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No te rindas, aún estás a tiempo
de alcanzar y comenzar de nuevo,

aceptar tus sombras, enterrar tus miedos,
liberar el lastre, retomar el vuelo.
No te rindas que la vida es eso,

continuar el viaje,
perseguir tus sueños,
destrabar el tiempo,

correr los escombros y destapar el cielo.

No te rindas, por favor no cedas,
aunque el frío queme,

aunque el miedo muerda,
aunque el sol se esconda y se calle el viento,

aún hay fuego en tu alma
aún hay vida en tus sueños.

porque la vida es tuya y tuyo también el deseo
porque lo has querido y porque te quiero.

Porque existe el vino y el amor, es cierto.
porque no hay heridas que no cure el tiempo.

abrir las puertas, quitar los cerrojos,
abandonar las murallas que te protegieron,

vivir la vida y aceptar el reto,
recuperar la risa, ensayar un canto,

bajar la guardia y extender las manos
desplegar las alas e intentar de nuevo,
celebrar la vida y retomar los cielos.

No te rindas, por favor no cedas,
aunque el frío queme,

aunque el miedo muerda,
aunque el sol se ponga y se calle el viento,

aún hay fuego en tu alma,
aún hay vida en tus sueños

porque cada día es un comienzo nuevo,
porque esta es la hora y el mejor momento,
porque no estás solo, porque yo te quiero.

No te rindas
Mario Benedetti
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Abstract

Schizophrenia is a disabling, chronic and severe mental illness characterized by disin-
tegration of the process of thinking, contact with reality and emotional responsiveness.
Schizophrenia has been related to an aberrant assignment of salience to external objects
and internal representations. In addition, schizophrenia has been identified as a dyscon-
nection syndrome, which is associated with a reduced capacity to integrate information
among different brain regions. Relevance attribution likely involves diverse cerebral re-
gions and their interconnections. As a consequence, many efforts have been devoted to
identifying abnormalities in the cortical connections and their relation to schizophrenia
symptoms and cognitive performance.

Neural oscillations are one of the largest contributing mechanism for enabling coor-
dinated activity during normal brain functioning. Alterations in neural oscillations and
cognitive processing in schizophrenia have long been assessed using electroencephalo-
graphic (EEG) recordings (i.e. time-varying voltages on the human scalp generated by
the electrical activity on the cerebral cortex). Event-related potentials (ERP) depict
EEG data as a response to a cognitive task. ERP analyses are used to gain further
insights into the neural mechanisms underlying cognitive dysfunctions. In this Doctoral
Thesis, a 3-stimulus auditory-oddball paradigm was used for examining cognitive pro-
cessing as response to both relevant and irrelevant stimuli. A total of 69 ERP recordings
were analyzed in the research papers included in the Thesis, which comprises 20 chronic
schizophrenia patients, 11 first episode patients and 38 healthy controls.

This Doctoral Thesis is focused on the study, design and application of biomedical
signal processing methodologies in order to facilitate the understanding of cognitive pro-
cesses altered by the schizophrenia. EEG data were examined using a two-level analysis:
(i) local activation studies to quantify functional segregation of the brain network, by
means of spectral analysis and by assessing neural source generators of P3a and P3b
components; and (ii) EEG interactions studies to explore functional integration across
brain regions, including pair-wise couplings and exploring hierarchical organization of
neural rhythms.

Functional segregation aims to identify the brain areas dedicated to specific processing
tasks. As a first step, spectral analysis of local activation was performed. Three local
activation measures were computed: the relative power (RP) (i.e. the proportion of
total power attributable to a given frequency band), the median frequency (MF) (i.e.
the frequency which comprises the 50% of the power) and the spectral entropy (SE)
(i.e. a measure of the irregularity of the EEG data). RP analyses showed an increase
of power from the baseline window to the response window for low frequency bands
and a decrease for high frequency bands. Nevertheless, the changes were statistically
significantly higher (p < 0.01) in controls than in patients. In addition, MF and SE
revealed a widespread decrease from baseline to response window for healthy controls,
whereas these changes were lower in schizophrenia patients. Our findings also suggested
a statistically significantly larger (p < 0.01) MF and SE decrease as a response to target
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stimuli than as a response to distractor stimuli. Secondly, source imaging techniques
were applied to detect neural generators that contribute to the scalp recorded ERP as
a response to target (P3b) and distractor (P3a) tones. Our findings were consistent
with previous reports, revealing a lower P3a and P3b source activation mainly in frontal
and cingulate regions for schizophrenia patients than for healthy controls. Likewise, the
intra-group differences between P3a and P3b were larger in patients than in controls,
suggesting an inefficient hyperactivation during the processing of target stimuli.

On the other hand, functional integration evaluates the dependencies among brain
areas. Functional neural coupling analyzes the statistical dependence between the neural
activity at different EEG electrodes. In this study, three complementary functional con-
nectivity measures (wavelet coherence (WC), phase-locking value (PLV) and Euclidean
distance (ED)) were applied to analyze correlation, synchrony and similarity patterns.
In comparison to healthy controls, schizophrenia patients are characterized by a lack of
increase of coupling from baseline to response in the theta band and a lack of decrease
for beta2 band. These findings suggested that schizophrenia patients failed to response
to relevance (i.e. they are not able to change their connectivity patterns between the
auditory response and pre-stimulus baseline). In addition, EEG rhythms in different
frequency bands can interact with each other, which reflects the complex and hierar-
chical organization of cognitive processes. This Doctoral Thesis evaluated event-related
phase amplitude coupling (ERPAC), obtaining an association between alpha phase and
gamma amplitude. Higher prevalence of alpha-to-gamma ERPAC after stimulus onset
was found over central-parietal brain areas than over frontal and temporal brain regions.
These findings could evidence the role of alpha rhythms as a core feature of cortical
communication.

In summary, our proposal evaluates time-frequency EEG data when subjects were
performed an auditory cognitive task, obtaining a reliable characterization of dynami-
cal neural patterns. For this purpose, segregation and integration were characterized by
means of a two-level analysis of EEG data including: spectral analysis, neural source gen-
erators, functional connectivity and hierarchical complex organization of neural rhythms.
Our findings revealed that schizophrenia patients showed an attention-dependent mod-
ulation of spectral distribution, source generators and functional connectivity in specific
frequency bands. In conclusion, these results support the aberrant salience and dyscon-
nection hypotheses: schizophrenia patients show a failure to contextualize stimulus pro-
cessing through a failure on neuronal firing synchronization.
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Chapter 1

Introduction

1.1. Introduction

Schizophrenia is still one of the most mysterious and costliest mental disorders in
terms of human suffering and societal expenditure (van Os and Kapur, 2009). Active
symptoms of schizophrenia typically emerge in late adolescence or early adulthood and
may become a chronic condition. Thereby, it is considered a relevant socio-economic
problem for health care systems.

The current Doctoral Thesis focuses on characterizing the neural dynamics underlying
clinical manifestation and cognitive processing in schizophrenia by means of biomedical
signal processing methodologies. This investigation has led to results published in jour-
nals indexed in the Journal Citation Reports (JCR) from Thomson Reuters Web of
Science™.

The thematic consistency of the articles included in the Doctoral Thesis is justified
in this introductory Chapter. A brief introduction to Biomedical Engineering and neural
signal processing can be also found. Moreover, there are sections devoted to explain
schizophrenia characteristics, the electroencephalography (EEG) and event-related po-
tentials (ERP). Finally, cognitive electrophysiology issue and the two-level hierarchical
analysis of neural signals have been described.

1.2. Context: Biomedical Engineering and neural signal process-
ing

The research field of this Doctoral Thesis is ’Biomedical Engineering’. Biomedical
Engineering is an interdisciplinary field that focuses on altering, controlling, or under-
standing biological systems by applying engineering principles (Bronzino, 2006). One of
the greatest Biomedical Engineering benefits is the ability to identify issues and needs
in healthcare systems. Hence, biomedical engineers apply engineering principles and
methodologies to understand, model and solve problems associated with medicine and
biology (Bronzino, 2006).

Among the different branches of expertise, this Doctoral Thesis is focused into the field
of ’biomedical signal processing’ and particularly in ’neural signal processing’. Biomedi-
cal signals are produced by biological structures and systems (Cohen, 2000). Therefore,
attending to their origin they can be classified into bioelectric, biomagnetic, bioacous-
tic, biomechanical, biochemical, biooptical signals, among others (Sörnmo and Laguna,
2005). Usually, the information contained in biomedical signals is not directly inter-
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pretable; hence, a processing stage is needed in order to obtain a meaningful measure of
the data (Sörnmo and Laguna, 2005). Biomedical signal processing is essential to uncover
signal components that may be very difficult, if not impossible, to observe by the naked
eye (Sörnmo and Laguna, 2005). Signal processing techniques aim at reducing the noise
present in the signals and the subjectivity of the manual measurements, as well as at
increasing the reproducibility of the results (Sörnmo and Laguna, 2005). The biomedical
signals that will be analyzed in this Doctoral Thesis are EEG recordings. These discrete
signals reflect the electrical activity of the cerebral cortex by means of the recording of
time-varying voltages on the human scalp.

This Doctoral Thesis aims at helping in the characterization of dynamical neural
activity associated with the schizophrenia disorder. For this purpose, EEG data during
the performance of an auditory cognitive task have been analyzed. Likewise, novel time-
frequency signal processing techniques have been applied and assessed. Hence, all the
above mentioned reflect the framework in which this Doctoral Thesis is encompassed. The
next section introduces the schizophrenia and describes the aetiology and the treatment
of this disorder.

1.3. Schizophrenia

Schizophrenia is a disabling, chronic and severe mental illness characterized by dis-
integration with the process of thinking, contact with reality and emotional responsive-
ness (American Psychiatric Association, 2013). The syndrome of schizophrenia was first
described in 1896 by the German physician Emil Kraepelin, as a global disruption in
perceptual and cognitive functioning (Boyle, 2002). He named the disorder ’dementia
praecox’ (early dementia) to distinguish it from other types of dementia that typically
occur on elderly people (Boyle, 2002). Eugen Bleuler continued Kraepelin’s work and
coined the term ’schizophrenia’ in 1911. The analysis of the psychopathological fea-
tures of the schizophrenia suggests that the symptoms can be clustered into four main
categories (van Os and Kapur, 2009):

i. Psychosis (including delusions and hallucinations – commonly known as positive
symptoms).

ii. Alterations in drive and willingness (lack of motivation, reduction in spontaneous
speech, social withdrawal – also known as negative symptoms).

iii. Alterations in neurocognition (difficulties in memory, attention and executive func-
tioning).

iv. Affective dysregulation (giving rise to depressive symptoms or to manic symptoms).

These symptoms are associated with a decrease in social and/or occupational functioning
(American Psychiatric Association, 2013).

The onset of schizophrenia commonly occurs within late adolescence and early adult-
hood and may become a chronic condition. Epidemiological data indicate that schizophre-
nia prevalence rates depend upon a wide range of factors, such as the availability of a
response to treatment (Bhugra, 2005). Individually, schizophrenia has a global lifetime
prevalence of 0.3-0.7% of the population, whereas incidence are 10.2-22.0 per 100,000
persons/year (van Os and Kapur, 2009). In addition, schizophrenia accounts for an
approximately 20% decrease in life expectancy compared with the average life of the
healthy population (Laursen et al., 2014). There are no significant differences between
males and females, nor between those of urban, rural and mixed sites (Bhugra, 2005).
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Nevertheless, several studies have found a higher prevalence of schizophrenia in people
with a low socioeconomic status, compared with a high socioeconomic status (Lewis and
Lieberman, 2000).

The following subsections address the relationship among the aetiology, the diagno-
sis and the treatment of the schizophrenia (Figure. 1.1). Firstly, the aetiology looks
for a better understanding of the causes of schizophrenia; it appears that schizophrenia
usually results from a complex interaction between biological and environmental fac-
tors. Secondly, the identification of schizophrenia causes and symptoms is necessary to
achieve a diagnosis. Finally, treatment subsection introduces pharmacologic treatments
for schizophrenia.

1.3.1. Aetiology

The aetiologyical mechanisms of schizophrenia remain unclear. Schizophrenia appears
to be a polygenic disorder, which is associated with biological and environmental factors
(Lewis and Lieberman, 2000). Biological models include among their causes a genetic
hypothesis and a neurotransmitter dysfunction. In addition, several authors pointed out
that environmental factors may also play a role in the pathogenesis of schizophrenia via
subtle alterations of neurodevelopment (Howes et al., 2004; Lewis and Lieberman, 2000).
Efforts to identify the pathophysiology of schizophrenia currently focus on several lines of
research: (i) neuroanatomical and neurofunctional abnormalities; (ii) genes that confer
susceptibility to schizophrenia and epigenomics studies; (iii) celular and immunological
alterations; (iv) environmental risk factors; (v) neuropsychological disorders; and (vi) the
mechanism of action of drugs that relieve symptoms (Orellana and Slachevsky, 2013).

In the next subsections, these different schizophrenia factors are further developed.
Figure. 1.2 shows the relationship among these schizophrenia causes, life course and their
diagnosis.

1.3.1.1. Genetic hypothesis

Genetic studies have consistently demonstrated that hereditary factors play a very
important role in major psychosis (Petronis, 2004). Specifically, family, twin and adop-
tion studies have demonstrated that the morbid risk of schizophrenia correlates with the
degree of shared genes (i.e. the closer family degree, the higher incidence of schizophre-
nia) (Jablensky, 2006; Lewis and Lieberman, 2000). In this regard, the heritability (i.e.
genetic contribution to the phenotypic variance observed) is generally accepted to be in
the range of 64-81% (Lichtenstein et al., 2009; Sullivan et al., 2003). In the last years,
genome-wide association studies (GWAS) of schizophrenia further have examined the
genetic profile associated to psychotic disorders. GWAS are an important tool for un-
derstanding the biological underpinnings of schizophrenia, they allow to associate several
genes or loci with the schizophrenia. A recent and relevant GWAS study identified 108
loci that met genome-wide significance (Ripke et al., 2014). This study suggested that
between half to a third of the genetic risk of schizophrenia is indexed by common alleles
genotyped by the GWAS (Ripke et al., 2014).

In addition to genetic heritability, epigenetic misregulation provides a critical etiopathogenic
factor (Petronis, 2004). Epigenetic alterations could partially explain the effects of en-
vironmental factors in schizophrenia. The DNA (deoxyribonucleic acid) sequence itself
can be also modified through cytosine methylation or histones modifications. Functional
states of histones and DNA have a direct effect on gene expression, as well as on other
functions of a chromosome (i.e. recombination, segregation, mutagenesis) that deter-
mine functional and morphologic peculiarities of a cell (Petronis, 2004). Although the
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Figure 1.1: Relationship among diagnosis, aetiology and treatment of the schizophrenia.

real effect of epigenetic factors in schizophrenia is unknown, several studies have focused
on the possibility of an epigenetic contribution to schizophrenia (Roth et al., 2009).

1.3.1.2. Neurotransmitter dysfunction hypotheses

This model focuses on chemical transmission, mainly in the prefrontal cortex, hip-
pocampus and temporal lobes of the brain. Currently, there are three major neuro-
chemical models for the schizophrenia: the dopaminergic, glutamatergic and GABAergic
(Javitt and Sweet, 2015).

i. Dopamine has been widely regarded as an important neurotransmitter in schizophre-
nia (Stone et al., 2007). Salience attribution theory suggested that a dysregulation
of dopaminergic neurons could underlie hallucinations and delusions in schizophre-
nia, through the aberrant attribution of abnormal salience to normal internal and
external events (Heinz and Schlagenhauf, 2010; Kapur, 2003). The dopamine hy-
pothesis of schizophrenia is the principal explanatory model of antipsychotic drug
action. In order to reduce psychotic symptoms, antipsychotic drugs block dopamine
receptors, specifically D2 receptors (Carlsson et al., 2004).

ii. Glutamate receptors are also considered to play a role in cortico-cortical interac-
tions and communication. Glutamatergic models relate schizophrenia symptoms
to neurocognitive deficits by blocking neurotransmission at NMDA (N-methyl-D-
aspartate) receptors (Javitt and Sweet, 2015; Stone et al., 2007). Increased prefrontal
glutamate concentrations have been also associated with poorer global functioning
and may show a disconnection in cortical communication in schizophrenia (Friston,
1998).

iii. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has been pro-
posed to play a role in schizophrenia. GABAergic dysfunction is specifically linked to
impaired generation of high-frequency oscillatory activity (Javitt and Sweet, 2015).
It has been proposed that GABA reductions may be linked to deficits in cognitive
memory tasks found in schizophrenia (Lewis et al., 2005).
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Figure 1.2: Schizophrenia is a complex syndrome with no clear etiology. This figure shows
the relationship among schizophrenia causes, life course and diagnosis. It includes before
birth causes, such as the genetic load and in utero biological and environmental risk
factors. Four different phases has been identified in schizophrenia: (i) Premorbid phase
is a period with a normal functioning; (ii) prodromal phase is characterized by signs
and symptoms that precede full manifestation of schizophrenia; (iii) in the active phase,
two or more symptoms must be present for at least one month period; and (iv) residual
phase is a period of remission where symptoms are absent or no longer prominent.

1.3.1.3. Executive function failure hypothesis

The executive function is a set of abilities, which allows us to invoke voluntary control
of our behavioural responses (Orellana and Slachevsky, 2013). These functions enable
human beings to develop and carry out several functions, such as plans, make up analo-
gies, obey social rules, solve problems, adapt to unexpected circumstances, do many tasks
simultaneously or locate episodes in time and place (Orellana and Slachevsky, 2013).

Neuropsychological and neurocognitive paradigms implement experimental and clini-
cal tests to better characterize cognitive abnormalities. They are increasingly being used
to identify dysfunctional structures and brain systems that underlie cognitive and behav-
ioral disorders of schizophrenia (Orellana and Slachevsky, 2013). It is possible to identify
central cognitive deficits by studying how schizophrenia patients perform on neurocogni-
tive tests. It may explain a significant proportion of the social and vocational morbidity
of this disorder (Orellana and Slachevsky, 2013).

Impairment of executive function is one of the most commonly observed deficits in
schizophrenia. Besides, the disorders detected by executive tests are consistent with
evidences obtained from functional neuroimaging. They have shown a dorsolateral pre-
frontal cortex dysfunction in schizophrenia patients while performing several cognitive
tasks (Orellana and Slachevsky, 2013). In particular, it has been suggested that executive
function impairments are associated with negative schizophrenic symptoms (Freedman
and Brown, 2011).

1.3.1.4. Environmental factors

The concordance rate among identical monozygotic twins for schizophrenia is high
(∼50%), suggesting that this disorder has a strong genetic component (Javitt and Sweet,
2015). Nevertheless, it also suggests that environmental factors may also play a key
role in the pathogenesis of schizophrenia (Lewis and Lieberman, 2000). Individuals
with schizophrenia tend to inhabit lower socioeconomic strata and to be more numer-
ous in urban and selected immigrant populations, suggesting an environmental effect
on schizophrenia (Lewis and Lieberman, 2000). Several studies have shown that early
environmental factors, such as prenatal infections and nutrition, traumatic stress during



6 CHAPTER 1

gestation or childhood, obstetric complications or cannabis consumption are more com-
mon in people with schizophrenia than in the general population (Howes et al., 2004).
Moreover, maturational processes occurring in the postnatal period through adolescence
(i.e. apoptosis, synaptic pruning and myelination) may unmask the genetic vulnerability
to schizophrenia (Lewis and Lieberman, 2000).

As a conclusion, diverse studies suggest that the aetiology of schizophrenia involves
the interaction of many factors. It is probably caused by the interaction of predisposing
genes and hazardous environmental factors (Petronis, 2004). Stress in adolescence or
early adulthood, such as drug use or social isolation, may interact to cause neurodevel-
opmental impairments leading to schizophrenia (Broome et al., 2005). A basic knowledge
of schizophrenia causes helps into the identification of its signs and symptoms in order
to achieve a diagnosis.

1.3.2. Diagnosis

Schizophrenia essentially represents a broad clinical entity defined by subjective symp-
toms, behavioural signs and patterns of course (Jablensky, 2006). Currently, the diag-
nosis of schizophrenia is based on criteria from the American Psychiatric Association’s
Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric
Association, 2013). These criteria take into account the self-reported experiences of the
individual, and a clinical assessment by a mental health professional. For diagnosis,
psychotic symptoms (i.e. delusions, hallucinations, disorganized speech, grossly disorga-
nized or catatonic behavior or negative symptoms) must have been significantly present
for at least one month, with some indication of the disorder having been present for a six
month period. A diagnosis of schizophrenia should not be made if the symptoms are not
better accounted for a schizoaffective disorder, a mood disorder with psychotic features,
or by the physiological effects of a substance or medical disorder (American Psychiatric
Association, 2013).

The symptoms of schizophrenia span a wide range of psychopathology and can display
an interindividual variability and temporal inconsistency (Jablensky, 2006). Therefore,
different subtypes of schizophrenia could be delineated based on clinical features, sta-
tistically derived subtypes, putative genetic indicators and endophenotypes (Jablensky,
2006).

It is well established that there is a ’prodromal phase’ (i.e. a period during which
specific symptoms are present before a diagnosis has been made). During this phase,
schizophrenia patients exhibit specific behavioral and cognitive characteristics that are
considered precursors of an psychosis episode (Klosterkötter et al., 2001; Yung and
McGorry, 1996). Early symptoms include reduced concentration and attention, de-
pressed mood, brief psychotic symptoms and sleep disturbance (Yung and McGorry,
1996). Once diagnosed with schizophrenia, the long-term prognosis of the disorder is
diverse. Schizophrenia patients could have a remission that is followed by relapse peri-
ods, remission with no further relapse, or have no remission at all (American Psychiatric
Association, 2013).

1.3.3. Treatment

Schizophrenia is most commonly treated with antipsychotic medication and comple-
mentary psychotherapeutic approaches (Buckley, 2008). Most antipsychotic medication
interacts with neurotransmitter receptors, some binds to dopamine receptors and some
interacts with serotonin receptors (Buckley, 2008). These drugs reduce many of the pos-
itive symptoms, but they are less effective in the treatment of negative and cognitive
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symptoms. Pharmacologic treatments for schizophrenia and bipolar disorder have been
available since the 1950s. Early medications, also known as ’typical’ antipsychotics (e.g.
chlorpromazine and haloperidol), were based on dopamine antagonism (Edwards and
Smith, 2009). Nevertheless, they introduced problems related to tolerability, including
tardive dyskinesia and extrapyramidal motor side-effects (Patterson and Leeuwenkamp,
2008). ’Atypical’ antipsychotics represented a significant improvement over first genera-
tion antipsychotics. These include drugs such as risperidone, olanzapine, clozapine and
quetiapine (Patterson and Leeuwenkamp, 2008). They are at least as effective as typical
antipsychotics, controlling acute psychotic symptoms and having lower propensity for
inducing some types of adverse events, such as extrapyramidal symptoms or elevation
of prolactin levels (Kapur and Remington, 2001; Patterson and Leeuwenkamp, 2008).
Nevertheless, they tend to have metabolic side-effects, such as weigh gain and increasing
triglycerides and choresterol (Kapur and Remington, 2001). Finally, it is well known that
schizophrenia patients respond in different ways to antipsychotic medications. Hence,
medical and patients usually work together to find the most adequate medication, as
well as the right dose. With medication and psychosocial therapy, many schizophrenia
patients are able to control their symptoms, gain greater independence and lead fulfilling
lives (Buckley, 2008).

1.3.4. Neurobiology and phenomenology in schizophrenia

Kapur (2003) proposed a heuristic framework for linking the neurobiology (brain), the
phenomenological experience (mind) and the pharmacological aspects of schizophrenia.
Aberrant salience hypothesis relates schizophrenia to an aberrant assignment of salience
to external objects and internal representations (Kapur, 2003). During the performance
of a cognitive task, schizophrenia patients tend to pay more attention to non-salient
events and less to salient events. It shows the central role of dopamine to mediate the
salience of environmental events and internal representations, suggesting a dopamine
hypothesis of antipsychotic action (Kapur, 2003).

In addittion, schizophrenia has been identified as a dysconnection syndrome, which is
associated with a reduced capacity to integrate information among different brain regions
(Friston, 1998; Stephan et al., 2009). Friston et al. (2016) have revisited the definition of
dysconnection hyphothesis, trying to establish a link between the symptoms and signs of
schizophrenia and the underlying neuronal pathophysiology. Both theories are related,
an aberrant neuromodulation of synaptic activity mediates the influence of intrinsic and
extrinsic connectivity (Friston et al., 2016). Relevance attribution likely involves diverse
cerebral regions and their interconnections. As a consequence, many efforts have been
devoted to identifying abnormalities in the cortical connections and their relation to
schizophenia symptoms and cognitive performance (Uhlhaas and Singer, 2010).

In summary, we hypothesized that schizophrenia patients would show a failure to
contextualize stimulus processing through a failure to optimize the synchronous gain of
neuronal populations, leading to a functional disintegration or disconnection (Bachiller
et al., 2015b). The physiological correlates of this disconnection would be expressed in
terms of a failure to modulate synchronous activity; particularly when asked to attend
to target stimuli (Friston et al., 2016).

Most studies used structural magnetic resonance imaging (MRI), functional MRI or
diffusion tensor imaging (DTI) to study schizophrenia brain organization (Gur and Gur,
2010; Kubicki et al., 2007; Molina et al., 2010; Shenton et al., 2001). However, EEG
provides high temporal resolution and allows for the assessment of the spatio-temporal
patterns of neural activity and their interactions in the time range of milliseconds (Mee-
han and Bressler, 2012; Uhlhaas, 2013).
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1.4. Electroencephalogram

The human brain is a very complex structure formed by millions of interconnected
neurons that communicate via electric impulses. Many neurons firing in sequence are able
to generate an electric field strong enough to be measurable by scalp electrodes, producing
the EEG signal (Nunez and Srinivasan, 1981). Therefore, EEG is the measurement of
time-varying voltages on the human scalp generated by the electrical activity of the brain,
especially in the cerebral cortex (Nunez and Srinivasan, 1981). Brain electrical activity
was firstly measured by the German neurologist Hans Berger in the 1920’s. He observed
rhythmic fluctuations of around 10 cycles per second (i.e. 10 Hz). Since then, EEG has
been enhanced as a clinical tool; allowing its use in the study of brain pathologies (such
as Alzheimer disease, epilepsy or schizophrenia), sleep disorders and disorders of the
nervous system (Jeong, 2004; Merica et al., 1998; Roach and Mathalon, 2008; Salinsky
et al., 1987).

The recorded EEG is the summation of the electrical activity primarily from groups
of pyramidal neurons, which provides a sample of temporal brain activity (Olejniczak,
2006). EEG measures electric potential differences between pairs of scalp electrodes
placed generally in an elastic cap with uniform coverage of the entire scalp. Recording
protocols usually follow the International 10-20 system (Figure. 1.3). It is the accepted
instrumentation standard for scalp electrode placement (Jasper, 1958).

EEG is a good tool for studying neurocognitive processes, since it provides a high
temporal resolution, within the millisecond range. It allows to capture cognitive dynamics
in the time frame in which cognition occurs (Cohen, 2014). However, the electrical
activity generated by the cortex is partially distorted as it passes through the cortex,
meninges and skull; hence, EEG data have small amplitudes and are spatially poorly
localized (Wang, 2010). Better measurements could be obtained invasively using subdural
electrocorticogram (ECoG), with the electrodes directly placed on the cortical surface, or
mesoscopic local field potential (LFP), where electrodes are inserted deep into the brain
(Wang, 2010). EEG signal provides multidimensional information useful to characterize
neural processes (i.e. it comprises information in at least five dimensions: time, space,
frequency, magnitude and phase) (Cohen, 2014). In comparison to brain-imaging tools,
such as MRI, EEG allows to assess directly neurocognitive processes (Cohen, 2014). The
oscillations that can be observed in the EEG signal reflect neural oscillations in the cortex.
On the other hand, brain-imaging techniques do not directly measure neural events, but
they are well suited for studies in which precise spatial localization are important (Cohen,
2014).

The next subsections further characterize the EEG signal. Firstly, section 1.4.1 ad-
dresses the neurophysiology (i.e. the study of the functioning of the nervous system).
Secondly, the main mechanism for enabling coordinated activity during normal brain
functioning was assessed: the neural oscillations. Then, cognitive electrophysiology sec-
tion examines how neural oscillations are related to cognition and behavior. Finally,
section 1.4.4 depicts event-related potentials (ERP), distinguishing between two main
approaches: (i) evoked potentials and (ii) single-trial analysis.

1.4.1. Neurophysiology

Neurons are electrically excitable cells that process and transmit information through
electrical and chemical signals, by means of a synapse. A typical neuron consists of a
cell body (known as the soma) that contains the nucleus, dendrites (short extensions of
the cell body involved in the reception of stimuli) and a single elongated extension of
the cell, called axon. Across the neuron membrane there exists a resting potential of
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Figure 1.3: International 10-20 EEG electrode location system for EEG recording. Pic-
ture adapted from Jasper (1958).

approximately -70 mV (Kandel et al., 1991).
Communication among neurons is elicited by electrochemical processes underlying the

generation of ’action potentials’, which consist on a rapid swing of the polarity across
the neuron membrane. A synapse is a region where nerve impulses are transmitted and
recieved. It can be observed in the junction between the axon terminals of a pre-synaptic
neuron and a dendrite of a post-synaptic neuron. When an action potential reaches a
synapse, it triggers the release of neurotransmitters that bind to the receptors of a post-
synaptic neuron (Figure 1.4). Neurotransmitters can change the permeability of the
membrane by means of a flow of sodium (Na+) and potassium (K+) ions. Post-synaptic
potentials can be excitatory or inhibitory (Kandel et al., 1991):

If the neurotransmitter is excitatory (e.g. amino acid glutamate), positive ions
flow from the post-synaptic neuron to the environment. It causes a reduction of
the membrane potential (depolarization).

If the neurotransmitter is inhibitory (e.g. GABA), positive ions flow from the
environment to the post-synaptic neuron. It causes an increase of the membrane
potential (hyperpolarization).

These action potentials are the primary origins for the EEG recorded on the scalp.
EEG reflects the degree of simultaneous activation of millions of local neurons in the
cortex. In detail, it is the summation of synchronized synaptic activation from pyrami-
dal neurons that have long straight dendrites perpendicular to the surface of the cortex
(Olejniczak, 2006; Wang, 2010). Therefore, larger amplitudes in the EEG indicate a
synchronous rhythmic activity in a local brain area (Lopes da Silva, 2013).

1.4.2. Neural oscillations

EEG signal can be divided into rhythmic and transient activity. Transient activity
includes random oscillations and high frequency noise. On the other hand, rhythmic one
represents synchronized neural activity over a brain region. These oscillations have char-
acteristic frequency ranges, spatial distributions and have been associated with different
states of brain functioning (Cohen, 2014). EEG oscillations can be further subdivided
into five different rhythms according to the frequency band of the signal (Cohen, 2014).
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Figure 1.4: Neurotransmission from pre-synaptic and post-synaptic neurons and neuron
synapsis. Figure obtained from (Carter et al., 2009).

Delta band (δ, 1-4 Hz): High-amplitude waves typically found in deep slow wave
sleep. Delta activity is mainly observed in the frontal regions in adults.

Theta band (θ, 4-8 Hz): It is associated with drowsiness and is enhanced during
sleep. Theta rhythms are found in the frontal midline region and they have been
associated with inhibition of elicited responses.

Alpha band (α, 8-13 Hz): It is the predominant rhythm in awaked subjects in
a relaxed or reflected state, especially under eyes closed conditions. They are
most pronounced in the posterior and occipital regions. Alpha rhythms have been
related to inhibition control. They reflect the timing inhibitory activity in different
locations across the brain.

Beta band (β, 13-30 Hz): It shows reduced amplitudes as compared to alpha waves.
Beta rhythms are associated with states of active concentration, anxiety or tension.
They are exhibited symmetrically at both sides of the brain, they are most pro-
nounced in the frontal regions. Beta band is commonly divided into β1 and β2

sub-bands, that include the frequency ranges 13-19 Hz and 19-30 Hz, respectively.

Gamma band (γ, > 30 Hz): It is associated with an active processing of information
in the cortex. Gamma rhythms are most pronounced near the somatosensory cortex
during multi-modal sensory processing, involving the linking of multiple sensations
or memories.

The study of brain oscillations has brought special attention to brain research com-
munity for a long time. Nevertheless, it has recently gained popularity the study of how
these oscillations relate to cognition and behavior (Lopes da Silva, 2013). The field in
neuroscience that investigates the relationship between brain rhythms and cognition is
called cognitive electrophysiology (Cohen, 2014).
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1.4.3. Cognitive electrophysiology

Scientists have expressed skepticism about the usefulness of brain oscillations and
EEG rhythmic activities in advancing the understanding of brain processes underlying
cognitive functions (Lopes da Silva, 2013; Sejnowski and Paulsen, 2006). However, exper-
imental evidences support the statement that scalp electrical signals reflect well-defined
neurophysiological mechanisms that are relevant to understand how cognitive processes
emerge (Lopes da Silva, 2013). Cognitive electrophysiology is a field that investigates
the relationship between the brain rhythms and cognition (i.e. it links neuroscience and
psychology). It focuses on understanding how cognitive functions (perception, memory,
language, emotions, behavior control or social cognition) are supported or implemented
by the electrical activity produced by populations of neurons (Cohen and Gulbinaite,
2014). Cognitive electrophysiology is a broad field of research that includes a wide range
of objectives. From the point of view of cognitive processes, the electrophysiology is a
useful tool for transient dissociating cognitive processes and their subcomponents. In this
regard, the main objective is to understand the cognitive components of behavior rather
than the physiological properties of the brain (Cohen, 2014). On the contrary, cognitive
paradigms can be used as a useful tool to elicit specific patterns of neural activity. In
this case, the ultimate goal of the research is to understand how the brain works rather
than to dissect components of behaviour (Cohen, 2014). Both issues should be jointly
addressed in order to avoid misunderstandings.

The mathematical development of time-frequency based data analyses has contributed
to advance beyond the understanding of the neurophysiological events. Nevertheless, a
better understanding of the neurophysiological processes that underlie the time-frequency
features observed in scalp neural data would require complementary methodological ap-
proaches, such as simultaneous invasive and non-invasive recordings or MRI analysis
(Cohen and Gulbinaite, 2014). Future complementary studies will allow linking the ac-
tivity at the level of individual neurons and populations of neurons recorded at scalp
EEG.

In this Doctoral Thesis, event-related potentials (ERP) analyses are used to gain
further insights into the neural mechanisms underlying cognitive dysfunctions (Uhlhaas
et al., 2008). ERP coupling patterns based on time-frequency representations could
provide a more sensitive measure to describe schizophrenia alterations than resting-state
EEG analysis (Uhlhaas, 2013; Uhlhaas and Singer, 2006).

1.4.4. Event-related potentials

Event-related potentials (ERPs) provide a safe and non-invasive method for explor-
ing the psychophysiological correlates of mental processes. ERPs are very small voltages
recorded from the scalp, which are originated in the brain structures as a response to
specific sensory, cognitive or motor events. They appear as a series of peaks and troughs
interspersed in EEG waves (Huang et al., 2015). Experimentally, their basic function is
to observe the transient changes in neural activity of the cortex, as a function of sensory
stimulation or internal event processing. Thus, ERPs are considered to be indicative of
the role of different cortical areas to various sensory or behavioural functions (Nieder-
meyer and Lopes da Silva, 2005).

An ERP signal is composed of background, phase-locked and non-phase-locked activ-
ity. Background activity is unrelated to task events. It provides little useful information
in cognitive electrophysiology studies and can be discarded by applying inter-trial time-
averaging and baseline normalization procedures (Cohen, 2014). Nevertheless, phase-
locked and non-phase-locked are task-related activities (i.e. their time-frequency char-
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acteristics change as a function of engagement in task events). In detail, phase-locked
activity (also called ’evoked’) is phase aligned with the event onset. It can be observed
both in time-domain averaging and in time-frequency-domain averaging representations.
On the other hand, non-phase-locked activity (also known as ’induced’) is time-locked
but not phase-locked to the event onset. Therefore, it is observed in time-frequency-
domain averaging but not in time-domain averaging (Cohen, 2014; Roach and Mathalon,
2008).

A large debate has been developed to investigate the neurophysiological mechanisms
that produce ERPs. David et al. (2006) suggested that ERPs are formed through complex
additive and nonlinear effects. Other models proposed that ERPs are the result from
an alignment of the phases of ongoing oscillations (Makeig et al., 2002), or that ERPs
are an amplitude asymmetry in the EEG oscillations (Mazaheri and Jensen, 2008). One
issue that complicates matters is that different ERP components may have different
neural origins; hence, it is not possible to achieve a unique explanation that includes
the underlying mechanisms involved in the generation of all ERP components (Cohen,
2014). Figure 1.5 shows how traditional analyses of ERP data are divided into two
different approaches: (i) time-domain analysis where evoked ERP is obtained, and (ii)
time-frequency-domain analysis, which is performed over single-trial ERP data.

1.4.4.1. Time-averaging auditory evoked potentials

The time-domain approach obtains an evoked ERP wave as the average of a set of
data epochs or trials time-locked to repetitive external events. As a result of averaging
across a large number of trials, the background and non-phase-locked activity in the
EEG cancels out and, thus, evoked ERPs are positive or negative voltage deflections
that survive this averaging process (Roach and Mathalon, 2008). The traditional view
of ERP assumes that averaged ERPs reflect transient bursts of neuronal activity time-
locked to an external event (Makeig et al., 2004). Nevertheless, it could arise from one or
more neural generators. The neural generators of ERP components remain imprecisely
delineated, although appreciable progress has been carried out in the last years (Huang
et al., 2015).

There are several cognitive tasks for evaluating brain responses, including auditory
paradigms. In this regard, auditory oddball paradigm is a common experimental design
used in ERP analyses to obtain a meaningful measure of cognitive function. Different
components have been established on time-averaging auditory evoked ERPs, such as
P50, N100, N200 and P300 components (Figure 1.6). The most extensively explored
evoked ERP component in investigations of cognitive functions is the P300 wave (Huang
et al., 2015). It is described as a positive deflection, which reaches its peak amplitude
around 300 ms after stimulus onset. The P300 component mainly appears over superior
temporal and parietal cortex and it has been associated with several processes, such as
attention, relevance and memory (Polich, 2007). P300 wave includes two components:
the P3a, elicited by distractor stimuli for which no subject-response is expected; and the
P3b, evoked by target stimuli for which the subject is instructed to respond. Both P300
waves were traditionally assessed by means of their amplitude (the maximum evoked
ERP voltage) and latency (the delay between stimulus onset and the time course of
P300) (Polich, 2007).

Several studies have identified schizophrenia alterations in ERP waves. Reductions
in the auditory P300 amplitude, as well as increases in the auditory P300 latency have
been found in people with schizophrenia compared to healthy controls (Jeon and Polich,
2003; Mathalon et al., 2000; O’Donnell et al., 2004). Likewise, source localization of P300
wave has recently achieved a relevant importance (Jung et al., 2012; Kim et al., 2014;
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Figure 1.5: Auditory ERP data analyses are divided into two different approaches: (i)
evoked ERPs perform the time-domain averaging of ERP trials time-locked to a repetitive
external event; and (ii) single-trial analyses assess time-frequency properties of each ERP
trial.

Strobel et al., 2008; Sumiyoshi et al., 2009; Volpe et al., 2007). In detail, the neural
generators of two P300 components: the P3a, evoked by distractor stimuli for which no
subject-response is expected; and the P3b, elicited by target stimuli for which the subject
is instructed to respond were evaluated in this Doctoral Thesis (Bachiller et al., 2015c).

1.4.4.2. Single-trial analysis

The examination of time-averaging evoked ERPs has provided useful insights into
the nature and timing of neuronal events that subserve sensory, perceptual and cogni-
tive processes. Nevertheless, the whole ERP data have received relatively less attention
(Roach and Mathalon, 2008). Time-frequency domain approach assesses the changes in
the frequency power spectrum of the whole ERP data time-locked to the same external
events (Makeig et al., 2004). Time-frequency analyses provide additional information
about neural synchrony not apparent in the evoked ERPs (Makeig et al., 2004). In de-
tail, they allow to view the brain as a parallel processor of information, with oscillations
at multiple frequencies reflecting various neural processes co-occurring and interacting
(Lisman and Buzsaki, 2008). Therefore, they may provide a greater sensitivity to the
true nature of the neuropathophysiological processes underlying schizophrenia (Roach
and Mathalon, 2008).

Studying single trial ERP oscillations allows decomposing time-varying neural oscilla-
tions into magnitude and phase information for each frequency component (Makeig et al.,
2004). Neural oscillations are one of the largest contributing mechanism for enabling
coordinated activity during normal brain functioning. Several studies have associated
oscillations at low frequency ranges (delta, theta and alpha) with long-range synchro-
nization (Sauseng et al., 2004; Uhlhaas and Singer, 2010; von Stein and Sarnthein, 2000),
whereas high frequency ranges (beta and gamma) reflect synchronization in both local
cortical networks (Womelsdorf et al., 2007) and large-scale networks (Roux et al., 2013).
Impairments in these oscillations may contribute to pervasive network dysfunction in
schizophrenia (Uhlhaas and Singer, 2010), which may lead to functional disconnections
between and within cortical regions (Friston, 1998).
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Figure 1.6: Main ERP components with their functional interpretation, latencies, and
scalp topography (ellipses indicate the scalp location where the component has the largest
amplitude. Red: positive potential. Blue: negative potential). Figure obtained from
(Daltrozzo and Conway, 2014).

1.5. Hierarchical analysis of neural signals

In the last decades, brain functions have been brought into focus in neuroscience.
They can be studied from different viewpoints depending on the way in which interactions
are taken into account (Stam and van Straaten, 2012). A long-standing controversy in
neuroscience was set on the 20th century. On the one hand, localizationist views of
brain functions held that complex cognitive functions are linked to specific brain regions,
emphasizing the specificity and modularity of brain organization. On the other hand,
holist views proposed global neural functions in the whole brain (Tononi et al., 1994).
The modern understanding of neurocognitive networks gradually emerged over these
opposing views in neuropsychology (Bressler and Menon, 2010). Based on this principle,
functional segregation and integration were defined:

Functional segregation aims to identify the brain areas that are dedicated to specific
information processing tasks. In particular, functional segregation suggests that a
cortical area is specialized for some aspects of perceptual or motor processing and
that this specialization is anatomically segregated within the cortex (Friston, 2011).

Functional integration evaluates the dependencies among different brain areas. It
provides an important tool for understanding brain networks as a highly intercon-
nected organization (He et al., 2011). Neural integration could be characterized by
functional connectivity, which is usually defined in terms of statistical dependencies
among measurements of neuronal activity, such as EEG recordings.

On the basis of these principles, functional segregation could be formed by local
network communities that are intrinsically densely connected and strongly coupled.
Whereas, functional integration measures global communication between distant brain
areas (Sporns, 2013). It is noteworthy that a balance between segregation and integration
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Figure 1.7: Hierarchical analysis of EEG data. A two-level of analysis has been applied
in this Doctoral Thesis, which characterizes: (i) functional segregation by means of local
activation; and (ii) functional integration analyzing EEG interactions. A third level,
which assesses the relationship between segregation and integration brain functions by
means of complex network analysis, will be addressed in future studies.

is essential for the operation of distributed brain networks underlying cognitive function
(Sporns, 2013). The clustered local network communities support functional segregation
and specialization, likewise it ensure efficient communication and information integration
among brain areas (Sporns, 2013).

In this Doctoral Thesis, the dynamic brain activity has been explored from the per-
spective of a complex organized network. EEG data were examined using a two-level
analysis (Figure 1.7): (i) local activation, that comprises the characterization of ERP
data by means of their spectral properties and the performance of neural generators
at source level; and (ii) EEG interactions, that include functional interactions between
pairs of electrodes and the analysis of high-level relationship between brain rhythms by
means of cross-frequency coupling. A third level, that uses of complex network theory
for characterizing EEG brain networks, will be addressed in future studies.

Before addressing local activation and EEG interaction description, it is noteworthy
to introduce the time-frequency tools used in this Doctoral Thesis.

1.5.1. Time-frequency analysis of EEG oscillations in humans

A typical approach for characterizing electromagnetic brain recordings is based on the
analysis of their spectral content. These analyses are all based on the core assumption
made by Fourier: any signal can be represented by a sum of sine waves of different
frequencies (Blanco et al., 1995). In order to describe the power of the signal for each
different frequency, the power spectral density (PSD) function can be estimated. PSD
represents how the power is distributed in the frequency domain.

There are two main points that motivate the use of time-frequency techniques. Firstly,
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Fourier transform is based in comparing the signal with complex sinusoids that extend
through the whole time domain, providing a lack of information about the time evolution
of the spectral content (Blanco et al., 1995). Secondly, EEG recordings are non-stationary
signals, whose characteristics may change over time (Blanco et al., 1995). Therefore,
non-stationary signal analysis techniques, such as time-frequency distributions, are ap-
propriate to accurately describe their dynamic properties (Aviyente et al., 2004; Poza
et al., 2008).

Time-frequency analysis comprises many methods and measures that capture different
aspects of EEG magnitude and phase relationships (Roach and Mathalon, 2008). In
particular, from time-frequency analysis, two types of information can be extracted for
each particular frequency band and time position: the power (i.e. the strength with which
an oscillation was presented); and the phase (i.e. the position along the sine wave).
These two properties of the time-frequency representation allow implementing various
dynamical measures at the three aforementioned levels of analysis: local activation, pair-
wise interactions and network organization.

In this Doctoral Thesis, three different time-frequency approaches have been used
depending on the application: short-time Fourier transform (STFT), wavelet transform
and Hilbert transform. The mathematical details of the different analyses will not be
presented here, as they are outlined in every ’Materials and Methods’ section in the
different Chapters.

1.5.2. Local activation

As a first step, the function of elementary units of EEG data was independently
examined (i.e. the signal at each electrode was independently analyzed). The majority
of neuroscience studies in the past few decades was related to a better understanding
of the conditions underlying local activation of functional brain units (Stam and van
Straaten, 2012).

As previously established, EEG is the sum of the electrical activity over a broad
brain area. Therefore, the analysis of local activation from EEG recordings contributes
to functional localization. In addition, the use of complementary techniques, such as
fMRI, DTI or LFP will help characterization of the cognitive functions associated with
a brain area (Cohen, 2014).

1.5.2.1. Spectral analysis of local activation

According to the aberrant salience hypothesis, schizophrenia patients show a height-
ened response to novel but irrelevant stimuli and a decreased response to relevant stimuli
(Cortinas et al., 2008; Gur et al., 2007). Therefore, the analysis of spectral changes from
baseline to the processing stages of a cognitive task may help to better understand the
dynamic information processing abnormalities observed in schizophrenia (Uhlhaas et al.,
2010).

In this Doctoral Thesis, several local activation measures based on the information
theory were assessed to analyze the cognitive response to a three-tone auditory oddball
task. Firstly, the whole frequency spectrum was divided into the conventional frequency
bands (δ, θ, α, β1, β2 and γ) and the relative power (RP) was computed (i.e. the
proportion of total spectral power attributable to a given frequency band). Likewise,
two additional parameters were obtained from PSD function: the spectral entropy (SE)
and the median frequency (MF). SE allows quantifying the degree of disorder contained in
a signal, whereas MF is defined as the frequency value that comprises 50% of the power,
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offering a simple way of summarizing the whole spectral content of PSD (Poza et al.,
2012). Chapters 3 and 4 include a better description of RP, SE and MF computation.

1.5.2.2. Neural source generators

The electrical brain activity is generated in 3-D, but EEG captures a 2-D image
from the surface of the skull. Therefore, it cannot be assumed that the electrical activ-
ity recorded by each electrode has been generated directly below that electrode. The
computation of intracerebral images of electric neuronal activity based on scalp-recorded
EEG is known as the ’inverse problem’. It provides useful information on the time course
and localization of brain functions (Pascual-Marqui et al., 2002). Selection of a partic-
ular solution of the inverse problem often requires a priori knowledge acquired from the
overall physiology of the brain. Source imaging techniques have been commonly used to
detect neural generators that contribute to ERPs as a response to a cognitive task. Since
P300 is associated with attention and memory operations in the brain, investigation of
the neural generators of this ERP component can improve our understanding of these
mechanisms (Sabeti et al., 2016).

The low-resolution brain electromagnetic tomography (LORETA) is one of the most
reliable methods for localizing ERP electrical activity (Pascual-Marqui et al., 2002).
In particular, LORETA asseses source current density from scalp-recorded EEG using
a realistic head model from Montreal Neurological Institute (MNI) (Mazziotta et al.,
2001), in which the 3-D solution space was restricted to only the cortical grey matter
(Lancaster et al., 2000). Chapter 5 assesses bioelectrical ERP neural sources distribution
by using standardized LORETA (sLORETA) approach. Compared to previous versions
of LORETA, sLORETA is superior in temporal resolution and has fewer localization
errors (Kim et al., 2014). Thus, sLORETA approach has been used in several studies
to investigate brain sources when subjects are performing a cognitive task (Kim et al.,
2013; Sumiyoshi et al., 2009).

EEG local activation yield information of interest in neurocognitive studies, but an
essential aspect is to investigate how these signals interact (Lopes da Silva, 2013).

1.5.3. EEG interactions

In the last decade, neuroscience has experimented a paradigm shift, giving more im-
portance to interactions and networks in contrast to other approaches focused primarily
on the localization of cognitive functions to specific brain areas through the study of
local brain activity (Stam and Reijneveld, 2007). EEG rhytms yield information of inter-
est in neurocognitive studies, but an essential aspect is to investigate how these signals
interact (Lopes da Silva, 2013). Brain oscillations have typically been divided into spe-
cific frequency ranges that are associated with different cognitive processes (Buzsáki and
Draguhn, 2004). However, brain rhythms in different frequency bands can interact with
each other in several ways involving either the phase, amplitude or the frequency of the
signals (Canolty and Knight, 2010; Jirsa and Müller, 2013; Szczepanski et al., 2014).

This section addresses two out of the main EEG interactions. Firstly, neural connec-
tivity patterns play a crucial role in determining the functional properties of neurons and
neuronal systems (Sporns, 2007). Pair-wise interactions assess the interdependences be-
tween the neurophysiological signals measured at different electrodes. Secondly, several
studies have demonstrated that cognitive processes involve the coordination of oscilla-
tions at different frequencies (Engel et al., 2001; Szczepanski et al., 2014; Wang et al.,
2014). Cross-frequency coupling (CFC) is an emerging area of neural research, which is
based on the idea that neural oscillations have a complex and hierarchical organization.



18 CHAPTER 1

1.5.3.1. Pair-wise interactions

Coordinated neuronal activity and interactions among neurons and neuronal popu-
lations are basic features of brain function (Jiruska et al., 2013). Cognitive processes
require precise integration of neural activity at specific spatio-temporal scales (Uhlhaas
and Singer, 2006; Varela et al., 2001). Currently, cortical interactions could be classified
into: anatomic, functional and effective connectivity (He et al., 2011). In detail:

Anatomic connectivity refers to the physical neural connections among various re-
gions of interest. These connections can either be on the microscopic or macroscopic
level.

Functional connectivity is defined as the temporal correlation between spatially
remote neurophysiological events.

Effective connectivity is defined as the directed or causal inference of one system
over another. It describes the direction of the functional interactions between brain
regions.

This Doctoral Thesis is focused on the study of functional connectivity among neu-
ral oscillations at the different frequency bands. Our focus on functional connectivity
is motivated by the notion that disconnectivity in schizophrenia is accompanied by a
failure to modulate synchronous activity (Bachiller et al., 2015b). From EEG recordings,
functional neural connectivity has been commonly assessed by looking at the relationship
between EEG data at two different electrodes (Varela et al., 2001). Functional connec-
tivity approach allows to obtain a time-frequency feature characterization. Firstly, it
is highly time-dependent; statistical patterns among EEG data fluctuate on multiple
time scales. Secondly, functional connectivity can be assessed in the frequency domain,
obtaining different connectivity patterns for each frequency band.

As we will see in Chapter 6, three complementary functional connectivity measures
have been used: coherence, phase-locking value (PLV) and Euclidean distance (ED).
They are based on three different conceptual frameworks: connectivity, synchrony and
similarity. It provides original insights to describe dynamical neural interactions induced
by attended stimuli in control subjects and schizophrenia patients.

1.5.3.2. Cross-frequency coupling

CFC is an emerging area of neural research based on the idea that neural oscillations
have a complex and hierarchical organization. CFC reflects how neurophysiological pro-
cesses in the brain can be temporally organized across different frequency bands (van
Driel et al., 2015). Several studies demonstrated that the rhythms in different frequency
bands can interact with each other in behaviorally meaningful ways (Canolty and Knight,
2010; Szczepanski et al., 2014). In particular, phase-amplitude CFC (PAC) describes the
statistical dependence between the phase of a low-frequency (LF) brain rhythm and the
amplitude of a high-frequency (HF) component of brain activity (Canolty and Knight,
2010). Thereby, it reflects the dynamical relationship between two oscillations that are
generated by distinct neurophysiological mechanisms (Dvorak and Fenton, 2014). PAC is
based on the idea that the distribution of HF power values is modulated by the LF phase
(Dvorak and Fenton, 2014). It has been suggest that PAC provides a bridge between
local microscale and systems-level macroscale neuronal ensembles, allowing for dynamic
network communication (Voytek and Knight, 2015a).

Conventional PAC (cPAC) algorithms yield an averaged PAC value across a defined
time window that is bounded by the frequency of the coupling phase (Canolty et al., 2006;
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Cohen, 2008; Voytek et al., 2010). Several researches pointed out an important limitation
of cPAC algorithms: it is a metric sensitive to noise and to the time window selected
(Tort et al., 2010). The previous limitation does not allow analyzing time-varying CFC
changes when subjects are performing a cognitive task (Voytek et al., 2013). In order
to solve this problem, a recent research proposed a novel approach for measuring tran-
sient PAC directly in an event-related way: event-related PAC (ERPAC) (Voytek et al.,
2013). It provides a method for assessing sub-second coupling dynamics supporting cor-
tical processing (Voytek et al., 2013). Nonetheless, the use of ERPAC could introduce
a spurious PAC due to unspecific non-stationarities not related to neural processes (Aru
et al., 2015). Therefore, the design of a suitable surrogate procedure is required to pre-
vent non-stationarity and non-linearity misunderstandings, as well as to assess statistical
significance (Aru et al., 2015).

On the basis of these ideas, Chapter 7 of this Doctoral Thesis is focused on two main
objectives: (i) obtaining a time-varying measure of PAC; and (ii) studying the role of
PAC abnormalities in schizophrenia.

1.5.4. Network organization

Brain networks have been recently explored in neuroscience. It allows to use a wide
array of quantitative tools and methods from complex network theory (Sporns, 2013).
Networks are simple mathematical objects that efficiently encode the structure of rela-
tions among a large number of interdependent elements. In particular, brain network
theory introduces the application of complex network theory in the study of neural dy-
namics. The brain can be assimilated to a complex anatomical and functional network
(Varela et al., 2001). Hence, it can be represented by means of a graph, where the elec-
trodes correspond to the nodes of a graph and the vertices are formed by the functional
coupling between them (Stam and Reijneveld, 2007).

Complex network theory has been used to characterize the healthy brain, which has
been identified as a highly interconnected structural network that functionally connects
adjacent and distant brain areas (Rubinov and Sporns, 2010). In addition, network neuro-
science has recently provided novel insights into the mechanisms of neurological diseases,
such as epilepsy, Alzheimer’s disease, autism or schizophrenia (Stam and van Straaten,
2012). Therefore, the analysis of EEG complex network patterns will be addressed in
future studies.

1.6. Doctoral Thesis overview

The characterization of neural dynamics underlying cognitive processing in schizophre-
nia is the common thread shared by all the articles included in the compendium of pub-
lications. Two out of the five papers aimed at studying the local activation of EEG data
during an auditory oddball task by means of relative power, spectral entropy and median
frequency (Bachiller et al., 2014, 2015a), whereas another paper focused on analyzing the
neural source generators underlying cognitive processing in schizophrenia (Bachiller et al.,
2015c). A fourth paper involved the characterization of the time-varying functional cou-
pling differences between healthy controls and schizophrenia patients (Bachiller et al.,
2015b). Finally, a fifth paper focused on the analysis of the hierarchical organization of
neural oscillations (Bachiller et al., 2017).

This Doctoral Thesis is organized by chapters as follows:
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Chapter 2: Hypothesis and objectives establishes the hypothesis and objec-
tive statement of this Doctoral Thesis.

Chapter 3: Decreased spectral entropy modulation in patients with
schizophrenia during a P300 task.

This Chapter summarizes the first paper included in the compendium of publica-
tions. It describes the application of RP, MF and SE for quantifying the EEG
signal as a response to an 3-stimulus auditory oddball task. Hence, the global
changes from resting baseline [-250 0] ms to active task [150 550] ms windows were
calculated for 31 patients with schizophrenia and 38 healthy controls. An statisti-
cal analysis was carried out to assess the spectral changes from baseline to active
response window within each group and the spectral differences between patients
and controls groups.

Chapter 4: Decreased entropy modulation of EEG response to novelty
and relevance in schizophrenia during a P300 task.

The analysis of the interaction between novelty and relevance may be of interest to
test the aberrant salience hypothesis of schizophrenia. The aim of this Chapter was
to quantify differences between distractor (i.e., novelty) and target (i.e., novelty
and relevance) tones in an auditory oddball paradigm. For this reason, MF and
SE were computed from the EEG data of 31 patients with schizophrenia and 38
healthy controls. The findings support the notion that schizophrenia is associated
with a reduced response to both novelty and relevance during an auditory P300
task.

Chapter 5: Auditory P3a and P3b neural generators in schizophrenia:
An adaptive sLORETA P300 localization approach.

This Chapter investigates the neural substrates underlying cognitive processing in
schizophrenia patients. The P3a and P3b brain-source generators were identified
by time-averaging of LORETA current density images. In contrast with the com-
monly used fixed window of interest (WOI ), we proposed to apply an adaptive
WOI, which takes into account subjects’ P300 latency variability. Our findings
suggest that target and distractor processing involves distinct attentional subsys-
tems, both being altered in schizophrenia. Therefore, the study of neuroelectric
brain information can provide further insights to understand cognitive processes
and underlying mechanisms in schizophrenia.

Chapter 6: A comparative study of event-related coupling patterns dur-
ing an auditory oddball task in schizophrenia.

The aim of this Chapter is to explore the coupling patterns of brain dynamics
during an auditory oddball task recorded from 20 schizophrenia patients and 20
healthy controls. The coupling changes between auditory response and pre-stimulus
baseline were calculated in conventional EEG frequency bands (θ, α, β1, β2 and
γ), using three coupling measures: coherence, phase-locking value and Euclidean
distance. Our findings may reflect an impaired communication among neural areas,
which may be related to abnormal cognitive functions.
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Chapter 7: Investigating ERPAC patterns of brain activity: Evidence of
alpha-to-gamma hierarchical organization elicited by an auditory oddball
task.

This Chapter proposes a novel measure of PAC dynamics in an event-related way
(event-related PAC). It was applied to auditory-oddball EEG response recorded
from 28 schizophrenia patients and 51 healthy controls. Our findings showed that
the phase of alpha rhythm is coupled with the power of low gamma oscillations.
Additionally, a statistically significant association between alpha amplitude and
ERPAC in healthy controls was found. Both findings support the role of inhibitory
process in neural oscillatory hierarchy, suggesting that the CFC patterns can be
altered in schizophrenia.

Chapter 8: Discussion outlines the results of the present research and their in-
terpretation.

Chapter 9: Conclusions highlights the main contributions of this research work
and presents the key results, which we believe will be of most use to future re-
searchers working in this field. Likewise, the limitations of the research and the
most important future lines are highlighted.





Chapter 2

Hypotheses and objectives

2.1. Introduction

The understanding of neural mechanisms underlying cognitive processes in schizophre-
nia has become an interesting issue of research. This Doctoral Thesis focuses on analyz-
ing EEG activity to characterize the interplay of functional segregation and integration.
Functional segregation could be formed by local network communities that are intrinsi-
cally densely connected and strongly coupled. Functional integration measures the global
interaction between distant brain areas. Therefore, in order to obtain a comprehensive
characterization of human neural networks, EEG activity is explored using a two-level
analysis: (i) local activation studies to explore functional segregation in the brain net-
work; and (ii) EEG interactions analyses to examine the functional integration across
brain regions. On the one hand, local activation contributes to functional segregation
characterization by analyzing the time-frequency properties of ERP data and the local-
ization of neural generators at source level. On the other hand, functional integration
was assessed by means of the study of EEG interactions; it includes the analysis of func-
tional connectivity between pairs of electrodes and the high level relationship between
brain rhythms by means of CFC.

These actions have been implemented following the next scheme:

i) EEG acquisition.

ii) Pre-processing of EEG data.

iii) Time-frequency decomposition of EEG data.

iv) Two-level analysis: local activation and EEG interactions.

v) Statistical analyses and interpretation of results.

This research proposal is substantiated by the hypotheses and objectives described
below.

2.2. Hypotheses

Neurophysiological studies have associated the schizophrenia with an aberrant attri-
bution of salience to external objects and internal representations caused by an aberrant

23
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neuromodulation of synaptic activity. In this regard, local activation analyses provide
a meaningful measure of functional segregation that is relevant to understanding how
cognitive processes emerge. The analysis of time-varying neural activity can be useful
to understand brain dynamics underlying cognitive processes. Hence, EEG signals as
a response to a cognitive task are well-suited to reflect neurophysiological mechanisms
due to their high temporal resolution in the time range of milliseconds. In particular,
time-frequency local activation analysis addressed whether schizophrenia disease causes
impairments in neural oscillations at different frequency ranges and brain source anal-
ysis assesses schizophrenia neural generator abnormalities as a response to novelty and
relevance.

Relevance attribution likely involves diverse cerebral regions and their interconnec-
tions. It is therefore reasonable to hypothesize that EEG interaction studies could be
helpful to further understand the dynamic neural mechanisms underlying cognitive pro-
cesses in schizophrenia. According to the dysconnection hypothesis, a disturbed dynamic
coordination between neural oscillations contributes to the pathophysiology of schizophre-
nia. The physiological correlates of this lack of coordination would be expressed in terms
of a failure to modulate synchronous activity: schizophrenia patients would show a fail-
ure to contextualize stimulus processing through a deficit on modulating the synchronous
gain or excitability of neuronal populations, leading to a functional disintegration or
dysconnection.

Dysconnection hypothesis has been related to aberrant salience hypothesis (i.e. the
physiological correlates of this dysconnection would be expressed in terms of a failure
to modulate their neural rhythms). To validate these hypotheses, this Doctoral Thesis
proposes the use of a two-level hierarchical analysis of neural signals in order to obtain
a meaningful framework for assessing functional segregation and integration. In other
words, it allows to identify the brain areas that are dedicated to cognitive information
processing task, as well as to evaluate the dependencies among these different brain areas.

2.3. Objectives

The general goal of this Doctoral Thesis is to study, to design and to apply biomed-
ical signal processing methodologies in order to explore and characterize cognitive pro-
cesses altered by the schizophrenia. EEG data were examined using a two-level analysis
with the aim of achieving a reliable characterization of dynamical neural dysfunctions in
schizophrenia. Therefore, this research proposal assesses: (i) local activations and (ii)
EEG interactions among evoked-averaged and single-trial brain activity.

In order to achieve the main objective, the following specific objectives are raised:

1. To review the bibliography and state-of-the-art related to biomedical signal processing
methodologies useful to characterize EEG data. Particularly, this objective is focused
on identifying appropriate techniques that can be used in an event-related approach.

2. To build a database, including EEG recordings, socio-demographic data and clinical
variables from adult schizophrenia patients and healthy controls.

3. To reduce common artifacts in EEG recordings by defining a semi-automatic three-
step artifact rejection procedure based on statistical data analysis.

4. To develop and perform (using Matlab®) the signal processing algorithms that are
more suitable to characterize event-related brain dynamics in schizophrenia.

5. To assess the time-varying modulation of local activation brain activity during a cog-
nitive task in schizophrenia using time-frequency functional segregation measures.
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6. To explore the alterations in stimulus processing as a response to relevant (P3b) and
to novel but not relevant (P3a) stimuli inputs. This specific objective is aimed at
quantifying the contribution of each frequency band at different temporal scales (i.e.
during the pre-stimulus baseline and the task-processing stages of an auditory odd-ball
task).

7. To properly localize P300 brain-source generators and to analyze the differences be-
tween auditory P3a and P3b underlying cortical sources between schizophrenia pa-
tients and healthy controls.

8. To obtain a global pattern of event-related functional connectivity changes between
the response of an auditory cognitive task and the pre-stimulus baseline.

9. To assess the temporal organization of brain activity by analyzing cross-frequency
interactions among neural oscillations.

10. To conduct statistical analyses of the results to evaluate each methodology applied to
EEG recordings, as well as to identify the pathophysiological patterns in schizophrenia.

11. To compare and discuss the results to extract appropriate conclusions. This objective
includes the comparison with the state-of-the-art ERP studies and the comparison of
our findings with the results obtained using other techniques, such as MEG, LFP or
fMRI.

12. To publish the obtained results and conclusions in high-impact journals, as well as in
international and national conferences.
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Abstract: Spectral entropy (SE), also known as Shannon entropy, is a useful parameter for
quantifying the global regularity of the electroencephalographic (EEG) signal. Hence, it is
of interest in the assessment of the electrophysiological correlates of cognitive processing in
schizophrenia. However, to date, SE has been barely used in studies comparing resting EEG
recordings between patients and controls. In this work, we compared SE between resting baseline
[-250 0] ms and active task [150 550] ms windows of a P300 task in 31 patients with schizophrenia
and 38 controls. Moreover, we also calculated the median frequency (MF) and relative power
in each frequency band for these windows to assess the correlates of the possible SE differences.
Controls showed a significant (p 0.0029) SE decrease (i.e., meaning higher signal regularity)
from baseline to the active task window at parietal and central electrode sites. This SE de-
crease from baseline to active conditions was significantly lower in patients. In controls, this
SE decrease was accompanied by a statistically significant decrease in MF (i.e., a significant
slowing of the EEG activity), not observed in patients. In this latter group, the difference in
SE between resting baseline and active task windows was inversely correlated to positive and
total symptoms scores, as measured with the positive and negative symptoms scale. Our data
support the relevance of SE in the study of cerebral processing in schizophrenia.
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3.1. Introduction

The analysis of the fast bioelectrical changes from baseline to the processing stages of a
cognitive task may be useful to better understand the dynamic abnormalities of information
processing in schizophrenia (i.e., alterations that may appear at some but not all stages of
this processing). Several attempts have been made to investigate neural dynamics associated
with schizophrenia by the use of complexity measurements of the EEG. However, to date, this
approach has yielded contradictory results (Fernández et al., 2013).

Among the potentially relevant complexity parameters for the study of schizophrenia, SE
allows for quantifying the degree of disorder contained in a signal. SE is a measure derived
from the original definition suggested by Shannon Shannon (1948), who defined entropy as the
average amount of information of a probability distribution. The concept was extended to
EEG power spectral density by Inouye et al. Inouye et al. (1991). A high SE value implies a
flat, uniform spectrum with a broad spectral content (i.e., a more irregular signal), whereas a
low SE indicates a spectrum with a narrower frequency range (i.e., a more regular signal). In
this framework, SE allows for the assessment of differences in information content and signal
variability average across time. Moreover, SE enables to compare the signal dispersion between
groups, (Freeman and Quiroga, 2012) thus holding potential for the study of cognitive processing
substrates. Likewise, SE may allow for a novel approach to improve our understanding of the
altered cortical processing mechanism in mental illness, especially when considering task-related
differences between baseline and active conditions.

SE values indirectly reflect spectral EEG composition (lower values imply a more regular
signal). The EEG frequency bands likely have different functions for the coordination of activity
across cortical regions (Kopell et al., 2000; von Stein and Sarnthein, 2000; Womelsdorf et al.,
2007). Therefore, tasks involved in the activation of diverse cerebral regions are advisable to
assess SE differences in patients. The odd-ball paradigm may be useful in this respect, since it is
involved in the activation of several different brain areas (Linden et al., 1999; Polich, 2007), and
it has the additional advantage of its relative simplicity, which reduces possible performance-
related problems. Patients with schizophrenia have shown reduced delta and theta activity
200–500 ms post-stimulus during a P300 task, along with reduced ERPs amplitudes (Doege
et al., 2009), suggesting smaller SE differences in relation to task performance. The altered
inter-regional connectivity reported in schizophrenia (Kubicki et al., 2005) also suggests that
the modulations of oscillations may be abnormal during a cognitive task in patients with this
syndrome.

To date, SE has been scarcely used in schizophrenia research. In this regard, its discrimi-
natory ability in comparison with other parameters has been assessed by Sabeti et al. [(Sabeti
et al., 2009). They did not find any differences between groups in SE values during resting-state
activity. However, using a SE-based method, an increased connection entropy was described in
patients with schizophrenia in the gamma band (Schoen et al., 2011).

In the present study, we have further explored the ability of SE to characterize abnormal
cognitive processing during a P300 task elicited in patients with schizophrenia. Two additional
parameters were used to clarify the basis of possible differences in SE: median frequency (i.e., the
frequency value that divides the signal power in half) and relative power (i.e., the proportion of
total spectral power attributable to a given band). These parameters have been used to quantify
the contribution of different frequency bands to spectral power in patients with schizophrenia
and healthy controls during the baseline and the task-processing stages of an auditory odd-ball
test. Finally, the relation between significant changes in SE and clinical scores was also explored.
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3.2. Materials and methods

3.2.1. Participants
Thirty-one patients with paranoid schizophrenia, diagnosed according to the Diagnostic

and Statistical Manual of Mental Disorders 4th revised edition criteria, and 38 controls were
included in the study. Patients group was formed by 20 chronic, stably treated (CP) and 11
minimally treated patients (MTP). These patients were labeled as MTP because prior to their
inclusion they had not received any previous treatment (first episode patients, n = 8) or they
had dropped their medications for longer than 1 month. Owing to an acute psychotic state of
these patients, a small amount of haloperidol (2–4 mg) was administered with a wash-out period
of approximately 24 h before EEG acquisition. The objective was to minimize the likely bias
of only including patients able to cooperate with the EEG recording during an acute psychotic
episode and without any previous treatment. In order to rule out the acute effects of haloperidol
on power, five controls (included in the 38 controls of the study) gave their informed consent to
be studied with EEG before and 24 h after a 2 mg dose of haloperidol, approximately reproducing
the treatment conditions of MTP.

The clinical status of the patients was scored using the positive and negative syndrome scale
(PANSS) (Kay et al., 1987). We used the Spanish version of the Wechsler Adult Intelligence
Scale third edition (WAIS-III) to assess IQ. Cognitive assessment was acquired by the Spanish
version of the brief assessment of cognition in schizophrenia (BACS) scale (Segarra et al., 2011).
Employment status was stratified as: employed (currently studying or working) or unemployed
(looking for a job or retired); and educational level as completed academic courses.

Controls were recruited through newspaper advertisements and remunerated for their co-
operation. They were previously assessed by a semi-structured psychiatric interview by one
investigator (V. Molina) to discard major psychiatric antecedents (personal or familial) and
treatments.

Demographic and clinical characteristics are shown in Table 3.1.
The exclusion criteria included: (i) total intelligence quotient (IQ) below 70; (ii) a history

of any neurological illness; (iii) cranial trauma with loss of consciousness; (iv) past or present
substance abuse, except nicotine or caffeine; and (v) the presence of any other psychiatric process
or drug therapy and treatment with drugs known to act on the central nervous system. We

Table 3.1: Demographic; clinical, cognitive and EEG parameters. Values are shown as mean
(standard deviation, SD); P300 amplitudes are shown in microvolts; CP, chronic stable patients,
MTP, minimally treated patients; NA not applicable. Significance of between-groups compar-
isons is shown in the first column (Kruskal-Wallis test, ∗ p < 0.01; ∗∗ p < 0.005; ∗∗∗ p <
0.001)

CP MTP Controls

Age (years) 40.37± 10.36 33.53± 9.91 33.65± 13.12
Sex distribution (M:F) 12 : 8 7 : 4 23 : 15
School years∗ 6.62± 3.01 12.47± 2.59 NA
PANSS positive 19.26± 5.29 21.12± 3.99 NA
PANSS negative 22.00± 4.80 17.00± 4.69 NA
PANSS general 34.92± 17.56 33.63± 7.24 NA
PANSS total 76.26± 15.63 76.27± 11.37 NA
Total IQ (WAIS-III)∗∗ 86.31± 14.94 82.18± 16.76 101.93± 12.44
P3a artifact-free epochs 88.30± 9.76 80.09± 17.37 82.42± 18.52
P3b artifact-free epochs 78.65± 19.78 69.90± 18.16 84.47± 9.32
P3a amplitude (Cz) in µV 1.18± 1.14 0.68± 1.43 1.27± 1.16
P3b amplitude (Cz) in
µV ∗∗∗ 1.74± 1.21 2.78± 1.28 3.39± 1.59
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discarded toxic use in patients and healthy controls with the information gathered in the
interview and a urinalysis.

Written informed consent was obtained from the patients, their families and healthy
controls after providing full written information. The research boards of the University
Hospitals of Valladolid and Salamanca endorsed the study according to The Code of
Ethics of the World Medical Association (Declaration of Helsinki).

3.2.2. Electroencephalographic recording

EEG recordings were performed while the participants underwent an auditory odd-
ball task. To elicit P3a and P3b components, an odd-ball 3-stimulus paradigm was
employed with a 500 Hz-tone target, a 1,000 Hz-tone distracter and a 2,000 Hz-tone
standard stimulus.

Accordingly, participants heard binaural tone bursts (duration 50 ms, rise and fall
time 5 ms and intensity 90 dB) presented with random stimulus onset asynchrony of 1,000
and 1,500 ms. Random series of 600 tones consisted of target, distractor and standard
tones with probabilities of 0.20, 0.20 and 0.60, respectively.

The participants were asked to press the mouse button whenever they detected the
target tones, to close their eyes and avoid eye movements and muscle artifacts. Non-
attended target tones were discarded. Nevertheless, for distractor and standard tones
non-attended trials were included, whereas attended tones were discarded.

The EEG was recorded using a Brain Vision® (Brain Products GmbH; Munich,
Germany) equipment from 17 tin sensors mounted in an electrode cap (Electro-Cap
International, Inc.; Eaton, Ohio, USA), according to the revised 10/20 International
System. Electrode impedance was always kept under 5 kΩ. Figure 3.1 shows an example
of two raw EEG trials, from a patient with schizophrenia and a control. The stimulus
onset was represented by the red line. Baseline and active task responses were obtained
in the (-250,0) ms and (150,550) ms interval, respectively.

Recordings were referenced over Cz electrode, the sampling rate was 250 Hz, and the
signal was recorded continuously. Data were re-referenced to the average activity of all
active sensors (Bledowski et al., 2004), because common average reference is less sensitive
to microsaccadic artifacts in high frequency recordings (Keren et al., 2010). P3a and P3b
components were, respectively, calculated from distractor and target stimuli. Firstly,
ERP grand-averages were automatically performed using Brain-Vision Analyzer® (Brain
Products GmbH; Munich, Germany). Secondly, P3a and P3b were defined as the mean
of ERP grand-average amplitude in the 300–400 ms interval.

Artifact rejection was conducted, following a two-steps approach. Firstly, data were
imported into EEGLAB, and an independent component analysis (fast ICA method)
was carried out to decompose ERPs in a total of 17 components (Delorme and Makeig,
2004). After a visual inspection of the scalp maps and their temporal activation, the
components related to eyeblinks were discarded. Secondly, artifacts were automatically
rejected using an adaptive thresholding method to discard EEG segments that displayed
an amplitude exceeding a statistical- based local threshold. Thereafter, an off-line 1–70
Hz filter was applied. EEG recordings were then segmented into 800 ms-length epochs
from -250 to 550 ms with respect to the onset of the stimulus (200 samples per epoch).
The average number of selected epochs for target condition is shown in Table 3.1.

3.2.3. Spectral analysis and definition of parameters

A typical approach for characterizing electromagnetic brain recordings is based on
the analysis of their spectral content. In order to describe the power spectrum proper-
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Figure 3.1: Raw EEG trials from 17 acquisition electrodes (channels Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T5, T6, Fz, Pz and Cz) for: (a) a patient with
schizophrenia; and (b) a control participant.

ties, the PSD function was estimated. PSD represents how the power is distributed in
the frequency domain. EEG recordings are non-stationary signals, whose characteristics
may change over time (Blanco et al., 1995). Therefore, nonstationary signal analysis
techniques, such as time–frequency distributions, may be appropriate to accurately de-
scribe their properties (Aviyente et al., 2004; Poza et al., 2008). In the present study,
a sliding temporal window technique was applied to obtain the time-evolution of PSD
segments. Each EEG epoch of 800 ms (M = 200 samples) was divided into temporal
segments of 168 ms (L = 41 samples) with a 90 % overlapping. Then, 32 time intervals
identified by i (i = 1,. . . ,32) were obtained, and PSD was calculated for each temporal
window. Finally, the spectral content between 1 and 70 Hz was selected, and PSD was
normalized (PSDn).

PSD(i)
n (f) =

PSD(i)(f)
70Hz∑
f=1Hz

PSD(i)(f)

, i = 1, ..., 32. (3.1)

After the normalization, it follows that
70Hz∑
f=1

PSD(i)(f) = 1 for each i. Then, in the

band of interest [1 70] Hz, PSDn can be considered as a probability distribution. This
representation provides a suitable tool to apply several spectral parameters.

3.2.4. Spectral entropy

Entropy is a thermodynamic function, which was adapted to the context of informa-
tion theory. Its original meaning involves uncertainty of information in terms of disorder,
discrepancy and diversity (Bezerianos et al., 2003). Previous studies used SE to estimate
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the irregularity in the EEG in terms of the flatness of PSD (Abásolo et al., 2006). A
uniform spectrum with a broad spectral content (e.g., white noise) yields a high SE value.
On the contrary, a narrow power spectrum with only a few spectral components (e.g.,
a sum of sinusoids) gives a low SE value [3]. Thus, SE can be considered as a disorder
quantifier. To calculate SE, we applied the definition of Shannon’s entropy computed
over PSDn.

SE(i) = − 1

logL

70Hz∑
f=1Hz

PSD(i)
n (f) log [PSD(i)

n (f)], i = 1, ..., 32. (3.2)

where L is the number of spectral components in the [1, 70] Hz band.

3.2.5. Median frequency

An alternative way to summarize the changes in the spectral content of EEG record-
ings is the MF. It is defined as the frequency that comprises 50 % of the power (Poza
et al., 2008). MF is calculated from PSDn between 1 and 70 Hz. MF offers a simple
way of quantifying the spectral content of PSD.

MF (i)∑
f=1Hz

PSD(i)
n (f) = 0.5, i = 1, ..., 32. (3.3)

3.2.6. Relative power

The RP represents the relative contribution of several oscillatory components to the
global power spectrum. It is useful to analyze the changes in the spectral content of EEG
recordings. It is noteworthy that several advantages can be found when comparing RP to
absolute power (AP). Hence, RP is independent from the thresholds of the measurement
equipment. Likewise, RP obtains lower inter-subject variability than AP (Poza et al.,
2012). RP is calculated by summing the contribution of the spectral components included
in the conventional EEG frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α,
8-13 Hz), beta 1 (β1, 13-19 Hz), beta 2 (β2, 19-30 Hz) and gamma (γ, 30-70 Hz).

RP
(i)
fp

=
∑
f∈fp

PSD(i)
n (f), fp = {δ, θ, α, β1, β2, γ}, i = 1, ..., 32. (3.4)

3.2.7. Parameter baseline correction

We used a baseline correction process in order to achieve a stimulus-independent
characterization. The time–frequency analysis provides a value for each temporal seg-
ment. The baseline was defined as the available 250 ms pre-stimulus recording. Thus,
the values of the previous parameters in the [-250 0] ms interval were averaged to obtain
a "pre-stimulus parameter mean". The baseline correction was then carried out using
the "percent change from baseline method" (Roach and Mathalon, 2008). For that pur-
pose, firstly, the pre-stimulus parameter mean is subtracted from the response value for
each participant (mean of the values in the [250 550] ms interval), and then the result is
divided by the pre-stimulus parameter mean.
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3.2.8. Statistical analyses

Sex distribution, age, completed courses, IQ, cognitive performance (BACS) and P3a
and P3b amplitudes were compared between patients and controls using non-parametric
tests.

As a general rule, to minimize the possible influence of chronicity and treatment
upon the study parameters, we planned to compare those parameters between patients
and controls (p level corrected for multiple comparisons) and then testing whether: (a)
the same pattern appeared in the comparison between MTP and controls; and (b) no
differences were found between both patients groups.

To explore differences in SE between patients and controls, the significance maps of
both within- and between groups were assessed (Figures 3.1 and 3.2). In a first step,
the significance of SE difference within each group was assessed, comparing the mean SE
values from baseline [-250 0] ms and active [150 550] ms windows, with Wilcoxon signed-
rank tests (Bonferroni corrected, α = 0.05/17 electrodes = 0.0029). Then, between-
groups differences were assessed in: (1) baseline SE values; and (2) SE difference from
baseline to active windows, which were expressed as the SE percent of change (calculated
as [SE−SEBL

SEBL ], where SE represents the spectral entropy in the active condition and SEBL

its value at baseline; negative values indicates a SE decrease in the active condition).
These differences were tested with Mann–Whitney U tests (Bonferroni corrected, α =
0.05/17 = 0.0029; trend α = 0.0058). The analyses were supplemented by comparing
SE values between both groups of patients, and between MTP and controls, again using
Mann–Whitney U tests (uncorrected in this case, given the confirmatory purpose of this
subtest).

Classification performance of SE between patients and controls was evaluated by a
receiver operating characteristics (ROC) analysis. For that purpose, a linear discriminant
analysis (LDA) and a LDA with a leave-one-out cross-validation (LOO—CV) procedure
were assessed. LOO–CV procedure provides a nearly unbiased estimate of the true error
rate of the classification procedure (Simon et al., 2003). Average value of all the elec-
trodes was used in the classification analyses. Classification mean rate were shown in
terms of the area under ROC curve (AUC), sensitivity (percentage of patients with a
correct classification), specificity (proportion of controls properly recognized) and accu-
racy (total fraction of well-classified patients and healthy participants). Similar analyses
were repeated for the comparisons between MTP versus controls, and MTP versus CP.

The corresponding SE values at each sensor were calculated to be subsequently used
in statistical analysis (see below) and to depict the magnitude of the differences in SE
changes between groups.

To explore the basis of possible SE differences, we planned to assess the statistical
significance of the between groups differences in the variation of MF (significance maps,
Bonferroni corrected, α = 0.05/17 = 0.0029; Figure 3.4) and the relation between SE and
MF differences (using pair-wise Pearson’s r correlations between SE and MF differences
at each electrode location; Suppl. Tables 3.1 and 3.2). We also assessed between-groups
differences in baseline MF values. This analysis was completed by comparing RP differ-
ences between baseline and active condition in each band, using Wilcoxon signed-rank
tests (α = 0.00049; 0.05/102; 17 electrodes and 6 bands).

Finally, to assess the clinical relevance of possible differences in SE, stepwise mul-
tivariate linear regression was used. PANSS positive, negative and total scores were
used as dependent variables, and SE values at each sensor were introduced as predictive
variables.
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3.3. Results

Patients and controls did not differ in age or sex distribution, but they differed in
completed courses and total IQ (Table 3.1). P3b, but not P3a amplitudes, were reduced
in the patients (Table 3.1).

3.3.1. Spectral entropy

3.3.1.1. Baseline values

Figure 3.2 shows the mean SE topographic distribution in the baseline window for
each group. SE at baseline did not differ between the groups.

3.3.1.2. Spectral entropy differences

From baseline to active windows, SE showed a statistically significant and widespread
decrease in the control group. The SE decrease was almost absent in MTP and was more
spatially restricted in the stable patients (Figure 3.3a).

The comparison of SE differences (baseline to active windows) between patients and
controls revealed a significantly lower difference in the former over parietal and central re-
gions, predominantly left-sided and extending to the left frontal electrodes. This pattern
was similar in chronic and MT patients as separately compared with controls, without
statistically significant differences between patients groups (Figure 3.3c).

Additionally, ROC curves were used to assess the ability of SE values to discriminate
patients from control participants. Two methods were applied: LDA with and without
LOO-CV. The highest accuracy was achieved by LDA (76.8 %, accuracy; 71.1 %, sen-
sitivity; 83.9 %, specificity; 0.789, AUC). Lower classification statistics were reached by
LDA with LOO–CV (72.4 %, accuracy; 74.2 %, sensitivity; 71.0 %, specificity; 0.789,
AUC). Supplementary figures of this original article show ROC curves, for both classifi-
cation methodologies, to discriminate between: patients and controls, MTP and controls,
and CP and MTP.

Figure 3.2: Baseline SE (a) and MF (b) maps in the three groups. There were no
significant differences at p < 0.05 level between patients and controls, between any group
of patients and controls, or between patient subgroups. CP chronic stable patients, MTP
minimally treated patients, P patients; C controls.
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Figure 3.3: (a) SE maps at baseline and active window in the three groups (p values
of the within groups differences are shown in the right column); (b) maps depicting the
difference between active and baseline SE values; (c) topographic maps depicting the
statistical results of the between-groups differences between active and baseline variation
of SE values.

Equivalent analyses have been carried out for distractor non-attended trials. SE
showed a statistically significant decrease in the control group, whereas SE changes were
absent in MTP and CP. The comparison of SE differences between patients and controls
did not show significant differences.

3.3.1.3. Association with clinical scores

In the patients, the difference in SE between active and baseline segments at C3 was
significantly and directly associated with positive PANSS scores (R2 = 0.279; p = 0.013;
b = 0.545, t = 2.75), and total PANSS scores (R2 = 0.223; p = 0.035; b = 0.472,t =
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2.27). Given that the more positive SE values represent less SE decrease, the smaller this
decrease was from baseline to active epochs, the higher clinical scores. This association
was confirmed in MTP for total PANSS scores (R2= 0.673; p = 0.01; b = 0.575, t =
3.01).

3.3.1.4. SE differences after haloperidol in healthy participants

An equivalent analysis was performed to the signal recorded in five healthy partici-
pants, before and 24 h after a 2 mg single dose of haloperidol. We did not detect any
significant effect of haloperidol in the healthy participants. Supplementary figures of this
original article show the mean SE values obtained pre- and posttreatment.

3.3.2. Median frequency

3.3.2.1. Baseline values

MF at baseline did not differ between any group of patients and controls (Figure 3.2).

3.3.2.2. Differences in median frequency

In controls, there was a decrease in MF values across the entire cortex (-1 Hz approx-
imately), while patients showed a smaller or no difference in MF (Figure 3.4a).

The comparison of MF differences between patients and controls revealed a signifi-
cantly lower decrease in the patients in approximately the same area that showed a lower
SE difference in this group (Figure 3.4c). Again, the pattern of differences as compared-
with controlswas similar in both groups of patients, and no differences were detected
between them. Values of MF at each sensor are shown in Suppl. Table 3.2.

In patients as well as in controls, MF and SE differences were highly correlated at
each electrode (in all cases, r > 0.6, p < 0.001).

3.3.3. Relative power

Delta and theta band RP increased in patients and controls (p < 0.00049) from
baseline to active conditions, but this increase was lower in the patients group than
controls. There was a widespread RP decrease for the high frequency bands in controls
during the active condition, again smaller in the patients.

3.4. Discussion

Healthy controls showed statistically significant and widespread SE and MF decreases
from baseline to active window during an odd-ball task. The same differences were
significantly smaller in patients, and they correlated with clinical scores in this group.
Secondary analyses revealed that the power increase observed in theta and delta bands
was smaller in the patients in the active window as compared with baseline. A smaller
decrease in high frequency oscillations was also observed in the patients in the active
window.

To the best of our knowledge, the few SE studies published so far in schizophrenia have
not explored changes with cognitive processing. The reported absence of significant SE
differences in the resting state between medicated patients and controls (Sabeti et al.,
2009) is consistent with the lack of baseline differences in our sample. Likewise, in
resting conditions, increased entropy specific to the gamma band has been reported in
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Figure 3.4: (a) MF topographic maps at baseline and active window in the three groups
(values shown in Hz; p values of the within groups differences are shown in the right
column); (b) maps depicting the difference between active and baseline MF values; (c)
p values topographic maps depicting the significance of the between-groups differences
between active and baseline variation of MF values.

schizophrenia (Schoen et al., 2011). Our data demonstrate that significantly altered SE
may be found in schizophrenia in the difference in EEG signal distribution in relation
to cognitive processing. In this regard, SE may be a valuable parameter for this kind
of analysis, since it was less altered in patients than in controls with the processing of
target stimuli. According to our data, this approach may be more sensitive to differences
between patients with schizophrenia and controls than the comparison of resting SE
values. Indeed, classification analyses revealed a significant discrimination between our
patients and controls based on SE change that also held when only MTP patients were
considered.

Two classification methodologies have been evaluated, LDA with and without LOO–
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CV. In the case of LDA with LOO–CV, the data of one participant are excluded from
the training set one at a time and then classified on the basis of the threshold calculated
from the data of all other participants (Gómez et al., 2009). Despite the fact that
the classification statistics decrease with this procedure, it provides a nearly unbiased
estimate of the true error rate of the classification method (Simon et al., 2003).

MF and SE differences were highly correlated in all groups, suggesting that the SE
decrease in controls was contributed by a slowing of the EEG signal during the active part
of the test. In our controls, the RP comparisons indicate a decrease in high frequency
bands, which was lower in the patients and likely underlie their smaller MF difference.
This result is coherent with the lower reduction in gamma power observed during a P300
test in patients with schizophrenia [28], as well as with previous reports of higher gamma
noise power in schizophrenia during a P300 task (Diez et al., 2013; Suazo et al., 2012;
Winterer and Weinberger, 2004). Noise power represents the amount of gamma activity
not related to task performance (i.e., the power difference in this band between the total
and the averaged signals). It is likely that such a smaller modulation of fast oscillations is
reflected on a lower entropy decrease in our patients. Taken together with this, the lower
SE and MF difference in our patients suggest a relatively rigid and disorganized cortico-
cortical transmission during task performance in schizophrenia, which may in part relate
to a hyper-active baseline state.

The lower decrease in SE observed in our patients is probably also influenced by
a lower increase of theta and delta oscillations during the active window as compared
with controls. Previous results revealed higher theta amplitudes in healthy participants
during target processing in a similar odd-ball task (as compared to non-target) (Doege
et al., 2009). Similarly, delta and theta event-related spectral perturbation (the amount of
power change from baseline) was lower in patients with schizophrenia but not schizotypal
personality disorder as compared to controls during a P300 test (Shin et al., 2010). In this
context, our data give further support to a reduced response in these bands during cogni-
tive activation in the schizophrenic brain. Slow theta (von Stein and Sarnthein, 2000) and
beta (Kopell et al., 2000) oscillations have a role in the synchronization between relatively
distant regions, while gamma band may be more involved in the short-range communi-
cation (Kopell et al., 2000; Womelsdorf et al., 2007). Besides, the dominant frequency
of a neuronal assembly is dependent on its size (i.e., on the number of participating
neurons), the lower frequencies involving larger assembly sizes [33]. Slow bands oscilla-
tions have been proposed to subtend cortico-cortical interactions (Devrim et al., 1999).
Recent researches using functional (Fair et al., 2009; Supekar et al., 2009) and diffusion
magnetic(Hagmann et al., 2010) resonance suggest a shift from functional segregation
(i.e., more local functioning) to integration across development. In this framework, the
lower change (i.e., the lesser increase in slow bands RP) in our patients during the active
window suggests a cortical functioning similar to that expected in earlier developmental
stages.

The direction of the association between SE percent of change (active minus baseline
divided by baseline SE) and clinical scores was positive in patients, suggesting that
the lower changes in SE during the P300 task were associated with a higher clinical
severity (i.e., patients with smaller SE decrease in the active condition would have larger
PANSS scores). Our patients did not show any impaired behavioral performance in
the test, suggesting that the decreased SE difference did not influence the performance
of a simple task. However, more complicated tasks, such as those running in real life
(understanding others intentions, integrating information sources and so on) might be
hampered in the patients as a consequence of the more rigid cerebral function revealed by
their lower SE decrease. Speculatively, in this context, the direct association between SE
and positive symptoms may arise as a consequence of an impaired capacity for processing
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real-life stimuli. Such a problem may in turn have a relation with the aberrant salience
proposed in schizophrenia (Kapur, 2003), in whose framework the discrimination of target
(i.e., relevant) stimuli from background activity may be impaired. Therefore, this may
be expressed as a reduced difference in the spectral composition between baseline and
active conditions of an odd-ball paradigm, as well as in higher positive symptoms such as
delusions and hallucinations. In a previous study, resting gamma entropy was unrelated
to symptoms (Schoen et al., 2011), suggesting that the smaller capacity for SE difference
may correlate to the clinical profile, rather than its baseline increase.

It is possible that smaller SE differences in our patients were contributed by the
treatment received. However, this possibility is unlikely the main reason for that altered
SE, since there was no SE difference between MT and chronic patients. In addition,
pre- and post-haloperidol SE differences between baseline and active condition in healthy
controls did not show significant results. Moreover, a comparison of resting EEG entropy
values in patients with schizophrenia between pre- and post-treatment states revealed
that antipsychotics reduced entropy in frontal regions and did not affect its values in
temporal regions (Takahashi et al., 2010). Hence, the small entropy reduction from
baseline to active conditions found in our study is unlikely secondary to the treatment
received. Although multi-scale entropy was used in that study (Takahashi et al., 2010),
instead of SE, a high degree of correlation between both measurements can be assumed.
In the same direction, it seems likely that neuroleptic-naïve patients show higher EEG
complexity values than healthy controls and their chronic treated counterpart one. In
any case, similar studies in neuroleptic-naïve cases are needed to adequately address
this point. Moreover, although our cases showed the usual P3b amplitude reduction in
schizophrenia, they did not show the P3a reduction also found in this syndrome (Jahshan
et al., 2012; Mondragón-Maya et al., 2013; Rissling et al., 2013). This issue could be
related to the relatively small sample size, in particular of MTP.

Some limitations in our study merit further consideration. Firstly, the sample size is
small especially in patients’ subtypes. Thus, a larger database including recordings from
both patients’ subtypes is needed to confirm the performance of the methods used in the
current research. Secondly, all patients have been diagnosed as paranoid schizophrenia;
due to the fact that it is the most prevalent schizophrenia subtype. Finally, SE has certain
limitations; the spectral-based method is sensitive to spike or artifacts. Nevertheless, it
should be taken into account that a two-step artifact rejection approach was applied,
minimizing their impact.

As a conclusion, SE may be a useful parameter for the study of cognitive processing
abnormalities in schizophrenia. The reduced SE difference during the processing of a
target stimulus in patients was correlated with clinical severity and may be informative
of the underlying altered cortical functions in this syndrome.
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Abstract:The analysis of the interaction between novelty and relevance may be of interest to
test the aberrant salience hypothesis of schizophrenia. In comparison with other neuroimag-
ing techniques, such as functional magnetic resonance imaging, electroencephalography (EEG)
provides high temporal resolution. Therefore, EEG is useful to analyze transient dynamics in
neural activity, even in the range of milliseconds. In this study, EEG activity from 31 patients
with schizophrenia and 38 controls was analyzed using Shannon spectral entropy (SE) and me-
dian frequency (MF). The aim of the study was to quantify differences between distractor (i.e.,
novelty) and target (i.e., novelty and relevance) tones in an auditory oddball paradigm. Healthy
controls displayed a larger SE decrease in response to target stimulus than in response to dis-
tractor tones. SE decrease was accompanied by a significant and widespread reduction of MF
(i.e., a significant slowing of EEG activity). In comparison with controls, patients showed a
significant reduction of changes in SE in response to both target and distractor tones. These
differences were also observed in patients that only received a minimal treatment prior to EEG
recording. Furthermore, significant changes in SE were inversely correlated to positive and total
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symptoms severity for schizophrenia patients. Our findings support the notion that schizophre-
nia is associated with a reduced response to both novelty and relevance during an auditory P300
task.

4.1. Introduction

The analysis of bioelectrical changes from baseline to the processing stages of an auditory
discrimination task using EEG recordings may help to better understand the dynamic informa-
tion processing abnormalities observed in schizophrenia (Uhlhaas et al., 2010). In particular,
exploring aberrant salience correlates in psychosis might be useful (Inouye et al., 1991). Some
studies suggest that salience could be altered in schizophrenia (Cortinas et al., 2008). Specif-
ically, a heightened response to novel but irrelevant stimuli (Cortinas et al., 2008) and/or a
decreased response to relevant stimuli (Gur et al., 2007) has been associated with this syn-
drome. Therefore, comparing the response to novelty and relevance between a group of patients
with schizophrenia and healthy controls should be of interest to the study of this illness. Salience
detection is a short-lived process (Monville et al., 2006). Both novelty (Grondin et al., 2003)
and salience (Gralewicz et al., 2003) detection occur in the few hundred milliseconds following
stimulus presentation. Thereby, due to its temporal resolution, EEG may be a useful tool to
study their respective contributions to schizophrenia.

Auditory ERP oddball paradigms are adequate methods for studying novelty and relevance.
For that purpose, they include standard (i.e., frequent), distractor and target (i.e., infrequent)
tones. Target and distractor tones are randomly interspersed among a series of standard tones.
Distractor tones usually have the same frequency as target tones and a pitch between the target
and standard tones. Nevertheless, unlike target tones, distractor tones do not require a response.
Hence, distractor tones only possess a novelty component, since they are irrelevant for the task.
However, target tones possess both novelty and relevance. A classical approach to analyzing
evoked ERP components is to perform the grand-average across trials in the time domain. In
the widely used oddball paradigm, the participant is instructed to respond to the target and
ignore the distractor tones. Event-related cerebral activity can be observed by averaging in
the time domain, while cerebral activity not related to the event is canceled, allowing for the
assessment of amplitude and latency of the corresponding ERP. The P3a ERP component is
related to novelty. Thus, it is determined from the grand-average amplitude of the responses to
the distractor stimuli. On the other hand, P3b is also elicited by infrequent tones but, unlike
P3a, it is task relevant. Thereby, P3b is computed from the grand-average amplitude of the
responses to the target stimuli (Demiralp et al., 2001; Polich, 2007).

Previous studies indicate that salience detection may be impaired in schizophrenia. This
impairment should be reflected in a reduced response to the relevant stimuli of an oddball task
(where the participant is instructed to respond only to the target stimuli). Indeed, during the
performance of this task, a reduced cerebral activity has been found after the relevant stimuli
onset in schizophrenia (Bramon et al., 2004). That reduced activity was supported by a decrease
in P3b (i.e., the response to the relevant stimuli) amplitude (Bramon et al., 2004). However,
an overall reduced response to novelty may also contribute to salience detection impairment.
In oddball tasks, the response to novelty but not relevance can be assessed by means of the
P3a potential. This potential arises after the presentation of the distractor stimuli to which the
participant should refrain from responding (i.e., irrelevant). A reduced P3a amplitude has also
been found in schizophrenia (Hermens et al., 2010; Rissling et al., 2013). It has been observed in
first episodes (Kaur et al., 2011) and high-risk participants (Kaur et al., 2011; Mondragón-Maya
et al., 2013).

Classical ERP components analyses have several limitations, like the lack of simultaneous
information about the time and spectral dynamics of oscillatory components (Roach and Math-
alon, 2008; Shannon, 1948). For this reason, time–frequency analyses are carried out. Spectral
parameters can yield additional information about time–frequency components of the response
to novelty and relevance. Firstly, the median frequency (MF) is a classical technique that has
been used to analyze the distribution of the spectral content of a signal. It summarizes the
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whole spectral content by means of a measure of the frequency that comprises 50 % of signal
power (Poza et al., 2007). Secondly, the Shannon SE has been computed to gain further insights
into the characterization of the power spectrum. SE quantifies the degree of disorder of a signal.
It is a measure derived from the original notion suggested by Shannon (Shannon, 1948), who
defined entropy as the average amount of information of a probability distribution. This concept
was extended to EEG power spectral density by Inouye et al. (Inouye et al., 1991). Thus, a
high SE value implies a flat, uniform power spectrum with a broad spectral content (i.e., a more
complex signal), whereas a low SE indicates a power spectrum with a narrower frequency range
(i.e., a more regular signal). In an auditory oddball approach, SE is useful for assessing differ-
ences in information content and signal variability average across time. Hence, it can be helpful
for the study of cognitive processing substrates. Likewise, SE may contribute to improve our
understanding of the altered cortical processing mechanism in mental illness, especially when
considering task-related differences between baseline and stimulus response conditions (Bachiller
et al., 2014).

To date, MF and SE have been barely used in schizophrenia research. In this regard, Sa-
beti et al. (Sabeti et al., 2009) assessed their discriminatory ability in comparison with other
parameters. They did not find any differences in SE between a group of patients and controls
during resting-state activity. However, using a SE-based method, an increased connection en-
tropy in the gamma band was described in patients with schizophrenia (Schoen et al., 2011). In
a recent study, our group described a widespread decrease of SE across electrodes in response
to the target tone of an auditory oddball task in healthy controls (Bachiller et al., 2014). In
that work, patients with schizophrenia showed smaller changes in SE than controls in response
to the target tone (Bachiller et al., 2014). Moreover, changes in SE were associated to clinical
severity (Bachiller et al., 2014).

In the present research, we further explored the alterations in stimulus processing, likely
associated with aberrant salience in schizophrenia. To that end, we studied the changes in SE
between baseline and response to both distractor and target tones during a P300 task. Fur-
thermore, we analyzed the responses to relevant (P3b) and novel but irrelevant (P3a) stimuli of
participants from our previous study (Bachiller et al., 2014), in order to compare the differences
in responses (i.e., changes in SE) to novelty and relevance.

4.2. Materials and methods

4.2.1. Participants
The cohort of participants enrolled in the study was formed by 31 patients with schizophre-

nia and 38 healthy controls. Patients were diagnosed according to the Diagnostic and Statistical
Manual of Mental Disorders 5th edition (American Psychiatric Association, 2013) criteria and
were divided into 20 chronic stably treated patients (CP) and 11 minimally treated patients
(MTP). Prior to their inclusion, MTP did not receive any previous treatment (first episode pa-
tients, n = 8) or they had dropped their medications for longer than 1 month. Owing to an acute
psychotic state of MTP group, a small amount of haloperidol (2–4 mg) was administered with a
wash-out period of approximately 24 h before EEG acquisition. The objective was to minimize
the likely bias of only including patients able to cooperate with the EEG recording during an
acute psychotic episode and without any previous treatment. The stable patients were previ-
ously treated with atypical antipsychotics: risperidone (12 cases, 2–6 mg/day), olanzapine (5
cases, 5–20 mg/day), quetiapine (2 cases, 300–600 mg/day), aripiprazole (1 case, 10–15 mg/day)
and clozapine (4 cases, 100–350 mg/day). Four patients received two different antipsychotics.
Doses and drugs were unchanged during the 3 months preceding EEG recordings.

The clinical status of the patients was scored using the Positive and Negative Syndrome
Scale (PANSS) (Kay et al., 1987). The intelligence quotient (IQ) was acquired using the Span-
ish version of the Wechsler Adult Intelligence Scale 3rd edition (WAIS–III). Demographic and
clinical characteristics for both groups are shown in Table 4.1.

The control group was composed of age- and gender-matched participants. They were re-
cruited through newspaper advertisements and remunerated for their cooperation. To discard
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Table 4.1: Demographic; clinical, cognitive and EEG parameters. Values are shown as mean
(standard deviation, SD); P300 amplitudes are shown in microvolts (µV); CP, chronic stable
patients, MTP, minimally treated patients; NA not applicable; M male; F female. Results of
between-groups statistical analyses are shown in the first column (Kruskal-Wallis test, ∗ p <
0.01; ∗∗ p < 0.005; ∗∗∗ p < 0.001)

CP MTP Controls

Total participants (N ) 20 11 38
Age (years) 40.37± 10.36 33.53± 9.91 33.65± 13.12
Sex distribution (M:F) 12 : 8 7 : 4 23 : 15
School years∗ 6.62± 3.01 12.47± 2.59 NA
PANSS positive 19.26± 5.29 21.12± 3.99 NA
PANSS negative 22.00± 4.80 17.00± 4.69 NA
PANSS total 76.26± 15.63 76.27± 11.37 NA
Total IQ (WAIS-III)∗∗ 86.31± 14.94 82.18± 16.76 101.93± 12.44
Number of artifact-free
epochs 78.65± 19.78 69.90± 18.16 84.47± 9.32

P3a amplitude (Pz) in µV 2.26± 1.17 2.63± 1.23 2.53± 1.36
P3b amplitude (Pz) in µV ∗∗ 1.74± 1.21 2.78± 1.28 3.39± 1.59

major psychiatric antecedents (personal or familial) and treatments, they were previously
assessed by a semi-structured psychiatric interview by one researcher (V. Molina).

The exclusion criteria can be summarized as follows: (i) total IQ below 70; (ii) a
history of any neurological illness; (iii) cranial trauma with loss of consciousness; (iv)
past or present substance abuse, except nicotine or caffeine; and (v) the presence of any
other psychiatric process or drug therapy and treatment with drugs known to act on the
central nervous system. We discarded toxic use in patients and healthy controls with the
information gathered in the interview and a urine analysis.

Written informed consent was obtained from patients, their families and healthy con-
trols after providing full written information. The research boards of the Hospitals of
Valladolid and Salamanca endorsed the study according to The Code of Ethics of the
World Medical Association (Declaration of Helsinki).

4.2.2. Electroencephalographic recording

EEG data were continuously recorded from 17 electrodes using a BrainVision ®

(Brain Products GmbH; Munich, Germany) amplifier system. Electrodes were mounted
in an electrode cap (Electro-Cap International, Inc.; Eaton, Ohio, USA) at Fp1, Fp2,
F3, F4, F7, F8, C3, C4, P3, P4, O1, O2, T5, T6, Fz, Pz and Cz. They were placed
according to the revised 10/20 international system. Electrode impedance was always
kept under 5 kΩ. Participants were instructed to sit comfortably, relaxed and with their
eyes closed to avoid muscle and eye movements. Thirteen minutes-length ERP recordings
were acquired at a sampling rate of 250 Hz, while the participants underwent a three-
stimulus auditory oddball task. The tones (duration 50 ms, rise and fall time 5 ms
and intensity 90 dB) were presented with different frequencies: a 500 Hz-tone target;
a 1,000 Hz-tone distractor; and a 2,000 Hz-tone standard stimulus. Random series of
600 tones consisted of target, distractor and standard tones with probabilities of 0.20,
0.20 and 0.60, respectively. The participants were asked to press a button whenever
they detected the target tones. P3a and P3b components represent the evoked response,
which is associated with event-related changes phase-locked to the stimulus onset (Roach
and Mathalon, 2008). They were defined as the mean of ERP grand-average amplitude



4.2 MATERIALS AND METHODS 45

in the 300–400 ms interval from distractor and target stimuli, respectively.
The recordings were referenced over Cz electrode. Data were re-referenced to the

average activity of all active sensors (Bledowski et al., 2004), since common average
reference is less sensitive to microsaccadic artifacts in high-frequency recordings (Keren
et al., 2010). Then, each ERP recording was filtered using a 1–70 Hz finite impulse
response (FIR) filter and a 50 Hz notch filter. Artifact rejection was conducted following a
two-steps approach. Firstly, an independent component analysis (ICA) was carried out to
decompose ERPs in a total of 17 components (Delorme and Makeig, 2004). After a visual
inspection of the scalp maps and their temporal activation, the components related to eye-
blinks were discarded. Secondly, artifacts were automatically rejected using an adaptive
thresholding method to remove EEG segments that displayed amplitudes exceeding a
statistically based local threshold criterion. EEG recordings were then segmented into
800 ms-length epochs from -250 ms to 550 ms with respect to the onset of the stimulus
(200 samples per epoch). The average number of selected epochs for target condition is
shown in Table 4.1.

4.2.3. Spectral analysis and definition of parameters

Electromagnetic brain recordings can be characterized by the analysis of their spectral
content. Nevertheless, EEG recordings are nonstationary signals, whose characteristics
may change over time (Blanco et al., 1995). Nonstationary signal analysis techniques,
such as time-frequency distributions, may be appropriate to accurately describe their
dynamic properties (Aviyente et al., 2004; Poza et al., 2008). In this work, the short-
time Fourier transform (STFT) was used to assess the timeÐfrequency maps of ERP
signals. STFT is a sliding temporal window technique used to obtain the time evolution
of the PSD. Each 800 ms-length ERP epoch (M = 200 samples) was divided into temporal
segments of 168 mslength (L = 41 samples) with a 90 % overlapping. Thus, we obtained
32 time intervals identified by i (i = 1, ..., 32) (Blanco et al., 1995). Finally, the spectral
content between 1 and 70 Hz was selected, and PSD was normalized to a scale from 0 to
1, leading to the normalized PSD (PSDn).

PSD(i)
n (f) =

PSD(i)(f)
70Hz∑
f=1Hz

PSD(i)(f)

, i = 1, ..., 32. (4.1)

After the normalization, it follows that
70Hz∑
f=1

PSD(i)(f) = 1 for each i. Consequently,

PSDn can be considered as a probability distribution in the band of interest [1 70] Hz.
This representation provides a suitable tool for the application of several spectral pa-
rameters. Figure A1 shows four examples of normalized spectrograms for distractor and
target conditions, corresponding to a healthy control and a patient with schizophrenia.
That figure depicts the stimulus response percent of change from baseline.

4.2.4. Spectral entropy

Entropy is a thermodynamic function whose original meaning involves uncertainty
of information, in terms of disorder, discrepancy and diversity (Bezerianos et al., 2003).
Entropy was adapted to the context of information theory by Shannon (Shannon, 1948).
Hence, SE can be defined as a disorder quantifier. A uniform spectrum with a broad
spectral content (e.g., white noise) yields a high SE value. On the contrary, a narrow
power spectrum with only a few spectral components (e.g., a sum of sinusoids) gives a low
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SE value (Inouye et al., 1991). To calculate SE, we applied the definition of Shannon’s
entropy computed over PSDn (Poza et al., 2008).

SE(i) = − 1

logL

70Hz∑
f=1Hz

PSD(i)
n (f) log [PSD(i)

n (f)], i = 1, ..., 32. (4.2)

where L is the number of spectral components in the [1, 70] Hz band.

4.2.5. Median frequency

Median frequency provides an alternative way to summarize the changes in the spec-
tral content of EEG recordings. It is defined as the frequency that comprises 50 % of the
power (Poza et al., 2007). MF is calculated from PSDn between 1 Hz and 70 Hz.

MF (i)∑
f=1Hz

PSD(i)
n (f) = 0.5, i = 1, ..., 32. (4.3)

4.2.6. Parameter baseline correction

Baseline correction was carried out in order to obtain a stimulus-independent charac-
terization. The time-frequency analysis provides a SE and a MF value for each temporal
segment. The baseline and the stimulus response were defined as the available [-250 0]
and [150 550] ms intervals, respectively. The baseline correction was then carried out
using the "percent change from baseline method" (Roach and Mathalon, 2008). For that
purpose, a pre-stimulus parameter mean was firstly obtained as the average of base-
line values. Then, the pre-stimulus parameter mean was subtracted from the stimulus
response values, and the result was divided by the pre-stimulus parameter mean. Fi-
nally, values were averaged in order to obtain a baseline-corrected parameter for each
participant.

SE =

(
SE(i)|i∈response − SE(i)|i∈baseline

SE(i)|i∈baseline

)
, i = 1, ..., 32. (4.4)

where 〈·〉 denotes the temporal average in the baseline and response windows.
Figure A2 depicts MF and SE baseline-corrected values for distractor and target

conditions, corresponding to a healthy control and a patient with schizophrenia. This
figure illustrates time-varying differences between the response to distractor and target
stimulus.

4.2.7. Statistical analyses

The statistical analyses were carried out in a four steps approach: (1) demographic,
clinical and EEG parameters analysis; (2) exploratory analysis; (3) electrode-level sta-
tistical analysis; and (4) clinical correlation analysis.

Initially, sex distribution, age, completed courses, IQ, and P3a and P3b amplitudes
were compared between patients and controls.

Thereafter, data distribution was assessed by an exploratory analysis. The Kolmogorov-
Smirnov and Levene tests were used to check for normality and homoscedasticity, respec-
tively. The results indicate that parametric test assumptions did not hold.

To explore the electrode-level differences between patients and controls, both within-
and between-groups significance maps were computed. In a first step, within group differ-
ences were assessed using Wilcoxon signed-rank tests (Bonferroni corrected, α = 0.05/17
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electrodes = 0.0029) for the target and the distractor tones, comparing SE and MF val-
ues from baseline [-250 0] ms and stimulus response [150 550] ms windows. In a second
step, between-groups differences for SE and MF baseline corrected values were assessed
by means of Mann-Whitney U -tests (Bonferroni corrected, α = 0.05/17 = 0.0029; trend
α = 0.0058). The analyses were complemented in a second step by further statistical
comparisons between both groups of patients (i.e., CP and MTP) using Mann-Whitney
U -tests (uncorrected in this case, given the confirmatory purpose of this subtest). In
order to minimize the possible influence of chronicity and treatment on spectral param-
eters, SE and MF were compared between patients and controls (p level corrected for
multiple comparisons). Thereafter, we assessed whether: (a) the same pattern appeared
in the comparison between MTP and controls, and (b) no differences were found be-
tween both patients groups. Additionally, stimulus responses to distractor and target
tones were compared in a third step. Wilcoxon signed-rank tests (Bonferroni corrected,
α = 0.05/17 electrodes = 0.0029) were performed to assess within-group differences for
baseline-corrected SE and MF responses to both stimuli.

Finally, correlations between spectral parameters and clinical relevance were evaluated
by means of stepwise multivariate linear regressions. PANSS positive, negative and total
scores were used as dependent variables and SE values at each sensor were introduced
as predictive variables. In addition, the relationship between antipsychotic dose in mg
of chlorpromazine (CPZ) equivalents/day, and change of MF and SE was assessed using
Spearman’s rho coefficients.

4.3. Results

Table 4.1 summarizes demographic, clinical and EEG parameters, as well as between-
group comparisons. Nonsignificant differences were found in age or sex distribution
between patients and controls. Total IQ and P3b amplitude was significantly lower in
patients in comparison with controls. On the contrary, P3a amplitude did not differ
significantly between patients and controls.

4.3.1. Within-group differences

4.3.1.1. Healthy controls

Healthy controls showed a global SE decrease (except at occipital electrodes) from
baseline to target stimulus response (Figure 4.1a). Likewise, controls displayed a statis-
tically significant and global MF decrease in all electrodes (Figure 4.2a). In response to
the distractor tone (Figure 4.1b), controls showed a statistically significant SE decrease,
localized over central, left parietal and posterior frontal regions. In addition, controls
displayed a statistically significant and widespread MF decrease (Figure 4.2b). In this
group, the assessment of the differences between responses to distractor and target tones
revealed a statistically significant larger SE and MF decrease in response to target (Figure
4.3), including central, frontal and parietal sensors.

4.3.1.2. Patients

Patients showed a statistically significant SE decrease from baseline to target re-
sponse, mainly localized around Pz (Figure 4.1a). A SE decrease was not observed in the
MTP group considered alone. A MF decrease was observed in response to target over
central and right frontal sensors, but not in the MTP group considered alone (Figure
4.2a).
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Figure 4.1: SE topographic maps for target (a, c) and distractor (b, d) stimuli. (a) SE
topographic maps at baseline, active response to target tone and within-groups statistical
analyses; (b) SE topographic maps at baseline, active response to distractor tone and
within-groups statistical analyses; (c), (d) topographic maps depicting the difference
between active and baseline SE values for each group and between-groups statistical
analyses for target and distractor tones, respectively. SE spectral entropy, P patients,
CP chronic patients, MTP minimally treated patients, C controls.

In response to the distractor tone (Figure 4.1b), patients did not show any statistically
significant difference in SE (not for all patients or for the MTP group considered alone).
On the other hand, patients with schizophrenia exhibited a MF decrease over anterior
central sensors, though this result was not observed in the MTP group considered alone
(Figure 4.2b).

In the patients group, statistically significant differences between target and distractor
responses were observed when analyzing changes in SE. Distractor SE was significantly
smaller than target SE over a localized region around Pz (similar results were obtained
for both CP and MTP groups). The MF decrease in patients was significantly larger in
the target response than in the distractor response over parieto-central and right frontal
electrodes (Figure 4.3).

4.3.2. Differences between patients and controls

The between-group analyses of SE response to target revealed a significantly smaller
SE response in patients with schizophrenia than in controls (both for CP and for MTP
groups assessed separately), over posterior and central regions, and extending to left
parietal and left frontal sensors (Figure 4.1c). Patients also showed a significantly smaller
MF change in response to target than controls over posterior, central and left parietal
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Figure 4.2: MF topographic maps for target (a, c) and distractor (b, d) stimuli. (a) MF
topographic maps at baseline, active response to target tone and within-groups statistical
analyses; (b) MF topographic maps at baseline, active response to distractor tone and
within-groups statistical analyses; (c), (d) topographic maps depicting the difference
between active and baseline MF values for each group and between-groups statistical
analyses for target and distractor tones, respectively. MF median frequency, P patients,
CP chronic patients, MTP minimally treated patients, C controls.

regions (also including right parietal sensors in the MTP group; Figure 4.2c). A slight
SE change in response to distractor was observed. Although statistically significant
differences were obtained, the change in SE was smaller in patients with schizophrenia
than in controls, over posterior and central regions. MF decrease in response to distractor
was significantly smaller for patients than controls over Pz (Figures 4.1d, 4.2d).

4.3.3. Clinical relevance

Changes in SE from baseline to target were associated with positive and total PANSS
scores (i.e., the smaller the SE decrease from baseline to target, the higher the clinical
scores). This finding was in agreement with the results reported in a previous study
(Bachiller et al., 2014).

A similar pattern was observed when the SE response to distractor was analyzed.
Hence, the difference in SE between distractor and baseline segments at C3 was chosen
as a direct predictor of positive (R2 = 0.263; p = 0.021; b = 0.513, t = 2.53) and total
(R2 = 0.242; p = 0.028; b = 0.492, t = 2.39) PANSS scores in the stepwise regression
(Figure 4.4).

Finally, the relations between mean dose, and change in SE and MF were not statis-
tically significant (q < 0.15).
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Figure 4.3: Comparison of the percent of change in SE (a) and MF (b) from baseline
to active window for each group. Each row depicts the averaged percent of change
from baseline in each group for distractor and target tones, as well as the within-group
differences between both conditions. SE spectral entropy, MF median frequency.

4.4. Discussion and conclusions

In the present study, we found that bioelectrical responses to both novelty and rel-
evance during an auditory oddball task were attenuated in patients with schizophrenia,
especially in the MTP group. In addition, we observed that the amount of modulation
with both target and distractor tones was correlated with clinical symptoms. Specifically,
patients with schizophrenia with slight SE changes in response to both distractor and
target tones exhibited increased severe positive and total symptoms.

In one hand, the response to the distractor stimuli involves novelty detection. On
the other hand, the response to the target stimuli is associated with novelty and rele-
vance detection, as well as with response to relevance. Healthy controls showed a larger
modulation of the oscillatory activity in response to the target than patients, which sug-
gests a more intense and/or widespread activation of cerebral resources in response to
relevance. In this group, both MF and SE displayed a larger response to target in com-
parison with distractor, over central, parietal and frontal regions (Figure 4.3). This result
would indicate that relevance detection was associated with a slowing of the spectrum
in these areas. In particular, both MF and SE showed a significant change with target,
but not with distractor tones, over orbitofrontal sensors. This finding seems coherent
with the proposed role for inferior frontal areas in relevance detection in healthy partic-
ipants (Hattori et al., 1993). Moreover, the large response to target tones for healthy
participants would agree with an increased coherence of relatively distant regions under-
lying salience detection, which is in turn consistent with functional magnetic resonance
imaging (fMRI) data (Ardekani et al., 2002; Casey et al., 2001). However, the activity
modulation was significantly smaller in patients under both conditions (in particular in
the MTP group) than in controls, which would suggest that response to both novelty
and salience is flattened in schizophrenia. Nevertheless, this attenuated response may
still contribute to aberrant salience (i.e., by conferring less relevance to those stimuli
that under normal conditions should be perceived as more salient). Other researchers
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Figure 4.4: Scatterplots showing the association between SE changes in response to dis-
tractor tones during a P300 task and positive (a) and total (b) PANSS scores. SE changes
represent the proportion of change ((SE active-SE baseline)/SE baseline). Thereby, more
positive values imply less entropy decrease during the active condition (target or distrac-
tor). These associations are similar to those found with the responses to target tones in
a previous study SE spectral entropy.

reported reduced connectivity in distributed networks underlying salience processing in
schizophrenia (Rozas and Garcia, 1997), which is in agreement with the reduced response
observed in our patients. Orbito-frontal and anterior cingulate areas are key components
of the salience network (Olsson et al., 1995). In our study, sensors over these regions
were conspicuously inactive in response to target tones, indicating a salience detection
malfunction in schizophrenia.

The large and extended entropy decrease in controls for both conditions can be as-
sociated with an irregularity decrease of the EEG signal during the processing of target
and (to a lesser degree) distractor tones. SE decrease was accompanied by a similar
MF decrease, which suggests an increasing contribution of low-frequency bands to the
EEG spectrum. The absence of significant P3a amplitude differences between patients
and controls could be related to the weak statistically significant results obtained by SE
for distractor tones. In addition, it may be associated with an improved ability of SE
and MF to detect relevant neural activity differences when compared to amplitude-based
methods. In healthy participants, P3a has been associated with a transitory increase of
theta oscillations (Demiralp et al., 2001; Polich, 2007), which seems consistent with the
observed MF decrease. Transitory coordination of EEG activity among distant regions
could be mediated by theta rhythms (von Stein and Sarnthein, 2000). The observed MF
decrease may support this fact, as well as previous fMRI studies that obtained a cor-
relation between target detection in auditory oddball tasks and a spatially distributed
cortical and subcortical activation (Ardekani et al., 2002; Casey et al., 2001).

In a previous fMRI study, brain activity from CP with schizophrenia was acquired
during a three-tone auditory oddball task (Laurens et al., 2005). Their findings indi-
cated that perfusion was increased in both patients and controls during novel stimuli as
compared to nontarget baseline over limbic-paralimbic and association cortices, as well
as subcortical structures [26]. These results are in agreement with the EEG spectrum
modulation across all electrodes observed in our study. Moreover, also in accordance
with our findings, the results obtained by Laurens et al. (Laurens et al., 2005) showed a
widespread hypoactivation in response to novelty in patients. Nevertheless, they did not
detect statistically significant differences in target versus novel stimuli processing, which
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may be due to the limited temporal resolution of fMRI. Certainly, if any differences be-
tween target and distractor processing are circumscribed to a short temporal window,
they could go undetected with fMRI.

The reduced response observed in our study is consistent with a hypodopaminergic
state in the cortex, as proposed in schizophrenia (Davis et al., 1991; Okubo et al., 1997).
Indeed, met/met homozygotes for the catechol-O-methytransferase (COMT) gene (with
smaller efficacy in degrading synaptic dopamine and, thus, with a longer duration of
dopamine in the synapses) showed an enhanced P3a amplitude at Fz (Heitland et al.,
2013). It could be possible that a cortical hypodopaminergia underlies the reduced
response to relevance and novelty in our patients. Nevertheless, this does not imply that
hypodopaminergia is common to all patients with schizophrenia.

Potential limitations of the study merit further discussion. All patients with schizophre-
nia were receiving antipsychotic treatment that may have flattened their response. Clearly,
our data need to be replicated in untreated and preferably neuroleptic-naïve patients.
However, medication is unlikely the only reason for the present findings, since: (i) SE
and MF modulation was smaller in MTP than in CP, and (ii) in our previous study
(Bachiller et al., 2014), we found that the administration of single doses of haloperidol
did not modify SE or MF response to target in a group of healthy participants. Like-
wise, it is noteworthy that the cohort of subjects enrolled in the study was limited. The
statistical power analyses indicated that this sample size is sufficient for obtaining sta-
tistically significant results. Nevertheless, a large database would be helpful to confirm
our findings.

In summary, patients with schizophrenia showed less SE change in response to both
distractor and target tones than healthy controls. Furthermore, changes in SE were
related to clinical symptoms. These results support the notion that schizophrenia is
associated with a decreased response to both relevance and novelty, which in turn might
contribute to the aberrant salience in this syndrome through a hampered differentiation
between background and salient stimuli.
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Abstract: The present study investigates the neural substrates underlying cognitive processing
in schizophrenia patients. To this end, an auditory 3-stimulus oddball paradigm was used to
identify P3a and P3b components, elicited by rare-distractor and rare-target tones, respectively.
Event-related potentials (ERP) were recorded from 31 schizophrenia patients and 38 healthy
controls. The P3a and P3b brain-source generators were identified by time-averaging of low-
resolution brain electromagnetic tomography (LORETA) current density images. In contrast
with the commonly used fixed window of interest (WOI), we proposed to apply an adaptive
WOI, which takes into account subjects’ P300 latency variability. Our results showed different
P3a and P3b source activation patterns in both groups. P3b sources included frontal, parietal
and limbic lobes, whereas P3a response generators were localized over bilateral frontal and supe-
rior temporal regions. These areas have been related to the discrimination of auditory stimulus
and to the inhibition (P3a) or the initiation (P3b) of motor response in a cognitive task. In addi-
tion, differences in source localization between schizophrenia and control groups were observed.
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Schizophrenia patients showed lower P3b source activity in bilateral frontal structures and the
cingulate. P3a generators were less widespread for schizophrenia patients than for controls in
right superior, medial and middle frontal gyrus. Our findings suggest that target and distractor
processing involves distinct attentional subsystems, both being altered in schizophrenia. Hence,
the study of neuroelectric brain information can provide further insights to understand cognitive
processes and underlying mechanisms in schizophrenia.

5.1. Introduction

Alterations in cognitive processing in schizophrenia have long been assessed using
EEG recordings (Roach and Mathalon, 2008). In particular, it is usual to obtain the
ERP as the average of EEG epochs time-locked to repeated external stimulus or events.
Reduced P300 amplitude during an auditory oddball paradigm is one of the most con-
sistent findings in schizophrenia (Bramon et al., 2004); however, the neural bases of this
amplitude reduction are incompletely understood. In this regard, the analyses focused
on the localization of neural generators can contribute to elucidate possible sources of
altered information processing in schizophrenia (Mulert et al., 2004).

The oddball paradigm is a common experimental design used in ERP analyses to
obtain the P300 wave. The 3-stimulus variant of the auditory-oddball paradigm is
characterized by infrequent-distractor stimuli interspersed randomly into a sequence of
frequent-standard and rare-target. This paradigm allows the examination of cognitive
processing as response to both relevant and irrelevant stimuli (Polich, 2007). The re-
sulting P300 wave includes two components: the P3a, evoked by distractor stimuli for
which no subject-response is expected; and the P3b, elicited by target stimuli for which
the subject is instructed to respond. The neural processing as a response to auditory
distractor tones has been related to bottom-up attentional mechanisms; hence, P3a may
be generated whether sufficient attentional focus is engaged. In contrast, P3b seems
to be related to conscious top-down target processing, likely contributing to processing
the stimulus information and performing cognitive response (Polich, 2007; Strobel et al.,
2008). In previous reports, we found a blunted ERP modulation in schizophrenia as
response to both target (Bachiller et al., 2014) and distractor (Bachiller et al., 2015a)
tones during an oddball paradigm. Thus, the analysis of the differences in neural pattern
generators between schizophrenia patients and healthy controls becomes an interesting
research topic to clarify the neural substrate of reduced P300 amplitude in schizophrenia.

Source imaging techniques may help to detect neural generators that contribute to
the scalp recorded ERPs, resulting in an acceptable compromise between spatial and
temporal resolutions. The inverse solution (i.e. the computation of 3-D intracerebral
images of electric neuronal activity based on scalp-recorded EEG) would provide useful
information on the time course and localization of brain functions (Pascual-Marqui et al.,
2002). There is no unique solution to the inverse problem; nevertheless, the low-resolution
brain electromagnetic tomography (LORETA) is one of the most reliable methods for
localizing ERP electrical activity and it is associated with relatively low error rates (Jung
et al., 2012; Pascual-Marqui et al., 2002). LORETA has been widely used for source
localization in psychiatric disorders, such as schizophrenia or depression (Kawasaki et al.,
2004; Mientus et al., 2002). Moreover, auditory P3a and P3b source localization has
been previously addressed in healthy controls using LORETA and functional magnetic
resonance imaging (fMRI). P3a generators are localized in anterior cingulate, frontal
area and parietal cortices (Polich, 2007; Strobel et al., 2008; Volpe et al., 2007), whereas
P3b sources include amore distributed network, involving superior and medial temporal,
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posterior parietal, hippocampal, cingulate and frontal structures (Polich, 2007; Strobel
et al., 2008; Volpe et al., 2007; Wronka et al., 2012).

It is noteworthy that the previous LORETA findings are influenced by one impor-
tant technical shortcoming: although ERP analyses show a considerable inter-subject
variability of P300 latency (Campanella et al., 1999), LORETA source imaging studies
commonly used a large fixed post-stimulus window of interest (WOI), like [250 500] ms
(Higuchi et al., 2008; Kawasaki et al., 2007; Sumiyoshi et al., 2006), [280 450] ms (Wang
et al., 2003, 2010), [240 420] ms (Pae et al., 2003), [227 383] ms (Volpe et al., 2007), or
[400 700] ms (Wronka et al., 2012).

In this study we proposed a new LORETA approach based on P300 wave (P300
latency adaptive WOI ) to properly localize P300 brain-source generators in each subject.
To the best of our knowledge, this is the first study that analyzes the sources of both
P3a and P3b in schizophrenia using LORETA. Hence, this research is aimed at: (i)
analyzing the performance of the adaptive WOI method in comparison to conventional
fixedWOI analysis; and (ii) applying the adaptive WOI method to analyze the differences
of auditory P3a and P3b underlying cortical sources between schizophrenia patients and
healthy controls.

5.2. Materials and methods

5.2.1. Subjects

Thirty-one patients with paranoid schizophrenia (Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, DSM-IV-TR, criteria) and 38 healthy controls were
recruited. Schizophrenia group was composed by 20 chronic stably treated patients, 7
fist-episode patients and 4 patients who had dropped their medications for a period longer
than 6 months. Chronic patients were previously treated with atypical antipsychotics.
First-episode patients have not been received previous antipsychotic treatment, except
for a brief time interval of less than 72 h prior to EEG acquisition. No medications were
administered to the patients during the 12 h preceding the EEG recording. Controls were
initially assessed by a semi-structured psychiatric interview to discard major psychiatric
antecedents and treatments. Detailed description of treatments and doses, as well as
exclusion criteria are detailed in previous reports (Bachiller et al., 2015a,b). Symptoms
were scored using the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987).
Socio-demographic and clinical characteristics for both groups are shown in Table 5.1.

The research boards of the Hospitals of Valladolid and Salamanca (Spain) endorsed
the study according to The Code of Ethics of the WorldMedical Association (Declara-
tion of Helsinki).Moreover, written informed consent was obtained from patients, their
caregivers and healthy volunteers.

5.2.2. EEG recording procedure

EEG recordings were performed while subjects underwent a 3-stimulus auditory-
oddball paradigm. Participants heard a random series of 600 binaural tones (90 dB;
50 ms duration; 5 ms rise and fall-time) consisting of standard (2000 Hz tone), distractor
(1000 Hz tone) and target tones (500 Hz tone) with probabilities of 0.6, 0.2 and 0.2,
respectively (Bachiller et al., 2015a). For each subject, 13 min of EEG activity and
stimulus markers were continuously recorded using a 17-channel (Fp1, Fp2, F3, F4, C3,
C4, P3, P4, O1, O2, F7, F8, T5, T6, Fz, Pz and Cz) EEG system (BrainVision®, Brain
Products GmbH; Munich, Germany). Electrodes were placed according to the revised
10/20 International System. Participants were relaxed and with their eyes closed. EEG
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Table 5.1: Socio-demographic and clinical characteristics of the cohort of subjects enrolled in
the study. Values are shown as "mean ± standard deviation, SD". Post-stimulus P300 latency
was calculated over a target response using a 9-sample moving average. P3a and P3b amplitudes
were obtained from distractor and target responses, respectively. Significance of between-group
comparisons is shown in the first column (Kruskal–Wallis test, ∗ p < 0.05; ∗∗ p < 0.001). aWOI
adaptive window of interest, CP chronic patients, MTP minimally treated patients, M male, F
female, NA not applicable.

Schizophrenia patients Controls

Age (years) 36.25± 9.62 33.35± 12.26
Gender (M:F) 21 : 10 23 : 15
PANSS positive 19.19± 4.81 NA
PANSS negative 19.52± 5.69 NA
PANSS total 73.19± 15.94 NA
Duration of the illness (months) 79.73± 103.37 NA
Number of artifact-free epochs 88.85± 16.15 84.47± 9.32
P300 latency at Pz (ms) 435.23± 67.82 413.05± 72.95
aWOI length (ms) 124.26± 61.66 117.47± 47.53
aWOI lower limit (ms) 375.48± 61.66 357.79± 66.33
aWOI upper limit (ms) 499.74± 85.76 475.26± 91.94
P3a amplitude (Pz) in µV ∗∗ 0.70± 0.82 1.62± 1.21
P3b amplitude (Pz) in µV ∗ 2.16± 1.18 3.10± 1.47

data were recorded at a sampling frequency of 250 Hz and referenced over Cz electrode.
Electrode impedance was always kept under 5 kΩ. Each EEG recording was off-line re-
referenced to the common average (Bledowski et al., 2004) and digitally filtered using a
[0.5 40] Hz finite impulse response filter. Then, a three-step artifact rejection method was
applied. Firstly, an independent component analysis was performed to decompose EEG
signals (Delorme and Makeig, 2004). After a visual inspection of the scalp maps and their
temporal activation, components related to eye blinks were discarded. In a second step,
continuous EEG data were segmented from –100 ms before target stimulus onset to 900
ms after onset. In a third step, artifacts were automatically rejected using an adaptive
thresholding method (Bachiller et al., 2015a). Finally, the responses to distractor and
target tones were baseline-corrected by subtracting the 100 ms pre-stimulus mean and
they were averaged across time-locked trials to obtain ERP data for each channel (Pae
et al., 2003).

5.2.3. Identification of ERP components

The P300 wave is an ERP component commonly used to assess the neural under-
pinnings of cognition (Polich, 2007). P300 amplitude is obtained from ERP data as the
most positive voltage between 250 and 550 ms, whereas P300 latency is defined as the
time point from stimulus onset at which the peak amplitude is found (Polich, 2007). A
P300 latency variability has been found across different subjects, which may be related
to inter-subject anatomical variability and differences in cognitive attentional processing
(Campanella et al., 1999; Polich and Herbst, 2000). In addition, it has been previously
shown that P300 latency varies with the discriminability of relevant stimuli: the most
difficult is to identify the stimuli, the greater the latency (Furdea et al., 2009; Sellers
and Donchin, 2006; Squires et al., 1977). Indeed, this result can be also observed in
our database: Figure 5.1a shows a large P300 latency variability for healthy controls
and schizophrenia patients. An adaptive WOI takes into account changes in peak la-
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tency across subjects. Therefore, the selection of the WOI can be critical to characterize
neural generators (Kim et al., 2014).

In spite of such latency variability, most of the previous P300 source studies applying
LORETA have been carried out using a fixed WOI. Recent researches proposed the use
of two different fixed WOIs, one for schizophrenia patients and other for healthy controls
(Jung et al., 2012; Kim et al., 2013, 2014). Nevertheless, this methodology does not
take into account the P300 variability among subjects within each group. In order to
overcome this limitation, and therefore to improve P3a and P3b detection and source
localization procedures, we propose an algorithm for identifying a subject-specific WOI
based on N200–P300 waves. The N200 wave is a negative voltage observed as a response
to a visual or an auditory task. It reflects the detection of some type of mismatch between
stimulus features (Folstein and Van Petten, 2008).

The proposed subject-specific algorithm was divided into two steps. Firstly, the
ERP wave was filtered by a moving average of 9 samples (36 ms), a smoothing procedure
commonly used in P300 detection (Furdea et al., 2009; Sellers and Donchin, 2006). Then,
a subject-adaptive WOI threshold was established using the 75% rise time from N200
amplitude to P300 amplitude (i.e. the time to reach 75% of the P300 peak amplitude
(Mooney and Prather, 2005)).

WOIthreshold = N200Amp + 0.75 · (P300Amp −N200Amp) . (5.1)

Adaptive WOI interval was obtained as the time points where the ERP amplitude
increases up to WOIthreshold before P300 and decreases down to WOIthreshold after
P300. Figure 5.1 displays P300 latency values and adaptiveWOI limits for all subjects.
In addition, it shows how adaptive WOI is better fitted to the P300 component than a
fixed WOI.

5.2.4. sLORETA

Bioelectrical ERP neural sources distribution was assessed using standardized LORETA
(sLORETA) software, which estimates a particular solution of the non-unique EEG in-
verse solution (Pascual-Marqui et al., 2002). sLORETA software divides the brain into a
total of 6239 cubic voxels with 5 mm resolution and estimates the source current density
(i.e. the sum of electric neuronal activity on each defined voxel) (Pascual-Marqui et al.,
2002). In particular, sLORETA source current density are calculated from scalp-recorded
ERP using a realistic head model from Montreal Neurological Institute (MNI) (Mazz-
iotta et al., 2001), in which the 3-D solution space was restricted to only the cortical gray
matter (Lancaster et al., 2000). Compared to previous versions of LORETA, sLORETA
is superior in temporal resolution and has fewer localization errors (Kim et al., 2014).
Thus, sLORETA has been used in several studies to investigate brain sources during the
generation of ERP components, such as P300 (Jung et al., 2012; Kim et al., 2013, 2014;
Sumiyoshi et al., 2009).

In order to consider P300 latency changes across subjects, P3a and P3b source im-
ages for each participant were averaged using the time window defined by their subject-
adaptive WOI. Figure 5.1d shows an example of differences in brain activation patterns
for fixed and adaptive WOI.

5.2.5. Statistical analysis

Statistical differences between P3a and P3b sLORETA images were assessed by t-
tests, computed for log-transformed sLORETA current density at each voxel (Volpe et al.,
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Figure 5.1: Latency and adaptive WOI (aWOI ) for each subject. Healthy controls were
displayed at left column and schizophrenia patients at right column. A large latency
and aWOI variability across subjects can be observed. (a) P300 latency values (in
seconds) are represented using a black "X" and aWOI limits are depicted using an
arrow. Each arrow represents a particular subject (n = 38 for healthy controls and
n = 31 for schizophrenia patients). They were sorted along Y-axis according to P300
response latency. Green arrows represent aWOI limits for the two subjects displayed
in the Figure 5.1c. (b) P300 aWOI density distribution for each group. The bar plot
displays a probability map for each group. It represents the percentage of subjects (in
%) whose adaptiveWOI is considered for each post-stimulus time sample. (c) Baseline
corrected ERP and 9-samples moving average waveforms at Pz electrode for a healthy
control (left) and a schizophrenia patient (right). The P300 and N200 components, as
well as fixed WOI (fWOI ) and aWOI ranges, are highlighted. In addition, the figure
shows the comparison between the length of aWOI and conventional fWOI [250 550]ms
post-stimulus. (d) sLORETA cortical current density maps are represented for: (i)
aWOI ; (ii) [250 550]ms fWOI ; (iii) [250 350] ms-window; (iv) [350 450] ms-window; (v)
[450 550] ms-window. Source activity for fWOI is more distributed over the brain than
for aWOI, since sLORETA averaging over a fWOI includes some source information
non-related to P300 component. Furthermore, detailed 100 ms-length window analyses
show how the source density changes over time.
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2007). Schizophrenia patients were compared to healthy controls in order to identify
the effect of illness in neural generators. Within-group differences between P3a and
P3b were evaluated using voxel-by-voxel paired-sample t-tests,whereas voxel-by-voxel
independent t-tests were conducted to analyze between-group statistics. To correct for
multiple comparisons, two nonparametric permutations tests (NPT) based on the theory
of randomization were applied: (i) voxel intensity and (ii) cluster size (Nichols and
Holmes, 2002). Voxel intensity NPT calculates a critical t-value by means of a random
sample of all the possible permutations to estimate the distribution of the maximum t-
statistic. Based on the hypothesis that the activated/deactivated brain region is expected
to occur in a cluster of voxels, rather than in isolated voxels, cluster size NPT is a
version of voxel intensity test, which allows the calculation of the critical cluster size to
be considered significant. Both NPTs provide a corrected p-value (pcor), which is used
to identify statistically significant results.

5.3. Results

Table 5.1 presents the grand-average ERP amplitude and latency values, as well as
the adaptive WOI length and the corresponding aWOI limits for each group. Statistically
significant differences between groups (Kruskal–Wallis test, p < 0.05) were only obtained
for P3a (p = 0.0007) and P3b (p = 0.0036) amplitudes. Although a large P300 latency
and an adaptive WOI variability across subjects have been observed (Figure 5.1), non-
statistical differences between groups were obtained.

Based on the observation of normalized grand-averages of auditory P3a and P3b
brain sources for schizophrenia patients and healthy controls (Figure 5.2), P3a response
sources were mainly localized in bilateral frontal (superior, medial and inferior gyrus)
and right superior temporal lobes. On the other hand, P3b sources were observed over a
large distributed network, including cingulate gyrus, as well as bilateral frontal lobe and
parietal lobe (Figure 5.2).

Figure 5.3 depicts sLORETA t-statistics maps for within-group comparisons between
distractor and target stimulus type. Both groups exhibit a greater P3b source current
density than P3a response. Statistical differences were located mainly in bilateral limbic
lobe and parietal structures (voxel intensity NPT, pcor < 0.05). Furthermore, a P3b

Figure 5.2: Grand-average of normalized cortical current density in healthy controls
(left) and schizophrenia patients (right) as a response to distractor (P3a) and target
(P3b) tones. In order to reduce inter-subject variability, sLORETA current density at
each voxel is normalized by the sum of current density across all voxels. Therefore, the
sum of normalized voxel densities will be the unit.
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Figure 5.3: Three dimensional sLORETA maps of voxel-by-voxel paired sample t-
statistics for healthy controls and schizophrenia patients. The cortical current density
of P3b and P3a components is compared for each subject. The scale shows negative
(blue) and positive (yellow) t-values for which alpha is statistically significant after voxel
intensity NPT correction for multiple comparisons. An increase of P3b source activity
from P3a is represented in yellow and vice versa.

source current density increase was observed for schizophrenia patients mainly in bilateral
parietal and limbic lobes, as well as superior and medial frontal regions (Figure 5.3, Table
5.2).

A smaller source current density in schizophrenia patients in comparison with con-
trolswas obtained for both components: P3a and P3b. Nevertheless, differences in neural
activation patterns depended on stimulus tone. Figure 5.4 shows the statistically signifi-
cant t-values distribution for P3a and P3b (cluster size NPT, pcor < 0.05). In particular,
P3b source current density was significantly smaller for schizophrenia patients than for
controls in superior, middle and medial frontal gyrus, and cingulate gyrus. On the other
hand, reduced P3a in schizophrenia patients was mainly observed in frontal areas (Table
5.3).

5.4. Discussion

The aim of the present studywas to provide further insights into the neural correlates
of target (P3b) and distractor (P3a) processing in schizophrenia. A 3-tone auditory-
oddball paradigm was used to characterize P3b and P3a brain sources and to compare
them between schizophrenia patients and controls.

Firstly, regarding the validity of the proposed P300 latency adaptive WOI algorithm,
our research shows how the selection of the WOI influences the sLORETA findings. A
wide fixed WOI has been commonly used to solve the problem of P300 latency variability
(Kim et al., 2014). However, sLORETA image averaging over a fixedWOI can include
several activities strictly non-related to the P300 component. A fixed WOI commonly
obtains a smoother source current density that includes a large source activity in medial
and superior frontal structures. This frontal activation may be caused by the inclusion
of N200 component in the fixed WOI. As shown in Figure 5.1d, an adaptive WOI al-
lows focusing on the brain-source generators of P300 component. Consequently, we can
conclude that an adaptive WOI may improve P300 source localization procedures.
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Table 5.2: Results of within-group (P3b vs P3a) analyses. Critical t-value (tcrit) was estimated
for each comparison applying a statistical threshold (p < 0.01) to voxel intensity NPT. Gyrus
and BA are only displayed when they obtained statistically significant differences after multiple
comparisons correction (voxel intensity NPT, t > tcrit). Bold names of gyrus and BA represent,
respectively, the gyrus and the BA that contain the maximum voxel statistical t-value. NS
indicates that non-significant differences are found.

p-value voxel
intensity threshold

Critical
t-value

Gyrus BA

BA3
Paracentral Lobule BA7
Postcentral Gyrus BA18

Healthy
controls

0.01 4.426 Precuneus BA19
Cuneus BA23
Cingulate Gyrus BA24
Posterior Cingulate BA30

BA31

Medial Frontal Gyrus
Superior Frontal Gyrus BA3
Paracentral Lobule BA4
Precentral Gyrus BA5

Schizophrenia
patients 0.01 4.975 Postcentral Gyrus BA6

Superior Parietal Lobule BA7
Precuneus BA8
Sub-gyral BA23
Cingulate Gyrus BA24
Posterior Cingulate Gyrus BA31

5.4.1. P3a and P3b neural generator patterns

Our results using an adaptive WOI suggest that common brain areas are activated as a
response to target (P3b) and distractor (P3a) tones (Figure 5.2), including right superior
temporal gyrus and bilateral frontal lobe. This finding is in agreement with previous
reports (Bledowski et al., 2004; Strobel et al., 2008; Volpe et al., 2007). Prior research has
demonstrated that discrimination between standard and non-standard infrequent stimuli
reflects frontal lobe activation, sensible to attentional allocation (Goldstein et al., 2002;
Polich, 2007; Volpe et al., 2007). Our findings also concern regions distinctly activated
by distractor and target stimuli. Likewise, differences in P300 brain-source generators
are coherent with previous studies in healthy subjects: P3a generators were identified
over frontal structures and P3b source activation over a distributed network, including
frontal, temporal, limbic and parietal lobes (Anderer et al., 2003; Volpe et al., 2007;
Wronka et al., 2012). It is noteworthy that these different patterns may have functional
significance. P3b is originated as a temporo-parietal mechanism that performs memory
and executive control functions (Polich, 2007; Polich and Criado, 2006). On the contrary,
P3a reflects the inhibition of a response engaged automatically with the detection of the
stimulus deviance (Goldstein et al., 2002). In this sense, frontal lobe activity related
to the hippocampus can be associated with the distractor-triggered inhibitory processes
(Polich, 2007).
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Table 5.3: Results of between-group brain-source generator analyses. Cluster size NPT were
carried out to obtain the critical size of the cluster of voxels and their associated statistical pcor
value. Gyrus and BA are only displayed when they obtained statistically significant differences
after multiple comparisons correction (i.e. they formed a greater cluster of voxels than the
critical size). Bold names of gyrus and BA represent, respectively, the gyrus and the BA that
contain the maximum voxel statistical t-value. NS indicates that non-significant differences are
found.

pcor cluster
size

Critical size (number
of voxels) Gyrus BA

Superior Frontal Gyrus BA6
Middle Frontal Gyrus BA8

P3a 0.038 587 Medial Frontal Gyrus BA9
Cingulate Gyrus BA24

BA32

Medial Frontal Gyrus BA11
Anterior Cingulate BA10
Superior Frontal Gyrus BA25

P3b 0.033 617 Rectal Gyrus BA31
Orbital Gyrus BA32
Cingulate Gyrus BA33

5.4.2. Between-group differences

We found statistically significant differences in the activation of brain sources between
patients and controls for both P3a and P3b. We are aware of only one study addressing
brain source localization of auditory P3a in schizophrenia (Takahashi et al., 2013). Its
results revealed widespread deficits in schizophrenia patients (including frontal, temporal
and parietal lobes) with post-central maximum. Our patients showed a lower P3a source
activation in frontal (BA6, BA8, BA9) and cingulate regions (BA24, BA32) (Figure
5.4, Table 5.3). Accordingly, within-group differences (P3b vs. P3a) pointed out the
role of these areas in auditory 3-stimulus oddball characterization (Table 5.2). In this
regard, superior and middle frontal (BA6, BA9), cingulate (BA32) and posterior cingulate
gyrus (BA23) were commonly involved in auditory P3a generation for healthy controls
(Strobel et al., 2008; Volpe et al., 2007). Interestingly, P3a current density reduction
for schizophrenia patients in comparison with controls was mainly observed in the right
hemisphere of superior, medial and middle frontal cortex (Figure 5.4, Table 5.3). A
right lateralization has been associated with the detection of behaviorally relevant or
unexpected stimuli (Strobel et al., 2008). Right hemisphere is crucially involved in neural
processes underlying adaptive responses to novelty, mainly in perceptual and attention
paradigms (Strobel et al., 2008). According to our results, this adaptive function may
be hampered in schizophrenia patients. It might hypothetically contribute to aberrant
salience in this syndrome through a decreased response to relevance (Kapur, 2003).

In comparison to controls, P3b source activation was smaller in schizophrenia patients
over superior and medial frontal gyrus (BA10, BA11), orbital frontal gyrus (BA11), bi-
lateral anterior cingulate gyrus (BA33) and cingulate gyrus (BA31, BA32, BA25). Our
findings are consistent with previous auditory 2-tone oddball studies focused on P3b
source localization in schizophrenia. Sabeti et al. (Sabeti et al., 2011) described a hy-
poactivation for schizophrenia patients (n = 20) in the cingulate area. Kim et al. (2014)
showed decreased cingulate (BA31) activation and a negative correlation with negative
symptoms in the posterior cingulate (BA31) for schizophrenia patients (n = 34). Like-
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Figure 5.4: Differences in brain activation patterns between schizophrenia patients and
healthy controls using voxel-by-voxel independent t-statistics. The scale shows negative
(blue) and positive (yellow) t-values for which alpha is statistically significant after cluster
size NPT correction for multiple comparisons. Negative t-values represent larger source
activity in control group than in schizophrenia patients and vice versa.

wise, Mucci et al. (Mucci et al., 2007) reported a P3b current density reduction in
18 schizophrenia patients compared to 20 controls during a 3-tone oddball paradigm
in bilateral frontal and cingulate areas. These studies and our results support the role
of cingulate on information processing deficits in schizophrenia. Furthermore, the de-
creased P3b source activation in Brodmann areas 10 and 11 obtained by schizophrenia
patients is consistent with the left middle frontal decrease of current density observed in
16 schizophrenia patients by Higuchi et al. (Higuchi et al., 2008). Interestingly, in spite
of the aforementioned decrease of P3b sources in frontal areas for schizophrenia patients,
the differences between P3b and P3a were larger in patients than in controls (Figure 5.3).
This result may indicate an inefficient hyperactivation during the processing of target
stimuli. Moreover, our findings showed a left-lateralized P3b increase in comparison with
P3a for controls, in contrast to the bilateral temporal increase for schizophrenia patients
(Figure 5.3). These findings agree with previous auditory oddball reports for healthy
controls. A statistically significant P3b increase in left BAs 7 and 19 was previously
reported (n = 32) (Volpe et al., 2007), as well as a P3b increase in left precuneus (BA19)
(n = 28) (Wronka et al., 2012). It is noteworthy that target response involves the acti-
vation of associative cortices involved in attentional, perceptual and memory processes
(Volpe et al., 2007). In this regard, Corbetta and Shulman (Corbetta and Shulman,
2002) pointed out that left parietal cortex might be involved in assembling associations
that link the appropriate stimuli to the response for a given task.

Taken together with previous literature, our findings suggest a relevant role of frontal
and cingulate hypoactivation in the deficient response of schizophrenia patients in P300
paradigms (Bramon et al., 2004). Neuropathological (Benes, 2009; Hashimoto et al.,
2008) and functional (Guerrero-Pedraza et al., 2012; Lynall et al., 2010) abnormalities
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in these regions have been associated with schizophrenia. They might underlie their
decreased activation during the task performance. The frontal lobe has been related
to the performance of discriminatory tasks (Pae et al., 2003), whereas the cingulate
has been assumed to be involved in both the effortful initiation of motor response and
the inhibition of motor responses (Liddle et al., 2001). Therefore, deficient capacities for
discrimination, inhibition and/or initiation of responses may mediate the role of cingulate
and frontal regions in P3b source activity.

5.4.3. Limitations and future work

Some limitations of this research merit further consideration. It would be interesting
to evaluate sources of brain activity over a larger database of first-episode patients and
relatives. The comparison between chronic and first-episode patients may contribute
to characterize the effect of antipsychotic treatment in the neural generators.Moreover,
results were limited by the technical constraints associated with sLORETA analysis.
However, the effects of these limitations were reduced by using randomization and NPT
procedures. Finally, future studies will complement the obtained sLORETA patterns
analyzing detailed time-course source activation, effective and functional connectivity at
the source level, and cross-frequency neural coupling.

5.4.4. Conclusions

In summary, this research supports the use of an adaptive WOI to accurately localize
the P300 brain-source generators. Furthermore, we found that cortical source generators
during an auditory-oddball task are altered in schizophrenia patients. P3a and P3b
source differences between groups were mainly obtained in areas related to stimulus
discrimination capacity and motor response tasks. Hence, the study of sLORETA neural
current density can improve the pathophysiological characterization of schizophrenia.
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Abstract: Objective. The aim of this research is to explore the coupling patterns of brain
dynamics during an auditory oddball task in schizophrenia. Approach. Event-related electroen-
cephalographic (ERP) activity was recorded from 20 schizophrenia patients and 20 healthy
controls. The coupling changes between auditory response and pre-stimulus baseline were cal-
culated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using
three coupling measures: coherence, phase-locking value and Euclidean distance. Main results.
Our results showed a statistically significant increase from baseline to response in theta coupling
and a statistically significant decrease in beta-2 coupling in controls. No statistically significant
changes were observed in schizophrenia patients. Significance. Our findings support the aber-
rant salience hypothesis, since schizophrenia patients failed to change their coupling dynamics
between stimulus response and baseline when performing an auditory cognitive task. This result
may reflect an impaired communication among neural areas, which may be related to abnormal
cognitive functions.
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6.1. Introduction

According to the Diagnostic and Statistical Manual of Mental Disorders, fifth edi-
tion (DSM-V) of the American Psychiatric Association (American Psychiatric Associa-
tion, 2013), schizophrenia is a psychiatric disorder characterized by positive and negative
symptoms, frequently accompanied by impaired cognitive processing. Schizophrenia usu-
ally starts in late adolescence or early adulthood and may become a chronic condition.
It has been proposed that the longer the period of untreated psychosis, the worse the
outcome (Marshall et al., 2005). Therefore, schizophrenia patients should be identified
and treated as early as possible. It is considered a relevant socioeconomic problem for
health care systems. Thereby, schizophrenia accounts for an approximately 20% decrease
in life expectancy compared with the general population (Laursen et al., 2014).

Schizophrenia has been identified as a dysconnection syndrome, which is associated
with a reduced capacity to integrate information between different brain regions (Friston,
1998; Stephan et al., 2009). In addition, it has been related to an aberrant assignment
of salience to external objects and internal representations (Kapur, 2003). During the
performance of a cognitive task, schizophrenia patients tend to pay more attention to
non-salient events and less to salient events (Kapur, 2003). Relevance attribution likely
involves diverse cerebral regions and their interconnections. As a consequence, many
efforts have been devoted to identifying abnormalities in the cortical connections and
their relation to schizophrenia symptoms and cognitive performance (Uhlhaas and Singer,
2010).

The disconnection and aberrant salience hypotheses of schizophrenia may, at first
glance, seem unrelated. However, recent formulations of the disconnection hypothesis,
in terms of predictive coding and hierarchical Bayesian inference, suggest that aberrant
salience can be understood in terms of aberrant precision. Precision corresponds to the
salience or confidence in sensory cues and boosts sensory signals (prediction errors) that
are considered to convey interesting information. Crucially, in biologically plausible pre-
dictive coding schemes, precision is encoded by the gain of neuronal populations reporting
prediction errors. This means that aberrant precision corresponds to abnormalities of
cortical gain control that follow from a disconnection at the synaptic level – secondary
to neuromodulatory failures (Adams et al., 2013). This is important from our perspec-
tive because one of the key determinants of gain control is synchronous activity (e.g.,
synchronous gain). Furthermore, the top-down control of precision or gain is thought
to mediate attention that also implicates fast synchronous activity (e.g., (Engel et al.,
2001; Landau and Fries, 2012). In summary, we hypothesized that schizophrenia patients
would show a failure to contextualize stimulus processing through a failure to optimize
the synchronous gain of neuronal populations, leading to a functional disintegration or
disconnection. The physiological correlates of this disconnection would be expressed in
terms of a failure to modulate synchronous activity; particularly when asked to attend
to target stimuli.

Neural oscillations are the main mechanism for enabling coordinated activity during
normal brain functioning. Impairments in these oscillations may contribute to pervasive
network dysfunction in schizophrenia (Uhlhaas and Singer, 2010). Oscillations in low
frequency ranges (delta, theta and alpha) modulate long-range synchronization (Sauseng
et al., 2004; von Stein et al., 2000), whereas high frequency ranges (beta and gamma)
reflect synchronization in both local cortical networks (Womelsdorf et al., 2007) and large-
scale networks (Uhlhaas, 2013). Impaired neural oscillations in schizophrenia may lead
to functional disconnections between and within cortical regions (Friston, 1998). Most
schizophrenia studies used structural magnetic resonance imaging (MRI), functional MRI
or diffusion tensor imaging to study brain organization (Gur and Gur, 2010; Kubicki
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et al., 2007; Molina et al., 2010; Shenton et al., 2001). On the other hand, EEG provides
high temporal resolution and allows for the assessment of the spatio-temporal patterns
of neural activity and their interactions in the time range of milliseconds (Meehan and
Bressler, 2012; Uhlhaas, 2013). In this regard, ERP analyses are used to gain further
insights into the neural mechanisms underlying cognitive dysfunctions (Uhlhaas et al.,
2008). ERP coupling patterns based on time-frequency representations could provide
a more sensitive measure to describe schizophrenia alterations than resting-state EEG
analysis (Uhlhaas, 2013; Uhlhaas and Singer, 2006). In particular, schizophrenia aberrant
attribution of salience may be evidenced by task-related functional connectivity anomalies
(Palaniyappan et al., 2012). Thereby, the examination of neural integration mechanisms
may be useful for characterizing schizophrenia pathophysiology.

In this study, all coupling parameters are measures of functional connectivity, defined
as the statistical dependence between remote physiological activities. Functional neu-
ral coupling has been commonly analyzed looking at the relationships between specific
sensors by means of measures of connectivity and synchrony between two signals (Bruns
and Eckhorn, 2004; Uhlhaas, 2013; Varela et al., 2001). This should be contrasted with
effective connectivity, which is defined as the directed or causal inference of one system
over another and can be assessed by direct modification of the former (e.g., via trascra-
nial magnetic stimulation). Our focus on various measures of functional connectivity is
motivated by the notion that disconnectivity in schizophrenia is accompanied by a failure
to modulate synchronous activity, which is one aspect of functional connectivity.

In this regard, ERP coherence and phase synchronization have been previously used
to characterize schizophrenia neural coupling (Bob et al., 2008; Ford et al., 2002). They
provide an effective measure for the integration of neural ERP response (Uhlhaas, 2013).
In particular, transitory phase synchronization of brain activity plays an important role
in neural synaptic connections (Uhlhaas et al., 2010). Perception, memories, emotions
and other complex mental processes seem to be partially supported by the transient
synchronization of synaptic activity across the brain (Fell and Axmacher, 2011). Never-
theless, different coupling patterns have been found depending on the applied measure
(Uhlhaas, 2013). Some studies reported reduced functional connections in patients, using
coherence or phase synchronization, but they revealed a lack of agreement (Hinkley et al.,
2010; Stephan et al., 2009). Several studies reported reduced functional connections in
patients between frontal and temporal cortical areas (Ford et al., 2002) and connections
involving parietal and occipital cortex (Spencer et al., 2003). Tauscher et al (Tauscher
et al., 1998) revealed a reduced local coherence for adjacent electrodes in frontal area,
but they did not obtained differences for inter-hemispheric coherence analysis. Certainly,
further studies are still required to appropriately assess neural functional connectivity
patterns associated with schizophrenia.

In order to obtain a comprehensive time-dependent characterization of neural cou-
pling in schizophrenia, in this study WC and PLV have been calculated. They are
useful to explore the relationship between the auditory oddball responses in different
frequency bands, in terms of connectivity and synchrony. Furthermore, these connec-
tivity and synchrony parameters have been complemented by a similarity measure: the
ED. Similarity measures have been proposed to assess the statistical distance between
probability distributions (Rosso et al., 2006). Applied to brain activity, ED provides an
alternative description of neural interactions. It has been previously used to character-
ize neural patterns from different brain disorders, such as epilepsy (Rosso et al 2006),
Alzheimer’s disease (Bruña et al., 2012) or cerebral ischemia (Geocadin et al., 2000). In
sum, WC, PLV and ED provide three different conceptual frameworks to study neural
coupling. Hence, they will be useful to test our working hypothesis that aberrant salience
in schizophrenia is related to several deficits in processing task relevant information. On
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the basis of this idea, two research questions have been addressed: (i) can the proposed
methodology be useful to provide further insights into the underlying brain dynamics
associated with schizophrenia?; (ii) can a global pattern of ERP coupling changes be-
tween the auditory response and pre-stimulus baseline be defined to characterize normal
and schizophrenia neural dynamics? In conclusion, we hoped to show that our com-
plementary functional connectivity measures could disclose coupling changes induced by
attended stimuli in control subjects and an attenuation of this induced functional con-
nectivity in schizophrenia.

6.2. Materials

6.2.1. Selection of subjects

Forty subjects were selected to participate in the study. The inclusion and exclusion
criteria can be summarized as:

Inclusion criteria: (i) total intelligence quotient (IQ) greater than 70; (ii) collab-
orative subjects in EEG recordings; and (iii) written informed consent obtained
from patients, their caregivers and healthy volunteers.

Exclusion criteria: (i) a case history including any neurological illness; (ii) a his-
tory of cranial trauma with loss of consciousness longer than one minute; (iii) past
or present substance abuse, except nicotine or caffeine; and (iv) for the patients,
presence of any other psychiatric process, and (v) for the controls, any psychiatric
diagnosis present or past, or current treatment with drugs known to act on the
central nervous system.

Twenty stably treated patients with paranoid schizophrenia were included in the
study. They were diagnosed according to the Diagnostic and Statistical Manual of Mental
Disorders, 4th revised edition (DSM-IV-TR) criteria. The clinical status of the patients
was scored using the positive and negative syndrome scale (PANSS) (Kay et al., 1987).
The Spanish version of the Wechsler adult intelligence scale, 3th edition (WAIS–III), was
used to assess IQ. In addition, cognitive assessment was performed using the Spanish ver-
sion of the brief assessment of cognition in schizophrenia (BACS) scale (Segarra et al.,
2011). Twenty age- and gender-matched healthy controls were recruited through newspa-
per advertisements and remunerated for their cooperation. To discard major psychiatric
antecedents (personal or family background), semi-structured psychiatric interviews were
previously performed. Demographic and clinical characteristics are shown in Table 6.1.
The research boards of the University Hospitals of Valladolid and Salamanca (Spain)
endorsed the study according to The Code of Ethics of the World Medical Association
(Declaration of Helsinki).

6.2.2. EEG recordings

Data recording was performed using a 17-channel EEG system (BrainVision®, Brain
Products GmbH; Munich, Germany). Electrodes were placed in accordance with the
revised international 10/20 system at Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, O1,
O2, T5, T6, Fz, Pz and Cz. Electrode impedance was always kept under 5 kΩ. Subjects
were sat, relaxed and with their eyes closed. They were asked to stay awake and to avoid
blinking. EEG recordings were performed while the participants underwent an auditory
oddball task. Random series of 600 tones (whose duration was 50 ms, rise and fall time
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Table 6.1: Demographic and clinical characteristics. Values are shown as: mean ± standard
deviation, SD. NA represents not applicable.

Schizophrenia Patients Controls

Age (years) 35.45± 12.07 33.35± 12.26
Gender (M:F) 14 : 6 14 : 6
PANSS positive 18.87± 4.39 NA
PANSS negative 20.93± 5.76 NA
PANSS total 74.47± 17.70 NA

being 5 ms and intensity being 90 dB) consisted of target (500 Hz tone), distractor
(1000 Hz tone) and standard (2000 Hz tone) tones with probabilities of 0.20, 0.20 and
0.60, respectively. ERP signal and stimulus markers were recorded continuously. Only
attended target tones were considered in the analyses. Our focus on the attended target
tones can be motivated in terms of the aberrant precision hypothesis, given that the
control of precision has been linked in computational studies to attentional gain control
(Adams et al., 2013).

For each subject, 13 min of auditory response ERP activity were acquired at a sam-
pling frequency of 250 Hz. Recordings were referenced over Cz electrode. Data were
rereferenced to the average activity of all active sensors (Bledowski et al., 2004), since
common average reference is less sensitive to microssacadic artifacts in high frequency
recordings (Keren et al., 2010). Then, each ERP recording was filtered using a 50 Hz
notch filter and a finite impulse response filter with a Hamming window and band-pass
frequencies between 1 and 70 Hz. To minimize the presence of oculographic and myo-
graphic artifacts, a three-steps artifact rejection was carried out (Bachiller et al., 2014).
Firstly, an independent component analysis was performed to decompose ERP signals.
Components related to eye-blinks were discarded according to a visual inspection of the
scalp maps and their temporal activation. In a second step, continuous ERP data were
segmented into 1 s-length trials ranging from –300 ms before target stimulus onset to
700 ms after onset (250 samples per trial). Finally, artifacts were automatically rejected
using an adaptive thresholding method to discard ERP trials, whose amplitude exceeded
a statistical-based local threshold. The numbers of selected trials for target condition
were 80.85 ± 20.62 (mean ± standard deviation, SD) and 88.75 ± 10.12 in schizophrenia
patients and controls, respectively.

6.3. Methods

6.3.1. Continuous wavelet transform

Information processing in the brain is reflected in dynamical changes of the electrical
activity in time, frequency and space (Rosso et al 2006). Time-frequency EEG analyses
provide additional information about neural synchrony, not apparent in the ongoing
EEG (Roach and Mathalon, 2008). In the present study, continuous wavelet transform
(CWT) was used to compute the time-frequency maps. A wavelet is a zeromean function
characterized by its localization in time (∆t) and frequency (∆f ) (Torrence and Compo,
1998). Different waveforms can be considered to be a wavelet. In this study, the complex
Morlet wavelet is used as mother wavelet. It is a gaussian-windowed sinusoidal wave that
provides a biologically plausible fit to the signal being modeled (Roach and Mathalon,
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2008). Complex Morlet wavelet is defined as follows (Mørup et al., 2006)

ψ(t) =
1√
π · Ωb

· exp (j2πΩct) · exp
(
−t2

Ωb

)
, (6.1)

where Ωb is a bandwidth parameter and Ωc is a wavelet center frequency parameter.
In this analysis, both were chosen to be 1, in order to obtain a good relation between
∆t and ∆f at low frequencies (Hirano et al., 2008). A family of wavelets was formed by
compressed and stretched versions of the mother wavelet (Mallat, 2008). The CWT of
each ERP trial, x(t), is defined as the convolution of x(t) with a scaled and translated
version of the "mother wavelet"

Wx(k, s) =
1√
s
·
∫ +∞

−∞
x(t) · ψ∗

(
t− k
s

)
dt, (6.2)

where s represents the scaling factor, k is the time interval and ∗ denotes the complex
conjugation. The scaling factor was set to include frequencies from 1 to 70 Hz, in 0.5 Hz
intervals. This approach was introduced by Tallon-Baudry et al (Tallon-Baudry et al.,
1996) and it allows to explore in detail the frequency domain. The wavelet energy is a
simple way to represent the magnitude of EEG oscillations at specific scales. Hence, the
wavelet scalogram (WS) summarizes the distribution of the signal energy in the time-
frequency plane (Mallat, 2008). The WS is calculated as the squared modulus of the
CWT coefficients

WSx(k, s) = |Wx(k, s)|2. (6.3)

On the contrary to Fourier analysis, CWT has a variable time-frequency resolution
(Mallat, 2008). The longest time windows were applied to the lowest frequencies, whereas
the shortest time windows were applied to the highest frequencies (Roach and Mathalon,
2008). A Heisenberg box was introduced by the use of the Heisenberg uncertainty prin-
ciple. It is defined as a rectangle whose width depends on the time-frequency resolution,
but its area remains constant (Mallat, 2008). In this study, the width of the Heisenberg
box was chosen to be two times the time (∆t) and frequency resolution (∆f ) (Tallon-
Baudry et al., 1996). Additionally, ERP signals have an important limitation: they are
finite and short-time recordings. To take this issue into account, the CWT edge effect
was introduced as a variation of wavelet energy caused by a discontinuity at the edge
(Torrence and Compo, 1998). Hence, a cone of influence (COI) can be defined, in which
edge effects can be ignored (Torrence and Compo, 1998). In this study, 1 s-length target
trials were decomposed into the baseline, defined as the available 300 ms pre-stimulus
recording, and the response, which was evaluated in the [150 450] ms window (Bachiller
et al., 2014). Therefore, it is possible to evaluate their respective COIs by establishing
the edges in the baseline [–300 0] ms and response [150 450] ms windows. Figure 6.1
shows two examples of scalograms where the baseline and response COI are represented.

Time-frequency analysis was evaluated in the conventional EEG frequency bands:
delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta-1 (β1, 13–19 Hz), beta-2
(β2, 19–30 Hz) and gamma (γ, 30–70 Hz). The Heisenberg box approach was used to
select the CWT coefficients corresponding to each frequency band. CWT coefficients were
only considered when their associated Heisenberg boxes were completely included in the
COI. Thereby, δ-band was not analyzed, since it is associated with a wavelet duration of
hundreds of milliseconds. For instance, at 2 Hz this leads to a spectral bandwidth (2∆f )
of 0.64 Hz and a wavelet duration (2∆t) of 500 ms. Hence to be correctly analyzed, a
window length longer than 300 ms is needed for both response and baseline intervals.
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Figure 6.1: Averaged raw ERP and scalograms at Pz electrode for: (a) a schizophrenia
patient; (b) a healthy control. The schizophrenia patient shows the wavelet energy
concentrated in a narrow band at low frequencies. In addition, the scalogram shows a
decrease of energy in the stimulus response from baseline in this band. On the other hand,
the control subject shows a less concentrated wavelet energy and exhibits a slight increase
of energy in the response from baseline at low frequencies. The transparency outline
represents the limits of the COI, where edge effects can be ignored. SCH, schizophrenia.

6.3.2. Connectivity, synchrony and similarity measures

Brain organization cannot be fully understood if coupling between brain regions is
not analyzed (Varela et al., 2001). Functional neural coupling involves the identification
of different regions that reflect a temporal correlation while subjects are performing a
cognitive task (Varela et al., 2001). Several approaches have been developed to study
these neural connections. In this research, we focused on three complementary coupling
measures derived from the CWT representation: (i) WC, (ii) PLV and (iii) ED.

6.3.2.1. Wavelet coherence

Coherence has been commonly used in neuroscience to quantify the interdependencies
among the neurophysiological signals measured at different electrodes (Bruns and Eck-
horn, 2004; von Stein and Sarnthein, 2000). ERP coherence is based on the assumption
that the same patterns of physiological activity are repeated at the same latency from
trial to trial (Lachaux et al., 2002). From the CWT of two signals x(t) and y(t), the
wavelet cross-spectrum (WCS) at time interval k and scale s can be defined as (Lachaux
et al., 2002)

WCSxy(k, s) = 〈Wx(k, s) ·W ∗y (k, s)〉, (6.4)

where 〈·〉 denotes the average across trials.
Then, the WC between signals x(t) and y(t) is calculated dividing their WCS by their

scalograms (Lachaux et al., 2002)

WCxy(k, s) =
|WCSxy(k, s)|

[WSx(k, s) ·WSy(k, s)]1/2
. (6.5)
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WC values range from 0 to 1. WC becomes 1 when the signals are perfectly cou-
pled and 0 when they are linearly independent (Bruns and Eckhorn, 2004). Finally,
a frequency-dependent WC was calculated by averaging the CWT coefficients for each
frequency band

WCband(k) = 〈WCxy(k, s)〉|s∈band, band = {θ, α, β1, β2, γ}. (6.6)

6.3.2.2. Phase-locking value

PLV is a highly sensitive measure of neural synchronization in the EEG, useful to
quantify the stability of phases between pairs of electrodes (Lachaux et al., 1999). In
contrast to WC, PLV reflects the relationship between the phases of two signals, while
their amplitudes may be uncorrelated (Bob et al., 2008). For that reason, PLV does not
depend on stationarity and it is sensitive to small amplitude oscillations (Spencer et al.,
2003).

To calculate PLV, it is necessary to constrain the frequency spectrum to a nar-
row bandwidth and extract the instantaneous phase of every signal (Lachaux et al.,
1999).CWT approach can be used to perform filtering and phase extraction in one op-
eration (Bob et al., 2008). From the instantaneous phases ϕx(k, s, n) and ϕy(k, s, n) of
two ERP signals x(t) and y(t), the instantaneous phase difference can be defined by

∆ϕxy(k, s, n) = ϕx(k, s, n)− ϕy(k, s, n), (6.7)

where n represents each trial. Finally, PLV evaluates the variability of the phase
differences across successive trials, as follows

PLVxy(k, s) =
1

Nt
|

Nt∑
n=1

e(∆ϕxy (k,s,n))|, (6.8)

whereNt is the total number of artifact-free trials. PLV is a normalized index, ranging
from 0 (non-phase locked, random activity) to 1 (perfect phase synchrony) (Le Van Quyen
et al., 2001). Analogously to WC, the PLV was calculated for each frequency band

PLVband(k) = 〈PLVxy(k, s)〈|s∈band, band = {θ, α, β1, β2, γ}. (6.9)

6.3.2.3. Euclidean distance

Distance between statistical models is widely used in signal processing applications,
such as segmentation, pattern recognition, coding or classification (Basseville, 1989).
The concept of distance between two probability distributions was initially developed by
Mahalanobis (Mahalanobis, 1936). Since then, several types of distance measures have
been suggested to describe the similarity between probability distributions (Ullah, 1996).
In this study, we propose the use of ED to quantify the differences between the spectral
content in the normalized scalogram of two different EEG electrodes. ED has been
successfully applied to characterize electromagnetic brain signals in different disorders
(Bruña et al., 2012; Rosso et al., 2006). The normalized ED between signals x(t) and
y(t) on each frequency band is then defined as (Ullah, 1996)

EDband(k) =
∑

s∈band

[
WSn,x(k, s)−WSn,y(k, s)

2
]1/2, band = {θ, α, β1, β2, γ}. (6.10)

where WSn,x and WSn,y represent the normalized scalograms from the signals x(t)
and y(t), respectively.
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ED is a normalized dissimilarity measure, where values of 0 and 1 correspond to the
highest and lowest similarity, respectively. Therefore, to obtain a direct relation with the
WC and PLV, ED =1–ED is considered.

6.4. Results

The coupling measures were calculated for all subjects in each frequency band, ob-
taining a time-frequency dependent measure from –300 ms to 700 ms. In ERP studies, it
is interesting to capture event-related changes in brain activity. To this end, a baseline
correction is carried out by means of the baseline [–300 0] ms and response [150 450] ms
COI windows, previously defined. There are a variety of baseline correction methods.
The z -score approach is commonly used, since it takes into account the variability of the
baseline values (Roach and Mathalon, 2008). It is noteworthy that the corrected z-values
will be positive when there is a coupling increase of auditory response from baseline and
they will be negative due to a coupling decrease. In addition, two statistical analyses
were performed: (i) within-groups analyses evaluate coupling changes between the base-
line and the response in each frequency band by means of Wilcoxon signed-rank tests;
and (ii) between-groups analyses show the differences in the pattern of coupling z -values
for pathologic and control groups using Mann-Whitney U -tests.

6.4.1. Global analysis

As a first step, to study the global changes in EEG coupling, z-values were averaged
over all electrode connections. Then, a single value per coupling parameter, band and
subject was obtained. Figure 6.2 depicts the boxplots corresponding to the averaged
z -values for each group. Afterwards, statistical analyses were performed to delimitate
the frequency bands that showed statistically significant results. Initially, an exploratory
analysis was used to check normality and homoscedasticity by means of the Kolmogorov-
Smirnov test and Levene tests, respectively. It revealed that data did not meet paramet-
ric test assumptions. Within-groups statistical differences were evaluated by means of
Wilcoxon signedrank tests (α = 0.05). The results are summarized in Table 6.2; it high-
lights those functional connections that survived false discovery rate correction (FDR).
Controls obtained a statistically significant increase of coupling between the baseline
and the response in θ-band and a decrease in α, β1 and β2 bands. On the other hand,
patients did not show statistically significant differences. These findings suggest that
schizophrenia patients were not able to change their coupling patterns when performed
an oddball auditory target detection task, whereas controls exhibited significant changes
in the response from the baseline.

Between-groups analyses showed coupling differences between patients and controls.
In detail, between-groups differences correspond to an interaction between changes in
coupling and group. Mann–Whitney U -tests (α = 0.05) were performed to assess the
statistical differences. The results are summarized in Table 6.2. Controls obtained a sta-
tistically significant increase in coupling when compared with patients in θ-band. Nev-
ertheless, controls obtained a more statistically significant decrease than schizophrenia
patients in β2-band.

6.4.2. Electrode coupling analyses

In a second step, spatial analyses were performed to explore the topographic changes
in the ERP coupling patterns for the frequency bands that obtained statistically sig-
nificant differences between both groups (i.e., θ and β2). Besides, γ-band has been



74 CHAPTER 6

Figure 6.2: Boxplots displaying coupling z -values averaged over all pairs of connections
at each frequency band. Positive values indicate an increase in the stimulus response
compared to the baseline, whereas negative values indicate a decrease. (a) WC. (b)
PLV. (c) ED. Statistical analyses were performed using Mann–Whitney U -tests (∗p <
0.05, ∗∗p < 0.01). SCH, schizophrenia.

included since neural coupling in this band seems to play an important role to under-
stand schizophrenia (Uhlhaas and Singer, 2010). Coupling parameters were computed
for all pairs of electrodes. Detailed results for coupling z -values between the baseline and
response windows are shown in Figure 6.3 (θ-band), Figure 6.4 (β2-band) and Figure
6.5 (γ-band). Note that we did not apply a FDR correction for multiple comparisons
in these topographically specific results. This is because we have already established a
significant difference in terms of the average connections and report the current results
as standardized effect sizes, which characterize their regional specificity. In these fig-
ures, left and central columns depict the coupling z -values for each group. Connections
across pairs of electrodes were only displayed whether they obtained statistically signifi-
cant within-groups differences between the stimulus response and the baseline (Wilcoxon
signed–rank test, Statistically significant between-groups results at each frequency band
are displayed in the right column of Figures 5.3, 5.4 and 5.5. They were assessed by
means of Mann–Whitney U -tests (α = 0.05).

Ä
Coupling analyses in θ-band show a widespread increase from baseline to response



6.4 RESULTS 75

Table 6.2: Results of Wilcoxon signed-rank tests and Mann–Whitney U -tests for the averaged
coupling parameters. p-values have been FDR-corrected and statistically significant results (p
< 0.05) have been highlighted.

Wilcoxon
signed-rank test

Mann–Whitney
U -test

Parameter Band Schizophrenia
Patients Controls Schizophrenia vs.

Controls
θ p < 0.1 p=0.0402 p=0.0963
α p < 0.1 p=0.0730 p < 0.1

WC β1 p < 0.1 p < 0.1 p < 0.1
β2 p < 0.1 p=0.0467 p=0.0963
γ p < 0.1 p < 0.1 p < 0.1

θ p < 0.1 p=0.0281 p=0.0963
α p < 0.1 p=0.0992 p < 0.1

PLV β1 p < 0.1 p=0.0289 p < 0.1
β2 p < 0.1 p=0.0281 p=0.0963
γ p < 0.1 p < 0.1 p < 0.1

θ p < 0.1 p=0.0015 p=0.0963
α p < 0.1 p=0.0010 p < 0.1

ED β1 p=0.0187 p < 0.1 p < 0.1
β2 p < 0.1 p=0.0010 p < 0.1
γ p < 0.1 p=0.0045 p < 0.1

in the control group, whereas patient group exhibits a slight decrease of coupling mea-
sures, specially in frontal region (Figure 6.3). This behavior was shown for all coupling
parameters, WC, PLV and ED. Within-groups analyses show that the control group
obtained higher within-groups statistically significant connections than patients, mainly
among electrodes on central and parietal areas. Significant differences between patients
and controls are observed in the connections between frontal and central regions, central
and occipital regions, central and right-temporal regions and several inter-hemispheric
connections. On the other hand, β2-band is characterized by a decrease of coupling
changes from baseline to response in both groups (Figure 6.4). Controls show a global
decrease, while schizophrenia patients are characterized by stable coupling patterns. The
distribution of z -values in controls reveals a significant coupling decrease from baseline
to response in the connections among electrodes on frontal, central and parietal regions.
Between-groups statistical analyses show significant differences, particularly between pre-
frontal and frontal regions, frontal and central regions, central and parietal regions and
the connections between right-occipital region and several electrodes from frontal, cen-
tral and parietal regions. Despite exploratory results did not show statistically significant
differences in the global analysis (figure 2 and table 2), electrode coupling analyses have
provided some significant patterns for γ-band (Figure 6.5). Patients exhibit a γ-coupling
decrease from baseline to response, mainly between frontal and parietal cortical areas.
On the contrary, controls show a slight increase from baseline to response in the con-
nections with the central region. Significant differences between patients and controls
are observed in the connection between electrodes in frontal and parietal regions (Figure
6.5).
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Figure 6.3: Spatial analyses of θ-coupling between all pairs of electrodes for WC, PLV and
ED. Left and central columns depict z -values for schizophrenia patients and controls,
where connections were only shown if they obtained statistically significant differences
between the stimulus response and the baseline (Wilcoxon signed-rank test, z > 1.96; p
< 0.05). Right column displays statistically significant p-values between-groups (Mann–
Whitney U -tests, α = 0.05). A color map was applied; in left and central columns, hot
colors are associated with a coupling increase during auditory response in comparison
to baseline and cold ones are assigned to a decrease. In the right column, hot colors
represent smaller z -values in schizophrenia patients than controls and cold ones higher
z -values in schizophrenia patients than controls. SCH, schizophrenia.

6.5. Discussion

The aim of this study was to characterize the neural dynamics associated with
schizophrenia. For this purpose, three coupling measures were calculated for 20 schizophre-
nia patients and 20 healthy controls. Our findings suggest that schizophrenia patients
are not able to change their brain coupling as controls, when attending to target stim-
uli during an auditory oddball task. Therefore, neural coupling in schizophrenia did
not show statistically significant differences between the auditory stimulus response and
the baseline condition. In contrast, controls exhibited several changes in the coupling
patterns, specially in θ and β2 bands.

6.5.1. Dynamical properties associated with schizophrenia

The first research question pointed out in the introduction posed the issue about
whether the proposed methodology provides further insights into the underlying brain
dynamics associated with schizophrenia. Most of EEG functional connectivity studies are
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Figure 6.4: Spatial analyses of β2-coupling between all pairs of electrodes for WC, PLV
and ED. Left and central columns depict z -values for schizophrenia patients and controls,
where connections were only shown if they obtained statistically significant differences
between the stimulus response and the baseline (Wilcoxon signed-rank test, z > 1.96; p
< 0.05). Right column displays statistically significant p-values between-groups (Mann–
Whitney U -tests, α = 0.05). A color map was applied; in left and central columns, hot
colors are associated with a coupling increase during auditory response in comparison
to baseline and cold ones are assigned to a decrease. In the right column, hot colors
represent smaller z -values in schizophrenia patients than controls and cold ones higher
z -values in schizophrenia patients than controls. SCH, schizophrenia.

conducted at resting-state. Nevertheless, to understand the complex relations of brain
dynamics, both rest and task states should be evaluated (Turk-Browne, 2013). The
ERP paradigm appears then as an appropriate approach to understand how cognitive
processes are performed in the brain, since it provides high temporal resolution that
allows the assessment of neural events (Turk-Browne, 2013; Uhlhaas, 2013).

ERP data were usually analyzed using a local activation approach. Several researches
focused on determining the P300 amplitude and latency, the evoked power or other
spectral parameters associated with ERPs on each electrode (Bachiller et al., 2014; Hirano
et al., 2008; Roach and Mathalon, 2008; Schmiedt et al., 2005). However, the study of
the interactions between pairs of electrodes can provide further insights to understand
the underlying neural mechanisms (Stam and van Straaten, 2012; Turk-Browne, 2013).
In this regard, the analysis of the amplitude and phase of neural oscillations is crucial for
schizophrenia pathophysiology characterization. The amplitude of brain oscillations has
been related to the discharges of assemblies of neurons (Uhlhaas et al., 2008), whereas
phase locking has been associated with neural firing (Varela et al., 2001). In addition,
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Figure 6.5: Spatial analyses of γ-coupling between all pairs of electrodes for WC, PLV and
ED. Left and central columns depict z -values for schizophrenia patients and controls,
where connections were only shown if they obtained statistically significant differences
between the stimulus response and the baseline (Wilcoxon signed-rank test, z > 1.96; p
< 0.05). Right column displays statistically significant p-values between-groups (Mann–
Whitney U -tests, α = 0.05). A color map was applied; in left and central columns, hot
colors are associated with a coupling increase during auditory response in comparison
to baseline and cold ones are assigned to a decrease. In the right column, hot colors
represent smaller z -values in schizophrenia patients than controls and cold ones higher
z -values in schizophrenia patients than controls. SCH, schizophrenia.

recent researches have been observed a strong correlation between phase and amplitude
of neural oscillations at different frequencies (Canolty and Knight, 2010; Jensen and
Colgin, 2007). Schizophrenia has been associated with a reduction of the amplitude
from the oscillatory activity, as well as with a widespread deficit in the generation and
synchronization of rhythmic activity (Uhlhaas et al., 2008). Therefore, in order to address
the underlying brain dynamics associated with schizophrenia, we propose the analysis of
ERPs neural coupling by means of three complementary measures, which consider both
amplitude and phase effects.

WC and PLV have been used to assess connectivity and synchrony, respectively. Con-
nectivity evaluates time-interdependencies between neurophysiological signals (Hinkley
et al., 2010), whereas synchrony provides an effective measure for the integration of neu-
ral responses in distributed cortical networks (Varela et al., 2001). Thereby, they could
constitute high sensitive measures for functional dysconnectivity of local and large-scale
networks in schizophrenia (Uhlhaas, 2013). As showed in Figures 5.3 and 5.4, connectiv-
ity and synchrony patterns are related, but these measures are not equivalent. Indeed,
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if two signals are synchronized, they are correlated, whereas coherence does not nec-
essarily show the presence of synchronization (Rosenblum et al., 2001). Connectivity
and synchrony have been previously used to analyze the functional dynamics associated
with schizophrenia. Different coupling patterns were found depending on the frequency
band considered. Reduced coupling from response to baseline was obtained for high fre-
quencies, whereas a coupling increase has been showed in θ-band (Ford et al., 2002; von
Stein and Sarnthein, 2000). In addition, WC and PLV were correlated with psychotic
symptoms reflected by PANSS (Bob et al., 2008).

On the other hand, statistical distances establish a new way to explore neural cou-
pling, introducing the concept of similarity between the spectral content of two signals in
the probability space. ED and other statistical distances have been previously used as
disequilibrium or irregularity measures (Bruña et al., 2012; Rosso et al., 2006). Neverthe-
less, there is a lack of studies that applied statistical distances to address the similarity
between the spectral content of ERP recordings. Our results showed that similarity is
better suited than connectivity and synchrony to focus on local-range interactions. As
showed in Figures 5.3 and 5.4, ED obtained the largest z -values and the smallest p-values
for short distance links in θ and β2 bands. On the contrary, synchrony obtained statisti-
cally significant results for large-distance links, even for several links between electrodes
in different hemispheres. These results can be explained because similarity depends on
the oscillations amplitude (Rosso et al., 2006). Therefore, it may be more appropriate
to measure short-distance coupling and low frequency bands.

Finally, it is noteworthy that the use of CWT can improve the understanding of
neural dynamics. Wavelet analysis is better suited than Fourier and Hilbert approach
for non-stationary signals, since it provides a more detailed description of the ERP time-
frequency properties (Mørup et al., 2006). Thereby, CWT approach has been proposed as
a natural choice for the estimation of coupling between non-stationary signals (Lachaux
et al., 2002). In addition, using CWT, filtering and phase extraction were performed in
one operation (Bob et al., 2008), obtaining equivalent results to those obtained by means
of Hilbert transform (Le Van Quyen et al., 2001).

6.5.2. Coupling changes pattern characterization

The second research question addressed the characterization of normal and schizophre-
nia neural coupling patterns. It is well known that neural oscillations are a fundamental
mechanism for enabling coordinated activity during normal brain functioning (Singer,
1999). Thereby, several EEG researches support the hypothesis that distinct frequencies
are involved in different computational and functional interactions (Meehan and Bressler,
2012; Uhlhaas, 2013; von Stein and Sarnthein, 2000). In this research, our findings re-
vealed the main differences in θ and β2.

Starting with θ-band, our analyses showed a statistically significant increase of neu-
ral coupling in controls in comparison to schizophrenia patients. The z -value differ-
ences between patients and controls are consistent with previous studies. Schmiedt et
al (Schmiedt et al., 2005) obtained an increase of evoked θ-activity in controls engaged
in a cognitive task, opposite to schizophrenia patients, which did not show any change.
In addition, von Stein and Sarnthein (von Stein and Sarnthein, 2000) highlighted the
role that θ-band neuronal synchronization plays in the interaction between frontal and
posterior cortex during a cognitive task. Indeed, the deficit in θ-coupling changes in
schizophrenia patients may be related to aberrant salience hypothesis. In this regard,
several researches have associated schizophrenia with an impairment in θ-phase reset-
ting, a gray matter reduction and a functional connectivity deficit in a defined salience
network (Palaniyappan et al., 2011; White et al., 2010).
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In the case of β2-band, our findings suggest that schizophrenia patients are not able
to change their coupling between the auditory response and pre-stimulus baseline. The
abnormal salience in schizophrenia may be related to a decrease neural response to rel-
evant stimuli and to an excessive response to irrelevant tones (Kapur, 2003). Thereby,
schizophrenia patients failed to respond to relevance. On the contrary, control group
decreases their β2-coupling response from baseline. Several authors suggested enhanced
β2-band synchronization in healthy controls at rest, but then it is attenuated during the
cognitive response (Kilner et al., 2000; Uhlhaas et al., 2008). In agreement with previous
studies, our findings showed several statistically significant differences in fronto-parietal
connections, which have been related to cognitive tasks that involve higher executive
functions (Meehan and Bressler, 2012). For example, human functional MRI studies
showed correlated activity between both areas in β2-band during a cognitive task (Mee-
han and Bressler, 2012). The analysis of coupling in beta band may be an important
signature of neurocognitive network interaction. Beta-coupling is involved in long-range
coordination of distributed neural activity and the synaptic connections between neu-
rons in local cortical circuits (Meehan and Bressler, 2012; Uhlhaas and Singer, 2010). In
this way, von Stein and Sarnthein (von Stein and Sarnthein, 2000) suggested that phase
synchronization of β2-oscillations plays a more important role than γ-synchronization on
the long-distance coordination, which takes place in neurocognitive networks.

Lastly, γ-band oscillations play an important role in brain dynamics. They have been
related to several brain functions, such as perception, attention, memory, consciousness
and synaptic plasticity (Uhlhaas et al., 2008). In agreement with previous studies, our
findings suggest that schizophrenia patients decrease their γ-coupling activity between
response and baseline (Slewa-Younan et al., 2004a), whereas controls exhibit a γ-coupling
increase (Ford et al., 2007). Abnormal γ-band activity has also been related to disturbed
corollary modulation of sensory processes (Uhlhaas et al., 2008). Thereby, abnormal
corollary discharge mechanism might be related to impaired neural γ-synchrony in pa-
tients with schizophrenia (Uhlhaas, 2013; Uhlhaas et al., 2008). In addition, there is also
a relation between abnormal γ-band and impairments in higher cognitive processes, such
as executive processes and working memory (Uhlhaas et al., 2008).

6.5.3. Limitations of the study and future research lines

Some limitations of this research merit consideration. Firstly, δ-band was not ana-
lyzed in this study. As we explained in 3.1 subsection, this band is influenced by edge
effects due to its time resolution requirements (Torrence and Compo, 1998). Thereby,
future studies are needed to assess δ-coupling. Secondly, successive ERP trials have been
used to compute coupling parameters. As a consequence, the induced and evoked activity
has not been independently analyzed. Further work is necessary to obtain an appropriate
coupling parameter that allows separating evoked and induced activity without loosing
temporal resolution. Thirdly, the oscillations in cortical networks coexist in multiple
frequency bands. There are several evidences that neural activity comprises interactions
between oscillations at different frequencies (Le Van Quyen and Bragin, 2007). Cross-
frequency coupling provides a plausible mechanism for the neural coordination during
perception, cognition and action functions (Canolty and Knight, 2010). In particular, it
has been primary observed between low and high frequency oscillations when subjects
were performing different cognitive tasks (Kirihara et al., 2012; Sauseng et al., 2008).
As a consequence, future studies should be performed to evaluate cross-frequency neural
coupling. Finally, on the basis of the connections network, established by WC, PLV
and ED, a complex network analysis could be addressed. We feel that it may provide
very valuable insights on the structural and functional organization of neural networks
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in schizophrenia.
From the perspective of predictive coding, our results are entirely consistent with

the aberrant precision hypothesis of psychosis. Our data support a failure in chronic
schizophrenia patients to show an attention-dependent modulation of synchronous activ-
ity in specific frequency bands. This may reflect a failure to establish the appropriate
levels of synaptic gain or precision mediating the salience of stimuli that are subsequently
processed and seems coherent with a synaptic disconnection that may contribute to false
inference in schizophrenia.

6.6. Conclusions

In summary, we found that neural coupling is altered in schizophrenia patients during
an auditory oddball task. Our results suggest that schizophrenia patients show abnor-
malities in θ and β2 bands. Specifically, controls increase their coupling between stimulus
response and baseline in θ, whereas the opposite behavior is observed in β2. On the other
hand, schizophrenia patients are not able to change their coupling dynamics, which may
be related to aberrant salience in this pathology. Technically, in this research, ED was
introduced for studying neural coupling patterns in terms of similarity. Our findings sup-
port the notion that ED provides original insights in comparison with the two classical
connectivity and synchrony measures (WC and PLV). Further studies will address the
frequency coupling between different bands and a complex network analysis.
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Ä
Cross-frequency coupling (CFC) is an emerging area of neural research based on the idea that
neural oscillations have a complex and hierarchical organization. Particularly, phase-amplitude
coupling (PAC) has been identified in a wide variety of tasks and cortical regions. Current
studies usually calculate PAC across a wide time period, losing temporal information on PAC
patterns. Thereby, time-varying neural mechanisms cannot be studied using conventional PAC.
A recent formulation explored PAC dynamics in an event-related way (ERPAC). In this study,
ERPAC is applied to the electroencephalographic auditory-oddball brain response recorded from
38 schizophrenia patients and 52 healthy controls. Our results validate the ERPAC as a mean-
ingful approach for measuring dynamic changes in CFC. Furthermore, we show that the phase of
alpha rhythm is coupled with the power of low gamma oscillations, mainly in healthy controls.
However, abnormal ERPAC patterns are found in schizophrenia patients. It supports the role of
excitatory/inhibitory balance in neural oscillatory hierarchy, suggesting that the CFC patterns
are altered in schizophrenia.

83



84 CHAPTER 7

7.1. Introduction

Transiently active ensembles of neurons, commonly known as cell assemblies, underlie
numerous operations of the brain, from perception to encoding memories (Buzsáki, 2010).
In particular, neural cell assemblies provide a conceptual framework for the integration
of distributed neural activity (Varela et al., 2001). Likewise, neural oscillations are the
main mechanism for enabling cell assemblies and coordinated activity during normal
brain functioning (Uhlhaas and Singer, 2010). The relation between both components
(i.e. the cell assemblies and neural oscillatory patterns) allows brain operations to be
carried out simultaneously at multiple temporal and spatial scales (Buzsáki and Draguhn,
2004).

Several studies have demonstrated that cognitive processes involve the coordination
of slow and fast brain oscillations (Engel et al., 2001; Szczepanski et al., 2014; Wang
et al., 2014). The rhythms in different frequency bands can interact to each other in
behaviorally meaningful ways (Canolty and Knight, 2010; Szczepanski et al., 2014). Ac-
cordingly, it has been proposed that populations of neurons oscillate together and syn-
chronize their firing and post-synaptic potentials in a rhythmic fashion (Buzsáki and
Draguhn, 2004; Szczepanski et al., 2014). This phenomenon, commonly known as CFC,
indicates that neural oscillations have a complex and hierarchical organization (Kirihara
et al., 2012). CFC patterns were firstly evaluated on mice and non-human primates
(Lakatos et al., 2005; Lisman, 2005; Tort et al., 2009, 2008). Nowadays, evidence of CFC
patterns has been demonstrated in humans using different electrophysiological signals
(i.e. Local Field Potentials, LFP; electrocorticography, ECoG; EEG; and magnetoen-
cephalography, MEG) (Tort et al., 2010). In particular, a PAC has been reported in
previous studies (Allen et al., 2011; Canolty et al., 2006; Tort et al., 2010; Voytek et al.,
2010). It describes the statistical dependence between the phase of a low-frequency (LF)
brain rhythm and the amplitude of a high-frequency (HF) component of brain activity
(Canolty and Knight, 2010). Voytek and Knight (2015b) proposed that PAC provides a
bridge between local microscale and systems-level macroscale neuronal ensembles facili-
tating a dynamic network communication. However, the factors that contribute to these
mechanisms are still not completely understood (Fell and Axmacher, 2011). It has been
suggested that the phase of LF oscillations could control neuronal excitability through
fluctuations of membrane potentials in a brain area, which affects the amplitude of HF
oscillations in that area (Fell and Axmacher, 2011; Szczepanski et al., 2014). In fact,
recent studies posed the question of whether the phase of slower oscillations drives the
power of faster oscillations or, otherwise, whether the power of faster oscillations drives
the phase of slower oscillations (Helfrich et al., 2015; Jiang et al., 2015).

PAC algorithms yield an averaged CFC measure across a defined time window that
is bounded by the frequency of the neural oscillations considered (Canolty et al., 2006;
Cohen, 2008; Voytek et al., 2010). In particular, the time window should include, at
least, one full cycle of the phase signal (Tort et al., 2010). Nevertheless, several authors
pointed out that PAC is sensitive to noise and more than 200 cycles are necessary to
get a reliable PAC estimation (Tort et al., 2010). It implies the use of long trial time
windows with an important cost of temporal resolution (Tort et al., 2009). In order to
overcome this drawback, it has been proposed the use of block designs (Voytek et al.,
2010) or the concatenation of time series across trials, which could be affected by edge
artifacts (Kramer et al., 2008; Tort et al., 2009; Voytek et al., 2013). Moreover, it is well
known that a temporally coordinated input facilitates the transmission and integration of
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information within brain areas and neurons (Buzsáki, 2015). It is therefore appropriate to
focus on the temporal dynamics of neural networks in the millisecond range (Varela et al.,
2001). In order to solve these problems, a recent research proposed a novel approach
for measuring transient PAC directly in an event-related way: the event-related PAC
(ERPAC) (Voytek et al., 2013). In this study, ERPAC was estimated to assess the
time-varying CFC associated to an auditory oddball cognitive task.

Additionally, dysfunctions in the generation and coordination of neural oscillations
are increasingly implicated in the pathophysiology of psychiatric disorders (Mathalon and
Sohal, 2015). Particularly, it has been demonstrated that schizophrenia patients exhibit
impaired neural oscillatory activities during sensory and cognitive tasks (Uhlhaas and
Singer, 2010). Nevertheless, the alterations of CFC patterns related to schizophrenia have
not been widely addressed (Moran and Hong, 2011). Abnormalities of neural oscillations
in schizophrenia have been found in all frequency bands. Hence, it could be adequate
to evaluate the hierarchy between brain rhythms on schizophrenia. According to the
dysconnection hypothesis, a disturbed dynamic coordination between neural oscillations
contributes to the pathophysiology of schizophrenia (Friston et al., 2016; Friston, 1998;
Uhlhaas, 2013). The physiological correlates of this dysconnection would be expressed
in terms of a failure to modulate their neural rhythms (Uhlhaas and Singer, 2010). It is
therefore reasonable to assume that CFC studies could be helpful to further understand
schizophrenia brain dynamics. Finally, an important question is whether LF and HF
oscillations represent independent abnormalities or whether these abnormalities in both
frequency ranges are caused by a common origin (Uhlhaas and Singer, 2015). Certainly,
it could be related with inhibitory interactions, because there are several lines of evidence
that inhibitory interneurons are involved in the generation and the synchronization of
oscillatory activity at both LF and HF (Jensen et al., 2014; Uhlhaas and Singer, 2012).
In particular, HF has been related to the establishment of cell assemblies in local neural
circuits, whereas LF could be associated with functional integration and segregation
processes (Uhlhaas and Singer, 2012).

CFC analyses have been traditionally conducted in small databases (i.e. less than 10
subjects) (Canolty et al., 2006; Cohen, 2008; Foster and Parvizi, 2012; Voytek et al., 2010,
2013). Thereby, further studies that include larger databases are strongly encouraged
in order to obtain a representative characterization of the hierarchical organization of
neural oscillations. In this research, 90 EEG recordings (52 from healthy controls and
38 from schizophrenia patients) were analyzed to identify consistent CFC patterns. In
particular, we used ERPAC to obtain a comprehensive understanding of the temporal
organization of brain activity and the interactions between neural oscillations. The aim
of this study was to investigate whether the recently defined ERPAC could provide a
meaningful interpretation of the temporal hierarchical neural rhythms in schizophrenia.
Based on these ideas, two research questions were addressed: (i) could ERPAC be a useful
measure for characterizing time-varying CFC patterns of an auditory oddball paradigm?;
and (ii) could a global pattern of ERPAC be defined to study the role of dynamic
dysfunctions in schizophrenia?

7.2. Materials and methods

7.2.1. Participants

A total of ninety subjects were recruited to participate in the study: 38 schizophrenia
patients (22 men and 16 women; 32.82 ± 9.01 years, mean ± standard deviation, SD)
and 52 age- and gender-matched healthy controls (28 men and 24 women; 31.60 ± 9.62
years, mean ± SD). Schizophrenia patients were diagnosed according to the Diagnostic
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and Statistical Manual of Mental Disorders, 5th revised edition (DSM-V) criteria. All
healthy controls reported no history of neurological or psychiatric disease. The inclusion
and exclusion criteria can be summarized as:

i. Inclusion criteria: (i) total intelligence quotient (IQ) greater than 70; (ii) collabora-
tive subjects in EEG recordings; and (iii) written informed consent obtained from
patients (or their caregivers) and healthy volunteers.

ii. Exclusion criteria: (i) a case history including any neurological illness; (ii) a his-
tory of cranial trauma with loss of consciousness longer than one minute; (iii) past
or present substance abuse, except nicotine or caffeine; and (iv) for the patients,
presence of any other psychiatric process, and (v) for the controls, any psychiatric
diagnosis present or past, or current treatment with drugs known to act on the
central nervous system.

The research board of the Clinical University Hospital of Valladolid (Spain) endorsed
the study according to The Code of Ethics of the World Medical Association (Declaration
of Helsinki). Moreover, written informed consent was obtained from patients, or their
caregivers, and healthy volunteers. Demographic, clinical and behavioral characteristics
are shown in Table 7.1.

7.2.2. EEG recordings

ERP recordings were acquired using a 33-channel EEG system (BrainVision®, Brain
Products GmbH; Munich, Germany). Active electrodes were placed in accordance with
the revised International 10/10 System. EEG data were recorded at a sampling rate of
500 Hz and referenced over Cz electrode. Electrode impedance was always kept under
5 kΩ. Subjects were sat with their eyes closed in a noiseless room. They were asked to
stay awake, relaxed and to avoid movements. For each subject, 13 min of EEG activity
and stimulus markers were continuously recorded while subjects underwent a 3-stimulus
auditory-oddball paradigm. Participants heard a random series of 600 binaural tones
(90 dB; 50 ms duration; 5 ms rise and fall-time) consisting on standard (2000 Hz tone),
distractor (1000 Hz tone) and target tones (500 Hz tone) with probabilities of 0.6, 0.2
and 0.2, respectively (Bachiller2015b). All participants responded to a target tone by
a mouse click with their right hand. It is important to note that only attended target
tones were considered in this study (i.e. target tones followed by a mouse click).

7.2.3. EEG data analysis

In this section, we explain the preprocessing stage, which includes: average re-
reference, artifact rejection, filtering and segmentation processes. Furthermore, we an-
alyze the spectral characteristics of EEG data and their relation with the timing of
stimulus onsets. In particular, we focused on analyzing time-frequency maps, the evoked
amplitude and the phase consistency across trials.

7.2.3.1. Signal preprocessing

Initially, peripheral electrodes (TP9, TP10, PO9 and PO10) were discarded due to
their low signal-to-noise (SNR) ratio. Then, the data were put into a common aver-
age reference, since it is less sensitive to microsaccadic artifacts in HF recordings and
contributes to avoid spatial bias due to the choice of single intracranial reference elec-
trode (Boatman-Reich et al., 2010). The artifact rejection algorithm was inspired by
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Table 7.1: Demographic, clinical and behavioral characteristics. Values are shown as mean ±
standard deviation, SD. NA represents not applicable. CPZ stands for Chlorpromazine.

CP MTP Controls

Age (years) 35.95± 8.65 29.33.± 8.27 31.60± 9.62
Gender (Male:Female) 11 : 9 11 : 7 28 : 24
PANSS positive 19.26± 5.29 21.12± 3.99 NA
PANSS negative 22.00± 4.80 17.00± 4.69 NA
PANSS total 76.26± 15.63 76.27± 11.37 NA
Treatment dosage (CPZ
equivalents) 433.18± 194.66 357.14± 216.82 NA

Duration of the illness (months) 64.48± 18.78 25.14± 32.75 NA
Number of artifact-free trials 64.48± 18.78 76.67± 12.93 77.04± 13.20
P300 amplitude at Pz (µ V) 1.51± 0.97 1.93± 1.39 2.72± 1.73
P300 latency at Pz (ms) 431.30± 75.21 421.67± 76.45 432.15± 74.50
Reaction time (ms) 582.37± 82.09 519.08± 86.60 485.36± 68.03

our previous studies (Bachiller et al., 2015b,c). Firstly, EEG data were decomposed by
an independent component analysis (ICA). Components related to eyeblinks were dis-
carded according to a visual inspection of the scalp maps and their temporal activation.
Secondly, EEG recordings were filtered using a zero phase-lag finite impulse response
(FIR) filter with a Hamming window and band-pass frequencies between 1 and 120 Hz,
as well as notch filters at 50 Hz and 100 Hz. Thirdly, filtered data were segmented into
1.5 s-length trials ranging from [-500 1000] ms preceding and following auditory stimulus
onset. Only attended target tones were considered in the analyses. Finally, trials con-
taminated with artifacts were rejected using an adaptive thresholding method (Bachiller
et al., 2015b). Table 7.1 shows the average number of artifact-free trials included for
each group.

7.2.3.2. Spectral characteristics of EEG data and relation with stimulus on-
set

To obtain meaningful PAC patterns the frequency range for the instantaneous phase
should include a clear peak in a time-resolved power spectrum (Aru et al., 2015). Spectral
characteristics of EEG data were evaluated using single-trial and evoked-averaging ap-
proaches (Roach and Mathalon, 2008). Single-trial time-frequency maps were estimated
using the wavelet transform for schizophrenia patients and healthy controls (Figure 7.1).
In particular, the methodology followed for single-trial wavelet analysis was described
in Bachiller et al. (2015b). Therefore, time-frequency representations were assessed to
identify the main power contribution of EEG data on low frequency bands.

The PAC is defined as a causal interaction between brain rhythms. However, a
spurious PAC can arise due to common drive generated by external or internal input
(i.e. an external event that causes the changes in both phase and amplitude) (Aru et al.,
2015). Therefore, to achieve a reliable PAC, it is relevant to assess the relation among
LF phase, HF amplitude and the timing of external inputs. Firstly, the effect of the
frequency band on evoked activity was assessed. Event-related amplitude (Figure 7.2a)
was computed for the whole spectrum, ([1 120] Hz), and only for HF band ([25 120] Hz).
Secondly, single-trial spectral power was averaged over pre-stimulus baseline and post-
stimulus response windows ([-500 0] and [0 500] ms, respectively) (Figure 7.2b). Finally,
the relation between LF phases and the stimulus onset was evaluated using the event-
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Figure 7.1: Grand-average time-frequency plots. Averaged raw EEG scalogram at elec-
trode Pz for healthy controls group (A) and schizophrenia patients (B). The scalogram is
divided into frequencies up to 30 Hz and the gamma range ([30 120] Hz). Wavelet energy
is concentrated in a narrow band at low frequencies, which approximately corresponds to
alpha band ([7 13] Hz). Wavelet scalogram and normalized power were obtained following
the procedure described in (Bachiller et al., 2015b).

related phase-locking across trials (ITPC, Inter-trial Phase Coherence) (Tallon-Baudry
et al., 1996). ITPC is a normalized measure of Ôphase consistencyÕ, or phase-locking
with respect to an event onset (Roach and Mathalon, 2008). A value of zero represents
total phase independence, whereas an ITPC value of one can be associated with a strictly
phase-locked activity (Tallon-Baudry et al., 1996). For ITPC analyses, each point in the
Hilbert transform at each electrode and each LF band-pass was divided by the absolute
value of its amplitude. ITPC was obtained as the modulus of this value (Tallon-Baudry
et al., 1996; Voytek et al., 2013). Figure 7.2c shows the variation of ITPC with regard
to the frequency (for pre-stimulus baseline and response time-windows) and Figure 7.2d
evaluates the relation between ITPC at low frequencies ([5, 8] Hz) and the P300 latency.

7.2.4. CFC analysis

In this section, we explain the steps carried out to compute ERPAC. Initially, we
address important analytical and methodological caveats and confounds in the CFC
study. Secondly, we describe specific CFC preprocessing, including the LF and HF filters
used. Then, the algorithm for ERPAC computation is explained. Finally, statistical
analysis subsection introduces surrogated analysis based on permutation testing.

7.2.4.1. Methodological caveats and confounds of CFC analysis

Before describing the methodology used in this study, we detail several important
analytical and methodological caveats and confounds to be taken into account for the
CFC analysis (Aru et al., 2015). Previous studies that used different PAC metrics could
be affected by spurious CFC (Aru et al., 2015; Hari and Parkkonen, 2015). In other words,
not all cross-frequency correlations are signatures of direct interactions between different
physiological processes occurring at different frequencies (Aru et al., 2015; Jedynak et al.,
2015). In order to obtain a reliable CFC measure, Aru et al. (2015) brilliantly established
a list of practical recommendations to minimize technical pitfalls and to underplay the
problem of over-interpretation of PAC measures. The consequences of failing to take these
guidelines into account could involve the computation of a misleading PAC measure (Aru
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Figure 7.2: Analysis of spectral characteristics of EEG data. (A) Trial-averaged evoked
amplitude at Pz electrode for the whole spectrum ([1 120] Hz), and after a high-pass
filtering process ([25 120] Hz). Remarked lines depict the average values of all subjects
and the shaded areas represent their standard deviation. (B) Single-trial spectral power
values at Pz electrode as a function of frequency for a period preceding (blue, [-500 0]
ms) or following (red, [0 500] ms) the auditory stimulus onset. (C) Inter-trial phase
coherence (ITPC ) values at FCz electrode as a function of frequency for the same pre-
stimulus baseline and response time windows. (D) Baseline corrected ITPC changes
over time for low frequencies ([5 8] Hz) at FCz electrode. Subjects were sorted based
on the P300 latency (showed as a white mark). Non-statistically significant relationship
was found between P300 latency and the time sample where the maximum ITPC value
occurs (Spearman’s rank correlation, R = 0.0227; p = 0.8320).

et al., 2015). Hereafter, we summarize the suggested practical recommendations into two
main issues.

7.2.4.1.1. Selection of the frequency bands of interest and filter bank design
A concentration of power in a time-frequency decomposition was required for a meaning-
ful interpretation of the phase extraction and therefore for PAC estimation (Aru et al.,
2015). Furthermore, PAC analysis computes the correlation or dependency between the
LF phase and the HF amplitude. The detailed selection of these frequency bands is then
a remarkable stage on PAC analyses. Several filtering guidelines should be considered
(Aru et al., 2015):

i. In order to prevent edge effects, filtering process should be done on the entire ERP
data before segmenting the EEG data into epochs (Cohen et al., 2009).

ii. It is noteworthy that a reliable phase estimation requires to constrain the frequency
spectrum to a narrow bandwidth (Lachaux et al., 1999). The selection of a given
narrow frequency band requires filters with excellent resolutions in both time and
frequency, which do not delay phase components (Lachaux et al., 1999).
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iii. PAC is very sensitive to phase distortion (Foster and Parvizi, 2012). In order to
prevent phase distortion, each channel must be filtered using a two-way least-squares
FIR procedure. This filtering method uses a zero phase-lag forward and reverse
operation (Cohen et al., 2009).

iv. HF filtering procedure affects the sensitivity of PAC metrics. The complex frequency
spectrum of an amplitude-modulated signal is related to the frequency of modulation
(Berman et al., 2012). Thus, a filter with appropriate bandwidth is necessary for
preserving amplitude modulation (i.e. the bandwidth of the HF filter must be at
least two times the LF modulating band) (Berman et al., 2012).

7.2.4.1.2. Non-stationarity and non-linearity misunderstandings In general,
both non-stationary and non-linearity processes could exhibit spectral correlations be-
tween their spectral components that may be misinterpreted as CFC (Aru et al., 2015).
In an ERP context, a significant PAC can be potentially explained by common influence
of external stimulus on the phase and amplitude (i.e. the combination of phase-locking
to stimulus onset at LF and increased HF amplitude is enough to obtain a significant
PAC) (Aru et al., 2015). In order to avoid non-stationarity and non-linearity misunder-
standings it is highly recommended to analyze the relative locking among signal phase,
amplitude and the timing of external input (Aru et al., 2015). It allows evaluating
whether physiological processes indeed interact and whether the measured PAC is a real
LF phase modulation to the HF power. Secondly, a surrogate analysis should be per-
formed. Of note, a suitable surrogate analysis should be designed to destroy the specific
non-stationarities related to the hypothesized CFC effect (called cyclo-stationarities) and
to minimize the distortion of both unspecific non-stationarities and non-linearities of the
original signal (Aru et al., 2015). Surrogate design requirements will be addressed on
Subsection 2.5.

7.2.4.2. Specific CFC preprocessing

After the artifact rejection stage, a specific CFC filtering processing was done. Fil-
tering was performed on the entire ERP data in order to prevent edge effects. As we
previously mentioned, phase extraction of LF oscillations requires narrow bandwidth fil-
ters (Lachaux et al., 1999), whereas the bandwidth of the HF filters must be designed to
include the modulation sidebands (Berman et al., 2012). Specifically, we used the next
two filter banks with a partially overlapping bandwidth:

i. For LF bands, a zero phase-lag FIR filter bank from 4 to 13 Hz, with a 1 Hz step
and a 2 Hz bandwidth.

ii. For HF bands, a zero phase-lag FIR filter bank from 30 to 110 Hz, with a 10 Hz
step and a 26 Hz bandwidth.

7.2.4.3. ERPAC analysis

ERPAC was designed to measure transient PAC in an event-related manner and
to overcome the problem of spurious CFC due to non-stationarities in ERP data (Aru
et al., 2015; Voytek et al., 2013). PAC algorithms were commonly computed over a
semi-arbitrary time window, whose length was bounded by the minimum frequency of
LF range (Canolty et al., 2006; Tort et al., 2010). PAC computation requires a time
window-length longer than, at least, a full cycle of LF rhythm (Tort et al., 2010). Hence,
for the LF range used in this research, [4 13] Hz, the higher temporal resolution would
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be 250 ms. However, Tort et al. (2010) also showed that PAC metric is sensitive to
noise and they recommended the use of more than 200 cycles to get a reliable PAC
estimation. Several methodologies were developed to meet this requirement: (I ) using
long trial windows at the cost of temporal resolution (Tort et al., 2009); (ii) using block
designs (Voytek et al., 2010); or (iii) concatenating time series across trials, which could
introduce spurious PAC due to edge artifacts (Kramer et al., 2008). ERPAC solves this
limitation because it does not requires the use of a time window; it estimates PAC at each
time point, across-trials (Dimitriadis et al., 2015; Voytek et al., 2013). Thus, ERPAC
allows for obtaining a time-varying CFC measure (Voytek et al., 2013).

7.2.4.3.1. PLV-ERPAC estimation Several analysis methods targeting PAC have
been proposed (for a review, see (Tort et al., 2010)). Nevertheless, phase-locking value
(PLV) has been highlighted as one of the most robust and sensitive techniques for inves-
tigating CFC (Canolty et al., 2012; Penny et al., 2008; van Driel et al., 2015). PLV is
an appropriate technique for estimating instantaneous phase coupling between two brain
signals. Consequently, it has been widely used to investigate a multitude of different
functional brain networks (Canolty et al., 2012).

PLV was introduced by Lachaux et al. (1999) as a measure of the stability of phases
between pairs of electrodes in the same frequency band. The estimation of PAC patterns
using PLV was firstly introduced by Vanhatalo et al. (2004). Since then, it has been
employed in several PAC studies (Canolty et al., 2012; Dimitriadis et al., 2015; Foster
and Parvizi, 2012; Helfrich et al., 2015; Mormann et al., 2005; Penny et al., 2008; Voytek
et al., 2010). One of the main advantages of PLV for measuring PAC is that it allows
removing changes in HF amplitude that are not related to the specific phase modulating
frequency (i.e. LF bands) (Foster and Parvizi, 2012).

As it was explained, ERP data were filtered using two filter banks obtaining a series
of LF and HF signals. Subsequently, the phase and amplitude of each band-pass signal
were obtained from the analytic signal, which is a complex time series that was computed
using the Hilbert transform:

hx[n] = ax[n] · exp (i · φx[n]) , x = {LF,HF} (7.1)

where ax[n] and φx[n] are the instantaneous amplitudes and phases respectively, and
x represents LF and HF filtering procedure.

PLV-PAC was calculated following the steps defined by Penny et al. (2008). Figure
7.3 illustrates PLV-PAC algorithmic steps using a single-trial ERP signal for a healthy
control. Firstly, for each trial j, LF phase (φx[n]) and HF amplitude (aHFi

) were obtained
using the complex time series from equation (1). Then, a second filtering operation is
applied to extract the LF component of the HF amplitude envelope time series. Finally,
the phase corresponding to HF amplitude (φaHFi

) is extracted by using again the Hilbert
transform. Hence, PLV-PAC can be computed as:

PLV − PACLF→HF [n] =

∥∥∥∥∥∥ 1

N

N∑
j=1

exp
{
i
(
φLFj

[n]− φaHFj
[n]
)}∥∥∥∥∥∥ , (7.2)

where N represents the total number of artifact-free trials.
Following the ERPAC methodology defined by Voytek et al. (2013), PLV-PAC was

recently revisited in an event-related manner (Dimitriadis et al., 2015). Thereby, PLV-
ERPAC was computed across-trials obtaining a time-varying PAC measure (Voytek et al.,
2013). ERPAC allows keeping the same temporal resolution as the original single-trial
data. However, with the aim of avoiding redundancies and the limitation of a low number
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of trials available for each participant, PLV-ERPAC was calculated by means of a step-
ping 20 ms-length window without overlapping between sequential segments (Dimitriadis
et al., 2015), as follows:

PLV − PACLF→HF [n′] =

∥∥∥∥∥∥ 1

N · w

N∑
t′=1

N∑
j=1

exp
{
i
(
φLFj

[t′, n′]− φaHFj
[t′, n′]

)}∥∥∥∥∥∥ , (7.3)

index inside the 20 ms-length segment and n’ is the number of non-overlapped seg-
ments. It is noteworthy that although the temporal resolution is reduced, PLV-ERPAC
allows measuring the temporal variations of PAC.

Figure 7.3: The algorithmic steps for PAC estimation. (A) Single-trial wave from the
cognitive response of a control subject. (B) Single-trial after applying a LF filter ([4 6]
Hz). (C) Single-trial after applying a HF filter ([25 45] Hz) (blue line) and envelope of HF
amplitude (dark line). (D) Single-trial after applying a LF filter (blue line) and LF phase
obtained by means of Hilbert transform (green line). (E) HF envelope after applying a
LF filter (blue line) and its phase obtained by means of Hilbert transform (red line). (F)
LF phase (green line), HF phase (red line) and phase difference obtained by subtracting
both phase waves (blue line). Phase difference is used to assess PLV-PAC.
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7.2.5. Statistical analysis

To study statistical significance at the population level, we carried out a surrogate
analysis. This method is useful for determining whether CFC is greater than what would
be observed by chance (Cohen, 2008). In addition, this kind of analysis is commonly per-
formed to avoid non-stationarity and non-linearity effects (Aru et al., 2015). A suitable
surrogate analysis should be designed to destroy the specific non-stationarities related to
the hypothesized CFC effect (called cyclo-stationarities) and to minimize the distortion
of both unspecific non-stationarities and non-linearities of the original signal (Aru et al.,
2015).

Currently, most CFC studies rely on the confidence distribution approach, which used
surrogate data to estimate statistical significance (i.e. p-value is based on a Z-distribution
of null-hypothesis test statistics) (Aru et al., 2015; Cohen, 2014). In this work, surrogate
analyses were performed based on a permutation testing procedure, whose two main
advantages are: (i) it does not rely on previous assumptions about the distribution of the
data; and (ii) it easily incorporates an appropriate correction for multiple comparisons
(Cohen, 2014; Maris and Oostenveld, 2007; Nichols and Holmes, 2002). A surrogate
procedure was conducted in order to take into account inter-trial relationship between
amplitude and phase. In particular, we generated surrogate data by randomly shuffling
the order of full trials, which is the most suitable procedure in an ERP approach (Aru
et al., 2015; Voytek et al., 2013). This surrogate method preserves the induced changes
in frequency analytic phase and amplitude, but randomizes the inter-trial relationships
between them (Voytek et al., 2013). In detail, for each time point, we shuffled the order of
the trial-wise LF phase values with respect to the phase of HF amplitude envelope values
at that same time point and calculated the ERPAC among this shuffled data (Voytek
et al., 2013).

CFC showed high variability between subjects, where stronger LF activity showed
larger PAC values (Berman et al., 2015; Osipova et al., 2008). Therefore, averaging the
comodulograms over all subjects could not provide a meaningful measure of ERPAC
patterns. In order to solve this limitation, we applied a correction method for multi-
ple comparisons using pixel-based statistics (Cohen, 2014). In order to carry out the
surrogate procedure for ERPAC, we firstly generated 500 surrogate distributions and
we calculated their associated Z -score statistic. Finally, statistical significance was de-
termined using pixel-based statistics, which are based on computing a critical Z -value
(named Z -threshold) corresponding with the 95th percentile of the largest values. This
is the bound of the threshold at α = 0.05 (one-tail) (Cohen, 2014). Based on pixel-based
statistics, we extracted LF and HF sub-bands of interest from comodulograms where only
Z-values greater than a Z -threshold could be considered statistically significant (Nichols
and Holmes, 2002). The LF and HF sub-bands of interest were used to assess the differ-
ences between healthy controls and schizophrenia patients (permutation test with 10000
permutations; α = 0.05) (Nichols and Holmes, 2002). Finally, correlations between al-
pha power and ERPAC values over a post-stimulus window were evaluated by means of
Spearman’s rank correlation.

7.3. Results

7.3.1. Spectral features at the sensor-level

As Aru et al. (2015) pointed out, the low frequency range should include a clear
peak in a time-resolved power spectrum. Time-frequency representations of oscillatory
activity are depicted in Figs. 1 and 2B. We observed a clear peak of spectral power at
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low frequencies, which corresponds approximately with the alpha frequency band ([8 13]
Hz).

In order to further characterize the event-related EEG data, we studied the time-
frequency features of amplitude and phase information. Firstly, Figure 7.2a shows time-
averaged evoked amplitude for the whole spectrum ([1 120] Hz) and after a HF filtering
process ([25 120] Hz). Whereas evoked ERP on the whole spectrum shows typical ERP
components (i.e. P100, N200 and P300 waves), the HF filtered ERP does not depict
any event-related variation with regard to stimulus onset. Secondly, Figure 7.2c depicts
frequency-dependent ITPC values measured for time windows preceding and following
the stimulus onset ([-500 0] and [0 500] ms windows, respectively). At low frequencies, a
slight increase of phase-locking in the post-stimulus window when compared with the pre-
stimulus baseline can be observed. In addition, this figure shows how phase reorganization
is prevalent at low frequencies. Finally, Figure 7.2d illustrates time evolution of ITPC
at LF for each subject included in the study. It depicts that phase reorganization was
taking place mainly a few milliseconds after stimulus onset. In addition, the relationship
between the time-course of ITPC and the P300 latency for each subject was assessed.
Non-statistically significant relationship was found between the time sample where the
maximum ITPC value occurs and the P300 latency (Spearman’s rank correlation, R =
0.0227; p = 0.8320).

7.3.2. ERPAC patterns: selection of LF and HF sub-bands of interest

In order to select a pair of frequency ranges of interest in the comodulogram, ERPAC
was firstly computed over a wide range of frequencies for healthy controls (i.e. LF, [4
13] Hz; and HF, [30 110] Hz). Thereby, surrogated ERPAC on healthy subjects was
used to select LF and HF sub-bands of interest where meaningful CFC patterns could
be found. Besides, as previously mentioned in Subsection 2.5, statistical significance was
determined using a Z -threshold obtained by means of a surrogate analysis. Figure 7.4
depicts the percentage of subjects whose surrogated ERPAC values were higher than their
Z -threshold. It includes spatial and temporal information of ERPAC, showing averaged
comodulograms over 200 ms-length temporal windows at F3, F4, C3, C4, T7, T8, P3,
P4, O1 and O2 electrodes. It is noteworthy that Figure 7.4 shows a higher prevalence
of alpha-to-gamma ERPAC over posterior brain regions than over frontal and temporal
brain regions. Based on these results, we selected hereafter two frequency sub-bands:
[9 13] and [17 53] Hz. They were used to identify a pathological signature in CFC of
schizophrenia patients.

7.3.3. ERPAC differences between schizophrenia patients and healthy
controls

The previous analysis highlighted the relevance of alpha-to-gamma ERPAC over pos-
terior brain areas during an auditory-oddball task. The next step was then to analyze
whether schizophrenia patients exhibited altered CFC patterns in comparison to healthy
controls over these selected sub-bands. Figure 7.5 shows the temporal evolution of to-
pographical ERPAC patterns and the results of between-group statistical analysis. In
general, ERPAC is higher in central and posterior brain regions for both groups. In addi-
tion, it can be observed that ERPAC progressively decreases after stimulus onset. Nev-
ertheless, neural reorganization during the auditory-oddball task is different for healthy
controls and schizophrenia patients. Specifically, healthy controls exhibited statistically
significant higher ERPAC values than schizophrenia patients over centro-parietal brain
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Figure 7.4: Selection of LF and HF sub-bands of interest. Comodulograms show the
percentage of subjects whose surrogated ERPAC values were higher than their pixel-
based statistics Z -threshold. It is also shown the evolution of comodulugrams along
time. Only percentages higher than 40% are depicted. In order to facilitate the figure
comprehension, comodulograms from only 10 channels were shown. These channels are
representative from different brain regions and the two brain hemispheres.

areas after stimulus onset. In addition, schizophrenia patients depicted a statistically
significant cross-frequency increase at fronto-temporal electrodes.

Finally, we tested whether the strength of the LF power in the selected sub-band
of interest (i.e. [9 13] Hz) is correlated with the degree of CFC. A linear regres-
sion analysis showed a correlation between alpha power and ERPAC for healthy con-
trols over the post-stimulus [0 500] ms time window. The main statistical significant
correlations were obtained at right centro-parietal regions (P4, R=0.6159, p<0.0001;
Pz, R=0.6093, p<0.0001; P8, R=0.5127, p=0.0001; CP2, R=0.5615, p=0.0001; CP1,
R=0.4765, p=0.0003; CP6, R=0.4940, p=0.0002; C3, R=0.4933, p=0.0002; C4, R=0.4877,
p=0.0002) and frontal regions (FCz, R=0.5663, p<0.0001; F3, R=0.4864, p=0.0003;
FC2, R=0.5061, p=0.0001). In detail, Figure 7.6 shows a direct relationship between al-
pha power and ERPAC over Pz electrode. Lower statistical significant correlations were
obtained between alpha power and ERPAC for schizophrenia group. They were also found
at right centro-parietal region (Cz, R=0.5244, p=0.0007; P8, R=0.4723, p=0.0027; Pz,
R=0.4411, p=0.0055; P4, R=0.3961, p=0.0138; P3, R=0.4148, p=0.0096).

7.4. Discussion

The aim of this study was two-fold. First, the study aimed to characterize the hier-
archy of oscillations between LF and HF activity during an auditory oddball paradigm.
Second, the study explored the PAC differences between healthy controls and schizophre-
nia patients. For this purpose, a measure of time-varying CFC, ERPAC, was computed
for 52 healthy controls and 38 schizophrenia patients. Our findings suggested that low
gamma amplitude is modulated by alpha phase in healthy controls, whereas schizophre-
nia patients exhibited statistically significant lower alpha-to-gamma ERPAC than healthy
controls at centro-parietal brain regions.
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Figure 7.5: Temporal evolution of topographical ERPAC patterns. Between-group dif-
ferences were assessed over [9 13] Hz and [17 53] Hz sub-bands of interest. The first and
the second row depict surrogated ERPAC averages for healthy controls and schizophrenia
patients, respectively. The third row summarizes statistically significant t-values between
groups (permutation test with 1000 permutations, α = 0.05). A color map was applied.
Hot colors are associated with a higher ERPAC in controls than in schizophrenia patients.
On the contrary, cold ones depict higher ERPAC values in schizophrenia patients. Bold
dots (·) indicate sensors showing statistically significant differences (p<0.05, permutation
test).

7.4.1. Methodological event-related CFC assessment

The first research question pointed out in the Introduction section addressed the use of
ERPAC to characterize CFC patterns associated with an auditory oddball paradigm. To
obtain a physiological interpretation of CFC, it is necessary to know the set of potential
mechanisms responsible for neural coupling (Aru et al., 2015). Likewise, it is important
to know the methodological confounds that could make difficult to build connections
between the measured CFC and the underlying neurophysiological processes.

As we have introduced, PAC analysis proceeds by first selecting two frequency bands.
LF phase extraction requires narrow filters with excellent resolutions in both time and
frequency. HF filter bandwidth must be large enough to preserve amplitude modulation
(Berman et al., 2012). Likewise, phase-amplitude CFC could reflect unspecific non-
stationary responses of driven systems not related to neural processes (Aru et al., 2015).
For example, an external input that simultaneously affects the phase of a LF component
and the amplitude of HF oscillations. The key issue is to distinguish whether the observed
PAC is correlated with a causal interaction between brain rhythms or whether it is due to
a common drive (Aru et al., 2015). This limitation can be managed, firstly, by examining
the spectral characteristics of the data and, secondly, by applying a surrogate analysis
that preserves the induced changes but randomizes the inter-trial relationship between
LF and HF oscillations (Aru et al., 2015; Voytek et al., 2013):

i. When spectral characteristics of event-related EEG data are analyzed, both ampli-
tude and phase information must be taken into account. Firstly, clear peaks in a
time-resolved power spectrum are indispensable requisites to obtain a meaningful
instantaneous phase extraction (Aru et al., 2015). In this study, we observed the
highest spectral power in alpha frequency band for both schizophrenia patients and
healthy controls (Figures 1 and 2b). Likewise, in agreement with previous stud-
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Figure 7.6: Scatterplot showing the association between alpha band normalized power
and surrogated ERPAC values averaged over a post-stimulus [0 500] ms time window at
Pz electrode. Green points depict healthy controls and red points depict schizophrenia pa-
tients. As a response to an auditory oddball paradigm, more positive alpha power values
can be associated with higher surrogated ERPAC values in healthy controls (R=0.6093,
p<0.0001) and in schizophrenia patients (R=0.4411, p=0.0055).

ies, the average alpha-band spectral power decreased after stimulus onset (Friese
et al., 2013). Secondly, although evoked potentials affect a broad range of frequency
components (Makeig et al., 2002), our spectral analyses showed that the evoked am-
plitude had no effect on HF oscillations (Figure 7.2a). This result is coherent with
several researchers showing that the ERP wave is dominant at LF bands (<25 Hz)
(Bachiller et al., 2015c; Polich, 2007). Thirdly, ITPC was computed to provide a
metric of event-related phase-locking across trials for a given frequency band (Voytek
et al., 2013). Our results suggested that phase was reorganized preferentially at LF
(Figs. 2C and 2D). Furthermore, we obtained an increase of phase-locking across
trials at LF immediately after stimulus onset. Therefore, our findings revealed a
meaningful phase-locking with respect to a stimulus onset at LF, whereas there was
a lack of stimulus-evoked changes in HF amplitude.

ii. Surrogated analyses were applied to prevent non-stationarity and non-linearity mis-
understandings, as well as to assess statistical significance (Aru et al., 2015). Per-
forming a resampling analysis preserves the induced changes while randomizing the
relative trial structure between amplitude and phase (Lachaux et al., 1999; Voytek
et al., 2013). The proposed ERPAC surrogate method takes into account event-
related responses. Therefore, it could be more sensitive to detect subtle time-varying
CFC patterns (Voytek et al., 2013). As we introduced previously, ERPAC is well-
suited to capture dynamic changes in CFC over both temporal and frequency do-
mains (Sato et al., 2014; Voytek et al., 2013). It provides a method for assessing
sub-second coupling dynamic changes in CFC caused by an external event of interest
(Voytek et al., 2013).

In summary, in this study we examined the temporal profile of ERPAC at each pair
of LF and HF sub-bands. In order to obtain a reliable measure of PAC, we carefully
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took into account several methodological recommendations including filtering procedure,
phase and amplitude extraction, and testing the effect of non-stationarities by means of
a surrogate procedure.

7.4.2. Characterization of time-varying CFC patterns

7.4.2.1. Alpha-to-gamma ERPAC

CFC is proposed to reflect how neurophysiological processes in the brain can be
temporally organized across different frequency bands (van Driel et al., 2015). Although
recent studies partially disagreed (Helfrich et al., 2015; Jiang et al., 2015), PAC is based
on the idea that the distribution of HF power values is modulated by the LF phase
(Dvorak and Fenton, 2014). Thereby, it reflects the dynamical relationship between two
oscillations that are generated by distinct neurophysiological mechanisms (Dvorak and
Fenton, 2014).

Different CFC patterns have been reported in the literature depending on the variety
of experimental conditions, species, brain regions or the particular CFC methodology
(Hyafil et al., 2015). Most of the studies evaluated the PAC between theta ([4 8] Hz) and
gamma (> 30 Hz) (Axmacher et al., 2010; Lisman and Jensen, 2013), as well as between
alpha ([8 13] Hz) and gamma (> 30 Hz) (Bahramisharif et al., 2013; Berman et al.,
2015; Bonnefond and Jensen, 2015; Osipova et al., 2008; Roux et al., 2013; Voytek et al.,
2010). In particular, theta-gamma PAC might support sequential memory organization
and long-range cortico-cortical communication (Axmacher et al., 2010; Lisman, 2005;
Lisman and Jensen, 2013), whereas alpha-gamma PAC has been suggested to constitute
a powerful mechanism to organize cognitive processing in sensory regions (Bonnefond
and Jensen, 2015; Jensen et al., 2014; Roux et al., 2013), such as visual and sensorimotor
cortex (Voytek et al., 2010; Yanagisawa et al., 2012). Based on these previous studies, a
wide LF sweep was explored, including theta and alpha frequency bands. As Figures 5
and 6 show, our study reveled a statistically significant alpha-to-gamma ERPAC, mainly
over parietal and occipital areas. These findings agree with previous PAC studies, since
topographic results showed greater alpha-to-gamma correlation in parietal and occipital
cortices in various ranges of the gamma band ([30 40] Hz, [50 70] Hz and > 70 Hz). Such
ERPAC has been widely observed in EEG/MEG studies (Berman et al., 2015; Bonnefond
and Jensen, 2015; Chorlian et al., 2006; Osipova et al., 2008; Roux et al., 2013), as well
as in ECoG investigations (Bahramisharif et al., 2013; Jiang et al., 2015; van Kerkoerle
et al., 2014; Voytek et al., 2010; Yanagisawa et al., 2012). These studies suggested that
alpha rhythms have a critical influence on the excitability level of neocortical networks
(Berman et al., 2015; Jensen et al., 2014; Klimesch, 2012). The major effect on parietal
and occipital areas could be due to the fact that posterior brain regions include a large
concentration of alpha rhythm generators (Berman et al., 2015; Huang et al., 2014).

Several PAC studies have shown that alpha oscillations could play a key role in the
coordination of brain activity in different frequencies (Klimesch, 2012), but the exact
physiological mechanisms that generate alpha rhythms are not yet known (Klimesch,
2012). In this regard, the use of event-related PAC measures could provide novel insights
for understanding the neural basis of alpha-to-gamma coupling.

7.4.2.2. Analysis of ERPAC in schizophrenia

Our second aim was to investigate whether a global ERPAC pattern could character-
ize brain dynamics in schizophrenia. We can assume that healthy functioning requires
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a balance between the different frequencies (Northoff and Duncan, 2016). Novel mea-
sures of the brain structural and functional integrity highlighted that cognitive functions
emerge from coordinated activity of distributed neural processes in the time range of
milliseconds (Bullmore and Sporns, 2009; Uhlhaas, 2013; Uhlhaas and Singer, 2015).
However, there is support for a frequency-dependent disbalance of relative activity levels
in schizophrenia (Northoff and Duncan, 2016). Prior research on this issue was based on
the premise that the substrates of cognitive dysfunctions and symptoms of schizophrenia
were underpinned by alterations of brain regions and circuits (Uhlhaas, 2013). Neverthe-
less, their meaning and significance for the different psychopathological symptoms are
yet to be defined (Northoff and Duncan, 2016; Uhlhaas and Singer, 2015).

As far as we know, the present work is the first study that evaluates cross-frequency
modulation differences between schizophrenia patients and healthy controls using an
event-related approach. Impaired EEG neural oscillatory activity during sensory and
cognitive tasks in schizophrenia has been previously observed in all frequency bands
(Mathalon and Sohal, 2015; Moran and Hong, 2011; Uhlhaas and Singer, 2010). For
these reason, it remains misunderstood what is the role of each frequency band in the
characterization of the pathophysiology of schizophrenia (Moran and Hong, 2011). In
our study, the comparison between groups was performed over two particular sub-bands
of interest: [9 13] Hz and [17 53] Hz. As shown in Figure 7.5, alpha-to-gamma ERPAC
was higher for healthy controls than for schizophrenia patients over centro-parietal brain
areas (Allen et al., 2011; White et al., 2010). Likewise, our results depicted a significantly
increased cross-frequency modulation in comparison with healthy subjects at fronto-
temporal electrodes (Allen et al., 2011; Northoff and Duncan, 2016). Analogously to
previous researches, our findings showed an association between alpha power and ERPAC
(i.e. the higher alpha power, the larger ERPAC values) (Berman et al., 2015; Osipova
et al., 2008). This association suggests that strong alpha power is a prerequisite for the
CFC, supporting the idea of a clear peak at LF band (Osipova et al., 2008). It is possible
that higher alpha band amplitude may provide greater SNR and thus allow CFC to be
more accurately estimated (Berman et al., 2015).

As we have introduced, the dysconnection hypothesis in the schizophrenia has been
defined as a disturbed dynamic coordination between neural oscillations (Friston et al.,
2016; Friston, 1998). Our findings could be related to the dysconnection hypothesis
through an aberrant modulation of synaptic efficacy in the context of distributed and
hierarchical neural processing (Friston et al., 2016). Recent work has focused on the
alteration in the excitatory/inhibitory (E/I) balance parameters as one possible cause
for deficits in neural oscillations (Uhlhaas, 2013). The abnormal dynamics in schizophre-
nia has been related to deficits in local circuits as well as abnormal large-scale networks
(Uhlhaas and Singer, 2010). In the first case, disturbances of GABAergic inhibitory
mechanism could be constitutive of abnormal generation of gamma band oscillations
(Uhlhaas and Singer, 2015). The second scenario could implicate a hypofunctioning of
N-methyl-D-aspartate (NMDA) receptors, related to excitatory function (Uhlhaas and
Singer, 2015). In this sense, Friston et al. (2016) proposed that the pathophysiological
key determinants of schizophrenia could lie in the interactions between NMDA receptor
function and modulatory neurotransmitter systems. They speculated that an abnormal
response of the NMDA receptor could involve secondary abnormalities in GABAergic neu-
rotransmission that can be summarized as a failure to optimize the E/I balance (Friston
et al., 2016). Taken together, these findings point towards an altered hierarchical organi-
zation of neural activity in schizophrenia: an abnormal frequency-dependent disbalance
of relative activity levels, depicted by a decoupling between low and high frequencies
(Northoff and Duncan, 2016).
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7.4.3. Limitations of the study and future research lines

Several limitations of this research merit consideration. Firstly, one of the main con-
troversies on CFC analyses concerns to the directionality of the CFC. Conventionally,
it was established that LF entrainment drives HF amplitude modulation in a unidirec-
tional manner. However, recent researchers have found a causal relationship (i.e. gamma
amplitude is inhibited by alpha phase, as it is well known, but it exists a feedback mech-
anism in which gamma drives the alpha entrainment) (Chorlian et al., 2006; Helfrich
et al., 2015; Jiang et al., 2015). Secondly, as well as gamma band is nested within lower
frequencies, LF oscillations may be nested within lower frequency bands, such as delta
rhythms. Likewise, these couplings depend on the specific brain region and the partic-
ular task (Voytek and Knight, 2015b). Thirdly, the use of PLV for assessing CFC has
two limitations: (I ) it provides a single scalar index rather than a probability distribu-
tion; and (ii) it is an inherently bivariate technique (Canolty et al., 2012). In spite of
these limitations, PLV is denoted as a very sensitive method, which displayed a good
robustness against phase-clustering bias (van Driel et al., 2015). Finally, further work
is required to improve our comprehension of the functional role of hierarchical neural
oscillations. Recent researches have related a PAC between frontal theta and posterior
gamma rhythms with memory and attention tasks in humans (Friese et al., 2013; Köster
et al., 2014; Szczepanski et al., 2014). As a consequence, future steps would assess pair-
wise CFC patterns between electrodes. In particular, it would be interesting to evaluate
the role of fronto-parietal network as a response to cognitive task. Pairwise CFC anal-
yses would provide a measure of effective connectivity that could contribute into the
characterization of the schizophrenia as a dysconnection syndrome.

7.5. Conclusions

Neural oscillations have a complex and hierarchical organization. Consequently, in-
teractions among different frequency bands can contribute to further understand brain
dynamics. In this study, we applied a recently reported event-related CFC measure that
allows measuring time-varying PAC patterns and capturing task-related PAC effects.
Our results revealed the role of alpha-to-gamma PAC in neural cognitive processing,
indicating that alpha rhythms could play a key role in the coordination of cognitive
information processing. In particular, the alpha phase modulation of cortical gamma
power may support the significance of the E/I balance in neural oscillatory hierarchy.
Furthermore, the study of ERPAC patterns differences between schizophrenia patients
and healthy controls supports the notion that hierarchical neural processes are altered
in the schizophrenia.



Chapter 8

Discussion

In this Doctoral Thesis, the characterization of cognitive processes altered by the
schizophrenia was addressed. Firstly, it assessed how time-frequency analyses of EEG
data offer a valuable framework for the cognitive electrophysiology study of the neu-
ral mechanisms underlying cognitive processes. Secondly, this Doctoral Thesis aimed
to elucidate the functional significance of the different classical frequency bands in neu-
rocognitive mechanisms. For this purpose, a two-level analysis of EEG data was carried
out. It allowed to analyze: (i) local activation, by means of time-frequency and neural
source generators analyses; and (ii) EEG interactions, including pair-wise interactions
and the hierarchical organization of neural rhythms.

In this Chapter, the main findings obtained with this two-level analysis in relation
with human cognition will be further discussed. Finally, the main limitations of the study
are presented.

8.1. Time-frequency characteristics of ERP data

Transiently active ensembles of neurons, commonly known as ’cell assemblies’, un-
derlie numerous operations of the brain from perception to encoding memory (Buzsáki,
2010). In particular, neural cell assemblies provide a conceptual framework for the inte-
gration of distributed neural activity (Varela et al., 2001). Likewise, neural oscillations
are one of the largest contributing mechanisms for enabling cell assemblies and coordi-
nated activity during normal brain functioning (Uhlhaas and Singer, 2010). The rela-
tion between both components (i.e. the cell assemblies and oscillatory patterns) allows
brain operations to be carried out simultaneously at multiple temporal and spatial scales
(Buzsáki and Draguhn, 2004).

Neurophysiological measurements, such as ERPs, have been suggested to provide
a biological substrate of cognitive disturbances in schizophrenia. Traditional analyses
assess ERP data in the time-domain. Researchers averaged a set of data epochs or trials
time-locked to an external event, yielding among others, the P300 component (Makeig
et al., 2004). However, trial averaging ignores the fact that the response to a cognitive
task may vary widely across trials in amplitude, time course and scalp distribution (Jung
et al., 2001). Thus, conventional averaging methods may not be suitable for investigating
brain dynamics arising from complex interactions among subject’s state and experimental
events (Jung et al., 2001; Roach and Mathalon, 2008). In this regard, single-trial time-
frequency analyses provide additional information about neural synchrony, not apparent
in the evoked ERP (Makeig et al., 2004).
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Chapters 3 and 4 of this Doctoral Thesis evaluate the time-frequency local activation
characteristics of single-trial ERP data by means of relative power into the conventional
frequency bands, spectral entropy and median frequency. Initially, spectral character-
istics on the baseline window (i.e. short period previous to the stimulus onset) were
assessed. Non-statistically significant baseline differences between groups were obtained.
These findings were consistent with the absence of spectral differences in the resting state
between medicated schizophrenia patients and controls (Sabeti et al., 2009). According
to our results, the study of bioelectrical spectral changes from baseline window to the
response one (i.e. processing stages of a cognitive task) may be a more sensitive mea-
sure to assess the differences between schizophrenia patients and healthy controls. RP
analysis showed an increase of low frequency power from baseline to cognitive response
in δ and θ frequency bands. In contrast, high frequency bands (β1, β2 and γ) showed
a power decrease in response window with regard to baseline (Bachiller et al., 2014).
However, these changes were statistically significant higher in healthy controls than in
schizophrenia patients, suggesting a lack of modulation in patients group. RP changes
from baseline to response windows were correlated with MF and SE, suggesting that MF
and SE decrease is contributed by a slowing of the EEG signal (i.e. higher amplitudes for
low frequencies and lower amplitudes at high frequencies). Indeed, MF and SE provide
a summary of the spectral content. According to previous studies, the lower decrease in
MF and SE observed in schizophrenia patients could be influenced by lower θ amplitude
increase (Doege et al., 2009) and lower reduction in γ power for patients with schizophre-
nia than for healthy subjects during target processing (Hong et al., 2012). Likewise, a
positive association between SE modulation and clinical scores was observed, suggesting
that the lower changes in SE as a response to target tones were associated with a higher
clinical severity (Bachiller et al., 2014). According to aberrant salience hypothesis, it
may be due to an impaired capacity for processing real-life stimuli (Kapur, 2003).

Furthermore, cognitive responses to distractor and target tones were assessed in Chap-
ter 4. The response to the distractor stimuli involves novelty detection, whereas target
response is associated with novelty detection and relevance attribution (Bachiller et al.,
2015a). MF and SE displayed a larger activation over central, parietal and frontal regions,
as a response to target tone than to distractor stimuli (Fig 4.3). These findings agreed
with the proposed role of frontal regions for relevance attribution in healthy subjects
(Kapur, 2003). Furthermore, SE decrease in controls from baseline to response windows
can be associated with an irregularity decrease of the ERP signal during the processing
of target and distractor tones. These findings are coherent with the widespread hypoac-
tivation observed in response to novelty in patients (Laurens et al., 2005). In addition,
the neural generators of cognitive response to both, target and distractor tones, have
been assessed in Chapter 5 and they will be discussed in the next section.

8.2. Neural source generator patterns

Source imaging techniques have been commonly used to detect neural generators that
contribute to the ERP data as a response to a cognitive task. EEG has higher temporal
resolution than other imaging techniques, such as fMRI or DTI. However, due to the
inverse problem, precise inference on EEG brain generators cannot be made (Sabeti
et al., 2016).

Chapter 5 detailed how P3a and P3b brain-source generators were obtained by time-
averaging of sLORETA current density images over a novel adaptive WOI based on
subject’s P300 latency (Bachiller et al., 2015c). Previous researches demonstrated that
discrimination between standard and non-standard infrequent stimuli reflects frontal lobe
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activation, sensitive to attentional allocation (Goldstein et al., 2002; Polich, 2007; Volpe
et al., 2007). According to prior studies, our findings suggested that there were common
brain areas activated as a response to target (P3b) and distractor (P3a) tones, including
right superior temporal gyrus and bilateral frontal lobe (Bledowski et al., 2004; Strobel
et al., 2008; Volpe et al., 2007). Likewise, our findings also concerned regions distinctly
activated by distractor and target stimuli. P3a generators were mainly identified over
frontal structures, reflecting the inhibition of a response engaged automatically with the
detection of the stimulus deviance (Goldstein et al., 2002). Nonetheless, P3b is originated
as a temporo-parietal mechanism that performs memory and executive control functions.
Therefore, its source activation is localized over a distributed network, including frontal,
temporal, limbic and parietal lobes (Anderer et al., 2003; Volpe et al., 2007; Wronka
et al., 2012).

Furthermore, statistically significant differences in the activation of brain sources be-
tween patients and controls were found for both P3a and P3b components. According to
Takahashi et al. (2013), schizophrenia patients showed a lower P3a activation in frontal,
temporal and cingulate brain regions. All of these areas are commonly involved in audi-
tory P3a generation (Strobel et al., 2008; Volpe et al., 2007). Additionally, P3b source
activation was smaller in schizophrenia patients than in healthy controls over frontal,
anterior cingulate and cingulate regions. Previous researches described a hypoactivation
of schizophrenia in frontal and cingulate areas (Kim et al., 2014; Mucci et al., 2007;
Sabeti et al., 2011). In summary, our results suggest a relevant role of frontal and cin-
gulate hypoactivation as a response to both distractor (P3a) and target (P3b) auditory
tasks. In this regard, frontal lobe has been related to the performance of discriminatory
tasks (Pae et al., 2003), whereas the cingulate has been assumed to be involved in both
the effortful initiation of motor response and the inhibition of motor responses (Liddle
et al., 2001). Therefore, it might hypothetically contribute to aberrant salience in this
syndrome through a decreased response to relevance (Kapur, 2003)

In addition to an aberrant assignment of salience, schizophrenia has been identified
as a dysconnection syndrome, which is associated with a reduced capacity to integrate
neural information among brain regions (Friston, 1998; Stephan et al., 2009). Thereby,
it is interesting to perform the analysis of functional connectivity among different brain
regions.

8.3. Functional connectivity analysis

Neural oscillations are one of the largest contributing mechanisms for enabling coor-
dinated activity during normal brain functioning. Impairments in these oscillations in
schizophrenia may lead to functional disconnections between and within cortical regions
(Friston, 1998). As a consequence, many efforts have been devoted to identifying abnor-
malities in the cortical connections among brain areas and their relation to schizophrenia
symptoms and cognitive performance (Uhlhaas and Singer, 2010).

Brain connectivity is a broad issue, which includes the study of anatomical links (i.e.
structural or anatomical connectivity), statistical dependencies (i.e. functional connec-
tivity), or causal interactions (i.e. effective connectivity) between neural populations
(Sporns, 2007). This Doctoral Thesis is focused on analyzing functional connectivity
when subjects were performed an auditory oddball cognitive task. It accounts for the
statistical association between two neuronal activities acquired by EEG data (Friston
et al., 2013).

A variety of neural analysis methods to estimate functional connectivity exist (Bas-
seville, 1989; Lachaux et al., 1999; Lopes da Silva, 2013; Stam and Reijneveld, 2007).



104 CHAPTER 8

This Doctoral Thesis assessed dynamical neural interactions by means of three comple-
mentary methods based on amplitude and phase information: (i) connectivity evaluates
time-interdependecies between neurophysiological signals (Hinkley et al., 2010); (ii) syn-
chrony provides an effective measure for the integration of neural responses in distributed
cortical networks (Varela et al., 2001); and (iii) similarity evaluates the statistical dis-
tance between probability distributions based on time-frequency representations (Rosso
et al., 2006). In particular, we combined two measures previously used in neuroscience,
such as the wavelet coherence and the phase-locking value, and a novel one: the Euclidean
distance.

Chapter 6 evaluates event-related functional connectivity patterns based on wavelet
time-scale representations. ERP analysis provides a more sensitive overview of the un-
derlying schizophrenia neural mechanisms dysfunctions than resting-state EEG analysis
(Uhlhaas, 2013; Uhlhaas and Singer, 2006). Analysis of the amplitude and phase of
neural oscillations is crucial for connectivity characterization. The amplitude of brain
oscillations has been related to the discharges of assemblies of neurons (Uhlhaas et al.,
2008), whereas phase-locking has been associated with neural firing (Varela et al., 2001).
In addition, recent researches have observed a strong correlation between phase and am-
plitude of neural oscillations at different frequencies (Canolty et al., 2010; Jensen and
Colgin, 2007).

Several EEG researches support the hypothesis that distinct frequencies are involved
in different computational and functional interactions (Meehan and Bressler, 2012; Uhlhaas,
2013; von Stein and Sarnthein, 2000). In this Doctoral Thesis, the main functional con-
nectivity differences were found in θ, β2 and γ bands. Our analyses showed a statistically
significant increase of θ–band connectivity from task response to baseline at controls
group in comparison to schizophrenia patients. This result supports the important role
that θ–band neuronal synchronization plays in the interaction between frontal and pos-
terior cortex during a cognitive task. In the case of β2–band, our findings suggested
that schizophrenia patients were not able to change their coupling between the auditory
response and pre-stimulus baseline. Thereby, schizophrenia patients failed to respond to
relevance (Kapur, 2003). On the contrary, the control group decreased their β2–coupling
response from baseline. In agreement with previous studies, our findings showed sev-
eral statistically significant differences in fronto-parietal connections, which have been
related to cognitive tasks that involve higher executive functions (Meehan and Bressler,
2012). Lastly, γ–band oscillations have been related to several brain functions, such
as perception, attention, memory, consciousness and synaptic plasticity (Uhlhaas et al.,
2008). In agreement with previous studies, our findings suggest that schizophrenia pa-
tients decrease their γ–coupling activity between response and baseline (Slewa-Younan
et al., 2004b), whereas controls exhibit a γ–coupling increase (Ford et al., 2007). Ab-
normal γ–band activity in schizophrenia patients may be related to disturbed corollary
modulation of sensory processes (Uhlhaas et al., 2008).

Up to now, the analyses were independently performed on each frequency band.
However, several studies demonstrated that the rhythms in different frequency bands can
interact to each other in behaviorally meaningful ways, suggesting that neural oscillations
have a complex and hierarchical organization (Canolty and Knight, 2010; Szczepanski
et al., 2014). In this regard, the next section will address the statistical dependence
between the phase of a low-frequency brain rhythm and the amplitude of a high-frequency
component of brain activity.
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8.4. Cross-frequency coupling patterns

CFC is proposed to reflect how neurophysiological processes in the brain can be
temporally organized across different frequency bands (van Driel et al., 2015). Several
studies have demonstrated that cognitive processes involve the coordination of slow and
fast brain oscillations (Engel et al., 2001; Szczepanski et al., 2014; Wang et al., 2014).
Chapter 7 of this Doctoral Thesis raised two main objectives: (i) to characterize the hier-
archy of brain oscillations between LF and HF during an auditory oddball paradigm; and
(ii) to explore the role of PAC abnormalities between healthy controls and schizophrenia
patients.

Firstly, conventional PAC algorithms do not allow analyzing time-varying CFC changes
when subjects are performing a cognitive task (Voytek et al., 2013). For this reason ER-
PAC, a novel approach for measuring transient PAC, was defined. It provides a mean-
ingful time-varying measure of CFC for real EEG data (Bachiller et al., 2017). Our
findings showed the relevance of alpha–to–gamma modulation. In agreement with pre-
vious studies, topographical results showed greater alpha–to–gamma ERPAC in parietal
and occipital cortices (Bahramisharif et al., 2013; Berman et al., 2015; Osipova et al.,
2008; Roux et al., 2013; Voytek et al., 2010). Alpha–to–gamma PAC has been suggested
to constitute a powerful mechanism to organize cognitive processing in sensory regions
(Bonnefond and Jensen, 2015; Jensen et al., 2014; Roux et al., 2013), such as visual and
sensorimotor cortex (Voytek et al., 2010; Yanagisawa et al., 2012). These studies sug-
gested that alpha rhythms have a critical influence on the excitability level of neocortical
networks (Berman et al., 2015; Jensen et al., 2014; Klimesch, 2012).

Secondly, the second aim is to investigate whether a global ERPAC pattern could
characterize brain dynamic abnormalities in schizophrenia. Impaired EEG neural oscil-
latory activity during sensory and cognitive tasks in schizophrenia has been previously
observed in all frequency bands (Mathalon and Sohal, 2015; Moran and Hong, 2011;
Uhlhaas and Singer, 2010). It supports a disbalance interaction between the different
frequencies (Northoff and Duncan, 2016). However, it remains misunderstood what is the
role of each frequency band in the characterization of the pathophysiology of schizophre-
nia (Moran and Hong, 2011). Statistical analyses between both groups revealed that
alpha-to-gamma ERPAC was higher for healthy controls than for schizophrenia patients
over centro-parietal brain areas. Likewise, our results depicted a significantly increased
cross-frequency modulation in comparison with healthy subjects at fronto-temporal elec-
trodes (Allen et al., 2011; Northoff and Duncan, 2016). Likewise, our findings showed an
association between alpha power and ERPAC (i.e. the higher alpha power, the larger ER-
PAC values) (Berman et al., 2015; Osipova et al., 2008). Our findings could be related
to the dysconnection hypothesis through an aberrant modulation of synaptic efficacy
in the context of distributed and hierarchical neural processing (Friston et al., 2016).
Recent studies hypothesized that neuropsychiatric disorders, such as schizophrenia, are
determined by disturbances if the excitatory/inhibitory (E/I) balance between neuronal
rhythms (Lopes da Silva, 2013; Uhlhaas and Singer, 2012, 2015).

Taken together, these findings point towards an altered hierarchical organization of
neural activity in schizophrenia: an abnormal frequency-dependent disbalance of relative
activity levels, depicted by a decoupling between low and high frequencies (Northoff and
Duncan, 2016).

8.5. Understanding schizophrenia disease by means of EEG

As it was introduced, two main theories have been associated with schizophrenia:
(i) the aberrant salience hypothesis (i.e. aberrant attribution of salience to external
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objects and internal representations); and (ii) the dysconnection hypothesis (i.e. a dis-
turbed dynamic coordination between neural oscillations). Both theories are related.
Schizophrenia aberrant attribution of salience may be evidenced by task-related func-
tional connectivity anomalies (Palaniyappan et al., 2012). Relevance attribution likely
involves diverse cerebral regions and their interconnections. In particular, an aberrant
neuromodulation of synaptic activity mediates the influence of intrinsic and extrinsic
connectivity (Friston et al., 2016). Therefore, in order to obtain a comprehensive char-
acterization of schizophrenia neural abnormalities, the cognitive response to an auditory
oddball task was explored using a two-level analysis: (i) local activation studies to ex-
plore functional segregation in the brain network; and (ii) EEG interactions analyses to
examine functional integration across brain regions.

Firstly, time-frequency characterization of local activation showed reduced modula-
tion between the response of cognitive task and the baseline periods in schizophrenia.
According to aberrant salience hypothesis, it may be due to an impaired capacity for
processing real-life stimuli (Kapur, 2003). Likewise, it was confirmed by the analysis
of distractor and target cognitive responses. Spectral features displayed a larger acti-
vation over central, parietal and frontal regions, as a response to target tone than to
distractor stimuli. In addition, our findings showed statistically significant differences in
fronto-parietal connections, which have been related to cognitive tasks that involve higher
executive functions (Meehan and Bressler, 2012). According to previous researches, our
neural source generator findings described a hypoactivation of schizophrenia in frontal
and cingulate areas as a response to both distractor (P3a) and target (P3b) auditory
tasks (Kim et al., 2014; Mucci et al., 2007; Sabeti et al., 2011). Frontal and cingulate
areas have been involved in discriminatory task and the initiation/inhibition of motor
response, respectively (Liddle et al., 2001; Pae et al., 2003). Therefore, it might con-
tribute to aberrant attribution of salience in schizophrenia through a decreased response
to relevance (Kapur, 2003).

Secondly, functional connectivity between pairs of electrodes agreed with the identifi-
cation of schizophrenia as a dysconnection syndrome, which is associated with a reduced
capacity to integrate information among different brain regions. Functional connectivity
analyses revealed that θ, β2 and γ neuronal synchronization play an important role in
the interaction between frontal and posterior cortex during a cognitive task. It suggests
that schizophrenia patients may be related to disturbed corollary modulation of sensory
processes (Uhlhaas et al., 2008).

Finally, the cognitive electrophysiology literature addresses a wide range of spatial
and temporal scales. Several researches support the idea that spatio-temporal multiscale
interactions are a critical principle that underlies cognitive functions and consciousness
(Breakspear and Stam, 2005; Le Van Quyen, 2011; Varela et al., 2001). However, it is
unknown how these multiscale dynamics are related to cognitive processes (Cohen and
Gulbinaite, 2014). In this regard, CFC provides a useful tool for assessing multiscale
interactions (Lisman and Jensen, 2013; Young and Eggermont, 2009). In this Doctoral
Thesis, CFC analyses revealed that alpha–to–gamma PAC constitutes a powerful mech-
anism to organize cognitive processing in sensory regions (Bonnefond and Jensen, 2015;
Jensen et al., 2014; Roux et al., 2013).

In addition, recent researches hypothesized that neuropsychiatric disorders are deter-
mined by disturbances of the balance between excitation-inhibition functions (Lopes da
Silva, 2013; Uhlhaas and Singer, 2012). These disturbances hypothetically contribute to
aberrant salience through a decreased response to relevance (Kapur, 2003). Our findings
could support this excitatory-inhibitory dysfunction, since schizophrenia patients have
shown a hypoactivation in cingulate areas (involved in the effortful initiation and the
inhibition of motor responses), as well as reduced alpha–to–gamma PAC (supporting the
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idea that inhibitory neurotransmission is implicated in the generation of high-frequency
oscillations). In summary, our findings supports the aberrant salience and dysconnection
hypotheses: schizophrenia patients show a failure to contextualize stimulus processing
through a failure on neuronal firing synchronization at specific frequency bands, leading
to a functional disintegration or dysconnection (Uhlhaas et al., 2010).

8.6. Limitations of the study

This Doctoral Thesis showed the utility of EEG data analysis for characterizing the
neural dynamics underlying cognitive processing in schizophrenia. However, some limi-
tations of this research merit further consideration. The first one is related to the sample
size. In spite of using two different databases involving a relatively high number of sub-
jects, a larger sample would enhance the statistical power of our results. Statistical power
analyses indicated that this sample size is enough for obtaining statistically significant
results. Nevertheless, a larger database would be particularly beneficial in the case of
including more recordings from patients’ subtypes, such as paranoid, non-paranoid or
first-episode patients. The inclusion of schizophrenia subtypes could help to confirm the
performance of all the methods presented and to further characterize the cognitive dys-
functions associated to schizophrenia. In addition, the number of recorded EEG channels
is another limitation. In this Doctoral Thesis, 17 and 33 electrodes have been used. A
larger number of electrodes provides higher accuracy for spatially localizing the source
of electrical abnormalities. Consequently, the use of high density EEG recordings could
improve the findings obtained by the connectivity and LORETA analyses.

As it was highlighted in Chapter 5, the study of neural source generators is associated
with several limitations. Firstly, the defined sLORETA approach using a window of
interest lost time-course information. Furthermore, LORETA is a low-resolution source
imaging technique. The combination between low- and high-resolution (i.e. shrinking
sLORETA, or time-reduction region-suppression linearly constrained minimum variance,
TR–LCMV) algorithms can be a useful tool for physiologist to find the neural sources of
primary circuits in the brain (Sabeti et al., 2016).

In this Doctoral Thesis, all connectivity parameters are measures of functional con-
nectivity (i.e. the statistical dependence between remote physiological activities). This
should be compared to effective connectivity (i.e. the causal inference of one system over
another) or/and to anatomic connectivity (i.e. the physical neural connections). In ad-
dition, these connectivity patterns could be used as the basis of a network analysis. The
combination of the proposed two-level hierarchical analysis and a novel complex network
analysis may provide valuable insights on the structural and functional organization of
neural networks in the schizophrenia.

The mathematical development of time-frequency based data analyses has advanced
beyond the understanding of the neurophysiological events. Thus, it might underlie
the results of these analyses (Cohen and Gulbinaite, 2014). Functional connectivity
between pairs of electrodes was assessed based on correlations in power series, or on phase
value differences. However, it is unclear whether these connectivity measures based on
power and phase reflect similar mechanisms (e.g. long-range or local-range connections)
(Cohen and Gulbinaite, 2014). Likewise, it is unknown whether the same mechanism
underlie connectivity in different frequency bands or in different brain regions (Cohen
and Gulbinaite, 2014).

ERPAC provides a time-varying measure of CFC and solves noise sensitivity of cPAC
algorithms. Nonetheless, the use of ERPAC could introduce a spurious PAC due to
unspecific non-stationarities not related to neural processes (Aru et al., 2015). Therefore,
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the design of a suitable surrogate procedure is required to prevent non-stationarity and
non-linearity misunderstandings, as well as to assess statistical significance (Aru et al.,
2015).

One of the main controversies on CFC analyses is the directionality of the CFC.
Conventionally, it was established that low-frequency entrainment drives high-frequency
amplitude modulation (Bonnefond and Jensen, 2015; Jensen et al., 2014; Roux et al.,
2013; Voytek et al., 2010; Yanagisawa et al., 2012). However, recent researches have
found a causal relationship (i.e. gamma amplitude is inhibited by alpha phase, as it is
well known, but it could exist a feedback mechanism in which gamma drives the alpha en-
trainment) (Chorlian et al., 2006; Helfrich et al., 2015; Jiang et al., 2015). Further studies
are necessary to obtain a representative characterization of the hierarchical organization
of neural oscillations.
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Conclusions

9.1. Introduction

The common thread shared by all the papers included in this Doctoral Thesis is
the understanding of cognitive processes altered by schizophrenia. EEG activity was
acquired and analyzed while subjects performed an auditory cognitive task. In partic-
ular, time-frequency properties of EEG data were assessed using a two-level analysis
including local activation, neural source generator localization, functional connectivity
and cross-frequency coupling. Taken together, the signal processing techniques used in
this Doctoral Thesis will promote the creation of a framework for analyzing EEG data
from an auditory oddball paradigm in schizophrenia. In particular, the analysis of time-
varying changes between the response to a cognitive task and the pre-stimulus baseline
interval allows a dynamic characterization of the neural mechanisms associated with the
schizophrenia.

In this Chapter, the original contributions of this Doctoral Thesis to the state-of-
the-art are highlighted. Then, the main conclusions extracted from this compendium of
publications are indicated. Finally, several questions emerged from this investigation and
future research lines will be listed.

9.2. Contributions

The main original contributions provided by the compendium of publications of this
Doctoral Thesis are:

The description of a novel automatic three-step EEG artifact rejection procedure
based on data statistics. It comprises the application of an independent component
analysis, the segmentation of EEG data into trials and a final automatic rejection
based on an adaptive thresholding method.

The definition of a novel adaptive WOI approach for ERP source localization. To
the best of our knowledge, this is the first time that an adaptive WOI was used
for neural generators localization by means of LORETA. Previously, LORETA
source imaging studies commonly used a large fixed post-stimulus WOI. However,
an adaptive WOI takes into account changes in peak latency across subjects and,
therefore, provides a reliable localization of ERP neural generators.

The application of complementary time-frequency local activation measures to char-
acterize abnormal cognitive processing during an auditory oddball task in patients
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with schizophrenia. The combination of SE and MF provides useful tool for dy-
namically addressing the slowing and irregularity patterns of EEG data.

The application of three complementary methods of EEG functional coupling by
means of three different conceptual frameworks: connectivity, synchrony and sim-
ilarity. Similarity, based on statistical distances, provides original insights to de-
scribe dynamical neural interactions. To the best of our knowledge, this is the
first study that uses statistical distances to characterize auditory oddball cognitive
responses in schizophrenia.

The assessment of a time-varying measure of CFC. To the best of our knowledge,
this is the first time that ERPAC methodology has been applied to EEG data
from an auditory oddball paradigm in schizophrenia patients. The use of ERPAC
for schizophrenia characterization provides an appropriate characterization of the
complexity and the hierarchical organization of neural oscillations.

9.3. Main conclusions of the study

The analysis of the obtained results lead to the next main conclusions of this Doctoral
Thesis:

1. Although several researches expressed skepticism about the usefulness of EEG record-
ings in understanding neural activity, event-related EEG data are considered to be
indicative of the role of different cortical areas to various sensory or behavioral func-
tions. This Doctoral Thesis contributes to support the idea that EEG data reflect
not only characteristics of the brain activity itself, but they also reveal important
information on the underlying associated cognitive processes.

2. Neural oscillations are a fundamental mechanism for enabling coordinated activity
during normal brain functioning. Neural oscillations at different frequency ranges
establish accurate temporal correlations between distributed neural responses. There-
fore, impairments in these oscillations constitute a mechanism for a pervasive network
impairment in schizophrenia.

3. The assessment of spectral parameters (RP, SE and MF) based on time-frequency
representations is useful for the study of dynamical cognitive processing abnormalities
in schizophrenia. Time-frequency analysis revealed an increasing contribution of RP
at low-frequency bands as well as SE and MF decreases during the cognitive response
to a target tone in healthy control group. Patients group were not able to enough
modulate their neural activity as a response to an auditory task.

4. Time-frequency changes on dynamical brain activity, when subjects performed an
auditory oddball task, are related to clinical severity and may be informative of the
underlying altered cognitive functions in the schizophrenia. A statistically significant
correlation between SE and positive symptoms was found: the higher the positive
symptoms, the lower the SE changes between cognitive response and pre-stimulus
baseline.

5. The cognitive response to different auditory tones involves the activation of specific
brain areas. Different neural sources generate P3a and P3b: P3a generators are
prominent over sensory brain regions, whereas P3b sources are observed over a large
distributed network, including motor cortex. Likewise, source generators during an
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auditory-oddball task are altered in schizophrenia patients. Schizophrenia is associ-
ated with a reduced response to both relevance and novelty in comparison with healthy
controls. Between-group differences in P3a and P3b neural generators are mainly ob-
tained in areas related to stimulus discrimination capacity and motor response tasks,
suggesting a decreased response to relevance attribution in schizophrenia patients.

6. The selection of a post-stimulus temporal window is an important requirement for
neural generators localization. Our findings suggest that the use of an adaptive WOI
enhances LORETA performance, reducing inter-subject P300 latency variability and
providing an accurately localization of the P300 brain-source generators.

7. The use of three complementary coupling measures in terms of connectivity, syn-
chrony and similarity, which consider both amplitude and phase effects, contributes
to comprehensively characterize EEG functional integration. Our findings suggest
that connectivity and synchrony are appropriate for measuring both local-range and
large-distance connections, whereas, similarity is better suited to focus on local-range
interactions.

8. Neural connectivity patterns between different brain areas are altered in θ and β2

frequency bands in schizophrenia patients during the performance of an auditory cog-
nitive task. Schizophrenia patients are not able to reorganize appropriately their
functional coupling patterns from the pre-stimulus baseline to the cognitive response.

9. Our CFC analyses suggest that alpha rhythms play a key role in the coordination
of cognitive information processing. In particular, alpha-to-gamma modulation may
reveal the significance of inhibitory processes in neural oscillatory hierarchy. It could
support the hypothesis that neuropsychiatric disorders are determined by disturbances
of the balance between excitation-inhibition functions.

In summary, schizophrenia patients show a failure to contextualize stimulus processing
through diverse abnormalities on neuronal firing synchronization, leading to a functional
disintegration or dysconnection. The decreased neural activation of schizophrenia pa-
tients as a response to both relevance and novelty stimuli contributes to support the
aberrant salience hypothesis in the schizophrenia. Likewise, functional connectivity pat-
terns between pairs of electrodes support the role of schizophrenia as a dysconnection
syndrome, which is associated with a reduced capacity to integrate information among
different brain regions. In conclusion, the assessment of a two-level hierarchical analysis of
EEG neural signals contributes to further characterize the pathopysiology of schizophre-
nia.

9.4. Future research lines

There exist several questions derived from this research that can be studied in the
future. They could complement our results, as well as, point out interesting topics out
of the scope of this Doctoral Thesis.

One natural way to continue our research is the assessment of our methodology in a
larger EEG database. The inclusion of a larger database would increase the statistical
power of our results, as well as it could help to identify whether different schizophrenia
subgroups could be identified. High-density EEG recordings provide a higher accuracy
for both two-levels of analysis (i.e. local activation and EEG interactions). In this
regard, LORETA analysis would improve spatial localization of the neural generators by
increasing the number of electrodes.
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Three different time-frequency methodologies were used in this Doctoral Thesis:
Short-Time Fourier Transform, Hilbert Transform and Wavelet Transform. Further work
is necessary in order to address novel time-frequency representations, as well as differ-
ent mother wavelet functions that provide a more appropriate relationship between time
and frequency resolution. In addition, a better understanding of the neurophysiological
processes that underlie the time-frequency features observed in scalp neural data would
require complementary methodological approaches, such as simultaneous invasive and
non-invasive recordings, such as ECoG or fMRI data. It would allow linking the activity
at the level of individual neurons and populations of neurons recorded at scalp EEG.
Likewise, novel brain connectivity measures could be obtained by using autoregressive
methods such as S–coherency, Granger inequality or partial DFT.

Functional brain integration can be characterized by EEG data in two ways: func-
tional and effective connectivity. Functional connectivity describes statistical depen-
dencies between data, whereas effective connectivity reflects the causal inference of one
system over another. Future researches could address the application of complementary
unidirectional functional connectivity measures and bidirectional effective connectivity to
the EEG data. Furthermore, the study of the directionality of the CFC and the evaluation
of pair-wise CFC patterns between electrodes could further improve the comprehension
of the functional role of hierarchical neural rhythms.

On the basis of further analyses of functional, effective and pair-wise CFC connec-
tions, a complex network analysis could be addressed. In the last decade, brain networks
have been brought into focus in neuroscience, allowing to use a wide array of quantitative
tools and methods from complex network theory (Sporns, 2013). Network theory analysis
provides an engagement between segregation and integration brain functions: functional
integration measures global communication between network hubs (i.e. distant brain
areas) and functional segregation could be formed by local network communities that are
intrinsically densely connected and strongly coupled (Sporns, 2013). Preliminary analy-
sis assessed the use of complex network theory for characterizing EEG brain networks,
suggesting an abnormal organization of the brain functional network in schizophrenia
(Bachiller et al., 2013). However, further analyses are required for understanding com-
plex brain networks in this syndrome.

In summary, the analysis of the response to an auditory oddball task was used to
gain further insights into the neural mechanisms underlying cognitive dysfunctions in
schizophrenia. Event-related patterns based on time-frequency representations provide a
more sensitive measure to describe schizophrenia alterations than resting-state EEG anal-
ysis. Our research proposal assessed time-frequency evoked and induced brain activity
during an auditory cognitive task, obtaining a reliable characterization of dynamical neu-
ral patterns. Our findings supports the aberrant salience and dysconnection hypotheses:
our results revealed that schizophrenia patients showed an attention-dependent modula-
tion of spectral distribution and functional connectivity in specific frequency bands.



Appendices

113





Appendix A: Scientific
production during this Doctoral
Thesis

A.1. Papers indexed in the Journal Citation Reports

1. Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mañanas, M., Poza, J. &
Hornero, R (2015) Auditory P3a and P3b neural generators in schizophrenia: An
adaptive sLORETA P300 localization approach. Schizophrenia Research, 169, 318–
325. Impact Factor: 4.453. Position 25 of 140 (Q1) PSYCHIATRY

2. Bachiller, A., Poza, J., Gómez, C., Suazo, V., Molina, V. & Hornero, R. (2015) A
comparative study of event-related coupling patterns during an auditory oddball task
in schizophrenia. Journal of Neural Engineering, 12, 016007. Impact Factor: 3.493.
Position 10 of 76 (Q1) BIOMEDICAL ENGINEERING

3. Bachiller, A., Lubeiro, A., Díez, A., Suazo, V., Domínguez, C., Blanco, J. A., Ayuso,
M., Hornero, R., Poza, J., & Molina, V. (2015) Decreased entropy modulation of EEG
response to novelty and relevance in schizophrenia during a P300 task. European
Archives of Psychiatry and Clinical Neuroscience, 265, 525–535. Impact Factor: 4.113.
Position 36 of 193 (Q1) CLINICAL NEUROLOGY and 30 of 140 (Q1) PSYCHIATRY

4. Bachiller, A., Díez, A., Suazo, V., Domínguez, C., Ayuso, M., Hornero, R., Poza,
J., & Molina, V. (2014) Decreased spectral entropy modulation in patients with
schizophrenia during a P300 task. European Archives of Psychiatry and Clinical Neu-
roscience, 264, 533–543. Impact Factor: 3.525. Position 47 of 192 (Q1) CLINICAL
NEUROLOGY and 38 of 140 (Q2) PSYCHIATRY

5. Molina, V., Bachiller, A., Gomez-Pilar, J., Lubeiro, A., Hornero, R., Cea-Cañas,
B., Valcárcel, C., Haidar, MK. & Poza, J. (2017). Deficit of entropy modulation
of the EEG in schizophrenia associated to cognitive performance and symptoms. A
replication study. Schizophrenia Research, In press. Impact Factor: 3.986. Position
25 of 140 (Q1) PSYCHIATRY

6. Gómez-Pilar, J., Poza, J., Bachiller, A., Gómez, C., Núñez, P., Lubeiro, A., Molina,
V. & Hornero, R. (2017) Quantification of graph complexity based on the edge weight
distribution balance: Application to brain networks. International Journal of Neu-
ral Systems, Acepted. Impact Factor: 6.085. Position 2 of 130 (Q1) COMPUTER
SCIENCE, ARTIFICIAL INTELLIGENCE

115



116 APPENDIX A

7. Núñez, P., Poza, J., Bachiller, A., Gómez-Pilar, J., Lubeiro, A., Molina, V. &
Hornero, R. (2017) Exploring non-stationarity patterns in schizophrenia: neural re-
organization abnormalities in the alpha band. Journal of Neural Engineering, 14,
046001. Impact Factor: 6.085. Position 2 of 130 (Q1) COMPUTER SCIENCE, AR-
TIFICIAL INTELLIGENCE

8. García, M., Poza, J., Bachiller, A., Santamarta, D. & Hornero, R. (2016) Effect of
infusion tests on the dynamical properties of intracranial pressure in hydrocephalus.
Computer Methods and Programs in Biomedicine, 134, 225–235. Impact Factor: 1.862.
Position 16 of 105 (Q1) of COMPUTER SCIENCE, THEORY & METHODS.

9. Khadmaoui, A., Gómez, C., Poza, J., Bachiller, A., Fernández, A., Quintero, J. &
Hornero, R. (2016) MEGAnalysis of Neural Interactions in Attention-Deficit/Hyperactivity
Disorder. Computational Intelligence and Neuroscience, 8450241. Impact Factor:
0.430. Position 248 of 256 (Q4) NEUROSCIENCES

10. Molina, V., Bachiller, A., Suazo, V., Lubeiro, A., Poza, J. & Hornero, R. (2016)
Noise power associated to decreased task-induced variability of brain electrical activity
in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 266, 55–
61. Impact Factor: 4.113. Position 36 of 193 (Q1) CLINICAL NEUROLOGY and 30
of 140 (Q1) PSYCHIATRY

11. Gómez-Pilar, J., Poza, J., Bachiller, A., Gómez, C., Molina, V. & Hornero, R.
(2015) Neural Network Reorganization Analysis during an Auditory Oddball Task in
Schizophrenia using Wavelet Entropy. Entropy, 17, 5241–5256. Impact Factor: 1.743.
Position 25 of 78 (Q2) PHYSICS, MULTIDISCIPLINARY

12. Poza, J., Gómez, C., Bachiller, A. & Hornero, R. (2012) Spectral and non-linear
analyses of spontaneous MEG activity in Alzheimer’s disease. Journal of Healthcare
Engineering, 3, 299–322. Impact Factor: 0.662. Position 78 of 83 (Q4) HEALTH
CARE SCIENCES & SERVICES

A.2. Recent papers submitted

1. Bachiller, A., Poza, J., Gomez–Pilar, J., Gómez, C., Lubeiro, A., Ayuso, M., Molina,
V. & Hornero, R. (2016) Investigating ERPAC patterns of brain activity: Evidence of
alpha–gamma hierarchical organization elicited by an auditory oddball task. NeuroIm-
age: Clinical, Submitted. Impact Factor: 4.348. Position 12 of 77 (Q1) COGNITIVE
NEUROSCIENCE; 14 of 124 (Q1) RADIOLOGY NUCLEAR MEDICINE & MEDI-
CAL IMAGING; 18 of 141 (Q1) NEUROLOGY AND 28 of 329 (Q1) NEUROLOGY
(CLINICAL)

A.3. International conferences

1. Bachiller, A., Gomez–Pilar, J., Poza, J., Núñez, P., Gómez, C., Lubeiro, A., Molina,
V. & Hornero, R. Event-related phase-amplitude coupling: A comparative study.
Proceedings of the 3rd International Conference on NeuroRehabilitation, ICNR2016,
757-761, La Granja, Segovia (Spain), 2016.



APPENDIX A 117

2. Núñez, P., J., Poza, Bachiller, A., Gomez–Pilar, J., Gómez, C., Lubeiro, A., Molina,
V. & Hornero, R. Analysis of functional connectivity during an auditory oddball task
in schizophrenia. Proceedings of the 3rd International Conference on NeuroRehabili-
tation, ICNR2016, 751–755, La Granja, Segovia (Spain), 2016.

3. Núñez, P., Poza, J., Gómez-Pilar, J., Bachiller, A., Gómez, C., Lubeiro, A., Molina,
V., & Hornero, R. Analysis of the Non-stationarity of Neural Activity during an
Auditory Oddball Task in Schizophrenia. Proceedings of the 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society Conference,
EMBC 2016, 3724-3727, August 16–20, Orlando, USA.

4. Gómez-Pilar, J., Poza, J., Bachiller, A., Núñez, P., Gómez, C., Lubeiro, A., Molina,
V., & Hornero, R. Novel Measure of the Weigh Distribution Balance on the Brain Net-
work: Graph Complexity Applied to Schizophrenia. Proceedings of the 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
Conference, EMBC 2016, 700–703, August 16-20, Orlando, USA.

5. Gómez, C., Poza, J., Gómez-Pilar, J., Bachiller, A., Juan-Cruz, C., Tola, M. A.,
Carreres, A., Cano, M. & Hornero, R. Analysis of Spontaneous EEG Activity in
Alzheimer’s Disease Using Cross-Sample Entropy and Graph Theory. Proceedings of
the 38th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society Conference, EMBC 2016, 2830–2833, August 16-20, Orlando, USA.

6. Poza, J., Gómez, C., García, M., Bachiller, A., Fernández, A. & Hornero, R. Analysis
of Spontaneous MEG Activity in Mild Cognitive Impairment and AlzheimerÕs Disease
using Jensen’s Divergence. Proceedings of the 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society Conference, EMBC 2014,
1501-1504, August 26–30, Chicago, USA.

7. Díez, A., Bachiller, A., Martín-Loeches, M., Casado, P., Poza, J., Hornero, R.,
& Molina, V. Poster# M179 REDUCED THETA BAND RESPONSE TO RELE-
VANCE IN SCHIZOPHRENIA. Proceedings of the 4th Biennial Schizophrenia Inter-
national Research Conference, 2014, 153, S255–S256.

8. Díez, A., Suazo, V., Bachiller, A., Ayuso, M., Domínguez, C., Hornero, R., Poza, J.
& Molina, V. Poster# T64 SPECTRAL ENTROPY MODULATION DECREASE IN
PATIENTS WITH SCHIZOPHRENIA DURING P300 EVOCATION. Proceedings of
the 4th Biennial Schizophrenia International Research Conference, 2014, 153, S311.

9. Gómez, C., Poza, J., Fernández, A., Bachiller, A., Gómez-Pilar, J. & Hornero, R.
Entropy Analysis of MEG Background Activity in Attention-Deficit/Hyperactivity
Disorder. Proceedings of the 35th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society Conference, EMBC 2013, 5057-5060, July
3–7, Osaka, Japan.

10. Poza, J., García, M., Gómez, C., Bachiller, A., Carreres, A. & Hornero, R. Charac-
terization of the Spontaneous Electroencephalographic Activity in Alzheimer’s Disease
using Disequilibria and Graph Theory. Proceedings of the 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society Conference,
EMBC 2013, 5990-5993, July 3–7, Osaka, Japan.

11. Bachiller, A., Poza, J., Gómez, C., Molina, V., Suazo, V., Díez, A. & Hornero, R.
Graph-Theoretical Analysis in Schizophrenia Performing an Auditory Oddball Task.



118 APPENDIX A

IFMBE Proceedings of the XIII Mediterranean Conference on Biomedical and Biolog-
ical Engineering and Computing, MEDICON 2013, 799-802, September 25-28, Sevilla,
Spain.

12. Poza, J., Gómez, C., García, M., Bachiller, A., Fernández, A. & Hornero, R. Analysis
of MEG Activity across the Life Span Using Statistical Complexity. IFMBE Proceed-
ings of the XIII Mediterranean Conference on Biomedical and Biological Engineering
and Computing, MEDICON 2013, 583-586, September 25–28, Sevilla, Spain.

A.4. National conferences

1. Gómez-Pilar, J., Poza, J., Bachiller, A., Gómez, C., Molina, V. & Hornero, R.
Caracterización de la Dinámica en la Eficiencia de la Red Neuronal en Esquizofrenia en
Tarea Cognitiva Auditiva. Actas del XXXIII Congreso Anual de la Sociedad Española
de Ingeniería Biomédica, CASEIB 2015, 167–170, November 4-6, Madrid, Spain.

2. Bachiller, A. Poza, J., Gómez-Pilar, J., Gómez, C., Molina, V. & Hornero, R.
Análisis del acoplamiento cruzado entre frecuencias en la esquizofrenia durante la
realización de una tarea cognitiva auditiva. Actas del XXXII Congreso Anual de
la Sociedad Española de Ingeniería Biomédica, CASEIB 2014, 1–4, November 26-28,
Barcelona, Spain.

3. Gómez-Pilar, J., Bachiller, A., Poza, J., Gómez, C., Molina, V., & Hornero, R.
Caracterización de Potenciales Evocados del EEG en Esquizofrenia mediante Teoría
de Redes Complejas. Actas del XXXII Congreso Anual de la Sociedad Española de
Ingeniería Biomédica, CASEIB 2014, 1–4, November 26-28, Barcelona, Spain.

4. García, M., Poza, J., Santamarta, D., Bachiller, A., & Hornero, R. Caracterización
de la señal de presión intracraneal empleando la transformada wavelet y la turbulencia
espectral. Actas del XXXII Congreso Anual de la Sociedad Española de Ingeniería
Biomédica, CASEIB 2014, 1–4, November 26-28, Barcelona, Spain.

5. Bachiller, A., Poza, J., Gómez, C., Carreres, A., & Hornero, R. Análisis de la
conectividad en la actividad EEG de enfermos de Alzheimer mediante distancias es-
pectrales. Actas del XXX Congreso Anual de la Sociedad Española de Ingeniería
Biomédica, CASEIB 2012, 1–4, November 19 - 21, San Sebastián, Spain.

6. Poza, J., García, M., Bachiller, A., Carreres, A., Rodríguez, E. & Hornero, R.
Aplicación de la teoría de grafos para la caracterización de la actividad electroence-
falográfica en la enfermedad de Alzheimer. Actas del XXX Congreso Anual de la
Sociedad Española de Ingeniería Biomédica, CASEIB 2012, 1-4, November 19 - 21,
San Sebastián, Spain.

7. Bachiller, A., Poza, J., Carreres, A., Jimeno, N. & Hornero, R. Análisis de la irregu-
laridad en la actividad EEG de enfermos de Alzheimer mediante distancias espectrales.
Actas del XXIX Congreso Anual de la Sociedad Española de Ingeniería Biomédica,
CASEIB 2011, 115–118, November 16 - 18, Cáceres, Spain.

8. Poza, J., Bachiller, A., García, M., Gómez, C., Fernández, A. & Hornero, R. Análisis
de la actividad MEG en enfermos con Alzheimer y deterioro cognitivo leve mediante
la turbulencia espectral. Actas del XXIX Congreso Anual de la Sociedad Española de
Ingeniería Biomédica, CASEIB 2011, 119–122, November 16 - 18, Cáceres, Spain.



APPENDIX B 119

A.5. Invited conference presentations

1. Bachiller, A. EEG data analysis in schizophrenia. XXX Reunión de la Asociación
Castellano y Leonesa de Psiquiatría, 2016, Oct 7-8, Palencia, Spain.

2. Bachiller, A. Cross-frequency coupling in schizophrenia. IV Reunión Internacional de
Actualización en Esquizofrenia, 2016, May 27-28, Valladolid, Spain.

3. Bachiller, A. Entropy and small-world network in EEG patterns in schizophrenia. III
Reunión Internacional de Actualización en Esquizofrenia, 2014, May 23-24, Valladolid,
Spain.





Appendix B: Resumen en
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B.1. Introducción a la esquizofrenia.

La esquizofrenia es un trastorno mental crónico, caracterizado por una serie de sín-
tomas psiquiátricos como las alteraciones en la percepción o la expresión de la realidad
(alucinaciones), delirios, trastornos afectivos o de comportamiento y una deficiencia cog-
nitiva en tareas como el lenguaje, el razonamiento o la planificación.

Los primeros signos de la esquizofrenia suelen aparecer durante la adolescencia o el
comienzo de la edad adulta, aunque también se han dado casos en los que aparecen en
personas mayores de 40 años. Los pacientes con esquizofrenia suelen experimentar un
deterioro de su capacidad en varias destrezas importantes en el día a día, como son las
relaciones interpersonales, la formación, el trabajo, la vida familiar o la comunicación.
Los síntomas de la enfermedad varían de una persona a otra. Además suelen variar con
el tiempo, empeorando durante los períodos con episodios psicóticos y permitiendo una
actividad normal en los periodos de estabilidad.

Las causas de la esquizofrenia aún son desconocidas. Se cree que diferentes factores
actúan conjuntamente en su desarrollo. Varios estudios han afirmado que los factores
genéticos, ambientales o las lesiones cerebrales en el parto pueden ser importantes para
el desarrollo de la enfermedad. Por otro lado, el consumo de drogas también han sido
asociados con el desarrollo de la esquizofrenia y otros síntomas psicóticos.

El diagnóstico de la esquizofrenia se basa en recomendaciones oficiales conocidas como
criterios DSM-V. La práctica habitual para el diagnóstico de la esquizofrenia incluye la
revisión del historial médico, la realización de un examen físico y de pruebas de laborato-
rio para excluir otras posibles causas. Complementariamente, se recomienda realizar un
examen de orina y de sangre para descartar el consumo de drogas. Una vez que se han ex-
cluido otras posibles causas, el diagnóstico médico se basa en los síntomas observados en
el paciente, así como en los comentarios del paciente y de su familia. Este proceso puede
ser largo y confuso, debido a que los síntomas han de estar presentes durante al menos 6
meses. Normalmente, el tratamiento de la esquizofrenia consiste en una combinación de
medicación y psicoterapia. La medicación consiste en antipsicóticos (típicos y atípicos)
y se utiliza generalmente para reducir los síntomas de la esquizofrenia. La psicoterapia
tiene como fin ayudar al paciente a comprender la enfermedad y a sobrellevarla, con el
fin de mejorar su conducta social.

Con el fin de comprender la patofisiología de la enfermedad, varias investigaciones han
centrado sus esfuerzos en relacionar sus síntomas con la identificación de anormalidades
en diferentes regiones corticales. Recientes estudios han establecido que la esquizofrenia
provoca una deficiencia en la actividad cerebral que engloba a varias áreas corticales y la
conexión entre ellas. Estos resultados han apoyado la teoría que asocia a la esquizofrenia
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con un fallo en la asignación de relevancia. Asimismo, la esquizofrenia ha sido definida
como un síndrome de desconexión, asociado con una disminución de la capacidad de
integración de la información entre las diferentes áreas cerebrales.

La búsqueda de marcadores biológicos, que permitan caracterizar y comprender en
mayor medida la esquizofrenia, ha motivado el estudio de la actividad electromagnética
generada en la corteza cerebral. La esquizofrenia es un trastorno cognitivo, por lo tanto
cabe esperar que las anomalías provocadas por la enfermedad puedan verse reflejadas
en la actividad electromagnética cerebral. Los potenciales evocados (i.e. combinación del
registro de EEG con la utilización de un paradigma de respuesta a un estímulo) reflejan la
actividad post-sináptica asociada a las neuronas distribuidas por la corteza cerebral. Por
lo tanto, el análisis del EEG tras la respuesta a un estímulo cognitivo es una herramienta
muy útil para caracterizar la evolución temporal del funcionamiento neuronal provocado
por la realización de una tarea.

B.2. Hipótesis y objetivos

En la presente Tesis Doctoral se trabaja bajo la hipótesis general de que el análisis de
las funciones de segregación e integración sobre la señal de EEG permite caracterizar los
mecanismos neuronales asociados con la esquizofrenia. Para ello, se aplican dos niveles de
análisis sobre el registro de EEG: (i) activación local, mediante el estudio de la regularidad
de las oscilaciones neuronales y el análisis de las fuentes neuronales; y (ii) interacciones
entre ritmos cerebrales, analizando tanto la conectividad entre la señal en diferentes
electrodos como la jerarquía de las oscilaciones neuronales.

De acuerdo con dicha hipótesis, el objetivo principal de la Tesis Doctoral es el diseño
y la aplicación de nuevos parámetros a los registros de EEG con el objetivo de identificar
los sustratos neuronales asociados a la esquizofrenia. Para poder llevarlo a cabo se han
definido varios objetivos específicos:

i. Construir una base de datos con señales de EEG procedentes de pacientes con es-
quizofrenia y sujetos sanos.

ii. Reducir los artefactos presentes en la señal de EEG a través de la definición de un
algorítmo semi–automátivo.

iii. Seleccionar e implementar aquellos métodos que son más apropiados para su utili-
zación en la caracterización de la esquizofrenia.

iv. Explorar las alteraciones en las oscilaciones neuronales producidas como respuesta
a una tarea cognitiva andítiva.

v. Localizar adecuadamente las áreas donde se genera la respuesta a una tareas cogni-
tiva, diferenciando las fuentes para la respuesta relevante (P3b) y para la respuesta
no relevante (P3a).

vi. Obtener los patrones de cambio en la conectividad funcional como respuesta a una
tarea cognitiva andítiva.

vii. Evaluar la estructura jerárquica de las oscilaciones neuronales a través del estudio
del acoplamiento entre frecuencias.

viii. Realizar análisis estadísticos de los resultados obtenidos para evaluar la metodología
aplicada a los registros de EEG.
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ix. Comparar y discutir los resultados para extraer las conclusiones apropiadas. Este
objetivo incluye la comparación con estudios previos, así como la implementación
de otros métodos clásicos de análisis en nuestra base de datos.

x. Publicar los principales resultados y conclusiones obtenidos en revistas internacio-
nales con un alto índice de impacto.

B.3. Materiales

Durante el proceso de investigación incluido en esta Tesis Doctoral se han analizado 2
bases de datos, todas ellas provenientes de sujetos adultos con esquizofrenia y sujetos de
control. Los registros de EEG fueron adquiridos con la colaboración del personal clínico
bajo supervisión del Dr. Vicente Molina Rodríguez, del Hospital Clínico Universitario
de Valladolid. En todos los registros se empleó un paradigma auditivo para valorar los
potenciales evocados asociados al procesamiento cognitivo. Este paradigma consiste en
la presentación de 3 estímulos auditivos (90 dB de intensidad, 50 ms. de duración y un
tiempo de subida y bajada de 5 ms.) con distinta probabilidad de aparición: estímulo
estándar (2000 Hz.; 60% de probabilidad), estímulo target (500 Hz., 20% de probabili-
dad) y estímulo distractor (1500 Hz., 20% de probabilidad). La tarea consistió en que el
sujeto debe presionar un botón como respuesta al target de baja probabilidad, así como
inhibir la respuesta de presionar el botón ante los estímulos estándar y distractor. La
primera base de datos está formada por 69 registros de EEG adquiridos mediante un
electroencefalografo (BrainVision V-Amp de Brain Products) de 17 canales pasivos con
una frecuencia de muestreo de 250 Hz. Por otro lado, la segunda base de datos la forman
79 señales de EEG adquiridas con una frecuencia de muestreo de 500 Hz mediante un
electroencefalografo de 33 canales activos (BrainVision, Brain Products GmbH; Munich,
Germany). Las siguientes Tablas B.1 y B.2 resumen las principales características de
ambas bases de datos.

B.4. Métodos

Las señales electromagnéticas cerebrales son no estacionarias, por lo tanto sus ca-
racterísticas espectrales dependen del instante de tiempo en el que se observe la señal.
Asimismo, el análisis de ERP requiere conservar la información temporal de la activi-

Tabla B1: Datos demográficos y clínicos de los sujetos de la base de datos, divididos en los
grupos: pacientes crónicos (CP), pacientes minimamente tratados (MTP) y controles. Los valores
se expresan como: media ± desviación típica.

CP MTP Controles

Sujetos (n) 20 11 38
Sexo (H:M) 12 : 8 7 : 4 23 : 15
Electrodos 17 17 17
Frecuencia de muestreo (Hz) 250 250 250
Edad (años) 40,37± 10,36 33,53± 9,91 33,65± 13,12
PANSS positivo 19,26± 5,29 21,12± 3,99 NA
PANSS negativo 22,00± 4,80 17,00± 4,69 NA
PANSS total 76,26± 15,63 76,27± 11,37 NA
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Tabla B2: Datos demográficos y clínicos de los sujetos de la base de datos, divididos en los
grupos pacientes crónicos (CP) y controles. Los valores se expresan como: media ± desviación
típica.

CP MTP Controles

Sujetos (n) 20 18 52
Sexo (H:M) 11 : 9 11 : 7 28 : 24
Electrodos 31 31 31
Frecuencia de muestreo (Hz) 500 500 500
Edad (años) 35,95± 8,65 29,33± 8,27 31,60± 9,62
PANSS positivo 11,81± 4,52 10,06± 4,78 NA
PANSS negativo 16,00± 9,75 12,29± 5,19 NA
PANSS total 53,25± 23,67 41,18± 15,63 NA

dad cerebral. Por ello, en esta Tesis Doctoral se han utilizado representaciones tiempo-
frecuencia que sean capaces de proporcionar simultáneamente información en tiempo y
en frecuencia. En concreto, se han utilizado la transformada corta de Fourier (STFT,
Short–Time Fourier Transform), la transformada de Hilbert (HT, Hilbert Transform) y
la transformada wavelet (WT, Wavelet Transform). La metodología propuesta se basa
en analizar el funcionamiento de la dinámica neuronal de la señal EEG basándose en las
funciones cerebrales de segregación e integración. Para ello se ha realizado un análisis en
dos etapas:

La función de segregación trata de identificar cada una de las regiones cerebrales
con una función específica. Por ello, en una primera etapa se realizó un análisis
de la activación local en cada sensor del registro de EEG y se aplicarón técnicas
de reconstrucción de fuentes con el objetivo de localizar los principales focos de
generación de la actividad neuronal.

La función de integraciń considera el cerebro como una red altamente interconec-
tada y por lo tanto se centra en evaluar las dependencias entre regiones cerebrales.
En esta Tesis Doctoral se han medido las interacciones entre la señal de EEG en los
diferentes electrodos a través de un análisis de conectividad. Adenás se ha evaluado
la jerarquía de las oscilaciones neuronales mediante una nueva técnica denominada
acoplamiento cruzado de frecuencias (CFC, Cross-Frequency Coupling).

Además, en futuros estudios se abordará una tercera etapa que relaciona las funciones
de segregación e integración a través de un análisis de redes complejas, tratando de extraer
parámetros que permitan caracterizar las redes neuronales asociadas a la esquizofrenia.

Por último, en esta Tesis Doctoral se evalua en qué medida los parámetros calculados
pueden ofrecer información complementaria, para caracterizar mejor los cambios en la
red cerebral provocados por la esquizofrenia, de acuerdo con las teorías que asocian con
con un fallo en la asignación de relevancia y la definen la esquizofrenia como un síndrome
de desconexión.

B.5. Resultados y discusión

El análisis en dos niveles de la evolución de la señal ERP como respuesta a una tarea
cognitiva auditiva ha permitido profundizar en la caracterización de las alteraciones pro-
vocadas por la esquizofrenia. Inicialmente, el estudio de la potencia relativa, la frecuencia
mediana y la irregularidad de la señal mostró las diferencias entre la actividad cerebral en
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reposo y tras la respuesta a una tarea cognitiva. Se observo un incremento de la potencia
entre el reposo y la respuesta para frecuencias bajas, un decremento de la potencia para
altas frecuencias, así como un decremento de la irregularidad de la señal. Estos cambios
entre el reposo y la respuesta fueron estadísticamente más significativos en los sujetos de
control que en los pacientes con esquizofrenia, respaldando la hipótesis que asocia a la
esquizofrenia con un fallo en la asignación de relevancia.

La reconstrucción de las fuentes neuronales proporciona una información muy útil
acerca de la localización de las funciones cerebrales. En esta Tesis Doctoral se han es-
tudiado las áreas cerebrales activadas como respuesta al tono target (P3b) y al tono
distractor (P3a). Los generadores del P3a están principalmente localizados en áreas tem-
porales y frontales, sin embargo, el P3b está localizado sobre una red más distribuida
que incluye las regiones frontal, temporal, límbica y parietal. Los análisis entre pacientes
y controles revelaron una menor activación del P3a en pacientes en las regiones frontal
y temporal, mientras que el P3b mostró una menor activación en pacientes en la región
frontal, el cíngulo anterior y el cíngulo. Estos resultados podrían estar relacionados con
un déficit en la capacidad de discriminación entre estímulos internos y externos, así como
en la excitación/inhibición de las respuestas motoras.

A continuación, se ha caracterizado la función de integración mediante la medida
del acoplamiento de la señal registrada en los diferentes sensores del EEG. Para ello se
han aplicado tres medidas complementarias para anlizar los patrones de conectividad,
sincronización y similitud. Los resultados obtenidos mostraron los cambios en los patrones
de acoplamiento entre una situación de reposo y tras la respuesta a una tarea cognitiva, así
como las diferencias entre los grupos de pacientes y controles. Tanto para bajas como para
altas frecuencias, los resultados obtenidos muestran como los pacientes con esquizofrenia
no son capaces de modular suficientemente su actividad cerebral tras la realización de
una tarea cognitiva. A nivel neurofisiológico, este hecho podría reflejar un fallo a la hora
de discriminar el nivel de relevancia frente a una serie de estímulos externos.

Por último, el análisis del CFC ha permitido evaluar la jerarquía de las oscilaciones
neuronales. De esta manera se ha demostrado que los procesos cognitivos implican la
coordinación de los ritmos cerebrales a diferentes frecuencias. Los resultados obtenidos
indican que las oscilaciones neuronales presentan una organización compleja y jerarqui-
zada. En concreto se ha observado un acoplamiento entre la fase de la señal de EEG en
la banda alfa [8-13 Hz] y la amplitud en la banda gamma [17-53 Hz]. Estos resultados
destacan el importante papel de la banda alfa en la organización de la red cerebral.

B.6. Conclusiones

La mejora de la comprensión de las alteraciones en la dinámica neuronal provocadas
por la esquizofrenia es el hilo común de todos los artículos incluidos en esta Tesis Doctoral
por compendio de publicaciones. Tras el análisis y la discusión de los resultados obtenidos
se han alcanzado las siguientes conclusiones principales:

1. Las oscilaciones neuronales son el principal mecanismo que permite una actividad
neuronal coordinada. La realización de diferentes tareas cognitivas puede modular
estas oscilaciones en las diferentes bandas de frecuencia. Por lo tanto, alteraciones en
estas oscilaciones están relacionadas con una disfunción de la actividad cerebral en la
esquizofrenia.

2. Los parámetros espectrales, como la potencia relativa, la frecuencia mediana o la
irregularidad, muestran alteraciones en la reconfiguración de la red cerebral mientras
los sujetos realizan una tarea cognitiva auditiva. Asimismo, los cambios producidos
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están relacionados con los parámetros clínicos que caracterizan la severidad de la
esquizofrenia.

3. La respuesta a diferentes estímulos auditivos implica la activación de diferentes áreas
cerebrales. Esta Tesis Doctoral demuestra que las fuentes de origen de la actividad
electríca cerebral como respuesta a la novedad (componente P3a) y a la relevancia
(componente P3b) se encuentran en diferentes regiones del cerebro.

4. La definición de una ventana de análisis adaptativa (WOI) basada en las propiedades
de la componente P300 permite reducir el efecto de la variabilidad de la latencia del
P300 entre sujetos. De esta manera, se consigue obtener una localización más precisa
de las fuentes de la actividad eléctrica cerebral.

5. La esquizofrenia altera el acoplamiento entre diferentes regiones cerebrales. Asimismo,
el uso de diferentes técnicas de medida del acoplamiento (conectividad, sincronización
y similitud) permite caracterizar dicho acoplamiento desde diferentes perspectivas.

6. Las oscilaciones neuronales presentan una actividad jerárquica y compleja. De esta
manera, el acoplamiento cruzado entre frecuencias puede ayudar a caracterizar el
acoplamiento de los procesos neuronales en la esquizofrenia. En particular se destaca
el papel principal del balance entre la función excitatoria e inhibitoria.

En resumen, en esta Tesis Doctoral se ha profundizado en la caracterización de la
esquizofrenia a partir de la información extraída de la señal de EEG. Nuestra propuesta
analiza los cambios a nivel neuronal producidos tras la realización de una tarea cognitiva
auditiva. Los resultados obtenidos muestran que los pacientes con esquizofrenia presen-
tan diversas anomalías en la activación local, en las fuentes neuronales, la conectividad
entre diferentes electrodos y la jerarqía de las oscilaciones neuronales. La disminución
de la actividad neuronal como respuesta a una tarea cognitiva en sujetos con esquizofre-
nia confirma la hipótesis que asocia a la esquizofrenia con un fallo en la asignación de
relevancia. Asimismo, el análisis de la conectividad funcional entre pares de electrodos
contribuye a apoyar el papel de la esquizofrenia como un síndrome de dexconexión.
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