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Abstract

In this work, we propose a robust Cluster Analysis methodology based on cell trimming as an extension to a recently

introduced robust version of Principal Component Analysis. This new approach allows for cellwise trimming in cluster

analysis, which is more reasonable than traditional casewise trimming when the problem’s dimension is large. This

type of trimming avoids an unnecessary loss of information when only a few cells of the entirely trimmed observations

are atypical. An algorithm is proposed to apply this approach. This algorithm is particularized to the interesting

case of functional cluster analysis. Simulations and applications to real data sets are given to illustrate the proposed

methods.

1. Introduction

Given a data set x1, ...,xn with xi = (xi1, ..., xip)
′ ∈ Rp, trimming complete observations xi (row trimming) is the

approach traditionally followed in Robust Statistics. The idea is to trim entire rows xi as long as these rows include

at least some contaminated cells xij . This type of trimming is reasonable in low dimensions but can be extreme when

the dimension p grows. A very small fraction of the contaminant cells (evenly distributed) when p grows makes it

necessary to trim a vast number of rows xi. This massive trimming leads to discarding much useful information in

non-atypical cells, which translates into a considerable loss of efficiency. Besides, many tools in Robust Statistics are

not designed to handle trimming levels greater than 50 percent of observations. These high-dimensional problems

are becoming more frequent in modern statistics because of the ease of recording and storing large volumes of data

that new technologies provide. Unfortunately, the presence of outliers is often the rule in most data sets, and robust

methods need to be implemented that can cope with these outliers. The first work where this problem was formally

addressed was [1]. Recent references of interest and possible solutions to the problem are [47], [41] and [29].

The above proposals work without assuming substructures or clusters in the data. The presence of subgroups

is frequent, given the common heterogeneity that appears in many data sets. Our purpose is to introduce a robust

clustering methodology that would allow for cellwise trimming. The clusters to be searched are assumed to ‘live’ in

G related subspaces of smaller dimensions than the original space (subspace clustering). This philosophy is precisely

what underlies the G = 1 case when applying the well known Principal Component Analysis (PCA) method for
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dimension reduction. Different proposals for the robustification of PCA, together with a comparative study of them,

can be found in [15]. Among these proposals, it is worth mentioning the one obtained through (impartial) trimming

in [35], which was also analyzed at the theoretical level in [24].

Subspace clustering is not new and is behind various Cluster Analysis procedures designed especially for high-

dimensional problems. Interesting references in this line, including review papers, are [36], [34], [44], and [6]. However,

none of these procedures are directly designed to cope with the presence of outliers.

A robust clustering procedure based on trimmings of whole observations using subspaces was proposed in [25] as

a robustification of the ‘linear grouping algorithm’ method in [43]. [25] assumed that the intrinsic dimensions qg were

common to all the approximating subspaces and equal to qg = p − 1, but it is not difficult to extend the algorithm

proposed there to the case of different intrinsic dimensions qg by groups.

Cellwise trimming in Cluster Analysis was already proposed through a modification of the trimmed k-means [13]

in [16] (‘snipped’ in its terminology), and through modification of the TCLUST [21] in [17]. The first approach is

based on groupings around centroids and does not take advantage of the structure of dependence between variables,

and the second is challenging to apply in dimensions that are not very low since its complexity increases notably with

dimension.

In this work, we will propose a methodology of cellwise trimming that will take into account the subspace structure

in the G groups and has a feasible algorithm for its implementation. The algorithm is based on alternate regressions

with weights, extending the proposals in [3] and [8] for robust PCA. A short version of the Least Trimmed Squares

(LTS) algorithm based on ‘concentration steps’ plays a significant role in the proposed algorithm.

Subsequently, the methodology proposed is applied to the important case of the Functional Cluster Analysis,

focusing on providing appropriate initializations to the procedure. The problem of Functional Cluster Analysis is

receiving considerable attention, as can be seen in the review papers in [33], [27], and [46]. Given the infinite dimension

that underlies these problems, it is critical to assume that clusters of curves are mostly arranged around finite-

dimensional functional subspaces. This is the approach that has been adopted in works such as [10], [5], [26], [45],

[32], and [18].

Obviously, in the setting of Functional Cluster Analysis, it is also important to have robust procedures that are not

significantly affected by functional outliers. The possibility of enhancing robustness by trimming complete functions

was considered in [19], after projecting the curves in the space generated by a B-spline basis, and [12] proposed

the use of trimmings working directly in a functional L2 space. These two trimming approaches looked for groups

around ‘functional centroids’ and were not designed to handle dispersion structures within complex groups not easily

recognizable by an L2 norm. The trimming of whole atypical curves for more complex patterns was considered in [38],

using ‘model-based’ methods arising from the ‘pseudo-density’ for functional data introduced in [14]. Trimming only

atypical ‘chunks’ of the curve (analogous to cellwise trimming for the functional case) was noted as an interesting line

of work in [23].

The rest of this work is organized as follows. We start considering the simplest case of PCA (G = 1) to facilitate

the presentation of the methodology and introduce the necessary notation. Thus, we will briefly review some proposals

for the robustification of the PCA using trimmings in Section 2. Subsequently, we will introduce the methodology

proposed for Robust Cluster Analysis (G > 1) in Section 3, together with a feasible algorithm for its application
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in Section 4. Section 5 presents the adaptation of the method to the functional data case. Some examples of its

applicability and a simulation study will be shown in Section 6, together with real examples of practical application

in Section 7. Finally, conclusions and possible open research problems will be provided in Section 8.

2. Robust Principal Components

Principal Component Analysis (PCA) aims to obtain q ≤ p unitary orthogonal vectors generating the linear

subspace that provides the best approximation to a data set. This approximation will be obtained from a matrix

Bq ∈ Rp×q (Ra×b denotes the matrices with a rows and b columns) with BT
q Bq = Iq (orthogonal) and whose rows

we will denote by bTj for j = 1, ..., p. The matrix Aq ∈ Rn×q contains the so-called ‘scores’ and the rows of this

matrix are given by the vectors ai. Finally, m will be a vector in Rp. The approximation to the observation xi in the

approximating subspace is written as:

x̂i := x̂i(Bq,Aq,m) = m+Bqai,

or, working by cells, with x̂i = (x̂i1, ..., x̂ip)
′ where:

x̂ij = mj + aTi bj . (2.1)

With this notation, the problem of finding the best PCA approximating subspace is formally posed by minimizing:

min
Bq,Aq,m

n∑
i=1

d2i (Bq,Aq,m), (2.2)

for

d2i (Bq,Aq,m) = ||xi − x̂i(Bq,Aq,m)||2,

over all possible orthogonal matrices Bq ∈ Rp×q, matrices Aq ∈ Rn×q, and vectors m ∈ Rp. This minimization can

be posed in terms of cells, through the minimization of

n∑
i=1

p∑
j=1

r2ij ,

where rij = xij − x̂ij for x̂ij defined as in (2.1).

If x̄ and S are, respectively, the sample mean and the sample covariance matrix then it is well known that the

solution to the PCA problem is obtained by considering m = x and Bq including the eigenvectors of S associated

with the q largest eigenvalues.

Unfortunately, classical PCA is quite sensitive to outliers. This fact is not surprising given that x and S are very

non-robust estimators. A single outlier xij in one of the observations can already have a very detrimental effect on

determining the optimal subspace when using the classical PCA. Numerous robust proposals have been put forward

in the literature to solve this problem (see, for example, [15]).

Among these robust proposals for the PCA, an LTS (Least Trimmed Squares) approach based on cutting a

proportion α of observations xi was proposed in [35]. This approach replaces the minimization of (2.2) by the

minimization of

σ̂2
LTS(Bq,Aq,m) =

[n(1−α)]∑
i=1

d2(i:n)(Bq,Aq,m), (2.3)
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where

d2(1:n)(Bq,Aq,m) ≤ ... ≤ d2(n:n)(Bq,Aq,m)

(this type of notation will always be used when referring to element ordering).

[35] provides an algorithm based on ”concentration steps” that requires the search of the eigenvectors of the

covariance matrices of subsets of observations in each step. Alternatively, [3] and [9] propose an iterative method

of ”alternating least squares with weights” to perform the minimization of (2.3) avoiding working with covariance

matrices of subsets of observations (which can be problematic in high dimensions or when n < p).

The approach in [3] does not guarantee the orthogonality of the resulting Bq matrix, although it can be proven

at the population level that the optimal Bq matrix is an orthogonal matrix for elliptical distributions as shown in [3]

and [24]. However, even without orthogonality, Bq provides a reasonable estimate of the best approximating subspace

for the data. The Gram-Schmidt method can be applied if orthogonality is required.

A very interesting new approach was put forward in the doctoral thesis [8]. The iterative approach of alternating

least squares with weights allows incorporating null weights to some specific cells opening the door to cellwise trimming.

[8] defines the estimator of least squares trimmed ‘by coordinates’ (Coo-LTS) minimizing

σ̂2
Coo-LTS(Bq,Aq,m) =

p∑
j=1

σ̂2
LTS,j(Bq,Aq,m),

where

σ̂2
LTS,j(Bq,Aq,m) =

[n(1−α)]∑
i=1

r2(i:n)j =

n∑
i=1

wij(xij −mj − aTi bj)2, (2.4)

for

wij =

1 if r2ij ≤ r2([n(1−α)]:n)j

0 if r2ij > r2([n(1−α)]:n)j

. (2.5)

These weights wij would inform us whether the cell xij is trimmed (wij = 0) or not (wij = 1). Again, this way of

proceeding provides a better approximating subspace but does not guarantee that the obtained array Bq is orthogonal.

Finally, although it is not a PCA method, we will conclude this section by briefly reviewing the LTS method

applied in regression [42], and which will later be used in the algorithm provided in Section 4. Given n values of a

response variable {yi}ni=1 and n vectors {xi}ni=1 with the values of p explanatory variables, LTS regression looks for

the coefficient vector b̃ ∈ Rp for which the following expression is minimized:

[n(1−α)]∑
i=1

r2(i:n), (2.6)

with r2i = (yi − b̃
′
xi)

2. The Algorithm 1 shows a simple description of the fast-LTS algorithm [39, 40] commonly

applied to solve the minimization of (2.6).
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Algorithm 1 Fast-LTS algorithm

Data: {yi : i = 1, ..., n}, {xi : i = 1, ..., n}, and a trimming level α
Output: Regression parameter vector b̃
for b = 1, ..., B1 do . Random initializations

Initialize b (usually by randomly choosing p+ 1 observations xi)
for c = 1, ..., C do . ‘Concentration’ steps

ri ← yi − bTxi
I = {i : r2i ≤ r2([n(1−α)]:n)}
Update b using regression on the subsets {yi}i∈I and {xi}i∈I

end for
end for
Return b̃, which is the b giving the smallest value of (2.6)

3. Cellwise trimming in cluster analysis

In this section we extended the ‘Coo-LTS’ method reviewed in Section 2 to the case of G populations. For this

purpose, we consider the approximations provided by G approximating subspaces:

x̂gi
(
Bg
qg ,A

g
qg ,m

g
)

= mg +Bg
qga

g
i or, at cell level, x̂gij = mg

j + (agi )
T bgj ,

with Bg
qg ∈ Rp×qg (rows given by bgj for j = 1, ..., p), Ag

qg ∈ Rn×qg (rows given by agi for i = 1, ..., n) and mg ∈ Rp

(elements given by mg
j for j = 1, ..., p). The parameter qg is the intrinsic dimension of the g-th approximating subspace.

For each observation xi, the best approximation to that observation is unknown.

To simplify the notation, let us assume that the ‘intrinsic dimensions’ qg are all equal to q (i.e., we assume

q1 = · · · = qG = q). The extension of the methodology to the case of different dimensions is not especially complex.

We can define residuals for each cell:

rgij = rgij(B
g
q ,A

g
q ,m

g) = xij − x̂gij ,

and, looking for an approach linked to the “Coo-LTS”, we consider weights wgij for i = 1, ..., n, j = 1, .., q and

g = 1, ..., G, which may be seen as the contribution to the group g of the j-th coordinate from observation xi. With

these weights, we would be interested in minimizing a target function of the type:

min
wgij ,B

g
q ,A

g
q ,mg

n∑
i=1

p∑
j=1

G∑
g=1

wgij(r
g
ij(B

g
q ,A

g
q ,m

g))2. (3.1)

However, we must place appropriate restrictions on the minimization of (3.1) on the weights wgij so that we can

pose a reasonable problem that leads us to a useful method. Thus, from a cluster analysis point of view, a reasonable

restriction is that an observation xi is entirely assigned to one and only one of the g groups, so that different cells

xij and xij′ (from the same observation xi) are not assigned to two different groups g and g′. In other words, if we

denote by g(i) the group assignment of observation xi we require:

wgij = 0 for every g 6= g(i). (3.2)

A second type of restriction on the weights wgij is aimed at trimming a controlled fraction of cells. Given a trimming

size α, we require that ∑
{i:g(i)=g}

wgij = [ng(1− α)], for every g and j, where ng = #{g(i) = g}. (3.3)
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These restrictions mean that the same proportion of cells are trimmed in each ‘coordinate’ and in each cluster.

The use of a more global restriction in combination with (3.2) has been also explored:

n∑
i=1

p∑
j=1

G∑
g=1

wgij = [np(1− α)]. (3.4)

This would mean that a proportion α of cells is trimmed from the total n×p cells of the data matrix without imposing

any other restrictions. Although the idea seemed reasonable initially, we have found that the use of the restrictions

in (3.3) leads to much more stable procedures than considering the restriction (3.4). For example, if α is significantly

larger than the true level of contamination or if the initialization of the parameters is not practically perfect, then,

frequently, the method ends up trimming all the observations into a few coordinates and the iterative process in the

proposed algorithm stops.

4. Description of the algorithm

In this section, we will first present the different steps for parameter updating (assuming other parameters are

known) that will be combined in a global pseudo-code in Section 4.4 as a feasible algorithm to implement the proposed

cell trimming methodology.

4.1. Updating the subspace parameters assuming known weights

Suppose that the optimal weights wgij were known and that we sought to optimize the rest of the parameters

conditionally on these weights. Let’s denote by L
(
{wgij}

g
ij , {B

g
q}gq , {A

g
q}gq , {mg}g

)
the sum of reweighted cellwise

squared errors in (3.1), that will be our target function. We can differentiate function L with respect to agi , b
g
j , and

mg
j to obtain:

∂

∂agi
L
(
{wgij}

g
ij , {B

g
q}gq , {A

g
q}gq , {mg}g

)
= −2

p∑
j=1

wgijr
g
ij(B

g
q ,A

g
q ,m

g)bgj ,

∂

∂bgj
L
(
{wgij}

g
ij , {B

g
q}gq , {A

g
q}gq , {mg}g

)
= −2

p∑
j=1

wgijr
g
ij(B

g
q ,A

g
q ,m

g)agi ,

and
∂

∂mg
j

L
(
{wgij}

g
ij , {B

g
q}gq , {A

g
q}gq , {mg}g

)
= −2

p∑
j=1

wgijr
g
ij(B

g
q ,A

g
q ,m

g).

Setting these derivatives to 0 gives the following system of equations:

p∑
j=1

wgij(xij −m
g
j )b

g
j =

 p∑
j=1

wgijb
g
j (b

g
j )
T

agi , i = 1, ..., n, y g = 1, ..., G,

n∑
i=1

wgij(xij −m
g
j )a

g
i =

(
n∑
i=1

wgija
g
i (a

g
i )
T

)
bgj , j = 1, ..., p, y g = 1, ..., G,

and
n∑
i=1

wgij(xij − (agi )
T bgj ) =

n∑
i=1

wgijm
g
j , j = 1, ..., p, y g = 1, ..., G.

Therefore, with known weights, the optimal parameters Bg
q ,A

g
q , and mg can be obtained by applying weighted

least squares. Fast and computationally efficient procedures exist to solve these problems since the common intrinsic

dimension q is usually much smaller than the original dimension p of the problem.
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4.2. Updating weights with known group membership

Now let us assume that the group assignments are known. That is, we have a partition of {1, 2, ..., n} into

{I1, ..., IG} with Ig = {i : g(i) = g} = {ig1, ..., igng} and ng = #Ig. Since the cell prediction is x̂ij = mg
j + (agi )

T bgj

for g = g(i) and the associated residuals are R2
ij = (xij − x̂ij)2, it is easy to see that the best update of weights is

provided by:

wgij =


1 if g = g(i) and R2

ij ≤ R2
ig
([ng(1−α)]:ng)

j

0 in other case

. (4.1)

It is trivial to see that these weights wgij meet the required restrictions (3.2) and (3.3), and reduce as much as

possible the objective function (3.1) if the assignments g(i) and the parameters Bg
q , A

g
q and mg remain constant.

4.3. Updating group membership

Even with fairly reasonable initializations of Bg
q and mg, the initialization of Ag

q by applying simple regression

(taking into account (2.1)) may not be adequate. Note that xi (the values of the response variable in these regressions)

may include outliers and that a few atypical values may affect very negatively classical least-squares regression. In this

initialization phase, we also do not have reliable weights wgij (the wgij are only reliable for the g corresponding to the

group to which the observation xi was assigned in the previous step) to decrease the weight of the outliers. Something

similar occurs with group assignments since, even with well-defined approximating spaces, it is difficult to know if an

observation xi with g(i) = g would have been better assigned to another group and thus have g(i) = g′ 6= g.

A fairly reasonable idea to solve the problems discussed above might be to use the LTS robust regression reviewed

in Section 2 instead of using least squares regression. LTS regression is not affected by a few atypical cells and

allows us to make more reliable determinations of Ag
q and of group assignments. To clarify this proposal, we will

initially assume that α = 0. When applying the Lloyd-Forgy classic k-means algorithm, assignments are made using

g(i) = arg ming=1,...,G ‖xi −mg‖2 (groups around “centroids”). Similarly, when looking for groups around subspaces

it seems reasonable to use g(i) = arg ming=1,...,G ‖xi − x̂gi ‖2 where x̂gi = mg +Bg
qa

g
i would be the closest point to

xi in the g-th approximating subspace. This point x̂g can be obtained directly by applying least squares regression,

modeling the p values of the vector xi −mg as the optimal linear combination of the q columns of matrix Bg
q . Our

proposal is to find this optimal linear combination by using the robust LTS regression with a trimming fraction of size

αLTS. Obviously, this assumes that a fraction greater than αLTS of contaminating cells in {xij : j = 1, ..., p} is not

expected.

We will denote by ãgi the coefficients obtained by applying these LTS regressions and their residuals by r̃gij =

(xij −mg − (bgj )
T ãgi )

2. We can define a ‘distance’ Dg
i between xi and the g-th approximating subspace considering

only the fraction [p(1− αLTS)] of more ‘favorable’ cells. That is,

Dg
i =

[p(1−αLTS)]∑
j=1

r̃gi(j:p),

and group assignments would be

g(i) = arg min
g=1,...,G

Dg
i .

Moreover, the vectors ãgi give a robust initialization of the score matrices Ag
q .
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Algorithm 2 Summary of the proposed algorithm

Data: {xi : i = 1, ..., n}, trimming level α, and intrinsic dimension q (could be adapted to
different intrinsic dimensions qg)
Result: Optimal values of wgij , B

g
q , A

g
q , and mg and group assigments {g(i) : i = 1, ..., n}.

for b = 1, ..., B2 do . Random initializations
Initialize Bg

q and mg (see Section 4.5)
for l1 = 1, ..., L1 do . External loop

LTS regression to initialize Ag
q and {g(i) : i = 1, ..., n} (see Section 4.3).

Group assignments g(·) are fixed in the internal loop:
for l2 = 1, ..., L2 do . Internal loop

x̂ij ← mg
j + (agi )

T bgj for g = g(i) and R2
ij ← (xij − x̂ij)2

Update wgij (Section 4.2)
Update Bg

q , A
g
q , and mg using weighted regression (see Section 4.1)

end for
end for
After the loops the objective function (3.1) is calculated

end for
Return parameters and group assignment with the smallest value of (3.1)
A final improvement step can be applied (see Section 4.5)

The main problem with this LTS approach is its high computational cost. Note that a total of G×n LTS regressions

must be performed (although with a moderate number of observations p and an even smaller number q of explanatory

variables if the intrinsic dimension chosen is not high). To reduce this computational burden, we propose to run

Algorithm 1 with a very reduced number of initializations B1 and very few concentration steps C since the coefficients

ãgi can be improved in subsequent steps of the algorithm.

Another possibility to explore in the algorithm would be to remove temporarily, during updates, a preset fraction

of observations xi with the highest values of Dg
i . This step would be identical to the one performed in the k-trimmed

means algorithm, [20], and would allow trimming cells and rows in a unified way.

4.4. Pseudo-code of the algorithm

Algorithm 2 shows a simplified pseudo-code of the complete iterative process being proposed, which integrates all

the parameter updates presented in the previous sections.

Given the high computational cost of performing many LTS regressions, our recommendation would be that the

number of external loops should not be too high (i.e., a not very high L1). However, note that LTS regressions would

only be done once in the external loop, and no further LTS regressions are needed inside the internal loop. Fortunately,

as with other algorithms with an analogous philosophy to k-means, not many reassignment steps are usually necessary

when starting from a ‘reasonable’ initialization of the parameters. The internal loops can therefore incorporate a

‘stopping criterion’ if Bg
q , A

g
q , and mg do not change appreciably in consecutive iterations. The number of internal

loops L2 would not be critical either because a few iterations usually allow us to get an idea of the most promising

solutions, and these will later be the only ones to be completely iterated. However, the number of random iterations

B2 and how they should be performed reasonably and efficiently is of paramount importance and discussed in more

detail in Section 4.5.1.

We also propose to incorporate a final improvement step that will be detailed in Section 4.5.2. This improvement

allows ‘retrieval’ of incorrectly trimmed cells and, also, to trim complete observations bxi when the set of outliers in
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the observation is too large for the observation to be globally reliable.

4.5. Initialization and final improvement step

4.5.1. Initialization

Numerous empirical results show that moderate values of L1 and L2 are typically necessary when starting from a

(not necessarily ‘optimal’) but ‘reasonable’ initialization. The steps described in Sections 4.1 and 4.2 seek to ensure that

the objective function is monotonically decreasing and that the weight restrictions are always satisfied. However, the

algorithm may get stuck in a local minimum of the target function when starting from an unreasonable initial solution.

Therefore, considering multiple random initializations is, in general, essential and, also, trying that these initializations

allow suitably exploring the solution space. How to provide these initializations is not a trivial problem when G or p is

large. This problem is not exclusive to this methodology and also appears when applying other more straightforward

methods of Cluster Analysis (robust and not robust). For example, when applying the TCLUST method in [21], it

was proposed to randomly select G × (p + 1) observations from the sample, while with this methodology, based on

approximating subspaces, this could be reduced to selecting G× (q + 1) observations with q ≤ p.

The initialization process would be greatly simplified if we could count on a fraction of observations that we know

for sure are little or not at all contaminated or if we have a fraction of observations already correctly assigned to the

possible groups (semi-supervised problem).

However, a large number of initializations B2 will generally be required when either G or p are high. Some

computation shortcuts can be proposed in these cases, such as only iterating more exhaustively those initializations

that are most promising in their first steps or applying parallel computing to consider a larger number B2 of random

initializations. It also makes sense to include initializations that come from applying some method for robust cluster

analysis not necessarily designed for cell outliers. A particular example of this idea to the functional case will be shown

in Section 5 using TCLUST as the initialization procedure.

4.5.2. Final improvement step

The type of trimming considered in (3.3) can lead to trimming a perhaps too high proportion of atypical cells,

for values of the trimming size α large or when there are no atypical cells in the coordinate j for some group g.

Our recommendation is to always consider a large initial trimming size α as a precaution and to retrieve incorrectly

trimmed cells later.

Recovering incorrectly trimmed cells is not a very complex task once good estimates of the approximating subspaces

are available and the xi observations have been correctly assigned to groups. As was done in Section 4.2, we can

calculate n × p residuals R2
ij = (xij − x̂ij)2 and order them globally. By examining these ordered residuals, in most

cases, you can clearly distinguish cells xij with larger and extreme values of R2
ij from other cells with smaller values

and a slow decreasing pattern. The trimmed cells with small values of R2
ij (or R2

ij very close to other cells that were

trimmed) can be recovered in a simple step of fine-tuning.

A second possibility of improvement is based on allowing complete rows to be trimmed for observations with xi

such that #{wg(i)ij = 0 : j = 1, ..., p}/p > αLTS. Note that, in this case, we do not have a full guarantee that the LTS

returns a correct group assignment since the observation of xi does not appear to be ‘comfortably’ located in that

group.
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5. Application to the functional case

For simplicity, we will always assume that the functions are observed in the interval [0, 1] in p equidistant moments

of time 0 < t1 < · · · < tp < 1. Since our proposal does not require the calculation of huge variance-covariance matrices,

we will explore the limits of our methodology by working directly with this curve discretization even though p may

be quite large. However, smaller finite-dimensional representation of the functions on an orthonormal functional basis

can be also applied when p is definitely too large.

The fundamental idea is to look for reasonable initializations of the parameters Bg
q ∈ Rp×q, Ag

q ∈ Rn×q, and

mg ∈ Rp by applying a traditional robust Cluster Analysis method (trimming of complete observations) after having

smoothed the curves and a reduction of their dimensionality that is done exclusively in the initialization stage. For

this initialization to be satisfactory, we will assume that the approximating subspaces can be reasonably represented

on a finite functional basis. Proposing reasonable initializations can be an extremely complex problem without such

assumptions in this functional case. We present below a more detailed description of the initialization process we

propose.

In a first phase, the curves are smoothed out by a robust local regression where sharp discontinuities are eliminated

or smoothed out. Our proposal is to use the lowess method [11]. Subsequently, the new p-dimensional smoothed

data is represented in a lower dimension P (P << p) considering a functional basis with functions {φ1, ..., φP }. In all

the examples that will be shown in this work we have used B-splines, although other functional bases -Fourier-type or

wavelets- could be applied depending on the data’s specific characteristics. When using B-splines with η inner nodes,

the reduced dimension is P = η + 4. This representation reduces the dimension to apply finite-dimensional methods

of robust cluster analysis and provides a second smoothing/regularization of the original curves. As a result of this

first phase we will have some coefficients {x̃i, i = 1, ..., n} representing the curves with x̃i ∈ RP (P << p), that will

be the input of the second phase.

In the second phase, we apply a robust clustering method on {x̃i : i = 1, ..., n} ⊂ RP . Our suggestion is to use

TCLUST [21] but other methods of robust cluster analysis can also be considered. After applying TCLUST with an

αTCLUST trimming level, which does not have to match the cell trimming level α, we obtain robust estimators of the

averages µ̃g ∈ RP and robust estimators of the covariance matrices Σ̃g ∈ RP×P for g = 1, . . . , G. If Φ ∈ Rp×P is

the matrix with values {φl(tj)}l=1,...,P
j=1,...,p we propose to use the mean vectors obtained with TCLUST to initialize the

mean functions mg as mg = Φµ̃g ∈ Rp. Similarly, if Vg
q ∈ RP×q is the matrix that has as columns the q eigenvectors

associated to the largest q eigenvalues of Σ̃g, a simple way to initialize Bg
q in the original p-dimensional space is to

consider Bg
q = ΦVg

q ∈ Rp×q.

In our experience, the combination of these two phases provides fairly reasonable initializations of Bg
q and mg. It

is not intended that this procedure will directly provide the optimal solution to the problem of grouping in the original

p-dimensional space, but it does provide a ‘reasonable’ initialization of Bg
q ,A

g
q and mg for the iterative process. Any

other method providing a robust estimate of the G approximating subspaces in the reduced dimensional space RP

could be used instead. Ideally, several such initializations should be incorporated whenever possible, as is done in

[30] in the computation of the MCD estimator. Thus, for example, an adaptation of the procedure in [25] could be

considered. Another possibility would be the procedure in [2], which adds trimming by observations to the HDDC

method in [4] designed to perform robust cluster analysis at high dimensions.
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As already mentioned, the possibility of trimming portions of curves was noted as an interesting line of research

in the discussion of [28]. In that discussion, it was also proposed to use ‘snipping’ techniques as in [16, 17] after

using a finite-dimensional representation of the curves on a B-spline base. Snipping can be seen as an adaptation

of the k-trimmed means method to the case of cell trimming. However, the use of the subspace grouping technique

introduced in this work makes it possible to explore dependency structures in groups with some parsimony and to

deal with cases in a higher initial dimension p. It is also well known that B-spline bases ‘expand’ to nearby nodes

(i.e., they are not null in adjacent nodes), and the trimming procedure based exclusively on a representation using

B-splines with a moderate number of nodes, would not be as local as might sometimes be desired. The representation

using B-splines is only used in the first phase of initialization of our current proposal.

6. Examples and simulation study

In this section, we give some examples and a basic simulation study showing the relevance of the proposed method-

ology. We have focused exclusively on the functional case because it provides a more precise and simpler illustration

of the methods and allows us to explore the limit of the technique by considering cases where high dimensions appear

naturally.

6.1. Examples

Consider two groups with 200 observation each, and centered around the mean functions µ1(t) = 5+10 sin(4πt) exp(−2t)+

5 sin(πt/3) + 2 cos(2πt/2) and µ2(t) = 10 + 10 cos(4πt). To generate observations from the approximating functional

subspaces we use the functions ϕ1(t) =
√

2 cos(2πt) and ϕ2(t) =
√

2 sin(2πt). Curves are discretized on a grid with

p = 100 points and independent observation errors having a normal distribution are added.

Specifically, we generate {xi}400i=1 with xi ∈ R100 such that

xij = mi(tj) + 0.5 · εij =

= µg(i)(tj) + ag(i)1zi1ϕ1(tj) + ag(i)2zi2ϕ2(tj) + 0.5 · εij ,

for tj = j/101 and j = 1, ..., 100. We set g(i) = 1 for i = 1, ..., 200 (first cluster) and g(i) = 2 for i = 201, ..., 400 (second

cluster). The zi1, zi2 and εij are independent realizations of a standard normal distribution and a11 = 3, a12 = 2 are

fixed values for the first cluster while a21 = 2, a22 = 4 are fixed values for the second cluster.

We will consider four different contamination scenarios that arise from replacing 3% of the cell values in all cases

(i.e., 1,200 corrupt cells xij out of a total of 40,000 cells):

Contamination Scheme I (scattered): A fraction of 3% of cells are selected at random. Each of these cells is

replaced with either a random value in the interval [−20,−15] with probability 0.5 or by a random value in the

interval [35, 40] with probability 0.5.

Contamination Scheme II (consecutive): We choose 60 different rows i1, ..., i60 (il ∈ {1, ..., 400}) and 60 random

numbers j1, ..., j60 with jl ∈ {0, ..., 80}. Then, 20 consecutive cells {xiljl+1, ..., xiljl+20} are replaced by a single

value in the interval [−45,−35] with probability 0.5 or by a random value chosen in the interval [35, 40] also with

probability 0.5.
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(a) Contamination scheme I (b) Contamination scheme II
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(c) Contamination scheme III (d) Contamination scheme IV
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Figure 1: Examples of the four contamination schemes. In each case, one of the observations has been highlighted using a black line.

Contamination Scheme III (asymmetric and extreme): This is similar to scheme I, but now the corrupted cells

are replaced by a random value in the interval [350, 450]. This case corresponds to corrupt cells having more

extreme values than are usually observed in the data. As one would expect, this type of extreme contamination

is particularly harmful.

Contamination Scheme IV (constant measurements): This is similar to scheme II but now the values {xiljl+1, ..., xiljl+20}

are all set at a fixed value equal to the last cell value that can be considered ‘reliable’ xiljl+1. This type of contam-

ination may arise when the measuring instrument stops working properly and does not update the measurements

for a certain period.

Figure 1 shows examples of the simulated functions using the four schemes (using different soft colors for the

groups). In each, a curve including corrupted cells has been highlighted as a continuous black line.

Panels (a) and (b) in Figure 2 show the result of applying the proposed methodology to the same datasets as shown

in Figure 1 (a) and (b) for G = 2 and an initial trimming size of α = 0.1. We consider that the intrinsic dimensions are

known and equal to q1 = q2 = q = 2. Both in these examples and in the simulation study, αLTS = 0.3 is considered.

The initialization is based on very smooth curves by applying the lowess function in R with f=1/5 (this parameter

controls the fraction of contiguous observations to be considered in the smoothing) and, later, the smoothed curves
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Figure 2: Results obtained by application of the methodology with α = 0.1 (real contamination level of 3%) for the data in Figure 1(a) and (b)
with trimmed cells represented by “◦”. Panels (c) and (d) show the ordered R2

ij and suggest a real contamination level of 3%.

are projected onto a B-spline basis with 4 nodes, a representation in dimension P = 4 + 4 = 8 (much lower than the

original dimension of the problem p = 100). Finally, we apply TCLUST with G = 2 groups and αTCLUST = 0.2 to the

coefficients {x̃i : i = 1, ..., 400} ⊂ R8 to obtain the initialization of Bg
q and mg by the procedure described in Section

5.

Figure 2(a) and (b) show the group assignment and the proportion of 10% of initially trimmed observations

(significantly higher than the actual contamination proportion of 3%). Panels (c) and (d) in the same figure show

the ordered values (from highest to lowest) of R2
ij = (xij − x̂ij)2 starting at the initial trimming value of α = 0.1.

This graph suggests that, in fact, the fraction of atypical cells should be 3% and, consequently, only the xij cells with

higher values of R2
ij are finally cut.

Figure 3 shows the final result of the procedure after refinement and displays the average group curves, the group

assignment, and the cells finally trimmed.

The procedure provides estimates x̂ij for all cells, including trimmed ones. More precisely, x̂ij should be seen as

an estimation of mi(tj). Figure 4 shows the estimated values x̂ij (in dashed red lines) for the four individual curves

highlighted in Figure 1 along with the trimmed cells in those curves marked with circles.
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Figure 3: Average curves for the estimated groups (left), detected groups and cells finally trimmed after the refinement procedure that starts from
the results in Figure 2 (center and right).
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(a) Contaminación I (b) Contaminación II
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(c) Contaminación III (d) Contaminación IV
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Figure 4: Estimated values x̂ij (red dashed lines) for the highlighted curves xi in Figure 1 along with the cells finally trimmed for those curves,
represented by “◦”.
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Figure 5: Correct classification rates applying the proposed methodology with α = 0 (non robust, blue) and α = 0.1 (robust, red).

6.2. Simulation study

In this simulation study, B = 100 data sets were generated, and the four mechanisms for creating contaminating

cells presented in the previous section (contaminations schemes I-IV) were applied to each of them. The clustering

method was applied then with no trimming α = 0 (non-robust) and with trimming level α = 0.1 (robust), with the

same robust initialization, based on smoothing and robust cluster analysis, as in the previous section. Figure 5 shows

the correct classification rate for these two approaches. It can be seen that only in the case of contamination scheme

III (asymmetric contamination with extreme values) and on a few occasions for scheme II is the correct allocation of xi

changed. This is not surprising since the clusters were well separated, but we also see that very extreme contaminations

(as in the case of scheme III) can be very harmful even in the case of well-separated clusters.

However, it is important to note that contaminating cells, even when they do not cause an incorrect group assign-

ment for the whole curve, are capable of masking and not be correctly highlighted as atypical, as we will show next.

Suppose that after running the procedure with α = 0 and α = 0.1, we decide to label as ‘atypical’ 3% of the cells xij

with higher values of R2
ij . Figure 6 shows the proportion of cells that are really atypical and correctly labeled. We

can see that the rate of correctly labeled atypical cells is, in all cases, higher when working with α = 0.1 than with

α = 0. This rate is very close to 1 in contamination schemes I, II, and III. Scheme IV is notably more complicated

because it is not immediately detectable since the values at the beginning of the corruption process are very close to

‘reasonable’ values of the curve. However, also in this complicated case, the correct atypical labeling rate is higher

when using α = 0.1 than with α = 0.

Finally, let G denote the set of indices (i, j) corresponding to the cells that were not classified as atypical in the

previous step, i.e. a total of 97% of all the cells. G includes the 400 · 100 · 0.97 = 38800 cells with smallest values of

R2
ij . Using this notation, we would like to have

SSE =
∑

(i,j)∈G

(xij − x̂ij)2 =
∑

(i,j)∈G

R2
ij ,
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Figure 6: Proportion of correctly identified atypical cells when labeling as atypical 3% of the cells with the highest R2
ij values.

small, in the sense of having good predictions for untrimmed cells. Figure 7 shows boxplots that summarize the results

obtained (using a logarithmic scale) for the B = 100 simulated sets for each contamination scenario and also in the

uncontaminated case. We see that the price paid for the robustification when α = 0.1 is not very high in the case of

uncontaminated data and that the advantage can be very large (SSE notably smaller) in the cases of contamination.

Note that these SSE are never close to 0 since the error term 0.5 · εij was added when simulating the data and the

fact that x̂ij estimates mi(tj).

17



1e+04

1e+05

1e+06

1e+07

Contamination I Contamination II Contamination III Contamination IV No Contamination

Scenario

SS
E

Trimming level

0.0

0.1

Figure 7: Sum of squared errors comparing xij and x̂ij for the 97% of cells that were labeled as atypical.

7. Examples with real data

7.1. Mortality rates in France

In this example, we will analyze mortality data available in the Human Mortality Database (Human Mortality

Database, 2013). As other authors have done before, we will focus on male mortality rates in France between 1816

and 2006. These data set is available in the demography package in R. Figure 8 presents the data, which corresponds

to the logarithm of the mortality rates by age (in years) between 0 and 99 years. Lighter shades of blue correspond to

earlier years.

At first glance, two clear groups can be observed. The years after 1945 show an apparent overall reduction in

mortality rates. This reduction is uniform across all ages, and attributable to technological advances and improvements

in the quality of life in Europe after the end of World War II. Also, a three-year transition or post-war period (1946-

1948) can be seen in which the mortality curves seem to fall halfway between these two groups. In general, mortality

rates decline as childhood progresses, grows again during adolescence, stabilizes at about 25 years, and finally has a

smooth but continuous growth in adulthood.

This data set or parts of it have been analyzed from the functional data point of view in [31], in the thesis of H.

Cevallos-Valdiviezo [8] and in the technical report that accompanies [3]. However, we think it is interesting to look at

the two-group structure (pre- and post-war) when analyzing these data. For example, it is not difficult to see that a

global average curve of the data with G = 1 would fall in a ‘no man’s land’ between the two groups, and we would

also not be able to detect differentiated ‘modes of variation’ in each of the groups, such as those shown in Figure 10.

The proposed methodology was applied with G = 2, q = 2, and α = 0.2 (a high initial trimming level that will

later be improved). The curves were not smoothed using lowess because they were already smooth enough, and the

value of αTCLUST was set at 0.2 and 0.3. The B-spline basis had eight nodes. Figure 9 shows a heatmap of the data

matrix (191 years × 100 age groups) with warmer colors for the cells where the observed value xij is higher than the

predicted value x̂ij . Values close to zero are shown in blue.
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Figure 8: Male Mortality rates by age (years) in France between 1816 and 2006 (darker shade of blue for more recent years).
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Figure 9: Heatmap for the difference xij − x̂ij between observed and predicted values. Shades of red indicate cells in which the mortality rates are
higher than expected in the age group, while shades of yellow correspond to the opposite situation.
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Figure 10: (a) Clusters for the mortality rate data, presented in two shades of blue. Trimmed cells are in black. (b) original mortality rate curves
with trimmed cells depicted as “•”. The three trimmed curves, corresponding to years 1871, 1918, and 1944, are drawn in black.

It can be seen that the periods in which mortality rates increased in France (reddish colors with higher than

expected mortality rates) correspond to the Crimean War (1853-1856), the Franco-Prussian War (1870-1871), the

First World War (1914-1918), and the Spanish flu (1917-1918). During the beginning of the Second World War

(1939-1945) there was not a very notable increase in mortality rates in France, which was due to the rapid German

occupation and the subsequent collaborationist policy. There was indeed a more marked increase in mortality in the

latter part of the conflict when France was more actively involved in the war.

Figure 10(a) shows the result of applying the two types of improvement proposed. In this figure, the data matrix

is depicted using two different intensities of blue to represent the final allocation to clusters, and the trimmed cells are

black. It can be seen that the trimmed cells are mostly concentrated in periods of war, when mortality rates increase

significantly and affect most notably the 18-40 age group fighting on the frontlines, not affecting other age groups too

much. The cells trimmed from the original curves have been marked with dots in Figure 10(b). Using the second

possibility of improvement that allows whole ‘globally’ atypical curves to be trimmed, the years 1871, 1918 and 1944

are globally trimmed and appear as continuous lines in the graph. The year 1871 corresponds to France’s defeat in the

Franco-Prussian War when France had to cede the territories of Alsace and Lorraine to Germany. 1918 corresponds

to the First World War and the Spanish flu pandemic. The year 1918 was globally atypical because the pandemic

affected all age groups, not just young soldiers fighting on the front. Finally, the year 1944 corresponds to the end

of the Second World War in France, with the Normandy landing and the liberation of Paris, which implied very high

mortality rates.

To facilitate the interpretation of the approximating spaces and to be able to interpret the meaning of the ‘scores’

better, Figure 11(a) displays the average mg curves, showing the effect of adding (symbol ‘+’ in red) or subtracting

(symbol ‘−’ in black) a multiple of the l-th column of the Bg
2 matrix (l = 1, 2 in this example). This graph is
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frequently used as it illustrates the result of the Principal Functional Component Analysis [37]. The l-th column of

the Bg
2 matrix is multiplied by twice the square root of the variance of the l-th column of the Ag

q matrix. This graph

serves to summarize the variability explained by the components that generate the approximating subspaces, which

we call ‘modes of variation’, in each of the groups detected.

The l-th column of the Ag
2 matrix for l = 1, 2 (since q1 = q2 = q = 2) provides the coordinates or scores of each

curve xi when representing them in their approximating spaces. The interpretation of these scores will be similar to

the one made in the traditional PCA except that now the approximating spaces are different for each cluster. Figure

11(b) presents a graph of the dispersion of these ‘scores’. Combined with figure 11(a), valuable information can be

obtained about the xi, which takes into account the structure in groups and the different modes of variation detected

in them. Observations with close scores in these representations indicate similar behavior and also allow the detection

of globally atypical observations within the approximation made in each cluster. Paired graphs are necessary when

considering intrinsic dimensions qg > 2.

We can see in this example that the largest positive values in the scores of the first component of the second group

(right panel of figure 11(b), which correspond to more recent years, are associated with ‘+’ values in the group ‘g = 2

and l = 1’ in figure 11(a). This component seems to reflect a global evolution within cluster 2 (years 1949 to 2006)

where log-mortality rates decrease steadily with the years and in a very uniform way in all age groups. Something

similar can be seen when interpreting the first mode of variation l = 1 in cluster 1, although it is more focused on

the reduction of infant mortality rates. In the graph of scores for cluster 2, the years 1946, 1947, and 1948 appear

relatively isolated, and we have already commented that these represent a ‘transition’ between the two groups. The

scores of cluster 1 allow us to visualize distinctly atypical years, such as 1944 (end of World War II) and the years

1870-1871 (Franco-Prussian war).

7.2. Meteorological data

We now consider the average daily temperature at 83 Spanish weather stations in the years 2007, 2008, and 2009.

Data were obtained from AEMET, the Spanish State Meteorological Agency. The fact that we consider daily data

over three years means that we have to work in a high dimension space (p = 1096).

Figure 12(a) presents a graph of these temperatures, which shows groups of curves with an approximate cyclic

pattern over the three years. This graph also shows local patterns that may be related to possible ‘waves’ of heat or cold.

These waves can be global (affecting the whole Iberian Peninsula and even the Canary Islands), but also, in many cases,

these waves affect exclusively particular areas of the country (with specific climate and geographical characteristics).

The proposed robust cluster analysis approach will attempt to detect anomalous seasonal temperatures taking into

account the behavior within the cluster to which the observation is assigned. That is to say, for instance, if in a

zone (cluster) and at a specific time there is a temporary heatwave, we will only mark as atypical data from stations

within this zone that have an exaggerated temperature value compared with what is expected in the subspace model

in that zone, or it may even be considered atypical if the heatwave is not very noticeable This is different from other

approaches that only look for atypical values without modeling and accounting for the collective behavior of the

observations within the same group.

To illustrate the methodology, clearly atypical artificial cell values have been introduced in the data set. The

observed temperatures have been replaced by values equal to 0◦C. This simulates cases in which measuring instruments
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Figure 11: (a) Clusters and different modes of variation. (b) dispersion graph for scores.
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Figure 12: Daily average temperature at 93 Spanish weather stations in 2007, 2008, and 2009 with modified values of 0◦ for two curves. These
artificially modified values for the stations of ‘Huelva R.este’ and ‘Oviedo’ are better appreciated in panel (b).

do not work properly and return a default value, for example, equal to 0◦C. In particular, the measurements of 100

consecutive days (slightly more than three months) in autumn 2007 at the ‘Huelva R. este’ weather station have been

replaced. This has also been done in the ‘Oviedo’ station in two different periods, changing 50 consecutive days (a

little more than a month and a half) in 2008 and another 50 consecutive days in 2009, also by 0◦C. In figure 12(b),

these replaced values can be seen for the stations of ‘Huelva R. este’ and ‘Oviedo’. The idea is to check whether the

procedure is capable of detecting these ‘altered’ measurements and whether it is capable of reasonably approximating

the real values, taking into account temperature observations from other stations in the same group, and information

from the untrimmed cells in that temperature curve.

We applied the procedure with G = 4, q = 2, and α = 0.1, together with a lowess smoothing with a window of

10% of contiguous observations, 10 internal nodes (P = 14), αTCLUST = 0.03 and αLTS = 0.03. The average curves

mg for the four groups are shown in Figure 13(a) and the geographical position of the weather stations, using different

colors to show the cluster assignment, in Figure 13(b). The 4 clusters found correspond essentially to

1. Cluster 1 (red): Weather stations with cold winters (sometimes you can see average daily winter temperatures

that can even be negative) but with hot summers. Later we will see that they correspond essentially to stations

in the northern and southern plateaus with a relatively extreme continental climate in the winters and summers.
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Figure 13: (a) Average curves for the four clusters. (b) Geographic position of the weather stations with their cluster assignment, using the same
colors as the corresponding average curves of the cluster to which they were assigned.

2. Cluster 2 (green): Stations with higher maximum and minimum temperatures where the frosts are unusual and

with quite high temperatures in the summer. These stations correspond to areas of southern Spain or with a

Mediterranean climate.

3. Cluster 3 (blue): Stations located in the north of Spain, most of them on the Cantabrian coast, with an Atlantic

climate, with winters that are not as cold as in Cluster 1 and summers that are milder than in Clusters 1 and

2. The proximity to the sea and abundant rainfall temper these temperatures

4. Cluster 4 (cyan): This group includes the stations of the Canary Islands, where the average temperature is mild

and temperate throughout the year between 15 and 25◦C with less variation attributable to the weather station.

There are some exceptions to this described weather behavior. The station of ‘Tenerife Norte’ is assigned to

cluster 3 of the Atlantic-Cantabrian climate, to which it does not correspond geographically, but when this curve is

represented, we can see that its behavior is quite close to this group and that it is different to the other stations in

cluster 4. Something similar happens with the stations ‘Granada’ and ‘Granada Air (airport)’, which do not have

warm winters, despite being in the south of Spain, due to their height and proximity to the Sierra Nevada, and this

makes them end up assigned to cluster 1. Figure 14 shows the stations in a relief graph in which the height of the

weather stations in the country can be seen.

Figure 15 describes the assignment of weather stations to clusters using the same color scheme as in other graphs

and marking the trimmed cells after the final improvement process in black. Although the initial trimming level

α = 0.1 is high, using the ordered graphic of the Rij , we would see that a fraction of 0.3% of cells to be cut would be a

more reasonable choice. This proportion of 0.3% trimmed cells includes all artificially introduced values for the ‘Huelva

R. Este’ and ‘Oviedo’ stations (larger black regions), which are therefore not used in determining the approximate

subspaces of their respective clusters. Other cells have been trimmed, which are due to individual outliers (from the

approximately adjusted subspace) and may require attention. Many of these cells detected as outliers, for example,

are concentrated in the station ‘Puerto de Navacerrada’, which is close to Madrid, but can be quite particular due to
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Figure 14: Allocation of weather stations (excluding the Canary Islands) to clusters on a map showing the height at which the station is located

its situation at a higher altitude, with more extreme and changing weather.

Figure 15 presents the scores of the 83 meteorological stations. We can see that stations with similar temperatures

(often due to apparent geographical proximity) are usually in the same group and have similar scores. We can also

distinguish some more atypical stations within the groups, such as ‘Puerto de Navacerrada’ in cluster 1 and ‘Tenerife

Norte’ in cluster 3.

Figure 17 shows the predicted curve (using x̂ij), and the observed values for ‘Oviedo’, predicted values in red,

actual values in green. We can see that the two curves are very close, even for the segments that were artificially

replaced with 0◦ values. The right-hand panels give a closer look at these two intervals. It is important to note that for

this reconstruction, the score has been used, which is robustly determined with the untrimmed cells. This imputation,

dependent on the cluster structure and the approximating spaces, seems more reasonable than a global imputation

that ignores the group structure and its different ‘modes of variation’.
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Figure 15: Allocation of weather stations to clusters (using the same color scheme). The trimmed cells after the refinement process are marked in
black.
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Figure 16: Scores of the 83 weather stations in their corresponding clusters.
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Figure 17: In all panels, the red line shows the predicted temperature curve for the Oviedo station. The green line shows the actual values that were
used by the method (left panel) and also those not used because they were replaced by 0◦C values (right panels).

8. Conclusions and future work

We have presented a robust Cluster Analysis methodology based on cell trimming. This approach is particularly

interesting in problems of large or moderate size since it avoids the important loss of information that occurs when

trimming entire observations with few outliers. Using cluster membership information seems reasonable when marking

these outliers. Robust fitting of approximating subspaces, which serve to describe the structure of variability within

each cluster, is very useful in this automated detection, and it seems logical that the determination of these subspaces

and outliers be done in a unified way because the two problems are interrelated. An algorithm has been proposed

along with examples of the applicability of the algorithm in simulated and real data.

This work is a first approach to the problem and there are many open lines of work that need to be addressed in

the future. For example, although the iterative procedure by alternating regressions with weights is computationally

feasible for not too high intrinsic dimensions, it has been verified that its effectiveness requires reasonable initializations.

A proposal for initialisation in the functional case has been provided but it would be interesting to establish alternative

procedures in other situations.

Another interesting line of work is to implement procedures that help the user to set the multiple parameters

needed: the number of groups G, the trimming size α and the intrinsic dimensions qg of the approximating subspaces,

and other tuning parameters of the algorithm.

The problem of determining the number of groups G is obviously complex, as is already the case with simpler

(robust and non-robust) cluster analysis problems. Furthermore, it is known that this determination of G is, in many

cases, dependent on the final goal for the user. The problem is even more involved in the case of trimming because

the α and G parameters could interact. Techniques based on monitoring changes in the target function (3.1) when

moving α and G, such as those already applied in [20] and [22], could be usefully adopted. It has been shown in this

work that ‘retrieving’ incorrectly trimmed cells in a final phase of improvement is a possibility to take into account

27



and that it makes the choice α less critical. The determination of intrinsic dimensions is another important and not

at all trivial problem. Monitoring the sample variances of the columns of the Ag
qg matrices may be useful, as is the

case in the classical PCA when the [7] procedure is followed.

Another interesting line of work would be to explore the use of information in the scores to temporarily trim the

‘less reliable’ observations (because they have poorly integrated scores in their groups) in the iterative process of the

algorithm. This would result in an algorithm that would combine the proposed methodology with the strengths of

the trimmed k-means algorithm. Considering regularization techniques in the iterative process could also be useful

in applications where it is desired to have more interpretable ‘modes of variation’, which are estimated with less

variability.

It would be important to implement a library (in R) to apply this methodology in a user-friendly way that presents

all the resulting information and allows the user to explore the effect of the choice of parameters.
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[20] Garćıa-Escudero, L. A., Gordaliza, A., and Matrán, C. (2003). Trimming tools in exploratory data analysis. Journal of Computational

and Graphical Statitistics, 12:434–449.

28
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