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The use of mycoviruses in the control of forest diseases 26 

Abstract 27 

Fifteen families of mycoviruses have been described and 80% of these catalogued. 28 

However, their evolutionary relationship with fungi is not clear. The mycovirus genome 29 

can be formed by single or double-stranded RNA or single-stranded DNA. The effects of 30 

mycoviruses range from the induction of a cryptic state (asymptomatic) to promotion of 31 

hyper- or hypovirulence in the host. Horizontal transmission of mycoviruses is 32 

determined by the presence of different vegetative compatibility types and mating types. 33 

Biocontrol of chestnut blight (Cryphonectria parasitica) has been found to be a successful 34 

mycovirus-based treatment and is considered a model in forest disease management. 35 

Development of this type of biological control tool for use in other forest pathologies 36 

requires a sound knowledge of viral symptomatology and transmission. The present 37 

review focuses on the application of mycoviruses and the prospects for future use in the 38 

biological control of forest diseases as well as on advances in mycovirus-applied research 39 

in forestry, landscape and culture of woody plants. 40 

Keywords: biological control, forest protection, hypovirulence, vc types, virocontrol, 41 

virus transmission.  42 
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1. Introduction 43 

Viruses that infect fungi, i.e. mycoviruses, are frequent in the subkingdom Dikarya 44 

(phyla Ascomycota and Basidiomycota), phyla Blastocladiomycota and 45 

Neocallimastigomycota (formerly Chytridiomycota) and Glomeromycota (formerly 46 

Zygomycota) (Herrero, Dueñas, Quesada-Moraga, & Zabalgogeazcoa, 2012; Hibbett et 47 

al., 2007). Most fungal genera, ranging from microscopic yeasts to the more evolved 48 

edible mushrooms, have been described as hosts of mycoviruses (Hammond, Andrewski, 49 

Roossinck, & Keller, 2008; Lim et al., 2005; Magae, 2012; Ro et al., 2007; Schmitt & 50 

Breinig, 2006; Stielow, Klenk, Winter, & Menzel, 2011; Strauss, Lakshman, & Tavantzis, 51 

2000). This also applied to filamentous fungi that cause plant diseases. 52 

Despite the apparent abundance of mycoviruses in nature, research on these infective 53 

agents is relatively scarce. Some recent studies have attempted to uncover the biological 54 

mechanisms that drive viral infection, replication and transmission in fungi and the 55 

ecological and management implications. As a result, agroforestry researchers have 56 

discovered the potential use of these viruses in biocontrol, with special attention given to 57 

mycoviruses that confer hypovirulence (weakened state) in their pathogenic hosts. 58 

In this article, we review studies concerning the use of mycoviruses to control 59 

devastating forest diseases. Our main goal is to provide background information about 60 

biocontrol based on fungal virus research as well as on the degree to which different 61 

protection strategies are being implemented.  62 
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2. General aspects of mycoviruses 63 

2.1. Taxonomy, diversity and biology 64 

More than 250 fungus-related viral sequences have been identified and sequenced 65 

according to National Center for Biotechnology Information (NCBI, 2014; Xie & Jiang, 66 

2014), resulting in 22 genera divided among 15 families according to the list published 67 

by the International Committee on Taxonomy of Viruses (ICTV, 2014) (Figure 1). 68 

Nevertheless, 20% of mycoviruses have not yet been catalogued (Pearson, Beever, Boine, 69 

& Arthur, 2009; Van Regenmortel et al., 2010). 70 

Mycoviruses usually replicate in the cytoplasm, although some (e.g. Mitovirus sp.) 71 

replicate in mitochondria of the host species (Göker, Scheuner, Klenk, Stielow, & 72 

Menzel, 2011; Milgroom & Hillman, 2011). Structurally, mycovirus genomes  contain 73 

one or more open reading frames (ORFs) that encode proteins required for virus 74 

replication and sometimes for capsid synthesis. The molecular size of mycovirus genomes 75 

varies somewhat, e.g. Rosellinia necatrix quadrivirus 1 (RnQV1) segments range in size 76 

from 3.70-4.90 kbp with a single ORF (Chiba et al., 2009), while the maximum size of 77 

Chalara elegans RNA Virus 1 (CeRV1) has been reported to be 5.31 kbp in length and 78 

contain three ORFs (Park, James, & Punja, 2005). Other mycoviruses may be longer, e.g. 79 

Cryphonectria hypovirus 1 (CHV-1) is 12.70 kbp in length and has at least two ORFs 80 

(Allemann, Hoegger, Heiniger, & Rigling, 1999; Shapira, Choi, & Nuss, 1991). Overall, 81 

the size of genome ranges between the extremes of Partitiviridae viruses (1.4-2.4 kbp and 82 

a single ORF) and Hypoviridae viruses (~9-13 kb and two overlapping ORFs); in 83 

addition, some families such as Alphaflexiviridae may contain several more or less 84 

overlapping ORFs (e.g. Botrytis virus X: ~7.0 kb and five ORFs)  (Ghabrial, Castón, 85 

Jiang, Nibert, & Suzuki, 2015). In some cases, small RNA molecules may also occur as 86 
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satellite elements associated with the main genome particles (e.g. 0.9-1.4 kb elements 87 

associated with 3.7-5.0 kpb mycovirus genome in basydiomicetous yeast 88 

Xanthophyllomyces dendrorhous; anamorph: Phaffia rhodozyma (Flores, Alcaíno, 89 

Fernandez-Lobato, Cifuentes, & Baeza, 2015)). 90 

Mycoviruses can be differentiated on the basis of molecular structure. Thus seven 91 

families possess double-stranded RNA (dsRNA) genomes, and six families have single-92 

stranded RNA (ssRNA) genomes. The latter are further divided into two subcategories: 93 

five families have ss(+)RNA genomes and one family has a ss(-)RNA genome (Figure 94 

1). The mycoviruses belonging to ss(+)RNA families possess viral RNA with the same 95 

base sequence as mRNA. The functions of the RNA are similar to mRNA during 96 

replication, serving as a template for protein synthesis such as RNA-dependent RNA 97 

polymerase (RdRp) or capsid. On the other hand, ss(-)RNA mycoviruses require 98 

participation of RNA replicase for their single strain genome to be transcribed into 99 

positive sense RNA. Only a few mycoviruses are formed by single circular molecules of 100 

DNA (ssDNA) (Ghabrial, Castón, Jiang, Nibert, & Suzuki, 2015; Pearson et al., 2009). 101 

<<Insert Figure 1 around here>> 102 

The evolutionary relationship between mycoviruses and their hosts remains unclear. 103 

Two main hypotheses have been proposed. Briefly, one hypothesis is based on ancient 104 

co-evolution of mycoviruses and fungi whereby the speciation of viruses is closely related 105 

to vertical transmission (see below), and the asymptomatic presence of mycoviruses may 106 

denote a long period of coexistence between viruses and fungi. This  would explain the 107 

complex relationships between host species and mycoviruses, which  range between 108 

severe disadvantage to the host (antagonism) and mutualism where the infected host 109 

obtains some benefit under certain conditions, as suggested in other viral associations 110 
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(Botella, Vainio, Hantula, Diez, & Jankovsky, 2015; Roossinck, 2015a, 2015b). The other 111 

hypothesis suggests the eventual transfer of viruses from plants to saprophytic or 112 

pathogenic fungi. In this case, viral transmission may take place during co-existence of 113 

fungal endophytes with plants, and small differences detected even within mycovirus 114 

families can be explained by a recent change of host  (Chiba et al., 2011; Ghabrial, 1998; 115 

Liu et al., 2010; Pearson et al., 2009). 116 

2.2. Transmission of mycovirus 117 

The mechanism of viral transmission is another important aspect of viral biology. 118 

Mycoviruses can be transmitted in three ways: by horizontal, vertical or extracellular 119 

transfer. Horizontal transmission takes place when a mycovirus colonises a new host 120 

through hyphal contact and subsequent mycelia fusion (anastomosis) between individuals 121 

during heterokaryon formation (mediated by a self/non-self recognition system). 122 

Nevertheless, isolates of the same species are not always compatible, even in the same 123 

population. In this type of transfer, different vegetative compatability groups (vc types or 124 

VCGs) play a special role, sometimes restricting movement of the virus (Leslie, 1993). 125 

Heterokaryon formation is genetically controlled by a specific het or vic loci. 126 

Heteroallelism in the het locus is not possible, resulting in reduction in cell lysis or 127 

mycelial growth (Saupe, 2000). At the same time, the presence of different mating types 128 

(MAT´s) in fungal populations makes transmission more complex (Coppin, Debuchy, 129 

Arnaise, & Picard, 1997; Milgroom & Hillman, 2011).  130 

In vertical transmission, mycoviruses commonly infect asexual spores. Nevertheless, 131 

prevalence rates may vary significantly between species, e.g. in Heterobasidion annosum 132 

only 3% of conidia are infected (Ihrmark, Johannesson, Stenström, & Stenlid, 2002) in 133 

contrast to 100% infection in Cryphonectria parasitica (Ding et al., 2007). Fungal viruses 134 
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can also colonise sexual spores, infecting a new generation of the host: 8-13% dsRNA 135 

infected ascospores of Magnaporthe grisea (Chun & Lee, 2009) whereas 10-84% dsRNA 136 

infected basidiospores of H. annosum (Ihrmark, Stenström, & Stenlid, 2004).  However, 137 

in a more recent study, lower vertical transmission of Heterobasidion parviporum to 138 

basidiospores (8.3%) was observed in a spruce forest (Vainio, Müller, Korhonen, Piri, & 139 

Hantula, 2014). The authors of the latter study suggested that continuous spore load in 140 

stumps may be related to the high rate of infected basidiospores, in contrast to low rates 141 

of infection in standing trees, as previously reported. It is now considered that the 142 

predominant route of viral transmission is via asexual spores, and vertical transmission 143 

has not been reported to occur in many fungal species (Carbone, Liu, Hillman, & 144 

Milgroom, 2004; Milgroom & Hillman, 2011). 145 

Extracellular transmission, in which purified viral particles of Sclerotinia sclerotiorum 146 

hypovirulence-associated DNA virus 1 (SsHADV-1) infected extracellularly virus-free 147 

protoplasts, intact hyphae and hyphal fragments of white mould fungus (Sclerotinia 148 

sclerotiorum) either in vitro (PDA culture) or in vivo (leaves of infected plants has 149 

recently been described (Yu et al., 2013). These authors also mentioned that purified viral 150 

DNA did not infect mycelia or fungal protoplasts, suggesting that whole viral particles 151 

are needed for extracellular infection. 152 

On a larger scale, transmission of mycoviruses between species has also been reported 153 

(Lee, Yu, Son, Lee, & Kim, 2011; Liu, Linder-Basso, Hillman, Kaneko, & Milgroom, 154 

2003; Vainio et al., 2011a), opening up new research lines focusing on the genetic, 155 

evolutionary and ecological factors involved in transmission. 156 

2.3. Hypovirulence process 157 
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The effects of mycoviruses infection can range from cryptic symptoms 158 

(asymptomatic) to the promotion of hypervirulence, through variations of colonial 159 

morphology and inducement of color changes (Ghabrial & Suzuki, 2009). In fact, the 160 

same mycovirus can have different effects on their host depending on ecological 161 

conditions (Hyder et al., 2013). One phenomenon caused by mycoviruses, especially 162 

interesting for agroforestry science, is hypovirulence. Only a few mycoviruses reduce 163 

spore production, causing slow mycelial growth or less aggressive invasion in pathogenic 164 

hosts, making viruses effective in biocontrol (Milgroom & Hillman, 2011; Nuss, 2005) 165 

or virocontrol (Chiba, Kondo, Kanematsu, & Suzuki, 2010).  In this sense, hypovirulence 166 

have been proved according to Koch´s postulates using infectious cDNA of C. parasitica 167 

(Chen & Nuss, 1999) and S. sclerotiorum (Marzano et al., 2015), hyphae infection of 168 

Sclerotinia spp. using viral particles (Yu et al., 2013) and protoplast infection using 169 

dsRNA (Chiba, Lin, Kondo, Kanematsu, & Suzuki, 2013; Hillman, Supyani, Kondo, & 170 

Suzuki, 2004; Lee et al., 2011). Hence, knowledge about mycovirus-mediated 171 

hypovirulence is improving biocontrol strategies in many cases of agroforestry health (see 172 

next section).  173 

Both hyper- and hypovirulence are strongly related to the presence of specific viruses, 174 

even in co-infection. Four dsRNA mycoviruses have been detected in Nectria radicicola 175 

(anamorph: Cylindrocarpon destructans) (Ahn and Lee, 2001). Removal of one virus, L1 176 

(6.0 kbp), caused a reduction in virulence of the fungus, while later reinfection through 177 

anastomosis recovered the virulence of the isolate. Detailed laboratory studies 178 

complemented with pathogenicity field assays are essential for developing virocontrol 179 

techniques. 180 

One challenge in plant pathology and the use of mycoviruses is the antiviral response 181 

of fungi or RNA silencing. When viruses infect healthy cells, dicer-type nucleases initiate 182 
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a response that produces viral RNA processed segments (sRNAs). The RNA-induced 183 

silencing complex then identifies homologous sequences on mRNA and subsequently 184 

degrades sRNAs (Dang, Yang, Xue, & Liu, 2011; Hammond et al., 2008; Nuss, 2011; 185 

Schumann, Ayliffe, Kazan, & Wang, 2010; Tauati, Pearson, Choquer, Foster, & Bailey, 186 

2014; Yaegashi, Yoshikawa, Ito, & Kanematsu, 2013). In a study attempting to clarify 187 

this evolutionary relationship, Segers, Zhang, Deng, Sun, and Nuss (2007) found 188 

symptomatic differences between hypovirulence-mycovirus infected C. parasitica 189 

isolates. The use of C. parasitica strains in which RNA silencing genes were disrupted 190 

enabled identification of genes coding for particular dicer and argonaute-like proteins as 191 

required elements in antiviral response (Sun, Choi, & Nuss, 2009; Zhang & Nuss, 2008). 192 
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3. Mycoviruses in forest diseases: case studies 193 

3.1. Cryphonectria parasitica  194 

C. parasitica is the causal agent of chestnut blight, a severe disease that causes 195 

widespread damage in North America, where it infects American chestnut (Castanea 196 

crenata), in Europe, where it infects the European chestnut (Castanea sativa) and in Asia, 197 

where it colonises Asian species of chestnut (C. crenata and Castanea mollissima). The 198 

disease is characterised by damage to cambial tissues and the appearance of cankers. 199 

These cankers tend to girdle the stem, killing the trees (Milgroom & Cortesi, 2004). 200 

Many ss(+)RNA mycoviruses have been identified in C. parasitica, four of them 201 

belonging to the genus Hypovirus. Cryphonectria hypoviruses 1-4 (CHV-1, CHV-2, 202 

CHV-3 and CHV-4) have been reported in different parts of the northern hemisphere 203 

(Hillman, Halpern, & Brown, 1994; Shapira et al., 1991; Smart et al., 1999). In relation 204 

to dissemination, transmission in conidia has been reported as highly variable, ranging 205 

from 0% to 100%. Transmission through ascospores has not been observed in nature 206 

(Ding, Liu, Xu, & Wang, 2007). However, the presence of mycovirus in ascospores of 207 

field-released transgenic strains of fungi ranged between 30% and 50% depending on 208 

culture conditions (Anagnostakis, Chen, Geletka, & Nuss, 1998). 209 

The best known example of a mycovirus that causes hypovirulence is CHV-1. When 210 

CHV-1 infects C. parasitica it causes weakness, reducing mycelial growth and 211 

sporulation. Infected fungi are only capable of forming superficial (healing) cankers on 212 

stems, and the trees can therefore survive the disease. Other symptoms of the presence of 213 

CHV-1 in isolates include changes in colony morphology and colour (Peever, Liu, 214 

Cortesi, & Milgroom, 2000; Rigling, Heiniger, & Hohl, 1989). CHV-1 originally 215 

occurred in Europe (Italy and France) and Asia (Japan, China and Korea) but was later 216 
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introduced into the USA (Allemann et al., 1999; Liu, Double, MacDonald, & Milgroom, 217 

2002). Five genetically characerised subtypes of CHV-1 have been identified: F1 and F2 218 

(from France), I (Italy), D (Germany) and E (Spain) (Allemann et al., 1999; Gobbin, 219 

Hoegger, Heiniger, & Rigling, 2003; Zamora, Martín, San Martín, Martínez-Álvarez, & 220 

Diez, 2014). CHV-1 is now considered an important biocontrol tool in European. 221 

CHV-2 and CHV-3 are both common in North America. However, although CHV-2 222 

occurs in native  C. parasitica  in Asia (Hillman, Tian, Bedker, & Brown, 1992; Peever 223 

et al., 1998),  CHV-3 is only present in the USA (Michigan) (Peever, Liu, & Milgroom, 224 

1997). Both CHV-2 and CHV-3 have proved useful in biocontrol as they induce 225 

hypovirulence in American forests and plantations. The mycovirus most commonly 226 

associated with chestnut blight in American forests (CHV-4) is traditionally considered 227 

to induce a cryptic state and is therefore not useful for biocontrol purposes (Enebak, 228 

MacDonald, & Hillman, 1994; Linder-Basso, Dynek, & Hillman, 2005). 229 

Mycoreovirus 1 (MyRV-1) (Reoviridae) has been identified in hypovirulent strains of 230 

chestnut blight fungus (Suzuki, Supyani, Maruyama, and Hillman, 2004). Viral 231 

transmission of this Mycoreovirus sp. to sexual spores has been reported (Deng, Allen, 232 

Hillman and Nuss, 2007), and reovirus-infected isolates have been shown to produce 233 

mature perithecia and viable ascospores, which in turn host MyRV-1. Other mycoviruses 234 

belonging to the Reoviridae and Narnaviridae families - respectively Mycoreovirus 2 235 

(MyRV2) and Cryphonectria mitovirus 1 (CpMV1) - have also been identified (Hillman 236 

& Suzuki, 2004). This fungus can host many Reoviridae, Partitiviridae, Totiviridae and 237 

Megabirnaviridae mycoviruses that usually infect other fungi (Eusebio-Cope et al., 238 

2015). 239 

3.2. Ophiostoma novo-ulmi  240 
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Dutch elm disease (DED), caused by Ophiostoma ulmi and O. novo-ulmi, was the most 241 

devastating disease affecting elms (Ulmus spp.) in Europe during the 20th Century (some 242 

30 million elms were killed in the UK) (Brasier, 2001; Potter, Harwood, Knight, & 243 

Tomlinson, 2011). These fungi cause death of the tree by vessel cavitation due to fungal 244 

growth in the xylem. Two pandemics have occurred. In the first, which began in the 245 

1910s, O. ulmi spread through Europe causing severe damage to adult trees and later 246 

spread to North America. In the 1950s, two subspecies of O. novo-ulmi (Euro-Asian race: 247 

O. novo-ulmi subsp. novo-ulmi; and the North American race: O. novo-ulmi subsp. 248 

americana) caused high mortality in European and American forests. In both cases, bark 249 

beetles (Coleoptera, Scolytinae) played an important role as vectors of the disease 250 

(Brasier & Kirk, 2010; Brasier, 1976, 1991; Santini & Faccoli, 2014). 251 

In relation to the presence of mycoviruses, the d-factor has been identified as a 252 

cytoplasmically transmitted agent. It is characerised as a dsRNA virus, causing a 253 

reduction in fungal growth in wounds made by feeding bark beetles and in amoeboid 254 

colony morphology as well as lower vigour and growth rates and low conidial viability 255 

(Brasier, 1986; Sutherland, Brasier, & Lodge, 1997). Thirteen dsRNA mycoviruses with 256 

similar symptoms to the d-factor were later identified as being responsible for infection 257 

of a specific isolate called Ld (Cole et al., 1998; Doherty et al., 2006; Hong, Dover, Cole, 258 

Brasier, & Buck, 1999; Hong, Cole, Brasier, & Buck, 1998a,b). The complete genomes 259 

of O. novo-ulmi mitoviruses (OnuMV1a, OnuMV1b, OnuMV3a, OnuMV3b, OnuMV4-260 

Ld, OnuMV5-Ld and OnuMV6-Ld) have been sequenced and RdRp sequences for 261 

OnuMV1a, OnuMV1b and OnuMV3b have also been established (Hintz, Carneiro, 262 

Kassatenko, Varga, and James, 2013).  263 

In addition, other Ophiostoma species have been demonstrated to harbour 264 

mycoviruses. Ophiostoma minus (causal agent of blue stain in pine wood), and the 265 
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saprophyte Ophiostoma quercus hosts viruses belonging to the Totiviridae and 266 

Partitiviridae families (respectively Ophiostoma minus totivirus (OmV) and Ophiostoma 267 

quercus partitivirus 2 (OPV2) (Doherty et al., 2007). A distant relationship between 268 

OPV2 and Ophiostoma partitivirus 1 (OPV1) was suggested (Doherty et al., 2007). 269 

OPV1, which was previously detected in the pathogenic fungus Ophiostoma himal-ulmi 270 

(Crawford et al., 2006), is not currently used in biocontrol. 271 

3.3. Heterobasidion annosum 272 

H. annosum s.l. is one of the most destructive fungi in the northern hemisphere. It is 273 

the causative agent of root disease in many coniferous species (Abies spp., Calocedrus 274 

decurrens, Juniperus spp., Larix spp., Picea spp., Pinus spp., Pseudotsuga menziesii, 275 

Sequoiadendron giganteum, Thuja plicata and Tsuga heterophylla) as well as in some 276 

broadleaf species (Betula, Fagus and Populus species) (Garbelotto & Gonthier, 2013; 277 

Gonthier & Thor, 2013). This fungal infection causes the death of trees (especially on 278 

pines and junipers), severe root and butt rot, general decay and decreased diameter growth 279 

in boreal forest and plantations, making it a major threat to timber production and the 280 

forest industry. Infection can occur in two ways: primary infection is caused by airborne 281 

basidiospores, while secondary infection takes place through colonisation of mycelia after 282 

contact with roots or grafting between infected and healthy trees (Asiegbu, Adomas, & 283 

Stenlid, 2005; Thor, Ståhl, & Stenlid, 2005; Tokuda, Ota, Hattori, Shoda-Kagaya, & 284 

Sotome, 2011; Woodward, Stenlid, Karjalainen, & Hüttermann, 1998). 285 

Additionally, dsRNA mycoviruses in P and S types of H. annosum (Heterobasidion 286 

partitivirus P (HaV-P) and Heterobasidion annosum virus (HaV)) have been partially 287 

sequenced (Ihrmark, Zheng, Strenstöm, & Stenlid, 2001). The authors included these 288 

mycoviruses in Partitiviridae and reported that H. annosum s.l. harbours dsRNA viruses 289 
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at a frequency of approximately 15% in Europe and western Asia. A new putative member 290 

of Partitiviridae, Heterobasidion partitivirus 3 (HetPV3), was subsequently detected in 291 

Chinese strains of Heterobasidion ecrustosum  (Vainio, Korhonen, Tuomivirta, and 292 

Hantula, 2010). In a later study, a new dsRNA virus belonging to Partitiviridae and 293 

designated Heterobasidion partitivirus 2 (HetPV2) clearly formed a subcluster with HaV-294 

P due to their genomic similarities (Vainio et al., 2011b). In addition, three new putative 295 

viruses, also included in Partitiviridae, were catalogued and subsequently named 296 

Heterobasidion partitivirus 1 (HetPV1), HetPV4 and HetPV5 (Vainio et al., 2011a). 297 

These authors proposed a close genetic relationship between HetPV1 and HaV, while the 298 

two other viruses were found to be more similar to mycoviruses associated with 299 

Heterobasidion parviporum partitivirus Fr110B and other disease-associated viruses. 300 

Another three partitiviruses have been identified more recently: Heterobasidion 301 

partitivirus 6, 7 (HetPV6 and HetPV7 respectively) (Vainio et al., 2012,  2013c) and 302 

Heterobasidion partitivirus 8, strain 1 from Heterobasidion irregulare (HetPV8-ir1) 303 

(Vainio et al., 2013a). All are taxonomically distant from all other H. annosum s.l. viruses. 304 

HetPV6 resembles Fusarium graminearum virus 4 (FgV4), with around 40% of protein 305 

level sequence similarities, while HetPV8-ir1 shares only 32% of RdRp similarities with 306 

HaV-P and 33% RdRp similarities with HetPV2 (Vainio et al., 2010, 2013a, 2013b). A 307 

recent study showed that four different viral species may be present in the same plot 308 

affected by H. parviporum (Vainio et al., 2014). Three of these were provisionally 309 

assigned to HetPV6 and two possible congeneric strains of Betapartitivirus sp., named 310 

HetPV2-pa1 and HetPV7-pa1, were also identified. 311 

3.4. Gremmeniella abietina  312 
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Many coniferous tree species (mainly Picea, Pinus, Abies and Larix species) in 313 

Northern and Central Europe, North America and Japan host the fungus Gremmeniella 314 

abietina (anamorph: Brunchorstia pinea), leading to the appearance of stem cankers and 315 

shoot dieback and causing severe damage in woods and plantations when weather 316 

conditions are favourable. Three races of this fungus (European, North American and 317 

Asian) have been catalogued. The European race is subdivided into three biotypes (A, B 318 

and alpine) (Botella et al., 2010; Donaubauer, 1972; Hamelin, Lecours, Hansson, 319 

Hellgren, & Laflamme, 1996; Kaitera & Jalkanen, 1992; Romeralo, Botella, Santamaria, 320 

& Diez, 2012; Santamaria, Alves-Santos, & Diez, 2005; Senn, 1999), although the 321 

taxonomy is currently under revision (Romeralo pers. com.). 322 

Three families of dsRNA mycoviruses have been detected in this forest pathogen: 323 

Gremmeniella abietina mitocondrial RNA virus S1 (GaMRV-S1, Narnaviridae) 324 

(Tuomivirta & Hantula, 2003a); Gremmeniella abietina RNA virus L1 (GaRV-L1, 325 

Totiviridae); and Gremmeniella abietina RNA virus MS1 (GaRV-MS1, Partitiviridae) 326 

(Tuomivirta & Hantula, 2003b), with a high frequency of occurrence; e.g. the 327 

mycoviruses have been detected in 89% of Spanish isolates (Botella, Tuomivirta, 328 

Hantula, and Diez, 2012) and in 50% of Turkish isolates (Aday et al., 2012). In addition, 329 

three mycoviruses were found together infecting the same isolates of G. abietina var. 330 

abietina type A (Tuomivirta and Hantula, 2005). Later, Botella, Tuomivirta, Vervuurt, 331 

Diez, and Hantula (2012) reported the absence of mitoviruses in biotype B from Turkey, 332 

biotype A from North America and European Alpine biotype. On the contrary, biotype A 333 

from Finland and Spain hosted mycoviruses. Specifically, Spanish populations hosted 334 

two mycoviruses (GMV1 and GMV2) in high proportion (74% of isolates hosted 335 

dsRNA). These authors discussed the possible factors determining presence and 336 

transmission of mitoviruses between fungal races and highlighted the role of asexual 337 
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reproduction in virus widespread. In fact, the higher proportion of mitovirus presence was 338 

detected in Spain where only asexual reproduction has been reported. Regarding the high 339 

presence and the low genetic variability detected in GMV2 in Spanish isolates, the 340 

researchers suggested a possible recent host switch and a subsequent adaptation to these 341 

new conditions. The findings of recent RdRp sequencing studies support the idea of a low 342 

degree of genetic variation in G. abietina mitoviruses in the European population 343 

(Botella, Tuomivirta, Hantula, Diez, & Jankovsky, 2014). 344 

3.5. Fusarium circinatum 345 

Pine pitch canker is a virulent disease caused by Fusarium circinatum (teleomorph: 346 

Gibberella circinata) in many pine species and in Douglas fir (Pseudotsuga menziesii) 347 

worldwide. Infections have also been observed to cause significant damage in Abies alba, 348 

S. giganteum, Larix decidua and Picea abies (Martínez-Álvarez, Pando, and Diez, 349 

2014a). The pathogen was first detected in the southeastern USA and Mexico (where it is 350 

probably endemic) an then in Haiti, South Africa, Chile, France, Korea, Spain, Italy, 351 

Japan, Portugal, Uruguay and Brazil (Aegerter, Gordon, Storer, & Wood, 2003; Enebak 352 

& Stanosz, 2003; Gordon, Kirkpatrick, Aegerter, Wood, & Storer, 2006; Martínez-353 

Álvarez, Alves-Santos, & Diez, 2012; Pfenning, Costa, Melo, Costa, & Aires, 2014). This 354 

fungus causes dieback in trees due to the formation of bleeding and resinous cankers on 355 

trunk and branches. Moreover, F. circinatum frequently causes death and damping-off of 356 

seedlings through both pre- and post-emergence infection, making such infections a 357 

significant threat to nurseries and afforestations (Aegerter et al., 2003; Hammerbacher, 358 

Ganley, Steenkamp, Gordon, & Coutinho, 2008). 359 

Three putative Mitovirus spp. (Narnaviridae) were recently identified in F. circinatum 360 

isolates from Pinus radiata in northern Spain and named Fusarium circinatum mitovirus 361 
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1, 2-1 and 2-2 (FcMV1, FcMV2-1 and FcMV2-2) (Martínez-Álvarez, Vainio, Botella, 362 

Hantula, and Diez, 2014b). The genetic structure of the mycoviruses hosted by F. 363 

circinatum isolates from Spain and South Africa has also been studied (Vainio, Martínez-364 

Álvarez, Bezos, Hantula, and Diez, 2015). Only Spanish isolates were found to host 365 

mycoviruses, which showed very similar sequence variants (>95% similarity). Indeed, a 366 

high rate of asexual spore transmission of mycoviruses (ranging between 70% and 100%) 367 

has been preliminary observed (Bezos, Martínez-Álvarez, Romeralo, and Diez, 2015), 368 

indicating the potential use of the mycoviruses as biocontrol agents. 369 

3.6. Botryosphaeria spp. 370 

Botryosphaeria spp. commonly occur as endophytic fungi in healthy hosts, but may 371 

become virulent when their host is subjected to environmental stress or physical damage 372 

(Burgess, Sakalidis, & Hardy, 2006; Smith, Crous, Wingfield, Coutinho, & Wingfield, 373 

2001; Smith, Wingfield, Crous, & Coutinho, 1996). Despite its taxonomic complexity, 374 

Botryosphaeria dothidea (anamorph: Fusicoccum aesculi) is cited as the causal agent of 375 

stem and branch cankers on apple trees (Malus domestica), ring spot on pear trees (Pyrus 376 

communis) and dieback and stem cankers on eucalyptus trees (Eucalyptus spp.) among 377 

many other woody species (Brown-Rytlewski & McManus, 2000; Slippers & Wingfield, 378 

2007). Eucalyptus sp. is one of the most common trees planted in commercial and clonal 379 

forestry at an international level. Eucalyptus dieback and cankers are of special interest 380 

in forest science because of the reduced growth, offspring failure and adult tree death 381 

caused by the pathogen (Pérez, Wingfield, Slippers, Altier, & Blanchette, 2010). The 382 

gummy exudation produced in cankers also makes the wood less valuable, causing 383 

significant economic losses in the forest industry (Rodas, Slippers, Gryzenhout, & 384 

Wingfield, 2009). 385 



 

19 

 

Two dsRNA mycoviruses were recently detected in non virulent isolates of B. dothidea 386 

infecting Pyrus pyrifolia (Wang et al., 2014). These researchers reported Botryosphaeria 387 

dothidea chrysovirus 1 (BdCV1) as a new member of Chrysoviridae  and also identified 388 

Botryosphaeria dothidea partitivirus 1 (BdPV1). Although BdPV1 was included in 389 

Partitiviridae, the capsid proteins of the mycovirus do not show significant similarity to 390 

any other capsid proteins. Analysis of the RdRp sequence also suggests the inclusion of 391 

this mycovirus in a new Partitiviridae clade (with 39% RdRp similarity to the most 392 

closely related Chrysovirus sp.). 393 

3.7. Hymenoscyphus fraxineus 394 

Ash dieback is an invasive disease caused by the fungus Hymenoscyphus fraxineus 395 

(synonym: Hymenoscyphus pseudoalbidus; anamorph: Chalara fraxinea). The fungus  396 

infects Fraxinus spp. with notable incidence in common ash (Fraxinus excelsior) and 397 

narrow-leafed ash (Fraxinus angustifolia). This pathogen has been spreading in Europe 398 

since the 1990s and causes severe damage in forests (pure or mixed stands), nurseries and 399 

urban green areas (Hietala, Timmermann, Børja, & Solheim, 2013; Kowalski, 2006; 400 

Timmermann, Børja, Hietala, Kirisits, & Solheim, 2011). It has also been cited in East 401 

Asia and Japan infecting Fraxinus mandshurica and Fraxinus chinensis (Gross, 402 

Holdenrieder, Pautasso, Queloz, & Sieber, 2014). The fungus infects ash trees of all ages, 403 

causing rapid crown dieback in adult trees, cankers and bark lesions on stem and twigs, 404 

and also leaf wilt. The disease frequently causes the death of young trees a few years after 405 

infection. However, it may become a chronic disease in older trees, reducing the tree’s 406 

defences against other pathogens and pests or environmental factors (Gross et al., 2014; 407 

Kowalski & Holdenrieder, 2009; Timmermann et al., 2011). 408 
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A new ssRNA mycovirus that infects this pathogenic fungus was recently discovered 409 

(Schoebel, Zoller, and Rigling, 2014). The authors proposed inclusion of the virus in the 410 

genus Mitovirus (Narnaviridae) and named it Hymenoscyphus fraxineus mitovirus 1 411 

(HfMV1). They noted the possibility of rapid genetic divergence based on their findings 412 

of large differences in the strains isolated in Switzerland, Poland, Germany, Lithuania 413 

and Japan. They hypothesised that the similarities between Swiss and Japanese strains 414 

may denote a European pathogen introduction across infected host material from Asia. 415 

Moreover, the prevalence of this mycovirus was high (90% in  Swiss isolates according 416 

to Schoebel et al., (2014)), supporting the most accepted hypothesis of predominance of 417 

vertical transmission via ascospores. 418 

3.8. Other fungal pathogens in woody plants 419 

Botrytis cinerea (teleomorph Botryotinia fuckeliana) causes grey mould disease in 420 

more than 200 crops species over the world, including farmland crops, ornamental species 421 

and fruit crops such as grapes (Vitis vinifera), pear trees, raspberries and blackberries 422 

(Rubus spp.) (Rodríguez-García, Medina, Alonso, & Ayllón, 2014; Williamson, 423 

Tudzynski, Tudzynski, & van Kan, 2007). The presence of different genera of mycovirus 424 

in this fungus has been widely reported (Castro, Kramer, Valdivia, Ortiz, & Castillo, 425 

2003; Potgieter, Castillo, Castro, Cottet, & Morales, 2013; Rodríguez-García et al., 2014; 426 

Wu et al., 2007; Zhang, De Wu, Li, Jiang, & Huang, 2010). These studies highlight the 427 

wide diversity of viruses that this fungus is able to host and which provide a wide range 428 

of opportunities for research in the field of fungal virology. Another three mycoviruses 429 

that infect Botrytis sp. have recently been sequenced: Botrytis virus F (BVF, 430 

Gammaflexiviridae), Botrytis virus X (BVX, Alphaflexiviridae) and Botrytis porri RNA 431 

virus 1 (BpRV1, dsRNA virus) (Xie & Jiang, 2014). 432 
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Verticillium dahliae and Verticillium albo-atrum are both causal agents of Verticillium 433 

wilt disease. They have been cited in a broad range of hosts and more than 200 species, 434 

including bushes and trees (Schall & Davis, 2009; Smith, 1965). Specifically, V. dahliae 435 

can infect economically important woody crops such as gooseberry (Ribes grossularia), 436 

apricot (Prunus armeniana), olive (Olea europea), quince (Cydonia oblonga) and roses 437 

(Rosa spp.), as well as other species of ecological interest such as maple (Acer palmatum), 438 

sycamore (Acer pseudoplatanus), raspberry, honeysuckle (Lonicera sp.) and broom 439 

(Cytisus scoparius).  V. albo-atrum causes damage to the tree of heaven (Ailanthus 440 

altissima), striped maple (Acer pennsylvanicum), yellow poplar (Liriodendron tulipifera) 441 

and other landscape species (Morehart, Donohue, & Melchior, 1980; Schall & Davis, 442 

2009; Smith, 1965). Some studies have demonstrated the presence of mycoviruses in 443 

these pathogenic fungi. For example, a Chrysovirus sp. named Verticillium dahliae 444 

chrysovirus 1 (VdCV1) was identified by Cao et al. (2011). A novel member of the family 445 

Partitiviridae was identified in V. albo-atrum: Verticillium albo-atrum partitivirus 1 446 

(VaaPV1) (Cañizares, Pérez-Artés, and García-Pedrajas, 2014), although no details were 447 

provided about the pathogenic effect of the mycovirus in its fungal host.  448 

Some opportunistic fungal pathogens of Pinus spp., such as Diplodia pinea (synonym: 449 

Sphaeropsis sapinea) and Diplodia scrobiculata (Smith et al., 1996), also host 450 

mycoviruses. Two dsRNA mycoviruses have been identified in D. pinea: Sphaeropsis 451 

sapinea RNA virus 1 and 2 (SsRV1, SsRV2 respectively; Totiviridae) (Preisig, Wingfield, 452 

& Wingfield, 1998); and one in D. scrobiculata: Diplodia scrobiculata RNA virus 1 453 

(DsRV1; related to Chrysoviridae) (De Wet, Bihon, Preisig, Wingfield, & Wingfield, 454 

2011; De Wet, Preisig, Wingfield, & Wingfield, 2008).  455 

Another pathogenic fungi of interest in agroforestry is the causal agent of root rot 456 

disease, Rosellinia necatrix (anamorph: Dematophora necatrix). The interest is due to the 457 
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pathogenicity of the fungus in several woody species e.g. apple, olive, grape and poplar 458 

(Populus spp.) (Pérez-Jiménez, 2006). Many families of mycoviruses are known to infect 459 

this fungus, e.g. Chrysoviridae, Quadriviridae, Partitiviridae, Reoviridae and Totiviridae 460 

(Xie and Jiang, 2014). Two dsRNA mycoviruses have also been associated with 461 

hypovirulence: Rosellinia necatrix megabirnavirus 1 (RnMBV1), included in a new 462 

family of mycoviruses (Megabirnaviridae) and Rosellinia necatrix partitivirus 2 (RnPV2) 463 

(Xie and Jiang, 2014).  464 
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4. Future perspectives for use of mycoviruses in biocontrol  465 

As already mentioned, many forest, horticultural and ornamental species harbour 466 

mycoviruses to a greater or lesser extent (Table 1). Although many of these have not yet 467 

been found to be of use for biocontrol purposes, many of them provide new opportunities 468 

for research in forestry science. Despite the promising outlook, the use of mycoviruses in 469 

biological control is limited by the need for detailed analysis of (a) the symptoms 470 

associated with mycovirus-caused hypovirulence, (b) transmission mechanisms and  471 

biological and ecological conditions, (c) treatment effectiveness in the field and (d) 472 

subsequent persistence in the host population. 473 

4.1. Identification of factors leading to hypovirulence: research in progress and lessons 474 

learned 475 

The best known example of a disease managed by mycoviruses is chestnut blight. In 476 

Europe, CHV-1 has been used to induce hypovirulence (Robin & Heiniger, 2001) with 477 

goods results in field inoculation trials (Juhásová, Adamcíková, & Robin, 2005; Robin, 478 

Anziani, & Cortesi, 2000; Zamora et al., 2014). CHV-1 and CHV-3 have been used with 479 

less success in the USA than in Europe, with natural hypovirulence being reported in 480 

Michigan (Milgroom & Cortesi, 2004). For other pandemics such as DED, mycoviruses 481 

infecting O. novo-ulmi appear promising for biocontrol, because of the symptoms that 482 

they cause in host isolates, such as slow mycelial growth, abnormal or amoeboid colony 483 

formation, reduction in asexual spore production, low cytochrome oxidase level and 484 

formation of mitochondrial DNA plasmids  (Hong et al., 1999). 485 

In relation to the application of biocontrol in diseased forests in boreal areas, no clear 486 

relationship between viral presence and fungus growth rate was observed in H. annosum 487 

s.l. (Vainio et al., 2010). However, significant variations in growth and changes in the 488 
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effects of virus were observed in relation to the culture conditions. The effect of HetPV6 489 

infection in relation to multiple variables (geographical, culture conditions and host) has 490 

been investigated in four Heterobasidion species (Vainio et al., 2012). No significant 491 

differences in growth were found in H. parviporum (in vivo and in vitro) or H. annosum 492 

(in vivo). However, significantly increased mycelial growth was observed in infected H. 493 

annosum cultures (laboratory assays condition: 6º C and 15ºC culture on MOS agar 494 

plates). Consequently, these results do not support a possible use of HetPV6 in 495 

virocontrol, although HetPV6 is very frequent in fungal populations and apparently does 496 

not interfere in subsequent viral infection (Vainio et al. 2013b). 497 

Mycoviruses may eventually be used as tools in the management of invasive diseases, 498 

for example in ash dieback. Although Hymenoscyphus fraxineus mitovirus 1 does not 499 

show harmful effects in its host, future perspectives for its application in biocontrol are 500 

promising because of the phylogenetic position of this mitovirus relative to others that 501 

are known to cause hypovirulence (Schoebel et al., 2014). In fact, HfMV1 is closely 502 

related to Cryphonectria cubensis, S. sclerotiorum and Helicobasidium mompa 503 

mitoviruses. 504 

Several Totiviridae, Chrysoviridae and Partiviridae mycoviruses have been identified 505 

in Fusarium graminearum (Lee, Son, & Kim, 2011; Yu et al. 2011). More specifically, a 506 

mycovirus described in F. graminearum infecting maize in Korea (named Fusarium 507 

graminearum virus 1-DK2; FgV1-DK2) is capable of reducing mycelial growth and 508 

sporulation, decreasing mycotoxin production and increasing pigmentation (Chu et al., 509 

2002). In a later study addressing this topic, a mixed infection of two dsRNA viruses was 510 

reported, with no changes in mycelial morphology but with a high rate of transmission in 511 

conidia and ascospores (30-100%) (Chu et al., 2004). A recent study identified a new 512 

mycovirus associated with hypovirulence in Fusarium virguliforme and closely related to 513 
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F. graminearum mycoviruses (Marvelli et al., 2014). Moreover, two new putative 514 

mycoviruses belonging to the Mitovirus genus have been described in Fusarium 515 

coeruleum isolates, in addition to one new Alphapartitivirus sp. in Fusarium solani f. sp. 516 

pisi (Osaki et al., 2015). Mycoviruses infecting in F. coeruleum are closely related to 517 

FcMV1, which opens up a new line of phylogenetic research. Together these results 518 

encourage the continued study of hypovirulence induced by mycoviruses in Fusarium 519 

spp. (with special focus on F. circinatum) whose use in biocontrol may prove to be a 520 

profitable consequence of in-depth studies of this species. 521 

Grey mold, caused by B. cinerea, is being investigated by various research groups 522 

around the world because of the global importance of this disease. The rare formation of 523 

multicellular penetration structures (infection cushions) and decreased  mycelial growth 524 

are probably caused by hypovirulence induced by mycoviruses (especially Botrytis 525 

cinerea mitovirus 1 (BcMV1), main mycovirus implied in hypovirulence process) as 526 

suggested by Rodríguez-García et al. (2014); Wang et al. (2014) and Zhang et al. (2010). 527 

These advances are very encouraging in agroforestry technology and are leading the way 528 

to the development of new treatments in the control of tree diseases, at least for incipient 529 

infections, thus possibly reducing economic and ecological damage.  530 

4.2. Mycoviruses transmission and biological conditions 531 

The existence of vegetative incompatibility is a major limitation in virocontrol, due to 532 

the instability of hyphal fusion between fungi that have not the same vc type. In the case 533 

of C. parasitica, fungal viruses can be transferred thought anastomosis among different 534 

vc types (0.13-0.50 transmission rates between CHV-1 strains differentiated by one or 535 

two vegetative incompatibly genes), although slowly and in less proportion (3-4%) 536 

(Cortesi, McCulloch, Song, Lin, & Milgroom, 2001; Liu & Milgroom, 1996; Peters, 537 
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Holweg, Rigling, & Metzler, 2012). This limitation in biocontrol may be reduced with 538 

more knowledge about vc types at the population level.  Papazova-Anakieva, Sotirovski, 539 

Cortesi, and Milgroom (2008) studied CHV-1 transmission between vc types in 540 

Macedonia, where only five vc types were detected and high rates of transmission 541 

between isolates with predominance in one direction were found. So that, vic genes for 542 

this species has been characterised (Choi et al., 2012; Zhang, Spiering, Dawe, & Nuss, 543 

2014) enabling multilocus PCR assays development in order to analyse incompatibility 544 

genes profiles in field populations of fungus (Short et al., 2015). 545 

Zamora, Martín, Rigling, and Diez (2012) studied vc types and mating types involved 546 

in this disease in the region of Castilla y León (Spain) and 11 vc types were identified. 547 

Two of these accounted for 88% of C. parasitica in the sampled population. Five of the 548 

remaining vc types were scarce (<10 isolates/vc type). In relation to the mating types 549 

present in C. parasitica, two mating types were found: MAT-1 was the most frequent and 550 

MAT-2 was only present in two of the provinces studied. It was concluded that the low 551 

diversity of vc types may explain the low incidence of MAT-2, supporting the idea that 552 

the fungus mainly undergoes asexual reproduction. However, the presence of two mating 553 

types in the same area could increase vc type diversity in an scenario where sexual 554 

reproduction eventually dominates. Elaborating a complex database of vc types among 555 

different CHV subtypes involves a large sampling effort, especially in areas with a high 556 

diversity of subtypes (>130 vc types in China: Wang, Shao, and Lu, 1991), but could 557 

greatly improve biocontrol against chestnut blight disease. Similarly, the main problem 558 

in relation to the use of RnMBV1 (causal agent of hypovirulence process on R. necatrix 559 

under laboratory conditions) for biocontrol purposes is the presence of a diverse fungus 560 

population (with numerous vc types) leading to the prevalence of sexual spores over 561 

anastomosis (Chiba et al., 2009). The possibility of observing variations in the 562 
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hypovirulence phenomenon caused by environmental conditions and genetic intervention 563 

was also suggested (Chiba et al., 2009). The  long term transmission of virus between 564 

incompatible isolates of R. necatrix was studied in apple trees (Yaegashi et al., 2013). 565 

After 2-3 years, both strains of fungus originally inoculated (one virus-free and other 566 

infected by dsRNA element called N10) and their hybrids were detected in trees. 567 

Moreover, isolates of both lineages (initially infected and non-infected) contained 568 

mycovirus, despite the vegetative incompatibility. The number of viral particles increased 569 

during the study period and six new mycovirus sequences were identified. The authors 570 

suggested the possible role of mycoparasitic fungi and mycophagous invertebrates as 571 

vectors involved in virus transmission thus enabling the vc types restrictions to be 572 

overcome. 573 

More detailed knowledge of the virus transmission process and vc types is needed in 574 

the case of O. novo-ulmi, especially in regions where vc types are limited, e.g.  Canada 575 

(Hintz et al., 2013). Such conditions may be favourable for carrying out field assays. In 576 

the case of F. circinatum, the low vc type diversity detected in many locations such as 577 

Spain (Iturritxa et al., 2011; Pérez-Sierra et al., 2007) and other regions where recent 578 

introduction of the pathogen is plausible may be suitable for  implementing biocontrol 579 

treatments. For example, the three previously mentioned  mitoviruses (FcMV1, FcMV2-580 

1 and FcMV2-2.) have been identified in Spanish isolates of F. circinatum belonging to 581 

the both local mating types, and it has been suggested that the occurrence of these 582 

mitoviruses is not restricted by the mating type compatibility (Vainio, Martínez-Álvarez, 583 

Bezos, Hantula, and Diez, 2015). Therefore, if any of the three recently identified 584 

mycoviruses (Martínez-Álvarez et al., 2014b) were found to cause hypovirulence, 585 

inoculation treatments could be implemented as in the European chestnut blight 586 

technique. 587 
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Only three different vc types of V. dahliae have been identified in ornamental woody 588 

plants in Illinois (USA) (Chen, 1994). The lower diversification in the population was 589 

suggested to be related to the eventual establishment of the fungus in nurseries with 590 

subsequent dispersion. The presence of virus in less aggressive fungal isolates and high 591 

affinity in vc types suggests that the use of VdCV1 or VaaPV1 for biocontrol purposes is 592 

feasible. Indeed, VdCV1 has been isolated in non-defoliating strains of fungus (Cao et 593 

al., 2011). Nevertheless, these mycoviruses have not been shown to induce 594 

hypovirulence. Similarly, in a study of vc types involved in ash dieback in the UK, strong 595 

vegetative incompatibility was found between isolates from the same population (Brasier 596 

and Webber, 2013). The authors concluded that the low degree of compatibility may be 597 

caused by the genotype heterogeneity as a result of the well-known dominance of sexual 598 

reproduction in the species (Gross, Zaffarano, Duo, & Grünig, 2012; Gross et al., 2014). 599 

The mycoviruses that infect this pathogen are known to be genetically diverse (estimated 600 

nucleotide reposition rate 0.16) and able to infect sexual spores (Schoebel et al., 2014). 601 

The low compatibly between isolates may preclude their use in biocontrol. However, 602 

rapid changes in the mycovirus genome and the infrequent role of ascospores as virus 603 

vectors imply new opportunities in virocontrol research for this invasive disease 604 

Regarding inter-specific transmission of mycoviruses, the high level of genetic 605 

similarity between HetPV1 strains (98% in polymerase sequence) isolated from different 606 

species of Heterobasidion (Heterobasidion australe and H. parviporum) infecting the 607 

same host suggests that mycovirus transmission is frequent in this fungal complex in 608 

nature (Vainio, Hakanpää, et al., 2011). This is also supported by the findings of 609 

laboratory studies with Heterobasidion spp., which demonstrated inter and intraspecific 610 

transmission via anastomosis (Ihrmark et al., 2002; Vainio et al., 2010). Furthermore, the 611 

possibility of protoplasmic transmission of mycoviruses in Fusarium boothii was 612 
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analysed (Lee, Yu, Son, Lee, and Kim, 2011). These authors used the protoplast fusion 613 

method to inoculate FgV1-DK21 into F. graminearum, Fusarium asiaticum, Fusarium 614 

oxysporum f. sp. lycopersici and C. parasitica. They showed that this method could be 615 

used for inter- and intraspecific virus transmission and reported changes in colony 616 

morphology caused by mycovirus presence, even in fungi with no known hypovirulence 617 

related to FgV1-DK21. The survival rate of tomato plants (Solanum sp.) infected with 618 

mycovirus-treated Fusarium spp. was higher (71.7%) than in virus-free isolates (23.3%). 619 

In C. parasitica, FgV1-DK21 was effectively transmitted via F. boothii protoplast, and 620 

the virulence was lower than in virus-free and CHV-1 infected isolates. These results have 621 

clear implications for the development of management strategies in the medium term, 622 

opening the way for a new area of research involving the use of fungal complex in 623 

virocontrol at the community level. 624 

The RNA silencing process was investigated in Rosellinia necatrix partitivirus 2 625 

(RnPV2) infecting a non-natural host (C. parasitica isolates) (Chiba, Lin, Kondo, 626 

Kanematsu, and Suzuki, 2013). A wild type fungus and another mutant strain with 627 

defective protein processing sRNAs (dicer-like 2) were used. The wild-type C. parasitica 628 

showed milder symptoms after infection than the defective RNA silencing mutant (called 629 

Δdcl-2 mutant), suggesting that the antiviral response mechanism detected nonspecific 630 

Partitivirus sp. as a target. Furthermore, infections involving a defective interfering 631 

dsRNA1 (DI-dsRNA1) strain were less effective. By contrast, the natural host (R. 632 

necatrix) remained asymptomatic after the same treatments. In conclusion, this study 633 

suggests the potential for using mycoviruses provided by other fungal species in 634 

virocontrol and highlights the need for more detailed knowledge about the RNA silencing 635 

process. In a study of transfection of Partitivirus sp. (RnPV1) and the Mycoreovirus sp. 636 

(MyRV3) from R. necatrix donor isolates to Diaporthe sp., C. parasitica and Valsa 637 
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ceratosperma protoplasts, successful horizontal transmission into these fungi was 638 

reported (Kanematsu, Sasaki, Onoue, Oikawa, and Ito, 2010). Infection by MyRV3 639 

caused hypovirulence symptoms in all these new hosts. This result suggests a new line in 640 

virocontrol techniques. 641 

Sclerotinia sclerotiorum partitivirus 1 (SsPV1), a mycovirus isolated from 642 

hypovirulent strains of white mould (S. sclerotiorum), has been found to be able to infect 643 

B. cinerea and also to be transferred via anastomosis among vc types and even overcome 644 

incompatibility barriers (Xiao et al., 2014). With regard to the high specificity of this 645 

mycovirus in host selection, biosafety in field use is guaranteed (Yu et al., 2013). These 646 

noteworthy findings demonstrate the possibility of improving the biological control 647 

techniques by using different mycoviruses, even in different pathogenic fungi. This opens 648 

up new research lines involving forest pathology biocontrol. 649 

4.3. Future challenges in mycovirus-based biocontrol 650 

Hypovirulence caused by co-infection is an interesting topic in biocontrol.  651 

Hypovirulence has been associated with simultaneous infection between MYRV-1 and 652 

CHV-1 in C. parasitica isolates (Sun, Nuss, and Suzuki, 2006). The co-infection 653 

produced similar colony changes as single CHV-1 infection, while conidia production 654 

and mycelial growth decreased when both viruses were present. Furthermore  655 

accumulation of dsRNA and vertical transmission of MyRV1 increased with co-infection, 656 

with no negative effects on CHV-1 genome RNA accumulation. In a more recent study, 657 

infection of B. dothidea isolates with BdPV1 mycovirus alone did not reduce growth, 658 

although the idea of a possible synergistic hypovirulence effect caused by simultaneous 659 

infection by  BdCV1 and BdPV1 was suggested (Wang et al., 2014). Indeed, co-infection 660 

caused by distantly related viruses was recently found to be more stable in isolates of 661 
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Heterobasidion sp. (Vainio et al., 2014). This has important consequences for the 662 

distribution of viruses and the co-existence of different viral strains in the same host 663 

population. A very recent study showed greater effects of RNA silencing in Rosellinia 664 

necatrix victorivirus 1 (RnVV1) hosted by C. parasitica than in other mycoviruses 665 

naturally hosted by this fungus (CHV1 and MyRV1), suggesting an antagonistic 666 

relationship between mycoviruses co-infecting the same isolates (Chiba and Suzuki, 667 

2015). CHV1 and MyRV1 interfered in replication and lateral transmission of RnVV1 668 

and were involved in RNA silencing activation; however, these mycoviruses showed 669 

higher resistance of antiviral defence effects and were mainly RnVV1 suppressed, even 670 

when the host dicer or Argonaute genes were disrupted. Further studies focusing on the 671 

co-infection process are needed. If the combined effects of mycoviruses in its hosts are 672 

clarified, new advances in the preventive inoculation of virus complex may be possible. 673 

In depth study of the interactions between mycoviral infections and environmental 674 

features is also required.  In laboratory assays of G. abietina cultures under multiple 675 

different growth conditions, mycelial growth was highest in mycovirus free isolates 676 

(Romeralo, Botella, Santamaria, and Diez,  2012). However, it was not clear whether this 677 

phenomenon was mediated by mycoviruses or only by individual virulence of the strain. 678 

New studies focusing on this aspect are required for the development of virocontrol 679 

methods. 680 

Research on the persistence of mycoviruses after the use of biocontrol strategies is 681 

scarce. In one of the few studies of this aspect, American chestnut plots were evaluated 682 

12 years after biocontrol implementation against chestnut blight (Liu et al., 2002). CHV-683 

1 was not detected in any isolate, and biocontrol failure was proposed as a possible reason 684 

for this absence. The persistence of CHV-2 and CHV-3 was limited. By contrast, although 685 

CHV-4 was common in the study area, attributing its origin to the introduction during 686 
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biocontrol treatment was regarded as doubtful. Another study reported the disappearance 687 

of CHV-1 in European treated plots 24 years after biocontrol application (Robin, Lanz, 688 

Soutrenon, & Rigling, 2010). The authors pointed out that the low diversity of vc is not 689 

necessarily related to low persistence, because similar results have been reported in other 690 

chestnut forests in Europe, and they concluded that differences in CHV-1 subtype fitness 691 

may be the most important factor in the persistence of mycoviruses in field. More research 692 

is required to establish the long-term effects of the use of mycoviruses in the field. 693 

<<Insert Table 1 around here>>  694 
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5. Conclusions 695 

1. Mycoviruses represent a relatively unknown group in virology and plant 696 

pathology sciences. However, the taxonomy of mycoviruses based on genetic 697 

sequences and biological characteristics (including antiviral response by hosts) 698 

is being improved greatly. 699 

2. Chestnut blight caused by C. parasitica is the best known and most successful 700 

mycovirus-based biocontrol method in forest pathology. Moreover, it is the only 701 

case in which a mycovirus-based biocontrol technique has been satisfactorily 702 

implemented. This disease serves as a study model in forestry protection, with 703 

particular relevance in the development of new preventive and therapeutic 704 

measures centred on several tree species. 705 

3. Mycovirus research focused on diseases caused by the O. novo-ulmi, H. 706 

annosum complex, G. abietina, F. circinatum, B. dothidea, H. fraxineus and R. 707 

necatrix is currently being developed in the forest context. Further studies 708 

involving D. pinea, D. scrobiculata, V. dahliae and V. albo-atrum pathologies 709 

are also needed. 710 

4. Mycovirus-mediated hypovirulence is a current challenge in biocontrol research 711 

because of its potential role in the prevention and/or management of plant 712 

diseases. It could become an important tool for maintaining the health of woody 713 

species, complementing or totally replacing chemical treatments. 714 

5.  Inoculation of fungi with mycoviruses may become a new management tool for 715 

forest protection, as used in the treatment of chestnut blight disease. 716 
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6. The main targets of study in mycovirus-based biological control are: (i) the 717 

mycoviruses that induce hypovirulence in their hosts, (ii) the conditions that 718 

affect hypovirulence and the virus silencing process, (iii) the transmission 719 

ecology and its biological limitations, (iv) the taxonomical and phylogenetic 720 

relationships between mycoviruses and (v) the viability of field biocontrol 721 

measures.  722 
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Tables and figures 1363 

Table 1. Summary of mycoviruses of agroforestry interest. 1364 

Fungus Main Hosts Mycoviruses Family References 

C. parasitica Castanea spp. 

CHV-1; 

 CHV-2; 

CHV-3; 

CHV-4; 

MyRV-1; 

MyRV2; 

CpMV1 

Hypoviridae; 

Reoviridae 

Narnaviridae 

Hillman et al. 

(1994); Hillman 

and Suzuki 

(2004); Linder-

Basso et al. 

(2005); Shapira et 

al. (1991); Smart 

et al. (1999); 

Suzuki et al. 

(2004) 

O. novo-ulmi Ulmus spp. 

OnuMV1a; 

OnuMV1b; 

OnuMV1c; 

OnuMV2; 

OnuMV3a;  

OnuMV3b; 

OnuMV4-Ld;  

OnuMV5-Ld;  

OnuMV6-Ld; 

OnuMV7-Ld; 

DsRNA01_ORF; 

DsRNA02_ORF 

Narnaviridae 

Hong et al. 

(1998a,b, 1999); 

Doherty et al. 

(2006); Hintz et al. 

(2013) 

 

 

 

 

 

H. annosum 

complex 
Various 

HaV; 

HaV-P; 

HetPV1; 

HetPV2; 

HetPV3; 

HetPV4; 

HetPV5; 

Partitiviridae 

 

Ihrmark et al. 

(2001) Vainio et 

al. (2010, 2011a,b, 

2012, 2013c, 

2014) 
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HetPV6; 

HetPV7; 

HetPV8; 

HetPV2-pa1; 

 HetPV7-pa1 

 

 

 

G. abietina 

Pinus spp., Picea 

spp., Abies spp., 

Larix spp. 

GaMRV-S1; 

GaRV-L1; 

GaRV-MS1 

Narnaviridae; 

Totiviridae; 

Partitiviridae; 

Tuomivirta and 

Hantula (2003a,b) 

 

 

F. circinatum 

 

Pinus spp.; 

Pseudotsuga 

menziesii 

 

FcMV1; 

FcMV2-1; 

FcMV2-2 

 

Narnaviridae 

 

 

Martínez-Álvarez 

et al. (2014b) 

 

B. dothidea 

Pyrus spp., 

Malus spp., 

Eucalyptus spp. 

BdCV1;  

BdPV1 

Chrysoviridae; 

Partitiviridae 
Wang et al. (2014) 

 

H. fraxineus Fraxinus spp. HfMV1 Narnaviridae 
Schoebel et al. 

(2014) 

B. cinerea Various BcMV1 Narnaviridae Wu et al. (2010) 

V. dahliae Various VdCV1 Chrysoviridae Cao et al. (2011) 

V. albo-atrum Various VaaPV1 Partitiviridae 
Cañizares et al. 

(2014) 

D. pinea Pinus spp. 
SsRV1;  

SsRV2 
Totiviridae 

Preisig et al. 

(1998) 

D. scrobiculata Pinus spp. DsRV1 
Chrysoviridae- 

related  

De Wet et al. 

(2011) 

R. necatrix Various 
RnMBV1; 

RnPV2 

Megabirnaviridae; 

Partitiviridae 

Chiba et al. (2009, 

2013) 

  1365 
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Figure 1. General taxonomy of mycoviruses according to ICTV classification criteria, 1366 

Virus Taxonomy 2014 Release.*Classification under consideration; **Family proposed 1367 

by Ghabrial et al. (2015). 1368 

 1369 


