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Abstract

We analyze an endogenous growth model considering agents with an isoelastic

utility. Preferences are characterized by a utility affected by a negative externality,

and a level of impatience which decays with the time distance from the present.

Agents who cannot commit the actions of their future selves, play a game against

them. The stationary equilibrium of this game defines a balanced growth path with

a slower growth when played by subsequent central planners than when played by

decision makers in the market economy. First, we prove that the fast growing mar-

ket economy implies higher welfare if the negative externality is small, while the

centralized economy is welfare improving above a given threshold for the external-

ity (obtained for a specific family of non-constant discount functions). Secondly,

we observe that this threshold increases with the elasticity of intertemporal sub-

stitution in consumption. Therefore, the greater this elasticity the more likely it is

that the externality lies below this threshold, where policy interventions would not
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be adequate. Finally, as one would expect, the range of values of the externality

for which the market equilibrium provides higher welfare widens the more differ-

ent from constant discounting time preferences are, due either to a wider range of

variation for the instantaneous discount rates or because these decay more slowly.

JEL Classification: D91, O44, C61.

Keywords: Non-constant discounting, elasticity of intertemporal substitution,

endogenous growth, Social welfare, time-consistent solutions.

1 Introduction

In this paper we consider non-constant discounting characterized by individuals whose

level of impatience decreases with the time distance from the present, implying that

the future individuals will be more impatient than anticipated today. Thus, as already

explained by Strotz (1956) and Pollak (1968), non-constant discounting generates a

problem of time inconsistency. An agent who anticipates this problem, and who cannot

impose his current decisions on future selves, will play a game against them with the

intention of manipulating their behavior. Paradoxically, when this game against future

selves is played by a central planner it can lead to a lower social welfare than when

played by consumers in a decentralized economy.

This result was highlighted by Krusell et al. (2002) for a Neoclassical growth model,

where a central planner is less inclined to invest than agents in a market economy. This

occurs because the central planner anticipates that current investment reduces the rate

of return of future central planners (and hence their incentive to invest), while current

individuals in a decentralized economy take the future rate of return as constant. Like-

wise, this result is also observed for an endogenous growth model in Cabo et al. (2017),

based on the existence of environmental externalities. In this setting, if the externality

on utility is large with respect to the externality on production, the market economy

grows faster than the centralized economy, where this externality is internalized. Under

non-constant discounting, individuals strongly discount the near future, and impatience

decreases with the time distance from the present. Thus, when the experiment is con-

trolled to ensure identical overall impatience, these individuals give a relatively stronger

value to the long run than individuals with constant discounting. For these long-run

oriented individuals, the faster growth associated with the market economy facilitates

greater social welfare. The result is proved for a log-utility.
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The main objective of the paper is to analyze whether the paradoxical result com-

mented above for the endogenous growth model with environmental externalities is still

valid if we deviate from the log-utility specification. This specification has been proven

a singular case in the literature on economic growth and non-constant discounting (see,

Farzin and Wendner 2014 and Cabo et al. 2015). Moreover, we analyze whether this

result is more likely to arise when the elasticity of intertemporal substitution in con-

sumption (EIS) is greater or when it is lower than one. With this aim, we define the

simplest possible AK growth model with a pollution externality. Production is linear

in capital, which generates pollution. The pollution externality is incorporated only

in utility, which is non-additive in consumption and pollution.1 Non-consumed out-

put accumulates overtime as capital stock. Time-consistent (sophisticated) individuals

are aware that future decision makers will deviate from currently-optimal planned con-

sumption and, hence, they play a game against their infinitely many future selves. An

equilibrium of this game is a strategy which is optimal for the current self, restricted to

the assumption that it will also be played by one’s future selves. Focusing on balanced

growth paths,2 we restrict the analysis to strategies that are linear in the capital stock.

Since consumption strategies, output and the dynamics are all linear in the capital stock,

the stationary Markov-perfect equilibrium of this inter-generational game constitutes the

balanced growth path of the economy.3 However, such an equilibrium differs when the

game is played by agents in a market economy and when it is played by a sequence of

central planners who internalize the environmental externality on utility.

For an EIS different from one, we characterize the existence and uniqueness of a

balanced growth path equilibrium in both the centralized and the market economy. Our

analysis corroborates, for an EIS different from one, the result in Cabo et al. (2017)

that non-constant discounting can lead to lower welfare in the centralized than in the

market economy. This result is proven when the environmental externality is small.

Moreover, for a family of non-constant discount functions, suggested by Tsoukis et al.

(2017), we show that this result is reversed when the environmental externality surpasses

a certain threshold. Thus, in contrast with Cabo et al. (2017), we have been able to

1While for ease of presentation we focus on pollution, one can also think of other negative externalities

on utility generated as a by-product from output growth, like congestion problems or an increment in

social problems associated with urban growth.
2The paper focuses on balanced growth path analysis and as such it omits growth and welfare analysis

out of the balanced growth path. Later on it will be proved that no transitional dynamics exists.
3A description on how to solve this type of games can be found, for example, in Karp 2007, Maŕın-

Solano and Navas (2009) or Cabo et al. (2017).
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establish that the market economy can lead to higher social welfare for only a moderate

environmental externality, i.e. if the environmental concern of individuals is not too

large and if production is not excessively pollution-intensive. Interestingly, the interval

for the environmental externality within which the market economy provides higher

welfare than the centralized solution widens with the EIS. Likewise, this interval is also

wider the more different from exponential discounting time preferences are.

A value of the EIS equal to or different from one has been reported to be of great

importance in the literature on economic growth and non-constant discounting. Under

log-utility, exponential and non-constant discounting are observationally equivalent for

Neoclassical growth, as stated in Barro (1999) (or strongly observationally equivalent

for endogenous growth in Strulik 2015). Conversely, the observational equivalence is

refuted if an isoleatic utility with an EIS different from one is considered (see, Farzin

and Wendner 2014 and Cabo et al. 2015, 2016).

Our research question can be framed within the current debate on the actual value

of the EIS. The log-utility is a frequent simplifying assumption in theoretical models

of economic growth, specifically when they present complexities like non-constant time

preferences. However, there is no consensus in the literature about its actual value. As

stated by in Thimme (2017), the standard assumption in macroeconomic models of an

EIS between 0.5 and 1 (or even lower as in Hall 1988), is being called into question

by recent literature, which points to values above 1 (see, for example, Havranek et al.

2015 or Gruber 2013). Moreover, some authors claim that the actual level of EIS can be

country specific, and positively correlated with wealth (Havranek et al. 2015, Ben-Gad

2012), or with education, as in Thimme (2017).

To understand the reasons which facilitate a higher social welfare in the market

economy under non-constant discounting, and how this result is affected by the pollution

externality and by the EIS, it is important to clarify the inter-generational game played

by subsequent decision makers when commitment is not feasible. The current central

planner (if he could commit his future behavior) would like a large propensity to consume

at the present (when he is highly impatient) and a much lower one in the future (more

patient). However, knowing that his future self will not be willing to invest that much,

he must make a sacrifice and reduce his current consumption. At the equilibrium, his

propensity to consume equates his future selves, who will face identical dilemma. The

stationary equilibrium to this game can be regarded as a second-best for the central

planner. How much the current self is willing to sacrifice present consumption depends
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positively on the EIS. The greater the substitution effect with respect to the income

effect, the more strongly current savings raise future utility, inducing a lower propensity

to consume at the equilibrium of the game (faster growth). Similar reasoning applies for

agents in a decentralized economy with the only difference that they do not internalize

the environmental externality, and hence grow faster.

Slower growth in the centralized economy has two welfare implications in this econ-

omy. First, a welfare improving effect comes from internalizing the environmental exter-

nality. Second, a welfare decreasing effect is associated with slower growth when agents

impatience decreases with the time distance from the present. To understand this sec-

ond effect, note that under non-constant discounting the current agent would like his

long-run future selves to consume less than in the equilibrium of the inter-generational

game. Because the propensity to consume is lower in the market economy (since the

pollution externality is not internalized), this economy can provide higher welfare, at

least in the long run. This possibly higher long-run welfare is strongly valued by long-run

oriented agents (who strongly discount the near future but less so the distant future). If

a first-best equilibrium with commitment were possible, the first effect would dominate.

However, this is not necessarily the case when we compare second-best solutions. When

there is not commitment and the pollution externality is small, we prove that the second

negative effect is stronger and the centralized economy grows too slowly, so the mar-

ket equilibrium provides a higher social welfare. Moreover, a greater externality would

enlarge the positive first effect, which would eventually overcome the negative second

effect. In consequence, for a sufficiently large environmental externality, the standard

result that social welfare is greater in the centralized solution is found.

Interestingly, we observe that the greater the EIS, the stronger the second negative

effect is and, hence, the wider is the range of values for the pollution externality within

which the market economy provides higher welfare than the centralized economy. This

is because a higher EIS enlarges the weight given to future selves far ahead from the

present. Likewise, we also observe that this range of values is also wider the more distant

from constant discounting individuals’ time preferences are.

These results have a direct policy implication. No intervention is required unless the

pollution externality surpasses a threshold. If production is not pollution intensive or

pollution has little impact on utility, policy actions aiming to move the market toward

the central planner equilibrium are welfare reducing. Moreover, the minimum size of the

pollution externality above which policy actions might be adequate is greater the higher
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the EIS is or the more distant individuals are from exponential discounting.

The paper is organized as follows. The next section briefly presents the model for

the centralized and the market economies and proves the existence and uniqueness of a

balanced path equilibrium. Section 3 compares social welfare under both scenarios and

illustrates how the possibility of a market equilibrium which provides higher welfare is

affected by changes in the EIS, the pollution externality and the parameters describing

the discount function. The conclusions are summarized in Section 4. All proofs are

found in the Appendix.

2 Endogenous growth with a pollution externality

This section presents an endogenous growth model where an economy produces a final

output using linear technology, and generates pollution as a by-product:

Y (K) = AK, P (K) = Kλ with λ > 0. (1)

Capital, K, is the only input, and P represents pollution. Assuming constant population

normalized to one, here and henceforth all variables are in per capita terms. Pollution

negatively enters the utility function, which also depends positively on consumption, C:

U(C,P ) =


(
CP−φ

)1−1/σ − 1

1− 1/σ
if σ 6= 1,

lnC − φ lnP if σ = 1.

(2)

Utility is assumed to be isoelastic with a constant elasticity of intertemporal substitution

in consumption, σ ∈ (0,∞). Parameter φ > 0 measures how strongly pollution affects

utility. Moreover, taking into account the pollution elasticity of capital in (1), the

utility can be written in terms of consumption and capital, with the term φλ, henceforth

denoted ϕ, defining the pollution externality in this economy. Hereinafter we will assume

that this externality satisfies the condition4 ϕ < 1. Under this condition, along a

balanced path, the positive effect of a constant growth in consumption on utility is

stronger than the negative effect of a sustained growth in pollution (associated with the

growth in the capital stock).

4Along the balanced path, where consumption, capital and output grow at the same constant rate,

this condition guarantees that the maximized Hamiltonian satisfies the Arrow sufficient optimality

conditions.
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The cross-effect of consumption and pollution on utility crucially depends on the

EIS. When σ < 1, there exists a “compensation effect” of pollution on consumption,

∂2U/(∂c ∂P ) > 0. The growth in pollution partially counterbalances the fall in the

marginal utility of consumption with increasing levels of consumption. This offsetting

effect is weaker the greater the EIS, and actually turns into a fostering effect for σ > 1,

when there is a “distaste effect” of pollution on consumption: ∂2U/(∂c ∂P ) < 0. In the

usual assumption of log-utility, utility is separable in consumption and pollution and no

distaste or compensation effect exists.

We assume agents with a decreasing level of impatience, who discount the future at

a rate which decays with the time distance from the present, j. Thus, the instantaneous

discount rate ρ(j) satisfies ρ(j) > 0, ρ̇(j) < 0,∀j ≥ 0, with limt→+∞ ρ(j) = ρ∞ > 0. In

consequence, the discount function θ(j) must satisfy θ̇(j)/θ(j) = −ρ(j) with θ(0) = 1.

Therefore, this function reads:

θ(j) = e−
∫ j
0 ρ(z)dz. (3)

This economy can be compared to a standard economy with constant discounting under

the assumption of identical overall impatience:∫ ∞
0

e−ρ̂jdj =

∫ ∞
0

θ(j) dj. (4)

where the constant discount rate, ρ̂, with an equivalent overall level of impatience to

(3), is defined as:

ρ̂ =

[∫ ∞
0

θ(j) dj

]−1

. (5)

Under the standard assumption of constant discounting, the growth rate along the

balanced growth path for an AK-type model with a pollution externality, would read

σ[A − ρ̂/(1 − ϕ)]. In this economy, a positive growth requires a not excessively large

externality and a sufficiently large marginal productivity of capital with respect to the

discount rate (assumed henceforth):

A(1− ϕ) > ρ̂. (6)

In this paper we consider individuals with non-constant preferences, who become

more patient as the time distance from the present widens. We consider sophisticated

agents who acknowledge that the preferences of their future selves will change, and hence,

play a game against all their future selves. This hypothesis guarantees time consistency:

the optimal solution computed at the current time also remains valid if recomputed

7



by future generations. Time-consistent solutions are characterized for both individual

agents in a decentralized economy and for the central authority in a centralized economy,

who shares the preferences of the current selves.

In the centralized economy, at current date t, the central planner maximizes the

lifetime utility of the representative consumer (t-agent). He chooses the instantaneous

consumption under the assumption that all his future selves will follow the same linear

strategy Ct(τ) = ξKt(τ), τ ≥ t, and ξ constant. These future selves will solve an

identical problem (except for the initial value of the capital stock). The only possible

Markov-perfect equilibrium to this sequence of games is the stationary strategy with a

constant propensity to consume. This equilibrium characterized a balanced growth path.

In this game, the central planner at each time t, takes into account that the decision to

raise capital also enhances production and, consequently, pollution:

max
Ct

∫ ∞
t

U
(
Ct(τ), Kλ

t (τ)
)
θ(τ − t) dτ, (7)

s.t.: K̇t(τ) = AKt(τ)− Ct(τ), Kt(t) = Kt, (8)

Ct(τ) = ξKt(τ), τ ≥ t, (9)

where the utility function is given by (2), and τ − t denotes the time distance from the

present.

In a market economy, the representative household at time t plays a game with

his future selves similar to the game described for the central planner. He maximizes

his utility from current time t on, taking pollution as given and subject to the budget

constraint:

max
ct

∫ ∞
t

U (ct(τ), Pt(τ)) θ(τ − t) dτ, (10)

s.t.: k̇t(τ) = rkt(τ)− ct(τ), kt(t) = kt, (11)

ct(τ) = ξkt(τ), τ ≥ t, (12)

where kt(τ) denotes household assets and r the market interest rate.5 Unlike the central

planner, the households in the market solution disregard how an increment in the capital

stock will induce higher future pollution.

Following standard modelization in AK-type models, we assume a large number of

identical firms that produce following a linear technology, Yi = AKi. Considering profit

5Note that without labor, consumers’ wealth is exclusively determined by the capital stock they own

and lend to firms.
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maximizing firms, the rental price to capital equals the capital productivity, r = A.

Finally, assuming identical firms of measure one, K = Ki and consequently, P = Pi =

Kλ, and the aggregate production in (1) follows.

Note that in both the central planner and the market economy, the stationary

Markov-perfect equilibrium of the inter-generational game constitutes the balanced growth

path. This result comes from the assumption of stationary linear strategies for an AK-

model.

In the centralized economy consumption and capital grow, along the balanced growth

path, at the same constant rate, g, and the propensity to consume out of wealth (capital)

remains constant, denoted by ξ. Correspondingly, from (1) pollution grows at rate λg.

Thus, considering an EIS different from one,6 the accumulated flow of discounted utility

along a balanced path can be written as∫ ∞
t

U
(
ξKt(τ), Kλ

t (τ)
)
θ(τ − t) dτ = − σ

(σ − 1)ρ̂
+ σ

ξ1− 1
σ

σ − 1
K−ηt Ω(g, σ, ϕ), (13)

with Kt(τ) the capital stock in the economy along a balanced path and

Ω(g, σ, ϕ) =

∫ ∞
0

θ(j)e−ηgjdj, η =
1− σ
σ

(1− ϕ). (14)

In (14) the time distance from the present is denoted by j = τ − t.
In the market economy along a balanced growth path, household consumption and

assets grow at the same rate, g, which also determines the growth rate of the total capital

in the economy. The propensity to consume out of capital is described as the consump-

tion by each household divided by that household’s assets. Thus, the accumulated flow

of discounted utility in the market economy reads:∫ ∞
t

U
(
ξkt(τ), Kλ

t (τ)
)
θ(τ − t) dτ = − σ

(σ − 1)ρ̂
+ σ

ξ1− 1
σ

σ − 1
k−η1
t K−η2

t Ω(g, σ, ϕ), (15)

with Kt(τ) and kt(τ) the capital stock in the economy and the households assets along

a balanced path and

η1 =
1− σ
σ

, η2 = −1− σ
σ

ϕ.

Note that η1 +η2 = η. The sign of η depends on whether the EIS is greater or lower than

one. The assumption of an income effect stronger than or equal to the substitution effect

is the most commonly accepted assumption in the literature. Under this assumption η >

0 and the improper integral Ω(g, σ, ϕ), which defines discounted utility, is convergent.

6The analysis of the particular case σ = 1 is postponed until Remark 2.
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In contrast, under the alternative assumption of σ > 1, η < 0 and one needs to establish

a ceiling for the elasticity of intertemporal substitution in consumption to guarantee

convergence (condition (19) in the following proposition), as also occurs in economic

growth models with constant discounting.

Proposition 1 The growth rate along a balanced path equilibrium is characterized by

gSP = σ
(1− ϕ)A−∆(gSP, σ, ϕ)

1− ϕ
≡ hSP(gSP) [Social Planner Economy] (16)

gDE = σ
A−∆(gDE, σ, ϕ)

1− ϕ+ σϕ
≡ hDE(gDE) [Decentralized Economy] 7 (17)

with

∆(g, σ, ϕ) =

∫ ∞
0

ρ(j)ω(j) dj, ω(j) =
θ(j)e−ηgj

Ω(g, σ, ϕ)
, (18)

which are feasible under condition

σ < σ̂ ≡ 1 +
ρ∞

(1− ϕ)A− ρ∞
. (19)

Condition (19) guarantees the convergence of the improper integrals Ω(g, σ, ϕ) and

∆(g, σ, ϕ) with a positive growth rate, g. Note that, under condition (6) and taking into

account that ρ̂ > ρ∞, then σ̂ > 1.

The role played by ∆(g, σ, ϕ) in (16) and (17) resembles that of the constant discount

rate in the Ramsey rule. Then, following Barro (1999), it is interpreted as the effective

rate of time preference. This term depends on the growth rate of the economy, the EIS

and the environmental externality.

Remark 2 In the particular case σ = 1, the accumulated flow of discounted utility

along a balanced path (13) in the centralized economy, and (15) in the market economy

translates into∫ ∞
t

[ln (ξKt(τ))−φ ln
(
Kλ
t (τ)

)
]θ(τ − t) dτ =

1

ρ̂

[
(1− ϕ) ln(Kt) + g(1− ϕ)J̄1 + ln ξ

]
,∫ ∞

t

[ln (ξkt(τ))−φ ln
(
Kλ
t (τ)

)
]θ(τ − t) dτ =

1

ρ̂

[
ln(kt)− ϕ ln(Kt) + g(1− ϕ)J̄1 + ln ξ

]
,

where J̄1 = ρ̂
∫∞

0
jθ(j)dj.

Note also that Ω(g, 1, ϕ) = 1/ρ̂ and ∆(g, 1, ϕ) = ρ̂. In consequence, expressions (16)

7Here, and henceforth, superscript SP refers to the Social Planer economy and DE to the Decen-

tralized economy.
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and (17) explicitly define the equilibrium growth rates in the centralized and the market

economies:

g1SP =
(1− ϕ)A− ρ̂

(1− ϕ)
, g1DE = A− ρ̂. (20)

In the case of σ 6= 1, the following proposition proves that equations (16) and (17)

implicitly define the balanced growth rates in the centrally planned and the decentralized

economies. The proposition also proves that the equilibrium growth rate is larger in the

market economy.8

Proposition 3 Under conditions (6) and (19) there exists a unique balanced path equi-

librium, for both the centrally planned and the market economies, with positive growth

rates, gSP and gDE. These rates are the unique solutions for equations (16) and (17),

respectively. Moreover, gDE > gSP.

With the aim of providing an intuition on how non-constant discountig affects the

long-run growth rate of both economies, we rewrite the first-order optimality conditions

in (26) and (32) with the help of expressions (28) and (33) as

∂U(Ct, K
λ
t )

∂Ct
= [(1− ϕ)Ω(gSP, σ, ϕ)]

1
σ K

−(1+η)
t ,

∂U(ct, K
λ
t )

∂ct
= Ω(gDE, σ, ϕ)

1
σ k
−(1+η1)
t K−η2

t ,

for the centralized and the market solutions, respectively. These equations balance

current marginal utility from consumption to the present value of all ongoing effects on

utility of a marginal increment in current capital. These ongoing effects depend on the

current capital stock, the term Ω(g, σ, ϕ) and, in the centralized economy (where the

pollution externality is internalized), on 1 − ϕ. To give an interpretation to expression

Ω(g, σ, ϕ), note that from (2) it follows that along a balanced path, the utility from a

current time t on evolves according to the term e−ηgj. Therefore, this term determines

the marginal effect that changes in current capital will have on the utility j periods from

t along a balanced path. If σ < 1, the income effect exceeds the substitution effect, then

η > 0 and marginal future effects shrink with the time distance from the present. In

contrast, if σ > 1, then η > 0 and current changes induce exploding marginal future

effects. Finally, the assumption of log-utility is consistent with an invariant effect of a

current change on all future utilities. The effects for different values of σ are depicted

in Figure 1 (left).

8This result is not due to non-constant discounting. An identical result is found in Smulders and

Gradus (1996) under exponential discounting.
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Figure 1: Future marginal effects in utility (left); and weights ω(j) (right).

A current t−agent discounts all these future effects according to the discount func-

tion, θ(j). Therefore, Ω(g, σ, ϕ) collects the total effect of a marginal increment in current

capital on all future utility as the aggregated sum of the discounted value of ongoing

future marginal effects on utility. This total effect can be decomposed in the effect j

periods from now for every j ≥ 0, which in relative terms is defined by ω(j) in (18), and

depicted in Figure 1 (right). These relative future effects can also be interpreted as the

weights defining the effective rate of time preference, ∆(g, σ, ϕ), as a weighted mean of

the instantaneous discount rates from the present time on, ρ(j), with weights satisfying∫∞
0
ω(j)dj = 1. The next proposition describes the relationship between ∆(g, σ, ϕ) and

g.

Proposition 4 The effective discount rate increases (decreases) with the growth rate of

the economy if the EIS is lower (greater) than one, and it is unaffected for a log-utility.

A higher growth rate differently impacts on the effective discount rate depending on

whether the EIS is above or below one. For σ < 1 (i.e. η > 0) the decay in the marginal

effect of current changes on future utility, e−ηgj, is more pronounced the greater the

growth rate of the economy. Thus, a higher growth rate raises the weights given to

the instantaneous discount rates closer to the present (which take higher values). In

consequence, it also raises the effective discount rate (i.e. individuals are more short-run

oriented). In contrast, for σ > 1 (i.e. η < 0), the greater the growth rate of the economy

is, the faster the marginal future effects, e−ηgj, explode. Thus, a higher growth rate raises

the weights given to the instantaneous discount rates far ahead in the future (which take

lower values). In consequence, it reduces the effective discount rate (i.e. individuals are

more long-run oriented). Finally, when the income and the substitution effect exactly
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cancels out (i.e. σ = 1), growth has no effect on the distribution of weights.9

Our analysis has focused on the balanced path equilibrium. The next proposition

shows that, as in the standard AK-model with exponential discounting, no transitional

dynamics exists.10

Proposition 5 The balanced path equilibrium in the centralized or in the market econ-

omy shows no transitional dynamics.

3 Social welfare comparison

We are now in the position to answer one of the main research questions of this pa-

per, concerning the social welfare comparison between the centralized and the market

economy. Analytical results are presented as propositions. To illustrate these analytical

results, and to present additional numerical results, we carry out a numerical analysis

for a particular family of discount functions presented in Tsoukis et. al. (2017). These

functions can be embodied as

θ(j) = e−ρ∞j(1 + δj)−γ/δ, (21)

with ρ∞ > 0, γ ∈ (0, 1), δ > 0 and γ/δ < 1. In consequence, the instantaneous discount

rate associated with this expression is

ρ(j) = ρ∞ + γ/(1 + δj).

Therefore, ρ(j) decreases from ρ∞+γ to ρ∞ as the time distance from the present tends

to infinity. In the numerical simulations, we take as benchmark the following parameter

values: γ = 0.5, δ = 10, ρ∞ = 0.05, Kt = 1, ϕ = 0.2 and A = 0.12.

In the previous section, considering a pollution externality in the utility of consump-

tion, we saw that the market economy grows faster than the centralized economy. Faster

growth might lead to higher welfare in the decentralized scenario when individuals dis-

count the future at a decreasing rate. This result crucially depends on the three main

ingredients in this economy: the size of the environmental externality, the EIS and the

9Alternatively, we could refer to the effect of g on Ω(g, σ, ϕ). A faster growth reduces the total effect

of a marginal increment of present capital on ongoing utility if σ < 1, increasing it if σ > 1, or leaving

it unchanged if σ = 1.
10We thank one anonymous reviewer for bringing our attention to this analysis.
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way individuals discount the future. In this section we analyze how these ingredients

influence the equilibrium growth rates and the welfare comparison in the two economies.

First, we focus on the pollution externality, ϕ, which represents either the impact of

pollution on utility, φ, or the elasticity of pollution with respect to capital, λ. The next

proposition describes its effect on the growth rates.

Proposition 6 The equilibrium growth rate in the centralized economy decreases with

the pollution externality.

The equilibrium growth rate in the market economy increases (decreases) with the pol-

lution externality if the EIS is lower (greater) than one, and is not influenced by the

externality for a log-utility.

A pollution externality has a direct and an indirect effect on growth. The direct

effect mimics the standard effect under constant discounting and can be decomposed

into two separated effects. First, when the externality is internalized in the centralized

economy it discourages savings and growth. Second, if the EIS is different from one, a

value of σ below one implies a compensation effect which boosts growth, while a value

of σ above one implies a distaste effect which slows down growth. This second effect

applies in both the market and in the centralized economies.

Due to the assumption of non-constant discounting, a greater externality also has an

indirect effect on growth, which is collected by its effect on the effective discount rate,

∆(g, σ, ϕ). From (14) it follows that the marginal effect of current changes on future

utilities, e−ηgj, shrinks more smoothly (for σ < 1), or expands less rapidly (for σ > 1).

Hence, for σ < 1, individuals become more long-run oriented, their effective discount

rate decreases, inducing a rise in the growth rate. The opposite applies for σ > 1.

For the centralized equilibrium the total effect is negative, as shown in the proof of

Proposition 6 in the Appendix. For the market equilibrium, a greater externality induces

faster growth for a low EIS, and slower growth for a large EIS. This can be observed in

Figure 2.

The size of the pollution externality is also crucial when comparing social welfare in

the centralized and the market economies. The existence of a pollution externality leads

the central planner to slow down growth below the market equilibrium. The lower growth

has a twofold effect on welfare: direct positive effect, because the pollution externality

is internalized, and a negative effect when impatience decreases with the time distance

from the present. Under these time preferences, the current agent would like (if he could
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Figure 2: Sensitivity of gSP (left) and gDE (right) w.r.t. σ and ϕ.

commit future actions) a time-decaying propensity to consume. However, without the

possibility to commit future actions, the current agent must follow a second-best policy,

which stems from the inter-generational game with his future selves. The stationary

equilibrium of this game imposes a constant propensity to consume, which from the

standpoint of the current agent is too low in the short run and too high in the long run.

In consequence, for this agent the smaller propensity to consume in the market economy

in the long run can be welfare enhancing. The following proposition proves that the

second negative effect can overcome the direct positive effect of the slower growth in the

centralized economy.

Proposition 7 Under conditions (6) and (19) the social welfare in the market econ-

omy surpasses the social welfare in the centralized economy provided that the pollution

externality is sufficiently small.

Proposition 7 clearly states that the direct positive welfare effect of internalizing the

pollution externality can be outweighed by the negative welfare effect of a too low growth

rate in the long run, from the standpoint of the current agent. This analytical result is

valid if the pollution externality is sufficiently small. Next we analyze whether this result

can be generalized for any size of this externality or if it is reversed at some threshold.

While this question cannot be analytically answered, we rely on a numerical analysis

for the discount functions in (21). For these discount functions we can numerically

compute the growth rates and the value functions for the centralized and the market

economies, in (27)-(30) and (33)-(34) for σ 6= 1, and in (35)-(36) for σ = 1. Furthermore,

we compute the relative gap in social welfare between the market and the centralized

equilibria: (WDE(Kt, Kt)−W SP(Kt))/|W SP(Kt)|. This relative gap is computed for the

pollution externality, ϕ, running from 0 to 1. As proved in Proposition 7, the market
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economy provides higher social welfare than the centralized solution when the pollution

externality is small. As this externality becomes bigger, Figure 3 shows that the gap11

widens initially but narrows later on, and it eventually turns negative. This analysis

highlights that when individuals discount at a decreasing rate, there exists a window

for the pollution externality within which the market solution provides higher welfare,

but above a given threshold, ϕ̂, the standard result of a higher social welfare in the

centralized economy arises. This is true regardless of whether we consider an EIS above,

below or equal to 1. According to this result, policy actions might be adequate if the

pollution externality exceeds this threshold, but they are not when pollution has a small

impact on consumers’ utility. We have checked that this result is qualitatively robust to

changes in the parameter values.

0 0.1 0.2 0.3 0.4 0.5
0

0.5%

1%

1.5%
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Figure 3: Relative gap in social welfare: centralized vs. market.

The EIS is a second key element in consumption savings decisions, and hence it

fundamentally determines the gap in growth rates and social welfares between the cen-

tralized and the market economy. As can be observed in Figure 2, the next proposition

establishes a total positive effect of the EIS on the growth rate in both economies.

Proposition 8 The equilibrium growth rates in the centralized and the market economy

are greater the higher the elasticity of intertemporal substitution in consumption.

The EIS has a twofold effect on growth: A direct positive effect (likewise as under

constant discounting) stems from a softer decay in the marginal utility of consumption

with higher consumption levels. Along the balanced path pollution also increases, which

partially counterbalances the fall in the marginal utility of consumption when σ < 1,

11The gap is computed in relative terms and we observe that, when positive, it can represent a

maximum between 0.7%, for σ = 0.8, and 2%, for σ = 1.5.
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and there exists a “compensation effect” of pollution on consumption; or is exacerbated

when σ > 1 and a “distaste effect” appears. All in all, a larger EIS has a direct positive

effect on growth, which is more intense in the centralized economy, which anticipates the

effect of consumption decisions on future pollution. This effect is reinforced by a second

effect stemming from the assumption of non-constant discounting. A higher EIS implies

a stronger relative effect of current changes on far distant utilities, when the level of

impatience is lower. This is equivalent to having a lower effective discount rate which

indeed induces an even faster growth.

The numerical analysis shows that a higher EIS monotonously implies a wider relative

gap (WDE(Kt, Kt) −W SP(Kt))/|W SP(Kt)|. This can be observed in Figure 3 for three

different values of σ. This is because a higher EIS enlarges the negative welfare effect

that individuals with non-constant time preferences associate to the low growth rate in

the centralized economy, when they would prefer a faster growth in the long run (as in

the market economy). In consequence a greater pollution externality is required for the

positive welfare effect of internalizing the externality to overcome the negative effect just

described. Thus, a higher EIS widens the range of values for the pollution externality, ϕ̂,

within which the market equilibrium provides higher welfare and no policy actions are

needed. Increasing σ till the upper bound σ̂ (above which the effective rate of discount,

∆(g, σ, ϕ), is not well defined), ϕ̂ monotonously increases, as long as the growth rate of

the economy is positive.

Finally, we analyze the impact of non-constant discounting on the growth rates and

the welfare in the centralized and the market economies. We aim to characterize how

growth is affected by the way individuals discount future utility, but maintaining the

overall level of impatience unchanged. The overall level of impatience in (5), considering

the Laplace transform, can be stated as

ρ̂ =
e−ρ∞/δδγ/δρ

1−γ/δ
∞

Γ
(
1− γ

δ
, ρ∞
δ

) , (22)

where Γ(a, b) =
∫∞
b
xa−1e−xdx is the incomplete gamma function.12 Thus, we perform

a controlled experiment, and analyze the effect of γ and ρ∞, when δ adjusts so that

condition (22) remains unaltered.

As shown in Figure 4, an increment in γ widens the range for the instantaneous

discount rate, [ρ∞+γ, ρ∞), while a lower ρ∞ implies a slower decay of the instantaneous

12This follows the expression proposed by Tsoukis et al. (2017). We have corrected a mistake by

changing the standard Gamma function for an incomplete Gamma function.
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Figure 4: Effect of γ (left) and ρ∞ (right) on ρ(j).

discount rate. Thus, the discount function is more distant from constant discounting

the higher γ or the lower ρ∞. Both changes imply more long-run oriented individuals.

Being more long-run oriented has a different effect on growth depending on whether the

EIS is above or below 1.

A more long-run oriented individual would slow down growth if the effect of changes

in current capital on future utility decreases with the time distance from the present (an

EIS lower than 1). For this agent, the aggregate value of the ongoing effects, Ω(g, σ, ϕ).13

is reduced, together with the incentive on current savings. By contrast, this agent would

speed up growth if, conversely, changes in current capital on future utility expand with

time (an EIS greater than 1). Figure 5 depicts the effect of a rise in γ, from 0.2 to 0.9.

For σ < 1 (left chart) the growth rate is reduced more strongly, the smaller the pollution

externality. Conversely, for σ > 1 (right chart) the growth rate is increased, and the

gap between the two scenarios widens with the intensity of the externality. Identical

reasoning applies for a lower ρ∞.

Finally, we show that the more the agents preferences differ from exponential dis-

counting, the wider is the interval for the pollution externality compatible with a welfare

enhancing market equilibrium. This is numerically shown by computing the value of the

threshold ϕ̂ as an increasing function of γ, shown in Figure 6. Thus, the wider the range

in instantaneous discount rates, the wider the interval of the pollution externality within

which policy intervention would not be needed. A similar analysis and result arise for a

smaller ρ∞. Note that Figure 6 shows that the threshold also widens with the EIS, as

already observed in Figure 3.

13Note that a reduction in Ω(g, σ, ϕ) is equivalent to an increment in the effective discount rate, from

equation (30), and the consequent decay in the growth rate of the economy.
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4 Concluding remarks

This paper analyzes a simple AK-endogenous growth model under the following main

assumptions: i) a negative externality (e.g. pollution) enters the consumers’ utility; ii)

time preferences are characterized by a decreasing level of impatience with the time-

distance from the present; and iii) current individuals acknowledge that the discount

rate of future cohorts will not be as low as anticipated and, hence, try to manipulate

their future selves, playing a game against them all (time-consistent individuals). Two

main consequences stem from these assumptions. First, the Markov perfect equilibrium

in linear strategies for this game, which is a balanced growth path, is characterized by a

slower growth when played by current against future central planners than when played

by competitive agents, who ignore how investment on production capacity increases

pollution. Second, agents with a decaying rate of temporal discount are more long-run

oriented than standard individuals with a constant discount rate and the same overall

impatience. This can be explained because present-biased individuals strongly discount
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the near future and much less the distant future. Tying these two consequences together

we have proved the main finding of our paper: if the pollution externality on utility

is sufficiently small, then the strategic interaction between subsequent central planners

could lead to a too slow growth rate, so the social welfare of long-run oriented individuals

ends up being smaller than in the market economy.

To understand this result it is important to distinguish between what a current

individual would like his future selves to do, and the equilibrium of the inter-generational

game against these future selves. The equilibrium defines a constant propensity to

consume out of wealth, which is a second-best option for the current agent, which is

too small in the short run and too large in the long run. In the centralized equilibrium,

where the pollution externality is internalized, the constant propensity to consume is

high in order to slow down growth (and hence pollution), inducing a positive welfare

effect. However, this high propensity to consume in the centralized economy also has a

negative welfare effect when the individuals discount at a non-constant rate. Because the

current agent would like his far ahead future selves to save more and consume less, the

low propensity in the market economy can provide higher long-run welfare than the high

propensity in the centralized economy. Because individuals strongly discount the near

future, and much less so the far future, they strongly value this higher long-run welfare.

We have proven that this second negative effect overcomes the positive one when the

pollution externality is small, and hence the market equilibrium provides higher social

welfare. Conversely, if the externality is too large, the positive effect prevails and the

standard result of a centralized welfare improving equilibrium applies.

We numerically observe that a rise in the EIS widens the range of values for the

pollution externality compatible with a market solution providing higher social welfare.

Likewise, the more dissimilar from exponential discounting the time preferences are, the

more long-run oriented the individuals are. Therefore, we also observe that a discount

function more distant from constant discounting (although keeping overall impatience

unchanged) also corresponds to a wider range of values for the pollution externality

where the market economy welfare dominates the centralized economy.

We have analyzed how the unique balanced growth path, in both the centralized

and the market economy, responds to three fundamental aspects: the EIS, the intensity

of the pollution externality and the discount function. The value of the EIS has an

immediately clear consequence, given the assumption of a non-separable utility function

in consumption and pollution. If the EIS is lower than one, as is commonly assumed
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in macroeconomic models, a compensation effect of pollution on consumption fosters

economic growth. In contrast, an EIS above one would imply a distaste effect of pollution

on consumption, so discouraging growth. Regardless of the existence of a compensation

or a distaste effect, a higher EIS always leads to faster growth.

As for the pollution externality, it directly induces growth reductions in the central-

ized equilibrium. However, for the market equilibrium, if the EIS is lower than one, given

the compensation effect, the pollution externality fosters growth. Conversely, when the

EIS is greater than one, the distaste effect implies a reduction in economic growth with

the pollution externality.

When the instantaneous discount rate decreases, these preferences are more dissim-

ilar from exponential discounting the wider the range of variation for the instantaneous

discount rate, or the smoother their decay with the time distance from the present. Con-

sidering identical overall impatience, the more dissimilar from exponential discounting,

the more strongly the agents discount the nearby future with respect to the far distant

future, and the more long-run oriented these individuals are. When the EIS is lower

than one, current savings have decreasing future marginal effects on utility. Therefore,

the more long-run oriented individuals are, the lower are the aggregate returns to cur-

rent savings, and a lower incentive to save slows down growth. Conversely, if the EIS is

greater than one, the marginal effect of current savings increases with the time distance

from the present, and being more long-run oriented leads individuals to enhance savings

and growth.

Assuming that agents’ degree of impatience decreases with the time distance from

the present, our analysis will have policy implications. If pollution stemming from the

productive process partially reduces the utility from consumption and this externality is

not too large, then the market equilibrium provides a higher welfare than the strategic

interaction between subsequent central planners. Under these circumstances no policy

actions would be needed. In contrast, these policy actions might be necessary when

the externality surpasses a given threshold. This threshold is larger the more dissimilar

from exponential discounting the agents are and the greater the EIS. Thus, policy actions

would be less necessary in wealthy countries with a well-educated population familiar

with financial markets, where according to the empirical evidence the EIS is larger (see,

for example, Ben-Gad 2012, Havranek et al. 2015 and Thimme 2017).

The analysis was carried out for a toy AK-model. Under this simple specification we

have been able to prove the existence and uniqueness of the centralized and decentralized
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balanced growth path equilibria. Moreover, the reaction of the equilibrium growth rates

to changes in the EIS and the pollution externality has also been derived. Finally, the

result of a welfare-improving market solution for a sufficiently small pollution externality

has also been analytically proved for any plausible EIS. Numerical results could be

explored for more complex models.
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A Appendix.

Lemma 9 When considering an infinite time horizon, the improper integral which col-

lects the present value of the stream of discounted utility Ω(g, σ, ϕ) is convergent if and

only if the constant growth rate of the economy satisfies

ηg + ρ∞ > 0. (23)

This inequality is satisfied for any σ ≤ 1, as well as if σ > 1 and g < −ρ∞/η

Proof.

From (3), and taking into account that ρ(j) is strictly decreasing towards ρ∞ > 0, then

θ(j) = e−
∫ j
0 ρ(z)dz < e−ρ∞j.

In consequence, Ω(g, σ, ϕ) is upper bounded:

Ω(g, σ, ϕ) <

∫ ∞
0

e−(ηg+ρ∞)jdj.

Therefore, ηg + ρ∞ > 0 guarantees the convergence of the integral Ω(g, σ, ϕ).

In contrast, if condition (23) does not hold, then −ηg > ρ∞, σ > 1 and η < 0.

Therefore, since ρ(j) is strictly decreasing towards ρ∞ > 0, two possible cases arise:

1. If ρ(0) > −ηg, then there exists a ǰ such that ρ(ǰ) = −ηg and ρ(z) ∈ (ρ∞,−ηg)

for all z > ǰ. Thus,

Ω(g, σ, ϕ) =

∫ ǰ

0

e−ηgje−
∫ j
0 ρ(z)dzdj +

∫ ∞
ǰ

e−ηgje−
∫ j
0 ρ(z)dzdj. (24)

The second integral is lower bounded:

e−
∫ ǰ
0 ρ(z)dz

∫ ∞
ǰ

e−ηgje
−

∫ j
ǰ
ρ(z)dz

dj > e−
∫ ǰ
0 ρ(z)dz

∫ ∞
ǰ

e−ηgje
∫ j
ǰ
ηgdz

dj ≡ e−
∫ ǰ
0 ρ(z)dz

∫ ∞
ǰ

e−ηgǰdj.

Because this last integral is clearly divergent, this is also true for Ω(g, σ, ϕ).

2. If ρ(0) ≤ −ηg, then, on replacing ǰ by zero in the second integral in (24), and

following the same reasoning, it immediately follows that Ω(g, σ, ϕ) >
∫∞

0
dj, and,

hence, divergent.

23



Proof of Proposition 1.

Case σ 6= 1.

Centralized economy

Following Karp (2007), an optimal stationary solution of problem (7)-(8) needs to

satisfy the following Bellman equation:∫ ∞
t

U
(
CSP

t (τ), (KSP

t )λ(τ)
)
θ(τ−t) ρ(τ−t) dτ=max

Ct

{
U(Ct, K

λ
t )+(W SP)′(Kt)[AKt−Ct]

}
,

(25)

where CSP
t (τ) is the consumption and (KSP

t )λ(τ) the pollution along the optimal path

for the t-agent, and W SP(Kt) =
∫∞
t
U
(
CSP
t (τ), (KSP

t )λ(τ)
)
θ(τ − t) dτ denotes the value

function. The argument for variables in the RHS of (25) is the current time t (omitted

when no confusion can arise) at which the t-agent solves his dynamic problem.

First-order condition for optimality reads:

∂U(Ct, K
λ
t )

∂Ct
= (W SP)′(Kt). (26)

Along a balanced growth path, from equation (13) the value function can be written as

W SP(Kt) = W SP
0 +W SP

1 K−ηt , with

W SP

0 =
σ

(1− σ)ρ̂
, W SP

1 = σ
(ξSP)1− 1

σ

σ − 1
Ω(gSP, σ, ϕ), (27)

where ξSP represents the optimal propensity to consume out of capital, to be deter-

mined. Plugging CSP
t (τ) = ξSPKt(τ) into the first-order condition in (26), and taking

into account the expression for W SP
1 , one gets

ξSP =
1

(1− ϕ)Ω(gSP, σ, ϕ)
, W SP

1 = −1

η
[(1− ϕ)Ω(gSP, σ, ϕ)]

1
σ . (28)

Taking into account ξSP and the dynamics for the capital stock in (8), the optimal growth

rate along the balanced path satisfies

gSP = A− ξSP = A− 1

(1− ϕ)Ω(gSP, σ, ϕ)
. (29)

Integrating Ω(g, σ, ϕ) by parts, one gets

Ω(g, σ, ϕ) =
1

ηg
− 1

ηg

∫ ∞
0

e−ηgjθ(j)ρ(j) dj ⇔ ∆(g, σ, ϕ) =
1

Ω(g, σ, ϕ)
− ηg, (30)

with ∆(g, σ, ϕ) defined in (18). Thus, from (29) the alternative way of characterizing

the optimal growth rate in (16) and (18) follows.
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Previous reasoning is valid if and only if Ω(gSP, σ, ϕ) converges, which is guarantied

under condition (23). Note that condition (19) evaluated at the equilibrium (29) trans-

lates into (23). As σ tends to the value at which ηgSP + ρ∞ vanishes, so Ω(gSP, σ, ϕ)

tends to infinity. Therefore, from (29) gSP converges towards A. Then, condition (19)

grants the convergence. The same reasoning would apply below, in the market economy,

taking into account expression (34), and leading to the same value of σ̂ in (19).

Market economy

The Bellman equation in the market economy for the optimization problem (10)-(11)

reads: ∫ ∞
t

U
(
cDE

t (τ), (KDE

t )λ(τ)
)
θ(τ−t) ρ(τ−t) dτ =

max
ct

{
U(ct, K

λ
t ) + (WDE

kt )′(kt, Kt)[rkt − ct] + (WDE

Kt )′(kt, Kt)K̇t

}
, (31)

where cDE
t (τ) is household consumption, (KDE

t )λ the pollution along the optimal path for

the t-agent, and WDE(kt, Kt) =
∫∞
t
U
(
cDE
t (τ), (KDE

t )λ(τ)
)
θ(τ − t) dτ, denotes the value

function. First-order condition for optimality reads:

∂U(ct, K
λ
t )

∂ct
=
∂WDE(kt, Kt)

∂kt
. (32)

Along a balanced growth path, from equation (15) the value function can be written as

WDE(kt, Kt) = WDE
0 +WDE

1 k−η1
t K−η2

t , with

WDE

0 = W SP

0 , WDE

1 = σ
(ξDE)1− 1

σ

σ − 1
Ω(gDE, σ, ϕ),

where ξDE represents the optimal propensity to consume out of capital in the market

economy.

Plugging cDE
t (τ) = ξDEkt(τ) into the first-order condition in (32), and taking into

account the expression for WDE
1 , one gets

ξDE =
1

Ω(gDE, σ, ϕ)
, WDE

1 =
σ

σ − 1
Ω(gDE, σ, ϕ)

1
σ . (33)

Therefore, from (11), the optimal growth rate along the balanced path satisfies

gDE = r − ξDE = A− 1

Ω(gDE, σ, ϕ)
. (34)

Finally, from (30) the expression in (17) follows.
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Case σ = 1.

Following the same methodology as above, one can obtain the value functions for the

centralized economy, W 1SP(Kt) = W 1SP
0 +W 1SP

1 lnKt:

W 1SP

0 =
g1SP(1− ϕ)J̄1 + ln

(
ρ̂

1−ϕ

)
ρ̂

, W 1SP

1 =
1− ϕ
ρ̂

, (35)

as well as for the market economy, W 1DE(kt, Kt) = W 1DE
0 +W 1DE

1 ln kt +W 1DE
2 lnKt:

W 1DE

0 =
g1DE(1− ϕ)J̄1 + ln ρ̂

ρ̂
, W 1DE

1 =
1

ρ̂
, W 1DE

2 = −ϕ
ρ̂
. (36)

Likewise, the growth rates g1SP and g1DE in (20) follow.

Lemma 10 Functions hSP(g) and hDE(g) in (16) and (17) are strictly convex for σ 6= 1

and linear for σ = 1.

Proof. hSP(g) and hDE(g) are strictly convex if and only if ∆(g, σ, ϕ) is strictly concave

as a function of g. To compute the second derivative of ∆(g, σ, ϕ) with respect to g, we

take into account the first derivative in (38) and the following expressions:

∂J̄(g, σ, ϕ)

∂g
= −ηV ar(g, σ, ϕ),

∂Ω(g, σ, ϕ)

∂g
= −ηΩ(g, σ, ϕ)J̄(g, σ, ϕ),

where V ar(g, σ, ϕ) would be the variance when considering ω(j) as a density function.

Thus,
∂2∆(g, σ, ϕ)

∂g2
=

η2

Ω(g, σ, ϕ)

(
J̄2(g, σ, ϕ)− V ar(g, σ, ϕ)

)
.

To conclude, we need to prove that V ar(g, σ, ϕ) > J̄2(g, σ, ϕ).

The logarithm of ω(j) reads:

f(j) = ln(ω(j)) = B − ηgj −
∫ j

0

ρ(z)dz, where B = − ln(Ω(g, σ, ϕ)).

Because ρ̇(z) < 0, then f ′′(j) > 0 and hence ω(j) is log-convex.

This proof makes use of some of the ideas implemented in Karlin et al. (1961) for

log-concave density functions, but applied here for a log-convex function. Following

these authors, we define

g(j) =

∫ ∞
0

w(t+ j)n(t)dt =

∫ ∞
j

w(u)n(u− j)du,
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where

n(u) =

{
u2 if u > 0,

0 if u ≤ 0.

Under this specification, provided that w(j) is log-convex, then g(j) is also log-convex

(see Boyd and Vandenberghe, 2004, pages 105-106) and, therefore,

g′′(j)g(j)− (g′(j))
2 ≥ 0. (37)

These derivatives can be computed as

g′(j) =

(∫ ∞
j

w(u)(u− j)2du

)′
= −2

∫ ∞
j

w(u)(u− j)du,

g′′(j) = 2

∫ ∞
j

w(u)du.

Particularizing for j = 0, we obtain the first two raw moments: g(0) = µ2, g′(0) = −2µ1,

g′′(0) = 2. Thus, inequality (37) reads µ2 − 2µ2
1 ≥ 0. Or, equivalently V ar(g, σ, ϕ) −

J̄2(g, σ, ϕ) ≥ 0. Indeed, the inequality is strict unless f(j) refers to the exponential

density function, which is both log-concave and log-convex.

Proof of Proposition 3. The derivative of ω(j) with respect to g, reads:

∂ω(j)

∂g
=
θ(j)e−ηgj

Ω(g, σ, ϕ)
η
[
J̄(g, σ, ϕ)− j

]
, with J̄(g, σ, ϕ) =

∫ ∞
0

jω(j) dj.

From this expression it is straightforward to compute the derivative of ∆(g, σ, ϕ) with

respect to g:

∂∆(g, σ, ϕ)

∂g
= −η

(
1− J̄(g, σ, ϕ)

Ω(g, σ, ϕ)

)
= −ηCov(g, σ, ϕ) ≷ 0 if σ ≶ 1. (38)

Note that the term in round brackets above can be proved to be the covariance between j

and ρ(j) (denoted as Cov(g, σ, ϕ)), which takes a negative value (see, Cabo et al. 2017).

From (38) and the definitions in (16) and (17) one can conclude that hSP(g), hDE(g)

decrease (increase) with the growth rate of the economy if σ is lower (greater) than one.

Moreover, from (18) it follows that

∆(0, σ, ϕ) =

∫ ∞
0

ρ(j)
θ(j)∫∞

0
θ(i)di

= ρ̂

∫ ∞
0

−θ̇(j)dj = ρ̂.

Thus, if (6) is satisfied,

hSP(0) =

(
A− ρ̂

1− ϕ

)
σ > 0, hDE(0) =

A− ρ̂
1− ϕ+ σϕ

σ > 0. (39)
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For σ ≤ 1, (hSP)′(g), (hDE)′(g) ≤ 0 for all g ∈ [0, A], therefore, an equilibrium, gSP,

gDE, always exists and is unique.

For σ > 1, (hSP)′(g), (hDE)′(g) > 0 for all g ∈ [0, A], and existence requires hSP(A), hDE(A) <

A. Under condition (6) both inequalities are satisfied if and only if

σ < 1 +
∆(A, σ, ϕ)

A(1− ϕ)−∆(A, σ, ϕ)
.

Note that the denominator in this expression is positive under condition (6) because

∆(g, σ, ϕ)decreases with g when the EIS is larger than one (see (38)). From the definition

in (18) it follows that ∆(g, σ, ϕ) ≥ ρ∞ for all g ∈ [0, A]. Moreover, function x/(A(1 −
ϕ)− x) increases with x and, therefore,

σ < σ̂ < 1 +
∆(A, σ, ϕ)

A(1− ϕ)−∆(A, σ, ϕ)
.

Because curves hSP(g), hDE(g) have no inflection points (see Lemma 10), a balanced

growth path equilibrium exists in the centralized and in the decentralized economy, as

shown in Figure 7.14
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Figure 7: Equilibrium growth rates, gSP and gDE, for σ < 1 (left) σ > 1 (right).

Moreover, the equilibrium growth rate is larger in the market economy. It can be

proved that hDE(g) > hSP(g) for all g ∈ [0, A] if and only if

σ < 1 +
∆(g, σ, ϕ)

A(1− ϕ)−∆(g, σ, ϕ)
,

which holds true under the same reasoning.

Lemma 10 proves that hSP(g) and hDE(g) are convex functions of g. Therefore, since

hSP(0), hDE(0) > 0 and hSP(A), hDE(A) < A, the equilibrium in each scenario is unique.

14In order to be able to plot these graphs we have considered the particular discount function in (21),

which will be commented on in Section 3.
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From this uniqueness it follows that (hSP)′(gSP), (hDE)′(gDE) < 1. In consequence, since

hDE(g) > hSP(g) for all g ∈ [0, A], then gDE > gSP as shown in Figure 7.

Proof of Proposition 4.

The proof is straightforward from (38).

Proof of Proposition 5.

From (8) and (16), the dynamic system in the central planner economy reads:

gK =
K̇t

Kt

= A− Ct
Kt

= A− ĉt,

gC =
Ċt
Ct

=
σ

1− ϕ
((1− ϕ)A−∆ (gC , σ, ϕ)) .

Along a balanced growth path gK = gC iff gĉt = 0, where

gĉ =
˙̂ct
ĉt

= (σ − 1)A− σ∆(A− ĉt, σ, ϕ)

1− ϕ
+ ĉt.

The steady state for this equation is

ĉSP

t =

(
Ct
Kt

)SP

= σ
∆(gSP, σ, ϕ)

1− ϕ
− (σ − 1)A, with gSP = A− ĉSP

t .

Note that

d ˙̂ct
dĉt

∣∣∣∣∣
ĉt=ĉSP

t

= ĉSP

t

(
σ

1− ϕ
∂∆

∂g
(gSP, σ, η) + 1

)
= ĉSP

t (1− h′(gSP)) > 0.

The last inequality follows because h′(gSP) < 1, as proved in the proof of Proposition

3. This proves that the equilibrium ĉSP is unstable and hence the transitional dynamics

to the equilibrium does not arise. Following the same steps one can also prove the

instability in the market equilibrium.

Proof of Proposition 6. The direct effect of ϕ on hSP(g) and hDE(g) can be computed

as

∂hSP(g)

∂ϕ
= −σ∆(g, σ, ϕ)

(1− ϕ)2
< 0,

∂hDE(g)

∂ϕ
= σ

(A−∆(g, σ, ϕ))(1− σ)

(1− ϕ(1− σ))2
≷ 0 if σ ≶ 1. (40)

To compute the indirect effect of ϕ, one needs to first compute its effect on ∆(g, σ, ϕ).

From (18) it follows that

∂∆(g, σ, ϕ)

∂ϕ
= g

1− σ
σ

Cov(g, σ, ϕ) ≶ 0 if σ ≶ 1. (41)
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In consequence, the indirect effect of ϕ through ∆(g, σ, ϕ) reads:

∂hSP(g)

∂∆

∂∆(g, σ, ϕ)

∂ϕ
= −g 1− σ

1− ϕ
Cov(g, σ, ϕ) ≷ 0 if σ ≶ 1,

∂hDE(g)

∂∆

∂∆(g, σ, ϕ)

∂ϕ
= −g 1− σ

1− ϕ(1− σ)
Cov(g, σ, ϕ) ≷ 0 if σ ≶ 1. (42)

In the market economy, adding together direct and indirect effects, curve hDE(g) shifts

up with ϕ when σ < 1, and shifts down when σ > 1. Therefore gDE grows (resp.

decreases) with ϕ when σ < 1 (resp. σ > 1). From the expressions in (40) and (42) it is

straightforward to conclude that ϕ does not affect gDE when σ = 1.

In the centralized economy, the direct effect is always negative. Moreover, the indirect

effect is also negative for σ > 1, and then the pollution externality undoubtedly shifts

h(g) downward. Conversely, when σ < 1 the indirect effect is positive and the total effect

can be computed adding together direct and indirect effects, and taking into account

(30):
dhSP(g)

dϕ
=

(1− σ)g

(1− ϕ)Ω(g, σ, ϕ)

(
J̄(g, σ, ϕ)− 1

ηg

)
. (43)

While J̄(g, σ, ϕ) is the mean value for the ω(j) density function in (18), the term 1/(ηg)

can be regarded as the mean value for an exponential density function, ηge−ηgj. At

j = 0, ω(0) = 1/Ω(g, σ, ϕ) is greater than ηg (otherwise ∆(g, σ, ϕ) in (30) would be

negative). Moreover, since

d
(

θ(j)
Ω(g,σ,ϕ)

− ηg
)

dj
< 0,

the two density functions cross only once, the tail in the exponential is thicker, and

therefore,

J̄(g, σ, ϕ) <
1

ηg
.

The total derivative is negative, and hence hSP(g) shifts downward also for σ < 1. In

consequence gSP decreases with ϕ regardless of the value of σ.

Proof of Proposition 7.

Case σ 6= 1.

The value functions in the centralized and the market scenarios read:

W SP(Kt) = W SP

0 +W SP

1 K−ηt , WDE(kt, Kt) = WDE

0 +WDE

1 k−η1
t K−η2

t ,

where η1 + η2 = η. Taking into account that kt = Kt, W
SP
0 = WDE

0 and the expressions

of W SP
1 and WDE

1 in (28) and (33), the difference follows:

WDE(Kt, Kt)−W SP(Kt) = K−ηt H(ϕ),
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where

H(ϕ) = − σ

1− σ

[
Ω(gDE, σ, ϕ)

1
σ − (1− ϕ)

1−σ
σ Ω(gSP, σ, ϕ)

1
σ

]
.

From (16) and (17) when ϕ = 0 it follows that gSP = gDE and, hence, H(0) = 0. In what

follows we prove that H ′(0) > 0, which implies the existence of a non-empty interval for

ϕ within which H(ϕ) > 0, implying WDE(Kt, Kt) > W SP(Kt).

To simplify the notation, henceforth we skip the arguments in functions Ω, ∆ and

J̄ . Thus, we denote:

ΩSP = Ω(gSP, σ, ϕ), ∆SP = ∆(gSP, σ, ϕ), J̄SP = J̄(gSP, σ, ϕ),

ΩDE = Ω(gDE, σ, ϕ), ∆DE = ∆(gDE, σ, ϕ), J̄DE = ˜̄J(gSP, σ, ϕ).

The derivative, H ′(ϕ) reads:

H ′(ϕ) = − 1

1− σ

[
(ΩDE)

1−σ
σ
dΩDE

dϕ
+ (1− σ)(1− ϕ)

1−2σ
σ (ΩSP)

1
σ − (1− ϕ)

1−σ
σ (ΩSP)

1−σ
σ
dΩSP

dϕ

]
.

(44)

Taking into account that (16) and (17) implicitly define gSP and gDE as functions of ϕ,

the derivatives above can be written as

dΩSP

dϕ
=
∂ΩSP

∂g

dgSP

dϕ
+
∂ΩSP

∂ϕ
,

dΩDE

dϕ
=
∂ΩDE

∂g

dg̃∗

dϕ
+
∂ΩDE

∂ϕ
.

The partial derivatives of ΩDE and ΩSP w.r.t. ϕ can be computed taking into account

(30), (38) and (41):

∂ΩSP

∂g
= −ηΩSPJ̄SP,

∂ΩSP

∂ϕ
=

1− σ
σ

gSPΩSPJ̄SP,

∂ΩDE

∂g
= −ηΩDEJ̄DE,

∂ΩDE

∂ϕ
=

1− σ
σ

gDEΩDEJ̄DE.

Implicit differentiation in (16) and (17) leads to

dgSP

dϕ
=

∂hSP(gSP)
∂ϕ

+ ∂hSP(gSP)
∂∆

∂∆SP

∂ϕ

1− (hSP)′(gSP)
,

dgDE

dϕ
=

∂hDE(gDE)
∂ϕ

+ ∂hDE(gDE)
∂∆

∂∆DE

∂ϕ

1− (hDE)′(gDE)
.

The total effect of ϕ on hSP(gSP) is computed in (43). Likewise, taking into account (40),

(42), (30) and (34), the total effect of ϕ on hDE(gDE), after some computation reads:

dhDE(gDE)

dϕ
= σ

1− σ
ΩDE(1− ϕ(1− σ))2

gDEJ̄DE(1 + η).

Moreover, from (38) it follows that

(hSP)′(gSP) = − σ

1− ϕ
∂∆SP

∂g
= (1− σ)Cov(gSP, σ, ϕ), (45)

(hDE)′(gDE) = − σ

1− ϕ(1− σ)

∂∆DE

∂g
=

ση

1− ϕ(1− σ)
Cov(gDE, σ, ϕ).
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Plugging all these expressions into (44) and evaluating at ϕ = 0, when it holds true that

gSP = gDE, ΩSP = ΩDE, J̄SP = J̄DE and ∆SP = ∆DE, then

H ′(0) = (ΩSP)
1
σ

{[
dgDE

dϕ
− dgSP

dϕ

]
J̄SP

σ
− 1

}
,

where, taking into account that Cov(g, σ, ϕ) = 1− J̄SP/ΩSP,

dgDE

dϕ
− dgSP

dϕ
=

σ

σΩSP + (1− σ)J̄SP
,

and, therefore,

H ′(0) = (ΩSP)
1
σ

σ(J̄SP − ΩSP)

σΩSP + (1− σ)J̄SP
= (ΩSP)

1
σ

−Cov(gSP, σ, 0)σ

1− (1− σ)Cov(gSP, σ, 0)
.

Finally, given that hSP(0) > 0 and hSP(A) < A, then the uniqueness of the equilibrium

guarantees that (hSP)′(gSP) < 1. From (45) this inequality is equivalent to σΩSP + (1 −
σ)J̄SP > 0 i.e. 1− (1− σ)Cov(gSP, σ, 0) > 0. Therefore, H ′(0) > 0, which concludes the

proof.

Case σ = 1.

Following similar reasoning, the gap between the value functions under the market

and the centralized solutions can be obtained from (20), (35) and (36):

W 1DE(Kt, Kt)−W 1SP(Kt) = H1(ϕ) = ϕJ̄1 +
ln (1− ϕ)

ρ̂
.

This function satisfies H1(0) = 0 and

(H1)′(0) = J̄1 − 1

ρ̂
= J̄1 − ΩSP(gSP1, 1, 0) = −ΩSP(gSP1, 1, ϕ)Cov(gSP1, 1, 0) > 0,

which concludes the proof.

Proof of Proposition 8.

The direct effect of σ on hSP(g) and hDE(g) can be computed as

∂hSP(g)

∂σ
= A− ∆(g, σ, ϕ)

1− ϕ
> 0,

∂hDE(g)

∂σ
=

(A−∆(g, σ, ϕ))(1− ϕ)

(1− ϕ(1− σ))2
> 0.

To compute the indirect effect of σ, one needs to first compute its effect on ∆(g, σ, ϕ).

From (18) and (38) it follows that

∂∆(g, σ, ϕ)

∂σ
= g

1− ϕ
σ2

Cov(g, σ, ϕ) < 0.
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In consequence, the indirect effect of σ through ∆(g, σ, ϕ) would also be positive:

∂hSP(g)

∂∆

∂∆(g, σ, ϕ)

∂σ
= −g 1

σ
Cov(g, σ, ϕ) > 0,

∂hDE(g)

∂∆

∂∆(g, σ, ϕ)

∂σ
= −g 1− ϕ

σ(1− ϕ(1− σ))
Cov(g, σ, ϕ) > 0.

Adding the direct and indirect effects, curves hSP(g) and hDE(g) shift upward with σ.

For σ ≤ 1, (hSP)′(g), (hDE)′(g) ≤ 0 as shown in Figure 7 (left). Hence higher σ undoubt-

edly leads to higher equilibrium growth rates. For σ > 1, (hSP)′(g), (hDE)′(g) > 0 and

hSP(0), hDE(0) in (39) are strictly positive, as depicted in Figure 7 (right). Uniqueness

implies (hSP)′(gSP), (hDE)′(gDE) < 1 and hence also ensures a positive effect of σ on the

equilibrium growth rates.
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