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ABSTRACT: The copper compound [Cu(C6Cl2F3)(tht)]4 (1) (tht: tetrahy-
drothiophene) is an excellent catalyst for the trans- to cis- isomerization of 
complexes [PdAr2(tht)2](Ar: fluoroaryl) and also for the exchange of aryls 
between those palladium complexes. Herein, we also communicate the syn-
thesis and characterization of 1, and some of its derivatives. The x-ray struc-
ture of 1 shows a linear chain of copper atoms, supported by fluoroaryl rings. 
The NMR 19F-DOSY study indicates that this structure is preserved in solu-
tion although in equilibrium with other species.    

Multimetallic systems are receiving ongoing attention 
from the organometallic community, due to their role in 
catalyzed processes. 1-3   Unfortunately, the understanding 
of systems composed by two or more metals is far from 
complete and the rational design of bimetallic catalytic 
systems is nowadays an almost unachievable task. Most 
of the difficulties come from the fact that catalytic cycles 
are formed by highly reactive organometallic intermedi-
ates which can react with complexes containing the sec-
ond metal as well as with organic substrates, producing 
unwanted interferences in the reaction pathway. In addi-
tion, the exchange of “spectator ligands” or of electrons 
between the metals may also spoil a “well designed” cat-
alytic cycle.4 Considering the difficulties, it is remarkable 
the large number of multimetallic co-catalyzed processes. 
Particularly important are bimetallic systems involving 
copper and palladium. In addition to the Wacker reaction, 
an historic landmark in catalysis, copper accelerates the 
Stille cross-coupling, the copper/palladium pair catalyzes 
many other C-C and C-E coupling reactions including the 
Sonogashira reaction.1-3 Leaving aside the copper medi-
ated electron-transfer reactions, the role attributed to or-
ganocopper in these reactions is to act as  transmetalating 
reagent towards complexes of the type [PdRXL2] or as 
ligand scavenger in the “copper effect”,5 but there are no 
reports of the role of copper complexes as catalysts for 
other reaction steps.3 The hypothetical intervention of or-
ganocopper complexes in other steps of the cross-cou-
pling reactions has not been addressed so far. 
Here we report new organometallic copper complexes, 
the study of their ability to catalyze the isomerization re-
action of palladium(II) complexes and also the very fast 

aryl scrambling that copper(I) produces between aryl pal-
ladium complexes.5 
We have synthesized the complex "CuRf(tht)" (Rf = 3,5-
dichloro2,4,6-trifluorophenyl, C6Cl2F3) with the purpose 
of studying the copper-catalyzed trans- to cis- isomeriza-
tion of complexes [PdRf2(tht)2], by analogy with related 
studies with gold complexes.6a In “CuRf(tht)" the Rf 
group provides extra stability to the C-Cu bond when 
compared with non-fluorinated aryls,7,8 and allows a 
straightforward 19F NMR monitoring.9 The distinctive 
feature for organometallic copper(I) compounds is the 
variability in stoichiometries and the structural diversity 
of its complexes.10,11 Homoleptic compounds “CuR” are 
usually cyclic oligomers but copper complexes of stoichi-
ometry [CuRL] show typically linear geometry, similar to 
gold(I) derivatives.12-20. The only report of linear com-
plexes with tht [CuR(tht)] includes the very encumbered 
group R = 2,6-bis(2,4,6-triisopropylphenyl)phenyl.20 
Trigonal-planar complexes CuRL2, and oligomers with 
several other stoichiometries such as [CuRL0.5]n, are also 
known.21  
The synthesis of a complex of formula [CuRf(tht)] was 
achieved by reacting RfLi with CuBr in the presence of 
an excess of tht. The 19F NMR signals of the product are 
very broad and are not resolved at low temperature, thus 
an X-Ray structure study was undertaken. The molecular 
structure is shown in Figure 1 and consists of a chain-cop-
per aggregate of formula [CuRf(tht)]4 (1) where Rf aryls 
act as the bridges between copper centers, and the four tht 
ligands are at the ends of the chain. This is a quite unusual 
structure, the only known linear copper structure similar 
to that corresponds to the stoichiometry [CuRL0.5]4, (R: 
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C6F5; L: N-heterocyclic germylene NHGes).22 In com-
plex 1 the fluoroaryls seems to form relatively strong 
three-center two electron bonds, preferring this structure 
to the use of tht to form four-electron sulfur-bridges.23 
Several complexes of formula [Cu(C6F5)L] have been re-
ported, but their structures are linear monomers with the 
exception of the dimer [Cu(C6F5)(NHGes)]2.22,24,25  

Figure 1. Molecular structure obtained from X-Ray dif-
fraction of complex 1 showing 50% probability ellip-
soids. Some selected distances: Cu1-Cu2: 2.4443(9)Å, 
Cu2-Cu3: 2.5603(8)Å, Cu3-Cu4: 2.4249(9) Å. 
 
As stated above the NMR spectra of 1 are indicative of an 
equilibrium between complexes. In fact, the addition of 
tht to solutions of 1 produces a change in the chemical 
shift and the shape of the 19F NMR, eventually leading to 
the formation of [CuRf(tht)2] (3) (see scheme in Figure 
2). This complex has not been isolated, since the equilib-
rium is shifted to form 1 during the crystallization, but 
calculated by DFT calculations predict a planar-trigonal 
geometry (See SI). The behavior in solution of 1 has been 
further examined by analyzing the chemical shift and dif-
fusion properties of solutions of 1 with different amounts 
of tht added. We assumed that the broad NMR signals 
may contain not only the signals from the inequivalent 
fluoroaryls in the tetramer 1, but also signals from homo-
leptic species [CuRf]n, the trigonal monomer [CuRf(tht)2] 
(3), and other possible oligomers [CuRf(tht)]n.26 Since the 
19F NMR signals are not resolved at -70 ˚C the complete 
speciation of the sample is not possible. Nonetheless, the 
study of the diffusion properties and chemical shift is 
quite informative. 
Figure 2a represents the drift of the chemical shift with 
the amount of added tht, showing that the chemical shift 
does not change after the addition of four (or more) tht 
per [CuRf(tht)]4, thus [CuRf(tht)2] is the limiting compo-
sition and no tetrahedral complexes are formed in relevant 
concentration. Also, the average diffusion coefficient (D) 
of the sample has been measured by DOSY experiments 
at 298 K, leading to the same conclusion (Figure 2b). The 
diffusion coefficient and the molecular weight are related 
by the empirical law D = KMWa (where K is a constant 
and a is a coefficient that depends on the size and shape 

of the particles).27,28 By measuring D for various known 
fluorinated organometallic complexes, we have found a 
value of a = –0.39 (Figure 2, see also SI). 

 

Figure 2. (a) Graphic representation of chemical shift ver-
sus equivalents of tht added in THF. (b) Graphic repre-
sentation of experimental D (D = Diffusion coefficient) 
obtained from DOSY experiments versus equivalents of 
tht added THF 

The experimental value of lnD for the mixtures of 1 with 
different amounts of tht (orange dots in Figure S1) have 
been interpolated on the line obtaining a “observed mo-
lecular weight” (MWobs) for the samples. The MWobs value 
at very high concentrations of tht is 317 ± 125, that agree 
with the formation of 3 which has a MW of 440. The so-
lution without added tht, gives a MWobs of 1174 ± 184, be-
ing the MW of 1 1407. Thus, data suggest that solutions of 
complex 1 consist of an equilibrium in which the tetramer 
1 is the major species, with small amounts of [CuRf(tht)2] 
and [CuRf]n formed by disproportionation. From com-
plex 1 the monomeric complex [CuRf(4,4’-bipy)] (used 
for diffusion experiments) was easily obtained by substi-
tution of the tht (see x-ray structure and experimental de-
tails in SI). 
Complexes 1 and 3 (made from complex 1 in the presence 
of a large excess of tht) have been used to test the copper-
catalyzed trans- to cis- isomerization of palladium com-
plexes [PdRf2(tht)2] (complexes 4 and 5) (eq. 2, Figure 3). 
The use of these complexes is quite convenient to avoid 
the exchange of neutral ligands between copper and pal-
ladium systems similar to that found in gold(I)/palla-
dium(II) systems.4b  
The catalyzed reaction takes place at 25 ˚C and the ob-
served reaction rate using 1 as catalyst (4% mol) is kobs = 
0.7 s-1Lmol–1. For [AuRf(tht)] as catalyst at 31 ˚C kobs is 
about 5 s-1Lmol–1.6a Note, however, that since kobs has 
been calculated assuming that the tetramer 1 is the cata-
lyst, it is plausible that the true catalyst is some fragment 
of the type “CuRf(tht)” present in low concentration in 
the solution, meaning that the activity of the copper would 
be much higher. When 3, prepared by addition of tht to 1, 
was used as catalyst a kobs value of 7.10–2 s-1Lmol–1 was 
obtained (Figure 3b).29 For this concentration of tht, the 
reaction is much slower and the hydrolysis of the copper 
complex with the residual water competes with the aryl 



 

exchange, so it has to be considered in the kinetics to ob-
tain meaningful values.  

 
Figure 3. Concentration/time plot of the copper catalyzed 
isomerization reaction of trans-[PdRf2(tht)2] (4) (black 
spots) to cis-[PdRf2(tht)2] (5) (blue spots) in THF at 25 
˚C. Starting concentrations a) [4]0 = 0.02 M, [CuRf(tht)]4 
7.5·10–4 M, (no tht added); b) [4]0 = 0.02 M, [1]0 = 7.5·10–

4 M, and [tht] = 0.063 M. 
 
With the aim of stablishing whether the isomerization 
takes place with or without copper/palladium transmeta-
lation of the aryl group, we tried the isomerization reac-
tion of a mixture of fluoroaryl complexes trans-
[PdRf2(tht)2] (4) and trans-[PdPf2(tht)2] (6) (Pf = C6F5). 
In this experiment the formation of the mixed isomer cis-
[PdRfPf(tht)2] (9) would demonstrate the transmetalation 
during the isomerization. To our surprise the first spec-
trum of the series showed the equilibrium of the com-
plexes 4 and 6 with trans-[PdRfPf(tht)2] (8) (Scheme 1a). 
The non-catalyzed aryl exchange between 4 and 6 to pro-
duce 8 has been studied and is very slow at 25 ˚C.30 Thus, 
the transmetalation is a much faster process than the isom-
erization, indicating that other steps contribute largely to 
the rate of isomerization. Once the equilibrium between 
4, 6 and 8 has been stablished, all of them evolve to the 
cis isomers 5, 7 and 9 (Scheme 1). 
 

 
Scheme 1. 
In view of these results, the catalyzed aryl exchange be-
tween cis- complexes 5 and 7 was tested with a similar 
result: cis-[PdRfPf(tht)2] (9) is formed in a very fast 

process. The reaction takes place even at –65 ˚C, with an 
observed reaction rate at -40 ºC of at 3·10–4 s-1Lmol–1 
what makes of this an extremely fast reaction for the or-
gano-palladium isomerization or transmetalation stand-
ards. The substitution reaction probably involve aryl-
copper unsaturated species, capable to form three-center 
two electron bonds involving also the Pf-Pd bond. Struc-
tures 1b and 1c in scheme 1 represent plausible transition 
states for the aryl-by-aryl and tht-by-aryl substitution re-
actions respectively that can be involved in the aryl ex-
change and isomerization reactions. Bimetallic Pd/Cu 
complexes with electron deficient bonds between these 
metals and aryl ligands have been synthesized and com-
putationally studied by Chen and coworkers, who have 
proposed  these structures to be models for TS of 
transmetalation reactions.31  
In conclusion, fluoroaryl-copper(I) complexes have 
shown to be very active catalyst for the isomerization and 
for the scrambling of organic groups between palladium 
complexes, showing a very small activation energy. De-
tailed mechanistic studies are ongoing including kinetic 
and DFT studies. 
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