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Hydromagnetic dynamos are plasma configurations generating for some time an
exponentially increasing magnetic field. By using a number of functional inequali-
ties, we estimate the rate of increase of magnetic energy in terms of the plasma
resistivity and diferent norms on the plasma velocity. Our bounds are proved to be
optimal as far as the powers of the relevant magnitudes are concerned. ©2002
American Institute of Physics.@DOI: 10.1063/1.1473679#

I. INTRODUCTION

A hydromagnetic dynamo in a plasma is a configuration allowing for a finite time an expo-
nential growth of the magnetic field. The behavior of the main magnitudes in an incompressible
plasma is governed by the magnetohydrodynamic~MHD! system: the velocityu, magnetic fieldB,
kinetic pressurep, viscosityn and resistivityh satisfy, after the usual normalizations,

]u

]t
5nDu2u•¹u1B•¹B2¹p2¹S B2

2 D , ~1!

]B

]t
5hDB2u•¹B1B•¹u, ~2!

¹•u5¹•B50. ~3!

The MHD system, for any boundary conditions allowing no input of energy from the outside, is
dissipative~see e.g. Ref. 1!. Therefore, any growth of magnetic energy must ultimately be done at
the expense of the kinetic one, i.e., of the plasma velocity. Once this velocity is taken for granted,
the magnetic field is governed by the induction equation~2!, and the magnetic energy by the
integral identity obtained making the scalar product of~2! andB:
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B2dV5hE

V
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V
B•¹u•B dV2E

V
u•¹B•BdV. ~4!

If we assumeu•nu]V50 ~i.e., the fluid does not cross the boundary!, the last integral vanishes. As
for the term

hE
V

DB•BdV52hE
V

u¹Bu2dV1
h

2 E
]V

]B2

]n
ds,

provided there is no input of magnetic energy from the outside,

E
]V

]B2

]n
ds<0, ~5!

yields the fundamental energy inequality
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]t EV
B2dV<2hE

V
u¹Bu2dV1E

V
B•¹u•BdV. ~6!

Condition ~5! holds ~with an equality! for Dirichlet (Bu]V50) or perfect conductor (B•nu]V

50; (¹3B)3nu]V50) conditions. We will assume either periodic boundary conditions in a box
V with

E
V

u dV5E
V

B dV50, ~7!

or

u•nu]V5B•nu]V50, ~8!

in a smoothN-dimensional domainV. Thus we will take~6! as the starting inequality. The first
term on the right-hand side of~6! accounts for the diffusive effects of the resistivity, while the
second is an advective term showing the transport of the magnetic field by the flow. In fact, in
ideal plasmas (h50) the magnetic field lines are transported by the plasma as material points and
the field strength may be enhanced by this process.

From here one may ignore the diffusive term and bound the advective one by

U E
V

B•¹u•BdVU< 1

2
i¹u1~¹u! ti`E

V
B2dV, ~9!

wherei i` means the maximum norm and ( )t the transposed matrix~see, e.g., Ref. 2!. Therefore,
the growth parameterg satisfies

g< 1
2 i¹u1~¹u! ti` . ~10!

This estimate goes back to Backus.3 Thus the maximal exponential growth rate does not exceed
the largest eigenvalue of the strain matrix1

2(¹u1(¹u) t). This elementary inequality has some
merits: the main one is that it does not depend on the resistivity and therefore it holds even when
h→0. A velocity configuration yielding a dynamo even whenh→0 @ infh→0g(h).0# is called a
fast dynamo;4 this is an extensively studied subject. On the minus side, we first note that anything
involving the gradient of the velocity is somewhat unsatisfactory. This is so because in many
turbulent flows there exist sharp changes in the velocity vector, whereas the velocity size remains
moderate. Indeed, on general principles one may reject an extremely large plasma velocity, but
there is no physical reason to exclude rapid variations of the flow: thus any norm on the velocity
itself may be much smaller than the norm of the gradient. Moreover, the maximum norm is the
worst possible: it could happen that the plasma remains almost quiescent except for a tiny portion
which alone ensures that the maximum of the strain matrix is large. One does not expect the
magnetic energy of the whole domain to be governed by a minute portion of the plasma. We will
see that~9! may be significantly improved.

II. THE MAIN ESTIMATES

Certain subspaces of the Sobolev spaceH1(V) possess the property that

i f iH1<ki¹ f i2 ,

i.e., theL2-norm of f is dominated by the norm of its gradient. These are the so-called Poincare´
inequalities. One of the most general descriptions of spaces where one of these inequalities holds
is as follows~see Refs. 1 and 5!: let p be a continuous seminorm@i.e., a continuous norm, except
for the fact thatp( f )50 does not implyf 50# on H1(V) such that for everyconstantfunction
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gÞ0, p(g)Þ0. Then any subspaceH of H1(V), such thatp( f )50 for all f PH, satisfies a
Poincare´ inequality. Among the many examples of such seminorms, we will use the following
ones:

p~ f!5U E
V

fdVU, ~11!

p~ f!5E
]V

uf•nu ds. ~12!

Equation~11! covers periodic problems because of the zero mean condition~7!, while ~12! covers
the remaining cases, since~8! holds. That the seminormp of ~12! is continuous follows from the
fact that the trace of any functionf PH1(V) at the boundary belongs toL1(]V) @and even to
L2(]V)].

Our main tool will be a weak version of the Gagliardo–Nirenberg inequality~Ref. 6, pp.
65–68!: denoting as usual byi ip the norm inLp(V),

i f ip<Ci f iH1
t i f i2

12t , ~13!

whereC is a constant depending only on the domain,t5(N/2)2(N/p). This holds providedp
>2, (N/2)2(N/p),1, i.e., p,2N/(N22). Thus, forN53, 2<p,6; for N52, any p>2 is
admissible.

Since

E
V

B•¹u•BdV52E
V

B•¹B•udV, ~14!

by the inequality of Cauchy–Schwarz

U E
V

B•¹u•BdVU<E
V

uBuu¹BuuuudV<iBipi¹Bi2iuiq , ~15!

for any positivep, q such that 1/p11/q5 1
2; hencep,q>2. By ~13!,

iBip<CiBiH1
~N/2! 2 ~N/p!iBi2

12 ~N/2! 1 ~N/p! 5CiBiH1
N/q iBi2

12 ~N/q! , ~16!

providedp,2N/(N22), i.e.,q.N. Thus,

U E
V

B•¹u•BdVU<CiBiH1
N/q iBi2

12 ~N/q!i¹Bi2iuiq . ~17!

Let us use now the Poincare´ inequality, written as

iBiH1<ki¹Bi2 .

We have

U E
V

B•¹u•BdVU<CkN/qi¹Bi2
11 ~N/q!iBi2

12 ~N/q!iuiq . ~18!

Let us denote

r 5
1

2
2

N

2q
. ~19!
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We may write the right-hand term as

CkN/q~ i¹Bi2
2!12r~ iBi2

2!r iuiq5~ai¹Bi2
2!12r~~CkN/qiuiq!1/ra2(12r )/r iBi2

2!r , ~20!

wherea is a positive constant to be determined later. By using the classical inequality

xry12r<rx1~12r !y,

for x,y.0 ~which amounts to the convexity of the exponential function!, we find

U E
V

B•¹u•BdVU<~12r !ai¹Bi2
21rC1/rkN/qra2(12r )/r iuiq

1/r iBi2
2 . ~21!

Take nowa5h/(12r ). Then the term in¹B cancels with the dissipative term in~6!, and we are
left with

1

2

d

dt
iBi2

2<r ~12r !(12r )/r~CkN/qh2(12r )iuiq!1/r iBi2
2 . ~22!

Therefore, if there exists a magnetic dynamo of exponential growth rateg, for anyq.N,

g<2r ~12r !(12r )/r~CkN/qh2(12r )iuiq!1/r , ~23!

wherer is given by~19!. C andk are universal constants. The estimate improves with largeq and
h, and becomes singular ash→0 or r→0 ~i.e., q→N!. For q→` it becomes

g< 1
2 Ch21iui`

2 , ~24!

which improves the Backus bound~10! in the sense that it does not need the velocity gradient,
although the resistivity occurs. The estimate~23! is satisfactory in the sense that it involves an
integral norm of the velocity and therefore it is a measure of its mean size: it shows that the
dynamo cannot be governed by what happens in small regions of the plasma, although these may
be relevant in the process of stretching which is basic in the dynamo process. However, the
physically most important norm of the velocity is the kinetic energyiui2 , which is not reached by
~23!. For N52 it lies at the lower limit and the constants blow there; forN53 it is well beyond
reach. To see that this is a physical fact and not merely the result of poor bounds, we will prove
that ~23! is a sharp inequality as concerns the order of the magnitudes.

III. COUNTEREXAMPLES FOR LOWER ORDER NORMS

We will consider an initial condition formed by velocity and field depending only on the
radius, and radially directed. ThenB•¹u is also radially directed and the termB•¹u•B is pre-
cisely uBu2u¹uu. Specifically, assumeB5B(R)er , er the unit radial vector,B decreasing linearly
from B5h at r 50 to B50 at r 5L: B(r )5h2hr/L for r P@0,L#, B(r )50 for r .L. Takeu
5B. These magnitudes are not really smooth, as they fail to be differentiable atr 50 and r
5L, but they can be uniformly approximated by smooth functions such that the values of all the
integrals tend to the respective values for our chosen functions.

First, since the Jacobian in dimensionN depends onr like r N21, the normiuiq behaves like
hLN/q, andiBi2 like hLN/2. u¹uu is identical toh/L for r P@0,L#, and zero otherwise; thus

E
V

uBu2u¹uudV5hL21E
V

uBu2dV;hL21h2LN5h3LN21. ~25!

On the other hand,

3205J. Math. Phys., Vol. 43, No. 6, June 2002 Plasma velocity in hydromagnetic dynamos



hE
V

u¹Bu2dV;hh2LN22, ~26!

so that the behavior of the right-hand side of Eq.~6!, as a function ofh andL, is

2hh2LN221h3LN21. ~27!

Therefore, any exponential growth rateg should be of the order of~27! divided byh2LN, i.e.,

g;2hL221hL21, ~28!

while iuiq;hLN/q.
Assumeq,N, and takes such that 1,s,N/q. Chooseh5L2s. Then, forL small,

g;2hL221L212s;L212s. ~29!

While iuiq;LN/q2s tends to zero withL, g→`. Thus there is no possible bound ofg in terms of
iuiq .

For q5N, we must avoid the possible indetermination in~29! occurring forh5L21. There-
fore, we takeh5L21 logL21. For L small enough,

2hL221L22 logL21;L22 logL21, ~30!

whereasiuiq; logL21. Since obviously, for any powern,

~ logL21!n!L22 logL21, ~31!

whenL→0, there cannot be any bound ofg in terms of any power ofiuiq .
Logically the method fails forq.N, because any attempt of settingh5L2s would yield a

negative power ofL at both sides; we could choose an adequate power on the right-hand side to
make the magnitudes comparable. Notice that our test functions are localized in a neigborhood of
0 and therefore satisfy our boundary conditions.

IV. CONCLUSIONS

Defining hydromagnetic dynamos as plasma configurations producing an exponential growth
of the magnetic field for some time, it is desirable to bound the possible growth rates in terms of
the size of the plasma velocity. Classical inequalities involve the maximum norms of the velocity
gradient, which are unsuitable for several reasons. We prove a bound of the growth rate by a
power of theLq-norm of the velocity and the conductivity, for anyq strictly larger than the space
dimensionN. The estimate blows up in the limitq5N as well as in the ideal limit of zero
resistivity. It is shown by examples that there cannot be analogous bounds forq<N.
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