
Invariant subspaces of the periodic Navier–Stokes and magnetohydrodynamics
equations: Symmetries and inverse cascades
Manuel Núñez

Citation: Journal of Mathematical Physics 41, 6193 (2000); doi: 10.1063/1.1287920
View online: https://doi.org/10.1063/1.1287920
View Table of Contents: http://aip.scitation.org/toc/jmp/41/9
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/920663169/x01/AIP-PT/COMSOL_JCPArticleDL_WP_042518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/N%C3%BA%C3%B1ez%2C+Manuel
/loi/jmp
https://doi.org/10.1063/1.1287920
http://aip.scitation.org/toc/jmp/41/9
http://aip.scitation.org/publisher/
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~Received 14 February 2000; accepted for publication 24 May 2000!

It is shown that when the initial condition and the forcing term of the periodic
Navier–Stokes or magnetohydrodynamics equations have Fourier coefficients
which vanish outside a certain semigroup of frequencies, the same happens to the
solutions for all time. Subgroups of frequencies correspond to solutions possessing
certain symmetries. By taking as a semigroup the frequencies whose Fourier com-
ponents are non-negative integers, we get a class of solutions for which the higher
modes do not influence the evolution of the lower ones; therefore, the phenomenon
of inverse cascading cannot occur for them. ©2000 American Institute of Phys-
ics. @S0022-2488~00!03609-4#

I. INTRODUCTION

So far there exists a wide gulf between what is accepted in fluid mechanics and what can be
rigorously deduced from the Navier–Stokes equations. This is specially true in the field of turbu-
lence, where the standard view of the transfer of energy in fully developed turbulent flows remains
analytically unproved. Let use remember that energy is typically introduced into the turbulent fluid
by a large-scale forcing, is transported to smaller scales through an intermediate~called inertial!
range, and finally it is dissipated into heat at the dissipative range. For periodic problems, these
ranges are identified with certain subsets of Fourier modes: the scales decrease as the spatial
frequency grows. For dimension two, however, the above picture of a direct cascade is not entirely
correct: Kraichnan and others1–5 showed that energy injected at a certain intermediate scale may
be transferred to the largest scales and fairly obvious large structures appear in the flow. Those
inverse cascades are believed to occur also for a number of magnetohydrodynamic magnitudes:
the mean-square magnetic potential in two-dimensional and the magnetic helicity in three-
dimensional magnetohydrodynamics~MHD! ~see Ref. 6 for the relevant definitions!.

The standard modern presentation7–10 of these evolution equations involves a number of
subspaces of the space of square-integrable functionsL2(V), plus Galerkin approximations and
compactness theorems. These techniques work as well for closed subspaces of the standard ones,
provided these subspaces are invariant for the relevant operators. For the periodic case, a number
of possibilities are apparent. By choosing a certain class of invariant subspaces, we will show that
when the initial condition and the forcing term satisfy a certain type of symmetry, the same
happens to the solutions for as long as they are defined. A second example will yield whole
families of solutions for which there is no inverse cascade at all: the large scales ignore the small
ones in their evolution, irrespective of the value of the Reynolds number. These results, however,
do not represent a threat for our picture of inverse cascading, because our velocity and magnetic
fields are complex functions and therefore do not have any clear-cut physical meaning. The
nonlinear character of the Navier–Stokes and MHD equations precludes the classical trick of
taking the real part of a complex solution to find a real one. Hopefully this construction may be
helpful to understand which analytic techniques may work in order to prove rigorously the exis-
tence of inverse cascades. Another caveat is that our results depend on very specific arithmetical

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 9 SEPTEMBER 2000

61930022-2488/2000/41(9)/6193/5/$17.00 © 2000 American Institute of Physics



properties of the complex exponentials and therefore cannot be extended in any obvious way to
other boundary value problems.

II. THE MATHEMATICAL FORMALISM

Consider a viscous incompressible fluid filling~for notational simplicity! the box V
5@0,2p#N, possessing a velocityu and pressurep, under the action of a time-independent forcing
f. We will assume that all the magnitudes are spatially periodic, and that the mean ofu and
~necessarily! f are zero,

^u&5E
V

u~ t,x!dV50. ~1!

After normalization of constants,u will satisfy the incompressible Navier–Stokes equation

]u

]t
5nDu2u•¹u2¹p1f,

¹•u50, ~2!

u~0!5u0 ,

wheren stands for the fluid viscosity. If the fluid is a conducting one with resistivityh, and a
magnetic fieldB is present, it acts upon the velocity through the Lorentz force while satisfying the
induction equation. The resulting magnetohydrodynamic~MHD! equations, after normalization of
constants, are

]u

]t
5nDu2u•¹u1B•¹B2¹S p1

B2

2 D1f1 ,

]B

]t
5hDB2u•¹B1B•¹u1 f 2 ,

¹•u50,

¹•B50, ~3!

^u&5^B&50,

u~0!5u0 ,

B~0!5B0 .

Both systems may be cast in the same form: after projection in the space of fields with zero
divergence~killing in this way all the gradients!, one gets

]w

]t
5Dw1C~w,w!1f, ~4!

wherew5u ~Navier–Stokes! or (u;B) ~MHD!; D is an elliptic operator~eithervD or (vD;hD)!,
and C is a bilinear form with the antisymmetric property (C(w1 ,w2),w2)50. For the Navier–
Stokes equations,C(u,v)52P(u•¹v), where as mentioned beforeP is the orthogonal projection
upon the space of solenoidal fields, with mean zero. In the MHD case,

C~~u1 ,B1!;~u2 ;B2!!5~P~2u1•¹u21B1•¹B2!;P~2u1•¹B21B1•¹u2!!.
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From now on, we will restrict ourselves to the Navier–Stokes equations to simplify the notation.
The proofs for the MHD case are the same with obvious modifications.

The main working spaces are

H5$uPL2~V!N:¹•u50,̂ u&50,u•n anti2periodic%, ~5!

V5H1~V!NùH. ~6!

The divergence ofu is to be understood in the sense of distributions. It may be shown that the
boundary valuesu•n have in this case a precise mathematical sense.7 H1(V) is the usual Sobolev
space of functions whose gradient is square-integrable. The projectionP:L2(V)N→H is easily
expressed in terms of the Fourier series of a periodic function,

PS (
kPZN

ake
ik•xD 5 (

kPZN
bke

ik"x, ~7!

whereb050, andbk is the projection withinCN of ak on the hyperplanek•x50. It is known that
C takesV3V into the dual spaceV8.

III. ALTERNATIVE SETTINGS AND CONSEQUENCES

Let H0 be a closed subspace ofH such that the LaplacianD takesH2(V)NùH0 into H0 , and
if u,vPH0 are such thatP(u•¹v)PH, thenP(u•¹v)PH0 . Let V05VùH0 , and assumeu0 ,f
PH0 . Then all the standard proofs of existence work withH0 , V0 instead ofH, V and we get the
same results: the solutionuPC(@0,T#,H0)ùL2(@0,T#,V0) up to someT (T5` for N52! and, if
u0PV0 , uPC(@0,T#,V0)ùL2(@0,T#,H0ùH2(V)N). Thus the solution remains withinH0 for all
time. The only difficulty is to find a subspaceH0 satisfying all the requirements. Let us look at the
Fourier representation ofu. Du corresponds to(2uku2ûke

ik"x. On the other hand, thek-th Fourier
coefficient ofujv l is

^ujv l& ~k!5 (
nPZN

ûj~n!v̂ l~k2n!. ~8!

Take tentatively asH0 the space of functions ofH whose Fourier coefficients vanish outside a
subsetA,ZN. ThenH0 is invariant forD. For the product of two functions ofH0 to lie within H0 ,
we need that wheneverk¹A,(ujv l)ˆ(k)50. Since we may choose at willuj andv l , this happens
if and only if all the summands within~8! vanish, i.e., ifk¹A, nPA, thenk2n¹A. This means
that A must be a semigroup ofZN: i.e., if m,nPA, thenm1nPA. The projectionP keeps such
functions withinH0 , since it does not extend the support of the Fourier transform. Hence any
subspaceH(A) formed by the functions whose Fourier transform has support contained within a
semigroupA,ZN is an invariant one for the Navier–Stokes equation.

If A is a subgroup, we may say a good deal about the possible solutions. Subgroups ofZN are
free and generated by at mostN elements. This means that there are a number of basic frequencies,
k1 ,...kp ,p<N, such thatH(A) is formed by the functions whose Fourier modes correspond to
frequencies which are a linear combination with integer coefficients ofk1 ,...kp . Since any com-
plex exponentialeink"x is a function ofk•x, such solutions depend only on the variablesk1

•x,...kp•x. To see the meaning of this, considerN52, k15(1,0). All such velocities are func-
tions of the first spatial variablex. Take nowk15(2,0), k25(0,2). Then the velocities depend on
2x,2y, i.e.,u(x,y)5u(p1x,y)5u(x,p1y). We see that those are functions satisfying a certain
number of symmetries. It is not unexpected for the Navier–Stokes and MHD equations to keep for
all time the symmetries of the initial condition and the forcing, although it is not entirely trivial
given their nonlinear character.
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The analysis for general semigroups is made difficult by its possible complicated structure.
We will concentrate on the simplest and most important:NN, i.e., the set ofkPZN with kj>0 for
all j. Of course, ifA is a semigroup, so is2A, which means that we could have taken as well
negative frequencies.

Let QM denote the projection fromL2(V)N into the finite-dimensional space of trigonometric
polynomials with frequencies bounded byM,

QM~ f !5 (
uku<M

f̂ ~k!eik•x,

uku5uk1u1•••1ukNu . ~9!

Let u be a solution of the Navier–Stokes equations such thatu0 , fPH(NN). ThenQMu satisfies

]QMu

]t
5nDQMu2PQM~QMu•¹QMu!1QMf,

¹•QMu50, ~10!

QMu~0!5QMu0 .

The proof is simple: let us apply the projectionQM to the Navier–Stokes equation.QM commutes
with ]/]t, D, andP. For any productuv of functions withinH(NN), anduku<M , thekth Fourier
coefficient is

~uv !ˆ~k!5(
l

û~ l!v̂~k2 l!. ~11!

For any summand to be nonzero, we needl j>0, kj2 l j>0, which meanskj>0, plus( j kj<M ;
thus ( j l j<M , ( j kj2 l j<M . Hence only the coefficientsû( l), v̂( l) with u lu<M occur. In other
words,

QM~u•¹u!5QM~QMu•¹QMu!, ~12!

from which the result follows.
Equation~10! is in fact an ordinary differential one, sinceQMu is finite dimensional: all the

spatial derivatives are continuous linear functionals. It is known that it has a unique solution for all
time ~even whenN53! because the nonlinear term is a polynomial inQmu: it is a finite-
dimensional reaction-diffusion equation. Standard energy inequalities show thatQmu tends in
L2((0,̀ ),H) to a weak solutionu, which of course coincides forN52 with the smooth one.

The important thing, however, is thatQMu satisfies by itself an evolution equation with no
implication whatsoever of the remaining modes ofu. Thus, although smaller frequencies~larger
scales! do have an effect on the behavior of a certain mode, larger frequencies~smaller scales! do
not. This clearly precludes inverse cascades.

As for the kind of forcing withinH(NN), they can be indeed very complicated functions, but

they cannot be real ones: for real functions one hasf̂(2k)5 f̂(k). Henceu itself must be complex,
which is hard to interpret as a physically realistic velocity field. And, as told before, the real part
of u is not a solution of a Navier–Stokes equation with time-independent forcing: certainly one
could add a term2v•¹v to f, with v the imaginary part ofu, but of course any function is a
solution of the Navier–Stokes equation with a suitable forcing term, so this is not meaningful.
Moreover, this trick would yield a time-dependent forcing term.

It is worth noting that whenf satisfies a Gevrey condition ((u f̂(k)u2esuku,` for somes
.0!, the solutionu is itself Gevrey for as long as it remains bounded in theH1-norm, which mean
always for N52 ~see Ref. 11; the proofs there work without substantial modification for the
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MHD case!. Taking as new variableszj5eix j , this means thatf and u(t) may be analytically
extended to a neighborhood of the torusTN,CN. If moreover f and u0 belong toH(NN), the
Fourier expansion becomes a Taylor one, and what we have proved is thatu(t) remains analytic
in a neighborhood of the polidiskB̄(0,1),CN. The wide variety of analytic functions shows that
the forcing functionsf may be made to satisfy many properties.

Concerning other magnitudes for which the phenomenon of inverse cascading is claimed, we
find much the same result. The mean-square magnetic potential in two-dimensional MHD is found
in the following way: letB5(B̂(k)eik"x be the Fourier series of the plane magnetic fieldB
5(B1 ,B2,0), satisfying as alwaysk•B̂(k)50. TakeÂ(k) such thatik3(0,0,Â(k))5B̂(k). Then
A(x)5(Â(k)eik"x is the scalar potential vector. Its mean-square potential is(uÂ(k)u2. Since the
Fourier componentsB̂(k), uku<M , depend for all time only on the remainingB̂( l), u lu<M , the
same happens forÂ(k). Thus the mean potential ofQMA depends only on the previous history of
the modes up to sizeM, and there is no inverse cascade. As for the magnetic helicityH in three
dimensions, it has no interest inH(NN) becauseH5(Â(k)•B̂(2k)50. Since the magnetic
helicity measures in a sense the knottedness of the magnetic field, these fields are in a sense
topologically simple; but this has not much to do with turbulence, which may be present at
dimension two, where there is no possibility of a field to become entangled.

IV. CONCLUSIONS

By analyzing the invariant subspaces of the operators occurring in the periodic Navier–Stokes
and magnetohydrodynamic equations, we have found that when the Fourier frequencies of the
forcing and initial conditions lie within a certain semigroup ofZN, the same happens to the
solution for as long as it is defined in the classical sense. When we take as a semigroup a subgroup
of ZN, we find that these solutions correspond to fields satisfying a certain number of symmetries.
By taking as a semigroup the set of positive frequencies, we find that the truncated Fourier series
of the solution satisfies an evolution equation by itself and therefore it ignores the remaining
Fourier modes. As a consequence there cannot be inverse cascading for this class of solutions.
These turn out to be always complex functions and not realistic physical fields, but these results
may be helpful to understand the analytic setting where existence of inverse cascades may even-
tually be rigorously proved.
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