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Abstract In this contribution, we introduce a family of dispersion measures in the context
of ordered qualitative scales.
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1. Introduction

The main purpose of this contribution is to measure the dispersion associ-
ated with the different results of a variable when they form a set of linguistic
terms obtained after examining different qualities of people, services, etc, or-
dered, but with a non-homogeneous and non-quantifiable distance between the
linguistic terms.

There is in the literature a great variety of dispersion measures associated
with a data set, being the most used the standard deviation. For a very long
time, the normality assumption was present in most of the statistical studies
and its estimator in combination with the sample mean provide excellent effi-
ciency from the practical side due to its precision to adjust the data and from
the capacity of giving rise to theoretical results in the sample distributions.
However, most of the estimators of dispersion presents in literature do not hold
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for our purposes, because they are based on numerical values obtained in the
sample.

When the data that we want to study are obtained from a statistical behaviour
different from the normal one, there are atypical observations and losses of
efficiency on the classical estimators. The growth of statistical methods and
their increasing use in different areas of research poses the study of alternative
estimators which are less sensible to deviations to the normal. In the middle
of the last century there was an important revival of the robust statistics. The
concept of robustness is related to the fact that a estimator is less sensible
to small changes in the statistical hypothesis about the models or about the
presence of atypical observations, being the breakdown point one of the ways
to measure the robustness of a estimator which is related to the percentage of
polluted observations of a sample.

The most well known measure of localization of the robust statistical is the
median which is estimated ordering the values obtained in a sample, while
the sample median is obtained as the central value of the ordered data, if the
number of data is odd, and as the average of the central data, if it is even.
When the data of a sample is like the ones we are interested in, we may use
this localization measurement when the number of data n is odd. When we
are dealing with the robust dispersion the most used measurement is the in-
terquartile range. This method is not the best one because a estimator is more
robust if it is obtained as a median of the absolute deviation of the median of
the sample, also known as MAD. If we have an ordered sample of a variable
(X(1), -+ »X(n)), its median, med;(x;) is defined

MAD = med,|x; — med;(x;)|.

To obtain this estimator, it is necessary to evaluate the median two times.
The first one between all the linguistic terms of the data. The second median,
after ordering the different proximities between the linguistic terms, we choose
the median of these proximities.

Rousseeuw and Croux [8] presented two alternative robust estimators to the
MAD and, as the interquartile range, they do not require to center the data to
respect to the sample median. The first of them is

S, = med; {medj]x,- —xj\} ,

which for any x; value we obtain the median of the differences of the form
{Ixi —xj|,j =1,...,n}, which gives us n medians, being the estimator S, the
median of this set of medians.

The second estimator proposed by Rousseeuw and Croux, which they call
Qn, is based only on the differences between data values. If {x(;),...,x(,}
is the ordered sample, let 2 = {x;) —x(;), i > j} be the set of interpoint dis-
tances in which the number of elements is m = (;) Then, the estimate is
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defined as the k-th order statistic of %, where k = ("/2*!) and that is roughly
half the number of observations. These estimator has attractive properties (see
Maronna, et al.**)

**Some absolute dispersion measures used in Statistics are the range, the
variance, the mean deviation, the standard deviation, the absolute Gini index,
etc. (see Martinez-Panero et al. [7]).

The rest of the contribution is organized as follows. Section 2 is devoted to
introduce the notation and some basic notions that are necessary for defining
the two families of dispersion measures we propose in the setting of ordered
qualitative scales. Section 3 present these two families of dispersion measures
and includes some illustrative examples. Section 4 contains some properties.
Finally, Section 5 concludes with some remarks.

2. Notation and Basic Notions

First we present the notion of ordinal proximity measure.

2.1 Ordinal Proximity Measures

Let £ ={li,...,l,;} be an ordered qualitative scale arranged from the low-
est to the highest linguistic terms, [; <l <--- <[, with g > 3.

In order to recall the notion of ordinal proximity measure on .Z, intro-
duced by Garcia-Lapresta and Pérez-Roméan [4], we shall use a linear order
A={6i,...,0n}, with 8; > - - = &, for representing different degrees of prox-
imity among the terms of ., being 8; and 9, the maximum and minimum
degrees, respectively.

It is important noticing that the elements of A have no meaning and they
only represent different degrees of proximity.

As usual in the setting of linear orders, 6, = § means 6, = § or &, = J;
S, < &, means O > S,; and O, < &, means 6, < & or O, = O;.

Given a weak order < on £, with <1 we denote the asymmetric part of <,
ie., x<ly < not y<Jx.

DEFINITION 1.1 ([4]) An ordinal proximity measure on . with values in A
is a mapping 7 : £* — A, where 1t(l,,1;) = T,; means the degree of proximity
between 1. and I, satisfying the following conditions:

1 Exhaustiveness: For every & € A, there exist 1.,l; € £ such that & =
.

2 Symmetry: 7Ty, = T, forall r,s € {1,...,g}.
3 Maximum proximity: 7@, = 6; < r=s, forall ;s {l,...,g}.

4 Monotonicity: . > T, and Ty > Ty, for all r,s,t € {1,...,g} such
that r < s <t.
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The previous conditions are independent (see Garcia-Lapresta and Pérez-
Roman [4, Prop. 1]).

Every ordinal proximity measure 7 : .#> — A can be represented by a
g X g symmetric matrix with coefficients in A, where the elements in the main

diagonal are 7, = &y, forevery r=1,...,g:
7[11 e TC]S “ee ﬂlg
1 Tty ﬂrg (ﬂrs)
Mgl Tlgs Tgg

This matrix is called the proximity matrix associated with 7.
Taking into account the conditions appearing in Definition 1.1, it is only
necessary to show the upper half proximity matrix

O T2 M3 o Mg Mg
01 M3 o Myen) Ty
O g1y

o1

As shown in Garcia-Lapresta and Pérez-Roman [4, Prop. 2], the minimum
proximity between linguistic terms is only reached when comparing the ex-
treme linguistic terms: 7., = &, < (r,s) € {(1,¢),(g, 1)}

The cardinality of A is located between the cardinality of .Z and a polyno-
mial of degree 2 of that cardinality (see Garcia-Lapresta and Pérez-Romén [4,
Prop. 4]):

g (g—1)

< h<
§=01=7

+1.

2.2 Medians

Following Garcia-Lapresta and Pérez-Roman [5], we now introduce the me-
dian operator in the setting of ordinal degrees of proximity.

Given a vector of ordinal degrees of proximity 6 = (8i,...,6,) € A”, we
arrange its components in a decreasing fashion, from the highest to the lowest
degrees. If p is odd, then the median of § is unique, say 6, € A. However, if
p is even, then d has two medians, say &, € A such that s <t¢, i.e., & = &,.
In order to unify the assignment of medians, we consider the pair of medians
(6r,0,) and (&, 0,) whenever p is odd and even, respectively.
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More formally, given the set of feasible medians Ay = {(§,,8;) € A* | r <s},
the median operator is the mapping

M: AN —n
p=1

that assigns the corresponding pair of medians to each vector of ordinal de-
grees.

For ordering the pairs of medians of ordinal proximities, consider the linear
order >, on A, defined as

r+s<t+u
(6r76s) EZ (8I75u) -~ or (1)
r+s=t+u and s—r<u—t,
for all (6,,0;), (6, 0,) € Ap.
Itiseasy toseethatif r+s=¢t+u,then s—r<u—t & r>t < s<u.
3. Dispersion Measures

In this section we present two families of dispersion measures in the setting
of ordered qualitative scales equipped with ordinal proximity measures. The
first family generalizes the most basic dispersion measure, the range.

3.1 Range-based dispersion measures

Given n > 2, let Dg : " — A be the mapping defined as
Dg(x) = n(minz, max x), (2)

for every & € Z".
Based on the linear order > on A, we introduce the weak order <p on .£"
defined as
x ry < Dgr(z) = Dr(y),

with the meaning of the dispersion in & is lower than or equal to in y (with
respect to Dg).

ExAMPLE 1.2 Consider the ordered qualitative scale . = {l,l»,l3,14} and
the vectors « = (11,12, 10,13), y = (I3,13,14,14) € £*. We want to compare the
dispersion in these vectors with respect to three different ordinal proximity
measures.

1 If .Z is equipped with the ordinal proximity measure

T L A=1{5,...,8)
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with associated proximity matrix

o & O &

o 0 O
o 6 |’

01

we have Dg(x) = mj3 = 04 > 05 = m34 = Dg(y). Thus, x <gy.
If £ is equipped with the ordinal proximity measure
n: L —A=1{5,...,8}

with associated proximity matrix

01 04 0 O7

6 & 05
o 6 |’

01

we have Dg(x) = M3 = 06 < 8, = M34 = Dg(y). Thus, y <gx.
If .Z is equipped with the ordinal proximity measure
n: L —A={5,...,8)

with associated proximity matrix

0 & & &

o & &
o 6 |’

)

we have Dg(x) = mj3 = 03 < & = m34 = Dg(y). Thus, y <gx.

Gini-based dispersion measures

We now introduce a new family of dispersion measures in the mentioned
framework. It is based on the Gini index ([6]) and it is closely related to the
scale estimator appearing in Shamos [9, p. 260] and Bickel and Lehmann [3,
p. 38] in the setting of real numbers (see Rousseeuw and Croux [8, p. 1277]).

Given n > 2, let Dg : " — A, be the mapping defined as

Dq(x) = M(7(xi,x})i<), 3)

for every @ = (x1,...,x,) € ZL".
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Based on the linear order >, on A, defined in (1), we introduce the weak
order < on .Z" defined as
x <6y < Dg(x) =2 D(y),

with the meaning of the dispersion in « is lower than or equal to in y (with
respect to Dg).

Since some vectors can share the same pair of medians, it is necessary to
devise a tie-breaking process for ordering the vectors. We propose to use a
sequential procedure based on Balinski and Laraki [1] (see Balinski and Laraki
[2] for practical examples). It consists of withdrawing the pair of medians of
the vectors that are in a tie, and then selecting the new pairs of medians of
the remaining proximity degrees for the corresponding vectors. The process
continues until the ties are broken. It is important to note that different vectors
never are in a final tie.

ExXAMPLE 1.3 Consider Example 1.2 and the same three ordinal proximity
measures.

1 We have
Dq(x) =M (2, 12, T3, M2, T3, M23) = M (82, 62, 64, 01, 03, 83) = (02, 53)
and
Dq(y) =M (733, T34, W34, W34, W34, Ttas) = M (81, 65, 35, 85, 85, 61) = (s, 5s).
Since (62,63) =2 (Js,85), we have x < y.

2 We have
Dg(x) = M (T2, T2, T3, M2, 23, M23) = M (04, 64, 86, 01, 03, 83) = (03, 4)
and
Dg(y) =M (733, 34, T34, a4, W34, Tas) = M (81, 62, 62, 02,02, 61) = (02, 82)-
Since (03,04) <2 (82,8,), we have y <l x.

3 We have
Dg(x) = M (712, T2, T3, T2, a3, M23) = M (2,82, 63, 61,02, 82) = (62, 82)
and
Dg(y) =M (733, 34, T34, 34, W34, Tas) = M (81, 62, 62, 02,02, 61) = (82, 82)-

Consequently, in  and y the dispersion is the same. If we apply the tie-
breaking procedure, then we have Dg(x) = M(8;,02,6,,83) = (8, 02)

and Dg(y) =M(d1,01,02,62) = (81, 8,). Since (62,62) <2 (81,02), we
finally have y < .
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4. Properties

Let .Z be an ordered qualitative scale equipped with an ordinal proximity
measure 7 : .¥> — A. We say that 7 is totally uniform if T (r11) = Ty (s441)
forall r,s,r € {1,...,g—1} suchthat r+¢ < g and s+t < g.

Let N : £ — £ be the negation operator defined as N(I,) = lg41—, for
every re€ {1,...,g}.

Given k€ {1—g,...,g—1},let T, : £ — £ be the translation operator
defined as Ty(l,) = l,+4, forevery r € {1,...,g} such that r+k < g.

In the following proposition we establish some properties of the mappings
introduced in (2) and (3). They are related to the ones considered in Martinez-
Panero et al. [7] in a quantitative context.

PROPOSITION 1.1 Consider the mappings Dg : " — A and D¢ : £" —

Ay defined in (2) and (3), respectively, and its extensions Dg: U L — A

n=2
and Dg : U ZL" — Ay The following properties hold.:
n=2
1 Symmetry.' DR(xo'(l)a e ,xa(n)) :DR()C], e ,x,,) and D(;(xc,(]), e ,xc(n)) =

Dg(x1,...,Xy), for every permutation o : {1,....n} — {1,...,n} and
every (X1,...,X,) € ZL".
m m
2 Invariance for replications: 5R(m) = Dg(x) and 5g(m) =
Dg(x), for every x € " and any number m € IN of replications of .

3 Minimum dispersion: Dg(xy,...,x,) =0 < x; =---=x,, and Dg(l,,...,1,) =
(81,01), forevery I, € Z.

4 Anti-self-duality: if 7 is totally uniform, then Dgr(N(xy),...,N(x,)) =
Dg(x1,...,x,) and Dg(N(x1),...,N(x,)) =Dg(x1,...,%,), for every (xi,...,x,) €
"

5 Invariance for translations: if 7 is totally uniform, then Dg(Ti(x1), ..., Ti(x,)) =
Dg(x1,...,x,) and Dg(Ti(x1),...,Ti(xn)) = Dg(x1,...,x,), for every
(x1,...,Xn) € L™ and every k€ {1,...,g— 1} suchthat (Ti(x1),...,Ti(x,)) €
z"

5. Concluding Remarks
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