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We report the results of a conjoint experimental/theoretical effort to assess the structures of free-standing zinc clusters with up to
73 atoms. Experiment provides photoemission spectra for Zn−N cluster anions, to be used as fingerprints in structural assessment,
as well as mass spectra for both anion and cation clusters. Theory provides both a detailed description of a novel protocol to locate
global minimum structures of clusters in an efficient and reliable way, and its specific application to neutral and charged zinc
clusters. Our methodology is based on the well-known hybrid EP-DFT (empirical potential-density functional theory) approach,
in which the approximate potential energy surface generated by an empirical Gupta potential is first sampled with unbiased basin
hopping simulations, and then a selection of the isomers so identified is re-optimized at a first-principles DFT level. The novelty
introduced in our paper is a simple but efficient new recipe to obtain the best possible EP parameters for a given cluster system,
with which the first step of the EP-DFT method is to be performed. Our method is able to reproduce experimental measurements
at an excellent level for most cluster sizes, implying its ability to locate the true global minimum structures; meanwhile, if exactly
the same method is applied based on the existing Gupta potential (fitted to bulk properties), it leads to wrong predicted structures
with energies between 1 and 2 eV above the correct ones. Opposite to what was claimed in the past, our work unequivocally
demonstrates that Zn clusters are not amorphous, and they rather adopt high symmetry structures for most sizes. We show that
Zn clusters have a number of exotic, unprecedented structural and electronic properties which are not expected for clusters of a
metallic element, and describe them in detail.

1 Introduction

A key step in predicting and rationalising physico-chemical
properties of small clusters and nanoparticles is their structural
characterization. This is so because the interesting electronic,
magnetic, optical, catalytic, etc., properties of nanoparticles
depend on the geometry of the ionic skeleton. To achieve a
complete characterization would require an exhaustive sam-
pling of the potential energy surface (PES), whose complex-
ity (number of local minima) increases in an exponential way
with the number of atoms in the nanoparticle. At low temper-
ature, the most stable structure is that of the global minimum
(GM) on the PES, and most experiments probably involve the
GM structure, and maybe a few isomers with low excitation
energies. As the structure of a free-standing cluster is not di-
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CNRS 6521, 29285 Brest Cedex, France
c Physikalisches Institut, Universität Freiburg, H.-Herder-Str. 3, D-79104
Freiburg, Germany

rectly available from experiment, unbiased global optimiza-
tion (GO) is essential for the prediction and later assessment
of cluster structures. The structural assessment itself is usually
achieved by indirect means, i.e. by comparing the theoretical
predictions on several physical observables with experimental
measurements (photoemission and vibrational spectra, as well
as diffraction patterns and other properties, are considered as
good structural “fingerprints”).

Several computational methods for structure optimization
of nanoparticles have been devised in recent years. In so-
called biased algorithms, the user employs either previously
available information on smaller clusters of the same mate-
rial, or the available structures of chemically similar clusters,
or more in general any type of “chemical intuition”, to pro-
duce several candidate structures that are then optimized to
their respective nearest local minima. These methods can not
guarantee the consistent location of the absolute global min-
imum, as they obviously lack robustness and transferability,
although they may be useful in specific cases. Unbiased meth-
ods, on the contrary, make no assumptions whatsoever about
the structure of the GM, and are the method of choice for a
reliable GO search. Most modern unbiased methods integrate
an internal local search algorithm as well, which allows the
main GO algorithm to operate exclusively with the energies of

1–23 | 1



local minima on the PES.
Two main types of GO algorithms have been developed.

Population-based algorithms deal with a collection of clus-
ter structures, and improve the structure of individuals by
moving them on the PES according to some rules that try
to mimic biological processes in nature. Iteration of those
steps evolves the whole population in such a way that only
the best fitted individuals (i.e. those with a lower energy) sur-
vive, so that if enough iterations are allowed the probability
that the best fitted (GM) individual belongs to the popula-
tion approaches unity. Evolutionary algorithms, such as the
genetic algorithm1,2 and differential evolution3, generate off-
springs (new cluster structures) by crossover operations (e.g.
“cut-and-splice”) or by mutation of the individuals; the con-
vergence rate of these methods is quite sensitive indeed to the
specific set of modifications allowed to the individuals. Par-
ticle swarm optimization4,5 rather imitates the movement of
individuals in a bird flock, and was first intended for simu-
lating social behavior. The coordinates and velocities of each
individual are updated to approach the currently best individ-
ual, and the expectation is that the whole swarm will approach
in this way the optimal region of the PES around the GM.

Individual-based GO algorithms start instead the optimiza-
tion from a single cluster and allow that individual to sample
the whole PES in order to identify the GM structure. As spe-
cific examples we mention simulated annealing6, Monte Carlo
minimization, minima hopping7,8, stochastic surface walk-
ing9,10 and basin hopping (BH)11–14 methods. The essence of
the BH method is a mapping of the original PES into a step-
wise modified surface obtained by local optimization. In the
transformed surface there are plateaus associated with each lo-
cal minimum, and discontinuous steps separating the different
local minima. In this way, energy barriers are substantially de-
creased so that a Monte-Carlo sampling (the second ingredient
in the BH method) is much more efficient than on the original
landscape. Several types of movements can be implemented
to generate new cluster structures and sample the transformed
PES: the basic one is a random change in the atomic coordi-
nates. More specific movements include changes in the co-
ordinates of only surface atoms, or the swap of two different
atomic species in the optimization of the chemical ordering of
nanoalloys, for example. Although in this paper the focus is
on structure optimization using the BH method, we mention
in passing that all these methods can also be employed in ma-
terials design, where one aims to solve the so-called inverse
problem: given a certain desired property, discover (design) a
material that possesses that property under a given set of con-
straints15–18.

Most unbiased GO methods require a huge number of eval-
uations of the energy function in order to achieve an efficient
(statistically meaningful) sampling of the PES, and for this
reason they have been traditionally tested on simple model

surfaces such as those generated by Lennard-Jones, Morse,
etc, empirical potentials. But when the goal is to make contact
with experimental measurements and deal with realistic sys-
tems, sampling an accurate PES becomes indispensable. Then
we face an interesting dichotomy and GO methods branch into
two different practical implementations. In the first one, the
GO method directly samples a quantum accurate description
of the PES such as that provided by a density functional the-
ory (DFT) method, for example19,20. This allows to have ac-
curate energies and forces at all stages of the optimization pro-
cess, but greatly increases the cost of exploring the PES com-
prehensively. For this reason, the statistical accuracy of the
sampling is sacrificed, severely limiting the size of the clus-
ters that it is possible to investigate with confidence. In the
second implementation, the GO method is initially applied to
an approximate PES generated with a low-cost empirical po-
tential (EP), which allows a statistically meaningful, extensive
search. Then a diversity of the structures located in that search
are locally re-optimized at the DFT level to recover accuracy
in the PES. In this so-called EP-DFT approach21, the poten-
tial danger is that one might be re-optimizing at the DFT level
structures that have very low stability on the true PES. If we
want to obtain results consistent with experiments, it is imper-
ative to train the EP based on first-principles cluster results, a
step that is often bypassed simply because there typically are
bulk-based parametrizations of the EP available. In this paper,
we will show explicitly that transferability of EP parameters is
a very serious issue which may lead to unrealistic GM predic-
tions in an EP-DFT search, and will propose a simple and sys-
tematic method to fit an EP explicitly to DFT results on metal
clusters. We will be concerned specifically with the Gupta po-
tential22–24 but the results should be generally applicable to
other EP’s with a relatively small number of parameters.

The EP-DFT approach can itself be further subdivided into
two quite different practical branches: one may decide to
use BH or machine learning-like techniques to train a neural-
network potential with a huge number of adjustable param-
eters in order to ensure high numerical accuracy in the PES
generated with the empirical potential25,26. The disadvantage
in this method is that the problem becomes a purely numer-
ical one and each parameter lacks a precise physical mean-
ing. We personally prefer to employ an analytic potential with
the smallest possible number of parameters compatible with
a reasonable level of accuracy in the PES. Even if sacrific-
ing some numerical accuracy, the advantage here is that if few
parameters generate reasonable physics, then each parameter
has a well-defined physical meaning, which allows to identify
useful trends and gain physical insight into the properties of
metallic nanoparticles. It is for this reason that we decided to
employ the Gupta potential, which has just two independent
parameters when expressed in reduced units.

As a specific system to test our ideas, we have chosen zinc
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clusters. We report putative GM structures for clusters with up
to 73 atoms, for both neutral (ZnN) and singly-charged (Zn+N
and Zn−N ) clusters, as well as mass and photoemission spec-
tra for cluster anions. One important reason for our choice
is that there are many experimental measurements27–29 (in-
cluding previous mass spectra for cations and our own mass
and photoemission spectra for anions) that will serve to vali-
date the theoretical results, and that have not yet been repro-
duced/interpreted by theory. Photoemission spectra provide
very sensitive structural fingerprints, so that a comparison be-
tween DFT results for the electron density of states and the
photoemission spectra is a recognized method for structure
assignment30,31. ZnN clusters are also interesting because in
previous theoretical reports they have been predicted to have
amorphous GM structures32, which apparently does not match
with the well-structured photoemission spectra measured for
anions (a well-structured photoelectron spectrum usually in-
dicates an ordered structure, because degeneracies in the elec-
tron density of states are related with symmetries of the sys-
tem). At a fundamental level, ZnN clusters are also interest-
ing as model systems to analyze the insulator-to-metal tran-
sition28: while the Zn2 dimer and small clusters are weakly
bound via vdW effects, the bulk is metallic, so an increas-
ing sp−hybridization and closing of the HOMO-LUMO gap
(the gap between the highest occupied and lowest unnoccu-
pied molecular orbitals) is expected as a function of size N.
At a more applied level, we are initiating studies on Zn-Mg
nanoalloys33 because of their excellent corrosion protection
properties. The structures of pure Zn clusters are needed as a
reference to calculate excess quantities in Zn-Mg nanoalloys
in our future research.

2 Experimental and Computational Methods

2.1 Experiment

Zinc cluster anions have been produced in a liquid nitrogen
cooled magnetron gas aggregation source, where a pulsed dis-
charge at the end of the aggregation tube was used to en-
hance the intensity of cluster anions. After exiting the source
the clusters were stored in a liquid nitrogen cooled radio fre-
quency octupole trap, where the presence of helium buffer gas
leads to an efficient cooling of the clusters. After pulsed ex-
traction from the trap the cluster ions were size-selected in
a double reflection time-of-flight mass spectrometer, decel-
erated and irradiated by 6.4 eV photons (or 4.0 eV in some
cases) in the interaction region of a magnetic-bottle-type pho-
toelectron spectrometer. The spectrometer has been calibrated
measuring the known photoelectron spectrum of Pt− ions,
which leads to an uncertainty in the measured binding energies
of less than 30 meV. A subset of the photoemission spectra has
been shown in previous reports27,28,41.

2.2 First-Principles calculations

The main DFT calculations are performed with the SIESTA
code34, under the PBE approximation35 to exchange-
correlation effects. We also employed a van der Waals cor-
rected functional proposed by Klimeŝ et al.36 (KBM func-
tional) in order to check the accuracy of the PBE functional
for selected sizes. We include the 3d semicore states of zinc
in the valence active space and describe the effect of the rest of
core electrons through a norm-conserving pseudopotential in-
cluding non-linear partial core corrections. The cluster wave-
function is expanded into a basis of localized atomic orbitals.
Benchmark accuracy tests demonstrating the high accuracy of
our DFT results, as well as a full description of our com-
putational settings, can be found as Supporting Information
(ESI)†.

Vertical detachment energies (VDE) of the anions are cal-
culated through a ∆−SCF calculation, that is, as the total en-
ergy difference between the anion and the neutral cluster, both
clusters adopting the geometry of the anion. In order to sim-
ulate the experimental photoelectron spectra, we have broad-
ened each line of the KS eigenvalue spectrum by using a Gaus-
sian function of width 0.10 eV, which leads to a good agree-
ment with experimental line widths. The calculated electronic
density of states (EDOS) was then globally shifted in order to
align the binding energy of the highest occupied orbital (the
HOMO) with the theoretical VDE value.

2.3 Accurate EP-DFT protocol for global optimization

Putative GM structures are initially determined through unbi-
ased BH optimizations11 based on a Gupta empirical poten-
tial24. We employ the GMIN code developed by David Wales
group37,38. For all cluster sizes, we have performed optimiza-
tions in which all atoms are given random displacements at
each BH step; for some of the bigger sizes, we have addi-
tionally performed “seeded” optimizations in which a high-
symmetry core is kept fixed and only the rest of atoms is ac-
tive in the optimization. Around 100 competitive structures
are then selected for each size and re-optimized at the Kohn-
Sham DFT level. The optimizations for neutral, cation and an-
ion clusters are completely independent runs. In a final “size-
comparison” step, we have always generated new structures
for N + 1 and N − 1 atom clusters by creating a vacancy or
adding one adatom to the GM structure of the N−atom clus-
ter. This step is directly performed at the ab initio level. More
technical details about the optimization runs can be found in
the ESI†.

In a combined EP/DFT approach, the accuracy provided
by the specific parameterization of the Gupta potential is a
crucial issue. No matter how extensive is the basin hopping
sampling of the Gupta potential energy surface, nor the intrin-
sic accuracy of the ab initio DFT model in producing cluster
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energies, the results will be useless (or irrelevant when com-
pared to experimental results) if the DFT energies are calcu-
lated from a local optimization of initial structures which sig-
nificantly depart from the real ones. For this reason, we have
carefully tested the accuracy of the current parameterization of
the Gupta potential for zinc24 in its application to Zn clusters
(we remind the reader that the potential parameters have been
fitted only to bulk properties, and transferability is certainly
an issue). To simplify the problem, we would like to work
with the minimum possible number of relevant parameters, so
a first step is simplifying the potential expression as much as
possible. The general expression of the Gupta potential energy
contains five parameters:

E(ZnN) =
N

∑
i=1

(Eband
i +Erep

i ) (1)
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i =−
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2 exp
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]}1/2
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where ri j is the distance between atoms i and j. q and p are
dimensionless parameters that determine the effective spatial
range of the band and repulsive terms, respectively, while ξ

and A fix the strength of those interaction terms and have
units of energy. r0 is a scaling factor for the distances be-
tween atoms, usually identified with the nearest-neighbor dis-
tance in the bulk metal. Although the potential incorporates
only isotropic interactions, non-additive (many-body) effects
are introduced through the square-root dependence of the at-
tractive band energy term on interatomic distances.

López and Jellinek39 demonstrated that only four of the five
parameters are truly independent in the Gupta potential ex-
pression, and so any one of them, for example r0, can be elim-
inated in favor of four new independent parameters. Specifi-
cally, we define p′ = p/r0, q′ = q/r0, A′ = Aep and ξ ′ = ξ eq.
The potential is then rewritten as

Ei =
N

∑
j 6=i

A′ exp
[
−p′ri j

]
−

{
N

∑
j 6=i

ξ
′2 exp

[
−2q′ri j

]}1/2

. (4)

When considering reduced energy and distance units, only
two independent parameters remain which determine the true
physical content of the Gupta potential40. We have con-
veniently chosen those parameters as λ = q′/p′ = q/p and
χ = A′/ξ ′ = (Aep)/(ξ eq). With reduced distances defined as
r∗i j = p′ri j and reduced energies defined as E∗i = Ei

2ξ ′ , the re-
duced total energy of a cluster is

E∗ =
1
2

N

∑
i

 N

∑
j 6=i

χ exp[r∗i j]−

[
N

∑
j 6=i

exp[−2λ r∗i j]

]1/2
 . (5)

The two independent parameters λ and χ completely describe
the intrinsic topography of the potential energy landscape, in-
cluding the structure and energetic ordering of local minima
(isomers). Later on, in the results section, we will show that
these parameters have quite well defined physical meanings,
and that their physically meaningful ranges of variation are
λ ∈ (0,0.5) and χ ∈ (0,∞). Moreover, even if χ can increase
without limit from a mathematical point of view, we have ex-
plicitly checked that for each fixed value of λ , there is al-
ways a maximum value of χ beyond which the topography no
longer evolves, essentially corresponding to hard-sphere-like
systems. Then, in practice, χ ∈ (0,χmax(λ )].

We have devised a simple but detailed protocol to choose
optimal values of the reduced parameters for zinc clusters, but
obviously it could be applied to any other homo-atomic metal
clusters. It is based on benchmarking the performance of the
reduced Gupta potential against DFT results. There might be
several ways to implement this idea in practice, and next we
describe ours: First, as we are interested in the size range be-
low 73 atoms, we choose six evenly distributed but otherwise
random sizes in the range N = 10− 73. DFT calculations
aimed to identify the optimal potential will be performed only
for those sizes. In second place, and because the parameter
space of the reduced Gupta potential is just two-dimensional
and bounded, it is a relatively simple and inexpensive mat-
ter to perform extensive BH optimizations on a discrete set
of (λ ,χ) points that provides a representative sample of the
whole parameter space. Specifically, we have employed about
100 different potentials with λ values between 0.01 and 0.49,
and with χ values between 2 and χmax(λ ). For each of those
potentials, we have performed structure optimizations on the
six chosen cluster sizes. The cost of this part of the protocol
might be substantially reduced if one is interested in a specific
metal for which there is a Gupta potential already available,
typically fitted to bulk properties. Then one might explore
just a local environment of (λ ,χ) values around that reference
point which is appropriate for the bulk. Here we have pre-
ferred to explore the whole parameter space in order to keep
our approach fully unbiased and not to make any assumptions,
but we have found a posteriori that the optimal parameters for
clusters (see below) are not too distant from the bulk-fitted
values.

Next, we reoptimize at the DFT level the GM structures lo-
cated by each potential for the six chosen sizes. A potential is
considered more realistic the lower the DFT energy obtained
from re-optimization of its GM structure, averaged over the
six sizes. Specifically, our objective function is the average
binding energy per atom of the six cluster sizes, and the higher
this binding energy, the better the potential. This step should
clearly show the region of parameter space that is best suited
for the considered metal. In our case of Zn clusters, it clearly
points to a corner limit of the parameter space, with high val-
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+
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Fig. 1 Putative GM structures and approximate point group symmetries of zinc clusters with N = 9−16 atoms. The GM structure of charged
clusters is shown only when it does not coincide with the GM of the corresponding neutral cluster. When the structure of the N−cluster is
obtained by adding one atom to the (N−1)−cluster, the adatom is shown in blue. Blue color is additionally used to highlight that a structure
is obtained by adding several atoms to a common structural motif.

ues of λ and relatively small values of χ . Then we have sam-
pled, in a second step, a finer grid of (λ ,χ) points in that local
region. In this way, we have found (see next section) that the
best agreement with the DFT results for zinc clusters occurs
for a set of optimal reduced parameters which, while being
located on the same corner of parameter space as the bulk-
fitted parameters, significantly differ from them, implying the
bulk parameters are not transferable to clusters. Once the op-
timal parameters are located, one can proceed with the usual
EP-DFT approach for all sizes. Alternatively, and in order to
enhance diversity and so the chances to locate the true GM
structure, a good option is to use not only the optimal poten-
tial, but a few others in a local environment about the optimal
one, to generate candidate structures for DFT re-optimization.
Additional technical details about this essential potential opti-
mization step are given in the ESI†.

With the new set of parameters, the DFT global minimum
is systematically found between the 10-15 most stable Gupta
structures for most zinc clusters, which is a very successful re-
sult for a potential containing just two parameters. The cluster
structures predicted with the bulk parametrization are, on the
contrary, between 1 and 2 eV less stable than our putative GM
structures when reoptimized at the DFT level, and this is a
huge energy error, so the bulk parametrization is simply not
representative of the interactions in zinc clusters. This is one
of the important new findings reported in this paper, as we

have found that any combined EP/DFT approach based on the
bulk Gupta parameters is doomed to fail when applied to the
location of the putative GM structures of Zn clusters. Accord-
ingly, we include a complete discussion of this issue in the
next section.

3 Results and Discussion

3.1 Putative Global Minimum Structures

The putative GM structures that emerge from our study are
shown in Figures 1-5. A tri-capped trigonal prism (TTP) is
obtained for Zn9. The structures in the size range N = 10−14
are based on adding atoms to that TTP unit. In some cases,
such as Zn+11 or Zn+12, the adatoms have an anomalously low
coordination which is not expected in clusters of a metallic
element. This feature, which recurrently appears for some of
the bigger size clusters, has been analysed in a recent report,41

where we have shown that those adatoms introduce localized
insulating features in an otherwise metallic-like electron den-
sity distribution. Therefore, these clusters feature an unprece-
dented coexistence of two different electronic phases (metallic
and insulating) within a single nanoparticle.

The GM structure for N = 15 is obtained by glueing two
TTP units together in such a way that three atoms are com-
mon to the two units. The different structures of the cation
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+
  (C2v) Zn17(D5h) Zn17

−
   (C Zn18

+
  (D5h) Zn18(C2v) Zn19(C2v) Zn19

−
   (C3)

Zn20(C3) Zn20
−
   (C3) Zn21(C1) Zn21

−
   (C1) Zn23(C1) Zn24(Cs) Zn26

+
   (C1)

s )

Fig. 2 Putative GM structures and approximate point group symmetries of selected zinc clusters with N = 17−26 atoms. Yellow color is
used to distinguish the interior or core atoms. Rest of the caption as in Figure 1.

and neutral/anion clusters is just due to a different choice of
the three common atoms. In fact, the low energy excitations
(isomers) identified for Zn15 are just different ways of joining
two TTP units, implying that the energy cost of reorienting
those two units is much less than the energy needed to destroy
one of them. This might lead to interesting thermal behavior
at low temperatures, with fluxionality provided by the relative
motion of otherwise “rigid” TTP units. The GM structures for
size N = 16 are essentially obtained by adding one atom to the
15-mer. In the small size range N = 9−16, all the atoms still
belong to the cluster surface. This is already an indication that
zinc clusters are less compactly packed as compared to clus-
ters of other typical metals such as sodium42, aluminum43–45,
or silver46, as all those clusters have already developed at least
one interior or core atom in this size range. We also notice that
the GM structures of neutral, cation and anion are different at
many sizes, a feature which will also persist in the bigger clus-
ters discussed below.

N = 17 is the critical size for the stability of structures with-
out core atoms. Both the cation and the neutral adopt a hollow
cage structure, obtained by capping the five square faces of
a hollow 12-atom decahedron, and retains full D5h symme-
try in the neutral state. The cation undergoes a slight Jahn-
Teller distortion that lowers the symmetry to C2v. The cage
is nearly spherical in shape although it shows a slight prolate
distortion, i.e. it is more elongated along its 5-fold symmetry
axis than along its equatorial plane. Notice that a “standard”
capped decahedron would instead have a significantly oblate
shape as the five capping atoms would be more distant from
the cage center. However, upon relaxation of that initial struc-
ture, the originally square faces of the decahedron elongate

along the direction of the 5-fold axis (becoming rectangular
facets) while the capping atoms undergo an inwards relaxation
and approach the cluster center, resulting in a nearly spherical
cage. Hollow cages of a metallic element, that moreover are
the GM on the potential energy surface, are very exotic and
interesting species as they may be used as hosts for a variety
of dopants. In the case of zinc, they are particulary interesting
as metallic zinc is widely used in corrosion protecting lay-
ers.47 Therefore, zinc nanocoatings may be useful to protect
the potentially interesting properties of the embedded mate-
rial from the environment and other external influences. In a
recent report,48 we have shown that Cr@Zn17 is a magnetic
superatom with the chromium atom placed in the cage cen-
ter. This cluster preserves the whole magnetic moment of the
isolated chromium atom (6 µB), even after coalescence of two
such units or after exposure to an oxygen atmosphere. The
GM structure of Zn−17 is still based on the capped decahedron,
but already contains a pseudointernal atom that occupies the
center of the decahedron.

In the size range N = 18− 26 the GM structures contain a
single core atom. The 18-mer is obtained by filling the cen-
tral position of the Zn17 cage. Full D5h symmetry is preserved
only in Zn+18, while the neutral and anionic clusters distort and
have only C2v symmetry. An additional capping atom results
in the GM structure of Zn19. The GM structure of Zn20 dis-
plays a chiral shell with C3 symmetry surrounding the inter-
nal atom. The stable structures for Zn−19 and also for sizes
N = 21− 23 are obtained by removing one atom or adding
low coordinated atoms to Zn20. Zn24 features an interesting
mixture of structural motifs, based on a decahedron with its
equator decorated with trigonal prism units. Zn26 adopts an
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Zn28
+
   (C2)  Zn28(C2) Zn28

−
   (C1)   Zn28

2−
  (D3) Zn29(C2v) Zn29(C2v) Zn29(T)

Zn30(C3)
Zn30

−
      (C s) Zn31

+
  (C2)  Zn31(C2v) Zn32

+
  (Cs) Zn32(D3h) Zn32

−
   (C2)

Fig. 3 Putative GM structures and approximate point group symmetries of selected zinc clusters with N = 28−32 atoms. Rest of the caption
as in Figures 1,2.

amorphous GM structure.

With few exceptions, clusters with N = 27−30 atoms con-
tain an internal dimer. For N = 27− 28 the structures have
a prolate shape and little symmetry. Zn29 in its neutral state
has three nearly degenerate GM structures. One of them is
exceptional because it contains a single core atom surrounded
by a shell with one of the highest chiral symmetries (T). Cores
with two atoms are clearly favored in this size range, and the
special stability of the tetrahedral structure is due only to its
spherical shape and an electron shell closing effect (Zn29 con-
tains exactly 58 electrons, a magic number of electrons in a
spherical jellium picture49,50). The HOMO-LUMO gap of the
tetrahedral structure is 1.6 eV, as compared to 0.75 eV for the
structures with two core atoms. The near degeneracy is thus
the result of a strong competition between electronic and geo-
metric preferences. The average distance between two surface
atoms in the T-structure is 2.60 Å, while the average core-shell
distance is 3.4 Å. This is just an extreme example of another
quite general and defining property of all zinc cluster struc-
tures with N ≥ 18, namely the presence of a low-density core,
surrounded by a distant, rounded and crowded shell. Because
the Zn2−

28 di-anion also contains 58 electrons, we decided to
perform unbiased optimizations for its structure and found that
it contains also a single core atom (see Fig. 3) and a shell of
D3 symmetry, resulting from the removal of one atom from
the shell of Zn29. It is interesting to notice that all other struc-
tures for Zn2−

28 (containing two core atoms) are unstable as the
calculated electron affinities of Zn−28 are negative, and only the
D3 isomer of Zn−28 displays a positive electron affinity, which
renders Zn2−

28 as the smallest stable zinc di-anion. Its HOMO-
LUMO gap is 1.2 eV.

The two remaining degenerate structures of Zn29 are quite
similar to each other. Both contain a decahedral shell with ap-
proximate D5h symmetry that encapsulates a zinc dimer, and
differ just in the orientation of that dimer with respect to the
cage frame. For Zn+29 and Zn−29, these two structures continue
to be nearly degenerate global minima, but the T-isomer is
now much less stable. The stability of the T-structure thus de-
pends quite critically on the number of electrons. The GM
of Zn30 and Zn+30 is obtained by adding one atom to the core
of Zn29(T), which lowers the point group symmetry down to
C3. This is the second example we find in which the clus-
ter grows by adding atoms to the core rather than to the shell.
Zn−30 already contains three core atoms, although this struc-
ture is nearly degenerate with another one obtained by adding
a low-coordinated adatom to the C2v structure of Zn29.

The core region of clusters with N = 31− 33 atoms con-
tains three atoms in a triangular arrangement, which equips
these clusters with an oblate global shape. The way in which
the shell grows around this core is highly dependent on the
charge state of the cluster and the number of atoms. Zn31,
for instance, displays a mixture of hexagonal-closed-packed
(hcp) and decahedral growth patterns. Zn32 is a perfect hcp
crystalline fragment that retains full D3h symmetry and so it
is the smallest cluster that has the same packing as bulk zinc.
In Zn+32, the growth of the shell is different on both sides of
the triangular core: while on the front side it follows a com-
pact packing pattern, on the back side it adopts a less compact
simple hexagonal packing.

The size range N = 34− 38 features clusters with a tetra-
hedral 4-atom core. In Zn−34, the shell preserves the full Td
symmetry of the core. This geometric shell closing contains

1–23 | 7



Zn33
+
  (C2v) Zn33(C1) Zn33

−
   (C1) Zn34

+
  (C1)

Zn36
−
   (Cs) Zn38

+
  (C3v) Zn38(C1) Zn38

−
   (C1) Zn39(C2v) Zn40

+
  (D2) Zn40(C2v)

)1(C
36

Zn)1  (C
36

Zn
+

)d(TZn
34

Fig. 4 Putative GM structures and approximate point group symmetries of selected zinc clusters with N = 33−40 atoms. The Td structure of
Zn34 is shown from two different perspectives. Rest of the caption as in Figures 1,2.

four interpenetrating TTP units (the four atoms of the inter-
nal tetrahedron being common to the four TTP units). The
corresponding neutral cluster adopts the same structure but
with a slight distortion that lowers the symmetry down to C2.
The HOMO-LUMO gap of Zn34 is only about 0.5 eV, but we
observed a large gap between the LUMO and LUMO+1 lev-
els, which motivated us to optimize the Zn2−

34 di-anion. It re-
tains the full Td symmetry of the singly-charged anion, and its
HOMO-LUMO gap is 1.25 eV, implying that Zn2−

34 is a doubly
magic cluster, having closed geometric and electronic shells.
Zn+38 also displays a highly symmetric (C3v) shell surround-
ing the tetrahedron, but the rest of GM structures in this size
range are of low-symmetry and based on adding atoms to the
Td structure of Zn−34. In particular, for Zn35 we obtain a low
symmetry structure with a large HOMO-LUMO gap of 1.2
eV, so the electron shell closing for 70 electrons persists even
if the geometric shell closing doesn’t.

A structural transition in the core region occurs at size
N = 39 and also for Zn+40. Here the core continues to have four
atoms, but it is now planar and with a rhombus shape. This
transition towards a less compact core allows to pack a larger
number of atoms into a single shell of monatomic thickness
without modifying the number of core atoms, and it is some-
times observed in zinc clusters as a prelude to the change in
the number of core atoms. For both sizes, the shell preserves
many of the symmetries of the rhombus core.

Clusters with five core atoms are found for most sizes in
the interval N = 40−44. Zn40 has a multiply twinned layered
structure with a trigonal bipyramidal core. Apart from some
relaxation of the outermost atoms, this structure can be cut out
from a perfect 54-atom decahedron. Zn+43 has the same core
and a shell that preserves all but the mirror plane symmetries
of the core, resulting in a chiral cluster with D3 symmetry.
Once more, we observed that a transition towards a less com-

pact 5-atom core, in this case a square based pyramid, occurs
for example in Zn−43 and Zn+44. Neutral Zn43 and also Zn41
(not shown explicitly) are exceptional in this size range as they
feature the reentrance of 4-atom cores. In Zn43, the core is a
nearly flat rhombus and the structure contains a hollow site,
similar to that observed in Zn17.

Six-atom cores occur in clusters with N = 45− 48 atoms.
Here the reference structure is Zn46, a cluster with 92 valence
electrons and so an electronic shell closing according to a
spherical jellium model. This cluster is almost perfectly spher-
ical indeed. Its core is octahedral, and the rounded shell main-
tains a high chiral symmetry (D4) for the whole cluster. Its
large HOMO-LUMO gap (1 eV) and its compact shell without
defects allows to qualify this cluster as a doubly magic size.
All the structures for N = 45,47,48 are based on removing or
adding atoms to this reference structure. In some cases such as
Zn+48, we observe again low-coordinated, dangling, adatoms.

Clusters with N = 49− 53 atoms possess mainly 7-atom
octahedral cores of C3v symmetry, obtained by capping one
face of the octahedron, which equips these clusters with an
elongated (prolate) shape. Zn49 can still be viewed as grown
from Zn46 via addition of three adatoms, but the remaining
clusters in this size range do not longer show a resemblance
to Zn46. Most of the structures have no symmetries (C1 point
group) despite there is a clear octahedral order in the core. The
only exception is Zn52, for which the shell fully preserves the
C3v symmetry of the core. This structure shows an interest-
ing packing pattern: while the core is octahedral, the 45-atom
shell is icosahedral, in fact it is the same 42-atom shell that
occurs in a 55-atom icosahedron, with three atoms added on
one facet. Mixed packing patterns like this have been found in
several metallic nanoalloys,51 but they are not usual in homo-
geneous metallic clusters.

Size N = 54 features an 8-atom core with full Td symmetry,
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Fig. 5 Putative GM structures and approximate point group symmetries of selected zinc clusters with N = 41−73 atoms. Blue and green
colors are used to highlight two different surface facets in Zn70. Rest of the caption as in Figs. 1,2.

namely a tetra-capped tetrahedron, surrounded by a complete
shell of D2d symmetry. The high symmetry and the absence
of vacancies or adatoms at the shell qualifies this cluster as a
geometric shell closing. The GM structures of Zn53 and Zn−53
(not explicitly shown) are obtained by creating a vacancy on
the shell of Zn54, while the 55-atom clusters have one adatom
on top of the Zn54 structure. For the Zn−55 anion, the adatom is
located at a higher symmetry site resulting in C2v global sym-
metry and a core with 9 atoms. Zn+56 still has an elongated
core, namely an octahedron with two atoms capping diametri-
cally opposed facets. This structure has a high D3d symmetry
that is respected by the shell. Neutral and anion clusters with
56 atoms have instead a 10-atom tetrahedral core surrounded
by a shell with D2d symmetry. Zn+57 contains one adatom on
top of the 56-atom D2d structure. Different core structures are
competitive in this size range, which results in a substantial
structural diversity.

In the size range N = 58− 66, we observe a substantial
increase in the rate at which the core size grows. Sizes
N = 58− 60 have 9-atom cores. For Zn58 the core is octahe-
dral, while for N = 59,60 the core is a pentagonal bipyramid
with two capping atoms. This core can be viewed as a frag-
ment of a 13-atom icosahedron. Sizes N = 61− 63 have no
rotational symmetries but contain a 10-atom icosahedral frag-
ment in their cores. For sizes N = 64,65 the core is an 11-atom
icosahedral fragment. Clusters with 66 atoms and also Zn+67

and Zn67 have 12-atom cores. All of them are icosahedral
except for Zn+66, for which the core is an hcp fragment with
stacking sequence 3-6-3. The structures in the core thus seem
to be developing a well defined tendency towards icosahedral
packing, which is not seen in the free zinc clusters with 9-12
atoms. This is suggestive of important differences in the phys-
ical behavior and chemical bonding of zinc atoms in “bulk”
(interior) and surface regions.

Zn−67 is the first cluster to possess an icosahedral 13-atom
core, and this core is maintained in the whole size range N =
68−71. All these clusters are highly symmetric with the only
exception of Zn69 (not shown explicitly), whose shell has no
global symmetry. Zn69 has 138 electrons, a magic number in
the spherical jellium model. Its shell is indeed very spherical
and the cluster has a large HOMO-LUMO gap of about 0.8 eV.
Zn−67 and Zn70, for example, preserve a high chiral symmetry
(D3). The growth of the shell onto the icosahedral core is very
interesting as it follows different atomic packing schemes on
different facets. Some surface facets are Mackay-like (one of
these is shown in Fig. 5 in blue color for Zn70); some others
adopt a much less compact simple hexagonal packing (green
color), so that local TTP units are formed along the 3-fold
symmetry axis; the rest of facets adopt an intermediate pattern.
In summary, different epitaxies coexist within a single zinc
nanoparticle. A similar analysis may be performed for Zn71,
which maintains a global C2h symmetry. Finally, sizes N =
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72,73 already contain 14-atom cores and their structures are
quite amorphous.

The two different exchange-correlation functionals em-
ployed (PBE and KBM) predict the same GM structures for
nearly all sizes, implying that PBE is a sufficiently accurate
approximation for most purposes. Only for a few sizes did the
KBM and PBE calculations result in different GM structures.
In those cases, however, it is only the EDOS of the KBM struc-
ture that matches the experimentally measured photoemission
spectra (see next subsection), so vdW dispersion effects, al-
beit small, are important for a quantitative comparison to ex-
perimental results. We observed that the few discrepancies al-
ways occur close to critical sizes at which the number of core
atoms increases by one unit. As an example, the PBE predic-
tion for Zn−17 continues to be a hollow cage, while the KBM
structure already contains one core atom. Another example
is Zn−30, where PBE predicts a structure with two core atoms
and KBM a different one with three core atoms (in figures 1-5,
we have always quoted the more correct KBM structure when
it differs from the PBE prediction). In summary, the KBM
functional favors more compact geometries, and so it slightly
shifts down the critical sizes for the transition between differ-
ent core sizes: the first internal atom occurs in Zn+18 with PBE,
but in Zn−17 with KBM; The first cluster with three core atoms
is Zn+31 in PBE, but Zn−30 in KBM calculations, etc. The most
important observation is that the effect is systematic. This is
exactly the same trend previously identified in a study of ce-
sium clusters.52

We close this subsection with a brief comparison to the re-
sults obtained in previous theoretical works on small zinc clus-
ters. Michaelian et al.32 reported global optimizations for zinc
clusters of selected sizes employing a Gupta potential with pa-
rameters fitted to bulk properties. The structures were later
re-optimized at the DFT level of theory, and the putative GM
were found to be disordered or amorphous structures. Ac-
cording to our explicit calculations, the structures reported by
Michaelian et al. are less stable than the ones reported here
by as much as 1-2 eV. As explained in the previous section,
the reason is that the bulk-fitted Gupta potential for zinc is
not transferable to the nanoscale and thus is not representa-
tive of the atomic interactions in real zinc clusters. The newly
parametrized Gupta potential obtained in this work provides a
much better agreement with the ab initio results, and predicts
high-symmetry structures for nearly all sizes. Thus, our re-
sults oppose previous claims about an expectedly amorphous
structure of zinc clusters. Later on, Doye reported a dedi-
cated and systematic basin hopping study of zinc clusters with
N ≤ 125 atoms, based also on a Gupta potential, and found
a strong structural tendency towards distorted oblate Marks
decahedra.53 Although our DFT study confirms the existence
of distorted decahedral packing for some sizes, most of the
GM structures do not coincide with those reported by Doye.

The main qualitative feature of the DFT results, which is al-
ready reproduced in Doye’s work, is the emergence of low-
density cores surrounded by relatively distant crowded shells.
This trend is however quantitatively enhanced by the newly
parametrized potential and DFT results.

Wang et al.54 reported DFT-GGA optimizations for neu-
tral zinc clusters with N = 2− 20 atoms. Their structures
were employed also in later calculations of electronic prop-
erties of zinc clusters.56,57 Our results for N = 9− 15 are in
full agreement with the structures shown in that paper. We
locate more stable structures, however, for some clusters with
N = 17−20 atoms: For Zn17 Wang predicts an atom-centered
structure with D4d symmetry that is more than 0.4 eV less sta-
ble than the hollow D5h cage according to our calculations;
for Zn20 their putative GM structure is 0.2 eV less stable than
the C3 structure located here. Li et al.55 also considered the
size range N = 2−20 at the GGA level, although they do not
provide coordinate files nor point-group symmetries, so a di-
rect comparison by simple visual inspection becomes compli-
cate beyond 17 atoms. We identify a clear discrepancy at size
N = 17, where an atom-centered structure is proposed as GM.
That structure is 0.2 eV less stable than the hollow cage in our
calculations. Gutsev et al58 have recently reported all-electron
DFT-GGA results for sizes N = 12,13, including both neutral
and singly-charged states. We obtain a good agreement with
their structural results except for Zn+12. These authors do not
explain how they choose the trial structures to be optimized, so
we can just speculate that the possibility of singly-coordinated
or dangling adatoms (which we predict to occur for Zn+12) per-
haps was not explicity tried in their work as this is addmitedly
a weird feature. In any case, their putative GM structure for
Zn+12 is one of the excited isomers according to our calcula-
tions. Finally, Jellinek and Acioli reported DFT-GGA results
for neutral and negatively-charged magnesium clusters with
N = 2− 22 atoms. Magnesium and zinc are isovalent if we
do not include the deep and localized d−band of zinc in the
electron count. Most of the GM structures that we find for
zinc clusters indeed coincide with those of Mg clusters, the
exceptions being sizes N = 16,17,19 for the neutral series,
and N = 16−19 in the anion series.

3.2 Electronic Properties

The measured photoelectron spectra for cluster anions with
N = 9− 73 are shown together with the calculated EDOS of
the putative GM structures in Figures 6 and 7. The calcu-
lated EDOS for most sizes is in very good agreement with the
measured spectra, which gives strong evidence that the correct
structures have been found. Also, the peak energies are very
well reproduced, so in particular the theoretical VDE values
are reliable. For many sizes, for instance N = 34,46,54,69
and many others, the agreement with the measured spectra is
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essentially perfect. There are some other sizes (for example,
N = 38), where the agreement is far from perfect but still fair.
At this size, we identified two nearly degenerate GM candi-
date structures, and a superposition of both EDOS reasonably
reproduces the experimental peak energies. Finally, there are
a few sizes (Zn−36, Zn−49, for instance) for which neither the
GM structure nor any of the metastable isomers identified in
the calculations can reproduce the experimental spectrum. We
conclude that the correct GM structure has not been found yet
for these sizes.

As a general rule, most sizes for which the agreement is not
perfect coincide with clusters for which theory predicts a low-
symmetry GM structure, usually accompanied by competing
structures which are nearly degenerate in energy. But for all
cases with a highly symmetric GM structure, well separated
in energy from all other isomers, the agreement with exper-
iment is very good. For example, the two-peak spectrum of
Zn−34, or the highly structured spectrum of Zn−54, can only be
matched by the corresponding geometric shell closings with
Td and D2d symmetry, which should be difficult to locate due
to entropic factors, and even more difficult to guess using in-
tuition and hand-made initial structures. The agreement is es-
sentially perfect also for the biggest clusters considered, with
more than 60 atoms, which would not be amenable to a di-
rect first-principles optimization. These observations imply
that our unbiased search strategy worked quite well indeed,
and that the combined EP-DFT approach is really necessary
to unravel the structures of zinc clusters.

In a recent report,41 we have analysed in depth the elec-
tronic shell structure of Zn clusters through the density of
states and its projections onto atomic orbitals; and the elec-
tronic density in real space through the analysis of two scalar
fields: the electron localization function (ELF)59 and the de-
formation density (defined as the difference between the self-
consistent and the promolecular densities). Summarizing the
main findings of that work may be worthwhile here. Our anal-
ysis demonstrated that clusters without adatoms match quite
well the qualitative predictions of deformable jellium mod-
els. Accordingly, we locate the main electronic shell clos-
ings for clusters with Ne = 20,34,40,58,70,92,138 · · · elec-
trons, and for those sizes the cluster shape is close to perfectly
spherical. In between the spherical shell closings, the cluster
shape deformations are also in good overall agreement with
jellium predictions at least for the smaller sizes, i.e. the dis-
tortions are prolate-like right after an electron shell closing,
pass through triaxial and become oblate as the new electronic
shell is progressively filled. Notwithstanding these facts, the
anomalously long separation between core and shell identified
in zinc clusters (see previous section) reflects itself as a deep
minimum along the radial direction in both the ELF and the
deformation density, i.e. the relatively hollow space left be-
tween core and shell is significantly depleted from electrons.

In fact, the minimum in the ELF is as deep as that found be-
tween two units of a typical insulating material,41 and this is
clearly not a usual jellium feature. In fact, the detailed ELF
analysis showed that Zn clusters can be viewed as consist-
ing of two nearly independent metals: a three-dimensional
and isotropic metallic phase located at the core, and a two-
dimensional directional metal located at the spherical shell,
which is stabilized by a connected network of three-center
bonds reminiscent of an sp2−hybridization scheme. There-
fore, even if the jellium picture remains valid to first order be-
cause of the angular delocalization, the electron density along
the radial direction shows some non typically metallic fea-
tures.

Clusters with adatoms, which are observed for sizes follow-
ing a spherical shell closing, depart from jellium model pre-
dictions due to one additional reason: the two valence elec-
trons contributed by the adatom do not populate the LUMO of
the parent cluster as expected from a metallic cluster. They
rather take an “insulating” option, and contribute a newly
formed state below the bandgap, without significantly disturb-
ing the EDOS of the metallic “host”. This is precisely the
expected behavior when an atom is added to a separate band
insulator. In such a case the filled orbitals of the atom would
add to the fully occupied “valence band” level manifold, while
its empty orbitals would become part of the unoccupied “con-
duction band” levels. The ELF shows a very deep minimum
in the region between the adatom and the rest of the cluster,
indicative of a non-bonding interaction. These clusters are
therefore best viewed as a “hetero-dimer” formed by an atom
plus a metallic superatom, and the bond between atom and su-
peratom is mainly of an ionic nature as demonstrated by an
analysis of the charge transfers.41

It is interesting to analyse more closely if the electron den-
sity minimum separating core and shell has some measur-
able effect on the EDOS, i.e. if it represents a sufficiently
strong perturbation to the jellium predictions. In principle,
the crowded atomic population at the shell and the radial den-
sity minimum should tend to stabilize more the states with
higher orbital angular momentum as these are more localized
on the cluster surface and thus provide a more complete over-
lap between electronic and ionic densities. An extreme exam-
ple of this observation is Zn17 as it is a hollow cage cluster.
The electronic structure of this cluster has been discussed in
a previous work48: this cluster has 34 electrons and a closed
electronic shell, but the electron configuration was found to
be 1S21P61D101F142S2, i.e. the 2S jellium orbital is strongly
destabilized and becomes the HOMO of the cluster due to the
absence of Zn atoms in the cluster center. On the other hand,
the 1F shell is more stable than 2S because it is more local-
ized on the surface. However, this is the only size for which
we observed a true exchange between two levels as compared
to their expected ordering. Because Zn17 is an exceptional
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Fig. 7 Same as in previous figure, but for the size range N = 41−73. Photoemission spectra were not measured for sizes N = 63−67.

case, we show in figure 8 the EDOS of Zn69, another spher-
ical electron shell closing with 138 electrons, but which is
more representative of generic zinc clusters. We have pro-
jected the total EDOS onto an angular momentum eigenbasis
centered on the cluster center of mass in order to reveal the su-
peratom labels. For this particular cluster, the energies of the
1D and 2S superatom shells overlap with the localized levels
coming from the semicore d−orbitals of zinc, which causes
some fragmentation of those peaks. Apart from that, the ex-
pected jellium order is obtained up to the 1G shell, which
completes the 58-electron shell closing. After that closing,
the 1H, 2D, and 3S level manifold is filled to produce the
next electron shell closing at 92 electrons (the expected addi-
tional closing at 70 electrons is missed in this cluster). Notice
that, as expected from the discussion above, the 1H−levels are

on average more stable than 2D, which themselves are more
stable than 3S. Similarly, the 1I−orbitals are most stable in
the next manifold of levels which produces the 138-electron
shell closing. The main conclusion from this analysis is that,
although some stabilization of high angular momentum lev-
els is indeed observed, the effect is not intense enough as
to open new gaps in the EDOS. This observation is relevant
concerning a phenomenological level interchange model ad-
vanced by Diederich et al.29 in an attempt to rationalize the
magic numbers observed in mass spectra of magnesium and
other divalent clusters. For example, they proposed that the
observed magic character of Mg40 might be explained by a
large stabilization of the 1H shell as compared to 2D and 3S
shells (which would open a gap at Ne = 80 electrons), and
that the physical origin of the stabilization might be an accu-
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mulation of positive jellium background density close to the
cluster surface. The results shown in Figure 8 confirm that an
interchange of levels certainly does not occur in zinc clusters,
which already display an anomalously high concentration of
positive ionic density at their surface, so we believe it is im-
probable that anything close to a true level interchange occurs
in magnesium clusters. In fact, most of the identified magic
numbers are the same for Mg and Zn clusters. In the next
subsection, we will show that the additional magic numbers
of zinc clusters (those not easily explained by electronic shell
closings) can be ascribed to geometric shell closing effects.

In the upper part of figure 9 we display adiabatic electronic
properties of ZnN clusters: ionization energies (IP), defined
as [E(Zn+N )− E(ZnN)], are shown on the left side; electron
affinities (EA), defined as [E(ZnN)−E(Zn−N )], are shown on
the right side. Being adiabatic quantities, they include also a
contribution from the structural relaxation that occurs after the
detachment/attachment of one electron. Notice, for example,
that the EA values are not the same as the vertical detachment
energies of anions, which can be read off directly from the
DOS/PES plots.

As it is well known, the electronic properties of small
metal clusters usually display strong fluctuations as a function
of size. Neutral clusters with a specially stable electronic
shell structure are expected to show an enhanced stability
against dissociation and therefore to be in close correspon-
dence with the magic numbers that will be analysed in
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Fig. 9 Adiabatic ionization energies (upper left), adiabatic electron
affinities (upper right), fundamental band gap energies (lower left)
and electronegativities (lower right) of ZnN clusters. The most
relevant sizes in the discussion, associated with sharp changes in
these electronic indicators, are explicitly annotated in red colour.

the next subsection. Such clusters are identified as those
having marked local maxima in the adiabatic IP curve,
followed by a sharp drop which signals the opening of
a new (much less stable) electronic shell. Usually, they
are also reticent to electron attachment and so display a
local minimum in the adiabatic EA curve. The two re-
quirements are not always simultaneously satisfied: for
example, an IP local maximum occurs for N = 9 while the
EA minimum occurs for N = 10. But considering both
indicators, we can conclude that neutral clusters with N =
9,10,(15),17,20,(25),29,32,35,37,(41),46,56,69,(71)
atoms have an enhanced electronic shell contribution to
stability, where the parenthesis indicate stabilizations of sec-
ondary importance. Most of those sizes correspond to a magic
number of electrons according to spheroidal jellium models.
Exceptions to this rule are Zn32, Zn37 and Zn71 with 64, 74
and 142 electrons, respectively. The shell closing observed
at 64 electrons can be reconciled with a deformable jellium
model that accounts for crystal-field splittings, and it is due
to the strong oblate deformation associated with the layered
hcp structure of Zn32. The adiabatic IP maximum observed
for Zn37 does not persist in the vertical IP values (not shown),
so it is related to structural changes upon charging the cluster.
Finally, the large IP drop after size N = 71 is in fact more
a consequence of the very low electronic stability of Zn72,
apparently induced by the transition to a 14-atom core and the
associated structure amorphization.
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Zinc being divalent, each atom contributes two electrons to
the total valence electron count and so only neutral clusters
have an even number of electrons. On the other hand, all the
zinc clusters considered in this study adopt an electron con-
figuration with the minimum possible spin multiplicity, i.e. a
singlet for neutrals and a doublet for both cations and anions.
With these considerations in mind, we may provide some in-
terpretation of the EA maxima and IP minima. Marked lo-
cal maxima in the adiabatic EA curve identify clusters which
would like to gain one electron, so they are expected to be
very stable as anions as those anions would be just one elec-
tron short of an electronic shell closing. Maxima in the EA are
obtained for N = 9,19,27,31,34,40,45,54 and 68, all of them
correlating indeed with specially stable anion sizes (see next
subsection). Notice that local maxima in the IP correspond to
Zn+N cations which are also short of one electron to close the
shell. Accordingly, we observe that many of the neutral magic
numbers are preserved in the cations. Marked local minima in
the IP curve, on the other hand, identify clusters with a loosely
bound HOMO populated with two electrons, and removing
one electron would leave the cation with a single electron in a
loosely bound HOMO (one excess electron as compared to a
closed shell). These cluster sizes might therefore be expected
to preserve some electronic stability as cations as well. The
local IP minima at N = 30,33,36,47,52− 53 and 72 indeed
coincide with relatively stable cluster cations, although not al-
ways with a local stability maximum (see next subsection). In
summary, our calculations demonstrate that, as compared to a
genuine shell closing which can only occur in neutral clusters,
charged clusters with one electron less are more stable than
clusters with one electron in excess.

In the lower part of figure 9 we provide vertical electronic
properties, which include no geometry change and are thus not
expected to correlate so perfectly with the size dependence of
the absolute stabities. The left graph shows the fundamental
gap, defined as (VIP-VEA). One half of that would be just the
definition of chemical hardness. The right graph shows the
electronegativity (or the negative of the electronic chemical
potential) defined as (VIP+VEA)/2. These two quantities are
of fundamental importance in reactivity studies, as the elec-
tronic processes that occur in typical reactions are simply too
fast as compared to vibrational frequencies.

The fundamental gap shows the expected average trend to
decrease as the cluster size increases, associated with the grad-
ual development of a metallic and more reactive phase. It re-
produces the substantial gap closure at N = 18−19 identified
in the experiments as well as the re-opening at N = 20. The
strong size oscillations observed for sizes N < 46 correlate
quite well with those in the adiabatic IP curve. A curious fea-
ture is that Zn11 with 22 electrons has a wider gap than Zn10
which is a closed shell cluster with 20 electrons. As discussed
in our previous paper,41 this anomaly is due to coexistence of

metallic and insulating features in Zn11. The adatom in this
cluster contributes a localized insulating level below the band
gap rather than occupying the LUMO of Zn10, and so Zn11
continues to have a closed electronic shell. A similar effect
occurs for N = 21 and 47, which also maintain a wide gap af-
ter a jellium shell closing. According to the experiments of
Issendorff and Cheshnovski27,28, the closing of the gap with
increasing size should become smoother for sizes larger than
about 40, apart from recurrent re-openings associated to elec-
tron shell closings. The theoretical results are in agreement
with this prediction, including the re-opening of the gap ob-
served for Zn56 and Zn69.

The more electronegative clusters, which would be the more
oxidizing agents in a reaction involving Zn clusters, occur at
sizes which are in good correspondence with the local max-
ima in the EA curve, at least for clusters with more than about
20 atoms. Therefore, we conclude that electronegativity max-
ima are mainly dominated by the electron affinity contribution
in that size range. For N < 20, however, the electronegativ-
ity maxima are rather a consequence of a large ionization po-
tential. Similarly, the less electronegative clusters are the re-
sult of very low ionization potentials for N > 20, but correlate
with low electron affinities for N < 20. Once more we find
that clusters with adatoms (Zn11 and Zn21, for example) have
unexpected vertical electronic properties, as their electroneg-
ativities are even lower than those of the nearest closed shell
clusters (Zn10 and Zn20, respectively).

3.3 Cluster Stabilities

Figure 10 shows two different stability measures: the cohesive
energy (or binding energy per atom) Ecoh(N) = E1− EN

N and
the second energy difference ∆2(N) = EN−1 + EN+1 − 2EN .
The cohesive energy quantifies the total internal energy con-
tent of a cluster and is therefore a measure of its global (or
absolute) stability. ∆2 provides a more “local” stability mea-
sure, by comparing the energy of a cluster of size N to that
of clusters with neighboring sizes, and so it is a more suit-
able quantity to interpret the results of abundance mass spectra
measured on an evaporative ensemble of clusters. The cohe-
sive energies show an oscillating pattern about the average be-
havior (itself obtained by a smooth fit to the numerical data).
Neutral clusters with N = 10,17,20,29,32,35,46,54,65, and
69− 71 have an enhanced stability as compared to that av-
erage. The cohesive energies of charged clusters can be anal-
ysed in a similar way. Overall the oscillations are in qualitative
agreement with the enhanced electronic stabilities predicted in
the previous subsection. It demonstrates that the electron shell
structure is the most important factor determining the abso-
lute stability of ZnN clusters in this size range, with geometric
shells playing at most a secondary role (for example, the high
stability of sizes N = 70,71 is partially due to highly symmet-
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ric and compact structures with a perfectly icosahedral core).
The only exception to this rule is Zn54 which is a geometric
shell closing with an open electronic shell, and which is more
stable than the electronic shell closure that occurs at Zn56. One
reason for this strange behavior is that Zn56 contains 10 core
atoms, which is more than optimal for that size. In fact, 10-
atom cores are not recovered until N = 61, so it seems that
Zn56 achieves an electronic shell closure at the cost of an un-
favourable atomic shell structure.

-0,06

-0,03

0

0,03

0,06

E
co

h-E
av

e (
eV

)

-0,5

0

0,5

∆ 2 
 (

eV
)

-0,5

0

0,5

1

1,5

∆ 2 
 (

eV
)

10 20 30 40 50 60 70
N

-1

-0,5

0

0,5

∆ 2 
 (

eV
)

10 17 20

15 26

2830
3235,36

25

41

27

46,47 54

54

59 62

65

69

31
34

45

10 15
17

20

25
29

32
35

37 41

46

56
59 62

65 69 71

15

19
27

29
31

34

40

46

56 59 62 65

68 71

10
20

28 30 35,36

46,47

65
69-71

10

17

20
29 32 35

46
69-71

65

9

15

19 2931 34 46
68-71

39

45

72

54

54
56

54
56

54

Fig. 10 Two different stability measures for Zn clusters. The upper
graph shows the PBE cohesive energies, referenced to Eave, which is
a four-parameter fit of the form
Eave = A0 +A1N1/3 +A2N2/3 +A3N. The three lower graphs show
the PBE second-energy differences. Clusters with enhanced stability
(or magic sizes) are shown for each of the stability indicators.
Black, red and green curves refer to cations, neutrals, and anions,
respectively. KBM results are shown for cations in a restricted size
range with the dashed black curve, which has been vertically shifted
to help visualization.

To make connection with experimental abundance spec-
tra, we turn now to an analysis of the second energy dif-
ferences. First, we compare our results for cations with the
mass spectra reported by Diederich et al.29. Marked abun-

dance minima are observed in the experimental mass spec-
tra at N = 12− 14,22− 24,29,31,34,37− 39,45,53. All of
them are well reflected in our theoretical results either as sub-
stantial drops in the cohesive energies or negative values of
the second energy difference. The experimentally measured
abundance maxima are N = 10,(15),20,26,28,30,32,35−
36,41−42,46−47,54,59,62,65,69,72. The agreement with
our theoretical predictions is essentially perfect, suggesting
that the identified GM structures are realistic also for cations.
A small discrepancy between experiment and PBE results is
the maximum predicted by PBE for Zn+17, which is absent from
the abundance spectrum. To address this issue, we performed
systematic KBM calculations (shown with a dashed line) in
the restricted size range N = 9−21, due to their significantly
higher computational expense. Remembering that the KBM
and PBE GM structures of Zn−17 were found to differ (see pre-
vious subsection), it is not unexpected to observe some dif-
ferences between PBE and KBM stabilities. In the case of
cations, we find that the KBM and PBE GM structures coin-
cide in this size range, yet the vdW correction to the stabilities
is slightly size-dependent, and Zn+17 becomes destabilized rel-
ative to Zn+16 and Zn+18. The stability maximum at N = 17
dissappears in the KBM results thus improving the agreement
with experiment.

As compared to the cohesive energies, the second energy
differences identify additional magic sizes, that indeed cor-
relate with enhanced experimental abundances for cations.
We notice that most of those additional sizes (for exam-
ple, N = 15,41,59,62,65) are located within size intervals of
lower-than-average absolute stability, so its abundance in the
spectra is only due to their higher local stability, which may
have an electronic (N = 15,41, see figure 9) or a geometric
(N = 59,62) origin. We also notice the emergence of appar-
ent “magic number pairs”, which are also a peculiar feature of
the experimental mass spectra. These occur for cation sizes
bracketing an electron shell closing (which can only occur
in neutral clusters). For cations, “magic pairs” are observed
for N = 10− 11, 20− 21, 32− 33, 35− 36, and 46− 47,
as for all those sizes the ∆2 value is large and positive. In
some cases, the bigger cluster in the pair contains a singly-
coordinated adatom with insulating-like features. But in all
cases, theory and experiment agree in identifying the smaller
cluster as more stable within each pair. In particular, Zn+36 and
Zn+47 stand out as the most stable cations with one unpaired
electron outside a closed electronic shell.

Abundance mass spectra of anions are shown in Fig-
ure 11. Once more, the agreement between theory and
experiment is close to perfect: clear maxima in the
mass spectrum, many of them followed by sharp dips
in the measured abundances, are observed for sizes N =
9,(15),19,(22),25,27,(29),31,34,(40),45− 46,54,56,61−
62,68,(71). All of them coincide with the highest stabili-
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Figure 5.9: Mass spectrum of zinc cluster anions.

with di↵erent laser energies (h⌫ = 6.4 eV and 4.02 eV) are presented in the
appendix H. The spectra in Fig. 5.10 are cut at a binding energy of 5 eV due
to the appearance of two-photon e↵ects (photoelectron spectra of the neutral
zinc clusters) at higher BEs for all but the smallest sizes. In most of the
spectra one can observe a single peak at low binding energy, which indicates
the highest occupied single electron state in the cluster, and a group of peaks at
higher binding energy, which represent electron states with more negative total
energies. As in the case of magnesium [123] the uppermost peak is assumed to
be the lowest p-band state, which is occupied by the single additional electron
of the cluster anion, and all other peaks are assumed to be s-band states. The
di↵erences between the two highest peaks in the spectra therefore represent
the excitation band gaps of the corresponding neutral clusters (in the geometry
of the anions) [99].

In Fig. 5.10 strongly structured spectra are observed, suggesting a series of
highly degenerate levels (though not necessarily a free-electron shell structure).
Most of the cluster sizes up to N = 34 exhibit some band gap at the threshold.
This band gap decreases rapidly from size N = 3 to size N = 10; for larger
sizes only a slow decrease is visible. Figure 5.11 shows the size dependence of
the band gap. The existence of a significant gap at least up to size N = 25
(51 electrons) indicates that zinc clusters in this size range have not fully
undergone the transition to a metal and therefore behave like semiconductors.

Fig. 11 Abundance mass spectrum of cluster anions, Zn−N .

ties predicted by theory. Magic pairs are now expected at
N = 9− 10,19− 20,31− 32,34− 35,45− 46,68− 69, and
many of them are indeed observed both in theory and experi-
ment. In most cases we observe again that the smaller cluster
in the pair is clearly more stable, and moreover this assymetry
in the stabilities around a closed shell is more pronounced than
in cations. Zn−46 is the only exception to the general rule, as
it is more stable than Zn−45. This points to a substantial con-
tribution of the geometric shell closing to the stability of that
particular cluster size, as it is the only magic number which
is the same in the cation, neutral, and anion stabilities. This
is a sensible result as Zn46 is a doubly magic cluster, hav-
ing simultaneously closed electronic and geometric shells. A
similar double-closure effect occurs for Zn29 and Zn32 in the
neutral series and would be expected for Zn2−

34 in the di-anion
series.

4 Performance of the Gupta potential

A final interesting point in our discussion is that the gross
structural features of most clusters are already captured by
the Gupta potential. This is of course rewarding, but at
the same time is strange: as explained in our previous re-
port,41 the chemical bonding at the shell of zinc clusters dis-
plays a substantial directionality which is reminiscent of an
sp2−hybridization mechanism, and the Gupta potential cer-
tainly does not include any anisotropic interactions, at least not
in an explicit way. It is possible, however, that the many-body
character of the interactions can produce some effective direc-
tionality effects. As shown in the theory section, the energy
expression depends exclusively on two independent parame-
ters when expressed in reduced units, and we conveniently
choose those parameters as λ = q/p and χ = Aexp(p)

ξ exp(q) . We

would like to analyze the physical meaning of those param-
eters in order to explain why is the Gupta potential able to
predict these exotic structures for metallic clusters.
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Fig. 12 The left and middle graphs show, respectively, the λ− and
χ− dependences of the reduced Gupta energies of a perfectly square
tetramer as a function of the nearest-neighbor reduced distance. The
right graph shows similar plots for selected metals24,60. Zn(b) and
Zn(c) refer to the bulk and cluster fitted potential for zinc,
respectively.

As a simple test system, we have chosen a perfectly square
tetramer which already includes many-body interactions but
can be described in terms of a single nearest-neighbor dis-
tance. We show in Figure 12 the total reduced energy of such
a tetramer as a function of the nearest-neighbor reduced dis-
tance, for a variety of parameter values. On the left graph we
show the energies obtained with a common value of χ = 100
and different values of λ . These energy curves display very
similar repulsive cores at short distances, and differ most
markedly in the attractive and tail regions of the potential. The
parameter λ = q/p, which by definition measures the spatial
range of the attractive (many-body) part of the energy rela-
tive to the range of the pairwise repulsion, essentially con-
trols the tail region of the potential. Therefore, with χ fixed,
λ will mainly determine the packing density or average co-
ordination number: lower λ values imply significant attrac-
tive interactions between more distant atoms, which will tend
to produce strained structures with contracted radial distances
and expanded tangential distances, a large internal radial pres-
sure, a high average coordination number, and a low ratio of
surface to core atoms. These features are typical of icosa-
hedral or poly-tetrahedral structures, for instance. As λ in-
creases the many-body term becomes of shorter range, and
GM structures develop a lower average coordination number,
i.e. they become less densely packed. The large radial pres-
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sure continuously decreases so less strained structures such
as decahedra, and later non-strained structures, emerge. For
very large λ−values the optimal packing density around in-
ternal atoms is low enough that a significant inverted strain
can be established, leading to expanded radial distances and
contracted tangential distances, with a high ratio of surface to
core atoms.

The middle plot shows the energies obtained with λ = 0.4
and different values of χ . The specific value of λ corresponds
to a rather short-range potential but the general conclusions
extracted concerning the physical meaning of χ do not depend
on the value chosen for λ . Now the different curves tend to
the same long-distance energy and differ most significantly at
short distances. χ is defined as the ratio of the repulsive to the
attractive energies at ri j = 0, and the plot demonstrates that
it essentially controls the core part of the potential. At fixed
λ , higher values of χ increase the stickiness of the interactions
and thus reduce the ability of the cluster to tolerate bond strain.
Lower values of χ produce softer-core potentials which admit
an increasingly larger amount of strain. For any fixed value of
λ , we therefore expect a transition from strained structures (at
low χ) to non-strained structures such as fcc fragments as the
value of χ increases, the specific λ value mostly determining
the packing density, i.e. the ratio of surface to core atoms.

The intervals of physically meaningful values for the two
parameters are χ > 0 (obvious; otherwise there is no repulsion
to balance the attractive force) and λ ∈ (0,1/2). The reason
for the restriction λ < 1/2 or equivalently q < p/2 is not so
obvious. In a simplified lattice model that assumes no strain
(all atoms at the same interatomic distance) and neglects non-
nearest-neighbor interactions, it can be easily shown61 that the
dependence of the Gupta total energy on the average coordi-
nation number n is

dE
dn

=
p−2q

2(p−q)
E
n
. (6)

At the critical value λ = 1/2, the energy becomes independent
of the coordination number, and for λ > 1/2 the potential fa-
vors the lowest coordination, so the optimization directly leads
to fragmentation of any cluster into dimers. Although this cal-
culation corresponds to a simplified model, the true system ap-
proaches indeed that simplified limit as λ approaches its criti-
cal upper value: the interactions become of such a short-range
that non-nearest-neighbor interactions are negligible, and the
strain is so strongly penalized that the assumption of no strain
is essentially correct.

The two parameters λ and χ can be independently fixed
in the Gupta potential, which provides additional flexibility
over, for instance, a Morse potential that contains a single free
parameter when expressed in reduced units62. Thus, in the
Gupta potential the softness of the core region and the spa-
tial range of the attractive part are independent variables. The

interplay between them provides new insights on our present
understanding of molecular potential energy landscapes. For
example, the shorter the range of a Morse potential the larger
the number of local minima, featuring a potential energy land-
scape that is globally smooth but locally rough, an effect that
can be explained using catastrophe theory.62 On the contrary,
in a Gupta potential of arbitrarily short range (for example,
λ = 0.49), we have observed that the number of local minima
decreases upon softening the core repulsion, so it is always
possible to generate locally smooth energy landscapes with
few local minima even for short-range potentials.

An interesting observation is that the critical χmax value be-
yond which only non-strained structures are stable becomes
larger the smaller the value of λ . For example, for λ = 0.05
the whole range between χ = 1 and χmax = 1080 is physi-
cally meaningful, while for λ = 0.49 the interval of physically
different potentials narrows down essentially to χ ∈ (0,100].
In particular, for very large λ−values, an apparently small
change in χ can produce a completely different potential and,
of course, very different GM structures; for low λ−values, a
much larger change of χ is needed in order to observe signifi-
cant differences in the predicted structures.

The rightmost graph in Figure 12 shows the reduced Gupta
energies of a variety of metals for which a parameterization al-
ready exists in the literature.24,60 Different metals are located
in different regions of the two-dimensional parameter space
defined by the (λ ,χ) pair. The potential for sodium, for exam-
ple, incorporates a long-range attraction (λ = 0.128), and with
χ = 374.7 is not sticky at all. In this range of parameter space,
the GM structures include strained poly-tetrahedral and icosa-
hedral motifs with crowded cores, shorter radial distances and
longer distances between surface atoms42. The aluminum po-
tential (λ = 0.292, χ = 41.20) is of shorter range but still tol-
erates strain quite well, resulting in a competition between
icosahedral and decahedral structures45. Gold (λ = 0.39,
χ = 56,3) and lead (λ = 0.38, χ = 40.2) both display sticky
and short-range interactions, which can produce a tendency to-
wards amorphization.61 The parameters for zinc, fitted to bulk
properties24, are λ = 0.46, χ = 26.87, and this potential also
tends to produce amorphous cluster structures.32 In this work,
we have found that λ = 0.48, χ = 2 are (on average) the most
appropriate parameters for zinc clusters, i.e. those that pro-
duce the GM structures that best agree with the DFT results.
The modification of the χ−parameter as compared to the bulk-
fitted value is substantial, as the new potential features a much
softer core. We notice that the cluster structures previously ob-
tained with the bulk parametrization32,53 are, according to our
DFT calculations, between 1 and 2 eV less stable than the GM
structures predicted in this paper. Moreover, those structures
were predicted to be amorphous while the improved Gupta po-
tential results in high-symmetry structures for many sizes in
agreement with the DFT results, emphasizing the importance
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of fine-tuning potentials for cluster studies. And most impor-
tantly, only the present results can match the photoemission
measurements and the abundances observed in mass spectra.

The new zinc potential belongs to a region of the parameter
space that apparently has not been previously explored. It has
an extremely short range, the shortest one of all metals shown
in the figure. But at the same time, the potential has an ex-
tremely soft core. The combination of both factors produces
strained structures with crowded and rounded shells and low-
density cores, that agree very well with the DFT results. These
structures have longer radial distances and shorter distances
between surface atoms, just the opposite trend as compared
to the more typical and better characterized poly-tetrahedral,
icosahedral or decahedral structures. Strain is allowed by the
very soft core, even if this is unusual in short-range poten-
tials. On the other hand, the extremely short-range nature of
the attractive interactions favors a low packing density around
core atoms and thus pushes the shell outwards. Alternatively,
and using the jargon of embedded atom model (EAM) poten-
tials, a short range attraction implies that atoms achieve their
optimal embedding density already at low coordination. In
summary, through its coordination preferences, the isotropic
Gupta potential favors a long separation between core and
shell and thus effectively induces a tendency towards two-
dimensionality. The sp2−like hybridization observed within
the shell at the DFT level is just the response of the electron
density (only available from the DFT results) to that specific
ionic potential.

We close this section by explicitly noticing that the Gupta
potential does not predict singly-coordinated adatoms for any
size. This is what should be expected, because it is designed
to describe metallic bonding and we have demonstrated that
adatoms involve the local re-entrance of insulating bonding
features. Therefore, the pool of trial structures generated
by the BH sampling for clusters such as Zn21, for example,
may not be considered a good starting point for the DFT re-
optimizations. Fortunately, we have found that all those clus-
ters are extremely good structure seekers. For Zn21, even if
none of the trial structures contained an adatom, in more than
90% of the local DFT optimizations an atom was expelled
from the cluster and promoted to an outer shell as an adatom.
This observation implies that for those specific sizes, all the
structural isomers without adatoms represent very high en-
ergy excitations (typically more than 1 eV less stable than the
DFT GM). Essentially, no matter how good is the starting trial
structure, it almost always converges to an adatom structure.
The first-principles calculations are completely necessary to
describe the reentrance of insulating behavior after the elec-
tron shell closings.

5 Conclusions and Summary

We have performed a conjoint theoretical/experimental study
aimed at determining the GM structures of neutral and singly-
charged zinc clusters with up to 73 atoms. Experiment pro-
vides photoemission spectra as structural fingerprints for clus-
ter anions, as well as mass spectra for both anion and cation
clusters. Theoretical calculations are based on an EP-DFT
global optimization approach, in which the approximate en-
ergy landscape generated by a Gupta potential model is first
sampled with basin hopping optimizations, and then several
(around 100) of the more stable isomers so identified are lo-
cally reoptimized on the first-principles energy landscape pre-
dicted by DFT. The EP-DFT approach is both convenient and
necessary for the relatively large clusters studied in this pa-
per, as the statistical complexity of the potential energy sur-
face makes impossible a direct sampling at the DFT level.

A key point emphasized in this manuscript is that the suc-
cess of the EP-DFT approach critically depends on the abil-
ity of the EP to reproduce, at a reasonable level at least, the
essential topographical features of the DFT potential energy
surface. Therefore, training the EP to reproduce DFT proper-
ties of clusters should be in our opinion an inescapable step in
any EP-DFT approach, even though this step is by-passed in
most previous papers employing this method (which directly
employ EP parameters fitted to bulk properties). In this paper,
we have proposed an original detailed protocol for deducing
the optimal EP parameters for cluster studies. First, a redun-
dant parameter of the Gupta potential is eliminated and then
the potential is expressed in reduced units, where it has only
two independent parameters. Our proposal is then simple: the
optimal potential in the two-dimensional parameter space is
that one which produces GM structures which are most stable
according to DFT. As simplistic as it may look like, EP-DFT
optimizations carried out with this proposal are able to iden-
tify the correct GM structures of zinc clusters for nearly all the
sizes considered, as demonstrated by the excellent reproduc-
tion of the photoemission spectra for anions and also of the
mass spectra for both cations and anions. Exactly the same
EP-DFT optimizations, but carried out with an EP fitted to
bulk properties, produces instead wrong GM structures which
are between 1 and 2 eV less stable than the ones identified
here.

Failing to train the EP specifically for clusters may there-
fore produce huge quantitative and qualitative errors. In the
case of zinc clusters, the previous structural EP-DFT predic-
tion, performed with an EP fitted to bulk properties, produced
amorphous structures,32 incompatible with the highly struc-
tured photoemission spectra for most sizes. Our work clearly
demonstrates that only a few clusters of zinc are amorphous;
most of them have instead a high structural order and so high-
order point group symmetries. Our protocol can be employed
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for predicting the GM structures of other clusters (metallic or
not) and in conjunction with other empirical potentials, so it
has quite general implications for any future work focused on
structure prediction. It is, for example, quite probable that pre-
viously reported EP-DFT structures for other metal clusters,
obtained with a bulk-fitted and non-transferable EP, carry sub-
stantial errors as well, if there are no experimental fingerprints
available for a definitive structural assessment. Our method
thus opens the way to systematic revisions of medium-sized
metallic cluster structures in future studies.

Another interesting conclusion from our work is that a sim-
ple potential with only two independent parameters in reduced
units can describe very well the exotic ordered structures of
zinc clusters, only if properly trained in the way described in
this paper. The lesson to be learnt is that taking this step can
really be worth the effort, and should be done before blam-
ing a given potential and before trying a more complex po-
tential form with more independent parameters. Our approach
pushes the Gupta model to its best possible performance level
for a given cluster system.

Expressing the Gupta potential in reduced units before
training it is an essential step in our approach that must be
highlighted. It is not only convenient from a computational
point of view as it obviously reduces the number of parameters
to be fitted; it rather has additional physical implications. Us-
ing the relations r∗i j = p′ri j and E∗i = Ei

2ξ ′ , any reduced Gupta
potential can be re-scaled to obtain a potential with full units
and the desired average distance and cohesive energy. We
have explicitly checked that the Gupta potential is unable to
describe the correct size dependences of distances and bind-
ing energies in the small non-scalable size regime considered
in this paper. In words, the p′ and ξ ′ values needed to re-
cover the right average distance and binding energy of, say,
Zn20, are different from those obtained for Zn40, so if working
with full units, a different Gupta potential would be needed for
each size, while in reduced units a single potential is uniformly
good in the whole size range below ∼ 100 atoms!. Trying to
fit the full-units potential on DFT data for a variety of cluster
sizes would amount to request from the potential something it
can not describe, and it would introduce significant noise and
innacuracy in the fitting. Moreover, absolute distances and en-
ergies are not relevant for the EP part of an EP-DFT approach,
as the DFT calculation will fix the correct values of them in the
end. Fitting the reduced potential in the way proposed here has
the virtue of focusing on the essential topographical features
of the energy landscape, including the hierarchy of local min-
ima energies and avoiding the noise coming from the absolute
scales of the potential energy surface. We believe this is the
key to the success of our approach.

An interesting issue which we leave for future work is the
performance of our potential in the bulk limit (at the moment
our code does not contemplate periodic boundary conditions

and it will take additional work for it to deal with bulk sys-
tems). The parameters reported by Cleri and Rosato24 were
fitted to bulk values of lattice constant, cohesive energy and
elastic constants for each metallic element. As we have seen,
the lattice constant and cohesive energy contribute no infor-
mation at all about the topography of the energy surface, and
only describe the less interesting absolute scales, i.e. all re-
duced potentials might be re-scaled to right values of those
two quantities. So only the elastic constants remain to con-
tribute some information about the topography, and that infor-
mation is very local in nature, coming from small displace-
ments around a single minimum. We have explicitly checked
that our potential, when re-scaled to full units, reproduces ac-
curately the DFT frequency of a monopolar “breathing” mode
for Zn clusters, suggesting it may provide reasonable vibra-
tional frequencies. We believe that our potential may provide
less accurate elastic constants but more accurate relative sta-
bilities of different crystalline phases, though this remains at
the moment as a pure speculation.

We have applied our EP-DFT protocol to describe the main
structural properties of zinc clusters. Our results show that
most zinc clusters are not amorphous, and rather adopt high-
symmetry structures that exhibit some exotic properties for
a metal. First, the structures are less compactly packed as
compared to other typical metals, meaning that the number
of interior atoms is quite lower. The most extreme example
is Zn17, whose structure is a hollow cage. Interestingly, sim-
ilar core-shell structures with an anomalously small number
of core atoms have been suggested for some medium-sized
gold clusters as well63. This cage can host dopant atoms at
its center while having little interaction with them, and in the
case of transition metal dopants the cage is able to maintain
a high magnetic moment.48 Second, the clusters display an
anomalously long radial separation between the few atoms in
the core and a crowded rounded shell of atoms. This means
that zinc clusters have an exotic strain distribution as com-
pared to most other metallic clusters, displaying contracted
tangential distances at the crowded shell and expanded radial
distances between core and shell atoms. This is exactly oppo-
site to the strain distribution in icosahedral or poly-tetrahedral
clusters, for example. The long core-shell distance has inter-
esting structural and dynamical consequences. At the struc-
tural level, it implies that there are no strong epitaxial pref-
erences for the growth of the shell onto the core, and in fact
we have found a coexistence of several epitaxial growths in
several clusters, as for example Zn70. At the dynamical level,
it implies that there are low energy barriers opposing the rel-
ative rotation of the core with respect to the shell. For ex-
ample, the dimer core in Zn29 can rotate almost freely inside
the decahedral cage,41 and in general core-shell relative ro-
tations always appear between the lowest-energy vibrational
excitations. If the Zn2 dimer could be substituted with some
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magnetic transition metal dimer, and if the property of nearly-
free rotation of that dimer could be preserved, it would gen-
erate a “nano-compass”, a possibility we are presently ex-
ploring. Third, many of the highly-ordered GM structures
are chiral, the most symmetric one being Zn34 with tetrahe-
dral chiral symmetry, which suggests future applications of
Zn clusters in optical activity studies. Fourth, there are some
exceptional cluster structures following an electron shell clos-
ing, which contain a singly-coordinated adatom (examples are
found at N = 11,12,21 and 48 and are more prominent in clus-
ter cations). Another exceptional cluster though for a different
reason is Zn32, which is the first and only cluster that is a frag-
ment of the bulk hcp lattice. Finally, we mention that the GM
structure is strongly dependent on the number of electrons, as
for many sizes the structures of neutral, cation and anion dif-
fer. Dispersion or van der Waals effects have been found to
have a small but systematic effect, namely tending to increase
the number of core atoms. The structures reproduce very well
the experimental measurements for nearly all sizes.

We have also described the electronic structure of zinc clus-
ters. Most clusters are very well described by the jellium
model predictions, and can thus be viewed under a superatom
metallic picture. This can be surprising at first sight given the
non-metallic structural features identified in the previous para-
graph. First, the long core-shell separation produces a deep
minimum of electron density along the radial direction, and
in a previous work41 we have shown that this minimum is as
deep as bewteen two ions of a typical insulating material such
as LiF. This is admittedly not a jellium feature, but in practice
we have demonstrated here that it provides only a weak pertur-
bation on top of the jellium picture. Specifically, high angular
momentum levels are stabilized relative to low angular mo-
mentum levels because they better overlap with the crowded
ionic density in the shell, but the stabilization effect is small
and does not produce unexpected magic numbers or substan-
tial reordering of jellium levels. The only exception is hollow
Zn17 for which the 1F shell is more stable than the 2S shell.
The conclusion to extract is that angular delocalization is the
essential property for the validity of the superatom picture,
while radial delocalization is not so important. Most of the
magic numbers can thus be explained by jellium predictions,
and the rest of magic numbers could be related to geomet-
rical shell closings. Second, singly-coordinated adatoms are
also not an expected metallic property. In a previous work41

we have shown that in those clusters an insulating bond be-
tween adatom and superatoms coexists with the metallic bond-
ing within the superatom. Accordingly, the two localized elec-
trons in the insulating bond populate an “impurity-like” level
within a jellium density of electronic states, and the jellium
picture continues to be valid to a large extent. The conse-
quence is that clusters with two electrons more than a jellium
shell closing continue to have a large HOMO-LUMO gap and

so are also shell closings, with an impurity level populated at
an energy quite below the HOMO. The size evolution of zinc
clusters towards full metallicity is therefore quite gradual even
if most clusters display typically metallic features.
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29 Diederich, Th.; Döppner, T.; Fennel, Th.; Tiggesbäumker,
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Fig. 13 TOC figure. TOC text: “A novel computational protocol demonstrates that Zn clusters are not amorphous and reproduces
photoemission and mass spectra.”
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