significant in BPH cells (figure R12 B). 
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Figure R12. Effect of anti-TRPC3 antibody on TRPC3-mediated currents in BPN and BPH cells. A, 
representative traces of the current amplitudes at the indicated voltages in a BPH cell recorded with 
anti-RFP (left) or with anti-TRPC3 (right) antibodies in the pipette solution. Current-voltage ramp 
traces 1, 2 and 3 corresponding to 0, 5 and 5 min of recording are depicted. B, average current 
amplitudes represented as the fraction of the initial current with both, anti-TRPC3 or control 
antibodies, are shown for BPN and BPH cells. Each bar is mean ± SEM, n=7-14 cells in each group. For 
the control group, untreated cells and anti-RFP treated cells were pooled together. *p<0.05. 

These results strongly suggest that TRPC3 contribution to the cationic currents in 

native VSMCs is higher in BPH when compared to BPN mice. 

2.5.2. Characterization of Receptor activated TRPC currents.  

We have demonstrated so far differences in the contribution of TRPC3/6 channels 

to basal currents in BPN and BPH VSMCs. Next, we explored these differences 

when these currents were activated with different agonists, such as ATP (30 μM), 

UTP (50 μM), Phenylephrine (10 μM) or the DAG-analogue OAG (100 μM). These 

agonists were applied to activate ROCs, and the effect of Pyr3/10 (10 μM) was 

investigated to explore the contribution of TRPC6 channels to the currents (Figure 

R13). 
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Figure R13. Effect of Pyr blockers on agonist-activated currents in native VSMCs. A, summary data of 
30 μM-ATP-, 50 μM-UTP-, 100 μM-OAG- and 10 μM-PHE-activated currents alone or in the presence of 
10 μM-Pyr3/10 recorded with a ramps protocol from -150 mV to +80 mV. Each bar is the mean ± SEM, 
n=17-36 cells for agonist-induced currents and n=6-14 cells for Pyr3/10 blockade. **p<0.01 compared 
with UTP-activated currents in BPN cells. B, representative current amplitude traces recorded in the 
presence of 30 μM ATP alone or with 10 μM Pyr3 at the indicated voltages in a BPN (left) and a BPH 
(right) cell. Inset plots showing current-voltage traces in control (1) conditions, in the presence of ATP 
(2) or ATP+Pyr3 (3). C, bar plot showing the fraction of ATP-activated current that can be blocked by 
Pyr3 or Pyr10 in BPN and BPH cells. *p<0.05 compared to BPN. 

ROCs amplitude showed no significant differences between BPN and BPH cells for 

all the studied agonists, except for UTP, which elicited significantly smaller currents 

in BPH cells. However, a remarkable difference was obtained when comparing the 

blocking effect of Pyr compounds. Although Pyr3/10 almost fully abolished ROCs in 

BPN cells, a significant fraction of the activated currents was insensitive to these 

drugs in BPH cells. Figure R13 B shows representative traces obtained in BPN and 

BPH cells when ATP was used to elicit ROCs. 

Taken together, expression and functional studies performed so far strongly 

suggest a significant change in the contribution of TRPC3 and TRPC6 channels to 

the VSMCs electric phenotype in BPH mice. TRPC3/6 mediated currents are larger 

in BPH cells, and so is the ratio of TRPC3/TRPC6. This “shift” towards a more 

dominant role of TRPC3 channels could contribute in part to the increased vascular 
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tone present in the BPH phenotype. However, these differences between BPN and 

BPH cells do not explain all the differences observed when ROCs were studied, 

especially when UTP was used as agonist. 

Since electromechanical coupling is very relevant for controlling vascular tone 

(Herring and Paterson, 2018) and TRPC3/C6 are just one element in the activation 

cascade from the receptor to contraction, we decided to explore in detail the 

purinergic signaling cascade both in BPN and BPH mesenteric arteries in order to 

better contextualize the observed changes in TRPC3/6 channel. 

 

 

3. Differences in the purinergic signaling cascade between 

BPN and BPH VSMCs. 

 
3.1. Functional contribution of P2XR and P2YR receptors to vascular tone. 

Purinergic signaling is particularly relevant in the physiology of vascular smooth 

muscle cells, since it is involved in the sympathetic control of the vessel tone. NA 

and ATP co-released by sympathetic nerves mediates vasoconstriction in a biphasic 

way. First, there is a transient response mediated mainly by the P2X purinergic 

receptors which is followed by a sustained response mediated by the α1-

adrenoreceptors (von Kügelgen and Starke, 1968; Sneddon and Burnstock, 1985). 

However, the contribution of the purinergic and adrenergic components to the 

overall vasoconstrictor response to nerve stimulation is not homogeneous in the 

different vascular beds. In large arteries, the response is essentially adrenergic, 

while in smaller arteries the response is mediated predominantly through P2X 

receptors (Gitterman and Evans, 2001). In addition to these responses mediated by 

the neurogenic release of ATP, it is well known that other nucleotides, like UTP, 

mediate vasoconstrictor responses through the activation of P2Y receptors, and 

these receptors have been described to play a relevant role in the myogenic 

response of small vessels (Kauffenstein et al., 2016). 

To investigate the possible differences in the purinergic signaling pathways 

between BPN and BPH VSMCs, vascular responses to different agonists and 

blockers of those pathways were first explored by pressure myography. Mesenteric 

arteries (2nd or 3rd order) were pressurized to 70 mmHg and concentration-

response curves of ATP and UTP were obtained to discriminate between P2X- and 

P2Y-mediated responses, respectively. 
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Figure R14. Differences in the vasoconstrictor response to ATP and UTP in BPN and BPH mesenteric 
arteries. A, B, representative examples showing the ATP- and UTP-mediated effects on the vascular 
tone of BPN (A) and BPH (B) mesenteric arteries. The inset plots show the ATP- and UTP-mediated 
effects on 10 μM αβ-MeATP- activated arteries. 

 

Figure R14 shows typical experiments carried out in BPN (left) and BPH (right) 

arteries. In both cases, UTP and ATP were applied sequentially in several steps with 

increasing concentrations, from 1 to 50 µM. Whilst ATP responses were transient, 

and very similar in BPN and BPH cells (10 μM ATP: 18.3 ± 2.1 % vs. 16.7 ± 2.7 % of 

vasoconstriction, p=0.68, n=7-16 arteries from 8 BPN and 5 BPH mice, respectively), 

vasoconstrictor effects of UTP were sustained and significantly larger in BPH 

mesenteric arteries (Figures R15 and R16 A). At the end of each sequence, the 

higher concentration of the agonist was tested in the presence of αβ-MeATP (10 

μM), an agonist of P2X1 that elicits a fast and transient response due to receptor 

desensitization. These responses are shown in the lower part of the figure at a 

magnified time scale. Concentration-response curves obtained for ATP and UTP in 

several arteries were averaged, and data were plotted and fitted to a Hill function 

curve as follows: 

𝐸 = 𝐸𝑚𝑎𝑥 ∙
[𝑁𝑇𝑃]𝑛

𝐸50
𝑛 + [𝑁𝑇𝑃]𝑛
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Where, 𝐸𝑚𝑎𝑥 represents the maximum effect, [NTP] represents the concentration 

of the tested nucleotide triphosphate, 𝐸50 represents the concentration of the 

agonist that gives the 50% of the maximum effect and 𝑛 represents the Hill 

coefficient. The best fitting parameters are shown in the following table (Table R2): 

 

Figure R15. Dose-response vasoconstrictor effect of ATP (left) and UTP 
(right) in BPN (blue) and BPH (red) mesenteric arteries. Data were 
normalized to maximal diameter values obtained with Nif (10 μM) and are 
expressed as percentage of vasoconstriction (see Methods). Each point is 
mean ± SEM, n=5-16 arteries in each group. p<0.001 in UTP curves when 
applying ANOVA and Bonferroni test. 

 

 

 
BPN BPH 

Emax  

(%) 
𝐸50 

(µM) 
n R

2 
Emax 

(%) 
𝐸50 

(µM) 
n R

2
 

ATP 33.2±7.5
 

6.8±3.8 1.2±0.4 0.99 27.2±11.8 6.4±8.5 0.9±0.4 0.98 

UTP -
 

~115
*
 - 0.84 40.2±8.6 2.9±1.8 1±0.4 0.99 

Table R2. Main kinetics parameters obtained after fitting ATP and UTP dose-response curves to a Hill 
function. *Since proper fitting to the Hill function was not possible in BPN cells, the apparent 𝐸50 was 
stimated carrying out a fitting procedure assuming Emax and n values identical to those obtained in 
BPH. 
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In the presence of αβ-MeATP, a maximal dose of ATP did not elicit any response, 

suggesting that ATP vasoconstriction is essentially mediated by P2X1 purinergic 

receptors. Moreover, whilst the effects of ATP are very similar in BPN and BPH 

arteries, BPN cells are almost insensitive to UTP stimulation (as the concentration-

response curve in these arteries is shifted to the right almost two orders of 

magnitude). This larger response to UTP in BPH mice was clearly not anticipated 

from the results obtained when the effect of UTP on TRPC currents was studied 

(Figure R13). 

Since the constrictor responses to UTP are in all likelihood mediated by the P2Y1-7 

family of purinergic receptors, the striking difference in the response between BPN 

and BPH arteries suggests a more relevant contribution of P2Y purinergic receptors 

to the vascular tone in BPH mice. To determine the members of the P2Y family of 

purinergic receptors involved, we tested the effects of the agonists and blockers 

described in Table R3: 

 

 

Average results are shown in figure R16. The vasoconstrictor effects of UTP (mainly 

through P2Y2/P2Y4) and UDP (mainly through P2Y6) were much larger in BPH than 

in BPN arteries. However, due to the fast break down of UTP to UDP, the UTP-

mediated effects obtained could represent, at least in part, UDP-mediated effects. 

Therefore, the more stable synthetic UTP-analog UTPγS and the specific P2Y6 

synthetic agonist PSB0474 were tested at 10 μM. Both elicited larger 

vasoconstrictions in BPH. In addition, the effect of the specific P2Y6 blocker MRS 

2578 (10 μM) was tested on the responses induced by UDP or PSB0474, and in both 

 P2X1 P2Y1 P2Y2 P2Y4 P2Y6 

ATP   =UTP =UTP  

UTP   =ATP =ATP  

UDP     >UTP 

αβ-MeATP      

MRS 2578      

PSB0474      

UTPγS      

Table R3. Specific physiological (top) and synthetic (bottom) agonists 
(green) and blockers (red) previously described in the literature used to 
explore purinergic receptors involved in UTP-mediated signaling 
cascade in BPN and BPH arteries (from Lewis and Evans, 2000; Malmsjö 
et al., 2000; Sugihara et al., 2011). 
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cases a partial blockade was obtained. Taken together, these data suggest that 

UTP-elicited vasoconstrictor effects are mainly mediated by P2Y6 receptors, with a 

smaller contribution of P2Y2 and/or P2Y4 receptors. 

 

Figure R16. Involvement of P2Y6 purinergic receptors in UTP-mediated responses in 
BPH. A, bar plot showing differences in the vasoconstriction responses mediated by the 
indicated P2Y agonists (10 μM) in BPH and BPN mesenteric arteries. Each bar is mean ± 
SEM, n=2-16 arteries in each group. **p<0.01; ***p<0.001, compared to BPN. B, bar 
plot showing blocking effect of MRS 2578 (10 μM) on BPH arteries precontracted with 
UDP and PSB (10 μM). Each bar is mean ± SEM, n=2 arteries. 

 

To further investigate the different contribution of the purinergic receptors to the 

hypertensive phenotype, their mRNA expression pattern was explored by qPCR 

(Figure R17). qPCR data showed mRNA expression of P2X1 and P2X4 and P2Y1, P2Y2, 

P2Y4 and P2Y6 purinergic receptors. Even though P2X mRNA levels were much 

larger than P2Y (note the different scale for each family), mRNA expression was 

identical in BPN and BPH arteries when comparing the mRNA expression pattern. 

However, significantly higher expressions of P2Y2 and P2Y6 and lower expression of 

P2Y1 receptors were observed in BPH VSMCs. These data agreed with the 

hypothesis of a higher expression of P2Y receptors contributing to the larger UTP-

mediated effects in the BPH phenotype. 
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Figure R17. mRNA expression profile  of P2X and P2Y purinergic receptors in BPN 
and BPH mesenteric arteries. Left, relative abundance of purinergic receptors in BPN 
mesenteric arteries normalized to the amount of RP18S. Data are expressed as 

2−∆𝐶𝑡, where ∆𝐶𝑡 = 𝐶𝑡𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐶𝑡18𝑆. Right, changes in P2X and P2Y receptors 

expression in BPH compared to BPN. Differences are expressed as 𝑙𝑜𝑔 (2−∆∆𝐶𝑡), 
where  ∆∆𝐶𝑡 = ∆𝐶𝑡𝐵𝑃𝐻 − ∆𝐶𝑡𝐵𝑃𝑁, meaning that positive, negative and 0 values 
indicate increased, decreased and no change mRNA expression, respectively. Each 
bar is the mean ± SEM, n=4 mice in each group. *P<0.05; ***P<0.001. 

Nevertheless, the good correlation of changes in P2Y receptor expression and UTP 

responses between BPN and BPH cell is clearly at odds with the effect of UTP on 

TRP currents. Therefore, we decided to explore the UTP signaling pathway in more 

detail, to better understand the differences between BPN and BPH phenotypes and 

in order to clarify the role of TRP in this signaling pathway. 

3.2. Characterization of the P2Y signaling pathway in the BPH phenotype. 

P2Y receptors are members of the GPCR receptors superfamily, coupled to PLC 

activation through Gq proteins. DAG and IP3 produced by the PLC-mediated PIP2 

breakdown induces TRPC3/6 activation and Ca2+ release from intracellular stores, 

respectively, leading altogether to an intracellular [Ca2+] increase. This increased 

[Ca2+]i triggers activation of Ca2+-activated Cl- channels (CaCCs) and membrane 

depolarization (Figure I4). While the described differences in P2Y2/6 expression are 

consistent with the greater contractile response to UTP in BPH arteries, our 

electrophysiological studies showing a larger activation of TRPC currents in BPN do 

not fit in this scheme. There are two questions that we need to answer to solve this 

apparent paradox, and we explored two other levels of the signaling pathway to try 

to answer them. 

Q1. Why do we see less UTP-mediated TRPC currents in BPH cells if we have 

more receptors and more channels? 
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We explored the coupling between P2Y6 receptors and TRPC3/6 channels. 

Differences in their location and association could shed light on question 1, as 

we could have a less efficient signaling in spite of having more proteins. These 

data are shown in section 3.2.1. 

Q2. How can we have a larger contractile response to UTP while activating 

smaller TRPC currents? 

 

We studied the expression and contribution of other channels, (CaCCs 

channels) to UTP-mediated responses. A different contribution of both 

channels (TRPC and CaCCs) in BPN and BPH cells to UTP responses could 

explain the changes in contraction. We explore this hypothesis on section 3.2.2. 

3.2.1. P2Y6 and TRPC3/6 coupling. 

We speculate that the smaller efficacy of UTP activating TRP currents, despite 

having more receptors and more channels in BPH cells, could be due to differences 

in the physical association (v.g. in membrane microdomains) between P2Y 

receptors and TRPC channels. To explore this hypothesis, Ground State Depletion 

(GSD) Super-resolution and PLA studies were performed in BPN and BPH VSMCs. 

A B 

  
Figure R18. Spatial organization of TRPC3 channels and P2Y6 receptors in BPN and BPH VSMC cells. A, 
representative TIRF (top) and GSD (bottom) super-resolution microscopy images showing the spatial 
organization of TRPC3 and P2Y6 in a BPH cell. The magnification of the areas shown in yellow boxes is 
also depicted. B, histograms showing the areas of TRPC3 and P2Y6 clusters in BPN and BPH cells. 
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GSD Super-resolution data (Figure R18) revealed that TRPC3 channels and P2Y6 

receptors were broadly distributed in clusters with a large variety of sizes both in 

BPN (TRPC3, 2036.67 ± 23.60 nm; P2Y6, 1788.29 ± 22.11 nm) and BPH (TRPC3, 

1717.31 ± 9.39 nm; P2Y6, 1632.61 ± 12.38 nm) VSMC cells. Sites of close proximity 

between TRPC3 channels and P2Y6 receptors could be observed (Figure R19) and 

were analyzed by fitting the lowest intermolecular distance between both proteins 

to a Gaussian function of two components with centers at ~53.9 and ~109.2 nm in 

BPN, and ~44.8 and ~81.3 nm in BPH. There is a small population of TRPC3 

channels and P2Y6 receptors that seem to be further apart in BPN cells.  The closer 

proximity between TRPC3 channels and P2Y6 receptors observed in BPH is 

compatible with an enhanced coupling between both signaling pathways.   

Nevertheless, since the lowest distances are not very different, and most of them 

seemed to be close enough to be detected by PLA, an additional test of protein 

association was performed using PLA assay by labelling TRPC3/6 channels and P2Y6 

receptors in BPN and BPH cells (Figure R20). 

A 

 

B 

 

Figure R19. Expanded merged GSD images showing sites of close interaction between TRPC3 and P2Y6. 
A, images of the associated object-based colocalization (bottom) between TRPC3 (red centroids) and 
P2Y6 (green regions). Colocalization centroids (blue) are also depicted. B, plot showing the lowest 
intermolecular distances between TRPC3 and P2Y6 centroids in BPN (n=3713 particles from 3 cells) and 
BPH (n=8299 from 8 cells). Data were fit to a Gauss function of two components. 
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PLA data revealed close proximities between P2Y6 receptors and TRPC3 or TRPC6 

channels in BPN and BPH cells. The C3-Y6 condition showed higher punctae than 

the C6-Y6 condition in both preparations. In addition, there are significantly higher 

punctae for C3-Y6 condition in BPN. Since the PLA technique is more sensitive than 

the GSD super-resolution to disclose distances below 40 nm, these results are 

compatible with a higher coupling between P2Y receptors and TRPC3/C6 channels 

in BPN cells, despite the smaller expression of those proteins, and could explain in 

part the larger activation of TRP currents by UTP recorded in BPN cells. 

A B 

  

Figure R20. Differences in the association pattern between TRPC3/6 channels and P2Y6 receptors in 
VSMCs. Representative confocal images (A) of the summarized (B) C3-Y6 and C6-Y6 associations 
obtained in BPN and BPH cells. Each bar is mean ± SEM, n=40-60 cells in each group. ***p<0.001, 
compared to BPN. ###p<0.001, compared to C3-Y6. 

 

However, the fact that UTP elicited very small depolarizations and smaller 

vasoconstrictions in BPN compared to BPH, despite the larger activation of TRP 

currents, suggests additional components in the UTP-activated P2Y6 signaling 

pathway responsible for the larger depolarization and the bigger response to UTP 

in BPH arteries. One of such components could be the CaCCs. 

3.2.2. Ca2+-activated Cl- channels involvement in the UTP-activated P2Y6 

signaling pathway. 

Several members of the membrane CaCCs channels have been found in VSMCs (see 

Introduction for references). To evaluate their contribution to the UTP response, 

we measured the UTP activated currents in two different recording conditions 

(Figure R21). One of them was designed to maximize the TRP component, blocking 
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CaCCs with Niflumic acid (100 µM), DIDS (100 µM) and 10 mM EGTA. These 

currents are labelled in the figure R21 as ITRP. The other was designed to record any 

current activated by the agonist, adding no blockers and keeping the intracellular 

calcium buffered at ~500 nM. These currents likely represent the activation of both 

TRP and CaCCs channels and are labelled in the figure R21 as ITRP/CaCC. Examples of 

typical experiments of each condition are shown in Figure R21A. Results 

demonstrate that although ITRP currents are smaller in BPH, as previously shown 

(Figure R13), ITRP/CaCC are significantly larger in BPH cells, strongly suggesting that 

differences in CaCC channels between BPN and BPH could contribute to explaining 

the differences in the UTP response. 

 

Figure R21. Differences in the UTP effects on whole-cell currents in BPN and BPH VSMCs. A, 
representative traces of UTP-elicited effects on the peak current recorded at -150 mV and +80 mV in 
each condition in BPH cells. B, summary of the UTP-sensitive current recorded at -150 mV in BPN and 
BPH cells. Each bar is mean ± SEM, n=96 and n=73 cells from BPN and BPH, respectively. **p<0.01. 

 

In this context, we explored the mRNA expression pattern of several members of 

the known families of CaCCs channels in mesenteric arteries from BPN and BPH 

mice. We explored also the expression of some proteins that contribute to the [Cl-]i 

control, such as the Na+, K+, Cl- cotransporter NKCC1 and the voltage-activated Cl- 

channel ClCN3 (Figure R22). qPCR data showed higher mRNA expression of ClCa1 

and ANO1 channels in BPH compared to BPN mesenteric arteries, while no changes 

of ClCa2, ClCN3 and the NKCC1 cotransporter were observed. These data are in good 

agreement with the larger activation of CaCC currents in BPH cells and point out to 

ANO1 as a good molecular correlate of that difference between BPN and BPH cells. 
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Figure R22. Differences in the mRNA expression profile of several Ca

2+
-activated Cl

-
 channels and Na

+
, 

K
+
, Cl

-
 cotransporters in BPN and BPH mesenteric VSMCs. Left, relative abundance of the indicated 

channels and cotransporters in BPN VSMCs from mesenteric arteries normalized to the amount of 

RP18S. Data are expressed as 2−∆𝐶𝑡, where ∆𝐶𝑡 = 𝐶𝑡𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐶𝑡18𝑆 . Right, changes in mRNA 

expression in BPH compared to BPN. Differences are expressed as 𝑙𝑜𝑔 (2−∆∆𝐶𝑡), where  ∆∆𝐶𝑡 =
∆𝐶𝑡𝐵𝑃𝐻 − ∆𝐶𝑡𝐵𝑃𝑁, meaning that positive, negative and 0 values indicate increased, decreased and 
no change mRNA expression, respectively. Each bar is the mean ± SEM, n=4 mice in each group. 
**P<0.01; ***P<0.001. 

 

These data suggest that an increased contribution of CaCCs activation in BPH cells 

could explain the enhanced UTP-induced contraction in the hypertensive arteries. If 

this were the case, we would expect to see differences between BPN and BPH cells 

in the depolarization induced by UTP and in the sensitivity of that response to the 

effect of TRP or CaCC blockers. To test this hypothesis, we measured the effect of 

UTP and different blockers on membrane potential with the perforated-patch 

configuration of the current-clamp technique. Average results are shown in Figure 

R23 A, whilst Figure R23 B shows two typical records obtained in a BPN and a BPH 

cell. The effect of high extracellular K+ (60 mM) was used to determine cell 

integrity. Under these conditions the reversal potential for K+ will be around -20 mV 

(for an estimated [K+]i of 130 mM). We can see that there are other cationic 

conductances that contribute to set resting Vm in VSMCs since the values recorded 

were always more positive than the calculated EK.  Although the two cells in the 

example seem to be different, there were not statistical differences between BPN 

and BPH cells in the Vm value reached with 60 mM K+ stimulation (-11,14 ± 0,75 mV 

in BPH vs -10,93 ± 1,4 in BPN, p=0,9, n= 21-40 cells).  

UTP produced a significantly larger depolarization in BPH cells, in line with the 

differences in the response to UTP between BPN and BPH arteries. In fact, the 

depolarization obtained in BPN cells was almost undetectable in many cells. Also, 

as expected for channels that are open at resting membrane potential, the 

blockade of TRPs and CaCCs produced a significant hyperpolarization both in BPN 
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and BPH cells. The hyperpolarization induced by Pyr3 was significantly larger in BPH 

cells, in agreement with a larger expression of TRP channels in those cells. The 

effect of Niflumic Acid was not different, but the effect of the specific inhibitor of 

ANO1, also called T16Ainh, was significantly larger in BPH, in good agreement with 

the expression data. 

A B 

 
 

Figure R23. Differences on the effects of UTP and the blockers of TRPC3/6 and CaCCs 
channels on resting membrane potential in BPN and BPH cells. A, bar plot showing the 
UTP (50 μM)-induced depolarizations and Pyr3 (10 μM)-, Niflumic (100 μM)- and ANO1 
inhibitor (10 μM)-induced hyperpolarizations in BPH compared to BPN cells. Each bar is 
the mean ± SEM, n=5-54 cells in each group. *P<0.05; ***P<0.001. B, Representative 
traces of the effect of UTP and Niflumic on Vm in a BPN and a BPH cell from A. 
Depolarizations induced by KCl (60 mM) as a control of cell stability are also depicted. 

 

If we compare the effect of TRP or CaCC blockade on membrane potential, there 

are no apparent differences, suggesting that both channel families are contributing 

to set the membrane potential. In fact, the larger effects of Pyr3 in BPH cells 

suggest that TRP could contribute to the characteristic depolarized basal state of 

BPH VSMCs. However, when the effect of TRP or CaCC blockers are tested on UTP-

induced depolarization in BPH cells, the different contribution of those channels to 

the response is striking (Figure R24). All inhibitors affected the depolarization 

induced by UTP, suggesting that all channels contribute to that response, but the 

magnitude of the effect was very different. Pyr3 showed a very small effect, whilst 

Niflumic Acid and/or the specific blocker of ANO1 completely abolished (or even 

reverted) the effect of UTP. These results pointed clearly to CaCCs as important 
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players in the response to UTP and suggested that the differences in the expression 

of these channels are at the core of the differences in the purinergic pathway 

between BPN and BPH mice. 

 

Figure R24. Differences in the contribution of TRPC3/6 and CACCs channels to the UTP-induced 
depolarization in BPN and BPH cells. A, representative traces of the blocking effects elicited by Pyr3 
(10 μM), Niflumic Acid (100 μM) and ANO1 inhibitor (10 μM) on UTP-induced depolarizations. As a 
control of the cell stability KCl (60 mM)-induced depolarizations are also depicted. B, bar plots 
showing the summarized blocking effects expressed as absolute values (top) and percentage 
(bottom) on UTP-induced depolarizations in BPN and BPH cells. Each bar is the mean ± SEM, n=5-10 
cells in each group. 
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In the present study, using the BPN/BPH model of essential hypertension, we have 

explored the contribution of TRPC channels to the hypertensive phenotype. 

Furthermore, since TRPC channels are prototypic examples of Receptor Operated 

Channels (ROCs), we have investigated the differences between normal and 

hypertensive mice in the vascular responses to the α-adrenergic and the purinergic 

signaling pathways, the two GPCR pathways mainly associated with the 

sympathetic stimulation of resistance arteries. Using different approaches, we have 

explored differences in the expression profile of members of the purinergic P2X 

and P2Y families of receptors and we have functionally characterized their relative 

contribution to the hypertensive phenotype. Focusing on the UTP-mediated 

activation of purinergic signaling pathway, we have also explored downstream 

members, such as TRPC and CaCCs channels that, by their direct or second 

messenger-mediated coupling to purinergic signaling, could be enhancing the 

integrated response of vasculature. Thus, although we have separately explored 

the different contribution of these families of receptors and ion channels to the 

BPH vs BPN phenotype, the obtained results must be interpreted in the context of 

the integrated responses of arterial vessels to understand the complexity of the 

hypertensive phenotypic change. 

 

1. TRPC Channels in the BPN/BPH model 

TRPCs channels have been widely described as ROCs that contribute to modulate 

the membrane potential and the contractility of vasculature (Earley and Brayden, 

2015). In this Thesis we have explored the mRNA expression profile of TRPC 

channels in several vascular beds of BPN and BPH mice. All channels, but TRPC5 

and TRPC7, are expressed in VSMCs from both mice strains. Overall, mRNA 

expression is more than 20 times larger in resistance (mesenteric) than in conduit 

(femoral and aorta) arteries, and whilst TRPC1 is the more highly expressed 

channel in conduit arteries, TRPC1/3/4/6 mRNAs are more abundant in the 

mesenteric bed. When the expression levels are compared between BPN and BPH 

mesenteric VSMCs, it is evident that TRPC3 are the only channels that are 

overexpressed in the hypertensive cells (Figure R3). On the contrary, TRPC1 and 

TRPC6 are downregulated (although only data for TRPC1 is statistically significant). 

TRPC1 channels are mainly involved as SOCs (Nesin and Tsiokas, 2014; Ambudkar, 

de Souza and Ong, 2017), so we decided to focus on TRPC3 and TRPC6 channels as 

the main candidates to carry out ROCs in mesenteric VSMCs. Since these channels 

have been described to form functional multimeric channels in several tissues 

(Hofmann et al., 2002; Earley and Brayden, 2015), we also hypothesized that in 
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addition to their different expression levels, changes in the composition of homo- 

or heterotetramers of these two channels could contribute to the genesis of the 

hypertensive phenotype. In any case, these differences should determine different, 

and experimentally discernible, biophysical, pharmacological and functional 

properties of TRPC channels in BPN and BPH VSMCs. 

Pyr-compounds are the only available blockers described in the literature as 

putative blockers of TRPC3 channels (Kiyonaka et al., 2009; Schleifer et al., 2012). 

We tested the effect of three of these compounds (Pyr10, Pyr3 and Pyr6) on the 

vascular tone induced in mesenteric arteries by the stimulation with the α1 agonist 

Phenylephrine (Figure R4). Pyr10 and Pyr3 exhibited a powerful vasodilatory effect 

both in BPN and BPH arteries. Nevertheless, the effect is clearly different at 

concentrations below 10 µM, where vasodilation is larger in BPN than in BPH 

arteries. 

However, since the specificity for TRPC channel blockers has not been thoroughly 

tested in the literature, we have tried out several methodological approaches to 

investigate the functional contribution of TRPC channels in a heterologous 

expression system (CHO cells) overexpressing TRPC3, TRPC6 or both. In this way we 

have determined that pyrazole compounds (Pyr3 and Pyr10) are effective blockers 

of TRPC mediated currents when CHO cells are transfected with TRPC6 channels, 

either alone or with TRPC3 (Figure R5). As TRPC3 and TRPC6 associate forming 

heteromultimers (Figure R7), the simplest interpretation of the effect of pyrazole 

compounds is to assume that the presence of TRPC6 subunits in the channel 

tetramer is a requirement for the inhibitory effect of these compounds. If this 

interpretation is correct, pyrazole compounds are effective blockers of TRPC6 

channels, and could be used in native cells to estimate the contribution of these 

channels to the effects mediated by TRPC channels. This interpretation is also 

consistent with the smaller vasodilatory effect of these compounds in BPH arteries, 

where, according to mRNA data, we have increased TRPC3 and decreased TRPC6 

expression. 

These results clearly contradict the previously reported selective blocking effect on 

TRPC3 channels of Pyr10 and Pyr3. Although these reported effects on native 

TRPC3 channels (Kiyonaka et al., 2009; Schleifer et al., 2012) are compatible with 

the presence of TRPC3/6 heterotetramers in those preparations, we do not have a 

clear explanation for the discrepancy. Nevertheless, several differences in the 

experimental methodology can be highlighted. We have characterized the effects 

of Pyr on TRPC3, TRPC6 or TRPC3/6 overexpressed in CHO cells by exploring both 

basal and stretch-activated whole-cell currents with the patch-clamp technique, 

while previous reports have used TRPC3-transfected HEK293 (and/or HEK293T) 

cells and have estimated channel activity indirectly from changes in [Ca2+]i upon 
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stimulation of endogenous muscarinic receptors with carbachol (Schleifer et al., 

2012). Noteworthy, it has been described that HEK cells endogenously express 

TRPC3 and TRPC6 channels (Bugaj et al., 2005). In addition, we have analyzed the 

acute effects of Pyr compounds when applied in the external solutions both in 

basal conditions and in the presence of the stimulus, while previous reports 

explored the Pyr-elicited effects, mainly Pyr3, upon chronic pre-treatment before 

stimulation. Thus, it is quite possible that differences associated to the endogenous 

expression of TRPC3 and TRPC6 channels in different cell lines and/or differences 

associated to the response of the blockers related to the specific activation 

pathway could explain the observed discrepancies. 

Since Pyr compounds turned out to be experimental tools to check the functional 

contribution of TRPC6 channels, we explored the possibility of using antibodies 

against TRPC3 channels to study the functional contribution of those channels. 

Although the only available antibodies recognize intracellular epitopes of the 

channel and their use must be limited to patch-clamp experiments where the 

intracellular medium is accessible, this experimental approach has proven to be 

instrumental to block TRPC3 mediated currents when these channels were 

overexpressed in CHO cells (Figure R8). 

Non-selective cationic currents recorded in VSMCs isolated from BPN or BPH 

mesenteric arteries are significantly different in magnitude and in their sensitivity 

to Pyr compounds and anti-TRPC3 antibodies. The larger currents recorded in BPH 

cells in the absence of receptor activation (basal activity, Figure R11B), the smaller 

sensitivity to Pyr compounds (Figurer R11C) and the larger effect of anti-TRPC3 

antibodies (Figure R12B) strongly correlate with the larger expression of TRPC3 in 

BPH VSMCs. Certainly, these differences can contribute to explain the more 

depolarized resting Vm of VSMCs cells from BPH, the increased vascular reactivity 

observed in BPH mesenteric arteries (Moreno-Domínguez et al., 2009) and the 

larger effect of Pyr compounds observed in mesenteric arteries form BPN mice. 

The results obtained with this electrophysiological approach in native cells are 

supported by data obtained with the Proximity Ligation Assay (PLA) technique. PLA 

data demonstrate a larger proportion of TRPC3-containing channels (and the 

consequent smaller proportion of TRPC6 subunits) in BPH cells (Figure R10). These 

findings are consistent with a larger number of TRPC3 homotetramers and/or 

heteromultimeric TRCP3/6 complexes in VSMCs from BPH mice. Early evidences 

previously reported that TRPC heteromultimerization, such as the case of TRPC6/7, 

showed distinct functional properties than the homomultimeric association 

(Hofmann et al., 2002; Maruyama et al., 2006). Thus, a better understanding of the 

mechanisms by which TRPC subunits combine to form functional ion channels 

complexes is essential to evaluate their contribution to endogenous cation 
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currents. In many cases, the use of KO animal models helps to understand the role 

of a particular channel, but this is not the case of TRPC3 or TRPC6 channels. Several 

studies using single, double TRPC3/6 and up to quadruple KO of TRPCs channels 

concluded that TRPC functions are a result of the combined activity of multiple 

TRPC proteins and that the interfering with one single TRPC channel does not imply 

an alteration in the functional responses, thus indicating possible redundancies in 

the function of TRPC channels (Sexton et al., 2016). However, in good agreement 

with the results obtained in this Thesis, a study using TRPC6 KO mice showed 

changes in the vascular phenotype consisting of increased vascular reactivity and 

blood pressure, which was a result of a compensatory upregulation of TRPC3 

channels. From these data, we could conclude that TRPC3 and TRPC6 channels are 

not freely interchangeable and that they have distinct and non-redundant roles in 

the vasculature (Dietrich et al., 2005). 

 

2. GPCR signaling Pathways in the BPN/BPH model: The 

sympathetic drive 

Noradrenaline (NA) and ATP are co-released by sympathetic neurons in the vicinity 

of VSMCs contributing to the physiological setting of vascular tone. NA induces 

contraction by activating α1 receptors whilst ATP activates a complex set of 

purinergic receptors (ionotropic and metabotropic). Pressure myography data 

show differences in agonists-induced vascular responses between BPN and BPH 

mice when the α1 agonist PHE is used (Figure R2), but not when the agonist is ATP 

(Figure R15, left panel). These results are compatible with the reported 

sympathetic hyper sensitivity of BPH mice (Davern et al., 2009, 2010) and point to 

the α1 receptor signaling pathway as the more probable culprit of the differences. 

We have tested the functional impact of TRPC currents on these responses 

investigating ROCs elicited by PHE, ATP and OAG in BPN and BPH VSMCs (Figure 

R13). ROCs are not significantly different in magnitude although the sensitivity to 

Pyr compounds strongly suggests that the TRPC channels mediating the response 

are mainly TRPC3 in BPH and TRPC6 in BPN, as expected from the expression data. 

Nevertheless, the different role of TRPC3 and TRPC6 channels contributing to Vm 

depolarization when PHE (or NA) are the agonists has not been characterized in 

detail and needs to be further explored. 

ATP-induced ROCs are much bigger than ROCs elicited by PHE or OAG (Figure R13). 

This difference can be easily explained if we consider that ATP is activating also P2X 

ionotropic receptors. In fact, when the effect of ATP is characterized using 
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myography, almost 100% of the contractile response can be attributed to the P2X 

receptors, since ATP does not elicit a contractile response when P2X receptors have 

been desensitized with αβ-MeATP (Figure R14). These results are in good 

agreement with the large expression of P2X receptors, compared with P2Y (see 

below), but are difficult to reconcile with the large effect of Pyr compounds on ATP 

induced currents, both in BPN and BPH cells (Figure R13C). Although the simplest 

explanation for these results is to assume some unspecific effect of Pyr compounds 

on P2X currents, we have not fully characterized the biophysical properties of ATP 

currents to thoroughly test this possibility. 

 

3. GPCR signaling Pathways in the BPN/BPH model: The UTP 

divergence 

The more striking result that we obtained comparing ROCs currents in BPN and BPH 

VSMCs was the effect of UTP (Figure R13A), since non-specific cationic currents 

elicited by this agonist are twice as big in BPN mice. Surprisingly, larger currents do 

not correlate with bigger responses in terms of vessel contraction, and in fact, BPN 

mesenteric arteries are almost insensitive to UTP stimulation, with apparent EC50 

over 100 µM (Figure R14 and R15), whilst BPH arteries respond to much lower UTP 

concentrations (EC50~3µM). Nevertheless, in agreement with the results obtained 

with other agonists, the effect of Pyr10 suggests that these UTP activated currents 

are mainly mediated by TRPC6 channels in BPN and by TRPC3 channels in BPH 

mice. Physiologically, UTP is released from platelets and endothelial damaged cells, 

and these remarkable differences in the response of mesenteric arteries can be 

relevant defining the vascular phenotype of the hypertensive animals. 

Several studies in the literature demonstrate some discrepancies in the 

contribution of TRPC3 channels to the UTP-activated responses. UTP-induced 

depolarizations and contraction were found to be mediated by TRPC3 channels in 

cerebral arteries of adult rats (Reading et al., 2005), as well as in rat 

cardiomyocytes where TRPC3/7 channels were found to be involved in ATP/UTP-

mediated responses (Alvarez et al., 2008). In contrast, dual signaling pathways 

through P2X1-like receptors, and in a less degree through P2Y receptors, but not via 

TRPC3 channels, appear to be the main molecular mechanisms by which 

extracellular UTP constricted rat aorta, mesenteric and cerebral arteries (Sugihara 

et al., 2011). In this latter study, UTP-elicited inward currents could not be blocked 

by Pyr3 nor intracellularly applied anti-TRPC3 antibodies, although it could be due 

to the weak TRPC3 expression they found in rat vasculature.  
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None of these reported differences in the contribution of TRPC channels to the UTP 

signaling pathway in different species and vascular beds give us any clue to explain 

our discrepant results in the BPN/BPH model of essential hypertension. 

Nevertheless, we have explored several hypotheses to explain the lack of 

correlation between the size of the non-specific cationic currents elicited by UTP 

and the obtained amount of vessel contraction: (1) A different functional 

expression of purinergic receptors, (2) a different interaction of UTP receptors and 

TRPC channels and (3) a significant role of other channels different from TRPC 

modulating membrane potential. 

3.1. Expression of purinergic receptors in the BPN/BPH model. 

In agreement with data available in the literature regarding other mouse strains, 

mRNA expression studies performed in mesenteric arteries from BPN mice showed 

the presence of P2X1, P2X4, P2Y1, P2Y2, P2Y4 and P2Y6 purinergic receptors (Figure 

17R). P2X mRNA levels are over ~200 times bigger than P2Y mRNA, and P2X1 and 

P2Y6 are the mRNAs more abundant in each family. Interestingly, whilst there are 

no differences in the expression levels of P2X receptors between BPN and BPH 

arteries, there is an increased expression of P2Y2 and P2Y6 and a decreased 

expression of P2Y1 purinergic receptors in the BPH mice (Figure R17).  

The functional contribution of P2Y receptors to the contractile response elicited by 

UTP was explored in BPH mesenteric arteries with pressure myography using 

several selective agonists and blockers of different purinergic receptors. UTP (a 

non-selective agonist of P2Y receptors) at 10 µM elicited a response close to 

maximal in BPH arteries (~30%, Figure R15 and R16). UDP and UTPS, at the same 

concentration as UTP, elicited responses that represented a ~70% and ~28% of the 

UTP response, respectively. If we take into account that UDP is a selective agonist 

of P2Y6 and UTPS of P2Y2/4 receptors, it seems reasonable to assume that those 

percentages could approximately reflect the contribution of those receptors to the 

overall P2Y response. However, the response obtained with 10 µM PSB0474 

represents only a ~50% of the UTP response, although at that concentration 

PSB0474 is supposed to be highly selective to P2Y6. Additionally, partial blockade of 

UDP and PSB0474 mediated responses were obtained using the specific blocker of 

P2Y6 receptors MRS2578 (Figure R16B). Taking together, these data suggested a 

strong contribution of P2Y6 purinergic receptors to the UTP and UDP mediated 

vasoconstrictor responses in BPH mice and point to the differences in the 

expression of this receptor as a partial explanation of the differences observed 

between BPN and BPH regarding the UTP responses. Nevertheless, part of the 

response to UTP is also mediated by P2Y2/4. Certainly, the proper quantitative 

characterization of the relative contribution of each P2Y receptor would have 
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required a more detailed characterization of the concentration-response curves 

and the relative efficacies of each agonist. 

All data commented above demonstrate that P2Y receptors are functionally 

relevant in BPH, and almost irrelevant in BPN arteries (Figures R15 and R16), 

although UTP is clearly more effective activating ROCs through TRPC channels in 

BPN mice (Figure R13). These results clearly pose two interesting questions. First, 

how more P2Y receptors in BPH cells elicited less activation of TRPC currents. And 

second, how UTP can induce bigger contractile responses activating less TRPC 

currents.  To answer the first question we explored the possibility of a different 

coupling between P2Y6 receptors and TRPC channels due to a different spatial 

distribution. To answer the second, we investigated if, in addition to TRPC 

channels, there were other channels recruited by P2Y6 activation that could be 

contributing to UTP effects on membrane potential and vascular tone, specially in 

BPH cells. 

3.2 Membrane location of UTP receptors and TRPC channels. 

One possible explanation of the lack of correlation between the amount of P2Y 

receptors and TRPC currents could be a weaker coupling between receptors and 

channels due to different membrane localization (more distant) of the proteins. 

GSD Super-resolution imaging has revealed that both, TRPC3 and P2Y6 receptors 

are expressed in BPN and BPH cells forming clusters of similar sizes (Figure R18). 

The distribution of minimal intermolecular distances between receptors and 

channels seems to be very similar in BPN and BPH mice (40-50 nm), although there 

is a small fraction of P2Y6- and TRPC3-containing clusters which were more distant 

in BPN (~100 nm) than in BPH (~80 nm) VSMCs cells (Figure R19). The proximity of 

the receptor and channel clusters is confirmed by PLA studies, although this 

technique demonstrate a higher punctae distribution for both P2Y6/TRPC3 and 

P2Y6/TRPC6 associations in BPN compared to BPH cells (Figure R20), even when 

pre-incubating samples with UTP to activate purinergic signaling pathway (data not 

shown). The PLA technique gives positive results when proteins are closer than 40 

nm, a figure very close to the limit of GSD resolution. Therefore, the results 

obtained with both techniques seemed to point to a closer location of P2Y6 and 

TRPC3/6 proteins in BPN cells. We can speculate that proximity correlates with 

coupling, since DAG diffusion could be more efficient for activating TRPC channels if 

receptors are closer to channels, although further studies are required to confirm if 

the differences observed between BPN and BPH are functionally relevant. 
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 3.3 Contribution of CaCCs channels to the UTP signaling pathway in the BPH 

phenotype 

Although TRPC channels are activated by agonist and are responsible for a 

significant amount of the ROCs, it is well known that in vascular smooth muscle the 

activation of GPCR coupled to Gq proteins increases [Ca2+]i, and then many calcium 

dependent proteins, such as Ca2+ activated chloride channels (CaCCs). Since the 

ionic composition of the recording solutions used in the experiments discussed 

above were designed to block CaCCs, we performed another batch of experiments 

studying UTP activated currents in the absence of blockers of chloride channels and 

with high Ca2+ in the pipette, to facilitate the activation of CaCCs. With these 

recording conditions, UTP activated currents should be the sum of the activation of 

both, TRPC channels and CaCCs, and the comparison with currents recorded 

without CaCCs theoretically would allow us to define the role of CaCCs. These 

experiments are shown in Figure R21, and the results turned out to be not as easy 

to interpret as initially supposed: 

 UTP activated currents recorded in BPN VSMCs when TRPC and CaCCs 

are available (ITRP/CaCC) are not significantly different from those 

recorded when CaCCs are blocked (ITRP). Contrary to that, in BPH 

VSMCs, ITRP/CaCC are almost twice as big as ITRP. 

 

 ITRP/CaCC are significantly larger in BPH cells. 

The simplest interpretation of differences between ITRP and ITRP/CaCC in each group of 

animals is to consider that CaCCs are not functionally present in BPN VSMCs (since 

ITRP ~ ITRP/CaCC), whilst they represent half of the total current recorded in BPH 

VSMCs. However, this explanation is unlikely, since ITRP/CaCC currents are sensitive to 

CaCC blockers both in BPN (Figure D1) and BPH VSMCs. Another possibility could be 

related with a possible modulation of TRPC currents by intracellular calcium. There 

are several reports documenting the sensitivity of non-specific cationic currents 

and those mediated by some known channels like TRPC3 to extracellular and 

intracellular calcium (see Lichtenegger and Groschner, 2014 for a review). The 

modulation by intracellular calcium is more controversial, but there is some 

evidence showing that TRPC3 currents are bigger when calcium entry is moderately 

buffered with EGTA and much smaller when forming heterotetramers with TRPC1 

(Lintschinger et al., 2000). To our knowledge, a detailed characterization of the 

intracellular calcium dependence of TRPC3/C6 has not been carried out, but in the 

light of the results depicted in figure R21, it is reasonable to postulate that TRPC 

currents are smaller in the presence of intracellular calcium. 
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Figure D1. Effects of CaCCs blockers (10 μM) on UTP (50 μM)-activated currents in a BPN 
VSMC cell. 

 

In any case, the lack of correlation between the size of UTP activated currents and 

the UTP effect on vessel contractility disappears when TRPC and CaCC mediated 

currents are recorded together (ITRP/CaCC), since they are significantly larger in BPH: 

Larger currents would produce bigger depolarizations, more activation of voltage-

dependent calcium channels and more contraction (Figures R14 and R15). In fact, 

that is the case, since UTP elicited robust and weak depolarizations in BPH and BPN 

VSMCs, respectively (Figure R23A). However, it is surprising that UTP almost has no 

effect on BPN VSMCs membrane potential because the size of UTP activated 

currents (ITRP or ITRP/CaCC) is far from being negligible. The result is even more 

unexpected if we take into account that TRPC channels and CaCCs contribute in 

basal conditions to membrane potential, as demonstrated by the fact that Pyr 

compounds or CaCC blockers (Niflumic Acid or ANO1 inhibitor) hyperpolarize both 

BPN and BPH VSMCs. Is interesting to note that although the effect of blocking 

basal currents on membrane potential is significantly larger in BPH cells than in BPN 

cells when Pyr-compounds or ANO-1 inhibitors are used, and although the effect of 

both inhibitors is quantitatively very similar in BPH cells (Figure R23), the inhibition 

of CaCCs is much more effective blocking the depolarization induced by UTP in BPH 

cells (Figure R24). 

These results strongly suggest that CaCCs are the main mediators of the 

depolarization elicited by UTP and point to differences in the expression of CaCCs 

between BPN and BPH mice. This difference exists at the mRNA level (Figure R22) 

since mesenteric arteries from BPH mice have a significantly larger expression of 

the CaCC channel ANO-1 (TMEM16A) and its associated subunit ClCa1 (Sala-

Rabanal et al., 2015). Nevertheless, we do not have a satisfactory explanation for 

the lack of correlation between the activation of TRPC3/6 currents by UTP and the 

level of changes obtained in membrane potential. It has been described that TRPC3 

and TRPC6 channels associate with large conductance Ca2+-activated K+ channels 



 

- 128 - 
 

DISCUSSION 

(BKCa) in cultured podocytes (Kim, Alvarez-Baron and Dryer, 2009) and that TRPC1 

channels associated with the same channels in vascular smooth muscle cells (Kwan 

et al., 2009): Ca2+ entry trough TRPC channels would activate BKCa channels and the 

hyperpolarizing effect of such activation would brake the depolarizing effect of 

TRPC activation. Certainly, this type of interaction could explain at least in part the 

lack of correlation between TRPC currents and membrane potential, especially if 

the association between TRPC and BKCa channels is dependent on the activation of 

a signaling pathway. Obviously, the association of TRPC3/6 channels and BK 

channels must be demonstrated in the BPN/BPH model, and this is a venue 

certainly worth studying in the future if we consider the already described 

differences between BPN and BPH mice regarding BKCa function (Tajada et al., 

2013). 

Besides differences in tissues and species specificities, CaCCs channels are activated 

in smooth muscle both, by Ca2+ released from the SR and by Ca2+ entry via VOCCs, 

SOCs and ROCs (Leblanc et al., 2015). In addition, it has been shown (Nelson et al., 

1995; Jaggar et al., 1998; Yip et al., 2018) that the release of Ca2+ from intracellular 

stores can activate Spontaneous Transient Currents mediated by K+ (Outward, 

STOC) and Cl- (Inward, STICS) channels. In this context, it is quite possible that the 

hyperpolarizations beyond resting Vm obtained with ANO1 inhibitor or Niflumic 

Acid during UTP stimulation (figure R24) could be due to the Ca2+-triggered 

activation of IK(Ca), since it has been previously reported that Niflumic Acid-

mediated blockade of ICaCC) enhanced the evoked Ca2+ release from intracellular 

stores without altering its spontaneous release, thus enhancing Ca2+-activated IK(Ca) 

and hyperpolarization (Hogg, Wang and Large, 1994). It is tempting to speculate 

that whilst the relative amount of STOCs and STICs could regulate resting 

membrane potential, the activation of GPCR could activate ROCs (TRPC3/6) and 

Ca2+ release from the SR, activating CaCCs, depolarizing the plasma membrane and 

activating VOCCs, depending on the intensity of the response of the relative 

activation of CaCCs and BK channels. This Thesis, and previous work of our lab 

(Moreno-Domínguez et al., 2009; Tajada et al., 2012, 2013), demonstrate that all 

these channels are differently expressed in BPN and BPH mice, contributing to set 

the hypertensive phenotype, although we still do not have a clear picture of the 

fine tuning of the spatiotemporal relationships of all of them upon the stimulation 

of all the relevant receptors. Since in a nonlinear system such as VSMCs, subtle 

differences in one parameter could produce big changes in the final output 

depending on the state of other parameters in the system, a proper understanding 

of the final integrated response requires a good understanding of all relevant 

changes in the system.  

In conclusion, it seems that in BPH mesenteric arteries UTP activates a P2Y6-

dependent signaling pathway leading to the associated Ca2+ release from 
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intracellular stores, which in turn may activate the opening of membrane CaCCs 

channels, mainly ANO1 channels, leading to Cl- efflux and subsequent membrane 

depolarization. Since these channels do not inactivate (Large and Wang, 1996), the 

continuous evoked depolarization contribute to the opening of VOCCs channels, 

leading to Ca2+ influx and [Ca2+]i increase, thus enhancing vasoconstriction.  

Several reports have described in detail the kinetics of ANO1-triggered inward 

currents using pharmacological approaches, with Niflumic Acid and ANO1 inhibitor 

(Hogg, Wang and Large, 1994; Large and Wang, 1996; Davis et al., 2013; Bradley et 

al., 2014; Leblanc et al., 2015), and KO and siRNA-silencing mechanisms (Bulley et 

al., 2012; Dam et al., 2014; Heinze et al., 2014). In all these studies, low unitary 

conductance (1.2-3.5 pS) of CaCCs channels were confirmed in several smooth 

muscle and non-smooth muscle tissues. However, differences in the mean open 

time were reported, with smaller values obtained in excised patches compared to 

intact cells. In addition, they also reported an increased probability of open 

channels upon depolarization, but not an increase in the single-channel 

conductance (Large and Wang, 1996), that seemed to be voltage-dependent with 

membrane depolarization increasing the efficacy of Ca2+ in activating the channels 

(Leblanc et al., 2015). 

Previous studies have also reported the vasodilator effects of Niflumic Acid and 

ANO1 inhibitor on agonist precontracted arteries (Large and Wang, 1996; Remillard 

and Leblanc, 2000; Davis et al., 2013). However, almost all of them explored the 

contribution of ANO1 channels on the Norepinephrine-, Angiotensin II and 

vasopressin-elicited vasoconstrictions. In fact, the role of chloride channels in 

Noradrenaline induced responses is well documented, and several studies 

demonstrated that a reduction in [Cl-]o by partial substitution for aspartate or SCN- 

inhibited NA-induced oscillations in vascular tone (vasomotion) in rat mesenteric 

arteries (Boedtkjer et al., 2008). Nevertheless, few reports exist investigating the 

role of these channels on the UTP-triggered purinergic signaling on vascular 

contractility (Mitchell et al., 2012). Most of the available studies on UTP-triggered 

activation of ANO1 channels focused their efforts on epithelial secretion 

mechanisms (Rock et al., 2009; Dutta et al., 2011). We have not yet characterized 

the effect of CaCCs inhibitors in the response of UTP in BPH arteries, but we have 

tested their effect on the response to PHE in BPN, as shown in Figure D2. In 

agreement with the data obtained in other preparations, the contractile response 

elicited by the activation of α1-adrenergic receptors is very sensitive to CaCCs 

blockers. 



 

- 130 - 
 

DISCUSSION 

 

Figure D2. Effects of CaCCs (10 μM) blockers on PHE (10 μM)-
induced vasoconstriction in a BPN mesenteric artery. 

 

We did not perform a full characterization of the sensitivity of the contractile 

response in BPN and BPH arteries to these inhibitors, but we hypothesize that the 

higher responsiveness to PHE typical of BPH (Figure R2) could be also due to a 

higher role of CaCCs in the α1-adrenergic signaling pathway in BPH mice. In fact, we 

hypothesize that some of the differences in the kinetic and the intensity of the 

responses to the activation of different Gq-coupled receptors are related to a 

different contribution of ROCs mediated by TRPC channels and depolarizing 

currents mediated by CaCCs, especially ANO1. This hypothesis needs to be 

confirmed with further experiments, quantitatively characterizing the role of 

TRPC3/6 and ANO1 in the response elicited by different relevant agonists. 

Although qPCR results showed a higher mRNA expression of ANO1 channels in BPH 

cells, and current-clamp experiments demonstrated a higher contribution of those 

channels to set the resting Vm in basal conditions and upon stimulation with UTP 

(Figures R22 and R23), we did not carry out in this Thesis a full characterization of 

the sensitivity to ANO1 inhibitors of UTP-elicited inward currents. These studies 

need to be done, but they must be properly designed in order to take into account 

the complex kinetic behavior of these channels. It is known that changes in [Cl-]o 

modulate the gating kinetics and the permeation properties of the channel both in 

resting (Contreras-Vite et al., 2016) and in UTP-activated conditions (Muraki, 

Imaizumi and Watanabe, 1998). A decrease in [Cl-]o lead to a decrease in the Cl- 

conductance of the channels and [Cl-]o has a dual effect on the kinetics of 

activation, being monoexponential at low concentrations and biexponential at 

large concentrations (Large and Wang, 1996; Muraki, Imaizumi and Watanabe, 

1998; Contreras-Vite et al., 2016).  
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In addition to this role of [Cl-]o modulating the channel conductance and the kinetic 

properties of ANO1, [Cl-]i in VSMCs is also of paramount importance, since the Cl- 

equilibrium potential is very close to Vm and changes in [Cl-]i would determine the 

net effect of the opening of chloride channels on resting Vm. Intracellular Cl- is not 

at equilibrium in VSMCs as its concentration depends on the activity of several 

transporters such as NKCC1 (see the Introduction section). Changes in the activity 

of this cotransporter can influence [Cl-]i, Cl- driving force and then the subsequent 

effect on Vm of ANO1 activity. 

Previous studies on hypertensive animal models have reported a higher mRNA and 

protein expression of NKCC1 cotransporter associated to an increased functional 

activity and a larger contribution to myogenic tone and agonists-induced 

vasoconstriction (Meyer et al., 2002; Lee et al., 2010; Ye et al., 2012; Orlov et al., 

2015). In addition, the blockade or even the lack of this cotransporter led to 

decreases in the agonists-induced vasoconstriction and in the mean blood 

pressure, as shown in  studies using bumetanide and in studies in NKCC1-/- KO 

models (Meyer et al., 2002; Koltsova, Kotelevtsev, et al., 2009; Lee et al., 2010; Ye 

et al., 2012). We did not find any difference in the mRNA expression of NKCC1 

between BPH and BPN mice (Figure R22), although preliminary functional studies 

revealed a relevant role of NKCC1 modulating PHE-induced constrictions of BPN 

mesenteric arteries (Figure D3). We are in the process of characterizing the effect 

of blocking NKCC1 in BPN and BPH mice, aiming to understand the relationship 

between [Cl-]i, CaCC activity and the hypertensive phenotype in response to 

different agonists. 

 

Figure D3. Vasodilator effect of the NKCC1 blocker bumetanide on 
PHE-induced vasoconstriction in a BPH mesenteric artery. 
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Taken together, our results suggest a clear involvement of TRPC3/C6 and CaCCs 

(mainly ANO1) in setting the more depolarized resting Vm of BPH VSMC cells. In 

addition, the role of both channels in the contractile responses induced by GPCR 

agonists seems to be agonist dependent and quite different in BPN and BPH mice. 

UTP activation of the P2Y6-dependent purinergic signaling pathway increases 

membrane DAG (opening TRPC3/C6 channels) and [Ca2+]i (opening ANO1). The 

activation of both conductances depolarizes the membrane potential, activates 

VOCCs, further increases [Ca2+]i and induces the final contractile response. 

However, this response is only relevant in BPH arteries, since UTP is almost unable 

to elicit a response in BPN animals. Although ANO1 channels are good candidates 

to explain part of the differences between BPN and BPH responses to UTP, it is 

quite remarkable how subtle changes in the expression of all the players involved 

in the response to the same agonist produce such a big difference in the final 

output. A full understanding of the subtle differences that lead to the hypertensive 

phenotype of BPH mice requires a detailed characterization of the quantitative 

contribution of all the ionic channels involved in the control of membrane potential 

during the activation of different GPCRs by different agonists, especially if we 

consider that other G proteins, in addition to Gq are also relevant. This 

characterization is certainly part of a future project that will deepen our 

understanding of the differences between BPN and BPH mice, giving new 

quantitative insights that will have the huge advantage of allow a full integrative 

analysis of the results, since all subtle differences can be contextualized in the 

same model of hypertension. 
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1. BPH mice show a moderate essential hypertensive phenotype, which associates 
with an increased vascular tone and sympathetic activity. BPH mesenteric 
arteries exhibit larger responses to the α1-adrenergic agonist PHE than BPN 
arteries, whilst there are no differences in the effect of ATP. 

2. Differences in the expression of TRPC3 and TRPC6 channels, which are the 
molecular correlate of the ROCs currents, can explain the differences in the α1-
adrenergic responses. The mRNA expression profile of TRPC channels 
demonstrate a larger expression of TRPC3 and a lower expression of TRPC6 
channels in VSMCs from mesenteric BPH arteries. 

3. Pyr compounds (10 and 3) and anti-TRPC antibodies are good tools to 
investigate the functional role of TRPC channels in native systems. Control 
experiments carried out in a heterologous expression system (CHO cells) have 
validated the use of Pyr compounds as blockers of TRC6 channels, and anti-
TRPC3 antibodies as blockers of TRPC3 channels.      

4. The effect of Pyr compounds on PHE induced vasoconstriction is larger in BPN 
arteries, in good agreement with the higher expression of TRPC6 in those cells.  

5. Basal TRPC currents in BPH VSMCs are larger, more sensitive to intracellular 
anti-TRPC3 antibody and less sensitive to Pyr3/10 blockers than in BPN cells. 
Altogether, these results suggest a higher contribution of TRPC3 channels to 
basal currents in BPH VSMCs.  

6. PLA and immunocytochemical experiments demonstrate a different profile of 
TRPC3/C6 association in BPH VSMCs. BPH cells have a higher expression of 
TRPC3 channels in the membrane, either as homo or as heterotetramers with 
TRPC6, whilst TRPC6 homomultimers predominate in BPN VSMCs.  

7. PHE, ATP and OAG-activated currents are similar in BPN and BPH VSMCs, while 
UTP activated ROCs are smaller in BPH VSMCs. The closer proximity between 
TRPC3/6 channels and P2Y6 UTP receptors in BPN VSMCs suggested by PLA and 
Super-resolution imaging techniques could explain these differences. However, 
ROCs elicited with all the stimuli are less sensitive to Pyr compounds in BPH 
cells, which agree with the higher expression of TRPC3 channels in these cells. 

8. Pressure myography studies show that ATP induced vasoconstriction is mainly 
mediated through P2X1 receptors activation and is unchanged in BPH arteries. 
In contrast, UTP effect is much larger in BPH vessels. The increased expression 
and functional contribution of P2Y6 receptors in BPH mesenteric VSMCs can 
account for this effect of UTP.   

9. In current-clamp experiments, UTP induced depolarization of VSMCs cells is 
significantly larger in BPH cells. This effect is insensitive to Pyr10 but can be 
inhibited by CaCCs blockers such as Niflumic acid and ANO1-inhibitor. There is 
also a larger contribution of CaCCs to UTP activated currents in BPH cells, and a 



 

- 136 - 
 

CONCLUSIONS 

larger mRNA expression of ANO1 and its regulatory subunit ClCa1. These results 
strongly suggest that UTP-induced depolarization is mediated by the activation 
of ANO1 channels. 

10. GPCR signaling pathways in BPN/PBH mice are mediated by the integrated 
coupling between GPCRs and TRPC3/6 and ANO1 channels, although the 
relative importance of those channels seems to be receptor dependent.  
Although both TRPC and ANO1 channels contribute to set the resting Vm of 
VSMCs, ANO1 channels are the essential mediators of the UTP-induced 
depolarizations. In this context, differences in the functional expression and/or 
the coupling between GPCRs and TRPC and CaCCs channels could contribute to 
the increased reactivity of BPH arteries, pointing out to all these proteins as 
new potential therapeutic targets for the treatment of essential hypertension
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RESUMEN FINAL 

1. Introducción 

La hipertensión arterial (HTA) es una enfermedad crónica que se caracteriza por un 

aumento sostenido de la presión sanguínea arterial, siendo un factor de riesgo 

determinante de diversas patologías cardiovasculares, neurológicas y renales. El 

90% de los casos de HTA se diagnostican como hipertensión esencial, de origen 

genético y sujeto a factores ambientales y estilos de vida como sedentarismo, 

tabaquismo, ingesta de alcohol, dieta y obesidad (Aaronson, Ward and Wiener, 

2004). El 10% restante de los casos de HTA se diagnostican como hipertensión 

secundaria, cuyo origen deriva de problemas de causa patológica conocida, 

incluyendo hiperaldosteronismo, patologías renovasculares, feocromocitoma o  

toxemia preeclámptica, entre otros (Herring and Paterson, 2018). 

Fisiológicamente, la presión arterial está finamente regulada por el sistema 

cardiovascular mediante el control del gasto cardíaco (CO) y las resistencias 

periféricas totales (TPR). Inicialmente, la HTA esencial se asocia a un aumento del 

CO con valores normales o ligeramente elevados en las TPR; sin embargo, con el 

transcurso del tiempo, el CO revierte a sus valores fisiológicos mientras que los 

valores que definen las TPR se mantienen crónicamente elevados. El estado y la 

actividad contráctil de las células que componen la capa de músculo liso vascular 

(VSMCs), concretamente en arterias y arteriolas, son los principales determinantes 

de las TPR. Normalmente, los vasos sanguíneos se encuentran en un estado de 

contracción parcial denominado tono vascular que determina el diámetro del vaso 

en condiciones basales. En respuesta a estímulos, el cambio en el estado contráctil 

de las VSMCs determina la contracción y dilatación de los vasos, regulando de esta 

forma de manera muy eficiente el flujo sanguíneo en los distintos lechos 

vasculares. Este tono vascular basal depende directamente del potencial de 

membrana (Vm) de las células VSMCs, finamente regulado por los canales de K+ y 

los canales de Ca2+ dependientes de voltaje (VOCCs), de manera que la 

despolarización de las VSMCs da lugar a contracción vascular, mientras que los 

estímulos hiperpolarizantes producen vasodilatación. En trabajos previos de 

nuestro grupo, se ha identificado la contribución de diferentes canales de K+ y 

canales VOCCs al desarrollo de la hipertensión en el modelo murino de 

hipertensión esencial BPH/BPN. Sin embrago, existen otros muchos canales y 

receptores de membrana cuya contribución en la patogénesis de la hipertensión 

esencial aún se desconoce. 
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2. Objetivos 

El objetivo principal de esta Tesis consiste en caracterizar la contribución funcional 

de los canales activados por receptor (ROCs) y de los receptores acoplados a 

proteínas G (GPCR) en la patogénesis de la hipertensión arterial esencial en el 

modelo murino de hipertensión BPH/BPN. Concretamente, el estudio se ha 

centrado en caracterizar las diferencias en la contribución de los canales TRPC al 

fenotipo hipertenso en condiciones basales, así como tras estimulación de la 

cascada de señalización purinérgica. 

 

3. Material y Métodos 

Para la realización de esta Tesis, se ha utilizado principalmente el modelo de ratón  

BPH/BPN. Se trata de  un modelo genético de HTA esencial, obtenido a partir del 

cruce de distintas cepas de ratón seleccionadas fenotípicamente. De este modo se 

han obtenido ratones con fenotipo hipertensivo moderado (BPH) y sus respectivos 

controles (BPN), compartiendo un fondo genético similar. Todos los protocolos 

aplicados a los animales utilizados en esta Tesis han sido aprobados por el Comité 

de Ética en Experimentación Animal de la Universidad de Valladolid, acorde con la 

Guía de Principios de la Comunidad Europea relativa a la protección de animales 

utilizados para experimentación y otros fines científicos (Directiva 2010/63/UE). 

Además, se ha utilizado la línea celular CHO como sistema heterólogo de expresión 

génica de distintos vectores que codifican para canales TRPC, lo que nos ha 

permitido caracterizar de forma aislada la expresión y el patrón de asociación  de 

dichos canales, así como sus propiedades electrofisiológicas. 

Mediante estudios de expresión génica (PCR cuantitativa) y estudios de expresión y 

asociación de proteínas (inmunocitoquímica, co-IP, PLA, GSD Super-resolution…) 

hemos caracterizado las diferencias, a nivel molecular, de los canales iónicos y 

receptores de membrana entre los fenotipos BPH y BPN. La caracterización 

funcional se ha llevado a cabo mediante estudios de electrofisiología en células 

aisladas y estudios de miografía de presión en arterias mesentéricas. Con la técnica 

de patch-clamp hemos caracterizado las corrientes iónicas a través de los canales 

de membrana, así como la contribución de dichos canales al Vm, y con los estudios 

de miografía de presión hemos caracterizado la contribución de dichos canales y 

receptores de membrana a las diferencias en la contractilidad vascular entre BPH y 

BPN. 
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4. Resultados 

Los resultados obtenidos en la caracterización del modelo de hipertensión BPH 

mostraron un incremento moderado en los valores de presión arterial, valores de 

potencial de membrana de las VSMCs en reposo más despolarizados y una mayor 

respuesta contráctil al agonista α1-adrenérgico Phenilephrine (PHE) respecto los 

ratones control BPN, sugiriendo que el incremento de la actividad simpática 

contribuye al aumento del tono vascular en nuestro modelo.  

Los resultados de expresión génica obtenidos en células VSMCs procedentes de 

arterias mesentéricas de ratones BPH mostraron un aumento de la expresión de los 

canales TRPC3 y una disminución de los canales TRPC6 respecto el fenotipo BPN. 

Además, mediante los estudios realizados en células CHO, validados 

posteriormente en células VSMCs, caracterizamos la actividad electrofisiológica de 

los canales TRPC3/C6, así como las diferencias en el patrón de expresión y 

formación de heteromultímeros TRPC3/C6. Para esta caracterización funcional  

hemos utilizado el  bloqueo mediante anticuerpos específicos anti-TRPC3 aplicados 

intracelularmente para determinar la contribución de los canales TRPC3, y el 

bloqueo farmacológico con los compuestos Pyr3/10 para estudiar la contribución 

de los canales TRPC6. Nuestros resultados son consistentes con un aumento de la 

contribución funcional de los canales TRPC3 en células BPH, tanto en condiciones 

basales como en respuesta a la estimulación por distintos agonistas. Las corrientes 

basales fueron mayores en células BPH y sólo ellas  fueron sensibles al bloqueo con 

anticuerpos anti-TRPC3. Por otro lado, las corrientes inducidas por agonistas se 

bloquearon en su totalidad por Py3/10 en células BPN, y sólo parcialmente en 

células BPH, sugiriendo una mayor expresión de canales TRPC6 en normotensos.   

Así mismo, los resultados obtenidos mediante miografía de presión mostraron un 

mayor efecto vasodilatador de los compuestos Pyr3/10 en arterias mesentéricas de 

ratones BPN pre-contraídas con el agonista PHE. Finalmente, los estudios de PLA 

apoyaron estos datos funcionales, revelando  una mayor expresión de canales 

TRPC3 en BPH, tanto como homomultímeros TRPC3 como heteromultímeros 

TRPC3/C6, frente a una mayor expresión de homomultímeros TRPC6 en BPN, datos 

que también concuerdan con los resultados obtenidos en el patrón de expresión de 

mRNA. En conjunto, los resultados obtenidos en el estudio de la caracterización de 

los canales TRPC como ROCs en nuestro modelo BPH/BPN nos sugieren una mayor 

contribución de los canales TRPC3 al fenotipo hipertenso.  

Por otro lado, cuando comparamos la amplitud de las corrientes ROC mediadas por 

TRPC en respuesta a distintos agonistas en células BPN y BPH, sólo encontramos 

diferencias en el caso de UTP. Las corrientes TRPC inducidas por el agonista UTP 

fueron significativamente mayores en células BPN. Sin embargo, los estudios de 

caracterización funcional de la señalización purinérgica mostraron un mayor efecto 
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vasoconstrictor de UTP mediado principalmente por receptores P2Y6 en el fenotipo 

BPH, y un aumento en la expresión de mRNA de P2Y6 en BPH; .  

Una posible explicación a esta observación (hay más canales TRPC3 y más 

receptores P2Y6 en las células BPH y, sin embargo, las corrientes TRPC activadas por 

UTP son menores) podría ser una diferencia en el acoplamiento entre los 

receptores y los canales. Los estudios de PLA y Super-resolución (GSD) mostraron 

una mayor proximidad entre canales TRPC3 y receptores purinérgicos P2Y6 en 

células BPN, lo que podría explicar en parte el aumento de corrientes ROC 

activadas por UTP obtenido en BPN.  

Finalmente, el aumento de la respuesta vasoconstrictora en las arterias BPH, a 

pesar de tener una menor corriente TRPC inducida por UTP, podría explicarse por la 

contribución a esta respuesta vasoconstrictora de otros canales además de los 

TRPCs. Observamos que la aplicación de UTP en BPH produce una despolarización 

del potencial de membrana mucho mayor que en BPN, y en ambos casos, se inhibe 

de forma parcial por Pyr10 y casi totalmente en presencia de bloqueantes de los 

canales de Cl- activados por Ca (CaCCs) como Ácido Niflúmico o el inhibidor de los 

canales Anoctamina 1 (ANO1-Inhibitor). 

 Así mismo, los estudios electrofisiológicos de las corrientes totales activadas por 

UTP mostraron una mayor contribución de los canales CaCCs en el fenotipo BPH, 

acorde con el mayor patrón de expresión de mRNA del canal ANO1 y su subunidad 

reguladora ClCa1. Estos resultados indican que los canales CaCCs contribuyen de 

manera importante a la respuesta mediada por UTP, y sugieren que las diferencias 

en la expresión de estos canales pueden explicar las diferencias en la señalización 

purinérgica entre las células de BPN y BPH.  

 

5. Discusión y Conclusiones 

El modelo BPH es un modelo de hipertensión esencial moderada asociado a un 

aumento del tono vascular y a un incremento de la actividad simpática. Puesto que 

los canales TRPCs son el prototipo de los canales activados por receptor (ROCs), 

hemos investigado las diferencias  en las repuestas vasculares a agonistas α1- 

adrenérgicos y purinérgicos, ya que son las dos vías de señalización más 

importantes asociadas a la estimulación simpática en arterias de resistencia.  Los 

patrones de expresión de mRNA y asociación proteica de los canales TRPC 

mostraron un aumento en la expresión de TRPC3, asociado como homomultímeros 

o heteromultímeros con TRPC6, en BPH; mientras que la asociación de 

homomultímeros TRPC6 fue predominante en BPN. Además, el aumento de 

expresión de TRPC3 se correlaciona con la mayor actividad basal del canal en 

células BPH. 
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Por otro lado, lo estudios control llevados a cabo en células CHO demostraron que 

tanto los compuestos Pyr3/10 como los anticuerpos anti-TRPC3 son buenas 

herramientas farmacológicas para el estudio del papel funcional de los canales 

TRPC en sistemas nativos. De esta manera, mientras que los anticuerpos anti-

TRPC3 fueron capaces de bloquear selectivamente las corrientes basales a través 

de TRPC3, los compuestos Pyr3/10 bloquearon la actividad del canal TRPC6. Estos 

resultados fueron posteriormente validados en células nativas, de manera que se 

obtuvo un mayor efecto bloqueante con los anticuerpos anti-TRPC3 y una menor 

sensibilidad al bloqueo mediado por los compuestos Pyr3/10 en BPH; mientras que 

los efectos de Pyr3/10 fueron mayores en BPN. Por tanto, estos datos nos sugieren 

una mayor contribución de los canales TRPC3 al fenotipo hipertenso. 

La caracterización funcional de la respuesta activada por UTP en el modelo BPH nos 

sugiere que está principalmente mediada por los receptores purinérgicos P2Y6. 

Además, existe una gran contribución de los canales CaCCs, concretamente del 

canal ANO1, a la despolarización inducida por UTP en BPH, lo que concuerda con la 

mayor expresión de mRNA de ANO1 y su subunidad reguladora ClCa1. 

En conjunto, nuestros resultados sugieren que los cambios en la expresión  tanto 

delos canales TRPC como de los canales CaCCs contribuyen a fijar un potencial de 

membrana más despolarizado en las células BPH, y por tanto una mayor 

vasoconstricción basal.  Además, la contribución de estos dos tipos de canales a las 

respuestas inducidas por agonistas de receptores acoplados a proteínas G (GPCR) 

es diferente en BPH y BPN y además es dependiente del tipo de agonista. Así, la 

activación por UTP de los receptores P2Y6 da lugar a un amento de DAG, que activa 

canales TRPC3/6, y a un aumento de calcio intracelular, que activa los canales 

ANO1. La activación de ambos canales da lugar a una despolarización que 

desencadena la respuesta contráctil. Sin embargo, esta respuesta es mucho mayor 

en las arterias BPH  debido, en gran parte, al aumento de la contribución funcional 

de los canales CaCCs en células BPH. En este contexto, cambios pequeños en la 

expresión y/o el acoplamiento de los distintos elementos de la vía de señalización 

(GPCR, TRPC y CaCCs) pueden dar lugar a diferencias importantes en la respuesta 

final, sugiriendo que estas proteínas pueden representar nuevas dianas 

terapéuticas para la prevención y el tratamiento de la hipertensión esencial. 
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Key points

� Canonical transient receptor potential (TRPC)3 and TRPC6 channels of vascular smooth
muscle cells (VSMCs) mediate stretch- or agonist-induced cationic fluxes, contributing to
membrane potential and vascular tone.

� Native TRPC3/C6 channels can form homo- or heterotetrameric complexes, which can hinder
individual TRPC channel properties. The possibility that the differences in their association
pattern may change their contribution to vascular tone in hypertension is unexplored.

� Functional characterization of heterologously expressed channels showed that TRPC6-
containing complexes exhibited Pyr3/Pyr10-sensitive currents, whereas TRPC3-mediated
currents were blocked by anti-TRPC3 antibodies.

� VSMCs from hypertensive (blood pressure high; BPH) mice have larger cationic basal currents
insensitive to Pyr10 and sensitive to anti-TRPC3 antibodies. Consistently, myography studies
showed a larger Pyr3/10-induced vasodilatation in BPN (blood pressure normal) mesenteric
arteries.

� We conclude that the increased TRPC3 channel expression in BPH VSMCs leads to changes in
TRPC3/C6 heteromultimeric assembly, with a higher TRPC3 channel contribution favouring
depolarization of hypertensive VSMCs.

Abstract Increased vascular tone in essential hypertension involves a sustained rise in total
peripheral resistance. A model has been proposed in which the combination of membrane
depolarization and higher L-type Ca2+ channel activity generates augmented Ca2+ influx
into vascular smooth muscle cells (VSMCs), contraction and vasoconstriction. The search
for culprit ion channels responsible for membrane depolarization has provided several
candidates, including members of the canonical transient receptor potential (TRPC) family.
TRPC3 and TRPC6 are diacylglycerol-activated, non-selective cationic channels contributing
to stretch- or agonist-induced depolarization. Conflicting information exists regarding changes
in TRPC3/TRPC6 functional expression in hypertension. However, although TRPC3-TRPC6
channels can heteromultimerize, the possibility that differences in their association pattern
may change their functional contribution to vascular tone is largely unexplored. We probe
this hypothesis using a model of essential hypertension (BPH mice; blood pressure high) and
its normotensive control (BPN mice; blood pressure normal). First, non-selective cationic currents
through homo- and heterotetramers recorded from transfected Chinese hamster ovary cells
indicated that TRPC currents were sensitive to the selective antagonist Pyr10 only when TRPC6
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was present, whereas intracellular anti-TRPC3 antibody selectively blocked TRPC3-mediated
currents. In mesenteric VSMCs, basal and agonist-induced currents were more sensitive to Pyr3
and Pyr10 in BPN cells. Consistently, myography studies showed a larger Pyr3/10-induced vaso-
dilatation in BPN mesenteric arteries. mRNA and protein expression data supported changes in
TRPC3 and TRPC6 proportions and assembly, with a higher TRPC3 channel contribution in BPH
VSMCs that could favour cell depolarization. These differences in functional and pharmacological
properties of TRPC3 and TRPC6 channels, depending on their assembly, could represent novel
therapeutical opportunities.
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Abbreviations BPH, blood pressure high; BPN, blood pressure normal; CHO, Chinese hamster ovary; DAG,
diacylglycerol; GFP, green fluorescent protein; GPCR, G-protein coupled receptors; HS, hypotonic stimulus; KO,
knockout; LTCC, L-type Ca2+ channel; PLA, proximity ligation assay; ROCs, receptor operated channels; SOCs,
store-operated channels; RFP, red fluorescent protein; RPB, modified radioimmunoprecipitation assay buffer; SMDS,
smooth muscle dissociation solution; TRP, transient receptor potential; TRPC channels, canonical transient receptor
potential channels; VSMCs, vascular smooth muscle cells.

Introduction

Smooth muscle cells of blood vessels (vascular smooth
muscle cells; VSMCs) act as critical determinants of blood
pressure by modulating the vessel diameter and hence
blood flow. Most importantly, vascular disease resulting
in high blood pressure is among the most common causes
of death and disability in the western world.

Ion channels initiate and regulate contraction and
VSMC tone, modulating intracellular [Ca2+] levels.
The identification of ion channel genes expressed in
VSMCs has significantly improved our knowledge of
the signalling pathways leading to VSMC contraction, as
well as their possible contribution to pathophysiological
conditions. Although L-type, voltage-dependent Ca2+
channel (LTCC) is the primary pathway for Ca2+ influx
in VSMC, non-selective cation channels have also been
identified as important players in the regulation of vascular
tone, either modulating membrane potential or providing
a Ca2+ entry pathway independent of the activation of
LTCCs (Albert & Large, 2006).

The molecular correlates of the non-selective cation
channels expressed in VSMCs are members of the trans-
ient receptor potential (TRP) family. TRP channels are
activated by vasoconstrictors, by membrane stretch and
by Ca2+ store depletion (Dietrich et al. 2006; Nilius &
Honoré, 2012), and the canonical TRP (TRPC) family
has been proposed as the molecular constituent of
receptor- and stretch-operated channels (ROCs and SOCs,
respectively) that link the diacylglycerol (DAG) signalling
cascade pathway to the activation of LTCCs. The seven
TRPC family members can be classified into subfamilies
on the basis of their amino acid similarity. Among
them, the TRPC3/6/7 subfamily has been proposed as
the DAG-activated ROCs (Hofmann et al., 1999, 2002),

although TRPC7 channels have not been found in the
vasculature (Earley & Brayden, 2015).

Despite years of study characterizing the biophysical
properties and the functional roles of TRPC3 and TRPC6
channels, surprisingly little is known regarding their
contribution to vasoconstriction and vasorelaxation in
arteries. Several reasons contribute to the paucity of
these studies, including their lack of distinct biophysical
properties and the shortage of selective pharmacological
blockers. Moreover, the use of small interfering RNA
approaches to study these channels in cultured VSMCs
has provided information that is not easy to interpret in
terms of the contribution of the channels to the regulation
of VSMCs contractility because cultured VSMCs undergo
phenotypic modulation and show lost contractile
properties (Owens et al. 2004). In recent years, knockout
(KO) animals and more selective pharmacological agents
have provided better approaches for studying the
contribution of these channels to vascular tone. However,
no conclusive results could be obtained from TRPC3
and TRPC6 KO animals. Neither agonist-induced, nor
pressure-evoked contraction was reduced in arteries from
TRPC6-KO mice because upregulation of TRPC3 channels
provided a compensatory vasoconstrictor mechanism in
these animals (Dietrich et al. 2005). Although these
channels have been described in VSMCs from many
arteries, as for TRPC3-KO, the TRPC3-deficient mice
phenotype shows an impaired vasodilatation related to
the lack of endothelial TRPC3 channels (Senadheera et al.
2012; Yeon et al. 2014). In any case, the combination
of several of these approaches enables the distinction
of the contributions of these two channels to vascular
tone in different vascular beds. TRPC6 channels are
linked to pressure-induced (myogenic) vasoconstriction
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and can also be activated by a variety of G-protein
coupled receptors (GPCR) ligands (Mederos y Schnitzler
et al. 2008; Gonzales et al. 2014; Earley & Brayden,
2015). However, the mechanisms linking stretch or
mechanical stimuli to TRPC6 channels activation remain
controversial. Although some studies suggest that TRPC6
channels could be intrinsically mechanosensitive (Wilson
& Dryer, 2014), other laboratories conclude that TRPC6
channel gating in response to stretch is an indirect
effect resulting from the mechanical activation of GPCR
(Sharif-Naeini et al. 2008; Gonzales et al. 2014). An
interesting proposal that can solve this controversy
sugggests that both mechanisms could be acting in a
synergistic way, so that simultaneous receptor-mediated
and mechanical stimulation could amplify calcium
influx through TRPC6 channels (Inoue et al. 2009).
TRPC6 channel exhibits mechanosensitivity only after its
receptor-mediated activation via PLC/diacylglycerol and
PLA2/ 20-HETE pathways.

TRPC3 channels contribute to basal tone and to
agonist-induced vasoconstriction but do not appear to
have a role in the myogenic response (Reading et al.
2005; Dietrich et al. 2006). However, these studies
also show some discrepancies regarding the expression
and the functional contribution of these channels
in different preparations and leave several relevant
questions unanswered. In particular, the characterization
of the unique contributions of these two channels in
pathophysiological contexts with an altered vascular tone
has not been defined. An increased expression of TRPC3
channels in conduit arteries from hypertensive animals
has been reported (Liu et al. 2009; Noorani et al. 2011),
although their expression and functional contribution in
VSMCs from resistance arteries remain a matter of debate
(Reading et al. 2005; Adebiyi et al. 2012; Senadheera et al.
2012). Also, the upregulation of TRPC6 channels (with
normal TRPC3 channel expression) has been described in
mesenteric arteries in other hypertension models (Linde
et al. 2012).

Aside from the different models and vascular beds used,
these discrepancies can be related to the fact that the
contribution of TRPC3 and TRPC6 channels in native
VSMCs is dependent on their association as homo- or
heterotetrameric complexes. Because TRPC3 and TRPC6
expression overlaps in most VSMC tissues and their
physical interaction has been demonstrated (Hofmann
et al. 2002; Beech et al. 2004; Shin et al. 2011), TRPC3/6
heterotetramers may be the molecular correlate of the
native receptor-operated non-selective cationic influx in
VSMCs. For this reason, the characterization of end-
ogenous TRPC channels in native cell is challenged
by the possibility of heteromultimeric associations that
can hinder the contribution of an individual TRPC
channel (Maruyama et al. 2006). In this regard, the
possibility that differences in their association pattern may

change their functional contribution to vascular tone is
unexplored.

In the present study, we probe this hypothesis using
a model of essential hypertension (BPH mice; blood
pressure high) and its normotensive control (BPN mice;
blood pressure normal) (Schlager & Sides, 1997). We
observed changes in the expression of TRPC3 mRNA
in mesenteric VSMCs from BPH animals, and we
aimed to define its possible contribution to the hyper-
tensive phenotype by determining the functional and
pharmacological profile of TRPC3 and TRPC6 homo- and
heterotetramers, combining studies in native VSMCs, in
heterologous expression systems, and in whole arteries.
The data obtained indicate that changes in TRPC3
channels expression determine differences in TRPC3 and
TRPC6 proportions and assembly, leading to a higher
TRPC3 channel contribution in BPH VSMCs that could
favour cell depolarization in the hypertensive phenotype.

Methods

Ethical approval

All animal protocols were approved by the Institutional
Care and Use Committee of the University of Valladolid,
and are in accordance with the European Community
guiding principles with respect to the care and use of
animals (Directive 2010/63/UE).

Mice protocols

Colonies of BPH and BPN mice (Jackson Laboratories,
Bar Harbor, ME, USA) were housed in the animal
facility of the School of Medicine of Valladolid, under
temperature-controlledconditions (21 °C) and with
unlimited access to water and food. Blood pressure was
measured in awake mice with a tail-cuff pressure meter
(LSI Letica Scientific Instruments, Barcelona, Spain) as
described previously (Tajada et al. 2012). BPN and BPH
mice used in the present study were paired in terms of age,
ranging from 16 to 58 weeks (average 36.2 ± 2.4 weeks for
BPN and 34.6 ± 1.7 weeks for BPH). However, the weight
of BPN animals was significantly larger that BPH mice of
matching ages (29.33 ± 0.23 g for BPN vs. 24.37 ± 0.24 g
for BPH, n = 69–80, P < 0.001), as described previously
(Moreno-Domı́nguez et al. 2009). Mice were deeply
anaesthetized by isoflurane inhalation (5% at 2.5 l min−1

O2) and killed by decapitation. Mesenteric arteries were
obtained as described previously (Moreno-Domı́nguez
et al. 2009). Briefly, arteries were carefully dissected and
cleaned of connective and endothelial tissues in cold
(4 °C) oxygenated (95% O2–5% CO2) smooth muscle
dissociation solution (SMDS)–10 μM Ca2+ (120 mM NaCl,
4.2 mM KCl, 25 mM NaCHO3, 0.6 mM KH2PO4, 1.2 MgCl2
and 11 mM glucose, pH 7.4). Subsequently, arteries were
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either frozen at −80 °C for further RNA extraction or used
directly for myography measurements or to obtain freshly
dispersed VSMCs.

Chinese hamster ovary (CHO) cells culture and
transfection

CHO cells were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% foetal bovine
serum, penicillin-streptomycin (100 U ml−1 each) and
2 mM L-glutamine at 37 °C in a 5% CO2 humidified
atmosphere. CHO cells were grown as a monolayer
in poly-L-lysine-coated coverslips prior to transiently
transfection by using TransIT-X2 R© System (Mirus,
Madison, WI, USA) in accordance with the manufacturer’s
instructions. Cells were transfected with 1 μg of DNA of
hTRPC3-YFP (kindly provided by Dr Klaus Groschner,
University of Graz, Austria), 1 μg of ratTRPC6-green
fluorescent protein (GFP) (a gift from Dr Jason Yuan,
U of Arizona) or 0.5 μg of each. Cells were used 24–72 h
after transfection.

RNA extraction

RNA extraction was carried out from 30–40 mesenteric
arteries from five or six BPN and BPH mice (Cidad
et al. 2010). After cleaning of connective, adipose and
endothelial tissues, total RNA from arteries was iso-
lated with a MELTTM Total RNA Isolation System Kit
(Ambion, Inc., Thermo Fisher Scientific, Waltham, MA
USA) in accordance with the manufacturer’s instructions.
After DNAse I (Ambion, Inc.; Thermo Fisher Scientific)
treatment, 500–750 ng of RNA was used for the reverse
transcription reaction (2.5 U μl−1 MuLvRT, 1 U μl−1

RNase inhibitor, 2.5 μM random hexamers, 1 × PCR
buffer, 5 mM MgCl2 and 4 mM mixed dNTPs; Applied
Biosystems, Thermo Fisher Scientific) at 42 °C for
60 min to obtain cDNA. Real-time PCR was carried out
using TaqMan Low-Density Arrays (Applied Biosystems;
Thermo Fisher Scientific) and an ABI Prism 7900HT
sequence detection system (Applied Biosystems) at the
Genomic Service of the CNIC (Madrid, Spain). Data
were analysed with the threshold cycle (Ct) relative
quantification method (��Ct) (Livak & Schmittgen,
2001). We analysed two different housekeeping genes:
ribosomal protein 18 s (RP18s) and Gapdh. RP18s is
included in the arrays such that is also an internal control
of the reaction. By contrast, Gapdh serves as an external
control because its expression is determined from the
same samples in an independent reaction. Because the
data obtained with the two housekeeping genes showed
no significant differences in expression between BPN
and BPH samples, expression data were normalized by
the level of ribosomal RNA 18S transcript. The relative
abundance of the genes was calculated from 2(–�Ct), where

�Ct = CtChannel-Ct18S. Differences between BPN and BPH
samples were calculated from 2(–��Ct), where ��Ct =
�CtBPH – �CtBPN. In this way, the levels of mRNA in
BPH samples are expressed as changes relative to BPN:
2(–��Ct) = 1 will indicate the absence of changes between
both preparations; increased expression is denoted by a
2(−��Ct) > 1; and decreases are indicated by 2(–��Ct) < 1.
A more intuitive expression can be obtained when changes
are expressed as log 2(–��Ct) (Fig. 1): positive values
indictate a higher expression in BPH mice, whereas
negative values indicate a lower expression compared to
BPN mice.

Myography measurements

Segments of third-order mesenteric arteries were mounted
in a pressure myograph system (Danish Myo Technology,
Aarhus, Denmark). The arteries were cannulated between
two borosilicate glass pipettes and fixed with nylon
filaments at both ends. Then, the artery segment was
air bubbled to remove endothelial tissue and filled with
physiological saline solution (120 mM NaCl, 2.5 mM

CaCl2, 1.17 mM MgSO4, 5 mM KCl, 1.18 mM Na2HPO4,
25 mM NaHCO3, 1 mM EDTA, 10 mM glucose, pH 7.4
adjusted with 5% CO2–95% air), which was maintained
throughout the duration of the experiment. The arteries
were pressurized to 70 mmHg in physiological saline
solution and incubated at 37 °C for at least 20 min
to equilibrate before starting the measurements. The
viability of mesenteric arteries was evaluated by their
ability to constrict in response to phenylephrine, and
the endothelium denudation was confirmed in control
experiments by the absence of dilatation in response
to 10 μM ACh. Data regarding the external diameter
were collected with a CCD camera placed in an inverted
microscope (Danish Myo Technology) and were analysed
using MyoView software (Danish Myo Technology). The
vasodilatory effect of the Pyr compounds was tested in
phenylephrine (5–10 μM) precontracted arteries. At the
end of each experiment, vessels were superfused with a
solution containing 10 μM nifedipine to determine the
maximal vessel diameter upon relaxation. Dose–response
curves of chemical agents were calculated with the formula
100 × (D – DPhe)/(DNif – DPhe) and fitted by either one or
two Hill functions.

VSMC isolation

Fresh VSMC cells were obtained after two sequential
enzymatic incubations at 37 °C of second- and
third-order mesenteric arteries in accordance with pre-
viously described methods (Moreno-Domı́nguez et al.
2009; Tajada et al. 2012). The first digestion was carried
out in SMDS-Ca2+-free solution containing 0.8 mg ml−1

papain (Worthington Biochemical Corp., Lakewood, NJ,
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USA), 1 mg ml−1 BSA (Sigma-Aldrich, St Louis, MO,
USA) and 1 mg ml−1 dithiothreitol (Sigma-Aldrich)
and the second one was performed in SMDS-10 μM

Ca2+ supplemented with 0.6 mg ml−1 collagenase F
(Sigma-Aldrich) and 1 mg ml−1 BSA. Subsequently, the
tissues were washed three or four times in SMDS-10 μM

Ca2+ and were mechanically dissociated with a wide-bore
glass pipette to obtain freshly isolated VSMC cells. Single
cells were maintained at 4 °C until patch clamp recordings
or protein expression assays.

Protein expression assays

Protein expression in VSMC and CHO cells was studied by
immunocytochemistry and immunoprecipitation assays,
as well as by a proximity ligation assay (PLA). For the
immunocytochemistry assay, transfected CHO cells plated
on poly-lysine coated coverslips were fixed with 4 %
paraformaldehyde in PBS for 15 min, permeabilized in

PBTx (PBS, 0.1% Triton X-100) and blocked with PBTx
with 1% of BSA for 10 min. Then, cells were incubated
first with the primary antibody: rabbit anti-TRPC3
(4.5 μg ml−1; ACC-016; Alomone Labs, Jerusalem,
Israel) or rabbit anti-TRPC6 (4.5 μg ml−1; ACC-017;
Alomone) and then with the secondary antibody: Alexa
594 goat anti-rabbit (dilution 1:1000; Molecular Probes,
Carlsbad, CA, USA), both in blocking solution. The nuclei
were labelled with Hoechst 33342 (dilution 1:2000; Life
Technologies, Grand Island, NY, USA) and coverslips
were mounted with Vectashield (Vector Laboratories, Inc.,
Burlingame, CA, USA).

For the immunoprecipitation assay, cell lysate from
transfected CHO cells was collected in modified radio-
immunoprecipitation assay buffer (MRB) (150 mM

NaCl, 50 mM Tris, pH 8, 1% NP-40 and 0.2%
sodium deoxycholate, pH 7.4 adjusted with NaOH) with
Proteases Inhibitor Cocktail (Roche, Basel, Switzerland).
Then, the cell lysate was incubated at 4 °C with
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Figure 1. mRNA profile of TRPC channels in BPN and
BPH VSMCs
Left: relative abundance of TRPC family channels in VSMC
from BPN mesenteric, femoral and aorta arteries normalized
by the amount of RP18S. Data are expressed as 2−�Ct, where
�Ct = Ctchannel – Ct18S. Right: showing, for each vascular
bed, the changes in TRPC channels expression in BPH arteries
using BPN arteries as the calibrator. Differences are expressed
as log (2−��Ct) where ��Ct = �CtBPH – �CtBPN. With the
log scale, a value of 0 represents no change, increases in
expression are depicted as positive changes, and decreased
expression appears as a negative value. For reference, the
values of a two-fold increase or a two-fold decrease are
indicated by the dotted lines. Each bar is the mean ± SEM,
n = 6–10 values from at least three independent experiments.
All through the figures ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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gentle shaking for 2–3 h with the GFP-Trap A beads
in accordance with the manufacturer´s instructions
(Chromotek, Planegg-Martinsried, Germany) and, after
washing three times with MRB buffer and with high
NaCl-MRB buffer (750 mM), samples were maintained at
−20 °C until analysis by western blotting. For immuno-
blot analysis, protein samples were diluted in XT Reducing
Agent and XT Sample Buffer (Bio-Rad, Hercules, CA,
USA) and incubated at 95 °C for 5 min. They were then
separated by SDS-PAGE on 10% polyacrylamide gels and
transferred onto nitrocellulose membrane, which was then
blocked with 5 % non-fat dry milk in 0.1 % Tween 20 in
Tris-buffered saline for 1 h. Membranes were incubated
with the primary antibodies in blocking solution:
rabbit anti-TRPC3 (4.5 μg ml−1; Alomone) or rabbit
anti-TRPC6 (4.5 μg ml−1; Alomone), at 4 °C overnight.
Next, membranes were incubated with the secondary
antibody: horseradish peroxidase-conjugated anti-rabbit
IgG (dilution 1:20000; Dako, Glostrup, Denmark) for
1 h. Protein signals were detected using a VersaDoc
4000 Image System (Bio-Rad) with chemiluminescence
reagents (SuperSignal West Femto Maximum Sensitivity
Substrate; Pierce, Rockford, IL, USA).

Protein association in native VSMC cells was explored
with PLA technology using the Duolink R© In Situ kit
(Sigma-Aldrich) in accordance with the manufacturer´s
instructions. Briefly, freshly isolated native cells were
incubated in 12 mm diameter dishes at 37 °C in
a 5% CO2 humidified atmosphere for 1 h prior to
be fixed with 4 % paraformaldehyde in PBS. After
washing, cells were permeabilized with 0.2% Triton
x-100 in PBS and blocked with the kit´s blocking
solution at 37 °C for 1 h. Then, cells were incubated
with different combinations of first intracellular anti-
bodies: rabbit anti-TRPC3 (1 μg ml−1; Alomone),
goat anti-TRPC3 (1 μg ml−1; NBP1-70352; Novus
Biologicals, Littleton, CO, USA), rabbit anti-TRPC6
(1 μg ml−1; Alomone) and goat-anti-TRPC6 (1 μg ml−1;
NBP1-00142; Novus Biologicals) at room temperature
overnight. Cells were then labelled with Doulink R© In
Situ PLA probes: anti-goat PLUS and anti-rabbit MINUS
for 1 h at 37 °C and, subsequently, ligation and
amplification reactions were carried out in accordance
with the manufacturer ´s instructions. Samples were
mounted with Vectashield with DAPI to stain the
nuclei and maintained at 4°C until visualization at
the appropriate wavelengths using an SP5 confocal
microscope (Leica Microsystems, Wetzlar, Germany).
Control experiments employed only one primary
antibody.

Electrophysiological recordings

Electrophysiological measurements were carried out
at room temperature (20–25°C) using a whole-cell

configuration of the patch clamp technique. CHO
transfected cells were perfused with a bath solution
(Standarde solution) containing (in mM) 141 NaCl, 1.8
CaCl2, 1.2 MgCl2, 4.7 KCl, 10 glucose an d10 Hepes, pH
7.4 (NaOH). For recordings of freshly isolated VSMCs, we
used a TRP external solution containing (in mM) 141 NaCl,
1.8 CaCl2, 1.2 MgCl2, 5 CsCl, 10 glucose, 10 Hepes, 0.005
nicardipine, 0.1 DIDS and 0.1 niflumic acid (pH 7.4 with
NaOH). Borosilicate glass patch pipettes of 3–10 M� of
resistance were filled with an internal solution (TRP inter-
nal solution) containing (mM) 10 CsCl, 110 Cs aspartate,
10 NaCl, 3.2 CaCl2, 10 Hepes, 10 BAPTA, 2 MgATP, pH
7.2 (with CsOH) and with an estimated free [Ca2+] of
100 nM. When indicated, rabbit anti-TRPC3 or TRPC6
or rat anti-red fluorescent protein (RFP) (Chromotek)
antibodies were included at a final concentration of
4 μg ml−1. Current–voltage relationships were obtained
with 1 s ramp protocols from −150 mV to +80 mV
from a holding potential of −10 mV, under control
conditions or in the presence of the different activators
or blockers. A 70% Standarde solution was applied as
hypotonic stimulus (HS). For the experiments with intra-
cellularly applied antibodies, the access resistance (Ra)
and the membrane capacitance (Cap) were continuously
monitored and recorded by applying the membrane test
algorithms of Clampex 10 software (Axon Instruments,
Foster City, CA, USA) throughout the experiment. Only
cells with G� seal values and stable Ra and Cap
values were considered for analysis. Data were acquired
using an Axopatch 200A patch clamp amplifier (Axon
Instruments), at a frequency of 5 kHz and filtered at
2 kHz. Recordings were digitized with a Digidata 1200
interface using Clampex 10 software. Electrophysiological
data analyses were carried out using Clampfit 10 software
(Molecular Devices, Sunnyvale, CA, USA) and with Origin
7 software (OriginLab Corporation, Northampton, MA,
USA).

Statistical analysis

Statistical analyses were performed with R software (R
Foundation for Statistical Computing, Vienna, Austria).
Pooled data are expressed as the mean ± SEM.
For the electrophysiology, myography and PLA,
statistical comparisons between groups of data were
carried out using a two-tailed Student’s t test for
unpaired data. P < 0.05 was considered statistically
different.

In the case of the quantitative PCR data, a Student’s t test
for independent samples was used in the case of normal
distributions (i.e. a Saphyro-Wilks test with P > 0.05). If
this was not the case, a pairwise Mann–Whitney–Wilcoxon
test (i.e. a non-parametric test) was applied to determine
whether the differences between groups of data were
statistically significant.
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Results

We analysed the expression profile of TRPC channels in
mesenteric, femoral and aorta VSMCs from BPN and
BPH mice. The genes explored included all members
of the TRPC family, as well as several control genes,
such as calponin as a control for VSMCs, endothelial
nitric oxide synthase as a control for endothelial cell
contamination and ribosomal protein 18S (RP18S) as
an endogenous control for the quantitative PCR. We
explored both the relative abundance of the channel genes
expressed in the normotensive VSMCs and the changes
observed in BPH animals. The data are summarized
in Fig. 1. We found mRNA expression of all TRPC
channels but TRPC5 and TRPC7 (Fig. 1, left). Changes in
expression upon hypertension (Fig. 1, right) are expressed
as log2(–��Ct) so that positive values represent increased
levels of expression compared with BPN, whereas negative
values represent decreased expression (see Methods). In
all cases, TRPC mRNA channel expression was higher in
resistance (mesenteric) than in conduit (femoral or aorta)
arteries, and significant differences in TRPC1 and TRPC3

expression were found in hypertensive mice. Expression
of TRPC1 was decreased in mesenteric and aorta from
BPH, whereas TRPC3 levels were higher in mesenteric
and smaller in femoral.

Because TRPC expression was higher in resistance
arteries, which functionally contribute more to blood
pressure, and the increased TRPC3 expression was
unique to mesenteric VSMCs from hypertensive mice, we
decided to investigate the possible contribution of TRPC3
channels to the hypertensive phenotype using several
pyrazole compounds (i.e. Pyr3, Pyr6 and Pyr10). Although
Pyr3 and Pyr10 have been proposed as selective blockers
of the DAG-activated TRPC channels, and particularly
TRPC3, Pyr6 appears to exhibit a greater potency as
inhibitor of Orai-mediated Ca2+ entry (Schleifer et al.
2012).

First, we tested the effect of these compounds on
vessel tone performing pressure myography experiments
in endothelium-denuded mesenteric arteries from BPN
and BPH mice (Fig. 2). Pressurized arteries were
pre-contracted with phenylephrine, and the application
of 10 μM nifedipine (an LTCC blocker) at the
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Figure 2. Effects of Pyr compounds on the vascular tone in BPN and BPH mesenteric arteries
A, representative examples of the effect of Pyr3 application at the indicated concentrations (in μM) on the external
diameter of a BPN (left) and a BPH artery (right). In both cases, the arteries were pressurized to 70 mmHg and
pre-contracted with bath application of 5 μM phenylephrine (Phe). Increased concentrations of Pyr3 were applied
in the continuous presence of Phe. At the end of the experiment 10 μM nifedipine (Nif) was applied to determine
the maximal diameter. B, dose–response effect of Pyr10, Pyr3 and Pyr6 in BPN (filled squares) and BPH (open circles)
arteries. Data are normalized to the maximal diameter values obtained in the presence of nifedipine and expressed
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end of each experiment was used to determine the
maximum diameter. Bath application of Pyr3 elicited
a dose-dependent vasodilator response in mesenteric
arteries (Fig. 2A) and smaller concentrations were needed
to see a response in BPN. The same differences were
observed with Pyr10. The whole dose–response curves are
depicted in Fig. 2B. In both cases, BPN arteries have an
apparent high-affinity component, which is responsible
for �30% of the total response that was not present in
BPH vessels. By contrast, the vasodilator effect of Pyr6
was less potent and there were no differences between
BPN and BPH arteries (Fig. 2B). These data indicate
that both Pyr3 and Pyr10 at concentrations �10 μM

have a larger vasodilator effect in BPN arteries. It is
reasonable to speculate that the high-affinity component
represents the literature described specific blockage of
TRPC3 channels, whereas the low affinity component,

which is responsible for the full vasodilatation, is a result of
some unspecific blockage. Therefore, these results would
suggest that TRPC3 channels have a larger functional role
in BPN arteries.

The effects of TRPC3 blockers were clearly not anti-
cipated by the mRNA expression studies depicted in Fig. 1.
Several hypotheses, including the absence of correlation
between mRNA and protein changes, or differences in the
blocking effect of Pyr3/10 compounds depending on the
subunit composition of the TRPC tetramers, could explain
this discrepancy. We decided to explore this possibility by
characterizing the effect of Pyr10 on the non-selective
cationic currents recorded in CHO cells expressing
TRPC3, TRPC6 or TRPC3/6 channels. Currents of
variable amplitude could be elicited in all experimental
groups, as well as in mock-transfected CHO cells, in
response to depolarizing ramps from −150 to +80 mV.

A

B

−150 −100 −50 50 100

−150

−100

−50

50

100

−150 −100 −50 50 100

−150

−100

−50

50

100

−150 −100 −50 50 100

−150

−100

−50

0

50

100

−30

−20

−10

0

10

20

C-Pyr10

Pyr10

I 
(p

A
)

Vm (mV)

TRPC3

C

I 
(p

A
)

TRPC6

V (mV)

C-Pyr10Pyr10

C

 I
 (

p
A

)
TRPC3/6

C-Pyr10

Pyr10

C

**

***

*

TRPC3/

TRPC6TRPC6TRPC3

I 
(p

A
/p

F
)

Control

+ Pyr10

Mock

*

−20

−10

0

10

20

30 HS

+ Pyr10

H
S

 A
c
ti
v
a

te
d

 I
 (

p
A

/p
F

)

* **

****

Mock TRPC3 TRPC6

TRPC3/

TRPC6

−40

−20

0

20

40

+80 mV

−150 mVI 
(p

A
/p

F
)

1 min

Pyr10
70% HS

C

D

Figure 3. Functional contribution of TRPC3 and TRPC6 channels to basal and stretch-activated,
non-selective cationic currents in CHO cells
A, representative examples of the traces recorded in the whole-cell configuration from unstimulated CHO cells
transfected with TRPC3, TRPC6 and TRPC3/6 channels using ramp protocols from −150 mV to +80 mV. The
effect of the application of Pyr10 (10 μM) in each case and the subtracted (C-Pyr), Pyr-10 sensitive current are also
represented in the plots. B, lower bars plot shows average current densities (pA/pF) measured at −150 mV and
+80 mV for each condition, as well as for untransfected CHO cells. Data are the mean ± SEM of seven to 23 cells
in each condition. C, example of the experimental protocol used to explore the effect of Pyr10 on stretch-activated
currents in a CHO cell transfected with TRPC3/6. The plot shows the time course of the current density recorded at
−150 mV and +80 mV together with the time of application of the different stimuli. D, summary of Pyr10 effects
on stretch-activated currents under all of the conditions explored. Bar plot shows average current densities elicited
by application of a hypotonic solution (HS, 70% Standarde solution) and the inhibitory effect of Pyr10 (10 μM).
Data are the mean ± SEM; 13–22 cells in each group.
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Figure 3A shows the average current density obtained
at −150 and +80 mV in all the experimental groups,
together with representative examples of the currents
obtained in TRPC3-, TRPC6- and TRPC3/6-transfected
cells before and during the application of 10 μM Pyr10.
The subtracted, Pyr10-sensitive currents are also shown.
TRPC3-transfected cells had bigger currents than TRPC6-,
and TRPC3/TRPC6-transfected cells showed an inter-
mediate behaviour. Regarding the effect of Pyr10, the
data showed that only currents from CHO cells expressing
TRPC6 channels (alone or together with TRPC3) were
sensitive to Pyr10. Average current densities at +80 and
−150 mV, under control conditions or in the presence of
Pyr10 (10 μM), are shown in Fig. 3B.

Because TRPC3 and TRPC6 mediated currents can be
activated by several GPCR as well as by pressure-induced
membrane stretch (Gonzales et al. 2014; Wilson &
Dryer, 2014), we aimed to test the effect of Pyr10
on currents activated by some of these stimuli. To
simulate a membrane stretch, we used a hypotonic
stimulus (70% Standarde solution, HS) to activate the
channels in CHO transfected cells. A typical experiment
is depicted in Fig. 3C and the summary data obtained
are shown in Fig. 3D. Application of HS elicited a
reversible increase in the TRPC-mediated currents that
was similar in the three conditions studied (TRPC3-,
TRPC6- and TRPC3/6-transfected cells) and significantly
much larger than that in mock-transfected CHO cells.
These HS-induced currents, as found with basal currents,
could be significantly inhibited by 10 μM Pyr10 only when
TRPC6 channels were expressed.

These data suggest that Pyr10 blocks TRPC6 channels,
and not TRPC3 (as reported previously), either as
homo- or heteromultimers with other TRPC channels.
The presence of heteromultimers between TRPC3 and
TRPC6 channels in TRPC3/6-transfected cells was tested
by co-immunoprecipitation experiments. Figure 4A
shows immunocytochemical staining of TRPC3- and
TRPC6- transfected cells with specific antibodies against
TRPC3 and TRPC6 channels. The specificity of
both antibodies, as well as the proper trafficking of
the expressed proteins, is evident. Figure 4B shows
a typical co-immunoprecipitation experiment, where
TRPC6 or TRPC3 immunolabelling could be detected
after immunoprecipitation of TRPC3/6-transfected cells
using GFP-Trap beads to bind TRPC3-YFP fusion
protein. Altogether, these sets of experiments indicate
that Pyr10-sensitivity could be used as a tool to test
the functional contribution of either TRPC6 or TRPC6
heteromultimers to ROC in native cells.

Because we lack a pharmacological tool to determine the
presence and contribution of TRPC3 channels, we aimed
to explore the blocking effect of intracellularly applied
antibodies (Fig. 4C). Control experiments were carried
out in non-transfected CHO cells using anti-TRPC3

or an indifferent antibody (against RFP; anti-RFP). No
changes in the current amplitude could be observed in
any case up to 10 min when recording on the whole-cell
configuration of the patch clamp technique. Current
amplitude of recordings from TRPC3-transfected cells was
also stable up to 10 min when no antibody or anti-RFP
antibody was added in the pipette solution, although a
significant reduction was observed when dialysing the
cell with anti-TRPC3. We confirmed that this blocking
effect of anti-TRPC3 (or anti-TRPC6) was specific by
exploring the antibodies effects on the HS-activated
current (Fig. 4D). In TRPC3/C6-transfected cells, both
antibodies led to a significant reduction of the current
density, whereas only anti-TRPC3 (but not anti-RFP)
inhibited HS activated currents in TRPC3-transfected
cells.

All of the results presented so far provide support for
the hypotheses that differences in Pyr10 sensitivity of BPN
and BPH arteries could be a result of changes in the
composition of the TRPC heteromultimers. Therefore, we
aimed to obtain some insights on the subunit composition
of the native TRPC channels in BPN and BPH VSMCs. We
used the PLA assay technique to identify close associations
between two TRPC3 subunits, two TRPC6 or one TRPC3
and one TRPC6 subunits. Figure 5A shows representative
images obtained with this technique for each of the
three combinations explored and in the two different
cells studied (BPN and BPH VSMCs). Labelling with
two different TRPC3 antibodies (C3-C3 combination), or
dual labelling for TRPC3 and TRPC6 (C3-C6), produced
significantly higher numbers of puncta per cell and total
labelled area in BPH than in BPN cells. By contrast,
labelling with two TRPC6 antibodies was significantly
smaller in BPH cells. Average values of all the described
combinations are depicted in the bar graph on the
right of Fig. 5A. The possible associations detected for
each combination (considering just one tetramer) are
depicted in the scheme of Fig. 5B. The charts shown
on the right group the data corresponding to the C3-C3
or C6-C6 combinations, representing the percentage of
heteromultimers with more than a TRPC3 or TRPC6 sub-
unit, respectively. Although more complex interpretations
are possible, these data suggest that, in the hypertensive
phenotype, there is a change in the composition of the
TRPC3/6 tetramers, with a greater contribution of TRPC3
channels in the BPH cells.

We explored the functional correlate of these differences
by analysing basal and receptor-activated cationic currents
in freshly isolated VSMCs from BPN and BPH mice.
Current amplitude at −150 mV was significantly larger
in BPH cells (Fig. 6B). This difference remains when
expressed it as current density (−8.1 ± 0.5 pA/pF in
BPH vs. −6.4 ± 0.7 pA/pF in BPN) despite the larger
size of BPH cells (16.9 ± 0.6 pF in BPH vs. 13.9 ± 0.5 pF
in BPN) (Moreno-Domı́nguez et al. 2009). In addition
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to differences in current size, there also were differences
in Pyr10 and Pyr3 sensitivity, with the BPH cells being
less sensitive to the drugs (Fig. 6A and B). These data
suggest a decreased contribution of TRPC6 channels to
the non-selective cationic conductance of BPH mesenteric
VSMCs. Both results (i.e. the larger currents and the
decrease of TRPC6 contribution) are compatible with a

larger expression of TRPC3 channels in BPH cells. To
confirm this, we explored the effect of intracellularly
applied anti-TRPC3 antibodies on BPN and BPH cationic
currents (Fig. 6C). Examples are shown of the time course
of the current amplitudes at +80 and −150 mV in
BPH cells in the presence of anti-RFP antibody (control;
Fig. 6C, left) or anti-TRPC3 antibody in the pipette
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Figure 4. Use of antibodies to determine functional contribution, location and association of TRPC3 and
TRPC6 channels in CHO cells
A, representative confocal images of immunolabelling with anti-TRPC3 and anti-TRPC6 of CHO cells transfected
with TRPC3 (left) or TRPC6 (right). Immunostaining was predominant at the cell membrane and shows a good
correlation with GFP-labelling for TRPC3 (a fusion protein). No cross-reactivity was observed in either case. B,
TRPC3-GFP or TRPC3-GFP/TRPC6 cotransfected cells were immunoprecipitated with anti-GFP-trap and immuno-
blotted with GFP antibody (as a load control) or with anti-TRPC3 or anti-TRPC6 antibody. Labelling with anti-TRPC6
was detected on the cotransfected cells, demonstrating heteromultimeric association. Data are representative of
two independent experiments. C, blocking effect of intracellularly applied antibodies on the cationic currents
observed in transfected CHO cells. Average basal current density at −150 mV (open bars) and +80 mV (dashed
bars) was obtained from whole-cell ramps applied every 5 s to control untransfected CHO cells and to cells trans-
fected with TRPC3. The plots show the current density after 5–10 min of recording in control pipette solution or
in the presence of the indicated antibodies. Each bar is the mean ± SEM of nine to 14 cells from at least four
different experiments. The inset shows the current traces obtained at the indicated times in an untransfected CHO
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∗∗p < 0.01 compared to CHO/TRPC3 control cells. D, the same protocol was used to explore the blocking effect of
anti-TRPC3 or anti-TRPC6 on stretch-activated currents elicited from TRPC3 and TRPC3/C6 transfected cells upon
exposure to the hypotonic solution (HS). The effects were calculated by subtracting basal, unstimulated currents
and after 5–10 min of recording in control conditions or in the presence of the indicated antibodies. Data are the
mean ± SEM, n = 8–10 cells.
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solution (Fig. 6C, right), up to 10–12 min of recording.
We monitored the stability of the recording conditions by
checking cell capacitance and access resistance (data not
shown) and holding current at −10 mV. The initial current
amplitude was reduced by 25% after 5 min and by 39%
after 10 min of recording when anti-TRPC3 was intra-
cellularly applied, whereas no significant changes could be
observed in control cells, either with an anti-RFP antibody
or in the absence of antibodies. Average data obtained in
VSMCs from BPN and BPH mice are depicted in Fig. 6D.
The effect of anti-TRPC3 antibodies was only significant
in BPH cells, again suggesting a greater contribution of
TRPC3-containing channels to cationic currents in BPH
VSMCs.

Finally, we also explored the amplitude of native
currents in BPN and BPH VSMCs activated by several well
defined agonists such as ATP (30 μM), UTP (50 μM) and
phenylephrine (Phe 10 μM), as well as the DAG-permeable
analogue OAG (100 μM) and also the blocking effects of

Pry3 and/or Pyr10 (10 μM). Figure 7A shows the summary
data. With the exception of UTP responses, which were
significantly smaller in BPH VSMCs, the amplitude of
the cationic currents elicited by all the other stimuli
was not different between BPN and BPH cells. However,
both preparations showed a remarkable difference when
comparing the blocking effect of Pyr3/Pyr10 compounds.
Although, in BPN cells, these drugs fully abolished the
current activated by all the agonist studied, there is a
fraction of this current that is not sensitive to Pyr3
(black bars) and/or Pyr10 (grey bars) in BPH cells. For
example, in the case of ATP stimulation, although Pyr3/10
block almost completely the ATP-activated current in
BPN VSMCs, the Pyr3/10-sensitive current represents only
�60% of this current in BPH VSMCs (Fig. 7A, right).
Representative examples of the time course of the current
amplitude at −100 mV and +40 mV in response to ATP
alone or in combination with Pyr3 are shown in Fig. 7B
(for a BPN cell) and Fig. 7C (a BPH cell).
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Figure 5. Differences in TRPC assembly in BPN and BPH mesenteric VSMCs
A, representative confocal images of the puncta density distribution using the PLA assay in BPN (upper) and BPH
(lower) native VSMC cells. The bars plot shows the averaged density of puncta obtained in the three conditions
represented in (A) for BPN and BPH cells. Data are the mean ± SEM; 36–64 cells in each group from four
independent experiments. ∗p < 0.05, ∗∗p < 0.01 compared to the same condition in BPN. B, scheme of the
possible associations between C3-C3, C6-C6 and/or C3-C6 subunits that can be recognized with each combination
of antibodies used for the PLA assay. Following this scheme, the chart illustrates an interpretation of the data,
considering 100% as the sum of the intensity of C3-C3 and C6-C6 groups and assuming that the C3-C6 group
will be included in both. Accordingly, the C3-C3 group will contain associations with more than one C3 subunit
(C3 > 1) and C6-C6 those with more than one C6 subunit (C6 > 1).
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Discussion

In the present study, we have explored the hypothesis
that TRPC3 and TRPC6 channels expressed in VSMCs
may have a differential contribution to the regulation of
vascular tone, which could be relevant for the changes
in vascular reactivity associated with essential hyper-
tension. This possibility was supported by the initial
observation indicating a higher mRNA expression of those
channels in resistance arteries (mesenteric vs. femoral or
aorta). Furthermore, the changes in the mRNA expression
levels of these channels when comparing VSMCs from

BPN and BPH vessels are clearly different in resistance
and conduit arteries (Fig. 1). Although the importance
of either TRPC6 or TRPC3 channels in the vascular
system has been demonstrated clearly over recent years
(Earley & Brayden, 2015), the novelty of the present
study relies on exploring the hypothesis that changes
in these two channels upon hypertension determine a
different composition of homo- and heterotetramers with
discernible biophysical, pharmacological and functional
properties.

Combining several methodological approaches and
using both heterologously expressed channels and
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Figure 6. Characterization of basal cationic currents in BPH and BPN mesenteric VSMCs and effects of
anti-TRPC3 antibody
A, basal cationic currents were obtained by voltage ramps in the presence of TRP external solution. The figure
shows representative examples of current–voltage traces obtained in a BPN and a BPH mesenteric VSMC in control
conditions (C), in the presence of 10 μM Pyr10 and after washout of the blocker (R). B, upper bar plot showing
the current amplitude at −150 mV for both BPN and BPH cells (mean ± SEM, 40–60 cells in each group). The
lower plot shows the average fraction of the Pyr3- or Pyr10-sensitive current at −150 mV in BPN (grey bars) or
BPH cells (white bars). Each bar is the mean ± SEM of 10 cells (for Pyr3) and 23 cells (for Pyr10). C, representative
examples of the time course of the currents elicited by voltage ramps in a BPH cell recorded with anti-RFP (left)
or with anti-TRPC3 antibody (4 μg ml−1) in the pipette solution (right). The plots show the current amplitude at
−150 mV, +80 mV and at the holding potential (−10 mV, grey line). The time course of the cell capacitance and
the access resistance were obtained simultaneously (not shown). Examples of the actual traces obtained with the
ramp protocol at the time points of 0, 5 and 10 min (points 1, 2 and 3 in the graphs) are also depicted (bottom).
D, average current amplitude at 5 and 10 min is represented as a fraction of the initial current amplitude both in
control cells (solid bars) and in anti-TRPC3 treated cells (striped bars), for BPH (left plot) and BPN mesenteric VSMCs
(right plot). Each bar is the mean ± SEM of seven to 14 cells in each group. For the control group, untreated cells
and cells with anti-RFP antibody in the pipette solution were pooled together.
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native cells, we conclude that TRPC3 and TRPC6
in BPH and BPN VSMCs show a different pattern
of association (Fig. 8). VSMCs from BPH cells have
a larger fraction of TRPC3-containing homo- and
heterotetrameric channels with an increased basal activity,
which can contribute to the more depolarized resting
membrane potential observed in BPH VSMCs and to
the increased vascular reactivity of BPH mesenteric
arteries (Moreno-Domı́nguez et al. 2009). The larger
basal cationic currents at negative potentials observed in
BPH VSMCs were more sensitive to blockade with intra-
cellularly applied anti-TRPC3 antibodies. The selectivity
of this immunological blockade was confirmed in the

heterologous system. In addition, BPH basal currents were
less sensitive to Pyr10, which, in our hands, behaved as a
selective blocker of TRPC6-containing channels.

In this regard, our work redefines the meaning of
the pharmacological tools available for the study of
TRPC3/6 channels. We found that the novel pyrazole
compounds recently described as selective blockers of
TRPC3 (mainly Pyr10 and also Pyr3) showed an increased
selectivity for TRPC6-containing channels over TRPC3
homotetramers, in contrast to what has been described
previously (Kiyonaka et al. 2009; Schleifer et al. 2012).
Although the reported effect of these compounds on
native TRPC3 channels (Kiyonaka et al. 2009; Koenig et al.
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agonists, and their effects were calculated after subtracting basal current as well. Agonist-induced currents are the
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∗∗p < 0.01 compared with UTP-activated currents in BPN cells. The inset shows the fraction of the ATP-activated
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ATP alone or with 10 μM Pyr3 as indicated in the graphs. The time course of the current amplitude at −100 mV
(open circles) and +40 mV (filled circles) was obtained from voltage ramps applied every 5 s. Traces in control
conditions (1) in the presence of ATP (2) or of ATP + Pyr3 (3) are shown in the inset. BPN cell was also challenged
with 30 μM Phe as indicated.
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2013) could be compatible with the presence of TRPC3/6
heterotetramers, we do not have a clear explanation
for the disparities observed in the recombinant system,
although several differences in the preparation and
the methodology of the study can be highlighted.
We have performed our characterization using TRPC3
overexpression in CHO cells and we have determined
both basal and stretch-activated currents using electro-
physiological techniques. By contrast, previous studies
used TRPC3-transfected HEK293 (and/or HEK293T)
cells and channel activity was measured by determining

Ca2+ entry upon stimulation of endogenous muscarinic
receptors with carbachol (Kiyonaka et al. 2009; Schleifer
et al. 2012). It is possible that changes in the associated
proteins endogenously expressed in the different cell
lines used and/or changes in the response to blockers
related to the specific activation pathway could contribute
to the observed discrepancies. Moreover, and possibly
more importantly, although we had analysed the acute
effects of Pyr compounds that were applied to the
external solution in the presence of the stimulus (for
stretch- or agonist-activated currents), in these other
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Figure 8. Diagram of the proposed changes in TRPC3/C6 composition upon hypertension
Homo- and heteromultimeric TRPC3/C6 channels contribute to basal cationic currents in VSMCs, thus modulating
resting membrane potential and hence basal [Ca2+] concentration and cell excitability. BPN cells may have a
dominant expression of TRPC6 channels, associated with either homo- or heterotetramers, which show strong
inward rectification. This will result in low basal currents at values around the resting membrane potential. In
BPH cells, the increased expression of TRPC3 channels determines a change in the properties of heteromultimers,
which will have now a larger proportion of TRPC3 subunits. TRPC3 channels show weak rectification, which will
determine an increased basal current at negative potential contributing to cell depolarization, raising the [Ca2+]
concentration and increasing basal tone.
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studies, the effects of Pyr3 on TRPC3-activated currents
or TRPC3-dependent Ca2+ entry are determined upon
chronic pre-treatment of the cells with Pyr3, which
was always applied to the external solution previous to
stimulation. Finally, the more detailed characterization of
TRPC3 modulation (Kiyonaka et al. 2009) was carried
out with Pyr3 because the more selective Pyr10 was not
available at that time.

Some or several of these aspects may contribute to
these largely unexpected differences on the sensitivity
Pyr compounds of TRPC3 and TRPC6. In addition, our
findings with the pharmacological blockade of TRPC3/6
channels could be reproduced both in heterologous and
native systems with the use of blocking antibodies (Figs 4
and 6), providing an additional level of confidence to the
results of the present study. This technique represents a
powerful approach for the identification of the molecular
correlates of native currents in the absence of more
specific blockers, and also for defining the composition
of heteromultimeric channel complexes (Sanchez et al.
2002; Moreno-Domı́nguez et al. 2009). We have been
particularly careful with this group of experiments with
intracellularly applied antibodies, both in the selection
of the technically acceptable experiments and in the use
of a large number of controls, including control anti-
bodies for transfected cells and TRPC3/6 antibodies for
untransfected cells.

Finally, our conclusions from the functional
characterization of the TRPC-mediated cationic currents
in native cells are supported by the results obtained
with PLA. These studies indicated a larger proportion of
TRPC3 subunits in BPH cells and a decreased expression
of TRPC6. This observation is consistent with a larger
number of TRPC3 homotetramers in these cells and/or
heteromultimeric TRPC3/6 complexes with a larger
proportion of TRPC3 subunits. Although these results
would also be consistent with the formation of clusters
of multimers containing only one TRPC3 subunit, based
on the functional characterization of TRPC3/6 transfected
cells, this latter possibility is doubtful.

TRPC channels show a high structural homology that
favours the formation of heteromultimeric complexes,
and this explains why the spectrum of biophysically and
functionally distinct ROC or SOC exceeds what can be
obtained with a single TRPC channel heterologously
expressed. Because the composition of native TRPC
complexes is poorly defined, the task of assigning a
well-defined molecular correlate to receptor-activated
cationic currents has proven difficult. Considering
that many TRPC are often co-expressed in the same
cell (Hofmann et al. 2002), heteromultimerization
in addition to homomultimerization represents an
attractive possibility. The presence of heteromultimeric
TRPC6/C7 channels in vascular smooth muscle has
been demonstrated using both biochemical and

functional approaches (Maruyama et al. 2006). Inter-
estingly, heteromultimeric TRPC6/C7 channels exhibit
one property (modulation of current amplitude by
changes in extracellular [Ca2+]) that is distinct from
homomultimeric TRPC6 or TRPC7, suggesting that
these channel complexes are endowed with emergent
properties. However, the evidence of TRPC subunit
heteromultimerization was obtained using cultured A7r5
cells rather than native VSMCs. A better understanding
of the mechanisms determining how TRPC subunits
combine to form functional ion channel complexes is
an essential prerequisite to evaluate their contribution to
endogenous cation currents. In many cases, the studies
using KO animals could help to define the role of
the individual channels but, in the particular case of
TRPC3 and TRPC6, these KO studies do not provide
a unifying view of their individual role or the meaning
of heteromultimeric associations. With respect to the
innvestigation of mechanosensors, several studies using
single, double and up to quadruple TRPC KOs conclude
that TRPC functions involve combined activity of multiple
TRPC proteins (Sexton et al. 2016). Although interfering
with one single TRPC channels does not alter behavioural
responses (Quick et al. 2012), double TRPC3/C6 KOs
show sensory deficits that are augmented in quadruple
KO (Sexton et al. 2016). These results indicate that
TRPC3/C6 channels in sensory neurons show some
functional redundancy. However, TRPC6 KO mice show
a vascular phenotype as a result of a compensatory
upregulation of VSMCs TRPC3 channels, which are not
able to functionally replace TRPC6 channels (Dietrich
et al. 2005), indicating that these two channels are not
freely interchangeable and that they have distinct and
non-redundant roles in the control of vascular tone.
Because of this compensatory up-regulation of TRPC3
channels in VSMCs, the TRPC6 KO mice showed increased
vascular reactivity and augmented mean blood pressure,
which is in agreement with our present data. Importantly,
our results confirm that the changes observed in the
hypertensive animal accidentally created by Dietrich et al.
(2005) when suppressing TRPC6 channels may be relevant
to understand the mechanisms involved in the natural
history of essential hypertension.

Finally, regarding TRPC3 channels, their expression
has been reported to be upregulated in VSMCs in
animal models of essential hypertension, such as the
spontaneously hypertensive rat and the two-kidney,
two-clip hypertensive rats (Liu et al. 2009; Wang et al.
2016). However, the study of concomitant changes in
the expression of other TRPC channels has not received
a systematic attention. There is only one recent report
in which the role of upregulation of TRPC3 channels
and downregulation of TRPC1 channels during hyper-
tension and their contribution to changes in contractility is
explored (Noorani et al. 2011), although these two changes
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are studied and explained independently, with no attempt
to link them to a different proportion of heteromultimeric
TRPC channels. In this context, the present study provides
a new paradigm for interpreting and better understanding
many of the previous studies regarding the role of TRPC
channels in vascular physiology and their contribution to
altered vascular tone.
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