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The Lippmann–Schwinger Formula and 1

One Dimensional Models with Dirac 2

Delta Interactions 3

Fatih Erman, Manuel Gadella, and Haydar Uncu 4

Abstract We show how a proper use of the Lippmann–Schwinger equation 5

simplifies the calculations to obtain scattering states for one dimensional systems 6

perturbed by N Dirac delta equations. Here, we consider two situations. In the 7

former, attractive Dirac deltas perturbed the free one dimensional Schrödinger 8

Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For 9

completeness, we show that the method to obtain bound states use comparable 10

formulas, although not based on the Lippmann–Schwinger equation. Then, the 11

attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain 12

explicit expressions for the scattering wave functions. Here, we need regularisation 13

techniques that we implement via heat kernel regularisation. 14

Keywords Scattering states · Schrödinger and Salpeter one dimensional 15

Hamiltonians · Contact perturbations · Gamow wave functions · 16

Lippmann–Schwinger equation 17

1 Introduction 18

One of the more used tools in order to understand quantum mechanics are the 19

solvable models, in particular those which are one dimensional due to their 20

simplicity [1–4]. The more often studied among these models is the free particle 21

Schrödinger Hamiltonian decorated with Dirac delta interactions. Relativistic one 22

F. Erman
Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkey
e-mail: fatih.erman@gmail.com

M. Gadella (�)
Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid,
Valladolid, Spain

H. Uncu
Department of Physics, Adnan Menderes University, Aydın, Turkey
e-mail: huncu@adu.edu.tr

© Springer Nature Switzerland AG 2019
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dimensional approaches for the free particle Hamiltonian, such as those named after 23

Salpeter or Dirac, have also been perturbed with contact interactions of delta type 24

[5–7]. The purpose of the present article is to give a brief review of the recent work 25

by the authors including the perturbation by N Dirac deltas of the one dimensional 26

Schrödinger and Salpeter free Hamiltonians [6, 8, 9]. 27

From the physics point of view, point potentials may represent interactions which 28

are very localised in the space and strong and have a vast amount of applications for 29

modelling real physical systems. A well-known model using Dirac delta potentials 30

in non-relativistic quantum mechanics is the so-called Kronig–Penney model [10], 31

and it is actually a reference model in describing the band gap structure of metals 32

in solid state physics [11]. In addition, Dirac delta interactions in one or more 33

dimensions serve as simple pedagogical toy models for the understanding of several 34

quantum non-trivial concepts [12–19]. 35

From the mathematical point of view, contact potentials are the result of the 36

theory of self-adjoint extensions of symmetric operators with equal deficiency 37

indices. In general, there are two methods to obtain these extensions. One is by 38

defining some matching conditions at the nodes (points that support the contact 39

potentials). Other uses the construction of the resolvent operator and often requires 40

a renormalisation due to possible divergences in the construction of the resolvent of 41

the self-adjoint extension. Still a third method relies on a theorem of von Neumann 42

that characterises all self-adjoint extensions of a symmetric operator with equal 43

deficiency indices, although this one has been less used. 44

We also want to show how the Lippmann–Schwinger formula is useful for 45

this purpose as a simplifying computational tool. Here, we shall use the simplest 46

form of this equation which acquires mathematical sense on Gelfand triplets. The 47

Lippmann–Schwinger formula gives an equation satisfied by the incoming and 48

outgoing plane waves after a scattering process due to a potential V . It has the 49

following form: 50

|k±〉 = |k〉 − R0(Ek ± i0) V |k±〉 , (1)

where |k±〉 refers to the full scattered incoming (+) and outgoing (−) plane waves, 51

|k〉 is the free plane wave, V the potential and R0(Ek± i0) is the free resolvent, also 52

called the Green operator. Since it is a function of the complex variable z, R(z), and 53

has a branch cut at the spectrum of the free Hamiltonian (usually R+ ≡ [0,∞)), we 54

denote by R0(Ek ± i0) the upper and lower limits of R(z) as the imaginary part of 55

z goes to zero. Here, Ek = (h̄2 k2)/2m. 56

This paper contains three more sections. In Sect. 2, we briefly discuss the 57

consequences of adding N Dirac delta perturbations to the one dimensional free 58

Schrödinger Hamiltonian. In Sect. 3, we do the same with the one dimensional 59

Salpeter Hamiltonian. The analysis of bound states is particularly relevant in both 60

cases. We finish our discussion with the concluding remarks. 61
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2 One Dimensional Schrödinger Hamiltonian with N Dirac 62

Delta Interactions 63

The objective of this section is to study the one dimensional Schrödinger Hamil- 64

tonian H0 = p2

2m perturbed by N Dirac deltas located at some points in the real 65

axis. This study includes the search for bound states, scattering coefficients and 66

resonances provided they exist. As is well known, this perturbed Hamiltonian has 67

the form 68

H := p2

2m
−

N∑
i=1

λi δ(x − ai) , V := −
N∑
i=1

λi δ(x − ai) , (2)

where λi and i = 1, 2, . . . , N , i = 1, 2, . . . , N are positive real numbers. The ai 69

show the points supporting the deltas and are called nodes. Each of the −λi , with 70

λi > 0, is the intensity of the delta located at ai for all value of i. These coefficients 71

are chosen to be negative if we want to have bound states. The Schrödinger equation 72

produced by (2) is 73

− h̄2

2m
d2ψ(x)

dx2
−

N∑
i=1

λi δ(x − ai) ψ(x) = Eψ(x) . (3)

It is interesting to rewrite the interaction V in such a way that the calculations 74

with the aid of the Lippmann–Schwinger equation become easy. For simplicity, let 75

us assume that we have only one first. Then, the potential is V = λ δ(x− a) and the 76

wave function is ψ(x) = 〈x|ψ〉 [20–24]. In this notation, (V ψ)(x) = 〈x|Vψ〉 and 77

〈x|a〉 = δ(x − a). Thus, 78

(V ψ)(x) = λ δ(x − a)ψ(a) . (4)

Next, we note that the potential can be written as V = λ |a〉〈a|, since then, 79

〈x|Vψ〉 = λ 〈x|a〉〈a|ψ〉 = λ δ(x − a)ψ(a) = (V ψ)(x) . (5)

The generalisation of the expression for the potential V in the case of having N 80

nodes is the following: 81

V = −
N∑
i=1

λi |ai〉〈ai | . (6)

This is the desired expression. Let us clarify the vectors |x〉 for any real number 82

x are the generalised eigenvalues of the position (multiplication) operator in one 83

dimension with eigenvalue x. As is well known, these vectors do not belong to the 84
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Hilbert space on which the multiplication operator acts, but instead to an extension 85

of it endowed with a weak topology. We do not want to enter in these kind of details 86

here, see [21–24]. Vectors |ai〉 are precisely of this type with x = ai . 87

The first objective is the search for scattering states. We are introducing the 88

procedure in the sequel, although we shall skip some steps in order to reach the 89

final result as straightforward as possible. Details may be found in [8, 9]. Let us 90

use (6) in the Lippmann–Schwinger equation (1) and multiply the result from the 91

left by the bra 〈x|. We have 92

〈x|k±〉 = 〈x|k〉 +
N∑
j=1

λj 〈x|G0(Ek ± i0)|aj 〉〈aj |k±〉 . (7)

For convenience, we shall use the notation G0(x, y;Ek ± i0) := 〈x|G0(Ek ± 93

i0)|y〉 in the sequel. Also, we recall that 〈x|k〉 is the free plane wave and 94

ψ±
k (x) := 〈x|k±〉 the perturbed plane wave in the coordinate representation. In 95

consequence, (7) can be written as (Henceforth we shall consider the sign plus in (7) 96

only, for simplicity. Similar results would be obtained with the other choice.) 97

ψ+
k (x) = eikx +

N∑
j=1

λj G0(x, aj ;Ek + i0) ψ+
k (aj ) , (8)

The goal is now to obtain the explicit form of ψ+(x), for which we have to find 98

the explicit form of the terms under the sum in (8). First, let as choose as values 99

of x in (8) the {aj }. We obtain the following linear system of N equations for N 100

indeterminates: 101

eikai = ψ+(ai) [1− λi G0(ai, ai;Ek + i0)] (9)

−
N∑
j �=i

λj G0(ai, aj ;Ek + i0) ψ+(aj ) , i = 1, 2, . . . , N .

This system can be rewritten in matrix form. If Φ ≡ {Φij } is the N × N matrix 102

with matrix elements 103

Φij (Ek + i0) =
⎧⎨
⎩
1− λi G0(ai, ai;Ek + i0) if i = j ,

λj G0(ai, aj ;Ek + i0) if i �= j .

(10)

Then, Eqs. (9) take the form, 104

N∑
j=1

Φij (Ek + i0) ψ+
k (aj ) = eikaj , j = 1, 2, . . . , N , (11)
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with solution, 105

ψ+
k (aj ) =

N∑
j=1

[
Φ−1(Ek + i0)

]
ij
eikaj , (12)

where Φ−1 is the inverse of the matrix Φ. In consequence, the final form of (8) is 106

ψ+
k (x) = eikx +

N∑
j=1

λj G0
(
x, aj ;Ek + i0

) [
Φ−1(Ek + i0)

]
ij
eikaj . (13)

Then, we have to find the Green function G0(x, aj ;Ek + i0). We do not intend 107

to describe the procedure here, which is explained in detail in [9]. Once we have 108

obtained this Green function, using (10), we finally get all matrix elements of Φ. 109

The final results are 110

G0
(
x, aj ;Ek + i0

) = im

h̄2k
ek|x−ai | (14)

and 111

Φij (Ek + i0) =

⎧⎪⎪⎨
⎪⎪⎩

1− imλi
h̄2k

if i = j ,

−√λi λj im

h̄2k
eik|ai−aj | if i �= j .

(15)

Then, we have determined all the perturbed plane waves ψ+
k (x). For ψ

−
k (x), we 112

follow a similar procedure. Always recall that Ek = (h̄2k2)/2m. 113

2.1 Search for Bound States 114

So far, we have found the scattering states corresponding to the total (or perturbed) 115

Hamiltonian, for which we have used the Lippmann–Schwinger equation as main 116

tool. Next, we search for the possible existence of bound states, where the search 117

could be carried out with similar tools to those used in the precedent discussion. 118

We proceed as follows: Let us use the simplified notation |fi〉 := √
λi |ai〉, so 119

that the total Hamiltonian (2) may be written as 120

H = p2

2m
−

N∑
i=1

|fi〉〈fi | . (16)

The corresponding Schrödinger equation reads 121
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〈
x

∣∣∣∣
p2

2m

∣∣∣∣ψ
〉
−

N∑
i=1

〈x|fi〉 〈fi |ψ〉 = E 〈x|ψ〉 . (17)

Bound states correspond to solutions of (17) with negative E and square integrable 122

wave function ψ(x) ≡ 〈x|ψ〉. 123

Next, insert the completeness relation 1 = 1
2πh̄
´ |p〉〈p| dp in front of |ψ〉 and 124

|fi〉. Define ψ̃(p) := 〈p|ψ〉, which is indeed the Fourier transform of 〈x|ψ〉, and 125

write φ(ai) := 〈fi |ψ〉 = √
λi 〈ai |ψ〉 = √

λi ψ(ai). Recall that 〈x|p〉 = e
i
h̄
px . 126

Then, (17) becomes 127

ˆ ∞

−∞
dp

2πh̄
e
i
h̄
px
ψ̃(p)

(
p2

2m
− E

)
=

N∑
i=1

√
λi

ˆ ∞

−∞
dp

2πh̄
e
i
h̄
p(x−ai ) φ(ai) .

(18)
From (18) and the properties of the Fourier transform, we have that 128

ψ̃(p) =
N∑
i=1

√
λi

e
− i
h̄
pai

p2

2m
− E

φ(ai) . (19)

But ψ̃(p) is the Fourier transform of the solution ψ(x) of the Schrödinger 129

equation (17). Let us use this idea to conclude that (take x = ai) 130

ψ(ai) =
N∑
i=1

√
λi

ˆ ∞

−∞
dp

2πh̄
e
− i
h̄
pai

p2

2m
− E

φ(ai) . (20)

Multiply both sides in (20) by
√
λi and recalling that φ(ai) = √

λi ψ(ai), we 131

arrive to an equation of the form: 132

N∑
j=1

Φij (E) φ(aj ) = 0 . (21)

Find details in [8]. It is beyond a mere coincidence that the matrix elements Φ ≡ 133

{Φij (E)} are identical to those of (15) with the replacement k = √
2m|E|, so that [8] 134

Φij (E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− mλi

h̄
√
2m|E| if i = j ,

− m
√
λiλj

h̄
√
2m|E| exp

(−√
2m|E| |ai − aj |/h̄

)
if i �= j .

(22)
Since Eq. (21) has come directly from (17), it is a necessary condition for the 135

existence of solutions of (17) with the desired properties. This equation has non- 136
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trivial solutions {φ(aj )} if and only if detΦ(E) = 0. Therefore, the bound states 137

energies are solutions of the transcendental equation detΦ(E) = 0.1 138

For a systematic calculation of the bound states, let us consider the following 139

eigenvalue problem: 140

Φ(E)A(E) = ω(E)A(E) , (23)

where ω(E) are the eigenvalues of the N × N matrix Φ(E) and A(E) their 141

corresponding eigenvectors. Equations (21) and (23) coincide if and only if ω(E) = 142

0 and then, the bound states energies have to be the solutions of the transcendental 143

equation ω(E) = 0 its eigenvectors being those with components equal to φ(aj ). 144

If we assume no degeneracy, the wave function corresponding to the energy value 145

Ei with eigenvector A(E) ≡ (φ(a1), . . . , φ(aN)) takes the form (19) with E = Ei . 146

In the coordinate representation, the wave function is just its Fourier transform. For 147

further comments, see [6, 8]. 148

2.2 Resonances and Gamow States 149

The Lippmann–Schwinger equation is also useful for the construction of Gamow 150

states, which are vector states for resonances. In a resonant scattering process [25] 151

produced by a Hamiltonian pair, say {H0,H }, where H0 is a free Hamiltonian and 152

H = H0 + V , where V is the interaction, the Gamow vectors, ψ±, for a resonance 153

with energy ER and inverse of the mean life given by Γ are two eigenvectors of H 154

with respective eigenvalues ER ± Γ/2, i.e., Hψ± = (ER ∓ Γ/2) ψ± [25]. This 155

property shows that the Gamow vector ψ+ decays exponentially as t 	−→ ∞ (and 156

ψ− decays exponentially as t 	−→ −∞, they are time reversal of each other). This 157

situation produces two problems, one from the point of view of physics and the other 158

from the point of view of mathematics. 159

Although exponential decay for simple quantum unstable systems has been 160

detected for essentially for all values of time, deviations for these exponential law 161

have been detected for very short or very large times [26, 27]. Since these deviations 162

certainly occur under these conditions only, they are very difficult to be detected. For 163

most values of time, exponential decay serves as an excellent approximation. This 164

is why Gamow vectors are useful as good approximations of decaying states. 165

A self-adjoint operator on Hilbert space, as is the case of the Hamiltonian H , 166

cannot have complex eigenvalues with corresponding eigenvectors in this Hilbert 167

space. Thus, Gamow vectors are well-defined objects on some extensions of Hilbert 168

spaces called rigged Hilbert spaces [25, 28–30]. 169

1As a matter of fact, this also follows because Φ(E) appears in the denominator of the resolvent
of the total Hamiltonian H .
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Let us briefly sketch the use of (1) to obtain an explicit expression of the Gamow 170

vectors as eigenvectors of H with eigenvalue ER ± Γ/2. Details may be found 171

in [9, 31]. If we multiply Eq. (1) to the right by the bra 〈ψ |, we obtain a complex 172

function on the variable k. With adequate choices of the space of bras, this results on 173

meromorphic functions of complex variable defined at least on a half plane [29, 30]. 174

Let us assume that this is the case and omit the bra 〈ψ |. Then, if we define kR as 175

zR := ER − Γ/2 = k2R h̄
2

2m
, (24)

we may consider the analytic extension of (1) to the value of k given by kR , 176

|k+
R 〉 = |kR〉 −G0(zR) V |k+

R 〉 . (25)

It is important to remark that zR is a pole of the Green function corresponding to the 177

total HamiltonianH , but not of the free HamiltonianH0, just by the characterisation 178

of resonances using the resolvent [32]. Then, G0(zR) is well defined and so is |k+
R 〉, 179

which has the property [9, 31, 33] 180

H |k+
R 〉 = zR |k+

R 〉 . (26)

Thus, |k+
R 〉 is one of the Gamow vectors with resonance pole zR (the other can be 181

obtained exactly in the same way, just replacing zR by its complex conjugate z∗R and 182

taking the minus sign in (1). This Gamow vector in the coordinate representation is 183

ψ+
R (x) := 〈x|k+

R 〉, so that 184

(Hψ+
R )(x) = 〈x|H |k+

R 〉 = zR 〈x|k+
R 〉 = zR ψ

+
R (x) . (27)

Now, let us go back to the N Dirac deltas interaction and, consequently, take 185

in (25) the form of the potential given by V = −∑N
i=1 λi |ai〉〈ai |. Multiply the 186

result of this operation to the right by the bra 〈x| and divide kR into real and 187

imaginary parts, kR = kr − ikI . We have that 〈x|kR〉 = eikRx = eikrx e−ikI x and 188

ψ+
k (x) = 〈x|k+

R 〉 = 〈x|kR〉 +
N∑
i=1

λi 〈x|G0(zR)|ai〉〈ai |k+
R 〉

= eikrx ekI x +
N∑
i=1

λi G0(x, ai; zR)ψ+
R (ai) = eikrx ekI x (28)

+
N∑
i=1

λi

N∑
j=1

im
√
λi λj

h̄2(kr − ikI )

[
ei(kr−ikI ) |x−ai |Φ−1(zR)

]
ij
ei(kr−ikI )aj .
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A similar result can be obtained for the Gamow wave function ψ−(x). In 189

principle, both Gamow functions will be equally suitable to play the role of wave 190

function for the resonance state. The only technical difference is that one represents 191

the time reversal of the other [30]. Observe that ψ+
k (x) 	−→ ∞ as x 	−→ ∞. 192

Gamow wave functions cannot be normalised in the usual sense of square integrable 193

normalisation, but in sharp contrast with the plane waves (Dirac kets) which are not 194

normalisable although bounded, Gamow functions show an exponential growing at 195

the spatial infinite. This behaviour has been often called the exponential catastrophe. 196

This is not such a problem with a proper interpretation of the Gamow wave function 197

in terms of generalised functions in a suitable rigged Hilbert space. Still, this expo- 198

nential behaviour creates some particular problems such as the difficulties arisen in 199

order to fix a proper definition of averages of observables in Gamow states [34, 35]. 200

3 One Dimensional Salpeter Hamiltonian with N Deltas 201

The one dimensional Salpeter Hamiltonian decorated with N Dirac deltas has the 202

following form (c = 1): 203

H :=
√
p2 +m2 −

N∑
i=1

λi δ(x − ai) , H0 :=
√
p2 +m2 . (29)

Here, H0 is the free Salpeter Hamiltonian. The definition of a self-adjoint version 204

for H in (29) is not as simple as is in the Schrödinger case, where it is sufficient to 205

impose correct matching conditions at the nodes. This self-adjoint version is usually 206

determined by a proper choice of the resolvent operator of H , which should be 207

obtained from the resolvent operator of H0 by the Krein formula. However, this 208

procedure leads to divergences in our case, so that a regularisation procedure is 209

in order here [5, 6]. We have chosen heat kernel regularisation for several reasons 210

discussed in [6]. Let us sketch briefly the procedure. First of all, we write the 211

Hamiltonian H as in (29) as 212

H =
√
p2 +m2 −

N∑
i=1

λi |ai〉〈ai | , (30)

exactly as we did for the cases studied in the previous section. The next step is to 213

write an ε-regularised version of (30) as 214

Hε =
√
p2 +m2 −

N∑
i=1

λi(ε) |aεi 〉〈aεi | , (31)



UNCORRECTED
PROOF

318 F. Erman et al.

where the new kets |aεi 〉 are defined in such a way that 〈x|aεi 〉 := Kε/2(x, ai), where 215

the functionKt(x, y) is the so-called heat kernel, which is the fundamental solution 216

of the heat equation of the form: 217

√
p2 +m2Kt(x, y) = −∂ Kt(x, y)

∂ t
, (32)

and the weights λ(ε) are also chosen as functions of the parameter ε, such that 218

limε→0+ λi(ε) 	−→ λi , i = 1, 2, . . . , N . The interest of this choice for 〈x|aεi 〉 comes 219

after the limiting property 〈x|aεi 〉 	−→ 〈x|ai〉 = δ(x − ai) as ε 	−→ 0+. 220

Now, we go back to the Lippmann–Schwinger equation (1), where in the present 221

case Ek = √
p2 +m2 and V is as in (31). This gives 222

|k±(ε)〉 = |k〉 +
N∑
j=1

λj (ε) R0(Ek ± i0) |aεj 〉〈aεj |k±〉 . (33)

Let us choose the plus sign in (33) and use for brevity the following notation: 223

|f εi 〉 := √
λi(ε) |aεi 〉. Then, we choose one subindex i and isolate the corresponding 224

term in (33): 225

|k+(ε)〉 = |k〉 + R0(Ek + i0) |f εi 〉〈f εi |k+(ε)〉

+
N∑
j �=i

R0(Ek + i0) |f εj 〉〈f εj |k+(ε)〉 , (34)

before multiplying (34) to the left by the ket 〈f εi |. This gives 226

[
1− 〈

f εi |R0(Ek + i0) |f εi
〉] 〈
f εi |k+(ε)

〉

−
N∑
i �=j

[〈
f εi |R0(Ek + i0) |f εi

〉] 〈
f εi |k+(ε)

〉 = 〈
f εi |k〉 , (35)

expression valid for i = 1, 2, . . . , N . This may be written in the matrix form as 227

N∑
j=1

Tij (ε, Ek + i0) 〈f εj |k+(ε)〉 = 〈f εi |k〉 , j = 1, 2, . . . , N , (36)

with 228

Tij (ε, Ek + i0) =
⎧⎨
⎩
1− 〈f εi |R0(Ek + i0) |f εi 〉 if i = j ,

−〈f εi |R0(Ek + i0) |f εj 〉 if i �= j .
(37)
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Therefore, we may write the solution of (36) as 229

〈
f εi |k+(ε)

〉 =
N∑
j=1

[
T −1 (ε, Ek + i0)

]
ij

〈
f εj |k

〉
. (38)

We use (38) in (35) and, then, multiply the result to the left by the bra 〈x|. This gives 230

ψ+(ε, x) := 〈x|k+(ε)〉

= 〈x|k〉 +
N∑

i,j=1
〈x|R0(Ek + i0) |f εi 〉 [T −1(ε, Ek + i0)]ij 〈f εj |k〉

= eikx +
N∑

i,j=1
〈x|R0(Ek + i0) |aεi 〉 [Φ−1(ε, Ek + i0)]ij 〈aεj |k〉 , (39)

with 231

Φij (ε, Ek + i0) =
⎧⎨
⎩

1
λi(ε)

− 〈aεi |R0(Ek + i0) |aεi 〉 if i = j ,

−〈aεi |R0(Ek + i0) |aεj 〉 if i �= j .
(40)

The next step is to take the limit ε 	−→ 0, for which we need a determination of 232

the functions λi(ε) for all values of i = 1, 2, . . . , N . This has been motivated and 233

determined in Section II in [6] and is 234

1
λi(ε)

= 1
λi(Mi)

+
ˆ ∞

0
dt Kt+ε(ai, ai) etMi , (41)

whereKt(x, y) is the heat kernel andMi is an unphysical renormalisation scale that 235

is chosen to be the energy of the bound state EiB corresponding to the bound state 236

of the i-th delta [6]. This gives in the limit ε 	−→ 0, 237

ψ+
k (x) = eikx +

N∑
i,j=1

〈x|R0(Ek + i0) |ai〉 [Φ−1(Ek + i0)]ij eikaj . (42)

Here, 238

〈x|R0(Ek + i0) |ai〉 = i
√
k2 +m2

k
eik|x−ai | + 1

π

ˆ ∞

m

dμ e−μ|x−ai |
√
μ2 −m2

μ2 + k2

239
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and 240

Φij (Ek + i0) =

=

⎧⎪⎪⎨
⎪⎪⎩

− 1
λ
(
Eλ,E

i
B

) − iEk√
E2
k−m2

if i = j ,

− iEk√
E2
k−m2

e
i

√
E2
k−m2 |x−aj | − 1

π

´∞
m
dμ e−μ|x−ai |

√
μ2−m2

μ2+E2
k−m2 if i �= j ,

where 241

1
λ
(
Eλ,E

i
B

)

= −Ek
π

√
E2
k −m2

arctanh

⎛
⎝
√
E2
k −m2

Ek

⎞
⎠− EiB

π

√
m2 − (

EiB

)2

(
π

2
+arcsin

EiB

m

)
,

where EiB has been defined before and μ := mini EiB . The conclusion is that the 242

Lippmann–Schwinger equation gives in a rather straightforward manner the exact 243

form of the scattering states in a rather cumbersome situation as the one discussed 244

along the present section. Explicit expressions for transmission and reflection 245

coefficients can be also derived from the above expressions. 246

4 Concluding Remarks 247

The Lippmann–Schwinger equation is a useful tool that permits to obtain explicit 248

forms for the scattering states produced by some potential. When this potential 249

is a finite set of Dirac delta interactions, one may find explicit expressions for 250

these scattering states. We have shown that this is the case when perturbing the 251

free Schrödinger one dimensional and the Salpeter Hamiltonians with N attractive 252

deltas. In the first case, we have also shown that the Lippmann–Schwinger equation 253

gives explicit expressions for Gamow wave functions which are the wave function 254

for the purely exponential decay part of resonance states. The discussion on the 255

search for bound states for the Schrödinger case includes similar methods. 256

The one dimensional Salpeter Hamiltonian withN attractive deltas is much more 257

complicated as it requires of a regularisation procedure that we implement with the 258

use of the heat kernel for the pseudo-differential operator
√−d2/dx2 +m2. In this 259

case, we also obtain the exact form of the scattering states. 260

Acknowledgements We dedicate this paper to Professor Véronique Hussin for her contributions 261

to science and her friendship. The present work has been fully financed by TUBITAK from Turkey 262



UNCORRECTED
PROOF

The Lippmann–Schwinger Formula for 1D Delta Interactions 321

under the “2221 - Visiting Scientist Fellowship Programme”. We are very grateful to TUBITAK 263

for this support. We also acknowledge Osman Teoman Turgut for clarifying discussions and his 264

interest in the present research. This work was also sponsored by the Ministerio de Economía y 265

Competitividad of Spain (Project No. MTM2014-57129-C2-1-P with EU-FEDER support) and the 266

Junta de Castilla y León (Projects VA057U16, VA137G18 and BU229P18). 267

References 268

1. S. Albeverio, F. Gesztesy, R. Høeg-Krohn, H. Holden, Solvable Models in QuantumMechanics 269

(AMS Chelsea Series, Providence RI, 2004) 270

2. Y.N. Demkov, V.N. Ostrovskii, Zero-range Potentials and Their Applications in Atomic Physics 271

(Plenum, New York, 1988) 272

3. M. Belloni, R.W. Robinett, The infinite well and Dirac delta function potentials as pedagogical, 273

mathematical and physical models in quantum mechanics. Phys. Rep. 540, 25–122 (2014) 274

4. S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators Solvable 275

Schrödinger-type Operators (Cambridge University Press, Cambridge, 2000) 276

5. M.H. Al-Hashimi, A.M. Shalaby, U.-J.Wiese, Asymptotic freedom, dimensional transmuta- 277

tion, and an infrared conformal fixed point for the δ-function potential in one-dimensional 278

relativistic quantum mechanics. Phys. Rev. D 89, 125023 (2014) 279

6. F. Erman, M. Gadella, H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple 280

Dirac delta potentials. Phys. Rev. D 95, 045004 (2017) 281

7. M. Calçada, J.T. Lunardi, L.A. Manzoni, W. Monteiro, Distributional approach to point 282

interactions in one-dimensional quantum mechanics. Front. Phys. 2, 23 (2014) 283

8. F. Erman, M. Gadella, S. Tunalı, H. Uncu, A singular one-dimensional bound state problem 284

and its degeneracies. Eur. Phys. J. Plus 132, 352 (2017) 285

9. F. Erman, M. Gadella, H. Uncu, On scattering from the one dimensional multiple Dirac delta 286

potentials. Eur. J. Phys. 39, 035403 (2018) 287

10. R. de L. Kronig, W.G. Penney, Quantum mechanics of electrons in crystal lattices. Proc. R. 288

Soc. A 130, 499 (1931) 289

11. C. Kittel, Introduction to Solid State Physics 8th edn. (Wiley, New York, 2005) 290

12. I.R. Lapidus, Resonance scattering from a double δ-function potential. Am. J. Phys. 50, 663– 291

664 (1982) 292

13. P. Senn, Threshold anomalies in one dimensional scattering. Am. J. Phys. 56, 916–921 (1988) 293

14. P.R. Berman, Transmission resonances and Bloch states for a periodic array of delta function 294

potentials. Am. J. Phys. 81, 190–201 (2013) 295

15. S.H. Patil, Quadrupolar, triple δ-function potential in one dimension. Eur. J. Phys. 629–640 296

(2009) 297

16. V.E. Barlette, M.M. Leite, S.K. Adhikari, Integral equations of scattering in one dimension. 298

Am. J. Phys. 69, 1010–1013 (2001) 299

17. D. Lessie, J. Spadaro, One dimensional multiple scattering in quantummechanics. Am. J. Phys. 300

54, 909–913 (1986) 301

18. J.J. Alvarez, M. Gadella, L.M. Nieto, A study of resonances in a one dimensional model with 302

singular Hamiltonian and mass jump. Int. J. Theor. Phys. 50, 2161–2169 (2011) 303

19. J.J. Alvarez, M. Gadella, L.P. Lara, F.H. Maldonado-Villamizar, Unstable quantum oscillator 304

with point interactions: Maverick resonances, antibound states and other surprises. Phys. Lett. 305

A 377, 2510–2519 (2013) 306

20. A. Bohm, in The Rigged Hilbert Space and Quantum Mechanics. Springer Lecture Notes in 307

Physics, vol. 78 (Springer, New York, 1978) 308

21. J.E. Roberts, Rigged Hilbert spaces in quantum mechanics. Commun. Math. Phys. 3, 98–119 309

(1966) 310



UNCORRECTED
PROOF

322 F. Erman et al.

22. J.P. Antoine, Dirac formalism and symmetry problems in quantum mechanics. I. General 311

formalism. J. Math. Phys. 10, 53–69 (1969) 312

23. O. Melsheimer, Rigged Hilbert space formalism as an extended mathematical formalism for 313

quantum systems. J. Math. Phys. 15, 902–916 (1974) 314

24. M. Gadella, F. Gómez, On the mathematical basis of the Dirac formulation of quantum 315

mechanics. Int. J. Theor. Phys. 42, 2225–2254 (2003) 316

25. A. Bohm, Quantum Mechanics. Foundations and Applications (Springer, Berlin, New York, 317

2002) 318

26. M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Observation of the quantum Zeno and anti- 319

Zeno effects in an unstable system. Phys. Rev. Lett. 87, 40402 (2001) 320

27. C. Rothe, S.L. Hintschich, A.P. Monkman, Violation of the exponential-decay law at long 321

times. Phys. Rev. Lett. 96, 163601 (2006) 322

28. A. Bohm, Resonance poles and Gamow vectors in the rigged Hilbert space formulation of 323

quantum mechanics. J. Math. Phys. 22 (12), 2813–2823 (1981) 324

29. A. Bohm, M. Gadella, in Dirac Kets, Gamow Vectors and Gelfand Triplets. Springer Lecture 325

Notes in Physics, vol. 348 (Springer, Berlin, 1989) 326

30. O. Civitarese, M. Gadella, Physical and mathematical aspects of Gamow states. Phys. Rep. 327

396, 41–113 (2004) 328

31. O. Civitarese, M. Gadella, Gamow states as solutions of a modified Lippmann–Schwinger 329

equation. Int. J. Mod. Phys. E 25, 1650075 (2016) 330

32. M. Reed, B. Simon, Analysis of Operators (Academic, New York, 1978), p. 55 331

33. M. Gadella, F. Gómez, The Lippmann–Schwinger equations in the rigged Hilbert space. J. 332

Phys. A: Math. Gen. 35, 8505–8511 (2002) 333

34. T. Berggren, Expectation value of an operator in a resonant state. Phys. Lett. B 373, 1–4 (1996) 334

35. O. Civitarese, M. Gadella, R. Id Betan, On the mean value of the energy for resonance states. 335

Nucl. Phys. A 660, 255–266 (1999) 336


