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Plasma velocity in hydromagnetic dynamos
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Hydromagnetic dynamos are plasma configurations generating for some time an
exponentially increasing magnetic field. By using a number of functional inequali-
ties, we estimate the rate of increase of magnetic energy in terms of the plasma
resistivity and diferent norms on the plasma velocity. Our bounds are proved to be
optimal as far as the powers of the relevant magnitudes are concern@@0®
American Institute of Physics[DOI: 10.1063/1.1473679

[. INTRODUCTION

A hydromagnetic dynamo in a plasma is a configuration allowing for a finite time an expo-
nential growth of the magnetic field. The behavior of the main magnitudes in an incompressible
plasma is governed by the magnetohydrodynaiMielD) system: the velocity, magnetic fieldB,
kinetic pressurg, viscosity v and resistivityz satisfy, after the usual normalizations,

M A Vu+B-VB—Vp-V e 1
>~ vAu-u-Vu+B- p > (1)
JB
Ezy;AB—u-VBjLB-Vu, )
V.u=V-B=0. ©)

The MHD system, for any boundary conditions allowing no input of energy from the outside, is
dissipative(see e.g. Ref.)L Therefore, any growth of magnetic energy must ultimately be done at
the expense of the kinetic one, i.e., of the plasma velocity. Once this velocity is taken for granted,
the magnetic field is governed by the induction equaiidn and the magnetic energy by the
integral identity obtained making the scalar product2fandB:

19
——f BZdV=77f AB-BdV+f B.Vu-de—f u-VB-BdV. (4)
29t Jq 0 Q Q

If we assumau-n|,,=0 (i.e., the fluid does not cross the boundatie last integral vanishes. As
for the term
2 2

AB-BdV=— f VB|2dV+ ——do,
nfs) 7 9| | 2 Juaon 7

provided there is no input of magnetic energy from the outside,
9B?
J ——do=<0, (5)

yields the fundamental energy inequality
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- = BZst—nf |VB|2dV+J B-Vu-BdV. (6)
29t Ja Q Q
Condition (5) holds (with an equality for Dirichlet (B|,,=0) or perfect conductor §-n|

=0; (VXB)xn|,q=0) conditions. We will assume either periodic boundary conditions in a box
Q with

fﬂudv: fQde:o, (7

or
u-nlz0=B-nl;n=0, 8

in a smoothN-dimensional domairf). Thus we will take(6) as the starting inequality. The first
term on the right-hand side @6) accounts for the diffusive effects of the resistivity, while the
second is an advective term showing the transport of the magnetic field by the flow. In fact, in
ideal plasmasf=0) the magnetic field lines are transported by the plasma as material points and
the field strength may be enhanced by this process.

From here one may ignore the diffusive term and bound the advective one by

1
f B-Vu-BdV s—||Vu+(Vu)‘||xJ B2dV, 9)
Q 2 Q

where| |.. means the maximum norm and (the transposed matrisee, e.g., Ref.)2Therefore,
the growth parametey satisfies

7= 3[Vu+(Vu)'.. (10

This estimate goes back to BackU$hus the maximal exponential growth rate does not exceed
the largest eigenvalue of the strain mat§® u-+(Vu)!). This elementary inequality has some
merits: the main one is that it does not depend on the resistivity and therefore it holds even when
n— 0. A velocity configuration yielding a dynamo even whegn-0 [inf,_,y(#)>0] is called a

fast dynamd: this is an extensively studied subject. On the minus side, we first note that anything
involving the gradient of the velocity is somewhat unsatisfactory. This is so because in many
turbulent flows there exist sharp changes in the velocity vector, whereas the velocity size remains
moderate. Indeed, on general principles one may reject an extremely large plasma velocity, but
there is no physical reason to exclude rapid variations of the flow: thus any norm on the velocity
itself may be much smaller than the norm of the gradient. Moreover, the maximum norm is the
worst possible: it could happen that the plasma remains almost quiescent except for a tiny portion
which alone ensures that the maximum of the strain matrix is large. One does not expect the
magnetic energy of the whole domain to be governed by a minute portion of the plasma. We will
see thai9) may be significantly improved.

Il. THE MAIN ESTIMATES
Certain subspaces of the Sobolev spHC€Q)) possess the property that

Iflle<KIVf]2,

i.e., theL?-norm of f is dominated by the norm of its gradient. These are the so-called Poincare
inequalities. One of the most general descriptions of spaces where one of these inequalities holds
is as follows(see Refs. 1 and)5let p be a continuous seminorfne., a continuous norm, except

for the fact thatp(f )=0 does not implyf=0] on H(Q) such that for evergonstantfunction
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g+#0, p(g)#0. Then any subspadd of H(Q), such thatp(f)=0 for all feH, satisfies a
Poincareinequality. Among the many examples of such seminorms, we will use the following
ones:

; (11)

p(f)= fﬂfdv

p(f)= Lﬂ|f«n| do. (12

Equation(11) covers periodic problems because of the zero mean cond#)omwhile (12) covers
the remaining cases, sin¢®@ holds. That the seminorm of (12) is continuous follows from the
fact that the trace of any functiohe H(Q) at the boundary belongs 10'(9Q) [and even to
L2(00)].

Our main tool will be a weak version of the Gagliardo—Nirenberg inequaRtsf. 6, pp.
65—68: denoting as usual by ||, the norm inLP(Q2),

Iflp=Cl 5tz (13
whereC is a constant depending only on the domair,(N/2)—(N/p). This holds providegd
=2, (N/2)—(N/p)<1, i.e.,,p<2N/(N—2). Thus, forN=3, 2<p<6; for N=2, anyp=2 is
admissible.

Since

J B-Vu-BdV=—j B-VB-udV, (14)
Q Q
by the inequality of Cauchy—Schwarz

[ 2vwsay= [ Bivaliuav=lel,iveliu, a5

for any positivep, g such that 19+ 1/q=3; hencep,q=2. By (13),
IBlp=<CliB5i® ~ B~ N2+ VP =Bl B3 VY, (16)

providedp<<2N/(N—2), i.e.,g>N. Thus,
/ _
[ ovwBev <clalfitlelz 78l a7

Let us use now the Poincaieequality, written as

[Bllh1=<k|VB]|,.
We have
\ [ B vu-Bav =civa vl e v, a8
Q
Let us denote
_LI_ N 19
r= E E ( )
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We may write the right-hand term as
CKV([vB]5) (B3 lully=(l VBIS* " (CK¥ul ) o= D" [BID", (20
wherea is a positive constant to be determined later. By using the classical inequality
X'y T<rx+(1-r)y,

for x,y>0 (which amounts to the convexity of the exponential functiame find
U B-Vu-BdV|<(1-r)a| VB||5+rCH kN~ @01 |y|2B||3 . (22)
Q

Take nowa= 5/(1—r). Then the term ifWB cancels with the dissipative term {6), and we are
left with

N -
| o

IBI3<r(1—r)@=0r(ckVay,~ A=yl )2 B3. (22)

o

t
Therefore, if there exists a magnetic dynamo of exponential growthy et any g>N,
y<2r(1-n)& 0 CKkYy @ 0uf)t, (23

wherer is given by(19). C andk are universal constants. The estimate improves with larged
7, and becomes singular as—~0 orr—0 (i.e.,g—N). For g—o it becomes

y<3Cn YulZ, (24)

which improves the Backus bour{d0) in the sense that it does not need the velocity gradient,
although the resistivity occurs. The estimé®s) is satisfactory in the sense that it involves an
integral norm of the velocity and therefore it is a measure of its mean size: it shows that the
dynamo cannot be governed by what happens in small regions of the plasma, although these may
be relevant in the process of stretching which is basic in the dynamo process. However, the
physically most important norm of the velocity is the kinetic endlgljs, which is not reached by

(23). ForN=2 it lies at the lower limit and the constants blow there; ot 3 it is well beyond

reach. To see that this is a physical fact and not merely the result of poor bounds, we will prove
that (23) is a sharp inequality as concerns the order of the magnitudes.

[ll. COUNTEREXAMPLES FOR LOWER ORDER NORMS

We will consider an initial condition formed by velocity and field depending only on the
radius, and radially directed. Thé: Vu is also radially directed and the terBtVu-B is pre-
cisely |B|?|Vu|. Specifically, assumB=B(R)e, & the unit radial vectorB decreasing linearly
fromB=h atr=0 toB=0 atr=L: B(r)=h—hr/L forre[OL], B(r)=0 for r>L. Takeu
=B. These magnitudes are not really smooth, as they fail to be differentiable@tandr
=L, but they can be uniformly approximated by smooth functions such that the values of all the
integrals tend to the respective values for our chosen functions.

First, since the Jacobian in dimensihndepends om like rN~*, the norml|ul|, behaves like
hLN9, and|B||, like hLN/2. |Vul is identical toh/L for r e[0,L], and zero otherwise; thus

J |B|2|Vu|dV=hL‘1J |B|2dV~hL™th2LN=h3LN"1, (25
Q Q

On the other hand,
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nJQ|VB|2dv~ ph?LN"2, (26)

so that the behavior of the right-hand side of E&), as a function oh andL, is
— ph2LN=24 p3LN-L (27)
Therefore, any exponential growth rageshould be of the order dR7) divided byh?LN, i.e.,
y~—nyL 2+hL"%, (28)

while [|ul|;~hLMa.
Assumeq<N, and takes such that kK s<N/qg. Chooseh=L"3. Then, forL small,

y~—gL 2+ L 1S~ 1S, (29

While ||ul|q~ LV tends to zero with., y—c. Thus there is no possible boundpin terms of
Jul-

For =N, we must avoid the possible indetermination29) occurring forh=L"1. There-
fore, we takeh=L"tlogL™. ForL small enough,

— gL 2+L 2logL " *~L 2logL "1, (30)
whereag|u[,~ logL™". Since obviously, for any power,
(logL™H"<L?logL 1, (31

whenL—0, there cannot be any bound gfin terms of any power oful, .

Logically the method fails folg>N, because any attempt of settihg=L " would yield a
negative power of. at both sides; we could choose an adequate power on the right-hand side to
make the magnitudes comparable. Notice that our test functions are localized in a neigborhood of
0 and therefore satisfy our boundary conditions.

IV. CONCLUSIONS

Defining hydromagnetic dynamos as plasma configurations producing an exponential growth
of the magnetic field for some time, it is desirable to bound the possible growth rates in terms of
the size of the plasma velocity. Classical inequalities involve the maximum norms of the velocity
gradient, which are unsuitable for several reasons. We prove a bound of the growth rate by a
power of theL9-norm of the velocity and the conductivity, for aqystrictly larger than the space
dimensionN. The estimate blows up in the limg=N as well as in the ideal limit of zero
resistivity. It is shown by examples that there cannot be analogous boungs<fér
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