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Abstract. This paper studies the dynamics of families of monotone nonau-

tonomous neutral functional differential equations with nonautonomous oper-
ator, of great importance for their applications to the study of the long-term

behavior of the trajectories of problems described by this kind of equations,

such us compartmental systems and neural networks among many others. Pre-
cisely, more general admissible initial conditions are included in the study to

show that the solutions are asymptotically of the same type as the coefficients

of the neutral and non-neutral part.

1. Introduction

This paper studies the long-term behavior of the trajectories of a monotone
skew-product semiflow, τ : R+ × Ω × X → Ω × X, (t, ω, x) 7→ (ω·t, u(t, ω, x)),
generated by a family of nonautonomous differential equations. The base of the
phase space, Ω, is a compact metric space endowed with a global recurrent flow
(Ω, σ,R), and the fiber, X, is a Banach space with a positive cone X+ that induces
an order relation. The monotone character means that, if ω ∈ Ω and x1, x2 ∈ X
with x1 ≤ x2, then u(t, ω, x1) ≤ u(t, ω, x2) for each t in the common interval of
definition of the trajectories. We denote ω·t = σ(t, ω) and u satisfies the cocycle
identity u(t+ s, ω, x) = u(t, ω·s, u(s, ω, x)) for every t, s ≥ 0.

It is well known that the skew-product formalism is a powerful tool in the study of
linear and nonlinear evolution systems. Frequently, this formalism is obtained from
a single nonautonomous differential equation using a standard hull construction.

An important result for monotone uniformly stable recurrent skew-product semi-
flows is the convergence of relatively compact trajectories to their omega-limit sets,
which define 1-coverings of the base space. This result was firstly proved by Jiang
and Zhao [15] in an abstract setting applicable to cooperative systems of ordinary,
finite delay and parabolic nonautonomous differential equations. In particular,
when the skew-product semiflow comes from a single differential equation with a
recurrence property in the coefficients as constancy, periodicity, almost-periodicity
among others, it provides a unified generalization of the asymptotic constancy,
periodicity or almost-periodicity of the solutions, studied in many previous papers.

This theory was extended to nonautonomous functional differential equations
(FDEs for short) with infinite delay in Novo et al. [18] (see also Wang and Zhao [29]
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for other implications of this theory). In that paper, X = BU , i.e. the subset
of functions of C((−∞, 0],Rm) that are bounded and uniformly continuous, and
the semiflow is generated by the solutions of a family y′ = F (ω·t, yt) of FDEs
defined by a continuous function F : Ω × BU → BU which is locally Lipschitz
in its second variable. The space BU satisfies standard conditions of regularity
that imply existence, uniqueness and continuous dependence of the solutions with
respect to the initial data (see Hino et al. [12]).

Later, motivated by the applicability to the study of the long-term dynamics
of compartmental systems, the paper by Muñoz-Villarragut et al. [17] is the start-
ing point of an important effort to extend the previous results to nonautonomous
neutral functional differential equations (NFDEs for short) with infinite delay.

Compartmental systems have been used as mathematical models for the study
of the dynamical behavior of many processes in the biological and physical sciences
which depend on local mass balance conditions (see Jacquez [13], Jacquez and
Simon [14] and the references therein). Some initial results for models described
by FDEs with finite and infinite delay can be found in Győri [6], and Győri and
Eller [8]. The papers by Arino and Bourad [1], and Arino and Haourigui [2] prove
the existence of almost periodic solutions for compartmental systems described by
almost periodic FDEs and NFDEs with finite delay. Győri and Wu [9] modeled
the dynamical properties of compartmental systems with active compartments by
means of NFDEs with infinite delay, whose neutral term represents the net amount
of material produced or swallowed by the compartments. This type of NFDEs
equations have been investigated by Wu and Freedman [31], and Wu [30].

An important difficulty that appears in the monotone theory of NFDEs is that,
in many applications, the order structure must be defined by means of an expo-
nential ordering which provides a positive cone with empty interior. Krisztin and
Wu [16] show the asymptotic periodicity of the solutions with Lipschitz continu-
ous initial data, under appropriate conditions on the coefficients of scalar periodic
NFDEs with finite delay and linear neutral term, which imply the monotonicity
of the solutions for an exponential ordering. By means of monotone skew-product
semiflow techniques, Novo et al. [19], and Obaya and Villarragut [21] generalize the
previous results obtaining that, under appropriate assumptions, a family of nonau-
tonomous NFDEs with infinite delay and linear neutral term induces a monotone
skew-product semiflow on Ω×BU for the exponential ordering, and the omega-limit
sets of bounded trajectories with Lipschitz continuous initial data are copies of the
base. The case of stable nonautonomous operator D for the neutral part is also
considered in Obaya and Villarragut [20], where similar results are obtained for a
new transformed exponential ordering.

The present paper provides new contributions to the core of the dynamical the-
ory of monotone recurrent skew-product semiflows generated by FDEs and NFDEs
with infinite delay, and improves the conditions of applicability of the theory to
compartmental systems and other models of interest, which will be explained in
detail in forthcoming publications. More precisely, this work provides a dynamical
framework to study compartmental systems described by neutral functional dif-
ferential equations analogous to those considered in [9, 16, 18, 19, 20, 21], under
physical conditions that have not been previously considered in the literature. In
addition, Wu and and Zhao [32] introduce the exponencial ordering and the as-
sociated monotone methods for abstract delayed reaction diffusion equations, and
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show a natural way to extend the conclusions of the above references to nonau-
tonomous compartmental systems with spatial diffusion, to which our study may
also be applied.

The structure and main goals of the paper are now described. Some basic notions
and properties of the theory of nonautonomous dynamical systems are included in
Section 2. Section 3 is devoted to the study of families y′ = F (ω·t, yt) of FDEs
with infinite delay defined by continuous functions F : Ω × BC → BC, where
BC = {y ∈ C((−∞, 0],Rm) | y is bounded}, which are locally Lipschitz contin-
uous in their second variable. Although initial data in Ω × BC are physically
admissible, the choice of this set as a phase space is problematic, because the ex-
istence of a solution of the Cauchy problem requires the measurability of the map
(−∞, T ] → Rm, t → F (ω · t, yt) for each T ∈ R, ω ∈ Ω and y ∈ C((−∞, T ],Rm],
(see Driver [4] and Seifert [23]). In our setting, this is a consequence of assuming
the continuity of F : Ω × Br → Rm when the closed ball Br ⊂ BC is endowed
with the compact open topology, which, of course, is satisfied in all the physical
models that we want to work with. Instead of considering Lipschitz continuous
initial data in BC, we introduce the bigger set R of the elements in BC with uni-
formly bounded variation on the intervals [−k,−k+1] for k ≥ 1. By considering an
appropriate exponential ordering ≤A, assuming a quasimonotone condition on F ,
a componentwise separation property and the uniform stability of Br for the order
≤A, the main conclusion of this section is that omega-limit sets of bounded trajec-
tories with initial data in R are 1-coverings of the base Ω, that is, the recurrent
character is inherited.

Section 4 extends, for the transformed exponential ordering introduced in [20],
the previous results to families d

dtD(ω·t, zt) = G(ω·t, zt) of NFDEs defined by a
stable neutral term D : Ω × BC → Rm, linear in the state component, and a
function G : Ω × BC → Rm that satisfies properties of regularity analogous to
those considered in the previous section. The main idea is to deduce, from the

stability of D, the invertibility of the operator D̂ : Ω × BC → Ω × BC, (ω, x) 7→
(ω, D̂2(ω, x)), where D̂2(ω, x) : (−∞, 0] → Rm, s 7→ D(ω·s, xs), and to transform
the NFDE into a FDE to which the conclusions of Section 3 can be applied. As
a consequence, the omega-limit sets of bounded trajectories with initial datum

x satisfying D̂2(ω, x) ∈ R are 1-coverings of the base Ω, or what is equivalent,
the trajectories reproduce asymptotically the recurrent behavior of the coefficients
of the neutral and non-neutral part, that is, the dynamics exhibited by the time
variation of the equation.

2. Some preliminaries

Let (Ω, d) be a compact metric space. A real continuous flow (Ω, σ,R) is defined
by a continuous mapping σ : R× Ω→ Ω, (t, ω) 7→ σ(t, ω) satisfying

(i) σ0 = Id,
(ii) σt+s = σt ◦ σs for each s, t ∈ R,

where σt(ω) = σ(t, ω) for all ω ∈ Ω and t ∈ R. The set {σt(ω) | t ∈ R} is called
the orbit or the trajectory of the point ω. We say that a subset Ω1 ⊂ Ω is σ-
invariant if σt(Ω1) = Ω1 for every t ∈ R. A subset Ω1 ⊂ Ω is called minimal
if it is compact, σ-invariant and its only nonempty compact σ-invariant subset is
itself. Every compact and σ-invariant set contains a minimal subset; in particular,
it is easy to prove that a compact σ-invariant subset is minimal if and only if
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every trajectory is dense. We say that the continuous flow (Ω, σ,R) is recurrent
or minimal if Ω is minimal. Almost periodic and almost automorphic flows are
relevant examples of recurrent flows. We refer to Ellis [5] and see Shen and Yi [24,
part II] for the study of topological and ergodic properties of these flows.

Let E be a complete metric space and R+ = {t ∈ R | t ≥ 0}. A semiflow
(E,Φ,R+) is determined by a continuous map Φ : R+ × E → E, (t, x) 7→ Φ(t, x)
which satisfies

(i) Φ0 = Id,
(ii) Φt+s = Φt ◦ Φs for all t, s ∈ R+,

where Φt(x) = Φ(t, x) for each x ∈ E and t ∈ R+. The set {Φt(x) | t ≥ 0} is
the semiorbit of the point x. A subset E1 of E is positively invariant (or just
Φ-invariant) if Φt(E1) ⊂ E1 for all t ≥ 0. A semiflow (E,Φ,R+) admits a flow

extension if there exists a continuous flow (E, Φ̃,R) such that Φ̃(t, x) = Φ(t, x) for
all x ∈ E and t ∈ R+. A compact and positively invariant subset admits a flow
extension if the semiflow restricted to it admits one.

Write R− = {t ∈ R | t ≤ 0}. A backward orbit of a point x ∈ E in the semiflow
(E,Φ,R+) is a continuous map ψ : R− → E such that ψ(0) = x and, for each s ≤ 0,
it holds that Φ(t, ψ(s)) = ψ(s+ t) whenever 0 ≤ t ≤ −s. If for x ∈ E the semiorbit
{Φ(t, x) | t ≥ 0} is relatively compact, we can consider the omega-limit set of x,

O(x) =
⋂
s≥0

closure{Φ(t+ s, x) | t ≥ 0} ,

which is a nonempty compact connected and Φ-invariant set. Namely, it consists
of the points y ∈ E such that y = limn→∞ Φ(tn, x) for some sequence tn ↑ ∞. It is
well-known that every y ∈ O(x) admits a backward orbit inside this set. Actually,
a compact positively invariant set M admits a flow extension if every point in M
admits a unique backward orbit which remains inside the set M (see [24, part II]).

A compact positively invariant set M for the semiflow (E,Φ,R+) is minimal if
it does not contain any other nonempty compact positively invariant set than itself.
If E is minimal, we say that the semiflow is minimal.

A semiflow is of skew-product type when it is defined on a vector bundle and has
a triangular structure; more precisely, a semiflow (Ω×X, τ, R+) is a skew-product
semiflow over the product space Ω × X, for a compact metric space (Ω, d) and a
complete metric space (X, d), if the continuous map τ is as follows:

τ : R+ × Ω×X −→ Ω×X
(t, ω, x) 7→ (ω·t, u(t, ω, x)) ,

(2.1)

where (Ω, σ,R) is a real continuous flow σ : R × Ω → Ω, (t, ω) 7→ ω·t, called the
base flow . The skew-product semiflow (2.1) is linear if u(t, ω, x) is linear in x for
each (t, ω) ∈ R+ × Ω.

3. Functional differential equations with infinite delay

We consider the Fréchet space X = C((−∞, 0],Rm) endowed with the compact-
open topology, i.e. the topology of uniform convergence over compact subsets, which
is a metric space for the distance

d(x, y) =

∞∑
n=1

1

2n
‖x− y‖n

1 + ‖x− y‖n
, x, y ∈ X ,
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where ‖x‖n = sups∈[−n,0] ‖x(s)‖, and ‖ · ‖ denotes the maximum norm in Rm.

Let (Ω, σ,R) be a minimal flow over a compact metric space (Ω, d) and denote
σ(t, ω) = ω·t for each ω ∈ Ω and t ∈ R. As usual, given I = (−∞, a] ⊂ R, t ∈ I
and a continuous function x : I → Rm, xt will denote the element of X defined by
xt(s) = x(t+ s) for s ∈ (−∞, 0]. We consider the family of nonautonomous infinite
delay functional differential equations

z′(t) = F (ω·t, zt) , t ≥ 0 , ω ∈ Ω . (3.1)

The first objective of this section is to provide an appropriate framework to study
the dynamical behavior of the solutions of (3.1). One of the admissible phase spaces
for the study of these equations is BU (see [12]), the Banach space of bounded and
uniformly continuous functions in X, i.e.

BU = {x ∈ X | x is bounded and uniformly continuous}

with the supremum norm ‖x‖∞ = sups∈(−∞,0] ‖x(s)‖.
This is not the case for the Banach space

BC = {x ∈ X | x is bounded}

where, in general, the family (3.1) does not induce a local skew-product semiflow
on R+×Ω×BC. However, in many applications, initial data in BC are physically
admissible. We show how to overcome this drawback to introduce a dynamical
structure on Ω×BC.

Given r > 0, we will denote

Br = {x ∈ BC | ‖x‖∞ ≤ r}

and we consider the family of nonautonomous FDEs (3.1) defined by a function
F : Ω×BC → Rm, (ω, x) 7→ F (ω, x) satisfying:

(F1) F is continuous on Ω× BC when the the norm ‖ · ‖∞ is considered on BC,
and Lipschitz continuous on Ω×Br in its second variable for each r > 0,

which in particular implies that

F (Ω×Br) is a bounded subset of Rm for each r > 0. (3.2)

From this condition, the standard theory of infinite delay differential equations
(see [12]) assures that, for each x ∈ BU and each ω ∈ Ω, the system (3.1)ω locally
admits a unique solution z(·, ω, x) with initial value x, i.e. z(s, ω, x) = x(s) for each
s ∈ (−∞, 0]. Therefore, the family (3.1) induces a local skew-product semiflow

τ : U ⊂ R+ × Ω×BU −→ Ω×BU
(t, ω, x) 7→ (ω·t, u(t, ω, x)) ,

(3.3)

where u(t, ω, x) ∈ BU and u(t, ω, x)(s) = zt(ω, x)(s) = z(t+s, ω, x) for s ∈ (−∞, 0].
When the initial data x belongs to BC the existence and uniqueness is not

guaranteed from (F1). In addition, we impose the following condition satisfied in
important applications, such as compartmental systems and neural networks.

(F2) for each r > 0, F : Ω×Br → Rm is continuous when we take the restriction

of the compact-open topology to Br, i.e. if ωn → ω and xn
d→ x as n ↑ ∞

with x ∈ Br, then limn→∞ F (ωn, xn) = F (ω, x).

Next, we show that Ω×BC is indeed a good phase space.
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Proposition 3.1. Under assumptions (F1)–(F2), for each x ∈ BC and each ω ∈ Ω
the system (3.1)ω locally admits a unique solution z(·, ω, x) with initial value x,
i.e. z(s, ω, x) = x(s) for each s ∈ (−∞, 0].

Proof. As explained in [23] (see also Sawano [22]), the result can be deduced from [4]
once we check the continuity of the map

(−∞, T ]→ Rm, t 7→ F (ω·t, yt)

for each T ∈ R and each bounded function y ∈ C((−∞, T ],Rm). This is an easy
consequence of (F2), because if t = limn→∞ tn with tn ∈ (−∞, T ], then ytn belongs

to some Br for all n ∈ N and ytn
d→ yt as n ↑ ∞. �

As a consequence, the map (3.3) is extended to Ω × BC. Moreover, as shown
next, this extension turns out to be continuous on bounded sets when the restriction
of the compact-open topology to BC and the product metric topology on Ω×BC
are considered.

Proposition 3.2. Under assumptions (F1)–(F2), the local map

U ⊂ R+ × Ω×Br −→ Ω×BC
(t, ω, x) 7→ (ω·t, u(t, ω, x))

is continuous when we take the restriction of the compact-open topology to Br,

i.e. if tn → t, ωn → ω̃ and xn
d→ x̃ as n ↑ ∞ with xn, x̃ ∈ Br for all n ∈ N, then

ωn·tn → ω̃·t and u(tn, ωn, xn)
d→ u(t, ω̃, x̃) as n ↑ ∞.

Proof. First we fix a t ∈ R+ such that u(t, ω̃, x̃) is defined and we check that

u(t, ωn, xn)
d→ u(t, ω̃, x̃) as n ↑ ∞. If F is a bounded function on Ω × BC,

then supτ∈[0,t],n≥1 ‖u(τ, ωn, xn)‖∞ < ∞ and the proof of Proposition 4.2 of [18]

can be easily adapted to this case. Otherwise, take δ > 0 such that u(τ, ω̃, x̃)
is defined for τ ∈ [0, t + δ] and denote by k = supτ∈[0,t+δ]{‖u(τ, ω̃, x̃)‖∞, r}. In

addition, from (3.2), we know that F (Ω × Bk+1) is bounded and we can take
ρ = sup(ω,x)∈Ω×Bk+1

‖F (ω, x)‖. Now let ϕ : Rm → Rm be a C∞ function such that

ϕ(y) =

{
y, if ‖y‖ ≤ ρ ,
0, if ‖y‖ ≥ ρ+ 1

and consider the family of equations

z̃ ′(t) = ϕ(F (ω·t, z̃t)) , t ≥ 0 , ω ∈ Ω .

The boundedness of ϕ ◦ F provides v(τ, ωn, xn)
d→ v(τ, ω̃, x̃) as n ↑ ∞ for each

τ ∈ [0, t+δ], where v(τ, ω, x)(s) = z̃(τ+s, ω, x) for s ∈ (−∞, 0], as usual. Therefore,
the definitions of ϕ and ρ yield v(τ, ω̃, x̃) = u(τ, ω̃, x̃) for τ ∈ [0, t+ δ], that is,

z̃(τ, ωn, xn)→ z(τ, ω̃, x̃) as n ↑ ∞ uniformly for τ ∈ [0, t+ δ] .

From this, together with ‖xn‖∞ ≤ r for each n ∈ N, we deduce that there is an
n0 ∈ N such that supτ∈[0,t+δ] ‖v(τ, ωn, xn)‖∞ ≤ k + 1 for each n ≥ n0. Hence,

v(t, ωn, xn) = u(t, ωn, xn) for n ≥ n0 and u(t, ωn, xn)
d→ u(t, ω̃, x̃) as n ↑ ∞, as

claimed. Moreover, v(τ, ωn, xn) = u(τ, ωn, xn) for n ≥ n0 and τ ∈ [0, t+ δ], and

sup{‖u(τ, ωn, xn)‖∞ | τ ∈ [0, t+ δ] , n ∈ N} <∞ . (3.4)
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Finally, if in addition tn → t as n ↑ ∞, then

d(u(t, ω̃, x̃), u(tn, ωn, xn)) ≤ d(u(t, ω̃, x̃), u(t, ωn, xn)) + d(u(t, ωn, xn), u(tn, ωn, xn))

and we only have to check that the second term vanishes as n ↑ ∞.
Let [a, b] ⊂ (−∞, 0] and s ∈ [a, b]. If t+ s > 0, we take an n1 ∈ N such that the

real interval In with extrema t+ s and tn + s is contained in (0, t+ δ) for n ≥ n1.
Thus, from (3.4) and (3.2), we deduce that there is a constant M such that

‖u(t, ωn, xn)(s)−u(tn, ωn, xn)(s)‖ ≤
∫
In

‖F (ωn·τ, zτ (ωn, xn))‖ dτ ≤M |t−tn| (3.5)

for each n ≥ n1. If t+ s < 0, there is also an n2 ≥ n1 such that tn + s < 0 for each
n ≥ n2 and, thus,

‖u(t, ωn, xn)(s)− u(tn, ωn, xn)(s)‖ = ‖xn(t+ s)− xn(tn + s)‖ . (3.6)

We omit the case t + s = 0 because it is a combination of the previous cases.

Therefore, from (3.5), (3.6) and the convergence of xn
d→ x̃ as n ↑ ∞, it is easy to

check that ‖u(t, ωn, xn)(s) − u(tn, ωn, xn)(s)‖ converges to 0 as n ↑ ∞ uniformly
for s in the compact set [a, b], which finishes the proof. �

The next result proves that, under assumptions (F1) and (F2), each bounded
solution z(·, ω0, x0) provides a relatively compact trajectory. Note that solutions
that remain bounded are globally defined on the whole real line (see e.g. [22]).

Proposition 3.3. Assume (F1)–(F2). If x0 ∈ BC and z(·, ω0, x0) is a solution of
equation (3.1)ω0 bounded for the norm ‖ · ‖∞, then F = {u(t, ω0, x0) | t ≥ 0} is a
relatively compact subset of BC for the compact-open topology.

Proof. Let r = supt≥0 ‖u(t, ω0, x0)‖∞. According to Theorem 8.1.4 of [12], F is
relatively compact in X if, and only if, for every s ∈ (−∞, 0] F is equicontinuous
at s and F(s) = {u(t, ω0, x0)(s) | t ≥ 0} is relatively compact in Rm.

The second condition holds because F ⊂ Br. As for the equicontinuity, let ρ > 0,
ε > 0 and M = sup(ω,x)∈Ω×Br

‖F (ω, x)‖, which is finite thanks to (3.2). Then, for

each t ≥ ρ and s1, s2 ∈ [−ρ, 0] with |s1 − s2| < ε/M and s1 ≤ s2 (the case s2 ≤ s1

is analogous), we have

‖u(t, ω0, x0)(s1)− u(t, ω0, x0)(s2)‖ ≤
∫ t+s2

t+s1

‖F (ω0·τ, zτ (ω,0 , x0))‖ dτ ≤ ε . (3.7)

On the other hand, if t ∈ [0, ρ], then, for each s ∈ [−ρ, 0],

t+ s− ρ ∈ [−2ρ, 0] and u(t, ω0, x0)(s) = u(ρ, ω0, x0)(t+ s− ρ) .

Therefore, the equicontinuity of F follows from (3.7) and the uniform continuity of
u(ρ, ω0, x0) on [−2ρ, 0], which finishes the proof. �

In the situation of the foregoing proposition, we can define the omega-limit set
of the trajectory of the point (ω0, x0) as

O(ω0, x0) =
{

(ω, x) | ∃ tn ↑ ∞ with ω0·tn → ω , u(tn, ω0, x0)
d→ x

}
,

and the following proposition provides its main properties.

Proposition 3.4. Assume (F1)–(F2). If (ω0, x0) ∈ Ω × BC and z(·, ω0, x0) is
a solution of (3.1)ω0

bounded for the norm ‖·‖∞, then O(ω0, x0) is a nonempty,
compact and invariant subset of Ω×BU admitting a flow extension.
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Proof. Thanks to Proposition 3.3, O(ω0, x0) is nonempty and relatively compact;
in order to prove that O(ω0, x0) is compact, it suffices to check that it is closed,
which is omitted.

Next we show that O(ω0, x0) ⊂ Ω × BU . Let r = supt≥0 ‖u(t, ω0, x0)‖∞ and
M = supτ≥0 ‖F (ω0·τ, zτ (ω0, x0)‖, which is finite from (3.2) because zτ (ω0, x0) =
u(τ, ω0, x0) ∈ Br. Take (ω, x) ∈ O(ω0, x0), i.e.

∃ tn ↑ ∞ with ω = lim
n→∞

ω0·tn and x
d
= lim
n→∞

u(tn, ω0, x0) . (3.8)

Then, given t, s ∈ (−∞, 0] (assume without loss of generality that t ≤ s), there is
an n0 ∈ N depending on them such that tn + t ≥ 0 and tn + s ≥ 0 for each n ≥ n0.
Then, we have

‖z(t+ tn, ω0, x0)− z(tn + s, ω0, x0)‖ ≤
∫ tn+s

tn+t

‖F (ω0·τ, zτ (ω0, x0))‖ dτ ≤M |t− s| ,

which in turn implies that

‖x(t)− x(s)‖ ≤ lim
n→∞

‖z(t+ tn, ω0, x0)− z(tn + s, ω0, x0)‖ ≤M |t− s|

and proves that x ∈ BU , as claimed. The positive invariance, i.e. τt(O(ω0, x0)) ⊂
O(ω0, x0) for each t > 0, is deduced from Proposition 3.2 as follows:

ω = lim
n→∞

ω0·tn
x

d
= lim
n→∞

u(tn, ω0, x0)
=⇒

ω·t = lim
n→∞

ω0·(t+ tn)

u(t, ω, x)
d
= lim
n→∞

u(t+ tn, ω0, x0)

because u(tn, ω0, x0) ∈ Br and u(t, ω0·tn, u(tn, ω0, x0)) = u(t+ tn, ω0, x0), n ∈ N.
Let us check that, in fact, τt(O(ω0, x0)) = O(ω0, x0) for each t > 0, i.e. O(ω0, x0)

is invariant. Fix t > 0 and (ω, x) ∈ O(ω0, x0), i.e. satisfying (3.8). Since there is an
n0 such that tn− t ≥ 0 for each n ≥ n0, from Proposition 3.3 we deduce that there
exists a subsequence, which will be also denoted by {tn}n, and (ω1, x1) ∈ O(ω0, x0)
such that

ω1 = lim
n→∞

ω0·(tn − t) and x1
d
= lim
n→∞

u(tn − t, ω0, x0) .

Finally, as above from Proposition 3.2 we get

ω1·t = lim
n→∞

ω0·tn = ω and u(t, ω1, x1)
d
= lim
n→∞

u(tn, ω0, x0) = x ,

and (ω, x) ∈ τt(O(ω0, x0)), as desired.
Once we have proved that O(ω0, x0) ⊂ Ω × Br is invariant, again from Propo-

sition 3.2 we deduce that the semiflow τ is continuous on R+ × O(ω0, x0) when
the product metric topology on O(ω0, x0) is taken. To see that the semiflow over
O(ω0, x0) admits a flow extension, from Theorem 2.3 (part II) of [24] it suffices to
show that every point in O(ω0, x0) admits a unique backward orbit which remains
inside the set O(ω0, x0). See Proposition 4.4 of [18] for the details. �

As explained before, this paper provides a contribution to the dynamical theory
of monotone recurrent skew-product semiflows. We consider a monotone structure
on Ω × BC determined by an exponential ordering and we enhance the theory
started in [15], [18] and [17], where the 1-covering property of omega-limit sets of
relatively compact trajectories was proved.

Let A be a diagonal matrix with negative diagonal entries a1, . . . , am. Notice
that such A is a quasipositive matrix, i.e. there exists λ > 0 such that A+ λI is a
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matrix whose entries are all nonnegative. As in [19], considering the componentwise
partial ordering on Rm, we introduce the positive cone with empty interior in BC

BC+
A = {x ∈ BC | x ≥ 0 and x(t) ≥ eA(t−s)x(s) for −∞ < s ≤ t ≤ 0}

= {x ∈ BC | x ≥ 0 and t 7→ e−A tx(t) is a nondecreasing function} ,

which induces the following partial order relation on BC:

x ≤A y ⇐⇒ x ≤ y and y(t)− x(t) ≥ eA(t−s)(y(s)− x(s)) ,−∞ < s ≤ t ≤ 0 ,

x <A y ⇐⇒ x ≤A y and x 6= y . (3.9)

Let us assume one additional quasimonotone condition on F :

(F3) If x, y ∈ BC with x ≤A y, then F (ω, y)− F (ω, x) ≥ A (y(0)− x(0)) for each
ω ∈ Ω and the above quasipositive matrix A.

From this hypothesis, the monotone character of the semiflow (3.3) and its exten-
sion to Ω×BC are deduced. We omit the proof, analogous to that of Proposition 3.1
of Smith and Thieme [25].

Theorem 3.5. Under assumptions (F1)–(F3), for each ω ∈ Ω and x, y ∈ BC
such that x ≤A y, it holds that

u(t, ω, x) ≤A u(t, ω, y)

for all t ≥ 0 where they are defined.

Next, let us recall the definition of uniform stability for the order ≤A.

Definition 3.6. A subset K of BC is said to be uniformly stable for the order ≤A
if, given ε > 0, there is a δ > 0 such that, if x, y ∈ K satisfy d(x, y) < δ and x ≤A y
or y ≤A x, then d(u(t, ω, x), u(t, ω, y)) < ε for each t ≥ 0.

In order to obtain the 1-covering property of some omega-limit sets, in addition
to Hypotheses (F1)–(F3), the componentwise separating property and the uniform
stability are assumed.

(F4) If (ω, x), (ω, y) ∈ Ω × BC admit a backward orbit extension, x ≤A y, and
there is a subset J ⊂ {1, . . . ,m} such that

xi = yi for each i /∈ J ,
xi(s) < yi(s) for each i ∈ J and s ≤ 0 ,

then Fi(ω, y)− Fi(ω, x)− (A (y(0)− x(0)))i > 0 for each i ∈ J .

(F5) For each k ∈ N, Bk is uniformly stable for the order ≤A.

The following result follows from Theorem 5.6 of [19].

Theorem 3.7. Under assumptions (F1)–(F5), we consider the monotone skew-
product semiflow (3.3) induced by (3.1). Fix (ω0, x0) ∈ Ω×BC such that x0 is Lip-
schitz continuous and z(·, ω0, x0) is bounded for the norm ‖·‖∞. Then O(ω0, x0) =
{(ω, c(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e. u(t, ω, c(ω)) = c(ω·t) for each
ω ∈ Ω and t ≥ 0.
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The aim of the rest of this section is to extend the previous characterization
to a more general class of initial data, not necessarily Lipschitz continuous. More
precisely, the functions x of BC satisfying the following property:

(R) x is of bounded variation componentwise on [−k,−k + 1] for all k ∈ N and

sup
{
V[−k,−k+1](xi) | i ∈ {1, . . . ,m}, k ≥ 1

}
<∞ ,

where V[a,b](f) denotes the total variation of the scalar function f : [a, b] → R on
the interval [a, b].

Note that the subset R of all the functions in BC satisfying property (R) is a
vector subspace of BC. Moreover, R is a Banach space when endowed with the
norm defined for x ∈ R by

‖x‖R = ‖x‖∞ + sup
{
V[−k,−k+1](xi) | i ∈ {1, . . . ,m}, k ≥ 1

}
.

Let us prove a useful characterization of this property in terms of the existence of
a common upper bound of x and 0 for the exponential ordering ≤A. It is noteworthy
that property (R) does not depend on the choice of the quasipositive matrix A.
We will denote by ea· the function (−∞, 0]→ R, t 7→ eat for each a ∈ R.

Proposition 3.8. Let x ∈ BC. The following statements are equivalent:

(i) x satisfies property (R);
(ii) there exists h ∈ BC such that h ≥A x and h ≥A 0.

Proof. Since A is a diagonal matrix, we may assume without loss of generality that
we are dealing with a scalar problem, i.e. m = 1 and A = (−a) for some a > 0.

(i) ⇒ (ii) Let c = supk≥1 V[−k,−k+1](x). We fix t ∈ (−∞, 0] and let dte denote
the integer part of the negative real number t, i.e. dte − 1 < t ≤ dte. Then, taking
into account the properties of the bounded variation of the product of two functions
and the increasing character of ea·, we deduce that

V(−∞,t](e
a· x) ≤ V(−∞,dte](e

a·x) ≤
∞∑

j=−dte+1

V[−j,−j+1](e
a·x)

≤
∞∑

j=−dte+1

[
ea (−j+1)V[−j,−j+1](x) + (ea (−j+1) − e−a j)‖x‖∞

]

≤ [c ea + ‖x‖∞(ea − 1)]

∞∑
j=−dte+1

e−aj = C ea (dte−1) ≤ C ea t ,

where C = (c ea + ‖x‖∞(ea − 1))/(1− e−a). This proves that ea· x is a function of
bounded variation on (−∞, 0] and we can define h as follows:

h : (−∞, 0] −→ R
t 7→ e−a t V(−∞,t](e

a· x),

which is clearly bounded by C. The continuity of h follows from that of ea·x (see
Ex. 4 on p. 137 of Cohn [3]). Moreover, from Proposition 4.4.2 of [3] the functions
ea· h : t 7→ V(−∞,t](e

a· x) and ea·(h−x) : t 7→ V(−∞,t](e
a· x)−eatx(t) are nonnegative

and nondecreasing, which implies that h ≥A x and h ≥A 0 and (ii) holds.
(ii) ⇒ (i) Since A = (−a), from h ≥A 0 and h ≥A x, we deduce that ea· h

and ea· (h − x) are nonnegative and nondecreasing. Consequently, the function



ASYMPTOTIC BEHAVIOR OF NEUTRAL DYNAMICAL SYSTEMS 11

ea· x = ea· h−ea· (h−x) is of bounded variation on (−∞, 0] and hence on [−k,−k+1]
for each k ∈ N. Moreover,

V[−k,−k+1](e
a·x) ≤ V[−k,−k+1](e

a·h) + V[−k,−k+1](e
a·(h− x))

≤ ea (−k+1)h(−k + 1) + ea (−k+1)(h(−k + 1)− x(−k + 1)) ≤ De−a k ,

where D = ea(2‖h‖∞ + ‖x‖∞). In addition, e−a· is also of bounded variation on
[−k,−k + 1], whence we deduce the same for x = e−a·ea·x. Therefore,

V[−k,−k+1](x) ≤ eakDe−a k + ea kea (−k+1)‖x‖∞ = D + ea‖x‖∞ ,

which is a bound irrespective of k and (i) holds. �

Remark 3.9. Notice that all Lipschitz continuous initial data satisfy property (R),
but the converse does not hold. Actually, there exist functions in BC satisfying
property (R) and which are not in BU .

A special choice of the function h of Proposition 3.8 will be important for later
purposes.

Lemma 3.10. Fix x0 ∈ BC satisfying property (R). Then there exists h0 ∈ BC
which, in addition to h0 ≥A x0 and h0 ≥A 0, satisfies

h0 ≥A x0 − x0(0) ,

where x0(0) represents the constant function with that value.

Proof. If h̃0 ∈ BC is the function given in Proposition 3.8(ii), then the function

h0 = h̃0 + ‖x0‖∞, where ‖x0‖∞ represents the constant function from (−∞, 0] into
Rm with that value in all the components, satisfies the desired properties. �

The main theorem of the section provides the 1-covering property of omega-limit
sets when the initial data x0 are in BC and satisfies property (R).

Theorem 3.11. Let (ω0, x0) ∈ Ω × BC. Under assumptions (F1)–(F5), if x0

satisfies property (R) and z(·, ω0, x0) is a bounded solution of (3.1)ω0
, the omega-

limit set O(ω0, x0) = {(ω, c(ω)) | ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e. u(t, ω, c(ω)) = c(ω·t) for each
ω ∈ Ω and t ≥ 0, and it is continuous for the compact-open topology on BU .

Proof. Fix a point (ω̃0, x̃0) ∈ O(ω0, x0). As explained before, every point in the
omega-limit set O(ω0, x0) admits a unique backward orbit which remains inside
the set O(ω0, x0). From this fact, we deduce that u(t, ω̃0, x̃0) is defined for each
t ∈ R and x̃0 is continuously differentiable because x̃0(t) = z(t, ω̃0, x̃0) for each
t ∈ (−∞, 0]. Therefore, from (3.1)ω̃0

and (3.2), the Lipschitz character of x̃0 is
deduced. An application of Theorem 3.7 yields O(ω̃0, x̃0) = {(ω, c(ω)) | ω ∈ Ω} for
a continuous equilibrium c : Ω→ BU . We claim that O(ω̃0, x̃0) = O(ω0, x0), which
will finish the proof. We know that O(ω̃0, x̃0) ⊂ O(ω0, x0); to check the coincidence
of both sets, it is enough to prove that, given ε > 0, there is a T > 0 such that

d(u(t, ω0, x0), c(ω0·t)) < ε for each t > T .

Since (ω0, c(ω0)) ∈ O(ω0, x0), there exists a sequence tn ↑ ∞ such that

ω0 = lim
n→∞

ω0·tn and c(ω0)
d
= lim
n→∞

u(tn, ω0, x0) .
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However, since u(tn, ω0, c(ω0)) = c(ω0·tn)
d→ c(ω0) as n ↑ ∞, we deduce that

lim
n→∞

d(u(tn, ω0, x0), c(ω0·tn)) = 0 . (3.10)

Next, we will approximate u(t, ω0, x0) by the Lipschitz continuous function of BU
v(t, ω0, x0) defined by

v(t, ω0, x0)(s) =

{
u(t, ω0, x0)(s) if s ∈ [−t, 0] ,

x0(0) if s ∈ (−∞,−t] .
(3.11)

It is immediate to see that

lim
t→∞

d
(
u(t, ω0, x0), v(t, ω0, x0)

)
= 0 . (3.12)

We introduce the following auxiliary continuous functions defined from the function
h0 provided by Lemma 3.10:

h : R→ Rm , s 7→

{
eAs h0(0) if s > 0 ,

h0(s) if s ≤ 0 ,

hT : (−∞, 0]→ Rm , s 7→ h(s+ T ) , T ∈ R .

It is easy to check that

hT ≥A 0 for each T ∈ R and hT
d→ 0 as T →∞ . (3.13)

From (3.10), (3.12) and (3.13), it follows that

lim
n→∞

d(u(tn, ω0, x0), c(ω0·tn)) = 0 , (3.14)

lim
n→∞

d
(
u(tn, ω0, x0), v(tn, ω0, x0)

)
= 0 , (3.15)

lim
n→∞

d
(
htn , 0

)
= 0 , (3.16)

Therefore, denoting for simplicity by cn and vn the functions of BU

cn = c(ω0·tn) and vn = v(tn, ω0, x0) ,

from (3.14) and (3.15), it follows that

lim
n→∞

d(cn, vn) = 0 . (3.17)

Next, as in Proposition 4.4 of [19], we define the functions avn,cn , bvn,cn of BU by

avn,cn : (−∞, 0] −→ Rm

s 7→
∫ s

−∞
eA(s−τ) inf{v′n(τ)−Avn(τ), c′n(τ)−Acn(τ)} dτ ,

bvn,cn : (−∞, 0] −→ Rm

s 7→
∫ s

−∞
eA(s−τ) sup{v′n(τ)−Avn(τ), c′n(τ)−Acn(τ)} dτ ,

which satisfy avn,cn ≤A vn ≤A bvn,cn and avn,cn ≤A cn ≤A bvn,cn . Moreover, for
each s ≤ 0, we have ‖bvn,cn(s)− cn(s)‖ ≤ ‖avn,vn(s)− bvn,cn(s)‖, whence

‖bvn,cn(s)− cn(s)‖ ≤
∫ s

−∞

∥∥eA(s−τ)
∥∥(‖v′n(τ)− c′n(τ)‖+ ‖A‖ ‖vn(τ)− cn(τ)‖

)
dτ .
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Thanks to the definition of vn and (3.11),

v′n(τ) =

{
F (ω0·(tn + τ), u(tn + τ, ω0, x0)) if τ ∈ (−tn, 0] ,

0 if τ ∈ (−∞,−tn) ,

c′n(τ) = F (ω0·(tn + τ), c(ω0·(tn + τ)) for each τ ≤ 0 ,

(3.18)

whence (3.2) provides the uniform boundedness of vn, v′n, cn and c′n for all n ∈
N. Now, for each s ≤ 0, ‖eA (s−τ)‖ ≤ e−a(s−τ) for some positive a > 0 and∫ s
−∞ e−a(s−τ) dτ = 1/a. As a result, we deduce the existence of T0 > 0 such that∫ −T0

−∞

∥∥eA(s−τ)
∥∥ (‖v′n(τ)− c′n(τ)‖+ ‖A‖ ‖vn(τ)− cn(τ)‖

)
dτ < ε

for each n ∈ N and, hence,

‖bvn,cn(s)− cn(s)‖ ≤ ε+

∫ 0

−T0

(
‖v′n(τ)− c′n(τ)‖+ ‖A‖ ‖vn(τ)− cn(τ)‖

)
dτ .

Since limn→∞ d(vn, cn) = 0, the second part of the integral vanishes as n ↑ ∞. In
addition, if we fix n0 ∈ N with tn0

> T0, the inequality −tn ≤ −tn0
≤ −T0 ≤ 0 holds

for each n ≥ n0 and, thanks to (3.18), (3.17), (F2) and the relative compactness of
the trajectory {τ(t, ω0, x0) : t ≥ 0},∫ 0

−T0

‖v′n(τ)− c′n(τ)‖ dτ =

∫ 0

−T0

∥∥F (ω0·(tn + τ), u(tn + τ, ω0, x0))

− F (ω0·(tn + τ), c(ω0·(tn + τ))
∥∥ dτ

also tends to 0 as n ↑ ∞. Thus, limn→∞ d(bvn,cn , cn) = 0 and, consequently,

limn→∞ d(bvn,cn , vn) = 0. Next, we consider the function gn = bvn,cn + htn , which
satisfies limn→∞ d(gn, bvn,cn) = 0 thanks to (3.16). Therefore,

lim
n→∞

d(gn, cn) = 0 and lim
n→∞

d(gn, vn) = 0 . (3.19)

From Lemma 3.10, we know that h0 ≥A x0 − x0(0) and h0 ≥A 0, whence

u(tn, ω0, x0) ≤A v(tn, ω0, x0) + htn = vn + htn ,

i.e. the function v : s 7→ e−As
(
vn(s) + htn(s) − u(tn, ω0, x0)(s)

)
is nondecreasing

because we can write

v(s) =

{
e−As htn(s) if s ∈ [−tn, 0] ,

eA tn e−A(s+tn)
[
x0(0)− x0(s+ tn) + h0(s+ tn)

]
if s ∈ (−∞,−tn] .

Therefore, u(tn, ω0, x0) ≤A gn; hence, (3.15) and (3.19) yield

d(u(tn, ω0, x0), gn) ≤ d(u(tn, ω0, x0), vn) + d(vn, gn) −→
n→∞

0 . (3.20)

Thanks to the uniform boundedness of gn and cn, there exist a constant c > 0 such
that u(tn, ω0, x0), c(ω0·tn) and gn ∈ Bc for each n ∈ N. Let δ > 0 be the modulus
of uniform stability of Bc for the order ≤A for ε/2. From (3.20) and (3.19), it
follows that there exists n0 ∈ N such that

d(u(tn, ω0, x0), gn) < δ and d(c(ω0·tn), gn) < δ
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for each n ≥ n0. Therefore, from u(tn, ω0, x0) ≤A gn, c(ω0·tn) = cn ≤A gn
and (F5), we deduce that

d
(
u(t, ω0·tn, u(tn, ω0, x0)), u(t, ω0·tn, gn)

)
<
ε

2
,

d
(
u(t, ω0·tn, c(ω0·tn)), u(t, ω0·tn, gn)

)
<
ε

2
,

that is,

d
(
u(t+ tn, ω0, x0), c(ω0·(t+ tn)

)
< ε for each t ≥ 0 and n ≥ n0 .

Finally, taking T = tn0
yields the expected result. �

4. Transformed exponential order for NFDEs with infinite delay

In this section we will extend the previous results to NFDEs with infinite delay
and nonautonomous stable operator. This extension requires the definition of a
transformed exponential ordering.

4.1. Nonautonomous stable operators. Let D : Ω×BC → Rm be an operator
satisfying the following hypotheses:

(D1) D is linear and continuous in its second variable for the norm ‖ · ‖∞ and the
map Ω→ L(BC,Rm), ω 7→ D(ω, ·) is continuous;

(D2) for each r > 0, D : Ω×Br → Rm is continuous when we take the restriction

of the compact-open topology to Br, i.e. if ωn → ω and xn
d→ x as n ↑ ∞

with x ∈ Br, then limn→∞D(ωn, xn) = D(ω, x).

Under these assumptions, by adapting the proof of Lemma 3.1 of [20] for each
ω ∈ Ω, we deduce that

D(ω, x) =

∫ 0

−∞
[dµ(ω)(s)]x(s) = B(ω)x(0)−

∫ 0

−∞
[dν(ω)(s)]x(s) ,

where µ(ω) = [µij(ω)], µij(ω) is a real regular Borel measure with finite total vari-
ation |µij(ω)|((−∞, 0]) < ∞, for i, j ∈ {1, . . . ,m} and ω ∈ Ω, B(ω) = µ(ω)({0})
and ν(ω) = B(ω) δ0−µ(ω) where δ0 is the Dirac measure at 0. As in Corollary 3.4
of [20], it follows that

lim
ρ→0+

‖ν(ω)‖∞([−ρ, 0]) = 0 and lim
ρ→∞

‖ν(ω)‖∞((−∞,−ρ]) = 0 (4.1)

uniformly for ω ∈ Ω, where ‖ν(ω)‖∞(E) denotes the matrix norm associated to the
maximum norm of the m×m matrix [|νij(ω)|(E)] of total variations over the Borel

subset E ⊂ (−∞, 0], i.e. ‖ν(ω)‖∞(E) = max
1≤i≤m

m∑
j=1

|νij(ω)|(E) .

In addition, we will assume a natural generalization of the atomic character at
0 of the operator D, as seen in Hale [10], Hale and Verduyn-Lunel [11], and [20].

(D3) B(ω) is the identity matrix for all ω ∈ Ω.

Thus, under assumptions (D1)–(D3), D takes the form

D(ω, x) = x(0)−
∫ 0

−∞
[dν(ω)(s)]x(s) ,

where ν has a continuous variation with respect to ω and satisfies (4.1).
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We omit the proof of the following result, which can be easily adapted to this case
from Theorem 2.5 of Muñoz-Villarragut [27]. As stated before, given a continuous
function x ∈ C(R,Rm), xt(·) denotes the continuous function xt : (−∞, 0] → Rm
defined by xt(s) = x(t+ s) for s ∈ (−∞, 0].

Proposition 4.1. Under assumptions (D1)–(D3), for each h ∈ C([0,∞),Rm) and
(ω, ϕ) ∈ Ω×BC with D(ω, ϕ) = h(0), the nonhomogeneous equation{

D(ω·t, xt) = h(t) , t ≥ 0 ,
x0 = ϕ ,

(4.2)

has a solution x ∈ C(R,Rm).

Next the definition of stability for D is stated.

(D4) D is stable, that is, there is a continuous function c ∈ C([0,∞),R) with
lim t→∞ c(t) = 0 such that, for each (ω, ϕ) ∈ Ω× BC with D(ω, ϕ) = 0, the
solution of the homogeneous problem{

D(ω·t, xt) = 0 , t ≥ 0 ,
x0 = ϕ ,

satisfies ‖x(t)‖ ≤ c(t) ‖ϕ‖∞ for each t ≥ 0.

The next result provides a condition to check the stability of D. Its proof
is similar to the one for BU done in Theorem 3.9(iii) of [20]. We will denote

D̂2(ω, x) : (−∞, 0]→ Rm, s 7→ D(ω·s, xs).
Proposition 4.2. Under assumptions (D1)–(D3), if for each r > 0 and each

sequence {(ωn, xn)}n ⊂ Ω × BC such that ‖D̂2(ωn, x
n)‖∞ ≤ r, ωn → ω ∈ Ω and

D̂2(ωn, x
n)

d→ 0 as n ↑ ∞, it holds that xn(0)→ 0 as n→∞, then D is stable.

Although the definition of stability is given for the homogeneous equation, it
is easy to deduce quantitative estimates for the solution of a non-homogeneous
equation in terms of the initial data. The proof of the next proposition is analogous
to the one for BU done in Theorem 2.11 and Proposition 3.2 of [27].

Proposition 4.3. Under assumptions (D1)–(D4), there are a positive constant
k > 0 and a continuous function c ∈ C([0,∞),R) with lim t→∞ c(t) = 0 such that

(i) ‖xh(s)‖ ≤ c(t) ‖xh‖∞ + k sup
s−t≤s̃≤s

‖h(s̃)‖ for all s ≤ 0 ≤ t, and hence

(ii) ‖xh‖∞ ≤ k ‖h‖∞ ,

for each h ∈ BC, ω ∈ Ω and xh ∈ BC satisfying D(ω·s, xhs ) = h(s) for s ≤ 0.

The following statement associates the stability of D to the invertibility of its

convolution operator D̂ and will allow us to transform the family of NFDEs with
infinite delay (4.5) and nonoautonomous stable operator D into a family of FDEs
with infinite delay. We refer to Staffans [26] for the case of autonomous stable
operators D in an appropriate fading memory space, to Haddock et al. [7] for an
application of these ideas, and to [17] (resp. [20]) for the cases of autonomous (resp.
nonautonomous) stable operators D in BU .

Theorem 4.4. Under assumptions (D1)–(D4), we define the map

D̂ : Ω×BC −→ Ω×BC
(ω, x) 7→ (ω, D̂2(ω, x))

where D̂2(ω, x) : (−∞, 0]→ Rm, s 7→ D(ω·s, xs). Then
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(i) D̂ is well defined and invertible;

(ii) D̂2 and (D̂−1)2 are linear and continuous for the norm in their second
variable for all ω ∈ Ω; and

(iii) for all r > 0, D̂ and D̂−1 are uniformly continuous on Ω × Br when we
take the restriction of the compact-open topology to Br.

Proof. (i) We check that D̂2(ω, x) ∈ BC. The continuity follows from (D2), and
the boundedness from (D1) because

‖D̂2(ω, x)‖∞ = sup
s≤0
‖D(ω·s, xs)‖ ≤ sup

ω̃∈Ω
‖D(ω̃, ·)‖ ‖x‖∞ <∞ .

D̂ is injective because, if we have (ω, x), (ω̂, x̂) ∈ Ω×BU with D̂(ω, x) = D̂(ω̂, x̂),
then ω = ω̂ and, from Proposition 4.3(ii) and the fact that D(ω·s, xs − x̂s) = 0 for
s ≤ 0, we get x = x̂.

In order to show that D̂ is surjective, let (ω, h) ∈ Ω × BC. As in Theorem 3.9
of [20], we take a sequence of continuous functions with compact support {hn}n ⊂
Br for some r > 0 such that hn

d→ h as n ↑ ∞, and a sequence {xn}n of continuous

functions with compact support such that D̂2(ω, xn) = hn, i.e. D(ω·s, xns ) = hn(s)
for each s ≤ 0. The next step of the proof differs from the one in Theorem 3.9
of [20] because now h belongs to BC instead of BU . We will check that given ρ > 0
and ε > 0 there is a δ > 0 such that

‖xn − xnτ ‖[−ρ,0] < ε ∀n ∈ N and τ ∈ [−δ, 0] . (4.3)

For each τ ≤ 0 we define

gτn : (−∞, 0]→ Rm , s 7→ D(ω·s, (xn − xnτ )s) ,

that is, D(ω·s, (xn − xnτ )s) = gτn(s) for each s ≤ 0, and from Proposition 4.3(i) we
deduce that

‖xn(s)− xnτ (s)‖ ≤ c(t) ‖xn − xnτ ‖∞ + k sup
s−t≤s̃≤s

‖gτn(s̃)‖ for each t ≥ 0, s ≤ 0 .

Since c(t)→ 0 as t ↑ ∞ and from Proposition 4.3(ii) we have ‖xnτ ‖∞ ≤ k r for each
n ∈ N and τ ≤ 0, we can find a T > 0 such that c(T ) ‖xn − xnτ ‖∞ < ε/2 and if
s ∈ [−ρ, 0] then

‖xn − xnτ ‖[−ρ,0] ≤
ε

2
+ k ‖gτn‖[−ρ̃,0] . (4.4)

for ρ̃ = ρ + T . From the equicontinuity of {hn}n and (D2) there is a δ > 0 such
that for each τ ∈ [−δ, 0], s ∈ [−ρ̃, 0] and n ∈ N

‖hn − (hn)τ‖[−ρ̃,0] <
ε

4 k
and ‖D(ω·(s+ τ), ·)−D(ω·s, ·)‖ < ε

4 k2 r
.

Thus, from the definitions of gτn and hn we deduce that

‖gτn(s)‖ ≤ ‖hn(s)− (hn)τ (s)‖+ ‖D(ω·(s+ τ), xns+τ )−D(ω·s, xns+τ )‖

≤ ε

4 k
+

ε

4 k2 r
‖xn‖∞ ≤

ε

2 k

for each s ∈ [−ρ̃, 0], which together with (4.4) yields (4.3), as stated. Thus, {xn}n is
equicontinuous and, consequently, relatively compact for the compact-open topol-
ogy. Hence, there is a convergent subsequence of {xn}n (let us assume it is the whole

sequence), i.e. there is a continuous function x such that xn
d→ x as n→∞. There-

fore, we have that ‖x‖∞ ≤ k r, which implies that x ∈ BC. From this, xns
d→ xs



ASYMPTOTIC BEHAVIOR OF NEUTRAL DYNAMICAL SYSTEMS 17

for each s ≤ 0 and the expression of D yields D(ω·s, xns ) = hn(s)→ D(ω·s, xs), i.e.

D(ω·s, xs) = h(s) for s ≤ 0 and D̂2(ω, x) = h. Then D̂ is surjective, as claimed.

(ii) The continuity of D̂2 for the norm in the second variable is a consequence

of (D1), and the corresponding property for (D̂−1)2 follows from Proposition 4.3(ii).

(iii) The proof of the uniform continuity of D̂ (resp. D̂−1) on Ω × Br for the
compact-open topology is omitted because it follows, adapted to this case, the
same steps of Theorem 3.6 of [20] (resp. Theorem 3.9 of [20]). �

4.2. Neutral functional differential equations. Let us consider the family of
NFDEs with infinite delay

d

dt
D(ω·t, zt) = G(ω·t, zt), t ≥ 0, ω ∈ Ω, (4.5)

defined by an operator D : Ω×BC → Rm and a function G : Ω×BC → Rm.
With the notation of the previous subsection and a diagonal matrix A with

negative diagonal entries as is Section 3, we define the transformed exponential order
relation introduced in [20] on each fiber of the product Ω×BC: if (ω, x), (ω, y) ∈
Ω×BC, then

(ω, x) ≤D,A (ω, y) ⇐⇒ D̂2(ω, x) ≤A D̂2(ω, y), (4.6)

based on the partial order relation ≤A on BC given in (3.9).
Let us assume the following hypotheses:

(N1) G : Ω × BC → Rm is continuous on Ω × BC when the norm ‖ · ‖∞ is
considered on BC and its restriction to Ω×Br is Lipschitz continuous in its
second variable for each r > 0;

(N2) for each r > 0, the restriction of G to Ω×Br is continuous when the compact-
open topology is considered on Br;

(N3) if (ω, x), (ω, y) ∈ Ω × BC and (ω, x) ≤D,A (ω, y), then G(ω, y) − G(ω, x) ≥
A(D(ω, y) −D(ω, x)) for the usual componentwise partial order relation on
Rm.

Notice that assumption (N1) implies

G(Ω×Br) is a bounded subset of Rm for each r > 0.

As in the case of conditions (F1) and (F2), condition (N1) does not imply (N2).
The reason for writing them separately is that (N1) provides existence and unique-
ness in BU , while (N2) is used in the case of BC.

Under assumptions (D1)–(D4) and (N1), as seen in Wang and Wu [28] and [30],
for each ω ∈ Ω, the local existence and uniqueness of the solutions of equation (4.5)ω
is guaranteed if we assume some hypotheses on the phase space that, in particular,
are satisfied by BU . Moreover, given (ω, x) ∈ Ω × BU , if z(·, ω, x) represents the
solution of equation (4.5)ω with initial datum x, then u(t, ω, x) : (−∞, 0] → Rm,
s 7→ z(t+ s, ω, x) is an element of BU for all t ≥ 0 where z(·, ω, x) is defined.

As a result, a local skew-product semiflow can be defined on Ω×BU :

τ : U ⊂ R+ × Ω×BU −→ Ω×BU
(t, ω, x) 7→ (ω·t, u(t, ω, x)).
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Next, let (ω, y) ∈ Ω× BU . For each t ≥ 0 such that u(t, D̂−1(ω, y)) is defined, we

define û(t, ω, y) = D̂2(ω·t, u(t, D̂−1(ω, y))). As seen in [20], it can be checked that

ẑ(t, ω, y) =

{
y(t) if t ≤ 0,

û(t, ω, y)(0) if t ≥ 0,

is the solution of

ẑ ′(t) = F (ω·t, ẑt), t ≥ 0, ω ∈ Ω (4.7)

with initial datum y, where F = G ◦ D̂−1.

A similar proof to that of Proposition 4.1 of [20] provides the following result.

Proposition 4.5. Under assumptions (D1)–(D4) and (N1)–(N3), the map F =

G ◦ D̂−1 satisfies conditions (F1)–(F3).

As a result, thanks to Theorem 4.4, we can deduce results concerning the local
existence and uniqueness of solutions of equation (4.5) on Ω×BC which are anal-
ogous to those obtained in Section 3 for equation (4.7). Therefore, we can deduce
the following result concerning the existence of solutions of (4.5) with initial data
in BC.

Proposition 4.6. Under assumptions (D1)–(D4), (N1)–(N2), for each ω ∈ Ω
and each x ∈ BC, the system (4.5)ω locally admits a unique solution z(·, ω, x) with
initial value x, i.e. z(s, ω, x) = x(s) for each s ∈ (−∞, 0].

Proof. Since D̂(ω, x) ∈ Ω × BC, from Proposition 4.5 and Proposition 3.1, we

deduce that system (4.7)ω locally admits a unique solution ẑ(·, D̂(ω, x)). Hence,

taking û(t, D̂(ω, x)) = ẑt(D̂(ω, x)) and u(t, ω, x) = (D̂−1)2(ω·t, û(t, D̂(ω, x))) for
t ≥ 0 as above, we conclude that

z(t, ω, x) =

{
x(t) if t ≤ 0,

u(t, ω, x)(0) if t ≥ 0,

satisfies the statement. �

Analogously, from Proposition 3.2, we deduce the continuous dependence for the
product metric topology on sets of the form Ω×Br for each r ≥ 0.

Proposition 4.7. Under assumptions (D1)–(D4) and (N1)–(N2), the local map

U ⊂ R+ × Ω×Br −→ Ω×BC
(t, ω, x) 7→ (ω·t, u(t, ω, x))

is continuous when we take the restriction of the compact-open topology to Br,

i.e. if tn → t, ωn → ω̃ and xn
d→ x̃ as n ↑ ∞ with xn, x ∈ Br for all n ∈ N, then

ωn·tn → ω̃·t and u(tn, ωn, xn)
d→ u(t, ω̃, x̃) as n ↑ ∞.

Proof. It is an easy consequence of the relation

D̂(ω·t, u(t, ω, x)) = (ω·t, û(t, D̂(ω, x))) , (4.8)

Theorem 4.4 and Proposition 3.2. �

As in Theorem 4.2 of [20], the following monotonicity theorem, whose proof is
omitted, is an immediate consequence of Theorem 3.5 and Proposition 4.5.
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Theorem 4.8. Under assumptions (D1)–(D4) and (N1)–(N3), for each ω ∈ Ω
and x, y ∈ BC such that (ω, x) ≤D,A (ω, y), it holds that

τ(t, ω, x) ≤D,A τ(t, ω, y)

for all t ≥ 0 where they are defined.

Lemma 4.9. Under assumptions (D1)–(D4), there exist positive constants KD

and K ′D such that

KD = sup
ω∈Ω
‖D(ω, ·)‖ = sup

ω∈Ω
‖D̂2(ω, ·)‖ and K ′D = sup

ω∈Ω
‖(D̂−1)2(ω, ·)‖ .

Proof. The map Ω → R, ω → ‖D(ω, ·)‖ is continuous thanks to (D1). Since Ω is
compact, there is a KD > 0 such that KD = supω∈Ω ‖D(ω, ·)‖. Fix (ω, x) ∈ Ω×B1;
then

‖D̂2(ω, x)‖∞ = sup
s≤0
‖D(ω·s, xs)‖ ≤ KD ‖xs‖∞ ≤ KD and

‖D(ω, x)‖ = ‖D̂2(ω, x)(0)‖ ≤ ‖D̂2(ω, x)‖∞ ,

whence KD = supω∈Ω ‖D̂2(ω, ·)‖. As for the bound for D̂−1, it follows immediately
from Proposition 4.3(ii). �

The next result provides the main properties of the trajectory and the omega-
limit set of a bounded solution.

Proposition 4.10. Assume (D1)–(D4) and (N1)–(N2). If z(·, ω0, x0) is a so-
lution of (4.5)ω0

bounded for the norm ‖·‖∞, then the set {u(t, ω0, x0) | t ≥ 0}
is relatively compact when the compact-open topology is considered on BC and the
omega-limit set of the trajectory of the point (ω0, x0) ∈ Ω×BC, defined as

O(ω0, x0) = {(ω, x) | ∃ tn ↑ ∞ with ω0·tn → ω , u(tn, ω0, x0)
d→ x}

is a nonempty, compact and invariant subset of Ω×BU admitting a flow extension.

Proof. From (4.8), we deduce that û(t, D̂(ω0, x0)) = D̂2(ω0·t, u(t, ω0, x0)), whence

O(ω0, x0) = D̂−1
(
Ô(ω0, D̂2(ω0, x0))

)
, (4.9)

where Ô(ω0, D̂2(ω0, x0)) denotes the omega-limit set corresponding to the trans-

formed system (4.7)ω0
with initial datum D̂2(ω0, x0). From the boundedness of

u(t, ω0, x0) and Lemma 4.9, we deduce the boundedness of û(t, D̂(ω0, x0)) and,

consequently, Propositions 4.5, 3.3 and 3.4 imply that {û(t, D̂(ω0, x0)) | t ≥ 0} is a

relatively compact subset of BC and Ô(ω0, D̂2(ω0, x0)) is a compact and invariant
subset of Ω × BU admitting a flow extension. Finally, (4.9) and Theorem 4.4(iii)
imply that {u(t, ω0, x0) | t ≥ 0} is a relatively compact subset of BC and O(ω0, x0)
is a compact subset of Ω×BU . The invariance and flow extension follow the proof
of Proposition 3.4, taking into account that, now, Proposition 4.7 holds. �

In order to obtain the 1-covering property of some omega-limit sets, in addition
to Hypotheses (N1)–(N3), the uniform stability and the componentwise separating
property are assumed.
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(N4) If (ω, x), (ω, y) ∈ Ω × BC admit a backward orbit extension, (ω, x) ≤D,A
(ω, y), and there is a subset J ⊂ {1, . . . ,m} such that

D̂2(ω, x)i = D̂2(ω, y)i for each i /∈ J ,

D̂2(ω, x)i(s) < D̂2(ω, y)i(s) for each i ∈ J and s ≤ 0 ,
(4.10)

then Gi(ω, y)−Gi(ω, x)− [A (D(ω, y)−D(ω, x))]i > 0 for each i ∈ J .

(N5) For each k ∈ N, Bk is uniformly stable for the order ≤D,A.

As in Proposition 4.5, these two assumptions provide (F4) and (F5) for F =

G ◦ D̂−1.

Proposition 4.11. Under assumptions (D1)–(D4) and (N1)–(N3), if G satis-

fies (N4) and (N5), then the map F = G ◦ D̂−1 satisfies (F4) and (F5).

Proof. First, we check (F5). Notice that û(t, ω, x) = D̂2(ω·t, u(t, D̂−1(ω, x))). Fix a

k > 0. From Lemma 4.9, there is a k̃ > 0 such that, if x ∈ Bk, then (D̂−1)2(ω, x) ∈
Bk̃ for each ω ∈ Ω. In addition, it is not hard to check that

x, y ∈ Bk
x ≤A y or y ≤A x

=⇒
x̃ = (D̂−1)2(ω, x), ỹ = (D̂−1)2(ω, y) ∈ Bk̃
(ω, x̃) ≤D,A (ω, ỹ) or (ω, ỹ) ≤D,A (ω, x̃)

. (4.11)

Next, let r = max(2 k̃, 1) and ε > 0. From Theorem 4.4, there is a δ1 > 0 such that

{x ∈ BC | d(x, 0) < δ1} ⊂ {x ∈ BC | ‖x(0)‖ ≤ 1} and (4.12)

d(D̂2(ω, x), D̂2(ω, y)) < ε ∀ω ∈ Ω and x, y ∈ Br with d(x, y) < δ1 . (4.13)

Now, from assumption (N5), given this δ1 > 0, there is a δ2 > 0 such that if x̃,
ỹ ∈ Bk̃ satisfy d(x̃, ỹ) < δ2 and (ω, x̃) ≤D,A (ω, ỹ) or (ω, ỹ) ≤D,A (ω, x̃), then
d(u(t, ω, x̃), u(t, ω, ỹ)) < δ1 for each t ≥ 0.

Moreover, with the notation of (4.11), again Theorem 4.4 provides a δ > 0 such
that, for each ω ∈ Ω and x, y ∈ Bk with d(x, y) < δ, it holds

d(x̃, ỹ) = d
(
(D̂−1)2(ω, x), (D̂−1)2(ω, y)

)
< δ2 . (4.14)

Altogether, if x, y ∈ Bk satisfy d(x, y) < δ and x ≤A y or y ≤A x, from (4.11)
and (4.14), we deduce that (ω, x̃) ≤D,A (ω, ỹ) or (ω, ỹ) ≤D,A (ω, x̃) and d(x̃, ỹ) <
δ2. Then, as seen above, d(u(t, ω, x̃), u(t, ω, ỹ)) < δ1 for each t ≥ 0 and, from this
and (4.12), we get ‖(u(t, ω, x̃) − u(t, ω, ỹ))(0)‖ ≤ 1 for each t ≥ 0, which together
with x̃, ỹ ∈ Bk̃ yields u(t, ω, x̃)−u(t, ω, ỹ) ∈ Br. Finally, from (4.13) and the linear

character of D̂2, we conclude that

d(D̂2(ω·t, u(t, ω, x̃), D̂2(ω·t, u(t, ω, ỹ))) = d(û(t, ω, x), û(t, ω, y)) < ε

for each t ≥ 0 and (F5) holds, as claimed. The verification that (F4) is fulfilled is
easier and it is omitted. �

As a consequence, the asymptotic behavior of bounded trajectories with ini-

tial datum x0 such that D̂2(ω0, x0) satisfies (R), reproduces exactly the dynamics
exhibited by the time variation of the equation, as claimed.

Theorem 4.12. Let (ω0, x0) ∈ Ω×BC. Under assumptions (D1)–(D4) and (N1)–

(N5), if D̂2(ω0, x0) satisfies property (R) and z(·, ω0, x0) is a solution of (4.5)ω0
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bounded for the norm ‖·‖∞, then the omega-limit set O(ω0, x0) = {(ω, c(ω)) | ω ∈
Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e. u(t, ω, c(ω)) = c(ω·t) for each
ω ∈ Ω and t ≥ 0, and it is continuous for the compact-open topology on BU .

Proof. From Propositions 4.5 and 4.11, F = G ◦ D̂−1 and the corresponding
family of systems (4.7) satisfies assumptions (F1)–(F5). In addition, as above,

û(t, ω0, D̂2(ω0, x0)) = D̂2(ω0·t, u(t, ω0, x0)) and Lemma 4.9 yield the boundedness of

ẑ(·, ω0, D̂2(ω0, x0)), the solution of (4.7)ω0
. As a consequence, from Theorem 3.11,

we deduce that the omega-limit Ô
(
ω0, D̂2(ω0, x0)

)
is a copy of the base, that is,

Ô
(
ω0, D̂2(ω0, x0)

)
= {(ω, ĉ(ω)) | ω ∈ Ω} ,

where ĉ : Ω→ BU is a continuous equilibrium and

lim
t→∞

d
(
û(t, ω0, D̂2(ω0, x0)), ĉ(ω0·t)

)
= 0 .

Finally, from (4.9), we have O(ω0, x0) = D̂−1Ô(ω0, D̂2(ω0, x0)), and we conclude

that O(ω0, x0) = {(ω, c(ω)) | ω ∈ Ω} with c(ω) = (D̂−1)2(ω, ĉ(ω)) or, equivalently,

D̂−1(ω, ĉ(ω)) = (ω, c(ω)), from which the proof is easily finished. �
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[6] I. Győri, Connections between compartmental systems with pipes and integro-differential
equations, Math. Modelling 7 (1986), 1215–1238.

[7] J.R. Haddock, T. Krisztin, J. Wu, Asymptotic equivalence of neutral and infinite retarded
differential equations, Nonlinear Anal. 14 No. 4 (1990), 369-377.
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[17] V. Muñoz-Villarragut, S. Novo, R. Obaya, Neutral functional differential equations with
applicactions to compartmental systems, SIAM J. Math. Anal. 40 No. 3 (2008), 1003–1028.

[18] S. Novo, R. Obaya, A.M. Sanz, Stability and extensibility results for abstract skew-product

semiflows, J. Differential Equations 235 No. 2 (2007), 623–646.
[19] S. Novo, R. Obaya, V.M. Villarragut, Exponential ordering for nonautonomous neutral

functional differential equations, SIAM J. Math. Anal. 41 (2009), 1025–1053.

[20] R. Obaya, V.M. Villarragut, Exponential ordering for neutral functional differential equa-
tions with non-autonomous linear D-operator, J. Dynam. Differential Equations 23 (2011),

695–725.

[21] R. Obaya, V.M. Villarragut, Direct exponential ordering for neutral compartmental sys-
tems with non-autonomous D-operator. Discrete Contin. Dyn. Syst. Ser. B 18 No. 1 (2013),

185–207.
[22] K. Sawano, Some considerations on the fundamental theorems for functional differential

equations with infinite delay, Funkcialaj Ekvacioj 25 (1982), 97–104.

[23] G. Seifert Positively invariant closed sets for systems of delay differential equations, J.
Differential Equations 22 (1976), 292–304.

[24] W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product

Semiflows, Mem. Amer. Math. Soc. 647, Amer. Math. Soc., Providence 1998.
[25] H.L. Smith, H.R. Thieme, Strongly order preserving semiflows generated by functional dif-

ferential equations, J. Differential Equations 93 (1991), 332–363.

[26] O.J. Staffans, A Neutral FDE with Stable D-operator is Retarded, J. Differential Equations
49 (1983), 208–217.
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