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Abstract—The computational effort to calculate the magneto-
static dipolar energy, MDE, of a periodic cell of N magnetic
moments is an O(N2) task. Compared with the calculation
of the Exchange and Zeeman energy terms, this is the most
computationally expensive part of the atomistic simulations of
the magnetic properties of large periodic magnetic systems. To
reduce the computational effort, the traditional Ewald method
to calculate the MDE of periodic magnetic systems has been
analyzed. The detailed analysis reveals that, for certain types of
periodic systems, there are many matrix elements of the Ewald
method identical to another elements, due to symmetry proper-
ties of the periodic systems. Computation timing experiments
of the MDE of large systems, such as Ni fcc nanowires up to
31500 magnetic moments in the periodic cell, have been carried
out and they show that the number of matrix elements that
should be calculated is approximately equal to N , instead of
N2/2, if these symmetries are used, and that the computation
time decreases in an important amount. The time complexity
of the analysis of the symmetries is O(N3), which increases
the time complexity of the traditional Ewald method and is
in contrast with the computation timing experiments. This is
explained by the fact that the MDE is a very small energy and
therefore, the usual required precision of the calculation of the
MDE is so high, about 10−6 eV/cell, that the calculations of
large periodic magnetic systems are very expensive and the use
of the symmetries reduces, in practical terms, the computation
time of the MDE in a significant amount, in spite of the increase
of the time complexity.

Index Terms—Magnetostatic dipolar energy, magnetostatic
dipolar anisotropy energy, magnetic anisotropy energy, mag-
netic layered materials, nanowires, ferromagnetic materials,
Ewald method

1. Introduction and Motivation

The most expensive part of the atomistic simulations
of the magnetic properties of periodic magnetic systems
of certain thickness, such as nanowires and films of fer-
romagnetic atoms, is the calculation of the magnetostatic
dipolar energy, MDE [1], [2], [3], [4], [5], [6], [7]. To
simulate these materials with realistic models, it is necessary
to consider a large number of atoms and the details of the
geometric structure. For instance, in the case of arrays of

magnetic nanowires, it is important to consider the structure
in the edges or surface of the nanowires and the distances
between the walls of the nanowires in the array. However,
calculations of the MDE of systems with a large number of
atoms are very expensive.

An analysis of the Ewald method in its traditional form
[8], [9], [10], [11] to calculate the MDE of periodic magnetic
systems has been carried out, finding that many matrix
elements are identical to others depending on the type of
Bravais lattice cell and if the basis atoms of the cell of
the periodic magnetic system satisfy certain conditions or
symmetries. When these symmetries are applied, the number
of matrix elements that should be calculated is approxi-
mately or even equal to the number N of magnetic moments
of the periodic cell. The usual required precision of the
MDEs is high, about 10−6 eV/cell, and the computation
of the matrices to obtain MDEs with that precision is very
expensive and hence, the application of these symmetries
reduces drastically the computing time of the calculation of
the MDEs.

This paper is organized as follows. Section 2 is devoted
to the theory of the magnetostatic dipolar interaction energy
of a lattice of magnetic moments or dipoles. Section 3
is devoted to explain the analysis of the symmetries to
reduce the computation time of the MDE. The last section
is the discussion of the computation timing results of the
calculations of the MDE of Ni fcc nanowires up to 31500
magnetic moment in the periodic cell, using and not using
the symmetries.

2. Theory of the Magnetostatic dipolar energy
of a lattice of magnetic moments

2.1. Magnetostatic dipolar energy of a lattice of
magnetic moments

The magnetostatic dipolar energy of a lattice of mag-
netic moments consists on the summation of the magnetic
dipolar interaction energies between the different pairs of the
magnetic moments of the lattice. This summation is given
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by:

Ed =
1

2

μ0

4π

∑
i

∑
j

∑
n

( �mi · �mj

|�Rn +�i−�j|3

− 3(�mi · (�Rn +�i−�j))(�mj · (�Rn +�i−�j))

|�Rn +�i−�j|5
)
, (1)

where i and j denote the atoms in the cell,�i is the position of
atom i in the cell, �mi is the magnetic moment of atom i and
the vector �Rn+�i−�j connects the magnetic moments �mi and
�mj , located at �Rn+�i and �j, respectively. �Rn is a lattice site:
�Rn = na�a + nb

�b + nc�c and n stands for n = (na, nb, nc).
The sum runs over all the lattice sites �Rn except over that
for which the denominator in Eq. 1 is zero.

If all the magnetic moments �mi and �mj of the cell are
parallel to the direction n̂, i.e., it is a ferromagnetic system,
then �mi = min̂, with i = 1−N , and the magnetic dipolar
energy is given by:

Ed(n̂) =
1

2

μ0

4π

∑
i

∑
j

mimjMij , (2)

where the quantities Mij are called the ferromagnetic dipo-
lar Madelung constants and are given by

Mij =
∑
n

( 1

|�Rn +�i−�j|3
− 3(n̂ · (�Rn +�i−�j))2

|�Rn +�i−�j|5
)
. (3)

These constants can be further developed, taking into
account the angle θ′nij between the magnetic moments and
the vector �Rn +�i−�j:

Mij =
∑
n

1− 3(cosθ′nij)
2

|�Rn +�i−�j|3
, (4)

where the cosine of the angle θ′nij is given by:

cosθ′nij =
n̂ · (�Rn +�i−�j)

|�Rn +�i−�j|
. (5)

The magnetic moment, the vector �Rn +�i − �j and the
angle θ′nij are depicted in Fig. 1).

Using the complex spherical harmonic for l = 2 and

m = 0, Y complex
2,0 =

√
5

16π
(3cos2θ − 1) [12], [13], the

Madelung constants are written as:

Mij = −
√

16π

5

∑
n

Y complex
2,0 (θ′nij , φ

′
nij)

|�Rn +�i−�j|3
. (6)

The complex spherical harmonic Y complex
2,0 (θ′nij , φ

′
nij)

can be written as:

Y complex
2,0 (θ′nij , φ

′
nij) =

2∑
m=−2

D2,m,0(α, β, γ)Y
complex
2,m (θnij , φnij) , (7)

x

y

z

Rn+i-j

θnij

ϕnij

m
θ
|
nij

Figure 1. Vector �Rn +�i − �j, the spherical angles θnij and φnij of this
vector with respect to the Cartesian reference system, the magnetic moment
�m and the spherical angle θ′nij between the vectors �Rn +�i −�j and �m.
The magnetic moment �m = mn̂.

where α,β and γ are the Euler angles that define the direc-
tion of the magnetic moments with respect to a Cartesian
reference system, D2,m,0 are the Wigner rotation matrix
elements [14], [15], and θnij and φnij are the spherical
angles of the vector �Rn+�i−�j with respect to the Cartesian
reference system (See Fig. 1).

Inserting Eq. 7 into Eq. 6, the Madelung constants turn
into:

Mij = −
√

16π

5

2∑
m=−2

D2,m,0(α, β, γ)

∑
n

Y complex
2,m (θnij , φnij)

|�Rn +�i−�j|3
. (8)

If the magnetic moments are in units of the Bohr mag-
neton μB , then:

Ed(n̂) =
μ2

B

2

μ0

4π

∑
i

∑
j

mimjMij . (9)

The quantity μ2

Bμ0/8π is equal to 1/c2 in atomic Ryd-
berg units. Therefore, the magnetic dipolar energy in atomic
Rydberg units is given by:

Ed(n̂) =
1

c2

∑
i

∑
j

mimjMij . (10)

The Madelung constants Mij can be written as a combi-
nation of real spherical harmonics, using the relationship
between the real and complex spherical harmonics (See
Eq. 27 in the Appendix A) [12], [13]:

Mij = k
[
D2,0,0

∑
n

Y real
2,0 (θnij , φnij)

|�Rn +�i−�j|3
+

2∑
m=1

D2,m,0

∑
n

Y real
2,m (θnij , φnij) + iY real

2,−m(θnij , φnij)√
2(−1)m|�Rn +�i−�j|3

+

2∑
m=1

D2,−m,0

∑
n

Y real
2,m (θnij , φnij)− iY real

2,−m(θnij , φnij)√
2|�Rn +�i−�j|3

]
,

(11)
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where k = −
√

16π

5
. Let’s define the matrix elements

Sm(i, j):

Sm(i, j) =
∑
n

Y real
2,m (θnij , φnij)

|�Rn +�i−�j|3
(12)

with m = −2,−1, 0, 1, 2. Using Eq. 11 and the quantities
Sm(i, j) defined in Eq. 12 and with some algebra calcula-
tions, the Madelung constants can be written as:

Mij = k
[
S0(i, j)D2,0,0 +

S1(i, j)√
2

(−D2,1,0 +D2,−1,0)+

iS−1(i, j)√
2

(−D2,1,0−D2,−1,0)+
S2(i, j)√

2
(D2,2,0+D2,−2,0)+

iS−2(i, j)√
2

(D2,2,0 −D2,−2,0)
]
. (13)

The Wigner rotation matrix elements have some prop-
erties [14], [15] that can be used to simplify the Madelung
constants Mij (See Appendix B): D2,−1,0 = −D∗

2,1,0 and
D2,−2,0 = D∗

2,2,0. Taking into account these properties and
Eq. 13, and with some additional algebra, the Madelung
constants Mij can be finally written as:

Mij = k
[
S0(i, j)D2,0,0 − S1(i, j)

√
2 Real(D2,1,0)

+ S−1(i, j)
√
2 Imag(D2,1,0) + S2(i, j)

√
2 Real(D2,2,0)

− S−2(i, j)
√
2 Imag(D2,2,0)

]
. (14)

The MDE is calculated using Eqs. 10, 12 and 14. The
matrix elements Sm(i, j) in Eq. 12 are computed by means
of the Ewald summation method [8], [9].

2.2. Magnetostatic dipolar anisotropy energy

The magnetostatic dipolar anisotropy energy, MDAE, is
the difference between the magnetostatic dipolar energies
for two different magnetization directions. For instance, in
the case of magnetizations �M parallel and perpendicular to
the c-axis ĉ of a layered system (this axis is perpendicular to
the plane of the layers), the magnetostatic dipolar anisotropy
energy is given by:

MDAE(‖,⊥) = Ed(n̂ ‖ ĉ)− Ed(n̂ ⊥ ĉ) , (15)

where n̂ = �M/M is a unitary vector along the magne-
tization, ĉ is a unitary vector along the c-axis and the
magnetostatic dipolar energies Ed’s are given by Eq. 10,
with the corresponding orientations of the magnetizations.

In the study of the MDAE of magnetic layered systems,
the directions of interest are the axis perpendicular and
parallel to the plane of the layers. The parallel axis is not
well defined, because there are many axes lying in the plane
of the layers. Usually the perpendicular axis is denoted as
the z axis and the parallel axis could be any axis lying in
the xy plane. This is the convention that we have followed
in this paper, unless otherwise noted.

3. Analysis of the Symmetries of the S matrices

The magnetostatic dipolar energy, MDE, is a long-range
interaction and hence, in a periodic system of N magnetic
moments, the interaction of each magnetic moment i with
every other magnetic moment j must be calculated. The
MDE of periodic magnetic systems is calculated by means
of the Ewald’s lattice summation method [8], [9], [10], [11].
This method is used to calculate the five matrix elements
Sm(i, j) (m=-2,-1,0,1,2), Eq. 12, related to the magneto-
static dipolar interaction between the magnetic moments i
and j in all the cells (the real cell and the replicated cells).
These five matrix elements are then, used to calculate the
matrix element Mij through Eq. 14. The calculation of
the MDE, Eq. 2, of periodic magnetic systems using the
traditional Ewald method is an O(N2) task, because there
are N(N − 1)/2 + 1 different matrix elements Mij in the
summation of that equation, or six times N(N − 1)/2 + 1
different matrix elements Sm(i, j), as can be noticed in
Eq. 14. A detailed analysis of the time complexity of the
traditional Ewald method was published by Petersen [10]
and Wang and Holm [11].

Each Madelung constant Mij (or equivalently each of
the five Sm(i, j) matrix elements) is a summation over the
infinite number of lattice sites �Rn of the magnetic periodic
system (See Eq. 3). The summation to calculate Mij in
Eq. 3 is obtained by applying cutoff distances in real and
reciprocal spaces and it converges rapidly. The MDEs and
MDAEs are very small energies. The Madelung constants
Mij must be calculated with enough precision to ensure
MDEs, and especially MDAEs, with a precision of at least
10−6 eV/cell. The MDAE is the difference between two
MDEs and both must be enough accurate, to obtain the
MDAE as an accurate difference, without effects due to the
compensation of errors.

A strategy to reduce the computation time of the cal-
culation of the MDE with high precision, without changing
the cutoff distances, consists on using the symmetries of
the periodic magnetic system. To use those symmetries,
one should consider and analyze the S matrices in more
detail. The S matrices of the Ewald method applied to the
calculation of the magnetostatic dipolar energy are given by
Eq. 12, where Y real

2,m is a real spherical harmonic of l = 2

and m = −2,−1, 0, 1, 2, �i and �j are the positions of the i
and j atoms in the cell, respectively, and �Rn is a Bravais
lattice vector or lattice site, i.e., �Rn = na�a + nb

�b + nc�c,
with �a, �b and �c equal to the lattice vectors of the cell, and
na, nb and nc are integer numbers. The position vector of
atom i is given by �i =(xi, yi,zi).

The real spherical harmonics in the definition of Sm(i, j)
depend on θnij and φnij and are obtained from Eq. 29
by making the following replacements in that equation: x
replaced by Xn + xi − xj , y replaced by Yn + yi − zj and
z replaced by Zn + zi − zj and r = |�Rn +�i−�j|.

The S matrices are symmetric, i.e., Sm(i, j) = Sm(j, i).
This is taken into account in all the calculations and this
does not depend on the type of Bravais lattice cell, nor in
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the values of the vectors�i−�j of the basis atoms of the cell.
If the vectors�i−�j and �k−�l of the basis atoms of the cell

and the Bravais lattice cell satisfy certain conditions, then
the matrix elements Sm(i, j) are equal to ± Sm(k, l), with
m = −2,−1, 0, 1, 2. These symmetries or conditions allow
us to reduce the number of matrix elements that should be
calculated.

The general symmetry or condition that must be satisfied
is as follows: If any vector �Rn+�i−�j is equal to the vector
�T + �k −�l, such as

Y real
2,m (θnij , φnij)

|�Rn +�i−�j|3
= ±Y real

2,m (θtkl, φtkl)

|�T + �k −�l|3
(16)

where the vector �T should be a Bravais lattice vector, i.e.,
�T = �Rp = pa�a+pb�b+pc�c, with pa, pb and pc being integer
numbers, then Sm(i, j)± Sm(k, l).

If �T = �Rp, then Eq. 16 implies a reordering of the sums
in the summation that defines Sm(i, j), Eq. 12, but the value
of the summation does not change, except for a sign in some
cases, depending on the value of m. On the contrary, if �T
is not a Bravais lattice vector, then Eq. 16 is not satisfied
and the absolute value of the summation in Eq. 12 changes.

The Eq. 16 will be satisfied depending on the values
of �i − �j and �k − �l, and on the type of Bravais lattice cell.
There are at least eight symmetries or conditions of �i − �j
and �k − �l that could lead to the fulfillment of Eq. 16. The
first and second conditions satisfy Eq. 16 for any type of
Bravais lattice cell:

1) If �i−�j is equal to �k−�l then Sm(k, l) = Sm(i, j) for
any value of m:

If�i−�j = �k−�l, then �T+�k−�l = �Rn+�k−�l = �Rn+�i−�j,
θtkl = θnkl = θnij and φtkl = φnkl = φnij , which implies
that Sm(i, j) = Sm(k, l).

An implication of this symmetry is that the interaction
of atom i of the cell with all the atoms i of the replicated
cells, is the same that the interaction of atom j with all
the atoms j of the replicated cells. This, in turn, means
that all the elements of the diagonal of the correspond-
ing Sm matrices are identical: Sm(i, i) = Sm(1, 1), with
m = −2,−1, 0, 1, 2. Hence, to calculate the elements of
the diagonal of Sm we need to calculate only one element,
Sm(1, 1). Notice that S0(1, 1) is different from S2(1, 1) and
so on for m = −2,−1, 0, 1, 2. Only five matrix elements
are necessary to calculate the corresponding diagonals of
the five Sm matrices. The fact that Sm(i, i) = Sm(1, 1) for
any value of i is applied in all the calculations, not only
on the calculations that use the symmetries of the periodic
magnetic system.

2) If �i−�j is equal to -(�k −�l) then Sm(k, l) = Sm(i, j)
for any value of m:

This symmetry comes from the fact that the S matrices
are symmetric: If�i−�j = −�k−�l → �Rn+�i−�j = �Rn+�l−�k,
which means that Sm(i, j) = Sm(l, k). The matrices Sm

are symmetric matrices, therefore Sm(l, k) = Sm(k, l), and
Sm(i, j) = Sm(k, l).

The following six symmetries or conditions do not fulfill
Eq. 16 for all the Bravais lattice cells. If the cell belongs to

the following group of Bravais lattice cells: simple cubic,
fcc, bcc, simple tetragonal and simple orthorhombic, then
�T will be a Bravais lattice vector �Rp of the cell and the
conditions 3-8 will satisfy Eq. 16.

3) If xi−xj=-(xk−xl), yi−yj=yk−yl and zi−zj=zk−zl,
then, taking into account the dependence on xi − xj and
xk − xl of Y2,m, we find:

S−2(k, l) = −S−2(i, j)

S−1(k, l) = S−1(i, j)

S0(k, l) = S0(i, j) (17)

S1(k, l) = −S1(i, j)

S2(k, l) = S2(i, j) .

The Eqs. 17 can be proved as follows. If xi − xj=-
(xk − xl), yi − yj=yk − yl and zi − zj=zk − zl, then:

Xnij = Xn +xi−xj = Xn− (xk −xl) = Xn +xl−xk

Ynij = Yn + yi− zj = Yn +(yk − yl) = −(−Yn +xl−xk)

Znij = Zn+zi−zj = Zn+(xk−zl) = −(−Zn+zl−zk) .
(18)

These three equations mean that |�Rn + �i − �j| =
|�T + �l − �k|, Y2m(θnij , φnij) = ±Y2m(θtlk, φtlk). If �T =

(Xn,−Yn,−Zn) is a Bravais lattice vector, let’s say, �T =
�Rp, then Sm(i, j) = ±Sm(l, k) = Sm(k, l) and |�Rn +�i −
�j| = |�T +�l−�k| = |�Rp +�l−�k|. The sign in front of Y2m is
also the sign in front of Sm(k, l). The sign depends on the
value of m.

The vector �T is the Bravais lattice vector �Rp. Hence,
the coordinates above are equal to:

Xnij = Xn+xi−xj = Xn−(xk−xl) = Xn+xl−xk =

Xp + xl − xk = Xplk

Ynij = Yn+yi−zj = Yn+(yk−yl) = −(−Yn+xl−xk) =

− (Yp + yl − yk) = −Yplk

Znij = Zn+zi−zj = Zn+(xk−zl) = −(−Zn+zl−zk) =

− (Zp + zl − zk) = −Zplk . (19)

With these equations we can calculate the real spherical
harmonics:

Y real
2,−2

(θnij , φnij) = C2XnijYnij/R
2

nij =

− C2XplkYplk/R
2

plk = −Y real
2,−2

(θplk, φplk)

Y real
2,−1

(θnij , φnij) = C1YnijZnij/R
2

nij =

C1YplkZplk/R
2

plk = Y real
2,−1

(θplk, φplk)

Y real
2,0 (θnij , φnij) = C0(3Z

2

nij −R2

nij)/R
2

nij =

C0(3Z
2

plk −R2

plk)/R
2

plk = Y real
2,0 (θplk, φplk)

Y real
2,1 (θnij , φnij) = C1XnijZnij/R

2

nij =

− C1XplkZplk/R
2

plk = −Y real
2,1 (θplk, φplk)

Y real
2,2 (θnij , φnij) = C2(X

2

nij − Y 2

nij)/R
2

nij =

C2(X
2

plk − Y 2

plk)/R
2

plk = Y real
2,2 (θplk, φplk) , (20)
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where Rnij = |�Rn + �i − �j|, Rplk = |�Rp + �l − �k|, and
the constants are given by C0 =

√
5

16π
, C1 =

√
15

4π
and

C2 =

√
15

16π
.

Considering Eq. 12 and 20, |�Rn +�i−�j| = |�Rp +�l−�k|
and Sm(l, k) = Sm(k, l) for any value of m, we obtain the
matrix elements in Eqs. 17.

4) If xi−xj=xk−xl, yi−yj=-(yk−yl) and zi−zj=zk−zl,
then, taking into account the dependence on yi − yj and
yk − yl of Y2,m:

S−2(k, l) = −S−2(i, j)

S−1(k, l) = −S−1(i, j)

S0(k, l) = S0(i, j) (21)

S1(k, l) = S1(i, j)

S2(k, l) = S2(i, j) .

5) If xi − xj=xk − xl, yi − yj=yk − yl and zi − zj=-
(zk−zl), then, taking into account the dependence on zi−zj
and zk − zl of Y2,m:

S−2(k, l) = S−2(i, j)

S−1(k, l) = −S−1(i, j)

S0(k, l) = S0(i, j) (22)

S1(k, l) = −S1(i, j)

S2(k, l) = S2(i, j) .

6) If xi − xj=-(xk − xl), yi − yj=-(yk − yl) and zi −
zj=zk − zl, then, taking into account the dependence on
xi − xj , yi − yj , xk − xl and yk − yl of Y2,m:

S−2(k, l) = S−2(i, j)

S−1(k, l) = −S−1(i, j)

S0(k, l) = S0(i, j) (23)

S1(k, l) = −S1(i, j)

S2(k, l) = S2(i, j) .

7) If xi − xj=-(xk − xl), yi − yj=yk − yl and zi − zj=-
(zk−zl), then, taking into account the dependence on xi−xj ,
zi − zj , xk − xl and zk − zl of Y2,m:

S−2(k, l) = −S−2(i, j)

S−1(k, l) = −S−1(i, j)

S0(k, l) = S0(i, j) (24)

S1(k, l) = S1(i, j)

S2(k, l) = S2(i, j) .

8) If xi − xj=xk − xl, yi − yj=-(yk − yl) and zi − zj=-
(zk−zl), then, taking into account the dependence on yi−yj ,

zi − zj , yk − yl and zk − zl of Y2,m:

S−2(k, l) = −S−2(i, j)

S−1(k, l) = S−1(i, j)

S0(k, l) = S0(i, j) (25)

S1(k, l) = −S1(i, j)

S2(k, l) = S2(i, j) .

The quantities Xn, Yn and Zn in the equations are inside
a summation over an infinite number of lattice vectors �Rn.
If the vector �T is also a Bravais lattice vector, i.e., �T =
(Xn,−Yn,−Zn) = �Rp = (Xp, Yp, Zp) = pa�a + pb�b+ pc�c,
then the order of the sums in the summation is changed. The
result of the sums, however, does not change by changing
the order of the sums. If �T is not a Bravais lattice vector
or lattice site, i.e., �T �= �Rp, for the studied cell, then the
summation changes and Sm(i, j) �= Sm(k, l).

These symmetries have been tested in the 14 Bravais lat-
tices. The first two symmetries, 1) and 2), are satisfied by the
14 Bravais lattices. As regards to the other six symmetries,
3)-8), the result depends on the type of Bravais lattice. Some
lattices satisfy the six symmetries, some lattices satisfy a
few symmetries and the triclinic lattice does not satisfy any
of the six symmetries. The analysis of the symmetries has
been tested in systems like nanowires, disordered nanowires,
crystals, slabs, ribbons and multisegmented nanowires.

If the basis atoms of the cell do not satisfy the conditions
3)-8), then the number of S matrix elements that should be
calculated will not be reduced, even if the cell is one of
the lattice that satisfy the symmetries 3)-8). If some atoms
satisfy the conditions 3)-8), then the number of S matrix
elements will be reduced according to Eqs. 17,21-25. The
more basis atoms that satisfy conditions 3-8, the lesser the
number of S matrix elements that should be calculated.

If the periodic system satisfy the conditions 3)-8), then
many matrix elements are identical to other elements due to
symmetry reasons, or differ only in the sign of the matrix
elements. It is not necessary to calculate all of them. Only
one of the identical elements should be calculated. Hence,
using the symmetries of the periodic magnetic system, the
number of S matrix elements that should be calculated is
reduced drastically, and hence also the computation time is
reduced.

The algorithm to analyze the above symmetries and
to determine which elements of the S matrix should be
calculated and which should not be calculated, consists on a
conditioned comparison of the pairs of vectors�i−�j and �k−�l
of the basis atoms of the cell. The pairs that satisfy some
of the symmetries or conditions are not compared anymore.
This type of conditioned comparison is an O(N3) task. This
comparison is valid for any type of lattice. The application
of the symmetries has been tested in the 14 Bravais lattices
and in the following periodic magnetic systems: crystals,
nanowires, multisegmented nanowires, ribbons, slabs, nan-
otubes and spheres of magnetic moments, obtaining a signif-
icant decrease of the computation time. In the next section,
the computation timing results obtained for a particular case
of large periodic magnetic systems, with fundamental and
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technological interest, Ni fcc nanowires, are analyzed and
explained.

4. Reduction of the Computation Time of the
Calculation of the MDE of Ni fcc Nanowires

A Ni fcc nanowire is a nanowire of finite radius, com-
posed by Ni atoms with the structure of bulk Ni fcc (See
Fig. 2). The periodic cell that contains a Ni fcc nanowire of
radius r consists on a tetragonal cell with lattice parameters
s, s and h, where s = 2r+i, h is the height of the nanowire
in the cell and i is the distance between the external walls
of the nanowires of adjacent cells. The height h and the
distance i are kept fixed in all the calculations to h = a
and i = 10a, where the quantity a is the experimental
value of the lattice parameter of bulk Ni fcc, 3.52 Å.
The tetragonal cell and the basis atoms are such that the
nanowires are infinite along the main axis. Nanowires with
a radius between r = a a r = 50a were studied. Each
Ni atom has a magnetic moment. The computation timing
experiments of the MDE of Ni fcc nanowires have been
carried out in a computer with a 2.50 GHz Intel(R) Xeon(R)
E5-2640 processor.

Figure 2. Depiction of a Ni fcc nanowire with radius of 3a, a = 3.52 Å.

Fig. 3 shows the MDE along z axis, MDE(z) and the
magnetostatic dipolar anisotropy energy between z and x
axis, MDAE(z,x)=MDE(z)-MDE(x), of a Ni fcc nanowire
of radius 30a as a function of the reciprocal space cutoff
distance, gc. The periodic cell of this nanowire has 5025
atoms. The real space cutoff distance, rc, was kept fixed to
20a. The MDE and MDAE decrease as gc increases and
converge towards some values. To obtain MDE and MDAE
with the desired precision of 10−6 eV/cell, the reciprocal
space cutoff distance should be at least 9/a radians/Å for
this nanowire. We have studied Ni fcc nanowires of different
sizes and we have found the same behaviour of MDE and
MDAE vs gc and also similar minimum values of gc dis-
tances, 8/a-9/a radians/Å, to obtain MDEs and MDAEs with
10−6 eV/cell of precision. After running several tests, values
of rc = 38a and gc = 9/a were used in all the calculations
of Ni fcc nanowires, to obtain MDEs and MDAEs with a
precision of 10−6 eV/cell, the usual required precision for
MDEs and MDAEs.

The computing times of the calculation of the MDE of
a Ni fcc nanowire with a radius of 30a, as a function of
gc with and without applying the symmetries, are plotted in
Fig. 4. The computing time of the calculations done without
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Figure 3. MDE(z) and MDAE(z,x)=MDE(z)-MDE(x) vs reciprocal space
cutoff distance of a Ni fcc nanowire with radius of 30a. Real space cutoff
distance=20a.

using the symmetries grows quadratically with gc, while
the computing time of those calculations done using the
symmetries grows linearly and very slowly with gc, being
almost constant with respect to gc. The two curves cross at
gc = 0.8/a and below the crossing point, the computation
time of the calculations without using the symmetries is
lower than the computation time using the symmetries.
However, below the crossing point, the MDEs and MDAE
have a low precision, of about 10−3-10−4 eV/cell, in the
studied nanowires. It is necessary to use higher values,
gc=9/a radians/Å, to obtain the MDEs and MDAE with the
required high precision of 10−6 eV/cell.
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Figure 4. Computation time of the MDE of a Ni fcc nanowires with radius
of 30a vs reciprocal space cutoff distance. Real space cutoff distance=20a.

The computation timing results using and not using the
symmetries have been plotted in Fig. 5 versus the number
of atoms of the Ni fcc nanowires. These are calculations of
the MDE of periodic Ni fcc nanowires of increasing radius,
and hence, of increasing number of atoms. It can be noticed
in Fig. 5 that the reduction of the computation time is very
important. For instance, the calculation of a Ni fcc nanowire
of 5025 atoms takes about 27000 seconds not using the
symmetries, and about 130 seconds using the symmetries, in
the mentioned computer and with the same cutoff distances.

Another way to realize the reduction of the computation
time is to fix the amount of the computation time of the
calculations and to find out the number of atoms of the
nanowires calculated in that same fixed amount of time. For
instance, a calculation of a nanowire of 19000 atoms using
the symmetries and another calculation of a nanowire of
2900 atoms not using the symmetry, will take approximately
the same amount of time, about 6000 seconds.
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Figure 5. Computation time vs number N of atoms of the Ni fcc wire, not
using and using the symmetries of the S matrix.

The computation time of the calculations not using the
symmetries grows faster than the computation time of the
calculations using the symmetries. This can be noticed in
Fig. 5. Another interesting fact is that the use of the sym-
metries has a much larger impact on the calculations of large
systems than on the calculations of small systems: For the
smallest nanowire studied without using the symmetries, the
reduction factor of the computation time is about six and for
the largest nanowire studied without using the symmetries,
which has 5025 atoms, the reduction factor is about 200.

To analyze the dependence on N of the computation
time of the calculations done using the symmetries, the
two main contributions to the computation time have been
considered: The time to find and analyze the symmetries of
the periodic magnetic system and to determine which matrix
elements should be calculated, ta, and the time to calculate
the matrix elements that should be calculated, tm. These
two times are plotted in Fig. 6. The computation time ta, is
larger than tm and ta increases faster than tm as the number
N of atoms increases.
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Figure 6. Computation time to analyze the symmetries, ta, and to calculate
the matrix elements, tm, vs the number of atoms of Ni fcc nanowires, when
the symmetries of the periodic magnetic system elements are used.

If the symmetries of the periodic magnetic system are
not used, then tm is proportional to N2 for large values
of N . If the symmetries are used, then tm is proportional
to N . To understand why tm is proportional to N if the
symmetry is used and to N2 if the symmetries are not used,
we have to further analyze tm. The time to calculate the S
matrix elements is proportional to the number M of matrix
elements: tm = aM . If the symmetries are not used, then
the number M of matrix elements of S is not reduced and
M is equal to N(N − 1)/2 + 1, which means that M is
proportional to N2 for large values of the number N of
atoms of the cell. If the symmetries are used, then M is

approximately equal to N . This fact can be noticed in Fig. 7.
The number of matrix elements that should be calculated,
versus the number of atoms, when the symmetries are
used, has been plotted in Fig. 7. It can be noticed in that
Figure that the number of matrix elements that should be
calculated is practically equal to the number of atoms N .
For instance, the rightmost point in Fig. 7 corresponds to a
Ni fcc nanowire with N=31417 atoms and M=31574 matrix
elements.
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Figure 7. Number M of matrix elements that should be calculated vs
number N of atoms of the Ni fcc wire, when the symmetries of the periodic
magnetic system elements are used.

This dependence of the number M of matrix elements
on the number N of magnetic moments explains the depen-
dence on N of the computation time to calculate the matrix
elements: tm = bN , when the symmetries are used, and
tm = b[N(N − 1)/2 + 1] ≈ cN2, when the symmetries are
not used.

5. Conclusions

The symmetry properties of periodic magnetic systems
of N magnetic moments have been analyzed, in order
to reduce the number of matrix elements that should be
calculated in the traditional Ewald method utilized to cal-
culate the MDE. The number of matrix elements of this
method is N2/2 and hence, its time complexity is O(N2).
It has been shown that if the periodic magnetic system has
certain symmetries, then there are many matrix elements are
identical to other elements, except the sign of some matrix
elements. This reduces the number of matrix elements to
approximately N , according to computation timing experi-
ments carried out in large periodic magnetic systems, such
as large Ni fcc nanowires up to 31500 magnetic moments,
instead of N2/2, decreasing considerably the computation
time of the MDE. This reduction is in contrast with the
fact that the analysis of the symmetries is an O(N3) task,
which increases the time complexity of the traditional Ewald
method. The origin of this contrast is that the MDE and
MDAE are very small energies and therefore, the usual
required precision to calculate these energies is so high,
10−6 eV/cell, that the calculation of the matrix elements
is very expensive and, in practice, the computations carried
out using the analysis of the symmetries are much faster,
in spite of the larger time complexity of the analysis of the
symmetries.

870



Acknowledgments

This work was supported by MINECO of Spain (Grant
MAT2014-54378-R), Junta de Castilla y León (Grant
VA050U14) and the University of Valladolid. We acknowl-
edge the facilities provided by Centro de Proceso de Datos
- Parque Cientı́fico of the University of Valladolid.

Appendix A. Complex and Real Spherical Har-
monics

The complex spherical harmonics are defined by [12],
[13]:

Y complex

l,|m| = Θl,|m|(θ)e
i|m|φ

Y complex

l,−|m| = (−1)|m|Θl,|m|(θ)e
−i|m|φ = (−1)|m|Y complex∗

l,|m|

(26)

The complex spherical harmonics can be also written as
a combination of real spherical harmonics [12], [13]:

Y complex
l,0 = Y real

l,0

Y complex

l,|m| =
(−1)|m|√

2

(
Y real
l,|m| + iY real

l,−|m|

)
(27)

Y complex

l,−|m| =
1√
2

(
Y real
l,|m| − iY real

l,−|m|

)

From Eqs. 27 we obtain the real spherical harmonics as
a combination of complex spherical harmonics:

Y real
l,0 = Y complex

l,0

Y real
l,|m| =

1√
2

(
Y complex

l,−|m| + (−1)|m|Y complex

l,|m|

)
(28)

Y real
l,−|m| =

i√
2

(
Y complex

l,−|m| − (−1)|m|Y complex

l,|m|

)

The real spherical harmonics of l = 2 are given by [12],
[13]:

Y real
2,0 =

√
5

16π
(3cos2θ − 1) =

√
5

16π

3z2 − x2 − y2 − z2

r2

Y real
2,1 =

√
15

4π
sinθcosθcosϕ =

√
15

4π

xz

r2

Y real
2,−1

=

√
15

4π
sinθcosθsinϕ =

√
15

4π

yz

r2
(29)

Y real
2,2 =

√
15

16π
sin2θcos2ϕ =

√
15

16π

x2 − y2

r2

Y real
2,−2

=

√
15

16π
sin2θsin2ϕ =

√
15

4π

xy

r2
.

Appendix B. Some properties of the rotation
matrix elements

The Wigner rotation matrix elements are given by [14],
[15]:

Dl,m′,m(α, β, γ)∗ = (−1)m′−mDl,−m′,−m(α, β, γ)

Dl,m′,m(α, β, γ) = e−im′αdl,m′,m(β)e−imγ (30)

dl,m′,m(β) = (−1)m′−mdl,−m,−m′(β)

If the above definition is applied to the specific cases
l = 2, m′=±1, ±2 and m = 0, we obtain:

D2,1,0 = e−iαd2,1,0(β)

D2,−1,0 = −eiαd2,1,0(β) = −D∗2,1,0 (31)

D2,−2,0 = D∗
2,2,0 .
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