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It is shown that when the initial condition and the forcing term of the periodic
Navier—Stokes or magnetohydrodynamics equations have Fourier coefficients
which vanish outside a certain semigroup of frequencies, the same happens to the
solutions for all time. Subgroups of frequencies correspond to solutions possessing
certain symmetries. By taking as a semigroup the frequencies whose Fourier com-
ponents are non-negative integers, we get a class of solutions for which the higher
modes do not influence the evolution of the lower ones; therefore, the phenomenon
of inverse cascading cannot occur for them. 28600 American Institute of Phys-

ics. [S0022-2488)0)03609-4

I. INTRODUCTION

So far there exists a wide gulf between what is accepted in fluid mechanics and what can be
rigorously deduced from the Navier—Stokes equations. This is specially true in the field of turbu-
lence, where the standard view of the transfer of energy in fully developed turbulent flows remains
analytically unproved. Let use remember that energy is typically introduced into the turbulent fluid
by a large-scale forcing, is transported to smaller scales through an interm@ailéed inertia)
range, and finally it is dissipated into heat at the dissipative range. For periodic problems, these
ranges are identified with certain subsets of Fourier modes: the scales decrease as the spatial
frequency grows. For dimension two, however, the above picture of a direct cascade is not entirely
correct: Kraichnan and othéfs showed that energy injected at a certain intermediate scale may
be transferred to the largest scales and fairly obvious large structures appear in the flow. Those
inverse cascades are believed to occur also for a number of magnetohydrodynamic magnitudes:
the mean-square magnetic potential in two-dimensional and the magnetic helicity in three-
dimensional magnetohydrodynamiddHD) (see Ref. 6 for the relevant definitions

The standard modern presentafiof of these evolution equations involves a number of
subspaces of the space of square-integrable functid(Q), plus Galerkin approximations and
compactness theorems. These techniques work as well for closed subspaces of the standard ones,
provided these subspaces are invariant for the relevant operators. For the periodic case, a number
of possibilities are apparent. By choosing a certain class of invariant subspaces, we will show that
when the initial condition and the forcing term satisfy a certain type of symmetry, the same
happens to the solutions for as long as they are defined. A second example will yield whole
families of solutions for which there is no inverse cascade at all: the large scales ignore the small
ones in their evolution, irrespective of the value of the Reynolds number. These results, however,
do not represent a threat for our picture of inverse cascading, because our velocity and magnetic
fields are complex functions and therefore do not have any clear-cut physical meaning. The
nonlinear character of the Navier—Stokes and MHD equations precludes the classical trick of
taking the real part of a complex solution to find a real one. Hopefully this construction may be
helpful to understand which analytic techniques may work in order to prove rigorously the exis-
tence of inverse cascades. Another caveat is that our results depend on very specific arithmetical
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properties of the complex exponentials and therefore cannot be extended in any obvious way to
other boundary value problems.
Il. THE MATHEMATICAL FORMALISM

Consider a viscous incompressible fluid fillindor notational simplicity the box Q
=[0,2]N, possessing a velocity and pressurg, under the action of a time-independent forcing
f. We will assume that all the magnitudes are spatially periodic, and that the mearard
(necessarilyf are zero,

<u)=fﬂu(t,x)dV=O. (1)

After normalization of constantsy will satisfy the incompressible Navier—Stokes equation

au_ A Vu—Vp+f

ks u—u-Vu—-Vp+f,
V-u=0, i)
u(0)=uo,

where v stands for the fluid viscosity. If the fluid is a conducting one with resistivityand a
magnetic field is present, it acts upon the velocity through the Lorentz force while satisfying the
induction equation. The resulting magnetohydrodynafiitlD) equations, after normalization of
constants, are

M _ A Vu+B-VB—-V B’ f
E—V u—u-vu+B- — p+? + 19
dB
E=nAB—u-VB+B~Vu+f2,
V.-u=0,
V.-B=0, (3
(uy=(B)=0,
u(0)=u,
B(0)=B,.

Both systems may be cast in the same form: after projection in the space of fields with zero
divergencekilling in this way all the gradiens one gets

ow
E=DW+ C(w,w)+f, (4)
wherew=u (Navier—Stokesor (u;B) (MHD); D is an elliptic operatofeithervA or (vA; 7A)),
and C is a bilinear form with the antisymmetric propertZ(w,,w,),w,)=0. For the Navier—
Stokes equation€;(u,v) = — P(u- Vv), where as mentioned befokeis the orthogonal projection
upon the space of solenoidal fields, with mean zero. In the MHD case,

C((ug,B1);(Uz;B2))=(P(—uy-Vuy,+B;-VBy);P(—u;- VB + B - Vuy)).
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From now on, we will restrict ourselves to the Navier—Stokes equations to simplify the notation.
The proofs for the MHD case are the same with obvious modifications.
The main working spaces are

H={ueL?(Q)N:V-u=04(u)=0,u-n anti—periodig, (5)
V=H(Q)NNH. (6)

The divergence ofl is to be understood in the sense of distributions. It may be shown that the
boundary values- n have in this case a precise mathematical sés.Q) is the usual Sobolev
space of functions whose gradient is square-integrable. The projeetiof(Q)N—H is easily
expressed in terms of the Fourier series of a periodic function,

P( > akeik'x)= > bk )

ke7ZN keZN

whereb,=0, andb, is the projection withirCN of a, on the hyperplan&-x=0. It is known that
C takesV XV into the dual spac¥’.

lll. ALTERNATIVE SETTINGS AND CONSEQUENCES

Let H, be a closed subspace ldfsuch that the Laplacias takesH?(Q)NNH, into Hy, and
if u,veHg are such thaP(u-Vv)eH, thenP(u-Vv) eH,. Let Vo=VNH,, and assume,,f
e Hy. Then all the standard proofs of existence work with, V, instead ofH, V and we get the
same results: the solutiane C([0,T],Ho) NL2([0,T],V,) up to someT (T=o for N=2) and, if
Upe Vo, ueC([0,T],Vo)NL2([0,T],HoNH2(Q)N). Thus the solution remains withid, for all
time. The only difficulty is to find a subspat#, satisfying all the requirements. Let us look at the
Fourier representation of Au corresponds t& — |k|20,e'**. On the other hand, the th Fourier
coefficient ofujv, is

(Uo)) (k)= 2 T;(n)d (k=n). ®)

ne?

Take tentatively asl, the space of functions dfl whose Fourier coefficients vanish outside a
subsetAC ZN. ThenH, is invariant forA. For the product of two functions 1, to lie within Hg,
we need that whenevérg A, (u;v,)" (k) =0. Since we may choose at wilj andv, , this happens
if and only if all the summands withifB) vanish, i.e., itk ¢ A, ne A, thenk—ne& A. This means
that A must be a semigroup of: i.e., if m,ne A, thenm-+neA. The projectionP keeps such
functions withinH,, since it does not extend the support of the Fourier transform. Hence any
subspaceH(A) formed by the functions whose Fourier transform has support contained within a
semigroupAC ZN is an invariant one for the Navier—Stokes equation.

If Ais a subgroup, we may say a good deal about the possible solutions. Subgralipsref
free and generated by at md$elements. This means that there are a number of basic frequencies,
Ki,...Kp,p=<N, such thatd(A) is formed by the functions whose Fourier modes correspond to
frequencies which are a linear combination with integer coefficients pf .k,. Since any com-
plex exponentiale™™ is a function ofk-x, such solutions depend only on the variablgs
‘X,...KpX. To see the meaning of this, consider2, k;=(1,0). All such velocities are func-
tions of the first spatial variabbe Take nowk;=(2,0), k,=(0,2). Then the velocities depend on
2x,2y, i.e, u(x,y)=u(m+x,y)=u(x,7+Yy). We see that those are functions satisfying a certain
number of symmetries. It is not unexpected for the Navier—Stokes and MHD equations to keep for
all time the symmetries of the initial condition and the forcing, although it is not entirely trivial
given their nonlinear character.
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The analysis for general semigroups is made difficult by its possible complicated structure.
We will concentrate on the simplest and most importaft; i.e., the set ok e ZN with k;=0 for
all j. Of course, ifA is a semigroup, so is-A, which means that we could have taken as well
negative frequencies.

Let Qy denote the projection froh?(Q)N into the finite-dimensional space of trigonometric
polynomials with frequencies bounded

— z ik-x
Qu(f) @M f(k)e'k,

K| = [kaf - - + [k - 9
Let u be a solution of the Navier—Stokes equations suchupaf e H(NV). ThenQyu satisfies

dQuu
at

=vAQuuU—PQu(Quu-VQuu)+Quyf,

V-Quu=0, (10

Qumu(0)=QpUo-

The proof is simple: let us apply the projecti@y, to the Navier—Stokes equatio@,, commutes
with /dt, A, andP. For any productiv of functions withinH(NN), and|k|<M, thekth Fourier
coefficient is

(uU)”(k)=EI ao(k—1). (12)

For any summand to be nonzero, we n¢ge0, kj—1;=0, which meank;=0, plusZkj<M;
thusZ;l;<M, 2 k;—1;=<M. Hence only the coefficien®(l), (l) with [I|<M occur. In other
words,

Qm(u-Vu)=Qu(Quu-VQuu), (12

from which the result follows.

Equation(10) is in fact an ordinary differential one, sin€gyu is finite dimensional: all the
spatial derivatives are continuous linear functionals. It is known that it has a unique solution for all
time (even whenN=3) because the nonlinear term is a polynomialQnu: it is a finite-
dimensional reaction-diffusion equation. Standard energy inequalities shovghattends in
L2((0:),H) to a weak solutioru, which of course coincides fdd=2 with the smooth one.

The important thing, however, is th&l,u satisfies by itself an evolution equation with no
implication whatsoever of the remaining modesuofThus, although smaller frequencidarger
scale$ do have an effect on the behavior of a certain mode, larger frequeisanegler scalesdo
not. This clearly precludes inverse cascades.

As for the kind of forcing withinH (\N), they can be indeed very complicated functions, but

they cannot be real ones: for real functions onefhaﬂo :f(k). Henceu itself must be complex,
which is hard to interpret as a physically realistic velocity field. And, as told before, the real part
of u is not a solution of a Navier—Stokes equation with time-independent forcing: certainly one
could add a term-v- Vv to f, with v the imaginary part ofi, but of course any function is a
solution of the Navier—Stokes equation with a suitable forcing term, so this is not meaningful.
Moreover, this trick would yield a time-dependent forcing term.

It is worth noting that wherf satisfies a Gevrey conditions(f(k)|?e’Kl< for someo
>0), the solutioru is itself Gevrey for as long as it remains bounded intHtenorm, which mean
always forN=2 (see Ref. 11; the proofs there work without substantial modification for the
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MHD casg. Taking as new variablesj=eixj, this means that and u(t) may be analytically

extended to a neighborhood of the tofl8C CN. If moreoverf and u, belong toH(\V), the
Fourier expansion becomes a Taylor one, and what we have proved if thaemains analytic

in a neighborhood of the polidisk(0,1)CCN. The wide variety of analytic functions shows that
the forcing functiond may be made to satisfy many properties.

Concerning other magnitudes for which the phenomenon of inverse cascading is claimed, we
find much the same result. The mean-square magnetic potential in two-dimensional MHD is found

in the following way: letB=3B(k)e'** be the Fourier series of the plane magnetic figld
=(B;,B,,0), satisfying as alwayk- B(k)=0. TakeA(k) such thatikx (0,0A(k))=B(k). Then
A(x) = SA(k)e’** is the scalar potential vector. Its mean-square potentﬁlk(k)ﬁ. Since the

Fourier component8(k), |k|<M, depend for all time only on the remainirg(l), |I|<M, the

same happens fafk(k). Thus the mean potential 6f,,A depends only on the previous history of

the modes up to siz®l, and there is no inverse cascade. As for the magnetic hefitiity three
dimensions, it has no interest #H(NV) becauseH=3SA(k)-B(—k)=0. Since the magnetic
helicity measures in a sense the knottedness of the magnetic field, these fields are in a sense
topologically simple; but this has not much to do with turbulence, which may be present at
dimension two, where there is no possibility of a field to become entangled.

IV. CONCLUSIONS

By analyzing the invariant subspaces of the operators occurring in the periodic Navier—Stokes
and magnetohydrodynamic equations, we have found that when the Fourier frequencies of the
forcing and initial conditions lie within a certain semigroup @¥, the same happens to the
solution for as long as it is defined in the classical sense. When we take as a semigroup a subgroup
of 7N, we find that these solutions correspond to fields satisfying a certain number of symmetries.
By taking as a semigroup the set of positive frequencies, we find that the truncated Fourier series
of the solution satisfies an evolution equation by itself and therefore it ignores the remaining
Fourier modes. As a consequence there cannot be inverse cascading for this class of solutions.
These turn out to be always complex functions and not realistic physical fields, but these results
may be helpful to understand the analytic setting where existence of inverse cascades may even-
tually be rigorously proved.
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