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Generating Actionable Predictions regarding 

MOOC Learners’ Engagement in Peer Reviews 
Abstract—Peer review is one approach to facilitate formative feedback exchange in MOOCs; however, it is often undermined by 

low participation. To support effective implementation of peer reviews in MOOCs, this research work proposes several predictive 

models to accurately classify learners according to their expected engagement levels in an upcoming peer-review activity, which 

offers various pedagogical utilities (e.g., improving peer reviews and collaborative learning activities). Two approaches were used 

for training the models: in situ learning (in which an engagement indicator available at the time of the predictions is used as a 

proxy label to train a model within the same course) and transfer across courses (in which a model is trained using labels obtained 

from past course data). These techniques allowed producing predictions that are actionable by the instructor while the course still 

continues, which is not possible with post-hoc approaches requiring the use of true labels. According to the results, both transfer 

across courses and in situ learning approaches have produced predictions that were actionable yet as accurate as those obtained 

with cross validation, suggesting that they deserve further attention to create impact in MOOCs with real-world interventions. 

Potential pedagogical uses of the predictions were illustrated with several examples. 

Index Terms— engagement prediction, MOOC, peer review, transfer across courses, in situ learning   

——————————   ◆   —————————— 

1 INTRODUCTION

ASSIVE open online courses (MOOCs) have fast in-
creased in popularity over the past few years, ena-

bling millions all around the world to receive free educa-
tion in many subject areas with a basic Internet connec-
tion. Enrollments in MOOCs usually scale up to thou-
sands [1] and contain a diverse population of learners 
with different knowledge levels, goals, learning prefer-
ences, and engagement styles [2]–[4]. While MOOCs are 
quite promising in democratizing education, its massive 
scale (alongside the variability among learners within the 
scale) leads to some pedagogical issues. This is largely be-
cause effective learning at large scale requires huge aca-
demic staff workload, which is not feasible to supply in 
practice. For example, MOOC instructors cannot possibly 
reply to every learner post in online discussions because 
participation in discussions at massive scale can easily 
lead to unmanageable overload of information [5]. Like-
wise, at large scales instructors cannot keep track of every 
learner, and therefore cannot provide timely formative 
feedback tailored to learners’ distinct learning needs [6]. 
Learning analytics has been explored to offer mecha-
nisms for providing personalized feedback in large 
courses [7]. Besides learning analytics,  one common ped-
agogical solution to this issue has been the use of peer re-
views [8]. 

Peer review is a reciprocal process, in which learners re-
view the quality of peers’ work while receiving a review 
from others on their own work [9]. Peer review has been 
already used extensively in classroom and online environ-
ments prior to MOOCs [10], [11], and the literature has 
been quite informative in demonstrating its learning bene-
fits. Peer reviews have been often employed in MOOCs  as 
an approach to assessing large numbers of learning acti-
facts [12]. However, its implementation at massive scale 
faces some challenges, limiting its benefits for learning. 
One important challenge is low participation in peer 

reviews [13], [14], which is not very surprising given the 
lack of instructor facilitation, diversity among MOOC 
learners, and high dropout rates. Low student participa-
tion can drastically hurt the effectiveness of peer reviews, 
resulting in a considerable number of student works with 
neither feedback to improve their work and learning nor a 
grade. Thus, Peer reviews bring certain capacities at large 
scales that are otherwise impractical. However, their true 
potential for supporting learning in MOOCs has not been 
well exploited. 

As an attempt to contribute to the existing practice in 
MOOCs, the present study aims to propose a predictive 
approach to classify learners based on their expected level 
of peer-review engagement. In particular, we propose a 
classification approach to identify if a learner will under-
participate in peer reviews or participate as required. Such 
categorization of learners can inform instructors’ design 
decisions to mitigate issues related with peer-review im-
plementation at massive scale. For example, some learners 
may under-participate because they might be actually lag-
ging behind in the course and lack a solid understanding 
of concepts, and therefore, they may not feel confident in 
assessing others’ work [14]. Such learners, if given addi-
tional time for performing peer reviews, can have the 
chance to catch up with others and improve their learning, 
which may lead to an increase in their participation in 
peer-reviews. Further, when knowing learners’ expected 
level of participation, instructors can adjust the participa-
tion threshold for each learner separately (such as setting a 
higher threshold for learners who are expected to be highly 
engaged, and vice versa).  

To utilize this approach in real-world practice, the pre-
dictions need to be available before the peer review activity 
takes place. In this concern, it is noticeable that most pre-
diction research in the MOOC literature has instead fo-
cused on building models with post-hoc approaches in 
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which data from an already completed course (or activity) 
are used to train and validate predictive models [15], [16]. 
However, these models cannot be built until the target la-
bel is known (e.g., after learners had already dropped out), 
limiting their use in the very same courses from which they 
originate. The present research work is distinguished from 
prior research in that it proposes an approach to produce 
actionable predictions to be used in real-world practice. In 
particular, we use transfer across courses and in situ learn-
ing approaches, [17]–[19] to build a classification model. 
With both approaches, a prediction model is trained using 
only the information available at the time of prediction, 
and then used to make predictions early enough while 
they are still actionable for instructors’ use. Our work is 
guided by the following research questions: 

• To what extent can previous learner activities pre-
dict their engagement levels in peer reviews? What 
machine learning algorithms provide higher accu-
racy? 

• Can the classification model that is trained on the 
preceding week’s data perform well on the subse-
quent week (i.e., the performance of in situ learn-
ing)? 

• Can the classification model that is trained using a 
completed course perform well on a new one (i.e., 
the performance of transferring across courses)? 

The remainder of the paper is organized as follows. 
First, related work on peer reviews as well as on transfer 
across courses and in situ learning in the MOOC literature 
are presented. Then, the course datasets used to conduct 
this study are described, and their overall characteristics 
are discussed. Later, in the methods section, the features 
generated for building the classification models are de-
scribed, and the approaches employed in building the 
models are presented. The last two sections present the re-
sults, discuss the findings, and suggest future research 
based on the limitations of the current work. 

2 RELATED WORK 

2.1 Previous Research on Peer Reviews in MOOCs 

The research on peer reviews in MOOC contexts has been 
diverse, however, heavily weighted towards the reliability 
and the validity of grading involved in peer reviews [8], 
[20]–[22]. Most of these studies have proposed mathemati-
cal models as an attempt to remove the noise in peer grad-
ing, resulted from the lack of expertise among assessors, 
and therefore improve its validity [8], [21]–[25]. Differently, 
the authors in [20] explored how different qualities of ru-
brics (used to guide the review process) could potentially 
improve the validity of peer grading. According to the 
findings, when the rubrics were improved with parallel 
sentence structures and unambiguous wording, an in-
crease in agreement between peer-staff scores was ob-
served, showing the importance of clear and well-commu-
nicated rubrics to achieve accurate peer grading. More re-
cently in this category of research, the authors in [26] 

argued that peer assessment is a valid way to assess 
MOOC learners’ performances as they found a significant 
correlation between scores of peer grading and learners’ fi-
nal exam scores.  

Some other studies have explored the relationship be-
tween peer-review engagement and student learning. Ac-
cording to [12], peer-to-peer interactions through peer as-
sessments enhance learners’ understanding of concepts, 
and likewise the authors in [27], [28] found that engage-
ment in peer-assessment tasks are strong determinants of 
learners’ subsequent progress and performance. On the 
other hand, [14] reported that when learners have a good 
understanding of the concepts, then they are likely to not 
only review more peer work but also provide higher qual-
ity of feedback in their reviews. Thus, these studies suggest 
a reciprocal relationship: peer-review engagement en-
hances student learning, and at the same time, learners 
with a good understanding of concepts engage in peer-re-
views with higher quantity and quality. Adding to these 
findings, the authors in [29] noted that high-achiever re-
viewers provide higher quality of feedback that help learn-
ers improve their performance significantly in the follow-
up assignment. Moreover, some studies [14], [28] have in-
vestigated the influence of learners’ demographic charac-
teristics on their peer-review engagement and identified 
the geographic origin, employment status, education level, 
and weekly availability as the key factors. Last, in our pre-
vious work [13] we have focused on the prediction of the 
number of peer works that learners will review using ma-
chine learning regression algorithms. Although a certain 
degree of accuracy was obtained, the prediction models 
were trained using post-hoc methods, leading to minor 
practical use, and the data was highly imbalanced (in terms 
of class label distributions), creating bias in the predictions.  

It is apparent that the literature thus far has made some 
significant contributions to peer-review practice in 
MOOCs. However, none of the previous studies have fo-
cused on proposing a solution to assist instructors in ongo-
ing MOOCs in mitigating the problem of low learner en-
gagement in peer reviews at large scales. Differently, and 
possibly complementary to the former studies, the current 
study aims to mitigate this issue by building a prediction 
model for early classification of learners based on their en-
gagement-levels in peer reviews. As opposed to post-hoc 
prediction models, widely used in the MOOC literature, 
we propose a model that is operational for instructors’ use 
in ongoing MOOCs. For this purpose, we take advantage 
of transfer across courses and in situ learning as described 
in the following section. 

2.2 Transfer Across Courses and In-Situ Learning 
in MOOC Research 

Most research on predictions within the context of MOOCs 
is devoted to dropout and performance prediction and 
uses data from a single past course to build and test pre-
dictive models with post-hoc approaches  [30]. However, 
these approaches are not valid for real-world use since 
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training of the models requires labels that would not be 
available yet in real practice at the time when predictions 
are required by instructors [17]–[19], [30]. For example, the 
dropout prediction models proposed in [15], [16] are used 
to predict if a learner will drop out before the end of a 
course using models that were trained with labels that can 
only be obtained once the course is over. Thus, they could 
not be applied in real-world practice. 

To overcome the limitations of post-hoc approaches, 
several works explored the use of the transfer across 
courses approach, in which a prediction model is built us-
ing a completed MOOC and then used for designing inter-
ventions in a follow-up MOOC [17], [31]. MOOCs them-
selves indeed offer distinct opportunities that make trans-
fer learning an advantageous approach (e.g., transferring 
across re-runs of the same course, or across courses from 
the same domain or with similar instructional design) [17]. 
Nevertheless, there are not many studies that have investi-
gated the potentials of transfer across MOOCs in compari-
son to post-hoc prediction approaches. Authors in [31] and 
[32] have tested the transferability of a dropout prediction 
model across different MOOCs. The results were quite 
promising, showing that different courses could be used to 
train a model to make predictions in another course. An 
increase in the accuracy of the predictions was noted when 
multiple courses were used to train the models, or when 
the training set was calibrated (e.g., maintain the learners 
in the training data that are more similar to the learners in 
the target course). Complementary to these findings, a re-
cent study [19] has indicated that training a model on 
many other courses might lead to more accurate models 
compared to training on a course from the same discipline. 

Different from transferring models across different 
MOOCs, the authors in [17] have proposed the in situ 
learning approach that allows training a model based on 
proxy labels (e.g., students are considered dropout if they 
have no interactions for a specific week [33]) and using this 
model when the prediction is needed for some interven-
tion while the course is still continuing. A few studies have 
investigated the use of in situ learning in MOOCs. For ex-
ample, in [18], [34], the researchers used in situ learning to 
predict if there will be a decrease in learner engagement at 
the end of a particular chapter (e.g., chapter 4) using the 
model trained on the preceding chapter data (e.g. chapter 
3). Some other researchers [17], [19], [33] have tested in situ 
learning for building dropout prediction models that are 
transferable across different weeks within the same course 
and compared its performance with conventional transfer 
learning (using past courses). Both studies reported higher 
accuracy with in situ learning compared to transferring 
across courses. Thus, in situ learning could be a preferable 
technique over transferring between courses as it does not 
require different course data while producing accurate re-
sults. 
 

1https://dataverse.harvard.edu/dataset.xhtml?persisten-
tId=doi:10.7910/DVN/XB2TLU.  
2https://drive.google.com/file/d/0B5ghu5Vrh0j7YTlSdTRxVUg0Tnc/view 

Although, transfer across courses and in situ learning 
can provide actionable information for creating real-world 
interventions, their use is very limited in MOOC prediction 
research [30], and they have never been applied to peer re-
view prediction. The current study uses both approaches 
to investigate their potentials for transferring prediction 
models for predicting peer-review engagement-level. 

 
TABLE 1. SUMMARY OF THE COURSES IN TERMS OF ENROLLMENT, AS-

SIGNMENT, DISCUSSION, AND QUIZ ACTIVITIES 

 Course#1 Course#2 Course#3 

# of enrollments 3567 3632 5248 

# of assignments (to be reviewed) 4 4 7 

# of assignment submissions 2360 2015 1571 

# of assignment submissions* 2488 2874 1671 

# of peer reviews 5853 8006 2884 

# of discussion topics 25 35 97 

# of discussion entries 1249 2347 4852 

# of quizzes 21 36 3 

# of quiz submissions 14378 49837 1356 

# of quiz submissions* 19253 82266 1419 

* including learners’ multiple submissions on the same assignment or quiz. 

3 DATASETS 

We have explored the Canvas Network repository shared 
in Harvard Dataverse1 to determine proper courses to be 
used in the current research work. According to the Canvas 
Network Data Usage Agreement2, the researchers of this 
work, who are the downloader of the data, are permitted 
to use this dataset for academic research and publication 
purposes. Three courses3 were identified to carry out this 
research as they contain consistent data regarding peer re-
views, and they were from the Business and Management 
domain as identified from the metadata about the course 
provided in the course data table.  

All course data at hand were de-identified for privacy 
concerns by the publisher before their release. De-identifi-
cation involved the removal of all textual information 
about the course (e.g., name of the discussion forums, as-
signment descriptions, discussion entries, etc.). The Can-
vas Network Data Usage Agreement prohibits to “produce 
connections or links among the information” and “extract 
information from the [dataset]”. Therefore, no information 
regarding the learning design of the courses was known to 
the researchers. Nonetheless, in order to gain an overall in-
sight into these courses, quantitative information regard-
ing the number of enrollments as well as assignment, dis-
cussion, and quiz activities (which were the core compo-
nents of three courses as inferred from the data at hand) 
were extracted. Summary of these information is provided 
in Table 1. 

 

3Course IDs are: Course #1: 770000832960949, course #2: 
770000832945397, and course #3: 770000832945322. 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XB2TLU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XB2TLU
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Figure 1. Learner participation in each peer-review session for (a) 
course #1, (b) course #2, and (c) course #3. 

 
The basic statistics given in Table 1 may provide some 

useful insights into the courses. To begin with, course #1 
and course #2 have exactly 4 assignments, and the number 
of submissions in these assignments are very close, which 
is parallel to the similarity between their enrollments. In 
comparison, course #3 contains more assignments yet less 
submissions in total even though it has the highest number 
of enrollments. These numbers may suggest that learner 
engagement in course #3 was problematic. Second, course 
#3 involved 7 assignments (and peer reviews) in compari-
son to course #1 and course #2 which involved four assign-
ments in total to be reviewed by students. Therefore, it 
might have been more difficult to persist and complete all 
the activities in course #3. Moreover, compared to course 
#1, course #2 contains more discussion topics and quizzes, 
which is a probable reason for the higher number of dis-
cussion entries and quiz submissions. In particular, learn-
ers in course #2 seem to have an intense participation in 
quizzes. Also, learners in course #2 seem to be the most en-
gaging group as they are the ones with the highest rates of 
assignment and quiz re-submissions. Furthermore, having 
97 discussion topics and 4852 entries, the discussion forum 
seems to be a critical component of the learning design in 

course #3, whereas quizzes do not seem to be an integral 
component of learning: only three quizzes existed in this 
course. 

In summary, course #1 and course #2 seem to have a 
similar design in comparison to course #3, which uses dis-
cussions heavily while having less focus on quizzes. Addi-
tionally, learner engagement in course #2 seems to be the 
highest whilst there is limited engagement in course 
#3.  However, it is noteworthy that we cannot possibly 
have a 100% confidence on the design details of course 
components. For example, based on the data at hand, we 
cannot be sure about the types of the questions included in 
the quizzes (e.g., multiple-choice questions). 

Besides the statistics mentioned above, we have exam-
ined learners’ peer-review participation in each course, 
which is the variable of interest in the current study. There 
was one peer-review session per assignment in all courses 
(e.g., the first peer reviews for the first assignments, the 
second peer reviews for the second assignments, and so 
on). Using histograms, Figure 1 presents the overall partic-
ipation in each peer-review session in their temporal order 
(from the first session till the last one). Mean and standard 
deviation scores are provided below histograms. 

According to Figure 1, most of the learners in each 
course seem to review a certain number of peer works, 
which is 3 in course #1 and course #3, and 4 in course #2. 
These numbers are likely to be the level of participation ex-
pected from learners in the corresponding course, and as 
discussed previously, they will be used as thresholds to 
identify learners who are likely to under-participate in 
peer reviews versus learners who are likely to do as re-
quired. Moreover, learners’ peer-review participation in all 
three courses seem to decrease as the semester progresses. 
The sharpest decrease was observed in course #3. One ex-
ception to this trend is that in course #2 the lowest partici-
pation in peer reviews was during the first session. 

In course #1 and course #2, there was a clear separation 
among the time periods during which peer reviews for dif-
ferent assignments were performed. On the other hand, in 
course #3 there were many overlaps over these time peri-
ods due to the wide distributions of peer reviews over 
time. The peer views made after the due dates are regarded 
as no participation, since from instructors’ point of view, 
knowing whether a learner will timely perform peer re-
views might have more practical value than knowing 
whether a learner will eventually review peers’ work. 
Dropping the late reviews has yielded many learners with 
zero participation in course #3 (see Figure 1), which was 
expected given the wide distribution of peer reviews in it.  

The differences in the number of assignments, discus-
sion topics, and quizzes, as well as their temporal distribu-
tions suggest that there is a considerably high probability 
that these courses are different and not re-runs of each 
other. This assumption neither can be entirely dismissed 
nor can be justified as no concrete information about the 
courses are released by the data provider. 
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4 METHOD 

4.1 Feature Generation 

Given that the current prediction task is about learners’ 
peer-review participation, we focus on identifying aspects 
of learner activities in the course that could be somehow 
related to their peer-review participation. According to lit-
erature on peer reviews in MOOCs, there exists a strong 
relationship between learners’ overall engagement and 
success in MOOCs and their peer-review participation 
[27], [28]. Therefore, we focus on generating features that 
are indicative of learners’ performance and engagement in 
the core components of the courses, which are discussions, 
quizzes, assignments, and peer reviews. The list of the fea-
tures generated are given in Table 2. 

Most of these features (or very similar ones) have been 
already used in previous research as indicators of engage-
ment [18], [35]. Indeed, in our preceding work [13] many 
of them were found to hold a predictive capacity on a sim-
ilar task. Since the courses were completely de-identified, 
the learning design and the pedagogical intentions were 
unknown. As a result, such course information was not 
used to inform the feature selection. The features were 
computed using learner activity data accumulated starting 
from the first day of the course until the due date of the 
assignment for which learners’ peer-review participation 
levels are predicted.   
 
TABLE 2. FEATURES GENERATED FOR ALL COURSES 

Discussion features 

x1: disc_count Number of entries posted 

x2: disc_charcount_mean Average character length of entries posted 

x3: disc_charcount_ttl Total character length of entries posted 

x4: disc_depth_mean Average depth of entries posted  

x5: disc_wordcount_mean Average number of words in entries posted 

x6: disc_wordcount_ttl Total number of words in entries posted 

Quiz features 

x7: finished_quiz_how_early Number of days quiz was taken before the as-

signment due 

x8: quiz_scores_mean Average quiz score 

x9: quiz_scores_ttl Total quiz score 

x10: quiz_timespent_mean Average time spent on quizzes 

x11: quiz_timespent_ttl Total time spent on quizzes 

x12: quiz_total_attempts_mean Average quiz attempts 

x13: quiz_total_attempts_ttl Total quiz attempts 

x14: uncomp_quiz_count Number of incomplete quizzes 

Assignment features 

x15: assign_attempt Total number of assignment attempts 

x16: assign_score Assignment score 

x17: assign_submt_how_early Number of days assignment was submitted be-

fore its due 

Peer-review features 

x18: pr_unique_count Number of peer works reviewed 

x19: message_size_ttl Total size of feedback in bytes 

x20: message_size_avg Average size of feedback in bytes 

x21: pr_timespent_ttl Total time spent on peer reviews 

x22: pr_timespent_avg Average time spent on peer reviews 

x23: message_size_multby 

_timespent 

Message size in bytes multiplied by time spent 

on peer reviews 

x24: pr_days_after_assig 

_subm 

Number of days peer review was performed 

before assignment due 

 

4.2 Prediction Models 

4.2.1 Overall characteristics of the prediction models 

Three popular machine learning algorithms, Logistic Re-
gression, Random Forests, and Multi-Layer Neural Net-
works, wereused were used as the classifier. These algo-
rithms have been effective in various classification tasks in 
the MOOC literature [18], [36]–[38]. The hyper parameters 
of estimators in all algorithms were tuned using (stratified 
10-fold) cross-validated grid-search over a parameter grid. 
All features were standardized before they were used for 
training and testing the models. For training the models, 
we employed three different paradigms mentioned by 
Whitehill and his colleagues [33]: training on same course 
(post-hoc), training on other courses (transfer across 
courses), and training with proxy labels (in situ). 
 

 
Figure 2. 10-fold CV to assess the model performance for the second 
peer reviews 

 

4.2.2 Training on the same course (post-hoc)  

This paradigm involves using the class labels from a com-
pleted course (or activity) to train a model first and then 
test its performance. This approach has no utility in an on-
going MOOC since the class labels (e.g., peer-review par-
ticipation data) need to be known beforehand to train the 
models, which are however only available after the activity 
is completed (e.g., waiting until peer reviews are over). 
However, post-hoc models can be transferred to future 
courses for a possible real-world use (see section 4.2.3).  

In this study, cross validation (CV) is used to evaluate 
the generalizability of post-hoc models to unseen data. In 
CV, the whole data is divided into equal chunks (called 
folds) [39]. Then, one of the folds is reserved for testing 
while the rest is used for training the model, and this pro-
cess is repeated until each fold is once used as test set (e.g., 
10-fold CV require 10 rounds of training and testing). We 
apply stratified 10-fold CV to each peer-review session in 
each course. In Figure 2, the use of 10-fold CV is illustrated 
for the second peer reviews. 

Accuracy obtained with post-hoc training is likely to be 
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optimistic as a single dataset is used for training and test-
ing [17]. However, this approach can serve as a point of ref-
erence to contrast with other training paradigms. 

 

 
Figure 3. Transferring models per each peer-review session 

 

 
Figure 4. Transferring a single model across courses 

4.2.3 Training on other courses (transfer across 
courses) 

The current research aims to transfer models across 
courses and follows two specific methods for this purpose. 
The first method involves training a model per each peer-
review session separately in one course and use each 
model to make a prediction in the corresponding peer-re-
view session of another course. This approach obliges that 
the courses for transferring between should have a similar 

structure. Course #1 and course #2 indeed share structural 
similarity in the way peer-review sessions were organized: 
both courses contain four peer-review sessions with a one-
week interval between each consecutive session. Therefore, 
we attempt to transfer models trained between course #1 
and course #2 (and discarded course #3). To illustrate trans-
ferring per session between courses, Figure 3 depicts two 
example scenarios. In the first example, a model is built 
based on the data from the first peer reviews in course #1 
(features1_1 and pr1_1 class labels) to predict learners’ 
peer-review engagement levels on the due date of assign-
ment #1 (due1_2) in course #2, just before the peer reviews 
(pr1_2) start. The second example is identical to the first 
one except that it is about predicting for the second peer 
reviews. 

In the second method, (transferring per course), a single 
model is trained on the whole data from one course and 
this trained model is used to make separate predictions for 
each peer-review session in the other course instead of 
training separate models per each session. Data regarding 
the first sessions were excluded since they do not contain 
past peer-review activities, differently from the remaining 
sessions. Transferring per course is applied reciprocally 
among course #1, course #2, and course#3. Note that when 
using both transfer per session and full course transfer in 
real practice, the transfer can only happen from older 
courses (completed) to newer ones (ongoing). To illustrate 
transferring per course approach, Figure 4 depicts transfer-
ring a model from course #1 to course #2.  

 

 
Figure 5. Transferring models using in situ learning in course #1 and 
course #2 

 
Transferring a single model across courses is performed 

in a slightly different way as well: two of these three 
courses are combined to train a model (instead of using 
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only one course data), and this model was used for per-
forming predictions in the other one. For example, a model 
is trained using the whole data from course #1 and course 
#2 combined, and this model is then used to make predic-
tions per each peer-review session in course #3. This pro-
cedure was repeated for all combinations among three 
courses. 

4.2.4 Training with proxy labels (in situ) 

The last training approach is in situ learning, which allows 
transferring a model (trained possibly in the early phases 
of the course) over future prediction tasks within the same 
context. In our case, in situ learning involved the use of a 
model trained on an early peer-review data in a MOOC to 
classify learners by their peer-review engagement levels in 
a future peer-review session in the same MOOC.  

With the use of in situ learning in the current task, the 
earliest prediction can be made regarding peer-review par-
ticipation for the second assignment. This is because the 
data regarding the first peer-review session need to be 
used as the training set. The training set would be com-
posed of (1) the class labels acquired from participation 
data in the first peer views, and (2) the features built on the 
learner activity data that emerged till the due date for the 
first assignment submissions. After being trained, the 
model is used to classify learners based on their expected 
level of engagement in reviewing peers’ submissions for 
the second assignment. In the prediction, the test set was 
composed of the features calculated from the learner activ-
ity data that emerged until the assignment due. The same 
logic was applied to train and transfer models between two 
consecutive peer-review sessions (the former as the train-
ing set and the latter as the test set) in all three courses. 
Figure 5 demonstrates the use of in situ learning for course 
#1 and course #2. In the same manner, six models were 
trained in course #3 as there were seven peer-review ses-
sions in total. 

4.3 Assessment of Model Performance 

Models were evaluated using area under the curve (AUC) 
as performance metric [40]. The AUC score of a classifier 
refers to the likelihood of ranking a randomly chosen pos-
itive example higher than a randomly chosen negative ex-
ample [41]. A score of 0.5 would indicate a useless classifier 
(i.e., no different than a random classifier) whereas a score 
of 1.0 would indicate a perfect classifier (with 100% predic-
tion accuracy). AUC, a commonly used metric in similar 
works in the literature [42], [43], was particularly chosen as 
it is considered rigorous to the prediction bias caused by 
imbalanced class distributions [33], which is the case in the 
current dataset (i.e., learners who under-participate in peer 
reviews are the minority in course #1 and course #2, 
whereas such learners are the majority in course #3).  

In general, the categorization of model performance 
based on AUC scores follows as [44]–[46]: .9-1: excellent, 
.8-.9: very good, .7-.8: good, .6-.7: fair, and .5-.6: bad (or 
fail). In research on prediction of human behavior, AUC 
values of .7 and higher are considered reasonably accurate 
[47]. Similarly, previous MOOC research have considered 
models with such predictive power (i.e. AUC >= .7) robust 
[31] 

5 RESULTS 

To compare the performances of all models, the accuracy 
scores are put together in a single table per each course and 
presented in Table 3 (for course #1), Table 4 (for course #2), 
and Table 5 (for course #3). Among the three algorithms 
(i.e., LR, RF, and NN), the one with the highest accuracy is 
indicated with bold font per each review session in each 
course. The results are presented per research question as 
follows. 
 

 
TABLE 3. AUC SCORES OF PREDICTIONS IN COURSE #1 USING CV AND TRANSFER LEARNING APPROACHES 

 1st reviews 2nd reviews 3rd reviews 4th reviews 

 LR RF NN LR RF NN LR RF NN LR RF NN 

CV 0.623 0.624 0.620 0.796 0.806 0.768 0.863 0.874 0.859 0.877 0.892 0.854 

In situ - - - 0.617 0.567 0.550 0.863 0.862 0.844 0.857 0.843 0.818 

TpS#2 0.588 0.530 0.527 0.769 0.788 0.507 0.820 0.838 0.555 0.826 0.845 0.718 

TpC#2 - - - 0.732 0.768 0.541 0.777 0.794 0.574 0.772 0.814 0.618 

TpC#3 - - - 0.760 0.754 0.632 0.793 0.754 0.624 0.770 0.772 0.579 

TpC#2&3 - - - 0.770 0.803 0.768 0.830 0.835 0.829 0.832 0.859 0.834 

TpS#2: transferring per session from course #2, TpC#2: transferring per course from course #2, TpC#3: transfer per course from course #3, TpC#2&3: transferring 

per course from course #2 and course #3 combined. 

 
TABLE 4. AUC SCORES OF PREDICTIONS IN COURSE #2 USING CV AND TRANSFER LEARNING APPROACHES 

 1st reviews 2nd reviews 3rd reviews 4th reviews 

 LR RF NN LR RF NN LR RF NN LR RF NN 

CV 0.606 0.593 0.586 0.769 0.772 0.768 0.732 0.784 0.717 0.796 0.801 0.785 

In situ - - - 0.689 0.630 0.565 0.751 0.759 0.674 0.779 0.751 0.717 

TpS#1 0.524 0.517 0.528 0.707 0.674 0.686 0.727 0.734 0.632 0.798 0.736 0.683 

TpC#1 - - - 0.717 0.709 0.722 0.730 0.735 0.700 0.813 0.726 0.759 

TpC#3 - - - 0.665 0.640 0.565 0.620 0.676 0.478 0.715 0.636 0.490 

TpC#1&3 - - - 0.719 0.714 0.677 0.728 0.754 0.659 0.812 0.759 0.621 

TpS#1: transferring per session from course #1, TpC#1: transferring per course from course #1, TpC#3: transfer per course from course #3, TpC#1&3: transferring 

per course from course #1 and course #3 combined. 
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TABLE 5. AUC SCORES OF PREDICTIONS IN COURSE #3 USING CV AND TRANSFER LEARNING APPROACHES 

 1st reviews 2nd reviews 3rd reviews 4th reviews 5th reviews 6th reviews 7th reviews 

 LR RF NN LR RF NN LR RF NN LR RF NN LR RF NN LR RF NN LR RF NN 

CV 0.561 0.572 0.546 0.712 0.868 0.892 0.743 0.830 0.896 0.757 0.830 0.908 0.832 0.832 0.982 0.852 0.818 0.894 0.824 0.843 0.912 

In situ - - - 0.627 0.607 0.475 0.647 0.641 0.539 0.722 0.741 0.704 0.686 0.684 0.606 0.717 0.733 0.688 0.730 0.784 0.683 

TpC#1 - - - 0.710 0.677 0.573 0.659 0.600 0.604 0.711 0.604 0.606 0.670 0.697 0.578 0.748 0.718 0.672 0.681 0.713 0.585 

TpC#2 - - - 0.643 0.652 0.630 0.547 0.607 0.508 0.590 0.695 0.544 0.640 0.658 0.591 0.663 0.743 0.554 0.589 0.683 0.504 

TpC#1&2 - - - 0.706 0.608 0.674 0.625 0.615 0.526 0.698 0.587 0.560 0.665 0.659 0.654 0.757 0.736 0.650 0.721 0.736 0.592 

TpS#1: transferring per session from course #1, TpC#1: transferring per course from course #1, TpC#2: transfer per course from course #2, TpC#1&2: 

transferring per course from course #1 and course #2 combined. 

 

5.1 RQ1: The predictive power of past course 
activities and the performance of different machine 
learning algorithms 

Regarding the performances achieved with different algo-
rithms, in most cases LR and RF produced more accurate 
results when compared to NN in all courses. Although LR 
and RF have performed very similarly, the accuracy 
achieved with RF was relatively higher in many cases.  

A Wilcoxson signed rank test was conducted to identify 
statistically significant differences among the algorithms. 
The test results showed that both LR and RF significantly 
performed better than NN (p < 0.05) whereas there was not 
a significant performance difference between LR and RF 
(p=0.640). These findings were consistent across three 
courses. 

In order to identify the predictive power of the features, 
feature importance was calculated for the models that were 
built with RF, which produced the most accurate scores in 
overall. The importance of the features is automatically 

computed in RF implementation of Scikit-Learn [48]. The 
most important 10 features identified in each model of 
peer-review prediction (in all courses) are merged into a 
single list as shown in Table 6, leading to 22 23 features in 
total. These features are ordered by how often they ap-
peared in the top ten list across all models. According to 
results, features derived from students’ past peer-review 
engagement data, corresponding to 9 features, were the 
most predictive consistently in all courses and in all peer 
review sessions (except the first ones without a past peer 
review activity). Among those, the total amount of time 
spent on peer review was the most important feature.  

Moreover, two assignment-related features were found 
to be predictive in many models (particularly, in the first 
two courses). Almost all quiz-related features were predic-
tive, especially when building the models for the first peer 
reviews, in which features derived from past peer-review 
activities was not available. In particular, how much time 
students spent on the quizzes and how soon (or late) they 
took the quiz before the peer-reviewed assignment were 

TABLE 6. FEATURE IMPORTANCE PER REVIEW SESSION IN EACH COURSE 

 
Course #1 Course #2 Course #3 

Total 

(All) 

 PR#1 PR#2 PR#3 PR#4 Total PR#1 PR#2 PR#3 PR#4 Total PR#1 PR#2 PR#3 PR#4 PR#5 PR#6 PR#7 Total  

pr_timespent_ttl 0 1 1 1 3 0 1 1 1 3 0 1 1 1 1 1 1 6 12 

pr_unique_count 0 1 1 1 3 0 1 1 1 3 0 1 0 1 1 1 1 5 11 

pr_message_size_multby 

_timespent 
0 1 1 1 3 0 1 1 1 3 0 0 1 1 1 1 1 5 11 

pr_msg_size_ttl  0 1 1 1 3 0 1 1 1 3 0 0 1 1 0 1 1 4 10 

pr_subs_count 0 1 1 1 3 0 1 1 1 3 0 1 0 1 0 1 1 4 10 

pr_days_after_assig 

_subm 
0 1 1 1 3 0 0 1 1 2 0 1 0 0 1 1 1 4 9 

pr_message_size_avg 0 1 1 1 3 0 1 1 1 3 0 0 0 0 1 0 1 2 8 

assign_submt_how_early 0 1 1 1 3 0 0 1 1 2 0 0 1 0 0 1 1 3 8 

pr_timespent_avg 0 0 1 1 2 0 1 1 1 3 0 1 1 0 0 1 0 3 8 

finished_quiz_how_early 1 1 0 1 3 0 0 0 0 0 1 0 1 1 1 0 0 4 7 

quiz_time_spent_ttl 1 1 0 0 2 0 0 0 0 0 1 1 1 1 1 0 0 5 7 

disc_wordcount_ttl 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 4 6 

quiz_time_spent_mean 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 4 6 

assign_score 0 0 0 0 0 0 1 0 1 2 0 0 0 1 0 1 1 3 5 

disc_charcount_ttl 1 0 1 0 2 1 0 0 0 1 1 1 0 0 0 0 0 2 5 

disc_count 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 4 5 

disc_depth_mean 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 4 5 

quiz_scores_ttl 1 0 0 0 1 1 1 1 0 3 0 0 0 0 0 0 0 0 4 

disc_charcount_mean 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 3 

quiz_total_attempts_mean 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 3 

quiz_total_attempts_ttl 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 3 

disc_wordcount_mean 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 2 

quiz_scores_mean 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 2 
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more significant. Among the three courses, quiz-related 
features were barely predictive in the second course. Last, 
discussion-related features were found to be predictive in 
relatively less models. These features were more signifi-
cant in the first peer-review sessions. 

5.2 RQ2: The performance of in situ learning 
approach 

In situ learning technique was applied to predict engage-
ment-levels in peer reviews using the models trained on 
preceding peer-review activity data in the three. This tech-
nique was used starting from the second review sessions 
(i.e., the earliest session with past peer-review data availa-
ble).  

The in situ learning approach yielded models mostly 
with good and very good accuracy levels (particularly in 
later predictions) and some with fair level of accuracy (par-
ticularly in earlier predictions). Predictions were the least 
accurate for the 2nd peer reviews in all courses, where the 
models did not include the features about past peer-review 
activities. The most accurate predictions were achieved in 
the first course, while the least accurate ones were in the 
third course. In all courses, the accuracy increased across 
peer-review sessions. LR and RF were the best performing 
algorithms in all cases.in situin situin situ 

5.3 RQ3: The performance of transferring models 
across courses 

Models were transferred across courses in two manners. 
First, regarding the transferring per session, accuracies 
were the lowest when transferring the models between the 
first peer-review sessions across courses. However, the 
predictions were accurate starting from the second peer re-
views with an increasing performance in each subsequent 
review session. In general, the models performed generally 
very good in course #1 and good in course #2 (except for 
the first peer reviews in both courses). Comparing with the 
in situ approach, transferring per session produced 
slightly more accurate predictions in the second peer-re-
view sessions, whereas in the later sessions the predictions 
with in situ approach were slightly more accurate. These 
results were observed in both courses #1 and #2. 

Second, regarding the transfer of models trained on an 
entire course to other courses, the accuracies were not con-
sistent. The transfers between course #1 and course #2 
yielded good or very good accuracy levels (with model 
transferred from course #2 being slightly more accurate). 
The transfer from course #3 to course #1 produced accurate 
predictions that are however slightly lower than those ob-
tained with transferring from course #2. The results were 
very similar when the transfer was from course #3 to 
course #2 (i.e., accuracies were good in general but lower 
than those obtained with transferring from course #1). In 
all courses, the transferred models performed slightly bet-
ter in each subsequent peer-review session.  

Moreover, considering the cases where the transfer was 
based on two courses combined (e.g., training a model on 

course #1 and course #2 data together, and transferring it 
to course #3) the accuracies of predictions were quite simi-
lar to those obtained with models trained on one course 
dataset.  

6 DISCUSSION 

The discussion of the results is presented per each research 
question separately as follows. 

6.1 RQ1: The predictive power of past course 
activities and the performance of different machine 
learning algorithms 

According to the analysis of feature importance, almost all 
features included in the models, (i.e., 21 23 (see Table 6) out 
of 24 (see Table 2) demonstrated some predictive power. 
That is, the features used to build the prediction models 
are highly relevant to the current classification task. Unsur-
prisingly, past peer-review activities were the most power-
ful to predict the future peer-review engagement. This 
finding is consistent with the literature reporting high pre-
dictive power of engagement indicators of past activities 
(e.g., submission history) that are directly related to the tar-
get activity (final exam or dropout) [35]. Therefore, the fea-
tures about past peer-review activities were the ones with 
the highest capacity to generalize across peer-review ses-
sions and across courses. 

Although they were predictive in the first peer reviews, 
the importance of the rest of the features was rather incon-
sistent across courses. For example, quiz scores did not 
demonstrate a predictive capacity in the third course, 
while they were more significant in the second course. Sim-
ilarly, number of discussion counts did not matter in the 
first course, whereas they were predictive in several mod-
els in the third course. We argue that this inconsistency is 
associated with the different learning design applied in 
each course [49]. That is, for example, the way discussion 
forums are used pedagogically and connected with the 
peer-reviewed activity may differ from one course to an-
other, which may create a weaker/stronger association be-
tween student engagement in discussions and the peer re-
views. 

Regarding the poor performance of NN, relatively low 
sample size might have played a role. The reason why LR 
produced accurate results could be that there was a rather 
simple linear relationship between the features and the tar-
get variable. It is noteworthy that at each subsequent pre-
diction, the AUC scores increased with each algorithm, 
which is probably due to the noise caused by samplers and 
strong starters [50]. That is, there were quite many learners 
early in the courses who were exploring the course pages 
with inconsistent behavior and most of these learners 
probably dropped out in the following weeks. 

6.2 RQ2: The performance of in situ learning 
approach 

According to the results regarding in situ learning, the 
model built on activities prior to the current peer-review 
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session performs almost as good as the model that could 
be eventually built once the peer-review session is over 
(which is only feasible in a post-hoc analysis such as CV, 
but not in real practice). The high accuracy achieved with 
in situ learning is in congruence with the results regarding 
feature importance. That is, the predictive power of past 
peer-review activities was an indicator of their capacity to 
be used as a proxy label to train models with in situ learn-
ing. 

The advantage of in situ over transferring between 
courses is that it does not require any data from past 
MOOCs, and it can be still used in an ongoing MOOC to 
generate operational predictions. However, this approach 
is limited in terms of predicting the participation in the first 
peer-review session since it is mandatory to have a past 
peer-review data for training a model. Therefore, no pre-
diction accuracy was reported for the first peer reviews 
when using in situ learning. Another disadvantage is that 
the models trained on the data from the first peer-review 
sessions were lacking features regarding learners’ past 
peer-review activities, therefore they had limited capacity 
in predicting participation in the second sessions. These 
limitations were less adverse in course #3, where there 
were relatively higher number of peer-review sessions.  

6.3 RQ3: The performance of transferring models 
across courses 

According to the results, the models transferred between 
the matching peer-review sessions of course #1 and #2 
were able to accurately predict student engagement in peer 
reviews. However, the transfer between the first sessions 
of these courses, in which the model lacked the peer-re-
view features, was not successful.  

Transferring per session produced more accurate re-
sults in the second peer reviews in comparison to those 
with in situ learning. This was probably because the mod-
els transferred included the features about past peer-re-
view activities whereas those trained with in situ learning 
on the first peer-review activity data lacked these features. 
Thus, the technique of transferring the models per session 
across courses can be more advantagous than in situ learn-
ing when predicting engagement in early activities since it 
allows to incorporate more features in the model. 

The transfer of the models trained on the whole course 
data yielded accurate predictions. However, the accuracy 
was slightly different depending on the courses. For exam-
ple, a higher predictive power with transfers between 
course #1 and course #2 versus course #3 was achieved. 
This result might be due to the fact that course #1 and 
course #2 have a similar course structure, and therefore 
they might share some commonalities in their learning de-
signs, whereas course #3 was identified to have rather dif-
ferent design. Moreover, considering the cases where the 
transfer was based on two courses combined (e.g., training 
a model on course #1 and course #2 data together, and 
transferring it to course #3) the accuracies of predictions 
were quite similar to those obtained with models trained 

on one course dataset. As derived from the comprehensive 
analysis of the available anonymized data (see section 6 
Dataset for a detailed discussion), these are different 
courses (i.e., not replication of the same course). These re-
sults suggest that there is a great potential to utilize for 
transferring predictive models across different MOOC 
contexts. Previous research has noted similar findings 
when models derived from different MOOCs are used for 
dropout prediction in another MOOC [19].  

7 IMPLICATIONS 

7.1 Implications for Pedagogy 

The predictions produced by the classification models pre-
sented in this work could be used in numerous ways to sup-
port the pedagogy of an ongoing MOOC. However, only the 
course instructors could precisely identify the uses of these 
predictions based on the contextual factors and pedagogical 
needs. The decision on how to use the predictions could de-
pend on the perspective and goals of the instructor, who may 
opt to personalize the learning path of the learners [51] or to 
gamify some learners’ learning experience to increase their 
participation in some activities [52], [53] or who may decide 
to take actions that favor the global performance without dif-
ferentiating student groups. Nonetheless, we provide several 
ideas to demonstrate the potential uses of the predictions in 
practice. For example, based on learners’ predicted level of 
peer-review participation, the match between peers could be 
improved to ensure that every learner receives a feedback on 
their work, which is crucial to their learning process [54]. A 
mathematical model could be developed based on each 
learner’s probability of performing a peer review (ranging be-
tween 0.0-1.0), and this model would allow instructor to de-
termine the minimum probability (PR) that a learner submis-
sion will receive at least a peer review. This model could be 
simply based on the following formula: 
 

𝑃𝑅 = 1 − (1 − 𝑝1)  × (1 − 𝑝2) × … × (1 − 𝑝𝑛) = 1 − ∏(1 − 𝑝𝑖)

𝑛

𝑖=0

 

Where p is the probability that a learner will performe a peer review, and n is the number 

of learners assigned to calculate the PR of the intended peer-review session. 

 
For example, the instructor may require that each submis-

sion should be reviewed at least by 1 peer with a probability 
of 95%. In this case, this model could be employed to auto-
matically identify n peers with the desired p values so that the 
95% of PR value could be obtained. The instructor should be 
aware that 1-PR (i.e., 5%) of submissions may not receive any 
reviews, and they would need to be addressed somehow (e.g., 
assigning them to learners who have already done at least 1 
review). 

The proposal above illustrates only one potential use of the 
information provided by the predictor, but many other uses 
could be envisioned, depending on the issues that concern the 
instructor the most. For example, if the predictions suggest a 
critically low participation in peer reviews, the instructor 
could attempt to identify the reasons for low interest in peer 
reviews, and then take some actions to increase learners’ 
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motivation in reviewing a peer work (like making them man-
datory to obtain the certification or introducing gamification 
incentives). Besides the potential of the proposed classifica-
tion approach to improve the existing peer-review practice in 
MOOCs, it can also help improve the learning design of 
MOOCs depending on the objective of the intervention as 
well as the transferring approach used. For example, with the 
goal of improving the learning design, an instructor may de-
cide to change a particular assignment completely and add 
some exercises prior to the assignment in the re-run of a pre-
vious MOOC. Whether these changes will have the desired 
influence (or not) can be identified with the help of a classifi-
cation model trained on the data from the initial run of the 
course. The instructor can obtain learners’ expected level of 
participation before the actual peer reviews start, make a com-
parison, and decide any further changes are needed. Simi-
larly, transferring over weeks of the same course might offer 
such benefits. For example, predictions indicating low-level 
of peer-review participation may actually suggest some prob-
lems rooted in the learning design of the current learning 
module. After revisiting the module (e.g., reviewing the ex-
amples provided, reading learners’ discussions), the instruc-
tor may identify some issues (lack of supplementary learning 
materials) and resolve them. 

7.2 Implications for Theory and Design  

In the current study, the models transferred between MOOCs 
with relatively similar learning design led to more accurate 
results. One theoretical implication of this finding is that the 
performance of machine learning models transferred across 
different MOOCs is closely associated with the match be-
tween the learning designs. If this match is stronger, then the 
models transferred produce more accurate predictions. This 
is about the way learning design shapes how students may 
engage and interact with different components of a course. 
For instance, a discussion forum may involve instructor to 
play a central role or to act as a facilitator to promote peer in-
teractions depending on the pedagogical intentions, which 
may result in distinct student behavior (and engagement 
data) in both cases [55]. However, if different courses adopt a 
similar pedagogical intention in their discussion forums, the 
way students engage in them might be alike and may lead to 
engagement indicators with similar predictive capacity. That 
is, learning design is an important factor to consider when 
transferring predictive models across different courses. 

A related implication is about the way open data is pub-
lished. The data used in this study was lacking details about 
the learning designs of the course. This issue of lacking con-
text in educational data draws a particular attention to current 
practice in sharing educational data publicly. As noted in the 
current study, research on educational data that lacks the ped-
agogical context is likely to lead to relatively speculative find-
ings from which the learning design is detached. Therefore, 
decision-makers on data sharing should consider including 
information regarding learning design and context. In line 
with this argument, there have been growing efforts toward 
open science and data sharing [56]. 

Given the role of learning design, another important impli-
cation is that instructors might be involved in the design pro-
cess of predictive models. With instructor input, a richer set of 
features could be generated that may have a higher predictive 
power. Collaboration with instructors may also produce a 
predictive analytics solution that aligns better with contextual 
needs. Additionally, when involved in the process, instructors 
may be inclined to use the actionable models to improve their 
teaching practice. Several research highlighted the benefits 
emerging from involving instructors in the loop of designing 
predictive models [35], [49]. 

8 CONCLUSIONS AND FUTURE WORK 

This study has presented a novel approach for classifying-
MOOC learners based on their expected level of engagement 
in peer reviews. The results have shown that with transfer 
across courses and in situ learning approaches in the current 
classification task can produce predictions that are accurate 
and actionable for using in real practice. Therefore, this ap-
proach can be incorporated into real MOOC contexts to pro-
duce actionable information (e.g., classification of learners 
based on their expected level of participation in peer reviews) 
at the time when instructors need it and still can use it. In this 
way, instructors can take some remedial actions to mitigate 
emerging problems and also improve the learning design of 
their courses. For example, they can use these predictions to 
improve participation in peer reviews or design effective col-
laborative learning activities. 

The approaches used in this work can be implemented in 
other MOOC contexts for different prediction tasks. For ex-
ample, in a MOOC where there exist several exams (or quiz-
zes), in situ approach could be utilized to predict in real time 
if learners will pass or fail an upcoming exam. Similarly, a 
model could be trained from another MOOC (with similar 
course design) and transferred to the new context to train a 
model for such a prediction. In Figure 3-5, we have provided 
illustration regarding the application of these machine learn-
ing techniques to guide the future researchers in employing 
them in their own studies.  

However, one limitation of this work is that the research 
was conducted in decontextualized MOOCs; therefore, the 
predictive models lack the understanding of the learning de-
sign and the context. As a follow-up research, we plan to 
study the proposed classification approach in courses where 
the pedagogical context is known so that the learning design 
and the predictive analytics are informed by each other. Re-
lated to this follow-up work, we also plan to collaborate with 
MOOC instructors to explore the possible uses of the actiona-
ble information offered by the prediction approach and study 
its impact. Furthermore, as noted in previous research [28], 
[37], demographic information about learners can be highly 
associated with learners’ peer-review engagement; however, 
such information was missing in the current study. Therefore, 
in the next phase of this research line, we plan to administer a 
survey to collect some demographic information from learn-
ers (e.g., employment status, education level, etc.) and create 
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additional features from this information to improve the pre-
diction performance. Moreover, the current study can moti-
vate some future research on collaborative learning at large 
scales. In this regard, we plan to integrate the current work 
with previous group formation approaches [57], and examine 
its effectiveness in building collaborative teams. Last, we have 
used AUC as the performance metric to overcome the bias in-
troduced by imbalanced data. Future research should explore 
other approaches such as subsampling to overcome problems 
about imbalanced data. 
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