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Abstract
This work aims to optimise the operation of an evaporation network with shared resources

in real time. The goal is minimising the resource utilisation (live steam and cooling water)

while satisfying a set of operational constrains. Hence, problems of optimal load alloca-

tion of feeds to plants and cooling-water distribution among them arise. The work bases

on plants surrogate models, experimentally obtained, and analyses different formulation

alternatives of the optimisation from the practical point of view: centralised vs distributed

approaches. In particular for the distributed approach, we propose a problem decompo-

sition which allows us to solve the problem in two iterative ways: 1) as two independent

optimisations or 2) via price-coordination schemes.
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1. Description of the case study

Manufacture of viscose fibers in Lenzing AG bases on a continuous spinning process

where cellulose pulp transforms into very thin threads. This process performs in an acid

bath (“spinbath” from now on) which is progressively degraded. Consequently, it must

be continuously recovered. Therefore, a side evaporation process is performed in parallel

to remove part of water. For this task, an evaporation network of 15 plants is available to

serve in 5 different types of spinbath, where a single plant is formed by several equipment.

See Pitarch et al. (2017b) for a deeper description.

Plants efficiency depends on several factors: the evaporation flow removed from the spin-

bath (plant load) EC, the spinbath temperature T and circulating flow Fs, the fouling state

in the heat exchangers and the performance of the cooling system (see Figure 1a). In

particular, the more cooling water (shared resource) is provided to the surface condenser,

the less live steam consumption (utility) is needed to achieve the evaporation setpoint.

Denote the specific steam consumption (SSC) by the live steam usage per unit of evapo-

rated water (Pitarch et al., 2017a). Then, the absolute steam consumption (ASC) in each

plant is computed by ASC = SSC ·EC.
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(a) Evaporation plant (b) Evaporation network

Figure 1: Systems simplified schemes.

Plant surrogate models were developed to estimate the SSC in Kalliski et al. (2019),

which, after straightforward manipulations, is found to depend on EC and on the cooling

capacity of the surface condenser Cpow, as shown in (1). The cooling system performance

is also modelled experimentally: the outlet cooling-water temperature of the condensers

Tout is estimated by a polynomial function up to degree 3 on the cooling-water flow Fw

and affine in its inlet temperature Tin, as proposed in (Marcos et al., 2018):

SSC = β2 ·EC+β1 ·Cpow +β0; Cpow = 4.18 ·Fw(Tout−Tin)/3600 (1)

Tout = α0 +α1Fw +α2F2
w +α3F3

w +Tin (2)

Here, θ = {β0,β1,β2,α0,α1,α2,α3} are experimental regression parameters.

According to the physical layout of the evaporation network, the plants can be grouped

in two subnets, each one directly supplied by an independent water source. The water

distribution among plants is done in parallel and, additionally, the exceeding water in

Subnet 1 (Fc) can go to Subnet 2 but not backwards (see Figure 1b). Further details on

the evaporation network can be found in Palacín et al. (2018); Marcos et al. (2018).

2. Problem formulation

The objective is to allocate feeds to plants and distribute the cooling-water in the network

at minimum cost. This cost is a trade-off between the usage of resources: live steam

and cooling water, times their respective “prices” (Ps and Pw). Three sets of decision

variables are defined: Xe,p ∈ {0,1} to link product p to plant e, ECe,p ∈ R defining the

evaporation flow of p to be achieved in plant e, and Fw e ∈ R defining the water sent to

plant e. Further, an additional variable Fc ∈R indicates the flow of water sent from Subnet

1 (SN1) to Subnet 2 (SN2). Hence, for a given set of e ∈ E evaporation plants that have

to process p ∈P spinbaths, the centralised formulation of the optimisation problem is:

min
Xe,p,ECe,p,Fw e,Fc

J =
E

∑
e

( P

∑
p

ASCe,p ·Ps +Fw e ·Pw

)
(3a)

s. t.:
P

∑
p

Xe,p ≤ 1 ∀e ∈ E ; Xe,p = 0 (e, p) ∈N (3b)
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E

∑
e

ECe,p ≥ SPp ∀p ∈P (3c)

ESN1

∑
e

Fw ee +Fc ≤ FS1;
ESN2

∑
e

Fw e−Fc ≤ FS2; Fc ≥ 0 (3d)

ECe,p ·Xe,p ≤ ECe,p ≤ ECe,p ·Xe,p ∀e ∈ E , ∀p ∈P (3e)

P

∑
p

Xe,p ·Fw e ≤ Fw e ≤ Fw e ·
P

∑
p

Xe,p ∀e ∈ E (3f)

Tout e ≤ Tmax +(1−
P

∑
p

Xe,p) ·M ∀e ∈ E (3g)

Where the sets ESN1 and ESN2 (E = ESN1∪ESN2) include the plants belonging to SN1 and

SN2 respectively, the set N represents connections between some plants and spinbaths

that are forbidden due to the factory layout, and M is a big enough number.

The problem constraints are: (3b) each plant can only serve in one spinbath loop at a

time; (3c) total evaporation demands per spinbath (SPp) have to be fulfilled; (3d) total

water consumption in each subnet has to be lower than the available at the sources (Fs),

considering that exceeding water can go from SN1 to SN2 but not backwards; (3e)-(3f)

evaporation and water flows are bounded and; (3g) outlet water temperatures have to be

lower than a limit (Tmax), stated by the environmental regulation.

The presence of discrete and continuous variables as well as the nonlinear dependency of

(3a) and (2) on them, makes (3) become an MINLP problem.

3. Problem decomposition

In order to avoid the issues that commonly arise with MINLP (slow convergence, high

computational demands, etc.), we propose a suitable decomposition of (3) in two local

optimisation subproblems, according to the physical layout of the evaporation network.

In fact, the overall equipment can be grouped in two sets or networks: 1) the spinbath

allocation one, composed by the evaporation plants and the spinbath loops themselves,

and 2) the water distribution from the sources to the respective plant surface condensers.

Hence, a first local problem can handle the plants load allocation whereas a second one

optimises the water distribution. By this decomposition, only the magnitudes EC and

Cpow are shared between problems 1) and 2).

1. Load-allocation problem:

min
Xe,p,ECe,p

J1 =
E

∑
e

P

∑
p

SSCe,p ·ECe,p ·Ps s. t.: (3b), (3c), (3e) (4)

In this way, (4) is a mixed integer quadratic programming (MIQP) problem, provided that

Cpow in (1) is assumed known.

2. Cooling-water distribution problem:

min
Fw e,Fc

J2 =
E

∑
e

(
SSCe ·

P

∑
p

ECe,p ·Ps +Fw e ·Pw

)
s. t.: (3d), (3f), (3g) (5)

evaporation plants
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Thus, assuming that the load allocation (ECe,p) is known, (5) is an non linear program-

ming (NLP) problem.

Now, we can solve the original problem in two iterative ways: sequentially as two fully

independent optimisations, or in a price-coordination fashion. See next section.

4. Implementation

The above formulated optimisation problems (3), (4) and (5) are coded in Pyomo (Hart

et al., 2017). The centralised version (3) uses Bonmin as MINLP solver (Bonami et al.,

2008), whereas Gurobi Optimization (2018) is used to solve the MIQP (4) and Ipopt

(Wächter and Biegler, 2006) to solve the NLP (5). In order to implement the decomposi-

tion approach in an iterative fashion, we propose the following.

4.1. Sequential approach

Take Cpow e as known (computed by (1)-(2) and from given flows Fw e) and solve (4).

Then, from the obtained solution, take the values of ECe,p and solve (5), getting a new set

of values Fw e to compute the Cpow e and so on. The procedure is formalised in:

Algorithm 1 Sequential optimisation

1: Compute the Cpow e from current (measured) Fw e,Tout e,Tin and set ε = 1

2: while ε > 0.001 do
3: Solve (4) and save the computed allocation ECe,p
4: Solve (5) using the ECe,p from Step 3 and get a water distribution Fw e,Tout e

5: Compute ε = ∑E
e
∥∥Cpow e−4.18Fw e · (Tout e−Tin)/3600

∥∥2

2
6: Update Cpow e = 4.18Fw e · (Tout e−Tin)/3600 with values from Step 4

4.2. Distributed approach

In a distributed fashion, we need to decouple problems (4) and (5) to allow a “true” par-

allel implementation. Thus, we make use of the well-known Lagrangean or price-driven

decomposition approaches (Cheng et al., 2007).

Indeed, now Cpow e will be also local decision variables in (4) and ECe will be so in

(5) as well1. Then, we have to add a coordination layer to progressively force both sets

of magnitudes to be equal in both local optimisations (shared constraints). As usual in

Lagrangean decomposition, these constraints will be added as a penalty in the respective

objective functions:

J1 =
E

∑
e

( P

∑
p

SSCe,p ·ECe,p ·Ps+
1

2

(
p11e(Cpow e−C∗pow e)

2+p12e(
P

∑
p

ECe,p−EC∗e)
2
))

(6)

J2 =
E

∑
e

(
SSCe ·ECe ·Ps+Fw e ·Pw+

1

2

(
p21e(Cpow e−C∗pow e)

2+p22e(ECe−EC∗e)
2
))

(7)

1Note that variables ECe equivalently replace ∑P
p ECe,p in (5) to reduce the problem size.
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Where pi je ∈R
+ are the shadow prices for “resource” utilisation and R∗ := {C∗pow e,EC∗e}

are the reference values, computed somehow from the local solutions of both optimisa-

tions in in the previous iteration. In this way, both problems will be managed by a co-

ordinator which, in each iteration k, will receive the values got for the shared variables

Re := {Cpow e,ECe}, and it will update the prices as well as the reference values for the

next iteration k+1 according to the following rules:

p
[k+1]
i je = p

[k]
i je +(R[k]

i je−R∗[k])2 ·μ [k]; Ri je ∈ R, R∗ ∈ R (8)

μ [k+1] = μ [k] ·λ ; λ > 1 (9)

C∗[k+1]
pow e =C[k]

pow e(2); EC∗[k+1]
e = EC[k]

e (1) (10)

Where notation R[k]
e (i) denotes the values of variables Re, solution of subproblem i at

iteration k. Progressive hedging (Rockafellar and Wets, 1991) is used in (9) to update the

factor μ in each iteration, via the user-defined parameter λ . The procedure to solve the

distributed optimisation is summarized below.

Algorithm 2 Distributed optimisation

1: Set R∗ to the current values measured from the plants and pi je = ε = 0.1
2: while ε > 0.001 do
3: Solve subproblems (4) and (5), and get new values for Ri je

4: Compute ε =
∥∥Ri je−R∗

∥∥2

2
5: Update prices pi je and references R∗ with (8)-(10)

Of course, due to the non-convex nature of the problem, global optimality is not guaran-

teed in either of the implementations, centralised or distributed.

5. Results and discussion

For the sake of comparison/analysis, we have solved the problem from a particular net-

work situation following the three presented ways. Table 1 shows a brief summary.

Table 1: Optimised cost and computational effort for the 3 approaches.

Total CPU Time (s) Optimal cost (e/h) Iterations

Centralised 29.64 962.82 -

Sequential 0.89 964.81 3

Distributed 1.73 964.33 6

We can conclude that the three approaches are able to reach nearly the same (local) opti-

mal solution2. However, as expected, the centralised problem elapses more time to reach

the solution. This is not a major issue in this application (the execution period for real-

time optimisation is about 30 min.) but, it will be so if the problem grows by considering

fouling predictions over time or by including more parts of the factory (the water network

is larger and also serves to other processes, and there is a heat-recovery network which

also interacts with the evaporation one).

2Values p
[0]
i je = 0.1, μ [0] = 1 and λ = 1000 were set for the distributed approach.

Optimal distributed load allocation and resource utilisation in
evaporation plants
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6. Conclusions

In this work we addressed a medium-scale real-time optimisation problem (∼200 vari-

ables, it depends on the approach) on resource efficiency in an industrial evaporation

network with shared resources. The proposed approaches will support the operators to

take better decisions in real time, thus, improving the operation of the overall network:

product-plant allocation and water distribution to the cooling systems.

The plant models are incorporated in three different optimisation schemes, analysing the

convenience of the decomposition approaches vs the centralised one. In this case study,

the three approaches solve the problem in acceptable CPU time for real-time purposes,

although the iterative sequential approach has arisen as the most efficient one. The key

is the proposed decomposition for the original centralised problem, which allows us to

formulate two effortless independent problems (MIQP and NLP), solved efficiently by

modern optimisation algorithms.

Apparently, the price-coordination approach does not have any advantage here: the opti-

mal cost is slightly higher than the one reached by the centralised and it elapses double

time than the sequential. This is because the centralised problem is not so large-scale,

many constraints are affine in the decision variables, and the advantages of parallel com-

putation cannot be exploited with just two local optimisation subproblems. Nevertheless,

this approach will clearly beat the other two if the problem is extended to consider uncer-

tainty in an explicitly way via, for instance, two-stage stochastic optimisation.
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