Binary RDF for Scalable Publishing,
Exchanging and Consumption in the
Web of Data

Javier D. Ferandez

Supervisors
Miguel A. Martinez-Prieto and Pablo de la Fuente Claudio Gutierrez
Department of Computer Science Department of Computer Science
University of Valladolid, Spain University of Chile, Chile

DISSERTATION LEADING TO OBTAIN THE DEGREE OFDOCTOR IN COMPUTER SCIENCE

DataWeb Research. Department of Computer Science. Universiof Valladolid, Spain
Department of Computer Science, University of Chile, Chile

October 2013

Acknowledgments

First of all, I am aware that | am writing here one of the most read messdgés thesis. Thus, |
am using part of these lines to do a little warning; you won't find the algorithrthe mathematical
expression to solve all your problems, you won'’t even find conscientieflexions opening minds. This
thesis is just a story of how I, with the priceless support of my supervisptted an open problem
and carried out a research leading to efficient solutions. Much like theéesyahe plot is a passionate
travel throughout some unexplored fields and includes a good deatiifise, hard working and, finally,
success once the work obtained acceptation by the scientific community.

So these are the easiest acknowledgments | have ever written as | oalyohast the main actors
of this movie, of this research story. This thesis is almost exclusively duegoeViA. Marinez-Prieto,
Claudio Gutierrez and Mario Arias, who have been advisors, colleauefiends. | could write two
books as large as this one to describe our experiences together whjctoarand forever, part of my
life memories.

Thanks to Pablo de la Fuente for the support, and also to a full list of cieasawho don't even
realize to be part of the plot in some way: Axel Polleres, Gonzalo Nav&wodrigo Ginovas, Diego
Seco, Sandra'\lvarez, Nieves Brisaboa and all LDB (Susana, Guillermo, Fari, ...), atah@ long
etcetera.

Thanks to those contributors to my life who do not expect a thank you; Vibiego, Sara, Maa,
Pamela, Guillermo, Gonzalo, Gaby, Miguel, Irene, the Yuzzers and theAB216: Alejandro, Jorge,
Zubi and Dani.

Thanks to the closest family in my heart, although some of them are already gtanks to my
parents who teach me everything, my brothers and sisters-in-law who sarahd love me despite
my absences, my little nephew whom | hope to see grow being always "Hifrieesl“ and, of course,
Estefafia, an undeserved gift, the reason of my happiness.

Finally, please remember again that this is just a little story, a minimum part of a @edmg (and
much better) saga of researching, but a story made with passion, the aasi@engVliguel and Claudio
passed on to me and which | will try to spread in the next chapters.

Agradecimientos

Quisiera comenzar destacando que soy consciente de que escridasineas uno de los mensajes
mas importantes de esta tesis. Empleo por tanto este espacio para realizaguéia @dvertencia;
posiblemente no encuentre el algoritmo o exgnesnatenatica que solucione todos sus problemas, ni
tan siquiera concienzudas reflexiones que expandan su mente. Esés tesi$lo la historia de como
yo, con el impagable apoyo de mis tutores, advertimos un problema abiertcagntieva cabo una
investigacbn para solucionarlo de la mejor manera posible. Al igual que en lasufad, este goin es
una viaje apasionado a tiesde campos inexplorados, e incluye una buena dosis de sacrificajptrab
duro y, finalmenteéxito, ya que nuestro trabajo ha sido aceptado por la comunidadficent

Asi pues, estos son los agradecimient@saciles que nunca haya escrito, ya guécamente tengo
gue listar los principales actores de estaqueh, de esta historia de investigati Esta tesis se debe, casi
en exclusiva, a Miguel A. Maimez-Prieto, Claudio Guirez y Mario Arias, quienes han sido consejeros,
colegas y amigos. Padrescribir dos libros tan largos como este mismo con nuestras vivencias juntos
gue sean, ahora y por siempre, parte de mi memoria vital.

Gracias a Pablo de la Fuente por el apoyocamo a una lista de personajes que ni tan siquiera son
conscientes de su gran porte en est&cpid: Axel Polleres, Gonzalo Navarro, Rodrigar®@vas, Diego
Seco, Sandralvarez, Nieves Brisaboa y todo el LDB (Susana, Guillermo, Fari, ...), Jauyo largo
etcetera.

Gracias a aquellos contribuyentes a mi vida que no esperan las graicts; Wiego, Sara, Méaa,
Pamela, Guillermo, Gonzalo, Gaby, Miguel, Irene, los Yuzzers y el antid\B27: Alejandro, Jorge,
Zubiy Dani.

Gracias a mi familia que sigue cercana en el conaaunque algunos hayan partido ya lejos. Gracias
a mis padres, quienes me eiigmn todo, a mis hermanos yi@adas que me soportan y me quieren a
pesar de mis ausencias, a mi sobrino a quien espero seguir viendoomece‘su mejor amigo” y, por
supuesto, a Estefam un regalo que no merezco, ladazle mi felicidad.

Finalmente, recuerde de nuevo por favor que esto etamra pequiga historia, una fimima parte
de una saga de investiganisin fin, pero una historia hecha con pasila misma paén que Miguel y
Claudio me han transmitido y que tragate transmitir a lo largo de los@{imos cafitulos.

Abstract

Current data deluge is flooding the Web with huge amounts of data reprdsarRDF, founding the
so-called “Web of Data”. Data about bioinformatics, geography, olatoetworks, among others, are
already publicly available and interconnected in very active projecth, asitinked Open Data.

Several researching areas have emerged aside; RDF indexing aryihgutypically through the
SPARQL language), reasoning, publication schemes, ontology matchidig,vRualization, etc. Se-
mantic Web topics related to RDF are, in fact, trending topics in almost everyutorggonference.

However, three facts can be gleaned from the current state of the &ttteiyvork is done in un-
derstanding the RDF essence before researching or applying this daéd, ijdraditional RDF repre-
sentations stay influenced by the old document-centric perspective ofeéhe adhtaining high levels
of redundancy and verbose syntaxes to remain human readable. Tdsstdeii) fuzzy publications,
inefficient management, complex processing and lack of scalability to fulthesilopment the Web of
Data.

In this thesis we first propose a deep study on the most important trende ta gdobal understanding
of the real structure of RDF datasets. The main objective is to isolate comuattoinefe in order to achieve
an objective characterization of real-world RDF data. This can lead tor lukettaset designs, efficient
RDF data structures, indexes and compressors.

Thereafter, we present our binary RDF representatitii], addressing the efficient representation
of large RDF data through compact structures optimized for storage @ntission over a network.
HDTpartitions and efficiently represents three components of RDF data: Kl&ackonary and Triples.
Next, we focus on dictionary and triple efficient structures, as long gddlke part oHDTrepresentation
as well as most applications performing on huge RDF datasets. We propesktechniques leading
to compressed rich-functional RDF dictionaries and triple indexing. Finakypropose the use of a
succinct data configuration to browsd>Tencoded datasets. This structure holds the compactness of
such representation and provides direct access to any piece of data.

Resumen

El actual diluvio de datos estnundando la Web con grandeswwlenes de datos representados en RDF,
dando lugar a la denominada “Web de Datos”. En la actualidad, se pubhtas abiertos e interrela-
cionados sobre bioinforatica, geograh o sobre redes sociales, entre otros, que forman parte de proyec-
tos tan activos comabinked Open Data Variasareas de investigamm han emergido de este diluvio;
indexacon y consulta de RDFifticamente mediante el lenguaje SPARQL), razonamiento, esquemas de
publicacbn, alineamiento de ontoltag, visualizadin de RDF, etc. Losbpicos de la Web Seamtica
relacionados con RDF son, de hectiending topicsen casi cualquier conferencia infoatica.

Sin embargo, podemos discernir tres importantes hechos del actual detaaite: i) se han real-
izado aplicaciones e investigaciones amuyose en datos RDF, perorano se ha realizado un trabajo
gue permita entender la esencia de este modelo de datos, ii) las represestabsicas de RDF con-
tinban influenciadas por la visn tradicional de la Web basada en documentos, lo que resulta en sintaxis
verbosas, redundantes yjra centradas en humanos. Ello conlleva iii) publicaciones pobres y slifusa
procesamientos complejos e ineficientes y una falta de escalabilidad pa&radesdrrollar la Web de
Datos en toda su extedsi.

En esta tesis proponemos, en primer lugar, un estudio profundo de aqetile que nos permitan
abordar un conocimiento global de la estructura real de los conjuntoatde BRDF. Dicho estudio
puede avanzar en la consed@rcide mejores dig®s de conjuntos de datos y mejores &sneficientes
estructuras de datosydices y compresores de RDF.

Posteriormente, presentamos nuestra represéntaaiaria de RDRHDT, que afronta la represen-
tacion eficiente de grandes ¥whenes de datos RDF a témvde estructuras optimizadas para su alma-
cenamiento y transmi@n en red. HDTrepresenta eficazmente un conjunto de datos RDF asrde
su divisbn en tres componentes: La cabecéiadde), el diccionario Dictionary) y la estructura de
sentencias RDFTfiples). A continuacbn, nos centramos en proveer estructuras eficientes tanto para el
diccionario como para dicha estructura de sentencias, ya que forntardp&tDTpero tambén de la
mayoia de aplicaciones sobre grandesivoénes de datos RDF. Para ello, estudiamos y proponemos
nuevas é&cnicas que permiten disponer de diccionaridsdices de sentencias RDF comprimidos, a la
par que altamente funcionales. Ritimo, planteamos una configuraoicompacta para explorar y con-
sultar conjuntos de datos codificadosDBT Esta estructura mantiene la naturaleza compacta de la
representadin permitiendo el acceso directo a cualquier dato.

Disclaimer

I hereby declare that the work in composed by the candidate alone texcepe explicitly indicated
in the text.

This research herein was partially funded by the Regional Governnfi€dagiilla y Ledbn (Spain)
and the European Social Fund, Erasmus Mundus, MICINN (TINZ2DG®9-C02-02) and Fondecyt
1110287.

Contents

Introduction 1
1.1 Motivation. e e 1
1.2 Hypothesis. e 4
1.3 Contribution. e 5
1.4 ThesisSStructure e 6
Basic Concepts 9
2.1 TheSemanticWeb. 9
2.1.1 DescribingSemanticData. 11
2.1.2 QueryingSemanticData. 15
2.2 TheWebof(Linked)Data. 18
2.3 BigSemanticData. 20
2.4 SuccinctData Structures e 22
2.4.1 Rankand Select over Binary Sequences. 22
2.4.2 Rankand Select over General Sequences. 23
2.4.3 BasicCompressionNotions e 26
Characterizing the RDF Structure 29
Introduction 31
3.1 Motivation. e 31
3.2 Power Law Distributions. Scale-free Network. 31
3.3 Small-world Phenomenon. 33
3.4 OtherStudies. e 34
Our proposal: Metrics for RDF Graphs 35
4.1 Proposed MetriCs 35
4.1.1 Subjectand ObjectDegrees. 35
4.1.2 Predicate Degrees e 39
41.3 CommonRatios. e 40
4.1.4 Subject-ObjectDegrees e 41
415 PredicateLists. 42
4.1.6 TypedSubjectsandClasses., 43
4.2 Experimental Framework 45
4.3 Results 46
431 Ratios. 46
4.3.2 Out-andin-degrees. a7
4.3.3 Predicates per Subjectand Object 52
4.3.4 Partialand DirectDegrees. 53
4.3.5 Predicate Degrees e 54
4.3.6 Studyof Predicate Lists. 58
4.3.7 Study of Classes and Typed Subjects. 62
Discussion 65
5.1 Contributions. 65
5.2 ResultSummary. e e 66
5.3 Applications. 67

10

Binary RDF Representation for Publication and Exchange
Introduction
6.1 Stakeholders in Big Semantic Data Management
6.1.1 Participants and Witnesses.
6.2 The Workflow of Publication-Exchange-Consumption.
6.2.1 StateoftheArt. L.
6.3 OurGoal
HDT. A Binary Serialization for RDF
7.1 Conceptual Description.
7.1.1 Header.
7.1.2 Dictionary
7.1.3 Triples
7.2 PracticaHDTDeployment for Publication and Exchange.
7.2.1 A Specific Vocabulary forthe Header.
7.2.2 Plain Dictionary Encoding
7.2.3 TriplesEncodings.
7.3 RDF/HDTSyntax Specification.
7.3.1 The Structure of @dDTFile
7.3.2 The Control Information
7.3.3 Plain Dictionary Encoding
7.3.4 TriplesEncodings.
7.4 Experimental Evaluation
7.4.1 Dictionary and Triples Compact Ability
7.4.2 Scalability Evaluation.
7.4.3 AdditionaHDTCompression.
Discussion
8.1 Contributions.
8.2 NextSteps

Compressed Rich-Functional RDF Dictionaries

Introduction

9.1
9.2

9.3
9.4

Motivation.
Compressed String Dictionaries

9.2.1 CompressedHashing.
9.2.2 Front-Coding.
9.2.3 Grammar-based Compression.

9.24 Self-Indexing.
RDF Dictionaries.
OurGoal e

Our Approach: Doy

10.1 RDF Vocabulary Partitioning
10.2 D.omp Conceptual Description
10.3 Data Structures and Algorithms
10.3.1 Transforming Local and Global IDs..

CONTENTS

CONTENTS 5

10.3.2 Basic Lookup Operations. e 124
10.4 Filter Resolution e 126
10.4.1 Vocabulary Tests e 126
10.4.2 SIMple ACCESSOIS. o i o e 127
10.5 Experimental Evaluation 128
10.5.1 Analyzing Compressed String DictionariesforRDF. 128
10.5.2 Degmp Performanceo 132
10.5.3 Deomp Regex Resolution oo 134
11 Discussion 137
11.1 Contributions. 137
11.2 Future Work and Applications 138
IV Compact RDF Triple Indexes 139
12 Introduction 141
12.1 Motivation. e 141
12.2 Stateofthe Art. e e 142
12.2.1 Relational Solutions. 142
12.2.2 Native Solutions. e 144
123 OurGoal e e 146
13 Compact RDF Indexes on top oHDTEnNcodings 147
13.1 HDTBitmap Triples Encoding. e 147
13.1.1 BT Conceptual Navigability. 148
13.1.2 BT SuccinctIndex. 149
13.1.3 Application. e 154
13.2 Additional Compressed Succinct Data Structures 155
13.2.1 A Wavelet Tree-based Solution 8-O Indexing 155
13.2.2 An Additional Adjacency List foDP-S Indexing. 159
13.3 Experimental Evaluation 165
13.3.1 Bitmap TriplesCompressian. 165
13.3.2 Analyzing the Space OverheadBaftWCO 166
13.3.3 BTWO Performance Comparison oo v v v v .. 167
13.3.4 BTWG Order Comparison. v v v v i e e e e e e e e e e e 170
13.3.5 The BTWO-GMRAIternative. it 174
14 Discussion 179
14.1 Contributions. 179
14.2 Other Applications. e e e 180
V Querying HDT-encoded Datasets 181
15 HDTFocusing on Querying HDT-FoQ) 183
15.1 Towards amDT-FOQENgine 183
15.1.1 HDT-FoQGeneration i 183
15.1.2 HDT-FOQQUEerYiNg o ot e e e e 184

15.2 Experimental Evaluation 185

6 CONTENTS

15.2.1 Analyzing the Publication-Exchange-Consumption Workflow 185

15.2.2 HDT-FoQin Consumption: Performance for SPARQL Querying. 187

VI Thesis Summary 191

16 Conclusions and Future Work 193
16.1 Summary of Contributions 193
16.2 Future Work L 194

A Publications and other Results 197

B Summary (in Spanish) 207
B.1 Hipbtesisy Objetivos. e 207
B.2 MetodoloGa. 208
B.3 Principales Resultadosdel Trabajo. 209

Bibliography 211

2.1
2.2
2.3
2.4
2.5
2.6
2.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

List of Figures

AfirstRDF example.. 12
Afirst SPARQL qQUENY.. o e e e 15
Aslightly complex SPARQL query.. e 17
Example of a bitsequence arahk /select /access operations.. 22
Example ofaWavelet Tree.. e 24
Example of a Wavelet Tree arahk /select /access operations. 25
Example ofa GMR construction.. 26
Summary of structural metrics describing a small RDF graph example.. 38
Mean out- and in-degrees for the evaluation datasets.. 48
Degree distribution (media), in logarithmicscale.. 49
Degree distribution (publications and government), in logarithmic scale. 49
Degree distribution (knowledge), in logarithmicscale.. 50
Degree distribution (sensors, geography and biology), in logaritroales 50
Mean out- and in-degrees compared with the common subject-objects. 51
Mean labeled out- and in-degrees for the evaluation datasets.. 52
Mean labeled out- and in-degrees compared with the common subjedisobjec . . . 53
Mean partial out- and in-degrees for the evaluation datasets.. 54
Mean direct degrees in comparison with mean out- and in-degrees.. 55
Mean predicate degrees for the evaluation datasets. 56
Predicate degree distribution (media).. 56
Predicate degree distribution (publications and government). 57
Predicate degree distribution (sensors, geography and biology).. 57
Predicate degree distribution (knowledge).. 58
Mean predicate list degree for the evaluation datasets. 59
Predicate list degree distribution (media).. 60
Predicate list degree distribution (knowledge). 60
Predicate list degree distribution (publications and government). 61
Predicate list degree distribution (sensors, geography and biology. 61
Mean list per predicate degree for the evaluation datasets.. 62
Mean lists per class for the evaluationdatasets.. 63
Mean out degree for the evaluation datasets in comparison with typedtsu 64
Stakeholder classification inthe WebofData. 73
Publication-Exchange-Consumption workflow in the Web of Data.. 75
Description oHDTComponents: Header-Dictionary-Triples. 82
The common process BiDTencoding/decoding.. 83
A variant ofHDTencoding/decoding for discovery. 84
The structure of the proposedTpractical deployment.. 89
AHeaderexample IHDT 90
An example of the different sections inldDTplain dictionary. 92
Serialized data of ddDTplain dictionary.. 92
Practical approaches fAiDTtriple serialization. 93
HDTdictionary growth with respect to the number of triples in the dataset. 100
Performance diDTwith incremental size fronkke. 102

Performance dfiDTwith incremental size from th200OO US Census.. 103

LIST OF FIGURES

10.1 An RDF example with adiverse vocabulary. 118
10.2 Vocabulary of RDF termsinarunningexample. 119
10.3 D.omp Organization (dictionary+ptrs).. 120
10.4 D.omp Organization for the RDF excerpt.. 121
10.5 An SPARQL quer for the RDF graphin Figure 10.1.. 124
10.6 An SPARQL quen® with a vocabulary test for the RDF graph in Figure 10.1.. . . . 126
10.7 An SPARQL quer® with simple accessors for the RDF graph in Figure 10.1. . . . 127
10.8 locate andextract times forURIs, blanks anditerals of Dbtune 130
10.9 locate andextract times forURIs blanks anditerals of the2000 US Census. . . 131
10.1docate in D,y Versus RDF3x dictionaries inbtuneand the2000 US Census . . . 133
10.1Jextract in D,y Versus RDF3x dictionaries iDbtuneand the2000 US Census . . 133
10.12ocate time per occurrence of the substrings.. 134
10.13D.omp locate of substrings with differenEMI-RG samplings.. 135
13.1 The proposed practiddDTtriple encodings. 148
13.2 Detail of Bitmap Triples from Figure 13.1.. 149

13.3 BTW: The proposed encoding of Bitmap Triples with a Wavelet Tiégn predicates. 155
13.4 BTWO': Bitmap Triples encoding with indexes by predicalté,j and object O-Indey. 160

13.5 HDT BTWOTP query performance iDbtune 169
13.6 HDT BTWOTP query performance iDbpedia 169
13.7 Comparison of alternative orders for BT and its indexes at consumptio. 171

13.8 HDT BTWOTP query performance iDbtune comparison between different orders. 172
13.9 HDT BTWOTP query performance iDbpedig comparison between different orders. 172

13.10Comparison of GMR and O-Index size.. 174
13.11Comparison of alternative orders for BTWO-GMR at consumption. 175
13.1HDT BTWOTP query performance of BTWO-GMRn Dbtune 176
13.1HDT BTWOTP query performance of BTWO-GMRn Dbpedia 176
15.1 HDT-FOQTP query performance Dbtune 188
15.2 HDT-FOQTP query performance int 8000 US Census 189
15.3 HDT-FOQjoin performance ibbtune 190

15.4 HDT-FOQjoin performance inth@000US Census 190

List of Tables

4.1 Description of the evaluation framework. 46
4.2 Details of the evaluation framework.. L. 46
4.3 RatiosofthegivenDatasets.. e 47
4.4 Maximum labeled out- and in-degree for the experimental framework. 53
4.5 Number and ratio of predicate lists for all subjects and restricted to tyjgelcss.. . . . 59
4.6 Number of classes, typed subjects and its ratio for the experimentalfoakie. 63
7.1 HDTControl Information.. 95
7.2 Valid types in th&dDTControl Information.. 95
7.3 Reference URIs of tHdDTpractical components 96
7.4 Dictionary predefined prefixes.. 97
7.5 Dictionary string €scaping SEqQUENCES.« . v v v v i e e e e 97
7.6 Plain Dictionary properties in the Control Information.. 97
7.7 Common triple properties in the Control Informatian. 98
7.8 Machines configuration of the experimental framework.. 99
7.9 Compression ratio of the Dictionary and Triples components of eacletlatas 100
7.10 Compression ratio ®{DTwith Plain and Compact Triples and universal compressars101
7.11 CompressionresultsBDT CT-Compress. oo v v i oo .. 104
9.1 Techniques for compressed string dictionaries.. 110
10.1 Details of the evaluation corpora for compressed RDF dictionaries.. 128
10.2 Compression of general techniques for string dictionaries. 129
10.3 Compression results o, versus RDF3x dictionaries.. 132
13.1 Triple pattern resolutiontimesonBT. 154
13.2 Triple pattern resolutiontimeson BTW 159
13.3 Triple pattern resolutiontimesonBTWO 162
13.4 Summary of indexes and Triple Pattern resolution through incremeotmgals.. . . . 162
13.5 Compression ratio of Bitmap Triples component and Plain and CompalgsTrip . . . 165
13.6 Compression ratio 6{DTPlain, Compact and Bitmap Triples, and universal compreskess.
13.7 Space requirements of the indexesinBTWO. 167
13.8 Total space requirements of BBTW* and BTWO. 168
13.9 Space requirements of different solutions for triple indexing.. 168
13.10Space/performance tradeoffs of the most important BTWé@ants.. 177
15.1 Compressedsizes (MB). e 185
15.2 Publicationtimes (seconds). 186
15.3 Exchange times (Seconds).. e 186
15.4 Decompressiontimes (seconds). 186
15.5 Indexing times (seconds).. e e e 186
15.6 Overall times for exchanging+decompressing+indexing (seconds) 187
15.7 Indexing Sizes.. e e e e e 188

O O ~NOOOTDWNPRF

B e
N R O

o
MW

List of Algorithms

findPredicate(i) e 151
findObject(x) 151
(i,,K) TPresolution e 152
(i,j,v) TPresolution 152
(i,v,k) TPresolution 153
(@i,v,v) TPresolution e e 153
(v,v,v) TPresolution e 153
occsPred(j) 156
(ARY)] TPresolution e 157
(v,j,k) TPresolution 157
occsODbj(K) . . . e 161
(v,v,K) TPresolution 161
(v,j,k) TPresolutioninBTWO 161

occsObj(k) INBTWO-GMR* e 164

Why don't you find a place where there
isn't any trouble? A place where there
isn’'t any trouble. Do you suppose there
is such a place Toto? There must be. It's
not a place you can get to by a boat or a
train. It's far, far away. Behind the moon,
beyond the rain.

The Wizard of Oz (1939)

Introduction

1.1 Motivation

One of the main breakthroughs after the creation of the World Wide Web (WMW/®imply the Web),
was the consideration of the common citizen as the main stakehokdean involved part not only in
the consumption, but also in the creation of content. To emphasize this faoptiba of Web 2.0 was
coined, and its implications such as blogging, tagging or social networkicane one of the roots of
our current sociability.

The complementary dimension to this successful idea deals with the machieestamdiability of
the Web. The WWW has enabled the creation of a global space comprisimegl lddcuments which
express information in a human-readable way. The WWW has revolutiotiizaslay we (humans) con-
sume information. Agreeing this fact, it is also true, though, that its docum@nited model prevents
machines and automatic agents from accessing to the raw data underlyingvelapage. The main
reason is that documents are the atoms in the WWW model instead of “dat& Hata lack of an
identity within documents.

A first approach to give structured meaning to data on the WWW was to io@g machine-
processable semantics to their information objects (pages, servicespdetass etc.). To fulfill these
goals, the Semantic Web community and the World Wide Consortium (W3C) haetoded models
and languages for representing the semantics, as well as protocolsigunddas for querying it.

The Resource Description Framework (RDBEe¢kett 2004 is the cornerstone of this semantic
approach. RDF provides a graph-based data model to structure amhtankhat describes things in the
world (Bizer, Heath, & Berners-Lee2009. Its semantic model is extremely simple; a description of an
entity (also called resource) is represented through triples in the ®uwbject, predicate, objectyor
instance, the two triples:

(wikipedia:FedericoGarcia_Lorca, birthday, 5 June 1898)
(wikipedia:FedericoGarcia_Lorca, friend of, wikipedia:Pablaneruda)

describe the entit{rederico Garta Lorca the famous Spanish poet, in Wikipedia. In the first triple, a
value is given to itdirthday property. The latter triple establishes a friendship relationship between the
two famous poets.

An RDF dataset can be seen as a graph of knowledge in which entitiesahres \are linked via
labeled edges with meaning. These labels (the predicates in the triples) osenthatic of the relation,
hence it is highly recommendable to use standard vocabularies or to formaliz®nes as needed.
This semantics are often defined using the RDF Schema (RB¥8kley, 20049 and Web Ontology
Language (OWL) [itzler, Krotzsch, Parsia, Patel-Schneider, & Rudol@®12. Typically, RDFS and
OWL add a built-in vocabulary over RDF with a normative semantics.

Besides describing Web resources, the RDF RecommendBigahé€t; 2004 also devises a broader
scope of application by suggesting the use of REFFdo for machine processable information (applica-
tion data) what the WWW has done for hypertext: to allow data to be processside the particular

2 1. Introduction

environment in which it was created, in a fashion that can work at Intescel€. This latter perspective,
along with increased adoption, has made RDF evolve from a simple modelreseep metadata to a
universal data exchange format.

In less than a decade, massive publication efforts have flooded the ittieleny large RDF datasets
from diverse fields such as bioinformatics, geography, bibliograpiegia and government data. This
“democratization” in the creation of semantic data has being mainly driven blittked Open Data
(LOD) community, which promotes the use of standards (such as RDF and HTTP) to pubtibh s
structured data on the Web and to connect it by reusing dereferdaddaiiifiers between different data
sourcesBizer, Heath, Idehen, & Berners-Le2008. It relies on the following four rules:

1. Use Unique Resource ldentifiers (URIs) for naming resources;
2. Use HTTP URIs so that people can look up those names;

3. Provide useful information using standards, such as RDF and itsspamding query language,
called SPARQL Prud’hommeaux & Seaborn2008, when someone looks up a URI;

4. Include links to other URIs so that they can discover other relatedresoon the Web.

This philosophy pushes the traditional document-centric perspectiveediVdb to a data-centric
view, emerging a huge interconnected cloud of data-to-data hyperlirkkgvah of Data

The Web of DataBizer et al, 2009 converts raw data into first class citizens of the WWW. It ma-
terializes the Semantic Web foundations and enables raw data, fromedfiedds, to be interconnected
within this data-to-data cloud. It achieves an ubiquitous and seamless datatiue to the lowest level
of granularity over the WWW infrastructure. It is worth noting that this ideasinot break with the
WWW as we know. It only enhances the WWW with additional standards wémetble data and docu-
ments to coexist in a common space. The Web of Data grows progressigelyglang to the Linked Data
principles. Latest statistiégointed out that more than 31 billion triples were published, with more than
500 million links establishing cross-relations between datasets.

This powerful trend can be seen as a side effect of current datgedelumany other fields. It is easy
to find real cases of massive data sources, such as scientificriataransley, & Tolle 2009 (data
from large-scale telescopes, particle colliders, etc.), digital librariesgrgehic data, collections from
mass-media and, of course, governmental data (educational, politicabrei criminal, census infor-
mation, among many others). Besides, we are surrounded by multitudesoirsevhich continuously
report information about temperature, pollution, energy consumption tale af the traffic, etc. Any
information anywhere and in anytime is recorded in big and constantly evdigtegogeneous datasets
which take part in the data deluge. Definitely, it is Big Datatrending topic era.

Among all possible definitions, we refer to Big Data #% data that exceed the processing capacity
of conventional database systémthat is, they are too big, they move too fast, and they do not fit,
generally, the relational model stricturd3umbill, 2012. Under these considerations, Big Data is
popularly seen as the convergence of multiple “V’s”™

Volumeis the most obvious dimension because of the large amount of data contingatkered and
stored in massive datasets exposed for different uses and purposes

Velocity describes how data flow, at high rates, in an increasingly distribute@dsoen

Variety refers to various degrees of structure (or lack thereof) within theceadata KHalfon, 2012).
This is mainly due to Big Data may come from multiple origins, hence data follow skvstruc-
tural models. The main challenge of Big Data variety is to achieve an effeotadanism to link
diverse classes of data differing in the inner structure.

http://linkeddata.org
2http:/mvww4.wiwiss. fu-berlin.de/lodcloud/state/ (September, 2011)

1.1. Motivation 3

Whereas volume and velocity address physical concerns, varietg tefa logical question mainly
related to the way in which data are modeled to enable efficient integratioegses It is worth noting
that the more data are integrated, the more interesting knowledge may batgdnéncreasing the
resulting dataseValue (another Big Data characteristic). Thus, semantic technologies suebR
and Linked Data perfectly fit the needs of Big Dagtyles 2012; the use of such a graph-oriented
representation (together with rich-semantic vocabularies) providesibl@erodel for integrating data
with different degrees of structure, but also enable these hetermgedata to be linked in an uniform
way for publication, exchange and consumption of Big Semantic Dataat universal scale.

It is worth noting that, although each piece of information could be particusanigll (the so-called
Big Data’s long tail(Anderson & Anderssgn2007 Bloomberg 2013), the integration within a subpart
of this Web of Data can be seen as huge interconnected data. RFID Mleddgyrocesses (crawlers,
search engines, recommender systems), smartphones and senquorteatial sources of RDF data.
Automatic RDF streaming, for instance, would become a hot topic, specially viftaidevelopment of
smart cities De, Elsaleh, Barnaghi, & MeissneR012. It is clear that Linked Data philosophy can be
applied naturally to thedaternet of Thingsby simply assigning URIs to the real-world things producing
RDF data about them via Web.

In practice, these potentially huge datasets are encoded by means of neddigobose syntaxes
which are still influenced by its conception undetaument-centriperspective of the Web. RDF/XML
(Beckett 2004, for instance, is functional enough to add small descriptions (metadati)ctonents
or to mark web pages, but carries the heavy verbosity of XML to destnilgee corpora. Later on,
representations like N3Bgrners-Lee 1998, Turtle Beckett & Berners-Lee 2011 and RDF/JSON
(Alexander 2008, have improved in several respects the original format, yet they ardatilinated by
a human-readable view.

It becomes clear that RDF must deal with the aforementioned three “V'&hadre increasingly
present in the Web of Data. To do so, considering RDF under a purecdatac perspective is indis-
pensable. We identify three general processes whose performasnte e significant improved:

» Publication. An analysis of current RDF datasets published in the Web of Data reseadsal
undesirable feature$-€rrandez, Maiinez-Prieto, & Guirrez 2010. First, metadata about the
collection is barely present or it is neither complete nor systematic. The lacfoaiation is such
that a “potential consumer” almost has to guess what the content of @tiatabout, disregarding
its exploration in cases where the effort of consuming it seems not to warithtédlenge. This is
even more noticeable for mashups of different sources. Second,bisiged RDF dumps are ac-
tually bulks with no structure, no design, no final user in mind. They reseumvanted creatures
whose owners are keen to be rid of tharei(rfandez, Maiinez-Prieto, & Guérrez 2010.

« Exchange Once a client decides that it is worth to get a dataset, it is exchanged thiedgame
principles of the WWW. Despite their size, RDF datasets are exchanged whthiplain afore-
mentioned formatse(g. XML, N3 or Turtle), which yields to high bandwidth costs and network
delays. Universal compressors, such as gzip, are commonly usethese syntaxes in order to
save space, yet it implies a subsequent decompression processwaneon

e Consumption. Here we can distinguish two different types of consumptions. The igsiagio
arises following the natural flow of the previous publish-exchangegascAfter a final user has
downloaded a dataset, it has to be postprocessed for diverse esif@oslysis, integration with
other sources, local query, visualization, etc.) In general, plain Rpfesentations force to fully
post-process the dataset in order to make it useful for consumptiom tEgemost basic data
operation (such as searching for a triple or retrieving the descriptiorgdfem resource) has to
deal with the lack of any internal structure in the file, thus parsing the whaltie. dA second
scenario of consumption regards the case in which the final user wantskeanbne queries

4 1. Introduction

(typically with SPARQL) over the RDF data served by a publisher. In this,dag response time
depends on the efficiency of the underlying RDF indexes at the publghieh, again, have to
deal with inefficient RDF representations.

In summary, current RDF representations diminishes the potential of R&ghgdue to the huge
space they take in and the large time required for consumption. Moreawdargroblems arise when
managing less RDF data but in mobile devices; together with scalability and memwsirains, these
devices can face additional transmission cadsésPhuoc, Parreira, Reynolds, & Hauswri2010.

The presented state of affairs does not scalenh@ehine-understandabl&eb of Data where i) large
datasets are produced and published dynamically and ii) limited devices (medgileors, Internet of
Things) are increasingly joining this community.

1.2 Hypothesis

The motivation and current state of the art call for a binary representifoRDF aimed at reducing

the high levels of verbosity/redundancy and weak machine-processatdilities of the datasets. At

the physical level the binary RDF representation should permit efficient processing, gearent and

exchange (between systems and memory-disk movements) at large saade.it Has to minimize re-

dundancy while guaranteeing modularity at the same time. Abpiegational leveldesirable features

include native support for simple checks for triple existence (lookupd)ogher simple query patterns.
Our hypothesis can be summarized as follows:

Given an RDF dataset, potentially huge, a lightweight binary RDF can ecode the data lever-
aging the skewed structure of RDF graphs for the purpose of (i) lege spatial savings, (ii) easy and
modular data-centric publication and parsing and (iii) data retrieval.

With this hypothesis, we called for the need to move forward RDF syntaxegatiaecentric view. We
propose a binary serialization form&aDT, that modularizes the data and uses the skewed structure of big
RDF graphsing & Finin, 2006 Oren et al. 2008 Theoharis, Tzitzikas, Kotzinos, & Christophides
2008 to achieve large spatial savings. We present, in the following, the maiireetgnts for an RDF
serialization format:

* It must be generated efficiently from another RDF input format and easy to convert to other
representations. For instance, a data publisher having the dataset in a semantic store must be
able to dump it efficiently into an optimized exchange format. Similarly, if the sertaizéormat
enables data traversing to be performed efficiently, the conversioegsdc another (potentially
binary) format can be completed more efficiently.

It must rely on a clear publication scheme. The format must hold a standard scheme to in-
clude metadata about the data publication and its content, together with inforrtaatéirieve the
dataset.

* It must be space efficient. The exchange format should be as small as possible, introducing
compression for space savings. Reducing size will not only minimize thewbditdcosts of
the server, but also the waiting time of consumers that are retrieving theetddagny class of
consumption.

* It must be ready to post-process A typical case is performing a sequential triple-to-triple scan-
ning for any post-processing task. This can seem trivial, but is clearlydomsuming when large
data are post-processed at the consumer.

1.3. Contribution 5

* It should be able to locate pieces of data within the whole dataselt is desirable to avoid a
full scan over the dataset just to locate a particular piece of data. Thasethalization format
must retain all possible clues enabling direct access to any piece of datedattiset. A desirable
format should be ready to solve most of the combinations of SPARQL triplerpat{possible
combinations of constants or variables in subject, predicates and objestshstance, a typical
triple pattern provides a subject, leaving the predicate and object aslear{and therefore the
expected result). In such case, we pretend to locate all the triples thabtalkaspecific subjett
In other words, this requirement contains a succinct intention; data mesidogled in such a way
that “the data are the index”.

1.3 Contribution

The main contribution of this thesis is a novel binary RDF format, calledDT: Header-Dictionary-
Triples, addressing publication, exchange and consumption (indeyjqufeRDF at large scaleHDT
represents the information of an RDF dataset in three optimized components:

« A headerincluding all type of metadata describing a big semantic dataset.

« A dictionary, organizing all the identifiers (IDs) in the RDF graph. It provides a cgtaliothe
information entities in the RDF graph with high levels of compression.

* A set oftriples, which comprises the pure structure of the underlying RDF graph whilieliago
the noise produced by long labels and repetitions.

Specific contributionsare as follows:

1. Theoretical framework of RDF structuréirst, we tackle the problem of understanding the real
structure of huge RDF graphs. To that end, we perform a deep stutlyese graphs revealing
the underneath structure and composition of the graph. The main objectivesgdate common
features to achieve an objective characterization of real-world RDF d&ia can lead to better
dataset designs, as well as efficient RDF data structures, indexesmptessors.

With this objective in mind, we propose specific parameters to characterigalRi2. \We specially
focus on revealing the redundancy of each dataset, as well as theilacban compression
possibilities. Finally, these metrics are evaluated on an evaluation framewamiising fourteen

datasets which cover a wide range of modelings. Detailed results are suenarzhapteb.

2. Binary RDF SpecificationBased on our analysis of the current scalability drawbacks managing
Big Semantic Data, we design, analyze, develop and evaluate a binarydRi&tf calledHDT.
HDTis aimed at reducing the studied high levels of verbosity and redundanegliworld RDF,
enhancing machine-processable capabilities of the datasets. HIbdISmplements and gives
response and sense to our hypothesis. We provide careful details désign of théHDTcom-
ponents (Header, Dictionary and Triples), their operations and usédD3s&acts as a container
and it is flexible enough to allow multiple configurations, we provide a praatieployment for
publication and exchange, as well asRIDF/HDT syntax specification. This syntax took part of a
W3C Member Submissior-errandez, Maiinez-Prieto, Guérrez, & Polleres 2011), validating
the need of a well-defined binary format.

3. Compressed Rich-Functional RDF dictionarié3ased on the previoudDTdictionary, specific
techniques for RDF dictionaries are proposed. We focus on highly-@ssed RDF dictionaries

Note that this query can be used to dereference an entity in accordaheettird Linked Data principle.

6 1. Introduction

with very efficient performance at basic lookup functionality. We firs@existing techniques
for compressed string dictionaries. The proposed solution, a noveldkilibnary calledD .,
excels in size (it achieves the best compression ratios in our evaluatidrpeaformance (over
traditional dictionaries in the state of the art). Besides, its space/time can bettined thanks
to the organization of subdictionaries?n,,,. In addition, advanced dictionary functionality for
SPARQL filtering is proposed.

4. Compact RDF triple indexed\e address compact triple indexes on topifFencoded datasets.
We propose the use of succinct data structures and compression notiapproach practical
implementations. All these indexes are developed on top of a novel tripléwstdor exchanging,
referred to as Bitmap Triples (BT). The BT encoding sees the graphoasst bf trees and codifies
its structure in two correlated bitsequences. Then, we propose lightwedgxes built efficiently
at consumption time. The final configuration of triple indexes at consumeltledd BTWO'. We
describe the algorithms for triple pattern resolution using these indexesnane important, the
costs are clearly detailed with the metrics proposed. All configurationgieed and evaluated
on real-world scenarios. Important conclusions are listed in Chagter

5. Practical deployment of binary RDW/ith the previous successfully achieved objectives for dictio-
naries and triples, we focus on efficiently integrating both componentd.ig,HdDTis serialized
with D..,p and BT components, and the additional indexes of BT\W&3 well as the required
in-memory structures dD..,,, are built efficiently at consumer. This proposal is deployed and
evaluated against existing solutions in the field of RDF stores. Our expesmbBow howHDT
excels at almost every stage of the publication-exchange-consumpti@fiomoand remains very
competitive in query performance.

1.4 Thesis Structure

First of all, Chapte2 provides background on describing and querying semantic data andeth@wW
(Linked) Data processes of publishing, exchanging and consumingal&¥antroduce the concept of
Big Semantic Data and provide basic concepts on succinct data struatdresrapression.

After that, the remainder of this thesis is organized in five parts, each oresponding to a particular
contribution, and a final summarizing part. Each part is composed of thegstars: an introduction and
state of the art of the problem, our specific proposal and its empiricalai@h, and a final discussion.
In particular, these parts include the following contents.

Part | tackles the characterization of the RDF structure for the purposesaéatfencoding. Chap-
ter 3 collects the most important works leading to understand the RDF structungatsieale. Prelim-
inary results, showing skewed RDF data distributions, set the basicdtiand for more efficient RDF
representations. Then, Chapfieproposes simple and feasible metrics characterizing RDF datasets. We
establish an experimental framework illustrating these metrics for real-w@fddtasets. The chapter
ends with a study revealing these metrics in different domains. Finally, Qtaptenmarizes the contri-
butions of this part and analyzes its implications in diverse related fieldslhasmbe connection with
the subsequent chapters.

Part Il describes our proposal of a binary RDF representation, optimizedutdicption and ex-
change within the Web of Data. Chap&motivates the problem, revises the state of the art, and de-
scribes our concrete goal. Chapfesresents our proposBIDT First, we make a conceptual description
of theHDTcomponent$ieader DictionaryandTriples. Next, we detail the basic encoding for a practical
implementation focused on publication and exchange. Finally, we set uparirental framework and
provide results on compact ability and scalability. Chagtdiscusses the applicability of the proposal
and the provided results.

1.4. Thesis Structure 7

Part 1ll presents new structures improving the basic functionality of RDF dictionanesom-
pressed space. Chap&mtroduces and motivates the use of this type of RDF dictionaries to optimize
RDF stores as well as providing novel functionality to binary formats ss¢tCal The state of the art
revises previous works on RDF dictionaries and string dictionaries. Obdlis, we set up the goals of
a novel dictionary. ChaptelO focuses on our approac®.,,,,, a compressed and modular RDF dictio-
nary. After a conceptualization, we present its modular configuratida,sfiaictures and algorithms for
the lookup operations. We detail advanced filtering and push-up opgsatitich can now be performed
on the dictionary as a previous step of a triple scanning. DiffePgpt,, configurations are tested on a
experimental framework designed to characterize the compressibility afuarpance of the approach.
The obtained results are discussed in Chapter

Part IV focuses on triple indexes. Chapfietrevises the state of the art in triple indexes, focused on
RDF native structures and scalable approaches. Chaptaiakes a first approach to construct a basic
triple index forHDT-encoded datasets, proposing the use of compressed succinct detiares. This
simple index allows some patterns to be efficiently resolved. Next, we intraatididonal indexes to
resolve complex graph patterns. Compressibility and query performamstualied on a testbed.

Part V exploits the presented dictionary and triple indexes to allow exchanged RB&-doectly
consumed. We propose an integrated solution for quemidgfencoded datasets and, thus, for efficient
encoding and consumption of large RDF data. The resultant approaalledldDT-FoQ: HDTFocused
on Querying and it is presented in Chadér Next, we evaluate the Publication-Exchange-Consumption
workflow on a real-world setup, analyzing the performance of eachastepell as the overall process.
Finally, we test the performance BIDT-FoQ for SPARQL querying.

To concludePart VI provides a critical discussion of the thesis. Chafi@&summarizes the contri-
butions and suggesting future direction of the research.

Publications and other results of this thesis are listedjipendix A.

Don't be trapped by old concepts,
Matthew, you're evolving into a new life
form.

Invasion of the Body Snatchers (1956)

Basic Concepts

2.1 The Semantic Web

Much can be said about the World Wide Web (WWW) and its unparalleledesscdt is simply one
of the greatest invention ever, part of our everyday lives. The Vdshttemendously changed or influ-
enced fields such as education, libraries, music and video distributigrpisigeand advertising markets,
medicine and, of course, the way we communicate with friends, partnectiagidousinesses.

In order to understand some of the limitations or shortcomings of the currebt @e has to go
back to its original conception. As stated by his creator, Tim Berners-tiee goal of the Web was to
be a shared information space through which people (and machinek) commmunicate’{Berners-Leg
1996. He thought a global information space, a virtual blackboard to writeread, to share and com-
municate both people and machines. Bliat is the shared content? What is written in this blackboard?
Documents, and links between documents accessible via the Internet. Alkwé deglobal space of
information these documents (also called resources) have to be globalijiédeand hence (i) the Uni-
versal Resource Identifiers (URIBérners-Lee, Fielding, & Masinter2005 are the primary and key
element of the original Web architecture. The second element, obvioushg isrotocol for writing
and reading in this global space, that is, (ii) the Hyper Text TransfatioPol (HTTP). Last, how these
interlinked documents are represented, which conforms (iii) the HypeérViaskup Language (HTML).

These pillars of the Web have driven human communication to levels newvebséme. Thanks to
the adoption of new technologies (such as server and client-side scripévascript, Ajax, etc.), the
so-called Web 2.0Mlusser & Oreilly, 2007 brought the democratization in web publishing under novel
forms of user-generated content. Note that part of this content is diesallgonsciously created by users,
such as blogs, websites, podcasts, etc., while other part is serieg afitesaction records (metadata),
such as ratings, comments, shares, likes, tags, navigation and quelttogsf which, eventually, a user
loses control. Thus, the “shared information space” is also a spavetainformation, though equally
useful. After analysis, clustering and other data mining processeminformation is one of the basis
of advanced recommendation systems and efficient search enBimezaf Yates, Hurtado, & Mendqgza
2007 Borges & Levene 2000.

Another remarkable side-effect of the latest Web development (amoagspguch as user-generated
quality, data curation, trust or privacy) is the current blurring conoépdocument. Nowadays, the Web
is so flexible, interactive and dynamic that a new resource can be instegated or completely changed
based on provided parameters or context information. Moreover, titerdds not “ready” beforehand
but tends to be extracted from relational databases, external APlher gervices which, typically,
manage structured content, yet providing a final media representatiorafteio, video, etc.).

Very interesting questions raise from these two side-effelgst positive or negative for a machine
to have so much meta and dynamic (yet structured) information? Is itaagymplex for a machine to
communicate in this shared but fuzzy spate?act, one could argue that, despite all the great success
of the Web, the original purpose of “machine communication in the Web” hais tverginally achieved.
Tim Berners-Lee stated that, as a future direction, machines could takengestipart in analyzing the

10 2. Basic Concepts

Web, and solving problems for uBérners-Lee 1996. Remaining true that machines are currently
acting in the Web, they stay far away from the idealism. Consider solving testiqu: is there any
correspondence between the studies of the president of the develmpsides and the destination of
financial support for research projectdfis obvious that the information could be in the Web, potentially
distributed in different websites, in different formats, but we have limitédraatic understanding of text
semantics (even worse for other media). The challenge was already Ipefeeehand as a condition to
the aforementioned future direction: “data on the web must be available intdmeaeadable form with
defined semantics”. Without semantics a machine can hardly resolve soetalgand more complex
guestions and, in general, any task involving resource integration fifbenesht sources in the Web.

Fortunately, meta information and the underlying structured information aredwaes a machine
can better deal with-How can we exploit the meta content and structured content for improvaatyime
interaction with the Web?And, if possible,is it enough with the three pillars of the Welirhese are
matters of the Semantic Web.

The Semantic Welwas proposed berners-Lee, Hendler, and Lass{001) as a complement of
the current Web in order to be more “machine-processable”. It emlsahe current WWW with machine-
processable semantics imprinted in their information objects (pages, sepricExcols, etc.). Its goals
are summarized as follows:

1. To give semantics to information on the WWANkhough Tim Berners-Lee conceptualized a Web
with random associations (unlike fixed database schemas), in the eamyg sththe Web there
was still one line of thought modeling the Web as a database, designing forodls of Web
gueries Mendelzon & Milo, 1998. The idea of using database techniques did not succeed and
information retrieval techniques have dominated, and currently dominat¥g\Wi&/ information
processing. One could argue that, at that time, the database appraatbowaturistic once the
amount of structured data on the Web did not yet reach a critical levaluhantly doesGutiérrez
2011). For this reason, the Semantic Web picks up on some ideas of databasggquestwhich are
structured via schemas that are, essentially, one kind of metadata. In then&adata give the
meaning (the semantics) to data and allows, or stimulate, advanced operatbressstructured
qguery, that is, querying data with logical meaning and precision.

2. To make semantic data on the WWW machine-processagsuming that semantic could be
embedded in the Web, the aim is to encourage automatic machine processints: Gamn perform
tasks that users have to currently perform with arduous manual pexekieally, this objective
could be also extended to the initial step of providing semantics. That is, inuthent Web,
the semantics of the data is mainly structured by humans who create domaificgEemas.
This manual process has known limitatior@ugsada 2008 at Web scale, hence it is crucial
to automatize the process of “understanding” (giving meaning to) data oWW®V, which is
equivalent to develop machine-processable semantics.

In summary, to fulfill these goals, the Semantic Web community, hand in hand withidHd Wide
Consortium (W3C), has developed i) models and languages for representing the semamdi@3,aan
infrastructure for it,i.e., protocols, query languages and specifications for consuming thesmnte
data; accessing, consulting, publishing and exchangidiérrez 2011).

In the following, we briefly describe the most known models and languageptesent (8.1.1 and
query (8.1.2 semantic data. Next, we will call attention to the most feasible implementation antjar
of the Semantic Web, the so-called Web of (Linked) Daa2g

lht'[p://www.w3.org

2.1. The Semantic Web 11

2.1.1 Describing Semantic Data

The Resource Description Framewo(RDF) was an initiative of the World Wide Web Consortium
(W3C), originally intended to provide an extension of the Platform for ree€Content Selection (PICS)
content selection (superseded by the Protocol for Web DescriptionuRes, POWDER. PICS was
envisioned as a filtering system for the content of the Web, in order {sai@protect minors from “in-
decent” content. Technically, it was based on ratings and labels defyinechient providers and other
third-parties and a system for parental filtering. The cornerstone dhitietive was to provide PICS
labels to be readable by machines (the filter software). After severalsdiens inside and outside the
W3C, it became clear that this idea was valid for several additional apphsatiod hence the W3C
conformed the Resource Description Framework working grifer, 1998.

The original objective was to generalize the idea of machine-readable kimbto support metadata
on the Web. That was the basis of the novel Resource Description Foakn@RDF). The mechanism
should provideabelsto services, but also “permit string and structured values, and somerofttyer
features”. In addition to services, RDF functionality was extended to awddl slescriptions (metadata)
to documents, to protocols, to mark web pages or, obviously, to describeese

The initial W3C Recommendation of RDE4ssila & Swick 1999 defines it as a “foundation
for processing metadata” and establishes that its broad goal is “to defireel@anism for describing
resources”. This conception is clearly influenced bgogument-centriperspective of the Web as it
is stated through some examples of RDF application, such as the descrippagetollections that
represent a single logical document or the intellectual property rightebfpages.

Nevertheless, the focus rapidly evolved to new frontiers. The cuRBRtRecommendatiomBeckett
20049 already devises an evolution of RDi6 allow data to be processed outside the particular environ-
ment in which it was created, in a fashion that can work at Internet scaléat is, the focus is widen
to “data”, to information exchanged between applications without loss of imgdlanola & Miller,
2009.

In the following we describe the RDF data model as well as two vocabulaviers @r more precisely,
extending) its semantics.

The RDF Data Model. It is implicitly built on two premisesklogan 2011):

 the Open World AssumptiofODWA). In the open world we assume that any statement that is not
known to be true is just “unknown” and not necessarily false (as woelddsumed in the closed
world systems such as relational databases). For instance, if we modeidies of the presidents
of the developed countries and no studies are given for a particulsidprg, let us say, the
closed world assumes has no studies (one could imagin®lBILL value in a relational database)
whereas for the open world it is just unknown. Given that RDF aims to sodhe Web, it makes
sense to assume that the information is potentially incomplete or unkregiihe studies of the
presideniX can be described in a third-party website).

» theno Uniqgue Name AssumptigiNA). The UNA presence means that different names refer to
different entities. The lack of UNA in RDF assumes that different namethigncase, URISs) can
refer to the same entities (resources). The implication is that, on the onerfaanthg resources
becomes more flexible avoiding a centralized naming service. On the otteeratgamts evaluating
the similarity of two entities can not trust in their names and must evaluate otheameats.

RDF aims at describing resources, but at this point one could be beedldsrthe concept of re-
source. We have spotted that the initial concept of documents, protegspages and services was
extended to general data, always under the OWA and the lack of UNAmd®nNs. Thereafter, RDF

2http://www.w3.org/standards/techs/powder

12 2. Basic Concepts

<http://example.org/Researcher>

<http://example.org/birthPlace>

I “Valladolid” @es I

rdf:type foaf:name

<http://example.org/Javier>

<http://example.org/Valladolid>

Shtty.
t. //*m/,,:
.co,

“jfergar@infor.uva.es”

Figure 2.1: A first RDF example.

generalizes the concept of a “Web resource”, which means a thing ahabe identified on the Web
(Manola & Miller, 2004. The contact information of an individual, city facilities, every relation ia s
cial network or product specifications are just few examples of resswhich can be described. There
is no limitation whenever we talk of something with an identity.

RDF describes resources through properties and the values forpitgsrties. The values for the
properties can be either other resources or constant values (calledk)iteFhat is, the basic atom in
RDF are triples (also called statements) of the form:

(subject, predicate, value)

in which the subject is the resource being described, the predicate iparfyrapplied to it, and the
value (also called object) is the concrete value for this property. For icestan

(Javier, e-mail, jfergar@infor.uva.es)
(Javier, birth, Valladolid)

draw two RDF triples. This can be seen as a graph of knowledge in whiifiesrand values are
linked via labeled edgesge. the predicates are the labels. Part of the success of RDF is due to this grap
conception and its expressive power: a dataset in RDF represertgakef statements through natural
relationships between data, by means of labeled edges. This is also a nra@WAocas the labeled
graph structure underlying to the RDF model allows new semantics to be eddédyg &n advance. In
other words, graph flexibility allows for handling semi-structured informaf@nttities having different
levels of detail).

Note that, in the previous triples, we have broken the aforementioned bh&iX¥-pmachine-friendly
processing, identity and naming of resources. That is, cldaslieris not a Web identifier and machine
processing of the properties can be misleading. For instduirtk,is confusing as it can be understood
as the birthday or the birthplace and hence the expected value change§taldn be a date, a string
with the place, a link to the place, etc.). A similar appreciation can be doneswithit although in this
case its meaning is more obvious, different RDF sources could speliafiffeariationsémail mailbox
contactmai) or different languagescérreq, courriel). These are just few examples showing that the
RDF data model requires formalization in order to facilitate machine processes

Figure 2.1 draws the RDF graph of an extension of this example, after formalizationstated,
resources are named using URIs, hence the resdavteris named asttp://example.org/JaviePredi-
cates, in some sense, hold the meaning of the descriptions and relatiorishgsesources, exemplified
in the previous misleading. Therefore, predicates are named with URItheydan be described as re-
sources themselves. Sets of predicates are organized in vocabulsicbgeople re-use for naming the
same type of descriptions. For instaneanailis further described withttp://xmIns.com/foaf/0.1/mbox

2.1. The Semantic Web 13

and this URI is a well-known way of naming an e-mail property as it belongsed-tlend of a Fiend
(FOAF) vocabulary. In order to shorten URIs, prefixes are extensively used, suébafswhich ex-
pands tahttp://xmins.com/foaf/0.1Thereafter these are Compact URI (CURIE), although in the rest of
the text we abuse of the language calling all URISs.

As shown in the figure, the objects in a triple can be another resourcesrat diteibutes. Literals
can be seen as end noflesoncrete values describing the resources. They can pkaf(i) strings (such
as“jfergar@infor.uva.es”, which can include language tags (suct\&dladolid”@es) or typedstrings
where XML Schema Datatypes can be used).(“83""xsd:int). In any case, they may not be used
as subjects or predicates in other RDF triplegiola & Miller, 2004 and they should be treated as
constants. If some structure on the values is needed, one could cresteesource with a URI grouping
them, or make use of a special kind of node (in this RDF graph) calkk nodes These unnamed
resources usually connects various parts of the graph without theoi@edRI. They usually serve as
parent nodes to a grouping of data such as:

(ex:Javier, ex:contactinfao,javierAddress)
(_:;javierAddress, ex:city, ex:Valladolid)
(_:javierAddress, ex:street, “Paseo de Belen 15”)
(::javierAddress, ex:postalCode, “47005")
(_:;javierAddress, foaf:mbox, “jffergar@infor.uva.es”)

in which _:javierAddresggroups the contact information ek:Javier(we use the "ex" prefix fohttp:
example.org)

An important consideration is that blank node identifiers are just a wayfefergcing them inside
one RDF graphi.e, it can be seen as a local naming and the same identifier in two graphs does no
imply to be the same blank node. The representation and use of blank nedésaly dependent on the
concrete syntax usetlgllea, Arenas, Hogan, & Pollere2011).

At this point, it is worth noting that RDF is a data model and it does not resteatihitiple serializa-
tion formats emerged in the last years, which will be presented along the. thesis, RDF is typically
formalized as followsGutiérrez, Hurtado, Mendelzon, & Pere2011). Assume infinite, mutually dis-
joint setsU (RDF URI references)3 (Blank nodes), and. (RDF literals).

Definition 1 (RDF triple) A tuple(s,p,0) € (UUB) x U x (U U B U L) is called an RDF triple, in
which s is the subjectp the predicate and the object.

Definition 2 (RDF graph) An RDF graphG is a set of RDF triples. As states, p, o) can be repre-
sented as a direct edge-labeled graph» o.

The normative semantics for RDF grapls ilayes 2004 follows the concept of interpretation, en-
tailment and other classical treatment in logBugiérrez et al. 2011). Its RDF vocabulary includes few
pre-defined keywords such alf: XMLLiteral, rdf:List, rdf:Statemenbr rdf:Bag. One of the most impor-
tant built-in predicate isdf:type, as it allows for creating classes within the RDF graph. In this context,
a “class” stands for a group of resources sharing common charéicgerisor instance, in the previous
example it was stated thdavier was a type ofoaf:Person Although this basic mechanisms does not
allow “advanced operations” (such as modeling hierarchies), the conigeas that the more expressive
power of its vocabulary semantics, the higher computational complexity isreelfor processing such
data Gutierrez et al. 2011). Assuming that RDF was designed to be flexible and extensible, additional
vocabularies can be used to add semantics to classes and propertesyHiut the next items we briefly
describe the two most successful approaches, the RDF Schema aneltmidlogy language.

3xmins.com/foaf/0.1/
“Literals can not be the subject in triples, only URI resources can beibegc

14 2. Basic Concepts

The RDF Schema (RDFS) (Brickley, 2004). It adds a built-in vocabulary to RDF with a normative
semantics. That is, it provides a “basic type system for use in RDF mod€&lsse types are given

within the same RDF data model and they deal with inheritance of classes @pettgrs among other

features. It can be thought of as a lightweight ontology.

Roughly speaking, the most noticeable contribution of RDFS vocabulanadddour novel proper-
ties: rdfs:subClassQfrdfs:subPropertyQfrdfs:domain andrdfs:range Without going into details, the
first two allows to define a basic hierarchy within classes and propertlesreas the latest delimit the
class (or classes) of a subject or an object when they appear ugidengredicate. For instance:

(ex:Researcher, rdfs:subClassOf, foaf:Person)
(ex:addresslinfo, rdfs:subPropertyOf, ex:contactinfo)
(ex:addresslInfo, rdfs:domain, ex:Researcher)

(ex:birthPlace, rdfs:range, ex:Place)

which models, first, that @&x:Researchers a subtype offoaf:Personand theex:addressinfqrop-
erty is a type ofex:contactinfo This states that a resource of typdfitype) ex:Researcheis also a
foaf:Person Similarly, a property value foex:addressinfas also attached to ex:contactinfgpredicate.
The last two triples state that any resource related by:addressInf@roperty is member of the class
ex:Researchefeven though the type property is not explicitly given). In turn, a valvemifor the
propertyex:birthPlaceis member ofex:Place For instance, if we attach these triples to the example in
Figure2.1, a machine can automatically infer theat Valladolidis aex:Place

RDF semanticsR. Hayes 2004 include entailment rules to make this type of deductions as well as

the so-called RDFS axiomatic triplds. axioms such as:

(rdf:type,rdfs:domain,rdfs:Resource)
Entailment rules can be seen as a deductive sysBartigrez et al. 201]) stating, for instance:

(A,sp,B)(B,sp,C)
(A,sp,C)

which describes the transitivity in subproperties (if the resource A isrsplepty of B, and B is sub-
property of C, then A is subproperty of C). Note ti@&ttiérrez et al(2011) describe the complexity and
bounds of the main problems.

The Web Ontology Language (OWL) (McGuinness & Van Harmelen2004). It is a version of logic

languages adapted to cope with the Web requirements. Intuitively, it is mpresswe than RDFS,
allowing more advanced deductions yet, as stated, at the cost of comput@atighexity of evaluation

and processing. Among all the novel language primitives, it highlights fleniog predicate:

(ex:Javier,owl:sameAs,dblp:Javi&. Fernandez)

because it allows for making equivalence between resources in diffei2F graphs. In this case, the
RDF graph example establishes a similarity with the external resaltpeJavier D._Fernandezawhich
(as we will explain) is part of the RDF graph of the bibliographic DBIdatalog.

OWL comes in three flavors, at the cost of the aforementioned complexity: W, OWL DL and
OWL Lite. In fact, the novel OWL 2Hlitzler et al, 2012 adds new expressivity and redefines three new
profiles, OWL 2 EL, OWL 2 QL, and OWL 2 RL.

In summary, describing semantic data remains a work in progress in whichilR@Frently the
cornerstone. Regardless of the novel potential fields of application, gsvaluable attribute has always

5ht'[p://www.dblp.org

2.1. The Semantic Web 15

been its simplicity to serve as a mechanism for working with metadata which prothetegerchange
of data between automated procesdeawfers 2003. Thus, if one has scalability in mind, due to
complexity tradeoffs, the expressive power of the semantics shouldtsidyasic level of metadata.

In the following we present the most practical way (nowadays) of gngisuch semantic data.

2.1.2 Querying Semantic Data

RDF can be seen as a graph labeled with meaning, in which each(triple) is represented as a direct
edge-labeled graph % o. It is clear that a query language over the RDF data model should follow the
same principles (interoperability, extensibility, decentralization, etc.) and a signdph notion.

SPARQL Prud’hommeaux & Seaborne2008 is the W3C recommendation for searching and ex-
tracting information from RDF graphs. It is essentially a declarative lagglsed on graph-pattern
matching with a SQL-like syntax, such as the one in Figi2 This query retrieves the birthplace
and e-mail ofex:Javierfrom an RDF graph such as the previous example (Figute Intuitively, one
should construct a graph pattern such as the one presented on thenrighich we provide named
terms or variables if the term is unknown or part of the desired result.eTdrasts solution when this
graph pattern matches a subgraph of the RDF data after variable substiftitismequired substitution
of RDF term$ for the variables is then the solution for the query. The correspondiAROP. query,
with the appropriated syntax, is presented on the left side of the figure WHERElause provides a
serialization of the graph pattern to match against the data graph, whes&s tECTclause lists which
variables are given as results. In this case, the result is a simple “mapppigte="ex:Valladolid” and
?email="jfergar@infor.uva.es’ according to the original excerpt (Figuzel).

http/fexample.org Javier> <http://example.org/birthPlace> 7@

htty,.
Z
o,

PREFIX exx<http ://example.org
SELECT ?place ?email

WHERE{

ex:Javier ex:birthPlace ?place .
ex:Javier foaf:mbox ?email.

}

Figure 2.2: A first SPARQL query.

In a general case, a SPARQL que&pycomprises two parts, the head and the body. The head is an
expression that indicates how to construct the answer for the qeryose graph pattern is given in the
body. In the previous query, the head makes useSERECTclause which select two variable as results.
There are four output forms in total:

« SELECTwhich, as stated, allows for selections of matching values of the variables patterns.

« ASKareyes/noqueries,i.e., returntrue if the query pattern has a solution, 0o in other case.
Consider, for instance:

ASK{ ?resource ?property ex:Valladolid .

which tests if there is something relatedex:Valladolid in the RDF graph. Over the graph in
Figure2.1, the result will beyes

®An RDF term is a SPARQL terminology naming any element fréthU B U L), though it extends URIs to IRIs
(Duerst & Suignard 2005.

16 2. Basic Concepts

« CONSTRUCTeturns an RDF graph, as oppose&®LECTwhich returns a table of bindings for
the variables. To do so, a graph template, which can include variablestsoguery pattern, must
be provided. The substitution of these variables will provide the final R2plgreturned. In the
following query,

CONSTRUCT ?resource ex:origins ex:Valladolid .
WHERE{ ?resource ex:birthPlace ex:Valladolidl .

we are constructing a simple graph in which the origimabirthPlacepredicate has been substi-
tuted byex:origins Note that the resulting graph only includes the triples described in the template,
obviating the rest of the RDF graph. A que@ONSTRUCT ?x ?y ?z } WHERE{ ?x ?y ?z},

will return the original RDF graph.

» DESCRIBEreturns an RDF graph with data about resour®ea@d’hommeaux & Seaborn2008).
It can be seen as a metadata request over the RDF graph. The cdes@iption is determined by
the SPARQL query service holding the graph. One potential use is to knéadate information
about a graphe.g.the following query,

DESCRIBE<http://example.org

returns a description of the graph which can include a summary of the typsairces included,
authoring, relevant publishing dates, etc., which may be useful fort@matic process.

As stated, the SPARQL queries are built under the notion of graph paitesm i the body. The
smaller component of a graph pattern is a triple patiegntriples in which each of the subject, predicate
and object may be a variable (this is formalized in Defini®nThe previous example showed two triple
patterns, called a Basic Graph Pattern (BGP). In general terms, B&Bstarof triple patterns in which
all triple patterns must match (this is formalized in Definitd)n They can be seen as inner-joins in SQL.
Several constructions can be applied over BGPs:

» BGPs can be grouped under braces.

 Alternatives of two groups can be expressed similarly to SQL, withtN&ONkeyword.
» Optional graph patterns can be provided withGIATIONALkeyword.

» Matching values can be restricted by means BflaTER clause.

The OPTIONALconstructor deals with the mandatory graph pattern matching. In BGPs, a solutio
is automatically rejected if just one triple pattern in a graph pattern (which cdudmceveral triple
patterns) does not match. For instance, in the basic query in FRRré ex:Javierdoes not include
its birthplace in the original graph, the result will be completely empty. Inste&dyould be inter-
ested in retrieving the e-mail in any case and, optionally the birthPlace if ireSeéhis is the goal
of including optional parts, exemplified by the query in Fig@r8 This query returns the emails of
those individuals in the domain “infor.uva.es” and, if exist, it also retrieves thirthplaces. In other
words, if the optional graph does not match, it returns no bindings bes dot eliminate the solu-
tion (Prud’hommeaux & Seaborne2008, in tune with the principles of flexibility an®©pen World
Assumption It is worth noting that optional patterns have its relational counterpointgtheuter join
(Perez, Arenas, & Guiirez 2009.

In turn, FILTER conditions are restrictions on solutions applied to a given group. Théaycteso-
lutions to those for which the filter expression evaluates to TRRIEq’hommeaux & Seaborn008.
They arebuilt-in conditions often used to restrict the values of triples by means of seyegadtors:

2.1. The Semantic Web 17

PREFIX ex< http ://example.org
SELECT ?place ?email
FROM <http :// example . org
WHERE{

?someone foaf:mbox ?email.

FILTER regex (? email"@infor.uva.es")
OPTIONAL {

?someone ex:birthPlace ?place .

}
ORDER BY ?place

Figure 2.3: A slightly complex SPARQL query.

» Regular expressionsggey.
« Common arithmetic expressions.

e Other boolean operators, suchBOUND(?variable) which test if a valid mapping has been
found for such variable dsURI(?variable) testing if the variable is a URI.

The SPARQL standardPfud’hommeaux & Seaborn®008 details a complete list of operators. In
Figure2.3we restrict withregexto those e-mails including “@infor.uva.es”.

The previous query in Figur2 3also showed two novel clauses. TRROMlause allows to specify
the graph (or graphs) to be queried. If two or mBROMlauses are provided, the graph to be queried
is based on the RDF merge of the graphs. ORDER BYlause is similar to its SQL counterpart, and
is part of thesolution modifiers These are operators which, once the output of the pattern has been
computed, allow to modify these values. A solution modifier is onePofid’hommeaux & Seaborne
2008:

« ORDER BMused to order the solutions.

» Projection, by means of selecting the desired variables irStleECTclause. Note that in the
query from Figure2.3, not all variables are selected, as ?someone is just used to construct the
graph pattern.

e DISTINCT, which allows to restrict to unique solutions.

 REDUCEDvery similar toDISTINCT but it allows the SPARQL processor to partially eliminate
the duplicates. In other words, the results are partially or totally removed.

e LIMIT , which restricts the number of solutions in an SQL-like manner.

» OFFSET used as a pagination service of the solutions in combination @RDER BYand
LIMIT . It causes to start generating solutions after the spedffelsSETnumber of solutions.

The evaluation of a quer® against an RDF grapfis done in two steps: i) the body &fis matched
againstg to obtain a set of bindings for the variables in the body, and then ii) using theriation on
the head, these bindings are processed applying classical relati@matap (projection, distinct, etc.)
to produce the answe?.

We provide in the following a brief excerpt of the most important SPARQLuiess in algebraic way,
following Perez et al(2009. Let us introduce two differences from the previous RDF conceptiz.
First, we should include a novel sét, of variables, disjoint from the aforementionéd (RDF URI
references)B (Blank nodes), and. (RDF literals). Next, URIs are extended to IRBuerst & Suignargd

18 2. Basic Concepts

2009 in SPARQL, then we change to a debf RDF IRI references. Thus, &RDF triple (s,p,0) €
(IUB) x I x (IUBU L). Assuming the binary operators UNION, AND, FILTER and OPTIONAL
(and the precedence AND over OPTIONAL).

Definition 3 (SPARQL triple pattern) Atuple from(I ULUV) x (IUV) x (IULUV)isatriple
pattern. In fact, this is the mentioned cornerstone concept of triple patiieisworth noting that blank
nodes in graph patterns act as non-distinguished variallRrs’hommeaux & Seaborne2009. As
stated, the semantics of blank nodes prevents from using them as “paf'sidemtifiers, hence blank
nodes in patterns does not reference specific blank nodes in the RPR.gra

Definition 4 (SPARQL Basic Graph pattern (BGP)) A SPARQL Basic Graph Pattern (BGP) is de-
fined as a set of triple patterns. SPARQL FILTERs can restrict a BGB; lis a BGP andR is a
SPARQLbuilt-in condition, then B; FILTER R) is also a BGP.

Definition 5 (SPARQL graph pattern) A SPARQL graph pattern is defined recursively as:

1. A SPARQL triple pattern is a graph pattern.

2. If P and P, are graph patterns, the?, ANDP;), (P, OPTIONALP,) and (P, UNIONP,) are
graph patterns.

3. If P, is a graph pattern andk is a SPARQLbuilt-in condition, then(P, FILTER R) is also a
graph pattern.

Perez et al(2009 complete this formalization with more semantics (mappings, evaluation, etc.) and
provides a deep study on complexity query evaluatidmglés and Guérrez (2008 reveal that the
SPARQL algebra has the same expressive power as Relational Algdtiti@igh their conversion is

not trivial (Cyganiak 2005.

A final remark deals with the SPARQL version. The SPARQL Working Griogjile the W3C has
produced a new SPARQL 1.1 Recommendation (March 20Gaylik, Seaborne, & Prud’hommeaux
2013. Although it includes many interesting features (nestinBLECTexpressions, navigational ca-
pabilities thought property paths, an entailment regime for RDFS and OWaggoegates), the novelties
of this version go beyond the purpose of this thesis.

2.2 The Web of (Linked) Data

The “Web of Data” is a “twist” of the Semantic Web, a concrete proposal tsighte the misgivings
of an initial idealization. The idea behind the Web of Data is that we need to nooweiid machine-
accessibility of the knowledge of the Web by means of publication, exchemdjeonsumption of (raw)
data in the WebGutierrez(2011) provides a general (abstract) definition:

The Web of Data is the global collection of data produced by the systematidesrentral-
ized exposure and publication of (raw) data using Web protocols.

At this point, we have presented the Semantic Web and the way data can biednssl@antically
with RDF, extended with additional semantics (RDFS, OWL) and queried wit{R&R.. However, de-
spite the expressive power and possibilities of this “infrastructure”,condd think that we still remain
in isolated RDF datasets, knowledge bases with axioms about a concrjetet stibus how can we take
advantage of the different sources publishing semantic dataeven more importanhow can this be
extended to a Web scale?

2.2. The Web of (Linked) Data 19

First of all, the concepts was already grounded. RDF graph structtlexiisle enough to represent
interactions and relationships between data. These relationships cawnliferant levels; in arinter-
nal level we establish relations between data inside a dataset. For instance, inwioeipexample
from Figure2.1, we link ex:Javierandex:Valladolidin a meaningful way. Later on, we added a triple
(ex:Javier,owl:sameAs,dblp:Javi€&y._Fernandez)in which we relate this internal resource with the in-
formation of an external source, DBLP. That is exactly the kind of relatipanexternal level This
feature allows to establish meaningful links between different data sourcaich a way that, at Web
scale, we could conform a semantic net of machine-processing destsiptiofact, this is what led to
the development of the Linked Data initiative.

Tim Berners-Lee envisioned a way to bring these ideas to the Web, in icatagay. He clearly
stated the aim in a W3C design issiBz(ners-Lee 2000:

The Semantic Web isn't just about putting data on the web. It is about mikiksg so that
a person or machine can explore the web of data. With linked data, whehax@ some of
it, you can find other, related, data.

The idea is to leverage the WWW infrastructure to produce, publish, egehand consume (raw)
data and not only documents (web pages). These processes refleatrint WWW philosophy in the
sense that they are done by different stakeholders with differeig,godifferent forms and formats and,
obviously, in a distributed manner.

To do so, Linked Data is a set of best practices formalized under the fotidour rules:

1. Use URIs as names for thing&s stated, URIs allows real-world entities, its relationships as well
as any raw data to be unequivocally identified at universal stalgjn the global space of the
Web of Data.

2. Use HTTP URIs so that people can look up those naifieis decision leverages HTTP to retrieve
all data related to a given URI. In other words, those names can bestareéd, they can be
navigated using HTTP.

3. When someone looks up a URI, provide useful information, using s@dsddris rule standardizes
processes in the Web of Data. One of the main challenges is the meaningfioinships of this
universe of dataHausenblas & Karnsted2010, and this is where the aforementioned semantic
data make sense. RDF and SPARQL, together with semantic technologiasuphgdescribed,
defines the standards mainly used in the Web of Data.

4. Include links to other URIs, so that they can discover more thiigscourages to establish exter-
nal links between different datasets, breaking down the isolation andialiateg data integration.
A link is done by simply adding new RDF triples linking two entities from two différdatasets.
This inter-dataset linkage enables the automatic browsing throughout the net.

These simple four rules provide the basis for raw data to be publishedamyed and consumed
by combining the RDF model and HTTP URI-based identification. The addkek\is that it allows
different “things” in different datasets to be connectedy(scientific data, social networks information,
media, government data, etc.), at the most basic level of granularity (&tiik) and to ask questions
not possible before (thanks to the structuredness and expressva@PARQL).

Linked Data is decentralized, strictly speaking it provides just a guideublighing data with these
best practices, hence they could be applied also in private (closadyrmments. This “branch” of Linked
Enterprise DataWood, 2010 leverages the infrastructure to improve several enterprise precelsse
particular, the integration of data and applications can be lightened thanksuadierlying RDF model,
and publishing policies help in exposing and sharing product and bsdirfesmation.

20 2. Basic Concepts

Nevertheless, the most visible and successful example of adoption phcaéipn of Linked Data
principles is the Linked Open Data (LOD) movemerithe philosophy is to promote semantic data to
be released with Linked Data principles and under open licenses. Ityasthate that:

Linked Data is about using the WWW to connect related data that was nabpsty linked,
or using the WWW to lower the barriers to linking data currently linked usingrattethods.

Tim Berners-Lee added (in 2010) a “five-stars” rating system to eagaupeople (specially, govern-
ments) implementing the Linked Data principles under an open license:

. Make your stuff available on the web (whatever format) but with an ¢ipense, to be Open Data.
. Make it available as structured dagad. Excel instead of image scan of a table).

. Use non-proprietary formats.g.CSV instead of Excel).

AW ON P

. Use open standards from W3C (RDF and SPARQL) to identify thingthageople can point at
your stuff.

5. Link your data to other people’s data to provide context.

Essentially, LOD builds a cloud of semantic data-to-data hypeflinkkis cloud has hugely grown
since its origins in May 2007. The first report pointed that 12 datasets paat of this cloud, 45 were
acknowledged in September 2008, 95 datasets in 2009, 203 in 20109amiff2rent datasets in the
last estimation, which is already out of date (September 2011). As stated imtrib@uction, this last
systematic study reported more than 31 billion triples and more than 500 million mtizset links.
LODStat$, a project constantly monitoring the LOD cloud, reports (in May 2013) 8n@skts (and
other 1416 with problems) having more than 62 billion triples. Other statistics egoumd in the
Linked Open Vocabularié$, the Linking Open Data Cloud from CKAN and the OpenLink Software’s
LOD Cloud Caché&.

All kind of fields are present in LOD, such as geography, life scienteslia or publications. Itis
worth mentioning the noticeable presence of government data and the egisfemany cross-domain
datasets comprising data from some diverse fields. In fact, DBpediaonsidered the nucleus for the
LOD cloud (Auer, Bizer, Kobilarov, Lehmann, & Ilves2007). DBpedia is an RDF conversion of the
structured data of Wikipedia, published under the Linked Data princiglesan interesting example of
a big semantic dataset. In the following, we will briefly bridge the Web of Datktla@ current hot topic
of Big Data.

2.3 Big Semantic Data

Big Data is one of the current trending topics in Computer Science. As walstatke introduction,

we are living aData Delugeera in which data comes from almost every field, at high volumes and high
rates. Assuming the philosophy of the Web of Data (flexible, distributedehtstiale, etc.), and the very
productive fields in which semantic data is being produced (bioinformagcgyrgphy, mediagan we

"http:/mww.linkeddata.org

8From now on, we will indistinguishable talk of Web of Data, Web of Linked Datgust Linked Data, but we always refer
to Linked Open Data (LOD).

Shttp://stats.lod2.eu/

10http://Iov.okfn.org/dataset/lov/

llhttp://datahub.io/group/lodcloud

2http://goo.gl/isDUIO

13ht'[p://dbpedia.org

2.3. Big Semantic Data 21

talk of Big Semantic Data’And, would this concept influence Big Data in generdl@ answer the first
guestion we have to review again the principles of Big Data. Then, we will rbagk to the first origins
of eScienceéo exemplify the answer to the second question.

In short, among the several Big Data definitions, we use this term to reféhdécdata that exceed
the processing capacity of conventional database systamsnbill, 2012. Big Data result then in the
convergence of the following so-called “three V's”:

Volume refers to the huge datasets continuously produced, stored and masagdabilityis one of
the main challenges related to Big Data. It is worth noting that storage decisftuence data
retrieval which will often be the ultimate goal. Under this perspective, the sior@atasets fit in
this dimension as they can be potentially huge. DBpedia and other LOD dadasetsnformed
of hundreds of millions of triples. A dataset integrating large RDF corputda@ach billions of
triples and terabytes of data.

Velocity describes how data flow at high rates, in a distributed scenario. Marélogdinal user expects
management and querying to be performed as fast as possible, speadiedi+ime systems. This
again, perfectly fits the Web of Data, where dereference operatiomglete downloads of RDF
datasets and SPARQL queries (with potential large results) are perfofsaghificant interesting
and very active area in LOD is, in facttreaming data processiras sensors are able to produce
and automatically exchange RDF data.

Variety refers to the different degrees of structure (or absence) within tlasetzalfon, 2012. Big
Data has to deal with the different formats and data models coming from kehsent fields
and sources. Managing Big Data variety should rely on mechanisms fordiit&ind integrating)
diverse classes of data. We have already argued that RDF dataetalwothe similar variety
concern and it is in fact a solution due to its flexibility and extensibility.

A four “V” is often added in order to refer to théalue of the datd,e. how fast data can be processed
to obtain a significant value. The more interesting knowledge can be getgttze higher dataset value.
It is obvious that semantic data in the Web of Data can generate an enoralaasonce it allows to
stick together different “things” in different and potentially distributed dats, thanks to the established
meaningful links.

Thus, in this thesis, we introduce the concepBaf Semantic Datarecently presented in our work
(Ferrandez, Arias, Marhez-Prieto, & Gutrrez 2013.

Definition 6 (Big Semantic Data) The term “Big Semantic Data” refers to the semantic data whose
volume, velocity and variety exceed the computational resources aleaitatits efficient management
in a given system.

Note that we do not restrict solely to huge systems. The difference is ablkece Although one
could think in terabytes or petabytes talking about Big Semantic Data, fewygegmay be enough
to collapse an application running on a mobile device or a limited personal compsteve consider
that similar dimensions and problems could arise in such scenario, the defpriétamds to cover all
scalability issues.

Finally, we questioned if Big Semantic Data could influence Big Data in geneaak ® the origins
of the Data Deluge Jim Gray devised its effects in the Sciené¢éey etal, 2009. He stated that
scientists were no longer interacting directly with the phenomena as he emdsibat they should
perform instead complex computational processes for analyzing thedatgeaptured by instruments
or recollected from simulations. Gray named this form of science the foartddgm: theeScienceBut
eSciencavas indeed not an easy task. It has to deal with the complexities of scieltificteation or
capture sharingthese data with other scientists, and finally processing and analyzing atechTeé do

22 2. Basic Concepts

rank,(B,6)=3

|_10011010001|

select,(B,5)=9 access(B,17)=1

Figure 2.4: Example of a bitsequenBeindrank /select /access operations.

so, Gray relied on machine-readable information. He statedtthabnly way that scientists are going
to be able to understand that information is if their software can understanishtbenation”.

This example has its origins in Science but remains completely true in the cgtofyalized Big
Data scenario. It shows the importance of da¢a representatioas one of the key factors in the process
of creating, exchanging, storing, filtering, analyzing, and visualizing d&large scale. It is easy to
find the correspondence between the words of Jim Gray and the use sétfantic standards (RDF,
RDFS, OWL, SPARQL) previously presented. Big Semantic Data could lacinfluence Big Data
whenever this datasets move to, partially shares or integrate, Web of Dagdsmagich allow advanced
machine-processing facilities and leverage a complete Web-scale inftastrtor these data workflows.
In addition, the graph-based model supports higher levels of varietydodata become unwieldy, allow-
ing more data to be linked and queried togett&tyles 2012.

2.4 Succinct Data Structures

The Big Data explosion has led to develop novel techniques, such as lthenaxen MapReduce frame-
work for data processing on distributed clustdbeén & Ghemawat 2008. In parallel, other “tradi-
tional” techniques have been reviewed to be adapted to the new reality. fGime main trends is to
revisit data structure®(g. trees, hashing or graph indexes) to take full advantage of the memoay-hier
chy. In other words, if data structures perform in higher levels of the mghierarchy, the performance
is clearly improved. While dealing with large data, one of the main requirementtithty need to rep-
resent and index as much data as possible taking minimum space and remaifongnance efficient.

Recent years have withessed a boom in compact structures with this latiespuThese are the so-
calledsuccinct data structuresvhich are able to approach information theoretic minimum spaces while
still serve efficient operations over the data. For instance, the conepresistext indexes take space
proportional to that used for the compressed text and repladéakifen & Navarrgo 2007). A good
example is the FM-indexHerragina & Manzini 2000 which counts the occurrences of an arbitrary
pattern of length in time O(p log|>_|), remaining close to the information theoretic minimum space.

The FM-index and most succinct data structures are baseghtin/select operations over binary
or arbitrary sequenced/@kinen & Navarrg 2007). We briefly describe these operations over binary
sequences and give references of the main practical implementationsr edtfaced succinct data
structures are described throughout the thesis.

2.4.1 Rank and Select over Binary Sequences

Given a sequence of bits; ,,, i.e., a sequence of lengthof bits, b, from an alphabet = {0, 1}, three
typical operations can be defined (a running example is shown in Fagdre

- rank (B,) counts the occurrences of Bitup to thei-th elementj.e, in the prefix53[1,:]. For
instance, the operation in the examm@k (B, 6) counts the number of 1-bits up to the sixth position
(appearing in the prefiB[1, 6]), resulting in 3.

2.4. Succinct Data Structures 23

- select (B, 1) locates the position for theth occurrence of bib in 5. Hence,select ((B,5)
searches for the position where th¢h occurrence of a 0-bit occurs which results in 9 in the example.

- access (B,1) returns the-th element,.e., the symbol stored i8[;]. The example shows the
access (B, 17) operation which is a 1-bit.

Two additional operations are useful when iterations are made over tétseesprev ,(13,4) and
next ,(B,i). These operations returns the position of the previous/nextfbitm thei-th element;j.e.
from B[1,] or B[i, n] respectively. Nevertheless, these operations (as watt@sss) can be expressed
via a constant number odnk andselect queries Makinen & Navarrg 2007).

In short,rank andselect operations have been achieved attaching additional structures to the
bitsequence witlo(n) extra bits of space while answering the queries in constant @k, 1996
Munro, 1996. The idea (originally intended only for constaank by Jacobsor{1988) is based on a
two level directory of precomputed values and table lookups. In summiagn @ bit array, a frequent
operator is to count the number of set bits. This method uses precomputsigtaing these values for
fixed length arrays. A fine tuning of the gap between counts at two lewadledcsuperblocks and blocks)
yields to constant time with the aforementiongd) overhead.

Gonalez, Grabowski, Mkinen, and Navarr¢2005 provide two significant practical implementa-
tions. The first one follows the previous concept and uses a fixed 33x&%space on top of the original
bitsequence size. The other practical implementation offers a space/timeftraideses just one level
of precomputing and allows to parametrize the number of blocks. The morksblibhe more precom-
puted data and hence the faster performance at the cost of spabel&actakes32 x & bits, i.e., there
are 55 blocks and a total of k/space overhead. A common valuekis= 20, still solvingrank and
select efficiently with just 5% space overhead. This implementation is referred RGa&k in this
thesis, wheré: is the mentioned parameter.

It is worth noting that none of these approaches takes into accountraessibility of the bits. In
the words ofMakinen and Navarr¢2007), although then + o(n) solutions are asymptotically optimal
for incompressible binary sequences, one can obtain shorter rapetgms for compressible ones

Among several practical representations, we highlight the approaohRaman, Raman, and Rao
(2002. The underlying idea is that one could establish the most used bit caatfmus in blocks and to
take advantage of the repetition when coding. A configuration can besemted as the number of 1-bits
in the block and the concrete positioning of these bits inside the block. Thery, block is modeled
with a tuple(c;, 0;), wherec; is the so-called class (the number of bits) and the offset inside the list
of possible variations for this number of bits. In this thesis we use the priictipementation of this
method by Francisco Claud€g@mpact Data Structures Library (libcdsp012), referred to alRRR-k
wherek is the sample rate for partial sums. It performstigk) time for rank and O(loglen) for
select wherelen is the length of the bitstring.

2.4.2 Rank and Select over General Sequences

The operations over binary sequences can be extrapolated to thetadatgeneral sequence of symbols.
In short, given a sequencg ,, of n general symbols from an alphaldebf sizeo:

-rank o(S,) counts the occurrences @fc ¥ in S[1,).
-select (S,) locates the position for thieth occurrence of the symbale X in S.
- access (S,1) returns the symbol i5[i].

These operations over general sequences can be efficiently atlhigwestructure calletiVavelet
Tree(Grossi, Gupta, & Vitter 2003. A deep study on Wavelet Trees and their applications can be found
in a recent work byNavarro(2013. In summary, a Wavelet Tree represents a general sequence of sym-
bols as a balanced tree in which the alphabet, at each node, is split int6 dnighlow” symbol values
and the resulting subsequences are recursively subdivided untiboalglifferent symbol is present. Fig-
ure 2.5 shows an example of a Wavelet Tree over the sequencertossssippi”. As can be seen, the

24

2. Basic Concepts

one_mississippi
‘110000110110110‘22{_,e,i,m,n,o,p,s}

r={, M, p, s}

e _mi i i i ons s s s pep
001111 1] 0011111 1]
2={_ e} Z={i, m} 2={n, o} 2={p, s}
e _ mi i i i on S S Ss s pep
[10] [111100]
_ e ioiii m n o ppPp S S S S
2={} 2={e} 2={i} Z={m} Z={n} 2={o} 2={p} 2={s}

Figure 2.5: Example of a Wavelet Trée

first level is split into two branches (or halves), one correspondingversymbols in{_,e,i,m: and

the other for higher symbols ifn,o,p,§. A bitsequence marks with a 0-bit the positions in the array
belonging to the first halve, and sets a 1-bit when they belong to the sbatrad The symbols in each
level are shown only for illustration purposes, but only bitmaps are fintdised. Note that both the
alphabet and the decision for splitting is known beforehand.

It is clear that this representation produces a tree of héight[logo]. Practical implementations

answerank , select andaccess in proportional time to its height (Navarrq 2013. These opera-
tions over the Wavelet Tree are resolved making use of constantaimke andselect operations of
the underlying binary sequences (represented as bitmaps) in eachWeualiefly detail these operation
below over a running example shown in Figaré:

» access (S,1) - Symbol at positiori: To discern such symbol we have to navigate the tree from

the given position on top to the symbol represented in leaves, in ordet, Wasstart retrieving
the bitb; in the top level bitmap. If the retrieved valagis 0, we navigate to the left child branch,
or to the right child otherwise. In the following level, we have to discount tialer of previous
positions that have gone to the other half. Thus, the position of the symbaleweaking for in

the second leveli; = ranky, (B,7). We continue descending in the three until the last level of
leaves is reached. The symbol represented in the leaves is exactly thd aymhiegposition.

In the example in Figur@.6, access (S,9) asks for the symbol at positigh As the bitmap at
top level stores a 0-bit at such position, we descend to the left child. @he position in the
second level isankq(B,9) = 5, thus we ask for the fifth symbol in the second level (as marked in
the figure). The process continues and we finally descend to the |davieg $-symbols, hence
the symbol at the original positiahwas actuallyp.

select ,(S,1) - position of thei-th occurrence of the symbal In this case we have to traverse
the tree from bottom to top. First, we start in thth position in the leaves representing the symbol
a. We climb up to the father node; the novel position in this node, let ug;say(as it is in the

h — 1 level of the totalh levels), is calculated a8,_, = selecty, (Bp—1,i) = 7, whereb; is 0

if the child node comes from the left half or 1 otherwise, d8yd ; is the bitmap at leveh — 1

for such path. This process is repeated until the top level is reachedhich the final operation

i1 = selecty, (B2, i2) returns the asked position.

2.4. Succinct Data Structures 25

rank,(S,4)=1 access(S,9)=i select,(S,1)=13

n e mISSISSIppI

‘_00110110110‘E{e/mnop5}

z= {_/M X={no,p,s}

e _mi i i i onss s s pep
el 131 1] loo1111[21]
= £ 2=fi,m} 2={n, o} 2=(p,5)
e _ mi i i i o n S S S s pp
Q [10] [1111]8 0
N Y
. i i m n o PP S S s s
2={} 2={e} 2={i} 2={m} X={n} X={o} 2={p} 2={s}

Figure 2.6:Rank/select /access operations over an example of a Wavelet Tee

Figure2.6illustrates the resolution aflect, (S, 1), i.e., we ask for the position of the first symbol
“p”. As explained, we proceed bottom-up, starting for the second positiprieaves. Note that
this belongs to the first half (0-bits) of the split. Thus, the position in the fatbde (third level)

is i3 = selecty(Bs, 1) = 5. That is, we are positioned in the fifth position of the third level. As
we are now in the second half of the vocabulary (1-bits), we climb up to tbenselevel to a
positionis = select;(Bsy,5) = 7. Finally, we climb again throw the second half and hence the
final position in the first top level i§; = select;(By,7) = 13.

* rank ,(S,%) - number of occurrences af in S[1,i]: We traverse the tree from top to bottom,
delimiting at each level the range of positions we are interested in. We str¢mting to the
second level by the appropriate branighgiven the symbok. As we have to discount those
symbols up to position (we rename it;) that have gone to the opposite branch, the novel position
in the second level i, = ranky, (B, i1). We continue descending in the three until the last level
of a leaves is reached. The position at leaves is exactly the numhesyohbols up to the original
positioni.

Figure2.6 shows the resolution ofank. (S, 4), i.e., we ask for the number efsymbols up to the
fourth position. Given that belongs to the first half of the vocabulary, we descend to the second
level by a 0-bit branch, and the maximum position at this second levgldsrankq(B,4) = 2.
Again, we descend to the third level by a 0-bit branch, to a positios- ranky(Bs,2) = 2.
Finally, the last descent is by a 1-bit branch and thus the final numbgmubas is given by
ranki(Bs,2) = 1. That s, only le-symbol appears up to the fourth original position.

Practical implementations usglogo| + o(n)logo bits (Navarrg 2013. Note that:[logo| counts
the total bits of the bitmaps (there arivgo| levels with at most: bits per level) whereas(n)logo)
holds the overhead to support intermediateks andselects in constant time.

As the previous extra space may be a problem on large alphatetartqg 2013, a variant for the
representation of levels has been proposgalynski, Grossi, Gupta, Raman, & RaR007), hereinafter
referred to a&MR. This representation draws a matfixof o x n bits,i.e., one row per symbol and one
column per position in the sequense A 1-bit in the cell 7|k, 7] indicates that the symbol represented
in the rowk occurs in the position of the sequence&. Then, a bitmapA of sizeo - n indexes this
table by rows. Figur@.7illustrates the construction of@MVR structure over the string sequence of the
previous example. One can easily see thas highly compressible. Thus} is logically split in blocks

26 2. Basic Concepts

A one_mlslsissippoi

|00 010000000O0OO0OO00O
= e00100001000000000
a i00000101010010031
:: m00001001000000000
i n01000001000000000
;3 01000000;000000020
W p|/0 0O 00O0OO0O0O0DO0DO0DODODO0O110

500000012101100020

B=0110110100010110110111001001001

one_mississippi
ni3 250416 7/0364512

X=0101010101011001{110001111001001

e i mn op s|_ e i mno p s

Figure 2.7: Example of &MR construction.

of sizeo: an additional arrayB stores the cardinality (number of 1-bits) in each block, in unary code.
Note that the array3 replacesA which is not stored. Two additional structures are then required: the
first sequence lists, for each block, all the positions of each symbol ibltiek in alphabetical order.

In fact, this is represented as a permutationof the positions in the block, - - - , o, as can be seen in
Figure2.7. The second sequence is a bitmaf,storing the cardinality of each symbol in the block, in
unary. All this uses up talogo + o(nlogo) bits and it provides the basis to perfoancess , rank
andselect with efficient performance. Without going into details, the resolution of tlogsgations

is based on first locating the corresponding blociifrestricted operations over each block are used),
and then browsing the block with the structureand X. Finally, two variants are provided depending
on the permutation encoding. On the one hand, one can sugguass andrank in O(loglogo), and
select in O(1). On the other handaccess can be revolved irD(1) at the cost 0l0(loglogo) in
select , andO(loglogo - logloglogo) in rank . More details can be found @olynski et al.(2007).

2.4.3 Basic Compression Notions

Succinct data structures share the basis of traditional compressionavmstat representing an original
message in a reduced space. This section summarizes the classificatiompoéssion techniques and
different measures of their efficiency.

At the most general level, one could classify compression techniqulessiesr lossy methoddn
the first case, the decompressor returns an exact copy of the ongasahge. In the latter, it may obtain
the message with some differences. Text compression, for instana&esetp recover the exact original
text, whereas video streaming may afford some losses. Both technigubsmaeassified according to
the codification of the message and the type of data modéMagtihez-Prieto 201Q Salomon 20073.

2.4. Succinct Data Structures 27

Codification. Two compression families are traditionally defin&e(l, Cleary, & Witten 1990:

« Dictionary techniquedirst build a dictionary of phrases which, in this context, are any seguenc
of consecutive symbols in the message. Next, compression is achievebdiitiging the occur-
rence of phrases in the message by an index to the entry in the dictionafye@ipel algorithms
(Ziv & Lempel, 1977 1978 are prototypical examples of dictionary-based compression.

« Statistical techniqueare based on estimating the probability of a symbol, and to use shorter
codes for the most frequent ones. Huffman coddisfffnan, 1952 and arithmetic codifications
(Abramson 1963 Pasco 1976 Rissanen 1976 are common representatives of these methods.

Note that estimating the probability of symbols leverages on obtaining a feasillel widhe mes-
sage. In statistical compression, a model defines what is a symbol in agegssa some specific
properties (such as the number of occurrences), required for tiseguent codification. Thus, a statisti-
cal method is typically seen as a “modeling + encoding” process. In the fiolipwe classify statistical
compression according to different models.

Modeling. The modeling phase can be one of the following schemes.

 Static modelsake a fixed probability distribution, known by the compressor and decasmrée-
forehand. These probabilities do not depend on the current messame, it can lose compression
capabilities if the real probabilities strongly differs from the model. They ta®ugh, a suitable
option in several scenarios due to its simplicity and processing speedrabiem&ge compression
(such as JPEG) is a widespread field of application.

» Semi-static modelsn contrast, build a specific model for each message. Compressoosrpexf
two-pass process. In the first pass over the whole message, stats#ssracted. Once the model
with frequencies is built, it remains static in the second pass, where the raéssagoded. Thus,
a symbol is always encoded with the same code. The model is provided adarhehich is first
processed by the decompressor prior to the message. This is the modeétbhgwhe Huffman
coding Huffman, 1952.

» Dynamic modelsalso calledadaptivemodels, also construct a specific model for each message,
but they perform on a single pass. They start with an initial configuratidrpaogressively update
the model for each symbol read. In turn, the decompressor only escdie compressed text,
as the model is totally dynamic. Note that symbol frequencies are varying veatiing the
message, and hence a symbol may be represented with different coldesdsultant compressed
message. Thus, the decompressor has to replicate the model as des@ngregresses, in the
same way compression did. Dynamic models are flexible and adapt to the diistriieach state
of processing, optimizing the bits used to codify each symbol. In contrastotitauous updating
adds an overload time. Ziv-Lempel algorithnZav & Lempel, 1977, 1978, arithmetic encoding
(Abramson 1963 and other text compressors, such as PR\&é4ry & Witten 1984, are good
examples of these models.

In any case, the efficiency of compression techniques can be measuegchs of time and space.
In the first case, the complexities of compression and decompressiotediradehavior of a technique.
Empirical performance, then, is measured as compression and decsioptases (seconds, millisec-
onds, etc.). In turn, the space effectiveness evaluates the compreapiacity of a given technique.
Let us present some traditional metrics (a complete description can be ifo@atbmon(20073). We
assume an input messagerobytes and its compressed counterpart bfytes. Consider also that the
original alphabet can be represented withits per original symbol.

28 2. Basic Concepts

» Compression ratio: it represents the effectiveness computed as:
)

A value of0.7 means that the compressed data occupies 70% of the original size.

C
n

* Bit per symbol (BPS):it measures the mean number of bits used in compression to represent each
original symbol, as follows:
(bx =)

C
n

Part |

Characterizing the RDF Structure

If the poem’s score for perfection is plot-
ted on the horizontal of a graph and its
importance is plotted on the vertical, then
calculating the total area of the poem
yields the measure of its greatness. A
sonnet by Byron might score high on the
vertical but only average on the horizon-

tal. .
Dead Poets Society (1989) I ntrO d U Ctl O n

This first part of the thesis studies the underlying RDF structure ess&Wedirst motivate this study
(83.1), based in the fact that few works address real-world RDF chaizatien. Nevertheless, we review
these and other related works3(8 83.3and 8.4), prior to our proposal in the next chapter.

3.1 Motivation

Throughout the thesis we focus on an efficient RDF representatioessidg the most important scala-
bility issues in the current Web of Data. To do so, one should study thetreature of RDF datasets,
in order to take advantage of some of its features. That is a common methoadiegymodeling data
structures aimed at solving real problems. However, despite RDF is battedywised, its structural
properties are barely known and exploited in real-world deployments. cbhikl be seen as a natural
consequence of its adoption. First, plain RDF representations do nopege the question as metadata
was confined to small pieces of descriptions (see backgrourlIn1g Later, they evolved to add some
grouping and features to “abbreviate” constructions, yet with the uniquiion of subject repetition (a
review of current RDF serializations is presentedr28l). Besides, many RDF stores serving SPARQL
were developed on top of well-known relational schemas and indexels,asuB-trees. In such cases,
one could argue that the necessary reflexion of the underlying mosléldea superficially addressed.

The objective of this chapter is to present the sparingly number of studéessing real-world
RDF structural characterization. In the next chapter, we will establish armin set of metrics for our
purposes, and develop its empirical study. Note, though, that the stullg &DF structure has to deal
with two important and correlated aspects:

« Part-whole relationship. This term distinguishes the study of the structure of a given RDF dataset
or the consideration of the whole Web of Data as a network of netwdtkSi[& Groth, 2011).

« Schema-instance separationURIs in RDF provides a global naming scheme for resources. As
stated, the semantics can be completed through languages such as BRigklgy, 2004 and
OWL (McGuinness & Van Harmelen2004). They provide schema-level information of classes,
properties and relationships. These (lightweight) ontologies are usecdetacbded together with
RDF, hence the study of the structure and topology can consider the gytiloicture indepen-
dently of the instantiations (the pure RDF data).

For our purposes, we are actually interested in the structure of a unBelRaset, which can (or
not) include the schema. This chapter also reviews, though, some spemific & schema level as well
as some characterizations of the whole Web of Data in order to have a widgregtive of the problem.

3.2 Power Law Distributions. Scale-free Network

One of the first conclusions of initial RDF studies was the presence ofiplew distributions. A power
law is a function with scale invariance, which can be drawn as a line in the ¢pgdale with a slope

32 3. Introduction

equal to a scaling exponent. For example, letting 5 be constants:
f(z) = az=P, thusf(cx) f(x)

As can be seen, power law distributions amale-free multiplying by a constantf(x) remains
proportional taz—?.

Empirical observations of power law distributions in real netwokg, the WWW, have induced
a new interest in fat-tailed degree distributiddofogovtsev & Mendes 2003. Fat-tailed and scale-
free structures are the Intern&g{outsos, Faloutsos, & Faloutsos999 Govindan & Tangmunarunkit
2000, WWW (Albert, Jeong, & Barabasi 1999, scientific citation netsRedney 1998 and nets of
protein-protein interactionsléong, Mason, Barabasi, & Oltya2001).

RDF graphs are actually not random graphs. In th&sé,), the probability that a vertex has a degree
k, does not follow a Poisson distribution. RDF graphs, instead, follow ptavedistributions in most
of their metrics, as seen throughout the following observations.

Observations. Although power law distribution validation could be methodologically arguabie
practice it is assumed as a common characteristic of RDF real-worldRiagand Finin(2006 crawled
more thar00 million triples from 1.7 million document$, founding power law distribution in most of
the considered metrics:

« The number of documents RDF documents per website.

e The number of triples per RDF document. They stated that most rescaneakescribed with
two to ten triples. Whereas few triples are not very useful (a triple caoriditle information),
complex descriptions can be reduced by other meams pointing to a resource which groups
other information).

» The use of instances of the defined classes and properties. In aihds,wnore than the 97% of
classes and 70% of properties are defined but never used.

Bachlechner and Stran@007) collected more thari.6 million Fiend-Of-a-Friend (FOAF) docu-
ments. Although they focus on demonstrating small-world phenomenon as shd@&ection3.3, they
also addressed degree distribution. Note that the number of triples relasdlfect is calledut-degree
and the number of triples related to a object is calledegree They study different communities inside
FOAF, reaching similar conclusions; the cumulative in- and out-degreéditstms for each community,
as well as the entire network, follow power law distributions. For the entingark, the linear regression
obtains an exponent gf ~ —2.1 for both in- and out- distributions. Average degre®.is whereas the
maximum is7, 739, reflecting its skewed distribution.

In a more recent workGe, Chen, Hu, and Q(2010 point out the absence of a macrostudy on the
instance level in the Web of Data. In order to carry out this study, theyd@&fne the notion oObject
Link Graph This considers an undirected graph of related URI instances, eitteatlgior through
blank nodes paths (blank nodes are then rembasavell as literals). This graph holds also a power law
distribution. This test was performed again$0.5M objects recollected from the Falcon search engine
(Cheng, Ge, & Qu2008. The slope of the distribution was fitted2®4, a little larger than the ones of
the traditional Web (3;,, ~ —2.1 andf,,: =~ —2.7 (Broder et al. 2000).

The same work considers domain-specific structures for two well-knatasdts such as DBpedia
and Bio2RDF. Similar conclusions are obtained, with power law presence (slopes bedwige- 2.59).

!Some authors are reluctant to ratify a power law following the criticisi@lafiset, Shalizi, and Newmg2009).

2Ding and Finin(2006§ name Semantic Web documents (SWDs) to each pure RDF graph oralyelwith embedded RDF
graphs. We refer this simply as RDF documents.

Note that blank nodes cannot be referred in other RDF graph as beisguhe node.

“http://bio2rdf.org/

3.3. Small-world Phenomenon 33

Power law at the schema level. As statedDing and Finin(2006 also studied the schema level in their
Web crawl, stating that 97% of classes and 70% of properties are neser u

Subsequent studies examined power law presence in more dép#aharis et al(2008 studied
the power law presence f@0 Semantic Web schemas, RDFS and OWL. They found power law dis-
tributions for about8.6% of the schemas, for total-degree (sum of in- and out- degree) as welf as
out-degrees (property domains) and in-degrees (property rarajfg)ugh the corresponding percent-
ages are lower. Similar conclusions were inferred for the Discrete Randoiable (DRV) and the
Cumulative Density Function (CDF) distributions.

Later, R. Gil and Gara (2004 confirmed the CFD fitting to power law. They performed an eval-
uation over282 extracted ontologies (near5M triples) from the DAML Ontology Library. While
Theohariset al gave a range of)[.65, 2.05] for the exponent of total degree distribution, Gil and Garc
find a slope ofl.186, i.e., centered on the previous rang&ang(2008 obtained a slightly greater slope
for two biomedical ontologies (FullGalen and NCI-Ontology), ranging.ir2 — 2.47.

One of the most recent works in this atda, Chen, Zhang, and Q@011J) also confirm this distribu-
tion by recollectingt, 433 ontologies in Falcons. They obtain a power law distribution for total degree
with an exponent of .34.

Both for instance and schema levehuns 2008 claims for quantifying the skewed degree distribu-
tion in more detail. This work proposes the use of the Lorenz clreeefiz 1905, i.e., the representa-
tion of the relative amounts; = x;/ > = for ¢ in 1..N being N the number of different elements in the
distributionz. They axis represents the cumulative fraction+ a2 + - - - + a;. The diagonal represents
the case of perfect evenness (each case has the same amountjrelmdistribution is farther from the
diagonal than the out distribution and thus it has more unevennesses.

3.3 Small-world Phenomenon

A graph is in fact a small world when it has short global separatiomsthe average minimum distance
between noded,, is reduced\\Vatts 1999. Itis also associated with high local clustering (bigger than a
random graph). The clustering coefficieftfor a vertexv, measures the probability that two neighbors
of v are also neighbors in common. It is a measure of cliquishness of a network.

That is, formally defined, a small-wold graph havingvertexes with an average degree and a
characteristic patth when,

L~ Lr‘andom, bur%‘andom <<, Where’)/random ~]-C/TL

The small-world phenomenon has been popularly accepted within the netabfkends, stating
that two random citizens are connected by only six degrees (intermedias)af differenceNlilgram,
1967). However, the consideration of the Semantic Web as a small world is stilF digiission.

In practice, small-world networks have several important characterist@gues (subgraphs in
which all the possible connections are present) are highly represeartddnost pairs of nodes will
be connected by at least one short p&3hdhlechner & Strang2007). This type of networks are also
associated with a large presencehobs intermediate nodes with many associatidres, high degree,
and thus leading to power law distributions. These nodes are used to teatigaugh the network in
fewer steps. They are good candidates for feeding them as seedseatich engineGe et al, 2010.

In addition, as most nodes have small degree, small-world networks remairtdlerant of ran-
dom failures. However, major failures in the hubs may turn the graph isofatennected). This is
even more dangerous if the Web of Data is queried by automated agents wethréeEovering power.
Addressing this issug;uéret, Groth, Van Harmelen, and Schlobd2B810 propose metrics to evaluate
robustness and to recommend optimizatioms, nodes to add at the expense of fewer costs.

5h'[tp://www.daml.org/ontologies/

34 3. Introduction

Once we have highlighted the most important works observing power lavibdistns, we review
the most important studies on clustering and path length measures.

Clustering coefficient. Bachlechner and Strar(@007) questioned the small-world essence of the Se-
mantic Web. As we stated, they collected more th&i FOAF documents. They split the graph attend-
ing to FOAF communities, such dsibeNetor LiveJournal evaluating the clustering coefficient in each
community. They do find high coefficients in all subgraphs, for instan®s versusy,qndom = 0.00024
for LiveJournal greater than the WWW factor 6f108.

Later,R. Gil and Garta (2009 performed an evaluation at schema level. They stugdontolo-
gies from the DAML Ontology Library. They computed the 1-neighborholdtering coefficient for
a directed graph and then they multiplied the mean value by two (in order to eots&lgraph as an
undirected graph). The resulting clustering coefficient @92, much greater than the corresponding
Yrandom = 0.0000895 for this case. The ontology clustering coefficient is slightly lesser than &NV
factor of0.108 (Adamic, 1999.

Path lengths. Previous aforementioned works have also studied path lengths in the Grap$(2008),
with a small corpus of instances, established the longest shortest patte{eifin11 whereas the av-
erage was only.12. The directed diameter of the Web is at least B8ofler et al. 2000 (for the
connected componentke et al.(2010, with a bigger corpus, approximate an effective lengthitd3,
which is still small regarding the size of the graph, but almost the double tlee6188 for the tradi-
tional WWW/(Broder et al, 2000. Bachlechner and Strar{@007 also found a value 06.26 for its
consideration of semantic network, near ¢h&! random value in theory.

AgainR. Gil and Gar@ (2004, at the schema level, fourid07 as the average path length, slightly
lesser than thé.83 for WWW. Cheng and Q2008 form a dependency graph of ontology terms and
found also power law distributions and an average length pafl).6f The recent work byHu et al.
(2017 studies the connectivity of the graph formed by matching ontologies. Tiséecing coefficient
was0.60 for classes and.72 for properties, whereas the average distand®.&8 and8.81 respectively.

3.4 Other Studies

The presented studies have shown that there exist several empirtiessivorking with different cor-
pora at different time and different levels. All them, whether focusetherontology or in a concrete
instantiation, verify power law presence in graph degrees (essential@nthout- degrees) and small-
world criteria,L =~ Ly,qndom aNdY,random << 7.

Few studies leave this line of research and go into details. For instaee,is the frequency of
multivalued pairs (subject, predicate)? How many subjects act also astehjeother relations? Do
typed subjects present different featuréithe of these questions is addressed by previous studies.

Hogan et al’s work logan 2011, Hogan, Harth, Passant, Decker, & Pollerez010 confirms
many of those observations but additionally analyzes popularity in terms ofrnkege and publishing
quality of RDF online, particularly focusing on compliance with Linked Data@ples. Among statis-
tical analysis, two relevant works, byogan, Polleres, Umbrich, and Zimmermg2010 and the most
recent byHogan, Zimmermann, Umbrich, Polleres, and DecdR&12), define metrics such as cardinali-
ties for (subject,predicate) and (predicate,object) pairs. These ralhep&r our research on RDF struc-
ture Ferrandez, Guérrez, & Marinez-Prietp 201Q Ferréndez, Maiihez-Prieto, & Guérrez 2010,
hence some of these metrics are somehow considered in our proposaletailed in the next chapter.

Spower law presence is already an indicator of small-world graPhst{lechner & Strang2007).
"Considering the direction of links, average shortest-directed-path Ieegitreen pages is equal to 16.

You still don’t know what you're dealing
with, do you? Perfect organism. Its struc-
tural perfection is matched only by its
hostility.

Alien (1979)

Our proposal: Metrics for RDF Graphs

In this chapter we present a theoretical and empirical study on real-Rarkistructure and properties,
in order to determine common features and characterize real-world RDF Aatave motivate, our
purpose is not to serve as a one-size-fits-all set of metrics, but taprawsimple set of useful metrics, a
handbook toolkit when developing RDF data structures such as the engiesent in the next chapters.
We also expect that some of these metrics and observations can provgthsing develop better dataset
designs, other efficient RDF data structures, indexes and compréssioriques.

4.1 Proposed Metrics

First of all, we note that RDF interpretation as a graph can be misleadinghdyensin Definition1
and2, an RDF dataset can be represented as an edge-labeled graphonidgpton is useful for some
purposes such as modeling or visualization. However, it can not bédeoed a graph in the standard
sense because the predicates can again appear as nodes of otisefl. ddgyes & Guerrez 2004).
Thus, the application of well-established methods from graph theorymisepeoblems. For instance,
traditional graph metrics must be reconsidered as well.

In the following, we provide specific parameters to characterize RDF d&afollow Perez et al.
(2009 and Gutierrez et al (2011 for graph notation, with no distinction between URIs, Blank nodes
and Literald.

4.1.1 Subject and Object Degrees

Previous studies &2 focused on showing the presence of power-law distributions on gslgad ob-
jects. The presence of a skewed structure is a useful indicator asti guah some level of compression
can be achievedSglomon 20073. Thanks to the aforementioned concepts of succinct data structures,
if compression can be achieved, there should exist a data structure watidargdeoff between space
and time performance. However, the design of these structures regdai®nal details, which is our
purpose with the following metrics characterizing the concrete degree digtrnkin subject and object.
Few indicators are sufficient, with simplicity in mind.

For the sake of clarity, we first summarize the purpose of each categorygthe formal definition:

e out- and in- degrees:to known the cardinality of subjects and objects. A subject with a high
out-degree is a so-callédtar” (a resource described in depth). An object with a high in-degree
used to be a repeated final value or a hub to further information.

« partial out- and in- degrees: to describe the presence and cardinality of the multivalued pairs
(subject,predicatend (object,predicate) That is to say, they quantify the number of objects
related to the sam@subject,predicateand the number of subjects for a giv@bject,predicate)

!Naming of blank nodes can matter in some treatmeésmtspur serialization is natanonical Canonical representations of
RDF are, due to the structure of blank nodes, tricky to achieve in geft@aaioll, 2003.

36 4. Our proposal: Metrics for RDF Graphs

* labeled out- and in- degrees:to know the number of different predicates related to subjects
and objects. It is a mean showing if subjects are described with many orréslicates and,
respectively, if objects are used with one or more predicates.

« direct out- and in- degrees: to count direct relationships between subjects and objects, thus
minimizing the effect of the labeling. They consider to disregard labels anultat the number of
objects related to a subject and, respectively, the corresponding nofsudbjects for each object.

Let G be an RDF graph, anfls, Pg, O¢ be the sets of subjects, predicates and objec(s. irs-
sume generic € Sg, p € Pg ando € O¢. Let us also denot&; and X the set of valid pairs
(subject,predicateand(object,predicatejespectively. ThatisZg = {(s,p) | 3z : (s,p,2) € G}, and
Xe ={(o,p) | Iz : (x,p,0) € G}.

Definition 7 (out-degree) Theout-degreef s, denotedieg ™~ (s), is defined as the number of triples in
G in which s occurs as subject. Formallyleg—(s) = [{(s,y,2) | (s,y,2) € G}|. Themaximum
out-degreedeg™ (G) = maxses,, (deg™(s)), and themean out-degredeg— (G) = @Esegcdeg*(s),
are defined as the maximum and mean out-degrees of all subjesis in

Definition 8 (partial out-degree) The partial out-degre®f s with respect top, denoteddeg™ (s, p),

is defined as the number of triples Gfin which s occurs as subject ang as predicate. Formally,
deg~ (s,p) = [{(s,p,2) | (s,p,z) € G}|. For the whole graph&, the maximum partial out-degree
deg™~(G) = max(p)ez,(deg(s,p)), and respectively thenean partial out-degreef graph G,
deg=—(G) = ‘Z—zlﬁ(s,p)ezgdeg”(s,p), are defined as the maximum (resp. the mean) partial out-
degrees of all pairs of subject-predicates(af

Definition 9 (labeled out-degree) The labeled out-degreef s, deg; (s), is defined as the number of
different predicates (labels) aff with which s is related as a subject in a triple aff. Formally,
deg; (s) = {p | 3z € Oq,(s,p,2z) € G}|. Themaximum labeled out-degres the whole graph,
deg; (G) = maxses,(deg; (s)), and its correspondingnean labeled out-degred the whole graph,
deg; (G) = @Esegcdeg;(s) of G, are defined as the maximum (resp. the mean) labeled out-degrees
of all subjects of.

Definition 10 (direct out-degree) Thedirect out-degreef s, denotedleg, (s), is defined as the number
of different objects of/ with whichs is related as a subject in a triple of gragh. Formally,deg,(s) =
{o | Jy € Pg,(s,y,0) € G}|. For the whole grapht, the maximum direct out-degre@eg,,(G) =
mazses,(degp,(s)), and its correspondingnean direct out-degreealue for graphG, deg,(G) =

@Zsegc degp,(s), are defined as the maximum (resp. the mean) direct out-degretsobgcts ofiG.

It is worth noting that, given the definition, tligrect out-degreef a subjects can only differ from
its out-degreewhen s is related to, at least, an objecty means of two or more different predicates.
In other words, if everysubject,objectpair is only related with one predicate, then thé-degreesre
equal todirect out-degrees

Symmetrically, we define thia-degreedor objects in a formal way, as follows:

Definition 11 (in-degree) Thein-degreeof o, denotedieg™ (o), is defined as the number of triplesGh
in whicho occurs as object. Formallyieg™ (o) = |{(x,y,0) | (z,y,0) € G}|. Themaximum in-degree
deg™ (G) = maz,co,(deg™ (0)), and themean in-degreeleg™ (G) = @Eoeocdegﬂo), are defined
as the maximum and mean in-degrees of all objectgqn

4.1. Proposed Metrics 37

Definition 12 (partial in-degree) Thepartial in-degreef o with respect to, denotedieg™ (o, p), is
defined as the number of triples 6f in which o occurs as object ang as a predicate. Formally,
degtt(o,p) = [{(z,p,0) | (x,p,0) € G}|. For the whole graph&, the maximum partial in-degree
degt™™(G) = max(,pex,(deg™™ (0,p)), and respectively thenean partial in-degreef graph G,
degt(G) = ﬁz(o’p)excdeg""*'(o,p), are defined as the maximum (resp. the mean) partial in-
degrees of all pairs of object-predicates@f

Definition 13 (labeled in-degree) Thelabeled in-degreef o, denotediegj(o), is defined as the number
of different predicates (labels) 6f with whicho is related as object in a triple a&.Formally, degj(o) =
{p | 3z € Sg,(z,p,0) € G}|. Themaximum labeled in-degreef the whole graphdeg; (G) =

mazo.co, (degy (0)), and its correspondingnean labeled out-degra@lue for graphG, deg; (G) =

@Eoeocdegf(o), are defined as the maximum (resp. the mean) labeled in-degreeobfeits ofG.

Definition 14 (direct in-degree) The direct in-degreeof o, denoteddeg;, (o), is defined as the num-
ber of different subjects aff with whicho is related as an object in a triple of grapy. Formally,
degh(o) = |{s | 3y € Pg,(s,y,0) € G}|. For the whole graph7, the maximum direct in-degree
deg}(G) = maz.co,(degh (o)), and its correspondingnean direct in-degreealue for graphG,

deg}(G) = @Eaeocdegg(o), are defined as the maximum (resp. the mean) direct in-degrees of

all objects ofG.

As previously stated, it remains true that if evésybject,objectpair is related only with one predi-
cate, then than-degreesare equal tairect in-degrees

Note thatcardinality, average cardinality, inverse cardinalipnd average inverse cardinalitipy
Hogan, Polleres, et 82010 andHogan et al(2012 are equivalent to partial out-degree, average patrtial
out-degree, partial in-degree and average partial in-degree.

Example and potential uses. Figure4.lillustrates these properties in a small example graph which is
inspired by the previous example in ChafidiFigure2.1).

As stated, the subject out-degree indicates the cardinality of a subjeet nodhe example, the
nodehttp://example.org/Javiehas a significant out-degree (it is related to four nodes, above @&jerag
and hence it conforms a star-shaped node. In practice, this type e§maeh have hundreds, or even
thousands, of labeled edges.

When designing an RDF data structugay.an index, it is potentially interesting to know the presence
or absence of these nodes, but also the distribution of this high outededter instance, if a real-world
RDF graph has a maximum out-degree closg, tbstands for a very simple graph whose access may be
optimized. In contrast, a skewed distribution of high out-degrees couldreeg more refined structure
than the previous case.

Thus, out-degree distribution together with maximum and mean values consittdgesharacter-
ization of these types of nodes in a given graph. Similar reasoning can the fioraobject in-degree,
where the node is not a source, but is a common destination object node.

Regarding partial and labeled out- and in- degrees, they provide infiom@n the different types of
edges coming out from (or going into) a node. Partial degree providesric of the multi evaluation of
pairs (subject-predicate or predicate-object), while labeled degreesdfie nodes categorization. For
instance, in the exampléftp://example.org/Valladolids a common object as three subjects are related
to it, hence its in-degree is three. However, the labeled in-degree is “vib'receives edges from two
labelsex:birthdayandex:areaOfWork Subsequently, its partial in-degree is two, denoting that the pair
(http://example.org/Valladolid, ex:areaOfWoiik)multivalued.

As we state in the forthcoming evaluation, labeled out-degree verifies thatrézlicates are related
to the same subject or object. This could serve RDF structures to optimizeptieseatation of the list
of predicates related to a given subject or object.

38 4. Our proposal: Metrics for RDF Graphs
I “Valladolid” @es I
rdf:type foaf:name
<http://example.org/Javier> exbirthPlace <http://example.org/Valladolid>
”jfergar@example.org”—l I “ifergar@infor.uva.es” I { coreaOWork exexareadWork
total deg™ (@) 4.00 total | deg™(G) 3.00
Max | Partial | deg™(G) | 2.00 Max | Partial degt™(G) | 2.00
labeled | deg; (G) | 3.00 labeled | deg} (G) | 2.00
SUBJECT direct | degp(G) 4.00 OBJECT direct | degh(G) 3.00
OUT-DEGREE total deg—(Q) 1.75 IN-DEGREE total degt(Q) 1.40
Mean partial | deg——(G) | 1.17 Mean partial | degtt(G) | 1.17
labeled | deg; (G) | 1.50 labeled | degf(G) | 1.20
direct | deg,(G) | 1.75 direct | degh(G) | 1.40
total degp(G) 2.00
Max | out | degp(G) | 2.00 Qoo 013
PREDICATE in deg;?(G) 2.00
RATI s— .
DEGREE total | degr(G) | 1.40 s Gomp 0.00
Mean -
qut degpn(G) 1.20 - 0.00
in degh(G) 1.20
Subject-Object degregmestricted to<http://example.org/Valladolid)
total | deg™ (G)|s—o 1 total deg™ (G)|s—o 3
Vax | Partial | deg™ (Gl | 1 Max | Partial | deg™ ()l | 2
SUBJECT labeled | deg; (G)]s—o | 1 labeled | deg} (G)]s—o 2
OUT-DEGREE direct | degp(G)|s—o 1 OBJECT direct | degh(G)|s—o 3
(restricted to total deg=(G)|s—o 1 IN-DEGREE total degt (G)]s—o 3
common s-0) Mean partial | deg== (G)|s—0 | 1 Mean partial | degt*(G)|s—o | 1.5
labeled | degy (G)|s—o | 1 labeled | deg} (G)|s—o 2
direct | degp(G)ls—o | 1 direct | degi(G)]s—o 3

Typed subjectgrestricted to<http://example.org/Javier) and classeg<http://example.org/Researcher

Classeg|C¢|)=1

. oL SUBJECT labeled | deg; (G)|s—o | 3.00

Typed Subjects|S¢ [)= 1 OUT-DEGREE direct | degp(G)|s—o | 4.00
1SS0~ oo (restricted to total deg™(G)|s—o 4.00
Ratio(Sa1)= 25% typed S) Mean partial | deg= (G)]s—o | 1.33

Max. lists per clas$degrpc(G))=1

total deg™ (G)|s—o | 4.00

Max partial | deg™~ (G)]s—o | 2.00

labeled | deg; (G)|s—o | 3.00
direct | degp(G)|s—o | 4.00

Figure 4.1: Summary of structural metrics describing a small RDF graph dgamp

Finally, direct out- and in-degrees complete the degree metrics for salj@cbjects. They indicate

the cardinality of binary relations between subjects and objects disregalginabels. In the example,
direct degrees throw similar results as the out- and in-degrees, as(suéjgct,objectpair is related
only with one predicate

4.1. Proposed Metrics 39

Direct degrees could serve when representing RDF as a classicadmacijanatrix. For instance, let
us suppose that one builds a matrix in which rows represent subject®amins represent objects. A
marked cell, then, stands for a triple having the corresponding subjgctigect. The cell could include
the predicate labels of the relationship. In such scenario, direct outelegnodel the cardinality of
rows, whereas direct in-degrees describe the cardinality in columtgnnf all the cells hold a unique
predicate, the out- and in- degrees of every subject and object @ikalent to the direct degrees.

4.1.2 Predicate Degrees

Despite the fact that important RDF characteristics can be extracted feopnéhious metrics (or a com-
bination of them), one could argue that some RDF indexing techniques urtleerfdetails. For instance
the family of indexing techniques following vertical partitioningadi, Adam, Madden, & Hollenbag¢h
2007 builds indexes per predicate (see a review @28l). Typically, these techniques index all the
(subject,objectpairs for each predicate. In such scenario, the numbé&uliject,objectpairs for each
predicate would be a good indicator of the size and distribution of theseategartitions.

With this objective in mind, we detail predicate degrees following the samegirgcprinciples of
simplicity and use in other scenarios. The purpose of the metrics is summasikabas:

 predicate degrees:to know the cardinality of predicates. In contrast to the relational model in
which every row of a table is described with the same number of attributesi{os)uthe flexibility
of RDF yields to a potentially high variability in the number of predicates desgribath subject.
Thus this metric is an important clue of the most important, or better said, mostarsditates in
an RDF dataset.

 predicate in- degrees:to describe the number of subjects related to given predicates. It is used
to refine the previous metric, specially useful when there are multivaluesi(pabject,predicate)
heavily loaded which influence the previous metric.

« predicate out- degrees:to know the number of different objects related to given predicates, also
used to describe the predicate degree in detail.

We make use of the aforementioned notation, b&ingn RDF graph, withSq, P, Og the sets of
subjects, predicates and objectgdrand generia € Sg, p € P ando € Og.

Definition 15 (predicate degree) The predicate degreef p, denoteddegp(p), is defined as the num-
ber of triples of G in which p occurs as predicate. Formallylegp(p) = |{(z,p,2) | (z,p,2) €

G}|. Themaximum predicate degredegp(G) = mazpep,(degp(p)), and themean predicate de-
gree degp(G) = ﬁzpepcdegp(p), are defined as the maximum and mean predicate degrees of all
predicates inPg.

Definition 16 (predicate in-degree) The predicate in-degreef p, denoteddeg; (p), is defined as the
number of different subjects ¢ with whichp is related as a predicate in a triple a@&. Formally,
degh(p) = |{s | 3z € Og,(s,p,2z) € G}|. For the whole graph, thenaximum predicate in-degree
deg}(G) = mazpep,(degh(p)), and its correspondingnean predicate degrealue for graphG,

degh(G) = |P—1G|Zpepcdegjg(p), are defined as the maximum and mean predicate in-degrees of all

predicates of.

Definition 17 (predicate out-degree) Thepredicate out-degresf p, denotedieg, (p), is defined as the
number of different objects @& with which p is related as a predicate in a triple af. Formally,
degp(p) = [{o | 3z € Sg, (x,p,0) € G}|. For the whole graph, thenaximum predicate out-degree
degp(G) = mazpep,(degp(p)), and its correspondingnean predicate out-degrealue for graphG,

degp(G) = ‘Pl—c‘zpepadeg; (p), are defined as the maximum and mean predicate out-degrees of all
predicates inG.

40 4. Our proposal: Metrics for RDF Graphs

Explanation and potential uses. As stated, the predicate degree constitutes an essential metric when
a (subject,objectpr (object,subject)s built for each predicate, such as the vertical partitioning tech-
nique Abadi et al, 2007).

The predicate degree reflects the number of entries for such a prefdibkge In turn, predicate in-
degree and out-degree refine this metric by providing a characterizétiom @domain and range sizes for
each predicate. For instance, predicates suctfagpe have a limited range (low predicate out-degree)
but a great domain (high predicate in-degree).

For instance, if a predicate returns a high degree (it appears in mangijlea low out-degree,
it reveals that few values are repeated along descriptions. For insthneeare describing individual
records, this is the case of discrete values for predicates such asSt@i’ or “Postalcode” in which
a dozen of similar values could be repeated in thousands or millions of secord

In- and -out degree may also serve in other scenarios when indiddbgdcts or objects for a given
predicate must be indexed.

Figure4.1lillustrates these metrics. Despite the limited size of the example, it shows the véigable
ures of predicate degrees. For instance, the predicatsnameis present only once wheretmsaf:mbox
andex:areaOfWorkare twice. In this latter, its predicate in-degree is two (denoting two diffeselit
jects) yet the out-degree is only one (all two subjects points to the same offjeistexample shows that
predicate in- and out- degree could roughly classify predicate usdgiaes:

* N:N predicates. These are predicates having a similar in- and out—degtrfggg(p) ~ degp(p).
Note that a special case would bl predicatesi.e. predicates appearing only in one triple, but
this is a marginal case at large scale

» 1:N predicates. These are predicates having a significant smaller in-degree than theiegnate,
degp(p) < degp(p).

* N:1 predicates. These are predicates having a significant greater in-degree thanuheliegree,
degp(p) > degp(p).

Although the formal demonstration of this classification goes beyond th@geiqf this thesis, one
could envision that this is a general scenario in real-world datasets. $tanae, predicates describ-
ing unique IDs, such as “Passport” or “Protéid’, belong to1:1 predicates In turn, the mentioned
“City _State” or “Postalkode” fall intoN:1 predicates Finally, other predicates, such as “foaf:mbox” in
the example, can belong foN predicates Note that these examples seems perfect and clear examples,
it could depend on the particular context and other predicates, thoaiginot be categorized beforehand
such as “owl:sameAs” which depends on the concrete data.

4.1.3 Common Ratios

The presence of star nodes is popularly accepted as a natural gensegvhen describing a resource
in depth. A second popular “construction” is the presence of chamspaths of linked nodes. This
construction occurs, for instance, whenever we asesameAdo interlink two described entities. As
some of these nodes in the chain is also a star, one could talk of “star clisisigd” for RDF datasets.

Intermediate nodes in chains appear in two triples acting with different rélesinstance, let us
suppose a design such.ds”™ B andB 22 C. As shown,B is present in two triples, being an object
in the first one, and subject in the latter. Additionally, we should also conidépredicates can again
appear as nodes of other edges, acting also as intermediate node®erl ggrms, considering the three
different roles in triples (subjects, predicates and objects), there eaidtlelements which are present
in a graph acting with more than one role.

%It is generally accepted that the number of predicates is much smallertiieanumber of subjects and objects
(Atre, Chaoji, Zaki, & Hendler 2010.

4.1. Proposed Metrics 41

We make use of three metrics to characterize the proportion of these commun&devith respect
to the total elements. In short:

» subject-object ratio: to describe the number of elements acting both as subject and objects among
all subjects and objects. In other words, the subject-object ratio dethetgmercentage of nodes
having incoming and outgoing edges. They are, in fact, the main playens maagating the
graph.

* subject-predicate ratio: to describe the number of elements acting both as subject and predicates
among all subjects and predicates. Their presence points that semanitvemisogpredicates.g.
usingrdfs:domainor rdfs:range

* predicate-object ratio: to describe the number of elements acting both as predicates and objects
among all predicates and objects. It refines the previous medrigzsyhen usingdfs:subPropertyQf

Formally described, let us retake agéiras an RDF graph, with s, P, O¢ the sets of subjects.

Definition 18 (subject-object ratioas—,) The subject-object ratia;_,(G) of a graphG is defined as

the ratio of common subjects and objects in the gréplrormally, o, (G) = Iggggg}

Definition 19 (subject-predicate ratioa;—,) The subject-predicate ratia;_,(G) of a graphG is de-

fined as the ratio of common subjects and predicates in the gragformally, o, ,(G) = Igggﬁg}

Definition 20 (predicate-object ratio o,—,) The predicate-object ratie,_,(G) of a graphG is de-

fined as the ratio of common predicates and objects in the gfapformally, o, (G) = }}ﬁgggg}.

Explanation and potential uses. Ratios give evidence of chain constructions. The example in Figure
4 lillustrates that there are no common subject-predicates and predicatets-dibjeontrast, the subject-
object ratio reveals that 13% of the subjects and objects are common eleniecitistake part in a
subject-object path.

Subject-object is, in fact, the most common construction as it is a naturalfliakiog the descrip-
tion of two resources. Subject-objects are key edges to index, bechtiwe different roles they play,
either as subjects described elsewhere, or as objects describingestharces. Thus, this ratio provides
a good measure for data structures of the ratio of potential paths and ¢hefléravigability”.

In turn subject-predicate and predicate-object ratios, when presemt row far predicates are also
used as subjects or objects. These two ratios can be used to justify theecatisn (or not) of a given
RDF dataset as a graph. If there is a null influence of these typesrefdshades, one could assume that
little semantics has been added.

4.1.4 Subject-Object Degrees

Given the importance of subject-object nodes, a fine-grained anabssibee made. In particular, one
could study the in- and out-degrees restricted to subject-object nodes.

We define these degrees implicitly, as their formalization is equivalent to theetegresented in Sec-
tion 4.1.1 but restricted to subject-object nodes. For instancentii@mum out-degreef the graphGG
restricted to subject-objects, which is denoted@as (G)|s—, is the maximum out-degree of all subject-
object nodes in the grapfi. That is,deg™ (G)|s—o = mazsesznos(deg™(s)). In the same way, the
mean out-degreef the graplG restricted to subject-objecttcg— (G)|s—o = mzsescmocdeg— (s),
is defined as the mean out-degrees of all subjects-objeés in

We make use of the same notation to define implicitly all out-degrees and inedegstricted to
subject-objects, in Definitionéto 14.

42 4. Our proposal: Metrics for RDF Graphs

For all the grapiG:

« out- and in-degrees restricted to subject-objedtg (G)|s—o, deg™ (G)|s—, and their respective
meansieg— (G)|s—o, anddeg™t(G)|s—o-

« partial out- and in-degrees restricted to subject-objettg” ~ (G)|s—o, deg™ " (G)|s—0, and their
respective meanteg——(G)|s—, anddegt*+(G)|s—o-

« labeled out- and in-degrees restricted to subject-objetts; (G)|s—., deg; (G)|s—o, and their
respective meanteg; (G)|s—o, anddeg} (G)|s—o.

- direct out- and in-degrees restricted to subject-objedtsiy, (G)|s—o, degh(G)|s—o, and their
respective meanteg,(G)|s—, anddeg}; (G)|s—o.

Explanation and potential uses. These metrics serve the same purposes as the original ones in Section
4.1.1 butrestricted to subject-object nodes. This particularity allows to fogtisese intermediate nodes
and give a more detailed vision of what is going on in these important nodes.

Figure4.1provides these metrics over the given example. As only one subject-objets present
(http://example.org/Valladolid the figures are simple: all out-degrees are equaltecause this node is
solely related to the literdValladolid”@es. For in-degrees, the node playing the object role is presented
in three triples with three different subjects.

This characterization might result specially useful when common subjgettslzonnects two dif-
ferent graphs. In such cases, one could grasp the features ef toemecting nodes” with these metrics,
gaining insights to improve navigability. For instance, additional structurésralexes can be built for
query suggestion or visualization purposes.

4.1.5 Predicate Lists

Subjects are described by means of one or more predicates. The ligdiégies related to a subject
may vary greatly for each subject. However, there would exist repetitidrenever two subjects are
described in the same way. For instance, the list of predicates used tidbdesongvaries enormously
from those used to categoriz@®tein, and both can coexist in a cross-domain dataset. We define metrics
to characterize these lists. In short:

* number and ratio of predicate lists: it counts the number of different lists, and the ratio of lists
from the total lists.

 degree of predicate listsit characterizes the number of repetitions of each list.

* lists per predicate it describes the number of different lists including each predicate.

Formally described, leL; be the set of predicates (labels) related to the subjethat is, the set of
predicated.; = {p | 3z € Og, (s,p, z) € G}. We denote ad; to the set of different predicate lists in
G. Thatis,Lg = {L.,z € Sg}, hence thewumber of different lists in the graphG is | L|. Note that
the total predicate lists (with repetitions) is equal to the number of differdjéestsSe.

Definition 21 (Ratio of repeated predicate lists) Theratio of repeated predicate lists(G) of a graph
G is defined as the ratio of repeated predicate lists from the total lists in the geaphhus, formally,

r(G) =1 - El.

4.1. Proposed Metrics 43

Definition 22 (predicate list degree) Thepredicate list degreef a list L, denotediegpr,(Ls), is de-
fined as the number of different subjectsGnwhose list of predicates is exactly,. Thus, formally,
degpr,(Ls) = |{Ls | € Sa,L, = Ls}|. For the wholeG, the maximum predicate list degree
degpr(G) = mazy,cr,(degpr(Ls)), and respectively themean predicate list degred the graphG,
degpr(G) = ﬁELzeLGdegpL(Lx), are defined as the maximum and mean out-degrees of all predi-
cate lists inG.

Definition 23 (lists per predicate degree)Thelists per predicate degred a predicatep, degrpp(p),

is defined as the number of different predicate listd i in which the predicate appears. Formally,
degrpp(p) = {Ls | p € Ly, L, € Lg}|. For all G, the maximum lists per predicate degree
degrpp(G) = mazpep, (degrpp(p)), and respectively theean lists per predicate degrefethe graph,
degrpp(G) = ﬁszPGdQQLPP(p), are defined as the maximum and mean out-degrees of all predi-
cates inG.

Explanation and potential uses. The presented metrics for the predicate lists characterize the repeti-
tion of predicates structures. On the one hand, if a short set of listssergria all the entities, one could
perfectly categorize this set and manage a reduce set of combinatiotise Gther hand, “random” lists
denotes the presence of a cross-domain datasets or a light schemareysefiitions are present.

The example in Figurd.l, for instance, presents four predicate lists (one per subjecttype,
ex:birthPlace, foaf:mbdx [foaf:namé, [ex:areaOfWorkand again x:areaOfWork This latter is re-
peated in two different subjects, denoting a common structure (in spite oédlieed size of the exam-
ple). In fact, the ratio of repeated predicate listg;i$G) = 1 — % = 0.25. This means that 25% of the
predicate lists are repetitions. Note also that each predicate is presefyt onerist. In other words, in
this particular case, predicates are unequivocally included in one list.

Predicate lists characterization would serve several purposes suuakzation or indexing. For
instance, regarding the visualization scenario, the approaéhhfjchadourian and Conse(010 fo-
cuses in summarizing the links between Linked Open datasets. It is bases motitim of bisimulation
contraction of a neighborhood (BCN), a structure which captures liskgden RDF datasets. In other
words, BCN represents common predicate structures and modeling patténesoriginal RDF graph.
Our metrics may contribute to these summaries, as they categorize the typetifaeg.

In turn, regarding the indexing scenario, several approachegleorise commonalities in the predi-
cate structuresCampinas, Perry, Ceccarelli, Delbru, and Tummar@@l2 make a structural summary
grouping the entities having the same set of predicates in order to suggestigl predicates and rela-
tionships when writing a queryl'ran, Ladwig, and Rudolpf2013 propose a structure index for RDF,
grouping similar structured data elements. In both cases, the proposedsmeiidelp in determining
structural properties of the indexes.

4.1.6 Typed Subjects and Classes

As stated, entities can be associated to types by means affttype predicate. The values for this pred-
icate are therl€lasseswhich can be described in detail by means of RDFS (2&.8. For instance, in
the example in Figurd.1, Javieris of typeResearcherOne should expect that, as previously mentioned,
entities of the same class would be described with similar predicates. We detiesrneecharacterize
these commonalities. In short:

¢ number of classesit counts the number of different classes.

e number and ratio of typed subject it counts the number of typed subjects (those including at
least one type) and the ratio over the total subjects.

« lists per class it describes the number of different predicate lists including each class.

44 4. Our proposal: Metrics for RDF Graphs

» out-degrees of typed subjectit characterizes the out-degrees of typed subjects.

 degree of predicate lists for typed subjectsit characterizes the number of repetitions of those
predicate list including at least omgf:type

Formally, letC's be the set of all classes in the gra@handc a generic class; € Ci. Thenumber
of all different classesis then|C¢|. Let S¢ be the set of subjects of type S¢ = {s | (s,t,¢) € G},
beingt the predicatedf:type The setsg denotes all different typed subjects in the graphthat is
S& = {s | 3c € Cg, (s,t,c) € G}, with t = rdf:type The number of different typed subjects in the
graph is thenS¢|.

Definition 24 (Ratio of typed subjects) Theratio of typed subjects;(G) of a graphG is defined as
(o
the ratio of different typed subjects from the total subjects oFormally,r1(G) = =& .

Let LS be the set of different predicate lists for typed subjects. Thdtds= {L,,z € S&}.

Definition 25 (lists per class degree)Thelists per class degreef a classe, degrpc(c), is defined as

the number of different predicate lists Iy in which the clasg appears as a value for a typed subject.
Formally, degrpc(c) = [{Ls | Ly € LS,z € S°}|. For all G, themaximum lists per class degree
degrpc(G) = maz.cc,(degrpc(c)), and respectively thenean lists per class degreéthe graph,
degrpc(G) = @EceccdegLPc(C), are defined as the maximum and mean out-degrees of all classes
inG.

We define theyped subject out-degreasd thedegree of predicate lists for typed subjeictplicitly,
as their formalization is straightforward. In the first case,typed subject out-degreese equivalent to
those studied in Sectioh 1.1, but restricted to typed subjects. For instance ntlaimum out-degreef
the graphG restricted to typed subjects, which is denotedle@*(G)\Sg is the maximum out-degree

of all typed subjects in the grapfi. That is,deg*(G)|Sg = MaT o (deg~(s)). In the same way,

the mean out-degreef the graph(restricted to typed subject@(G)\sg = @Esesgdeg*(s), is
defined as the mean out-degrees of all typed subjects We make use of the same notation to define
all out-degrees restricted to typed subjects, in the corresponding Defaitio 10.

Next, thedegree of predicate lists for typed subjeats equivalent to those studied in Sectbh.5
but restricted to typed subjects. For instance, régetition ratio of predicate listsestricted to typed
subjects;rL(G)|Sg of a graphG is defined as the ratio of different predicate lists from the total lists of
predicates, both restricted to typed subjects. Form@l@G)\Sg = % Similar reasoning can be made
to define thepredicate list degreef a list restricted to typed subjectﬁ;gpL(Ls)]Sg, and thelists per
predicate degreef a predicate restricted to typed subjedisyr.pp(p)| SC-

Explanation and potential uses. The characterization of different classes and typed subjects, as well
as their degrees, is an important step in describing a common schema, iftpfeseve have motivated,
one should expect that subjects typed equally would be described with qimgtiicates. These metrics
provide an answer to this assumption, and give insights of other schemuaefea For instance, the
ratio of typed subjects constitutes a ratio of the level of well-categorizedniation. They also help
determine if typed subjects are (or not) further described than non-tyqesd

Figure 4.1 (bottom) illustrates these metrics on the given example. There is only one Blass (
searche) and one typed subjecidvier). As there are four different subjects, the ratio of typed sub-
jects is0.25. In this simple example, there is only one predicate list per cladktype, ex:birthPlace,
foaf:mboy.

4.2. Experimental Framework 45

As for the previous predicate list metrics, this characterization may seveesdipurposes, such as
visualization Campinas et al.2012 and structure indexingltan et al, 2013, but also reasoning. For
this latter objective, we characterize not only the presence of instaoicgsefclasses, but the different
predicate lists, which may be useful to create a reduced index with all tiséofmsariants.

4.2 Experimental Framework

We design an experimental framework to illustrate the proposed metrics invogla-RDF datasets.
Table4.1 summarizes the most basic features of the experimental datasets.

First, in order to cover most real-world topics, we defgeven categories media, publications,
knowledge base, government, sensors, geography and biology. Wéethis distinction based on the
Linked Open data cloud most frequent togics

We choose fourteen datasets based on the amount of triples, topicgmvavailability and, if pos-
sible, previous uses in benchmarking. Tadlgillustrates the datasets for each topic. Most datasets are
well-known in the area. In particular:

* Media: Jamendas a “small” dataset of music records and artitiskedMDBstores information
about movies and autho@btuneprovides music-related structured data (mainly from MySpace
andFlickr Event Media(shorty known hereinafter as Flickr) holds Flickr events and their asthor

» Publication: SWDFis a small dataset with information related to the main conferences and work-
shops in the area of Semantic Web research, whéi@asested DBLRor DBLP hereinafter) is an
RDF conversion of the well-known bibliographic repository.

« Knowledge Bases:Wordnet 3.0is a conversion to RDF of Wordnet (a lexical database of En-
glish) andDbpedia 3-8is an RDF conversion of Wikipedia, with the aim of making this type of
information semantically available on the Web.

» Government: The2011 Australian Census an open portion of the given census with aggregated
data and th000 US Censusomprises the first entities of the given census.

e Sensors:AEMET includes measurements made by the network of meteorological stations of the
Spanish Meteorological Agency, aiite contains meteorologic sensor information of the real Ike
hurricane.

» Geography: Linked Geo Dataholds geographic information mainly from the OpenStreetMap
spatial data collection.

 Biology: Affymetrixcontains probesets used in DNA microarrays.

A preprocessing phase is applied to all datasets. First, for a fair compawe manage all datasets
in N-Triples (Grant & Beckett 2004, one of the most basic formats containing one sentence per line.
If the original dataset was not in N-Triples, it is converted to this raw fordoyameans of the Any23
tool® (version: any23-0.6.1). Next, if the dataset is composed of seversltliley are merged together.
Finally, the dataset file is lexicographically sorted and duplicate triples arardisd.

Table 4.1 reflects the resulting figures after cleaning: the number of triples, theedatsige in N-
Triples format, the given version of the dataset and the available URL.

Table4.2 provides finer details of the datasets. The four latest columns show theenoifritifferent
subjects, predicates, objects, and common subject-objects respecthselgxpected, the number of

3We rename the topics frohttp://lod-cloud.net/state/
“Due to restrictions, we extract Dbtune information from the Billion Triplesl@hge 2010 data collection.
5h'[tp://any23.apache.org/

46 4. Our proposal: Metrics for RDF Graphs

| Dataset [Triples | Nt Size(MB) | Version | Available at |
Jamendo 1,049,637 144 | 2013-07-01| http://dbtune.org/jamendo
Media LinkedMDB 6,147,996 850 | 2010-01-29| http://queens.db.toronto.e@tie/linkedmdb
Dbtune 58,920,361 9,566 | BTC 2010 | http://km.aifb.kit.edu/projects/btc-2010
Flickr Event Media 49,107,168 6,714 | 2010-07-01| http://www.eurecom.fr/ troncy/ldtc2010
Publications SWDF 101,321 16 | 2013-07-01| http://data.semanticweb.org/dumps
Faceted DBLP 60,139,734 9,799 | 2013-07-01| http://dblp.13s.de/dblp++.php
Knowledge Wordn(_et 3.0 6,257,922 974 | 2013-07-01 http://sgmanticwgb.cs.vu.nI/IodlwnSO
Dbpedia 3-8 431,440,396 63,053 | 2013-07-01| http://wiki.dbpedia.org/Downloads38
Government 2011 Australian Census 361,842 52 | 2013-07-01| http://datalift.org/en/event/semstats2013/challenge
2000 US Census 149,182,415 21,796 | 2007-08-14 | http://www.rdfabout.com/demo/census
Sensors AEMET 3,547,154 726 | 2011-11-19| http://aemet.linkeddata.es/source/rdf/data.zip
Ike - Linked Observation Data| 514,824,008 102,662 | 2013-07-01| http://wiki.knoesis.org/index.php/SS\Watasets
Geography| Linked Geo Data 274,668,813 39,423 | 2013-07-01| http://downloads.linkedgeodata.org
Biology | Affymetrix 44,207,145 6,526 | 2012-11-06 | http://download.bio2rdf.org/release/2/affymetrix
Table 4.1: Description of the evaluation framework.
| Dataset [Triples | #Subjects| #Predicates] #Objects [#Common SO
Jamendo 1,049,637 335,925 26 440,602 290,291
Media LinkedMDB 6,147,996 694,400 222 2,052,959 416,664
Dbtune 58,920,361 12,401,228 394 | 14,264,221 10,076,199
Flickr Event Media 49,107,168 5,490,007 23 15,041,664 3,822,727
Publications SWDF 101,321 10,476 132 34,609 10,374
Faceted DBLP 60,139,734 3,591,091 27 25,154,979 1,326,104
Knowledge Wordnet 3.0 6,257,922 1,100,503 85 1,689,363 1,021,222
Dbpedia 3-8 431,440,396| 24,791,728 57,986 | 108,927,201 22,762,644
Government 2011 Australian Census 361,842 51,768 26 6,901 508
2000 US Census 149,182,415| 23,904,658 429 23,996,813 23,815,829
Sensors AEMET 3,647,154 394,289 23 793,664 433
Ike - Linked Observation Data| 514,824,008| 114,484,017 10 | 114,629,189| 114,484,017
Geography| Linked Geo Data 274,668,813| 51,916,995 18,272 | 121,749,861 41,471,798
Biology | Affymetrix 44,207,145 1,421,763 105 13,240,270 245

Table 4.2: Details of the evaluation framework.

predicates remains commonly low. There are two exceptidhpediaandLinked Geo Datare extreme
cases in which the number of predicates grows to the order of thousaed®s dhe variability of the
represented information. However, note that the number of predicatesn® proportionally small to
the total number of triples.

4.3 Results

We compute the parameters previously presented, in order to charatersteucture and gain insights
toward the aforementioned potential uses. For our future purposespeeally focus on analyzing the
redundancy of each dataset, as well as their compact and compresssiilies.

For a comprehensive explanation, the order of presentation of thHésrissslightly different than the
previous definitions.

4.3.1 Ratios

We start describing the common ratios in Tahld These were described in Sectibrd .3 and they are
a good starting point as they can reveal a level of cohesion betweeifférert types of nodes. In other
words, they can denote and characterize the presence (or abstsicaled nodes and labels.

As we expected, subject-object is the most frequent path constructedrahd subject-predicate
and predicate-object ratios are almost negligible. These latter are sclesergotons, which are rare
due to the RDF itself is schema-relaxed and the vocabulary can evolve@sdchen demand.

4.3. Results 47

RATIOS
| Dataset Common SO¢s—,) | Common SPds—,) | Common POd,—o)
Jamendo 0.60 0 0
Media | LinkedMDB 0.18 0 1.66x107°
Dbtune 0.61 0 3.44x10-6
Flickr 0.23 0 0
Publications SWDF 0.30 0 0
Faceted DBLP 0.05 7.52x10~6 0
Knowledge Wordnet 3.0 0.58 7.27x 107? 1.78x10°°
Dbpedia 3-8 0.21 2.24x1073 7.50x10~°
Government 2011 Australian Census 0.01 9.65x10~? 8.67x10~ 1
2000 US Census 0.99 0 0
Sensors AEMET 3.65x10~ % 0 0
ke 0.99 0 0
Geography| Linked Geo Data 0.31 0 452107
Biology | Affymetrix 1.67x10°° 0 5.89x10~°

Table 4.3: Ratios of the given Datasets .

The subject-object ratio shows interesting variable figures, rangingeket@/to 99%. Extreme cases
are particularly of interest. For instance, t2@11 Australian Censuand AEMET present values near
to 0 whereas their counterparts per category,20@0 US Censuand lke show values near of 99% of
shared nodes. One can find the explanation in the diverse strategyddltmamodel the information.
On the one hand, both ti2011 Australian Censuand AEMET describe particular values for a given
entity (a statistic value or a sensor measure). Thus, a more “isolated” gaapbe found in such cases
where we represent certain measures. On the other hand, b&0GbeJS Censuandlke make use of
intermediate nodes (blank nodes in the census and entity resourcestim dtkganize the different types
of figures or measures.

The low subject-object ratio ifRaceted DBLPand Affymetrixis due to a different reason. In both
cases, the datasets describe entities with a high number of different litahaésy In the first case, ti-
tles, identifiers, dates, homepages, etc., of authors, articles andexwé#srare scarcely repeated. In the
secondAffymetrixalso describes entities (probesets) by different literal values (folsladentifiers, ver-
sion, description, dates, etc.). In addition, although URIs are usedext®lihey are further described
(as subjects) in other different datasets inhie2rdf project.

The rest of the datasets can be grouped into two categories: dataseits) festsind 20-30% of
shared entitiesLinkedMDB Flickr, SWDF, Dbpediaand Linked Geo Daty or near 60% Jamendo
DbtuneandWordnej.

4.3.2 Out- and in-degrees

In this section we study the mean out- and in-degree for subjects and ofgispextively. The mean
results and their standard deviations are presented in HigRré&or the sake of comprehensibility, we
erase hereinafter those error bars which significantly exceed the @nbe figure. In this case, all
in-degree deviations are erased. It is worth mentioning that both ax&s lagarithmic scale. We also
plot a dashed line delimiting thievalue.

As can be seen, most datasets present a limited mean number of triplesjpet anod object. Re-
garding the out-degree, its mean is modestly greater than 10 onBoP, Dbpediaand Affymetrix
This denotes that most datasets (even those with hundreds of millions of)tppésgnt a mean df0
triples per subject at most. In turn, the mean in-degree is even lower. tabets apart from th2011
Australian Censubave a lower mean in-degree than out-degree, being always smalleiGth@hat is,
given an object, it is present in a mean of 10 triples at most. 203l Australian Census a special
case. A detailed analysis shows that it makes use of discrete values fofietus hence these values
are highly repeated in different subjects.

48 4. Our proposal: Metrics for RDF Graphs

OUT- IN- MEANS (with deviations)

80 1 1 1 1 1 1 1 1 1 1
Mean out D _
70 Meanin momm i

60 - B
50 B

40 | .

Mean

30

3

)
=

Jamendo
LinkedMDB
2000 US Census
Wordnet 3.0
Dbpedia 3-8
AEMET

Linked Geo Data
Affymetrix

2011 Australian Census

Figure 4.2: Mean out- and in-degrees for the evaluation datasets.

Both mean out- and in-degrees show, in general, a high standard deviatidact, all in-degree
deviations exceed considerably the range of the figure. This points tticealole skewed structure,
more remarkable in objects.

These skewed structures are revealed in Figdiréto 4.6 which draw the out- and in-degrees. That
is, we represent the cardinality of subjects and objects. We group tiabgseategories for the only sake
of clarity.

Several comments can be drawn from these figures. First of all, weaatartlsat subjects and objects
(out- and in-degree) almost always present skewed distributionsactnthe in-degree in all datasets
reveal a remarkably skewed structure on objects. Only two datase)lfieAustralian Censu$igure
4.4, bottom left) andAEMET (Figure4.6, top left) hold some objects slightly differing from the general
tendency. In all the rest of cases, the distribution is heavily skewed.

In turn, subject distribution (out degree) is skewed in most datasetapbatl of them. The figures
in our evaluation denote three types of patterns:

» Skewed distributions, as for objects. This is the case of all media datasefst éor some blur in
Jamendo (Figurd.3), SWDFandDBLP (Figure4.4), all knowledge datasets (Figudeb), Linked
Geo DataandAffymetrix(Figure4.6).

» A great number of different subjects are present in few triples. Tdnscorrespond to a structured
data modeling in which subjects are described with a similar number of triples.aWwéne this
circumstance in our two census (Figdrd, bottom left and right), andEMET (Figure4.6).

» A large number of different subjects are present in few triples, whileynadimers are described
with a small proportion of triples. Onlike shows this type of distribution (Figuee6). It can be
seen as a variation of the previous two types of distributions: some subjealseply described
(or they have more relations) whereas others are concisely defined.

4.3. Results

JAMENDO distributions

49

LINKEDMDB distributions

1e+06 T L~ T le+07 T T —— T
Subject Distribution + Subject Distribution +
0 Object Distribution < 0 Object Distribution >
2 + Predicate Distribution 3% 2 Predicate Distribution 3
£ £ 1ev06} 4
S 100000 | Bl =
x < X
< 1L X+ + E +
w0000 | w4 T E|
10000 4 Xt
X% ++
+ 100004+ 4+ ot E
w000 < 4
1000
100
100
10
1 R
1 10 100 1000 10000 100000 1e+06 10000 1e+06
#triples #triples
DBTUNE distributions FLICKR distributions
1e+08 T T T T 1e+08 T T T T
Subject Distribution + Subject Distribution +
2 Object Distribution > 9 Object Distribution <
I tew07 e Predicate Distribution ¥ | 3 1es07 b Predicate Distribution ¥]
< X +
< bt A
= lev0s | X+ E| = 1e+06 | E|
@ +
i)
8
5 100000 ¢ El 5 100000 F El
s
2
g 10000 ¢ El) 10000 F El
E<)
o
8 1000 El 1000 F El
2, K
k=)
3
e 100 | E 100 E
b=
2 *
kol 10 El 10 El
£
1 : 1 X
e S
1 10 100 1000 10000 100000 1e+06 1 "10 100 1000 10000 100000 1e+06
#triples #triples
Figure 4.3: Degree distribution (media), in logarithmic scale.
SWDF distributions DBLP distributions
100000 T T 1e+08 T T T T
Subject Distribution ~ + Subject Distribution ~ +
0 Object Distribution > 0 Object Distribution >
%_ Predicate Distribution 3K EL teo Predicate Distribution X |
X 0000 X 1 x
£ £ le+os | + E
)
&
S X¥X 4+ 100000 B
1000 |- W q
tp o
1 +ﬁk 10000 | E
% 100 | X #F 4
z X 1000 | E
3 Ko 3
% At 10 3
101 q €T
10 El
X
B we— L L S S S S S
1 10 100 1000 10000 100000 1e+06
#triples #triples
2011 AUSTRALIAN CENSUS distributions 2000 US CENSUS distributions
100000 T T T 1e+08 T T T T
Subject Distribution ~ + Subject Distribution ~ +
0 + Object Distribution > 0 Object Distribution <
%_ Predicate Distribution 3K EL te07 by Predicate Distribution X |
X 10000 | 1 X
b= £ 1e+06 |
Q
2 En
5 1000 100000
oo 4
+
XXX X 10000 F
S wor . 1 1000 |
k)
Z 2
100
10 n X 4
+ X x w0l
x5
* XK * X
B o S L * 1
1 10 100 1000 10000 100000 1

#triples

#triples

Figure 4.4: Degree distribution (publications and government), in logarithcaie s

50 4. Our proposal: Metrics for RDF Graphs

WORDNET distributions DBPEDIA distributions
1e+06 T T T T 1le+08 T T T T
4 Subject Distribution + Subject Distribution ~ +
0 * Object Distribution 0 X Object Distribution <
%’_ o Predicate Distribution % %_ les07 F + Predicate Distribution %
S 100000 |- Tt = +
x A+ x 1
£ + £
=N 1e+06 - 4
10000 T
{XX* 5 100000 F El
@ ?5% X
5 1000 F B 10000 F El
£
o
g 1000 F El
g 100 | N
o 100 | E
10 | B
¥ 10 | b
¥ KX * ‘ ‘ RAOK DK< K 2 X<
1 IR 1 R
1 100000 1e+06 1 10 100 1000 10000 100000 1e+06
#triples #triples
Figure 4.5: Degree distribution (knowledge), in logarithmic scale.
AEMET distributions IKE distributions
1e+06 T T T — T 1e+09 T T T
Subject Distribution + Subject Distribution +
o + Object Distribution < 0 Object Distribution >
2 Predicate Distribution % 2 ter08f Predicate Distribution % 4
2 = + +
)-:» 100000 |- ;
IS e levo7 b 4
10000 B 1e+06 B
. +
= 100000 + B
E 1000
5 10000 o 4
8 " T
£ w0 T T % 1 : 1000 | ¢
& % X o
N7 - 100 |
10 |
» * 10k
X
e T 1 1 :
1 10 100 1000 10000 100000 1e+06 1 1000 10000 100000
#triples #triples
LINKED GEO DATA distributions AFFYMETRIX distributions
1e+09 T T L~ T 1e+07 T T T—— T
Subject Distribution + Subject Distribution +
» Object Distribution 0 Object Distribution >
L 1e+08 ¥ Predicate Distribution % < X Predicate Distribution ¥
g + £ 1es06 E
< x X
c le+07 | c
100000 - El
1e+06 |
S 100000 |- 10000 k|
©
2
S 100004 1000 F q
°
£ 1000 F
@ £ w0 +]
100 E *
10 | E|
10 | * .
; g ; ORX MK <
1 N Nt 1 — KK SO NSRRI IO
1 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
#triples #triples

Figure 4.6: Degree distribution (sensors, geography and biology)garitbmic scale.

Subject-object distribution. Figure4.7 compares the previous mean out- and in-degree (presented in
Figure4.2) with the same degrees restricted to subject-object. For a fair comparis@p|ithe datasets

by their range of common subject-object ratio (as statedif.8: common entities around 0%, 20-30%,
60% and 99%. We order the description of the results by these sets fanakpn purposes:

e Common entities around 0%: In this case, the common entities are so rare thaedhe refer
to few elements of the total. However, one could note that the mean in-dexgteieted to these
subject-objects is remarkably higher than for the total objects. We can findettson of this

4.3. Results

OUT- IN- MEANS (with deviations)

10000

Mean in rest
1000 £

10 ¢

it ==

N __Mean
Mean out restricted to subject-objects i
ean in W

icted to subject-objects

—
w
=
]
<

2011 AU Census

Datasets withug = 0%

OUT- IN- MEANS (with deviations)

I —
Affymetrix -

10000

1000 £

. N . Mean in
Mean in restricted to subject-objects

out ==

. __Mean
Mean out restricted to subject-objects i

10000

OUT- IN- MEANS (with deviations)

51

1000

Mean
o
5
8

10

) _ Mean out

Mean out restricted to subject-objects 22222
. . . _Meanin
Mean in restricted to subject-objects

10000

1000

@
=

2000 US Census

Datasets withg = 99%

OUT- IN- MEANS (with deviations)

) . Mean out
Mean out restricted to subject-objects &z=222
X X Mean in s
Mean in restricted to subject-objects

| e i

o SR
=

Dbpedia 3-8
LinkedGeoData e

Jamendo
Dbtune

Wordnet 3.0 -
"
.
- 15}
T
LinkedMDB -:j“"f“

Datasets witlg = 60% Datasets withg_,[120-30]%

Figure 4.7: Mean out- and in-degrees for the evaluation datasets in dsorpaith the common subject-
objects. The y-axis is represented in logarithmic scale.

difference in the non shared objects distribution. In all these datasetgeaniamber of different
objects are present, whose in-degree is low (or even clageaowe can see in their corresponding
in-degree distributions. Thus, the common subject-objects are more fithgpeesent as they act
as intermediate nodes and then playing as object in more triples on average.

» Common entities around 99%: This is the case of20@0 US Censuandlke. Figure4.7 shows
low figures for the mean in-degree, being exadthpr the 2000 US CensusNVe have argued that
both datasets make use of different shared elements to organize therdiffgres of figures or
measures, hence the low in-degree. In contrast, given that 99% ofrékeare shared, the mean
out-degree for these nodes is almost equal to the out-degree for jaittub

« Common entities around 60%: We can see that the mean out-degrees areegjmigalent as
more than 50% of the elements are shared, hence these nodes highly testidbine original
figures. As for the previous case of common entities around 99%, thiarscesmows low figures
for the mean in-degree. The reason in this case is equivalent as intetenealifes organize the
information.

e Common entities around 20-30%: This is the most variable set and datasgtsesant differ-
ent results. In general terms, the mean out-degrees remain comparabthelessi-lickr and
Linked Geo Datahow a slightly smaller out-degree for subject-object nodes. This faatgide-
pends on the represented information. For instance, this phenomenoppeat &when an “event”
in Flickr is described in depth but the related subject-object nodes represeatithpfs” are usu-
ally described in lesser depth. Regarding the in-degrees, in some cadaguties restricted to
subject-objects are equal, slightly smaller or bigger than the non restricteid.miéte reasons are

52 4. Our proposal: Metrics for RDF Graphs

LABELED MEANS (with deviations)

30 1 1 1 1 1 1 1 1 1 1 1 1 1
Mean labeled out ===
Mean labeled in oo

25

20 -

Mean
=
5

T

10

Jamendo
LinkedMDB
Dbtune
Flickr
DBLP

2000 US Census —f—
Wordnet 3.0
Dbpedia 3-8
Linked Geo Data

2011 Australian Census

Figure 4.8: Mean labeled out- and in-degrees for the evaluation datasets.

similar to the presented above: it would be slightly smaller for subject-objecta ey serve to
organize the information and slightly bigger whenever non repeated objectsedominant.

4.3.3 Predicates per Subject and Object

We study the labeled out- and in-degrees, that is, the predicates pestsutg@bject respectively. Figure
4.8 illustrates the mean figures. As can be seen, the results show that fesapesdare related to the
same subject, on averaggffymetricis the extreme case in whic® predicates are present per subject.
This fact, together with the mean out-degree (more ttatriples per subject) reflects a description of
entities in detail. In contrast, datasets sucll@mendaandlke provide a mean 03 — 4 predicates per
subject. In all cases, the mean labeled out-degree is a clear indicatopoétience of star-shaped nodes,
i.e., nodes with different triples around one common subject.

The mean labeled in-degree reveals an important conclusion. The nufrredizates related to a
given object is very close tb. This stands for specific “leave nodes” reached by only one predicate

The study of the maximum labeled out- and in-degrees, in Taldleomes to similar conclusions.
The results show that even in the extreme maximum cases, few predicatelatee to the same subject
and even less predicates per object. Besides, we provide in the tabl¢éidhef rmaximum degrees over
the total number of predicates. That is, a valu€@f for Wordnetmeans that, in the maximum case, a
subject is related to th20% of predicates in the dataset.

Finally, Figure4.9compares the mean labeled degrees of the common subject-objects with t@spec
the values obtained without restrictions. Two conclusions can be drawntlfdgs comparison. First, the
number of labels per common subject-object is generally equal or slightly srfellethe non restricted
results. The corner case Adfymetrixwhich presents a significant reduction for subject-objects. One
could argue that, in this case, general entities are detailed in depth wkersea®n subject-objects are
simple nodes grouping discrete values and hence its smaller number of mlatikchtes. Finally, it is
important to note that the mean labeled in-degree of common subject-objeciagetoae tol. This
means that intermediate nodes (which are important for navigation as wenloéivated) are reached by
a mean of one unique predicate.

4.3. Results 53

Max. number of predicates per subjegt Max. number of predicates per obje¢t
Dataset Labeled out deg. Ratig| Labeled in deg. Ratio
(degL=(G) (U8R (G || (degLt(G) (f4RlD)
Jamendo 10 38.46% 5 19.23%
LinkedMDB 31 13.96% 50 22.52%
Dbtune 24 6.09% 93 23.60%
Flickr 14 60.87% 5 21.74%
SWDF 21 15.91% 13 9.85%
Faceted DBLP 18 66.67% 4 14.81%
Wordnet 17 20.00% 10 11.76%
Dbpedia 3-8 480 0.83% 6,005 10.36%
2011 Australian Census 7 26.92% 3 11.11%
2000 US Census 104 24.24% 366 85.31%
AEMET 12 52.17% 5 21.74%
Ike 5 41.67% 1 8.33%
Linked Geo Data 76 0.42% 3,431 18.78%
Affymetrix 35 33.33% 5 4.76%

Table 4.4: Values and ratios of the maximum labeled out- and in-degree fexpleeimental framework.

LABELED MEANS (with deviations) LABELED MEANS (with deviations)

. Mean labeled out == . Mean labeled out ==
Mean labeled out restricted to subject-objects =222 Mean labeled out restricted to subject-objects =222z
o5 L Mean labeled in s] 25 L Mean labeled in s]

Mean labeled in restricted to subject-objects ¢ Mean labeled in restricted to subject-objects ¢

20 | 4 20 | 4
c
S| 1
=
10 4
- 5L 4
= ' 0 \ﬁ
a g n} £ 3
o < & S
2 < 2
o] 8
g 54
Datasets witlng_= 0% Datasets witlig_= 99%
LABELED MEANS (with deviations) LABELED MEANS (with deviations)
30 . . . 30 . . .
Mean labeled out === Mean labeled out ===
Mean labeled out restricted to subject-objects =272 Mean labeled out restricted to subject-objects =272
Mean labeled in e Mean labeled in e
25 Mean labeled in restricted to subject-objects ¢ 7 25 1 Mean labeled in restricted to subject-objects ¢ 7
20 g 20 g
c <
3t 1 3s - B
=
10 - g 10 - 1
4 5| i
0 L
o ©
£ 8 B 3 3 £ 2
5 2 g 2 [}
S s £ g 3
H - e £
3
Datasets witlug_,= 60% Datasets wittg_,[120-30]%

Figure 4.9: Mean labeled out- and in-degrees of common subject-objeth®fevaluation datasets with
respect to the values obtained without restrictions.

4.3.4 Partial and Direct Degrees

Figure4.10shows the mean partial out- and in-degrees. First of all, let us remembeqyattial out-
and in-degrees reflect the presence of multivalued;ject, predicate) and (predicate, object) pairs
respectively. As we can see, the mean partial out-degree is slightly biggrerl, which implies that
the presence of multivalue@dubject, predicate) pairs is not so frequent. In fact, the deviation is not
pronounced (except faMordne} which denotes a uniform distribution.

In contrast, the mean in-degree remains close to 1, but it presents biggatiahs. Almost all
deviation extends the range of the figure and they have been eraste feske of clarity. This fact

54 4. Our proposal: Metrics for RDF Graphs

PARTIAL MEANS (with deviations)
1 1 1 1 1 1 1 1 1 1 1 1 1 1

60 L Mean partial out ===2
Mean partial in sssessn

Mean

AEMET
ke

o)
©
=
Q
£
<
S

LinkedMDB
2000 US Census
Wordnet 3.0
Dbpedia 3-8
Linked Geo Data
Affymetrix

2011 Australian Census

Figure 4.10: Mean partial out- and in-degrees for the evaluation datasets

denotes a pronounced skewed distribution of multivalgetdicate, object) pairs. That is, a large
amount of different subjects are related to the s@medicate, object) (e.g. this can be the case of
rdf:type and its related classes) while others pairs are related to fewediffeubjects, beingon average.

Next, we study the direct degrees, which measure the relationship besubgtts and objects
disregarding the presence of predicates. We have stated thdir¢iot out-degreeof a subject (the
number of different related objects) can only differs from tlue-degregdifferent related triples) when
the subject is related to the same object by means of more than one predinategdusly, thalirect
in-degreeof an object differs from than-degreewhen the object is related to the same subject by means
of more than one predicate.

We represent in Figuré.11the comparison between the mean out- and in-degrees and their respec-
tive mean direct degrees. The results show that the out-degree anuletteodit-degree have similar
figures, and the same applies to in-degree and direct in-degree. Thesudts yield to an important
state: given a subject and an object, if they are related, only one pieethicags these nodes together,
on average.

Another remarkable fact is the difference, in some cases, between thalimsz out- and in-degrees.

For instance, ilDbpedig subjects are related with 5 times more objects than vice versa, reaching to 10
times inAffymetrix This corresponds with datasets in which, on average, a subject isbaekinn depth

with different objects, which are no heavily repeated between subjetixontrast, objects are related
with 8 times more subjects than vice versa in2041 Australian Censud his is due to large repetitions

of the same set of objects in multiple subjects.

4.3.5 Predicate Degrees

In this section we study the predicate degrees, that is, the cardinalityditates. We also detail their
out- and in-degrees, which stands for the different objects and ssibgdated to each predicate.

First, Figure4.12 shows the mean predicate degrees for all datasets. Note that this mearlyis high
biased by the number of triples of each dataset (figures are représelttgarithmic scale). For instance,
conserving the same modeling, one could add other observations for fieahalke, and the mean
cardinality of the predicates will be increased.

In general terms, we can observe that the mean predicate out degtigghtly smaller than the

4.3. Results 55

DIRECT, OUT- IN- MEANS (with deviations)

80 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mean out ===

70 } Mean direct out 2222222 i
Mean in momm _
60 Mean direct in @i i

Mean

Dbtune
Flickr

SWDF
DBLP
AEMET
ke

X
@
E
£
<

Jamendo
LinkedMDB
2000 US Census
Wordnet 3.0
Dbpedia 3-8
Linked Geo Data

2011 Australian Census

Figure 4.11: Mean direct degrees in comparison with mean out- and ieakedor the evaluation
datasets.

corresponding mean in degree. That is, given a predicate at rand@mprdbably related with more
subjects than objects. This fact is in line with previous labeled and partialumeasnts; subjects are
more related to predicates than objects, and multivalyeéiject, predicate) pairs are, when present,
more infrequent thatpredicate, object) pairs.

We study in the following the distribution of predicates, as they can reve@reiift use patterns
for the predicates. Figures13to 4.15illustrate the degree of each predicate as well as their out- and
in-degrees. It is clear that no prior assumption can be made on predisttieution. In general terms,
predicates distribution is tight to the information modeling. We can roughly disghgtree types of
patterns in predicates:

« Mostly all predicates are present in every entity. In this case we cowdaffistribution such as
the presented iRlickr (Figure4.3, bottom right) or th&2000 US Censug-igure4.4, bottom right).
In such case, the predicates are in the same region as they participate in araingiéaof triples.

* Some predicates are present rarely while others are frequently Uibélis the case of several
representations such as all media datasets exceptiéar (Figure4.3), all from publications and
government except for th2000 US Censu@-igure4.4), Wordnet(Figure4.5, left), and all from
sensors, geography and biology exceptlfimked Geo DatgFigure4.6).

« |t is common that predicates are present in a reduced number of trigheseas few predicates
are related to thousand or millions of triples. This corresponds to the defioitiarpower law
distribution. We can find this very clear skewed distributions in cross-dodeti&sets such as
Dbpedia(Figure 4.5, right), or datasets including information about a given domain but mixed
from diverse sources such bmked Geo DatgFigure4.6, bottom left). Due to the same reasons,
these two datasets hold the higher numbers of predicates of all evaluatiset$a

4. Our proposal: Metrics for RDF Graphs

PREDICATE MEANS (with deviations)

#predicates related to X elements

#predicates related to X elements

1e+08 1 1 1 1 1

Mean predicate ===
Mean predicate out mwssmR
Mean predicate

1le+07 |
le+06
100000 F
10000 ¢

Mean

1000 F
100 F

10

1

Flickr

Dbtune
SWDF

o
=}
c
[}
£
<
S

LinkedMDB

DBLP

2011 Australian Census

2000 US Census

Wordnet 3.0
Dbpedia 3-8
AEMET

ke

Linked Geo Data
Affymetrix

Figure 4.12: Mean predicate degrees for the evaluation datasets. &g ig-in logarithmic scale.

JAMENDO predicate distributions

LINKEDMDB predicate distributions

10 100
j j j Predicate in Distribution + j j j Predicate in Distribution +
Predicate out Distribution % Predicate out Distribution >
Predicate Distribution % Predicate Distribution %
*
+ 8
g
X £
o
o
x
=
R *
* % *
by *
41 X * + X
g * X% *
+ X * 3 HAXK K+ ¥* oK
£ * X K KKK kK
KR T DA DVIOKIORK MK MK BE KKK
1 — — 1
1 10 100 1000 10000 100000 1le+06 1 10 100 1000 10000 100000 1e+06
#elements (subjects|objects|triples) #elements (subjects|objectsitriples)
DBTUNE predicate distributions FLICKR predicate distributions
100 T T T T —————— 10 T T T — —————
Predicate in Distribution ~ + Predicate in Distribution ~ +
Predicate out Distribution % Predicate out Distribution >
Predicate Distribution % Predicate Distribution %
2
g
x 5
* ¥ 2
X x
2
o “% ;
X] & *
S * 2
* * 41
XK KX X X X X g
¥ X +x + X KX 3 X + *
* X AN K * £
M IR MK W K 0K K
1 1 L L L e L
10 100 1000 10000 100000 1le+06 1 10 100 10000 100000 1e+06

#elements (subjects|objects|triples)

1000

iples)

Figure 4.13: Predicate degree distribution (media), in logarithmic scale.

4.3. Results

#predicates related to X elements

#predicates related to X elements

#predicates related to X elements

#predicates related to X elements

SWDF predicate distributions

10000

100
' ' Predicate in Distribution +
Predicate out Distribution
Predicate Distribution %
¥
10 q
X
* X
* X
+ HOCHK MIOWK X X K K K K+ *
1
1 10 100 1000
#elements (subjects|objectstriples)
2011 AUSTRALIAN CENSUS predicate distributions
10
' ' " Predicate in Distribution +
Predicate out Distribution
Predicate Distribution
*
+ *
* X
* % * *
oo yesgncnc s se PP—— . K
10 100 1000 10000 100000

#elements (subjects|objects|triples)

#predicates related to X elements

#predicates related to X elements

57

DBLP predicate distributions

' ' Predicate in Distribution +

Predicate out Distribution
Predicate Distribution

100

10

10 100 1000 10000 100000 1e+06
#elements (subjects|objects|triples)
2000 US CENSUS predicate distributions
' ' ' Predicate in Distributioh »
Predicate out Distribution X
Predicate Distrifution
*
X *
+
*
x o &
A< HORK K
Xk X
*
R = 3
X X XX XX X * X

1000 10000
#elements (subjects|objects|triples)

1le+06

Figure 4.14: Predicate degree distribution (publications and governnrelugarithmic scale.

AEMET predicate distributions

800000

100
' ' Predicate in Distribution +
Predicate out Distribution X
Predicate Distribution 3
*
10 q
+
*
13k . . . % . . . %
0 100000 200000 300000 400000 500000 600000 700000
j bjects|triples)
LINKED GEO DATA predicate distributions
10000 T T T T T
§ Predicate in Distribution ~ +
Predicate out Distribution X
Predicate Distribution 3
1000 £ E
100 E E
10 | k|
*
%

10000
#elements (subjects|objects|triples)

100000

1e+06

#predicates related to X elements

#predicates related to X elements

IKE predicate distributions

' Predicate in Distribution
Predicate out Distribution
Predicate Distribution

XX+

100

10

L L Loy L
SRCK
10 100 1000 10000 100000

#elements (subjects|objectsitriples)

AFFYMETRIX predicate distributions

1e+06

' ' Predicate in Distribution +
Predicate out Distribution X
Predicate Distribution %

X
MK +
XX K X+

16000
#elements (subjects|objectsitriples)

o 100 1000

Figure 4.15: Predicate degree distribution (sensors, geography@agyh, in logarithmic scale.

58 4. Our proposal: Metrics for RDF Graphs

WORDNET predicate distributions DBPEDIA predicate distributions

10

100000
Predicate in Distribution + ' ' Predicate in Distribution +
Predicate out Distribution X Predicate out Distribution
Predicate Distribution % Predicate Distribution
10000 [
8 +)
g 5
£ * * £
2 2
& o
x * + < 1000 |
2 2
o o
o 1]
k=t X + k<1
[[
8 8 100 |
I3 5]
L2 L
3 X oKX X XK X X XM 3
S s
& %
10 |
+
1 K SRONOIRICIIOEIOK ——RRSIOIIIENNC RO KK IENE N —— ORI 3K XK 1 - -
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06

#elements (subjects|objects|triples) #elements (subjects|objects|triples)

Figure 4.16: Predicate degree distribution (knowledge).

4.3.6 Study of Predicate Lists

We perform a study of the different predicate lists and their distributionw@dave motivated, there
would exist repetitions whenever several subjects are described iartteevgay. Our goal is to establish
to what extent these lists are repeated.

Table4.5(left) presents the number of different predicate lists and the repetition Aatican be seen,
the number of different predicate lists is spectacularly low in all casesinstance Jamenddolds26
predicates (as shown in Tabfe?), and between all potential combinations, odB/different lists are
present 99.872%o of the lists are repetitions). It is also significant in @00 US Censuim which
only 106 different lists appear from29 predicates 99.996%o of the lists are repetitions). Regarding
those cross-domain datasets with more predicates and thus different gthttipsoportion remains over
947% repetitions. This is the case of Dbpedia, and it is also valid.fioked Geo Data

Table4.2 (right) shows the results of these metrics restricted to typed subjects (whiclisaussed
in Sectiond.3.7). As can be seen, predicate lists for typed subjects (FaBleight) behaves similarly to
the general case. The bigger difference is present in Dbpedia, ifnwhecproportion of repeated lists
decreases up t012.413%0. Nevertheless it remains significantly high once we are describing differe
type of entities, and we still found massive repetitions.

Thus, one can state that, in general terms, predicate lists are massivdyedpNext, we study the
number of repetitions per list on average, and their distribution. This mesabd®n defined as the mean
predicate list degree (Definitid2®), and the results are shown in Figurd.7.

These results are in line with the presented repetition ratio. Neverthelessytdgant to note that,
as for the predicate cardinality, these results can be highly biased byrtiteenof triples (the y-axis is in
logarithmic scale). For a fairer characterization, we study the distributitimese repetitions in Figures
4.18t04.21

One could expect that these distributions would correspond to the pieedistributions presented
in the previous Sectiod.3.5 That is, if a skewed distribution is present in predicates, the same result
could be found in predicate lists. In contrast, if all predicates participatesnitar number of triples
(uniform distribution), the same shape is shared in predicate lists. Cugsuits denotes that both
assumptions remain true, with some interesting remarks described belowng#derdhe same previous
categorization of predicates:

» Mostly all predicates are present in every entity, suchlekr (Figure4.18 bottom right) and the
2000 US Censu@rigure 4.20 bottom right). In such case, a similar non skewed distribution is
present. Predicate lists are highly repeated, although they do not haaréaise same number of
repetitions.

4.3. Results 59

ALL subjects TYPED subjects
Dataset # Dif. pred. lists Repetition ratio| # Dif. pred. lists Repetition ratio
C

(ILeh) (1-1kah (ILgh (- 58
Jamendo 43 999.87%0 41 999.85%0
LinkedMDB 8,459 987.81%0 8,442 987.31%:
Dbtune 963 999.92% 782 999.92%
Flickr 25 999.996 22 999.98%0
SWDF 364 965.25% 341 961.75%
Faceted DBLP 254 999.92%, 254 999.92%
Wordnet 872 999.20%0 868 999.00%00
Dbpedia 3-8 1,309,392 947.18%, 1,152,617 712.41%0
2011 Australian Census 14 999.73%0 14 999.7300
2000 US Census 106 999.996, - -
AEMET 5 999.98%00 5 999.9870
Ike 5 1,000.0080 4 1,000.00@0
Linked Geo Data 220,902 995.74%, 219,015 995.562%0
Affymetrix 9,434 993.36%0 9,424 993.36%

Table 4.5: Number and ratio of predicate lists for all subjects (left) andetstrto typed subjects (right).

PREDICATE LIST MEANS (with deviations)
1e+08 1 1 1 1 1 1 1 1 1 1 1

1le+07 E

1le+06 F ki

100000

Mean

10000 [

1000 F

100

10

lke

Flickr +——————+

SWDF =

Jamendo
Dbtune
DBLP
AEMET -+

LinkedMDB 4
Wordnet 3.0

2000 US Census 4=y
Dbpedia 3-8 ge!
Affymetrix '}
1 1 1 1

Linked Geo Data

2011 Australian Census -

Figure 4.17: Mean predicate list degree for the evaluation datasets, nthoga scale.

» Some predicates are present rarely while others are frequentlysusgdas all media datasets ex-
cept forFlickr (Figure4.18), all from publications and government except for #8890 US Census
(Figure4.20, Wordnet(Figure4.19 left), and all from sensors, geography and biology except for
Linked Geo DatgFigure4.21, bottom left). This is the most variable pattern. In fact, some of
these datasets evolve to skewed distribution of predicate lists while othersta® marked. One
can state that, whenever a slight skewed distribution is present in predagtee, this evolves to
a marked skewed distribution (power law) in predicate lists. Compare, ftamios, the distribu-
tion of lists of Affymetrix(Figure4.21, bottom right) with its predicate degree distribution (Figure
4.15 bottom right). This is the case binkedMDBandDBTUNE (Figure4.18, SWDFandDBLP
(Figure4.20 andWordnet(Figure4.19, and the aforementionesffymetrix(Figure4.21).

Other skewed structures different than power law distributions candsept. This is the case of
JamenddFigure4.18 top left) and th&2011 Australian Censu$igure4.20, bottom left).

* |t is common that predicates are present in few triples, whereas otleerslated to thousand or
millions of triples. This also evolves to clear skewed distributions (power ldyyexdicate lists
in datasets such d@bpedia(Figure4.19 right), andLinked Geo DatgFigure4.21, bottom left).
Note that, due to the same reasons, these two datasets hold the highest mafmpbed&ates of
all evaluation datasets.

60

JAMENDO predicate lists distribution

4. Our proposal: Metrics for RDF Graphs

LINKEDMDB predicate lists distribution

10 - S p— —— 10000 T T T — T
Predicate Lists Distribution ~ + i Predicate Lists Distribution ~ +
1000 p F E
e T 2 +
o o
= = +
g B *
= x 100 | *]
£ £ ++
g E
E =" ,
+ + + + T+
+-HHH +
1 e +H——t- 1
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
#repetitions #repetitions
DBTUNE predicate lists distribution FLICKR predicate lists distribution
1000 10
' ' Predicate Lists Distribltion + ' ' Predicate Lists Distribution +
+
) L | @
I S
§ . 'ﬁ +
@ 15
< ++ <
< <
3 ++-_|. z
B + g
g of + 1 #
e
HHH
A
+ A+ +
1 1 -+ . -
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
#repetitions #repetitions
Figure 4.18: Predicate list degree distribution (media), in logarithmic scale.
WORDNET predicate lists distribution DBPEDIA predicate lists distribution
1000 T T T T 1le+07 T T T T
Predicate Lists Distribution ~ + Predicate Lists Distribution ~ +
+ 1e+06F 4
100000 {4 El
3 L | @
5 p + 5 +
g + € 10000 | ++ E|
g 2 K
x +H x
£ + £
S s 1000 | El
17} k7]
3 owep {2
+ 4 _§-+ 100 | 3
+H
+ o+
10 4
HHH+ + +
1 1
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06

#repetitions

#repetitions

Figure 4.19: Predicate list degree distribution (knowledge), in logarithnaie sc

4.3. Results 61

SWDF predicate lists distribution DBLP predicate lists distribution
1000 100
Predicate Lists Distribution + Predicate Lists Distribution +
+
2 0ol E 2 +
2 S +
T T
3 * 3
< x 10f q
s + £ +
s = +
; + 2 ++ +
@ + 3 +
® 1o + E S
+ +
H ++
+HH+ HH
1 1 i R e
1 10000 1 10 100 1000 10000 100000 1e+06
#repetitions #repetitions
2011 AUSTRALIAN CENSUS predicate lists distribution 2000 US CENSUS predicate lists distribution
10 100
' ' Predicate Lists Distribution + ' ' ' Predicate Lists Distribution +
+
e T 2
8 2
B B +
] g +
< x 10r 1
£ + £ +
E E
k] k] +
S S
+ +
+
H+H
1l . + - et - + 1 . - - o -
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1e+06
#repetitions #repetitions

Figure 4.20: Predicate list degree distribution (publications and govethnrelogarithmic scale.

AEMET predicate lists distribution IKE predicate lists distribution
10 10
' ' Predicate Lists Distribution + ' ' Predicate Lists Distribution +
2 2
S S
= =
=% o
o o
x <
£ + £
g g
B B
o o
** H*
1 + 1 . . . - . "
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
#repetitions #repetitions
LINKED GEO DATA predicate lists distribution AFFYMETRIX predicate lists distribution
1e+06 T T T T T 10000 T T T T
Predicate Lists Distribution ~ + Predicate Lists Distribution ~ +
100000 E| +
+
+ 1000 E
2 1000 F + E 2
S + S
3 Rt 3
=% o
o o
< 1000 4 < 100 £ E
£ £
g g
B z
7 100 | 4 ®
10 | E
10 | 4
L 1 . i - - HH-H
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000
#repetitions #repetitions

Figure 4.21: Predicate list degree distribution (sensors, geographyiaogy), in logarithmic scale.

62

100000

10000

1000

Mean

100

10

LISTS PER PREDICATE MEANS (with deviations)

4. Our proposal: Metrics for RDF Graphs

Jamendo =

LinkedMDB +—

Dbtune

Flickr _I'_‘

SWDF -+

DBLP —+

2000 US Census nE

Wordnet 3.0

Dbpedia 3-8

AEMET T

ke —3_‘

Linked Geo Data -

Affymetrix

2011 Australian Census ge=!

Figure 4.22: Mean list per predicate degree for the evaluation datasktganithmic scale.

Finally, we study the number of different lists per predicate, on averagés is shown in Figure
4.22(in logarithmic scale) which shows a significant low number of different listshich a predicate
is present. Note that if a predicate was related to one or two lists, giverdecgie it is almost direct
to know its peer predicates for any subject or object, even for the liggéssets. In other words, the
nearer this mean is to 1, the easier could be to discern the concrete listagpredicate, even in the
biggest datasets.

The highest figures are obviously obtained for those datasets with mégeedif datasets, but they
remain proportionally small to the number of lists.

4.3.7 Study of Classes and Typed Subjects

We finish our evaluation with a brief study on typed entities. As we have drghe following chapters
of this thesis will consider all predicates regardless of the distinction batelasses. Nevertheless, we
incorporate this evaluation given the importance for other uses suchsmirg (see the potential uses
of these metrics in Sectich1.6.

Table4.6 shows the resulting number of classes, typed subjects and the ratio ofythedesubjects
over the total subjects. Several remarks should be considered. Fabt one could expect that the
larger is the dataset, the more classes are included. However it is wortmbemeg that RDF holds
a relaxed schema, hence this assumption can result completely false. nmvotls, a “small” dataset
such aslamendmr SWDFcan include more classes than the biggiekr or AEMET. Thus, the number
of classes and typed subjects is completely biased by the data modeling arahtam,dor domains,
involved in the dataset.

With this assumption in mind, we can find in the results that the number of classamneroportion-
ally small with respect of the number of triples and entities. This is an obvicustres classes model
common semantic types of entities, and this distinction should be limited. Howeveatihef typed
subjects draws more interesting results. TabGreflects three types of modelings:

* Non-typing: in this case no types are used, such a2@@ US Census

« Small-medium typing: datasets in which types are used around one offeuesubjects{ 25%).
In our study, we find two caseBlickr (31%) and Dbpedia (16%), matching this scenario.

4.3. Results 63

Dataset # Classes # Typed Subjects S(Ij?atic
(s§h (55p
Jamendo 11 290,291 86.42%
LinkedMDB 53 665,441 95.83%
Dbtune 64 10,042,747 80.96%
Flickr 3 1,690,338 30.79%
SWDF 62 8,916 85.11%
Faceted DBLP 14 3,591,091 100.00%
Wordnet 25 873,986 79.42 %
Dbpedia 3-8 351 4,007,892 16.17%
2011 Australian Census 15 51,768 100.00%
2000 US Census 0 0 0.00%
AEMET 5 394,289 100.00%
lke 12 114,471,666 99.99%
Linked Geo Data 1081 49,352,200 95.06%
Affymetrix 3 1,421,291 99.97%)

Table 4.6: Number of classes, typed subjects and its ratio for the experirftantawork.

LISTS PER CLASS MEANS (with deviations)
100000 1 1 1 1 1 1 1 1 1 1 1 1 1

10000 T B

1000) rr E

Mean

100 (

10

lke

Flickr —E

H

Jamendo =
Dbtune -+
SWDF
DBLP
AEMET 4

LinkedMDB 4+

2011 Australian Census g =
Dbpedia 3-8
Linked Geo Data
Affymetrix

Figure 4.23: Mean lists per class for the evaluation datasets. The y-axi@ganithmic scale.

» Extensive-typing: most subjects are typed. This is the case of mosetaba®ur study, ranging
from 79% to 100% of typed subjects.

Next, we extend our previous study on predicates, performing a meaaditate lists per class (see
Definition 25). This is represented in Figude23(in logarithmic scale). Note that the mean is exactly 1
(with no deviation) forAEMET andlke.

The mean figures show that, seven of thirteen datasets hold a mean of festheedicate lists per
class, and it remains valid independently of the size of the dataset. This thagrgven a class, we can
automatically state that all subjects of this class are described with one ofriatioraof predicates, on
average. Another three datasets range between 10 and 100 lists péwtia$ remains still small). The
three datasets with more different lists, obviously present more lists psr(alaso 19,000 foDbpedig.
Nevertheless in these latter cases the deviation is also high, hence weaéindaldasses with much
lesser variants.

Finally, we present in Figurd.24 a brief comparison of mean out-degrees for typed subjects with
respect to all subjects. We restrict to those datasets having small-mediurg {ggimefined above),

64 4. Our proposal: Metrics for RDF Graphs

OUT MEANS (with deviations)

160 |- Mean out degree Emmmm
Mean out degree of typed subject mmesm

140

120

100

80 |-

Mean

o
.
Flickr r
Wordnet 3.0 r | ‘—
1 1 1 1 1 1 1 1

40

20

Figure 4.24: Mean out degree for the evaluation datasets in comparisotypéthsubjects.

as in the extensive-typing case both means are similar and the comparison moadense. Thus, we
compare the figures dilickr andWordnet We extend the range of the y-axis to show that both means
and deviations are comparable. Nevertheless, typed subject aret,iddacribed with slightly more
triples on average than all subjects without restrictions. This can be seaway of providing a detailed
description for such important nodes to navigate and organize the infomwdtibe graph.

I'm sorry but | don’'t want to be an Em-
peror - that's not my business - | don’t
want to rule or conquer anyone. | should
like to help everyone if possible.

The Great Dictator (1941)

Discussion

This chapter briefly summarizes the contributions. {3 of this part of the thesis devoted to characterize
the RDF structure. We also list the most important empirical findirg&(&nd we envision potential
applications (8.2).

5.1 Contributions

In this part of the thesis we have studied and characterized the reaustrod RDF datasets. First,
in Chapter3, we have motivated our purpose in the sparingly humber of previous ealpitiedies
and the few parameters considered. We have reviewed the state-art-tieeseline revealing power law
distributions, and the existence of a small-world phenomenon.

Next, in Chapte#d, we propose and define novel metrics for RDF aimed at characteriahgvozld
RDF data. Our initial purpose was to provide a toolkit of parameters thad cmth i) help determine
common features in most RDF datasets when possible and ii) become a @sefobbk when develop-
ing or optimizing RDF data structures (such as the ones proposed in theamexof this thesis), indexes
and other related technologies.

The proposed metrics cover a wide spectrum of parameters. First, thel&Bs$et is regarded as a
graph labeled with predicates, and we give metrics to characterize thets{thje) and object (in-) dis-
tributions. We measure their degreei{- and in-degreegespectively), the presence of multivalued pairs
(partial degre@, the number of different predicates per nolddéled degreeand the direct relationships
disregarding labelgdfrect degreg

Then, we characterize the distribution of predicates, which is of greatriamuze as they hold the
semantics of the datasets. We define their cardingitydicate degree and the distribution of subjects
and objects per predicatprédicate in and out-degye This later is equivalent to describe the domain
and range of each predicate.

We consider the repetitions of nodes playing different roles, hence conmaiims are defined:
subject-objectsubject-predicateand predicate-object Given the importance of the first ones as hubs
in the navigation of the graph, we propose to characterize the subjectbect degrees restricted to
common subject-objects.

Agreeing that the list of predicates per subject can be repeated irabsubjects, we then focus on
parameterize these list and their repetitions. We defiraia of repeated predicate list¢he cardinality
of each list predicate list degréeand the number of lists in which each predicate takes (iats per
predicate degree

Finally, we make a special distinction of typed subjects, as they could sharmanalities. We
count the number of classes, typed subjects and their ratio over the tathenwf subjects. We also
define the number of different predicate lists per cléists(per class degrgend we propose to consider
the subject and predicate list degrees restricted to typed subjects.

66 5. Discussion

5.2 Result Summary

As we have motivated, the generalization of common patterns, when possitsl@ne of the intended
purposes of the proposed metrics. Nonetheless, evaluating this gestt@yalig not an easy task given the
huge range of different types of RDF datasets, changing in size, dpawdiroring and conversion tools,
and modeling. Thus, when no generalization is possible, the focus is revv®as a one-size-fits-all set
of metrics, but to provide a simple set of useful metrics for a given sienar

From these initial premises, we established an evaluation framework cogsisfourteen datasets
trying to cover a wide range of different datasets. The following summiegmrclusions can be drawn
from the evaluation results:

* As we expected, subject-predicate and predicate-object ratios arstaiegligible and subject-
object is the most frequent path constructor. Datasets were groupecéringes, near 0% of
shared entities (4 dataset), [20-30]% (5 datasets), 60% (3 datasdtapan100% (2 datasets).
The design and domain of a dataset have a strong influence in the gredgench intermediate
nodes.

» Most datasets present a meanl6ftriples per subject at most, but with high deviation. In turn,
almost all datasets have a lower mean in-degree. That is, given an d@hgeptesent in a mean of
10 triples (also with high deviation).

 All datasets reveal a remarkably skewed structure on objects. Twethe fourteen datasets are
very clear power law distributions.

» The distribution of subjects is also skewed except for some cases. Weydhkat the distribution
is less skewed when the data modeling follows well-structured patterns gsumnsus data), in
which resources are described with a similar number of triples.

» Most datasets show that each subject is described with less than I8mtifieedicates, on average.
This remains true if we restrict to common subject-objects.

« The number of predicates related to a given object is very close to 1falsommon subject-
objects.

» The mean partial out-degree is slightly bigger than 1, which implies that tisepee of multival-
ued pairgsubject, predicate) is not so frequent.

» Although the mean in-degree also remains close to 1, the high deviation slggrot@unced
skewed distribution of multivaluetpredicate, object) pairs.

» The out- and in-degrees are comparable to their corresponding direcand in-degrees. This
means that given a subject and an object, if they are related, only atiegdeebrings these nodes
together.

* The results for predicate degrees state that, on average, givediegpeeat random, it is probably
related with more subjects than objects.

» The number of different predicate lists is spectacularly low and predicateare massively re-
peated in all cases. Over J4«of the predicate lists are repetitions. This remains also true for
typed subjects.

» The distribution of the repetitions of predicate lists is also skewed. The awlption found in
the experimentation was the case in which mostly all predicates are presertyreatity, thus
resulting in a non skewed distribution. This latter was only present in 2 o&fiakdts.

5.3. Applications 67

» Each predicate participates in a number of predicate lists proportionally gitfallespect to the
number of lists.

« The number of classes remain proportionally small with respect to the nuhtoies and entities
in the dataset.

* Most datasets are extensively typed, that is, [80-100]% of the dslgee typed.

» Half of the datasets holds a mean of less than 10 predicate lists per cldss ramains valid
independently of the size of the dataset.

5.3 Applications

We expect that these metrics and observations can provide insights todizketage of some of the
revealed features. In future parts of this thesis, we exploit the sketnectige of RDF graphs. We
will motivate our decisions in most of these metrics, specially those delimiting the degares (total,
labeled, partial, etc). In particular, the binary deployment proposedatic®e’.2takes advantage of the
subject-object ratio characterization and groups the references tartteersode. In turn, we will repre-
sent the graph compacting the distribution with implicit and coordinated adjpatiets; parametrized by
the degree metrics.

We also expect to help develop and optimize better dataset designs, visoasizafficient RDF
data structures, indexes (in particular, structural indexes) and cesignetechniques. The full list of
optimizations and decisions are subject of each particular scenario@ndtasf the scope of this study.
Nonetheless, through the previous chapter, we have introduced sommeteodecisions which can be
considered.

For instance, as the number of predicates per object is close to 1, this &amdspecific treatment
of these “leave nodes” for each predicate. Thus, approachessuchpecific compression over vertical
partitioning can obtain important results.

In turn, the number of few predicates per subject and their distributadeled out degréds a clear
indicator of the presence of star-shaped nodes. Together with thectér@zation of intermediate nodes,
this could serve query suggestion and visualization purposes. In partitus highly remarkable that
intermediate nodes are reached by a mean of one solely different gesdieducing the number of
predicates which connects different parts of the graph.

The family of indexing techniques following vertical partitioning can consiaeo the predicate
distributions and, potentially, make use of these metrics to optimize the resoluttompiex queries.

Predicate lists and the characterization of classes would serve sevgvabes such as visualiza-
tion, structural indexing for querying and reasoning. We would like to rirtiee massive repetition of
predicate lists, in general, and the low number of predicates per classticufgar This may help in
determining structural indexes for such purposes.

Part Il

Binary RDF Representation for
Publication and Exchange

- | remember you being a lot bigger. - To
a ten year old I'm huge.

Hook (1991)

Introduction

The last decade has witnessed an unexpected change in the policigsasing Open Data thanks to the
efforts (and advantages) of the Linked Open Data movemen®)(8As we stated, thdata delugeand

the phenomenon d@ig Datahas no doubt affected the semantic data, actually becoming “Big Semantic
Data” (see Definitior®).

This chapter introduces scalability drawbacks managing Big Semantic Dadaezkn the Web of
Data. First, we describe the different actors within the current Web td [3.1). Then, we define a
common workflow arising in this scenario, typically conformed of three ¢ated processes; publica-
tion, exchange and consumption (query) of the informatidh4)§ Next, we review the state of the art
techniques to perform each proces6.81). Finally, their problems will motivate the need of binary
RDF representations §83).

6.1 Stakeholders in Big Semantic Data Management

We have shown that the “data deluge” had been originally devised in theofi@8cienc€82.3). Al-
though we identify data scientists as one of the main actors in the managemegt®érBantic Data,
we have rapidly moved to a globalized scenario. We unveil “traditional’suseving from a Web of
documents to a Web of Data, or, in this context, to Big Semantic Data exposedWethef Data.

Note that the scalability problems arising for data experts and general eces@mot be the same, as
these are supposed to manage the information under different pevepeas follows:

« Effort: A data expert can make strong efforts to create novel semantic data ocaljzemuge
volumes of data created by third parties. In contrast, general usegstexfreatable information,
a knowledge ready for consumption.

* Response Times:General users expect to deal with semantic information in reasonable times
whereas data experts deal with long batch processing. For instanser eetrieving all artistic
performances located in “Rome” in a given year could expect a resporsrange of seconds. In
some scenarios, real-time processing is a mandatory requirement. Forexjltg though, it is
perfectly accepted to spend several hours performing a closureraph.g

» Resources: Data experts can make use of data-intensive computing, powerfulrsesvelis-
tributed machines and specific algorithms taking advantage of these inftasgsi Users run
on generic machines, mobile devices and other configurations with more limitedrces.

Although one could establish an isolated categorization of the problems efwwkls, we cannot
forget that thevalue of Big Semantic Data exposed in the Web of Data is establishing and disgpve
links between diverse data. This interlinkage is beneficial for all parféiesinstance, in life sciences it
is important to have links between the bibliographic data of publications andtiteate genes studied
in each publication, thus another researchers can look up previougnaf the genes they are currently

72 6. Introduction

studying Hey et al, 2009. Thus, the “v’ariety of both “publications” and “genes” is represdntimked
and managed under a semantic perspective.

Our concern here is cleaifo address user-specific management problems while remaining in the
general open representation and publication infrastructure of the Wélatd

This premise leverages the Web of Data to exploit the full potential of Big Seen2ata. In turn,
user management problems have to be specifically addressed, hencedides prior analysis. This
section provides an approach toward this characterization. We firbliskta simple set of stakeholders
in Big Semantic Data management, from where we define a common data workftoaento better
understand the main processes performed in the Web of Data. In otlas, s first characterization of
the involved users and processes would allow researchers and practitto clearly focus their efforts
on a particular area.

6.1.1 Participants and Witnesses

The Web of Data has successfully emerged on the roots of Open Datavelowhe initial main corner-
stone which feeds all the infrastructure (semantic data creation) is one bétbest task for a common
user. To date, neither the creation of self-described semantic conteherimkage to other sources, are
simple tasks for a common user. There exists several initiatives to bring Seigata creation to a wider
audience, being the most feasible the use of R¥ekda, Herman, Sporny, & Birbeck2012), a way to
include RDF data within HTML pages.

Vocabulary and link discovery can also be mitigated through searchingegnadhmendation tools
(Hogan 2011 \olz, Bizer, Gaedke, & Kobilaroy 2009. However, in general terms, one could argue
that the creation of semantic data is still almost as narrow as the original tenéation in Web 1.0.

In the LOD statistics, previously reported, ordy42% of the total data is user-generated. It means
that public organizations (governments, universities, digital libraries), egsearchers and innovative
enterprises are the main creators, whereas citizens are, at this pointitfestses of a hidden reality.

All this brings up two main facts. On the one hand, the Web of Data sucaagsnd the data expert
community, strongly relies on achieving the general audience to implicate incseiation of machine
readable descriptions (RDF). On the other hand, the current realitysstiat few creators have been
able to produce huge volumes of RDF data and to feed the system. One g though, about the
quality of these publication schemes (in agreement with empirical suri#agah et al. 2012).

In what follows, we characterize a minimum set of stakeholders interaciithgBig Semantic Data
in the Web of Data. Figur6.1lillustrates the main identified stakeholders. We provide a classification at
two orthogonal levels, according to the stakeholder role and nature.

On the first level, three main roles are identifiedeators, publisherandconsumerswith an inter-
nal subdivision by the creation method or intended use. In parallel, we gliséim betweerautomatic
stakeholders, supervised processmsd human users We describe below each stakeholder, acknowl-
edging that this classification may not be complete as it is intended to cover the mirfooadations
to understand the processes in Big Semantic Data. In turn, categoriestalisjaint. For instance, a
creator can also consume information and vice versa.

Creator. As stated, the creator feed the Web of Data with new content. We define dbesprof
creation as the generation of a distinguishable new RDF dataset by,tableasf these processes:

 Creation from scratchithe new dataset is not based on a previous data model. Even if the data
exist beforehand, the data modeling process is not influenced by thieysaelata schema. RDF
authoring tools are traditionally used.

A list of RDF authoring tools can be found fttp://www.w3.org/wiki/Authoring ToolsForRDF.

6.1. Stakeholders in Big Semantic Data Management 73

Creator @

@ From scratch

J
)
)

@ Conversion from other data format (j Y m‘m
@ Data integration form existing content 3
(%]
p |9 c
. o
Publisher = o A
@ Linked Data compliant e ©° o >
o < © c
(g°]
- X
5 X 2 e
< 8 S S
Consumer 7 o T
@ Direct consumption g'
@ Intensive consumer processing (Vo)
@ Composition of data - - I\ J

Figure 6.1: Stakeholder classification in the Web of Data.

» Conversion from other data schemthe creation phase is highly determined by the conversion
of the original data source; potential mappings between source and tatgecould be used;
e.g. from relational database#ienas, Bertails, Prud’hommeaux, & Sequed®912, as well as
(semi-) automatic conversion todls

 Data integration from existing semantic contetfite challenge is to achieve an efficient integration
of vocabularies and the validation of shared entiti&sablock et al, 2012.

As stated, the creator can construct a new dataset combining these iikeeRar instance, a new
RDF dataset describing a city can be created by means of a sort ofat)jocrdrom scratch for those
facilities never modeled before.@. cultural events), ii) conversion of some existing daa(transport)
and integration of other semantic datag, weather data).

Note that several subtasks can also be shared among all three psodagsarticular, two main tasks
are the identification of those entities to be modeled and the reuse of vodabulére first one is even
more important in the creation from scratch, as no prior identification hasdmee. The latter is crucial
in data integration in which different ontologies could be aligned.

A complete description of the creation process is out of the scope of this.thedetailed guide for
Linked Data creation can be foundkteath and Bizef2011).

Publisher. A publisher is one that makes RDF data publicly available for differentqaep and users.
In the context of the Web of Data, let us suppose that the publisher folltmise Linked Data princi-
ples (8.2). We distinguish between creators and publishers as the roles canltidfey in several
scenarios. The idea is that publishers hold RDF content, possibly creatidrd-parties. Publishers,
then, are responsible of the publication scheme and policy, and the availabititg offered services
(such as querying). For instance, a creator could be an automatic yfdensors reporting temperature
measures in RDFAtemezing et al. 2012, while the publisher is the agency exposing this information
in the Web of Data. It is worth noting that the publisher provides entry pointstmformation, dealing
with correct HTTP URIs and their dereferenciation, in compliance with threjples of Linked Data.

Consumer. In general terms, a consumer makes use of published RDF data foralésparrposes.
As for the traditional Web, the computational task required for consumpéiorbe distributed between

2A list of RDF converters can be found lattp://www.w3.org/wiki/ConverterToRdf

74 6. Introduction

the server (the publisher) and the client (final consumer). Accorditigetalistribution, we distinguish
between two main types of consumptions:

 Direct consumption a process whose computation task mainly involves the publisher, without
intensive processing at the consumer. Downloads of the total datasetbfmarts) and online tasks
of querying, information retrieval, visualization or summarization, are simmeng@es in which
the computation is focused on the publisher.

* Intensive consumer processingrocesses with a non-negligible consumer computation, such as
offline analysis, data mining or reasoning over the full dataset or a subipia (e.g. live views
(Tummarello et al. 2010).

Together with this characterization, a special type of consumption isaimposition of dataThat
is, we refer to processes consuming different data sources anideseim order to serve their pur-
poses. RDF snippets in search engindags, Mika, Tarjan, & Blanco 2011) and federated services
on top of existing publishers in the Web of Datchwarte, Haase, Hose, Schenkel, & Schmizid11;
Taheriyan, Knoblock, Szekely, & Ambite2012) are two examples of these consumers.

As shown in Figuré.1, the second level of classification of the stakeholders regards the dine-
ators, publishers and consumers. Three main types of stakeholdefsrdieed: automatic stakeholders,
supervised processasdhuman stakeholders

» Automatic stakeholders such as sensors, Web processes (crawlers, search engioesyrender
systems), RFID labels, smartphones, etc. Automatic RDF streaming, fordestaauld become
a hot topic, specially within the development of smatrt cities €t al, 2012).

e Supervised processessuch as semantic tagging and folksonomies within the domain of social
networks (Garda-Silva, Corcho, Alani, & ®mez-Rerez 2012. These are automatic processes
requiring some sort of human supervision.

» Human stakeholders,who currently perform most of the task for creating, publishing or consu
ing RDF data.

Example. The following running example provides a practical review of this classificaNowadays,
an RFID tag can document a user context through RDF metadata desai@tatonneau 2011). Let
us imagine a system in which sensors provide georeferenced informb@anollution in different parts
of a city. We could have thousands of sensors providing RDF excdrptsirn, citizens can visualize
and query online this information which has been linked to other data (eather) or facilities and
industries of the city. For instance, one could establish potential correddigween the pollution levels
of a given area and the environmental plan of the city council or otheqpemted events such as strokes,
massive live concerts or sport matches. In addition, RDF data can baroed by a monitoring system
to automatically alert population in case of extreme pollution levels in a particé@ar #hen this system
is integrated with census data, the possibilities are even higher.

Following the classification, sensors aetomatic creatorconforming, all together, a potentially
big semantic dataset. A sensor should be designed to take care of RDIptitess, i.e., to follow a
set of vocabularies and description rules and to minimize the size of desasiptiaditionally, auto-
matic intermediate hubs would collect data of several sensors. In anyiteselear that sensors can
not address all publishing policies such as providing query endpoidt®ter services to users. The
reasonable configuration is that the authoritative organization in chathe system will be responsible
of its publication, applications and services over these data. This publieatibority would implement
a supervised processollecting the information, filtering itg.g. eliminating redundancy) and finally
publishing in compliance with Linked Data standards. This process shoutdreéully designed and

6.2. The Workflow of Publication-Exchange-Consumption 75

implemented to solve scalability issues of huge RDF datastreams. Although itlm®aldtomatic, let

us suppose that human intervention is needed, for instance to link sextadodnformation about city
events. Note also that intermediate hubs could be sesn@svised consumeds the sensor data, yet
the information coming from the sensors is not openly published but stretorted appropriate hub.
The final target arbuman consumeyin case of the online users (concerned of query resolution, visual-
ization, summarization, etc.) or @utomatic consumein case of monitoring (doing potential complex
inference or reasoning).

This feasible example agrees with our initial premise of the enormous divefsityolved actors
and their different concerns. When designing a system, this classificatidd help as a first step in the
identification of the roles and natures of the stakeholders. Then, diffsoalability issues should be
considered for each kind of stakeholder.

6.2 The Workflow of Publication-Exchange-Consumption

We henceforth consider the creation step out of the scope of this weckuse our approach relies on
the preexistence of big semantic data (without belittling those ones which careéed hereinafter).
Although very interesting issues arise in this phase, we focus on tashkginytarge-scale management
as they take part in most scenarios. For instance, scalability issues af aighoring a big RDF dataset
are comparable to RDF visualization by consumers, or the performancBefdgta integration from
existing content depends on efficient access to the data and thus exigémgsna crucial issue also for
query response.

Management processes for publishers and consumers are dimerseraplex to generalize. How-
ever, it is worth characterizing a common workflow present in almost exgplication in the Web of
Data in order to place scalability issues in context. Figbu2illustrates the identified workflow of
Publication-Exchange-Consumption.

GS/) ‘
(O «
9(/
K ﬁ dereferenceable URIs
RDF dump %
ﬁUMPT,O SPARL Endpaints/.

Reasoning/Integration

Quality/Provenance
Indexing Q /,
q\—jﬂ 2 é{o

Figure 6.2: Publication-Exchange-Consumption workflow in the Web of .Data

 Publication refers to the process of making RDF data publicly available following the ldiketa
principles. Strictly speaking, the only obligatory “service” in accordanitk the principles is to
provide dereferenceable URIs,, related information of an entity. In practice, publishers used to
complete this limited functionality. At the most basic level, they provide RDF dumpsdier do

76 6. Introduction

download the complete RDF dataset, or at least some parts of it. A recommaadéde is to go
one step further and expose data through public query APIs. Typicakyjes are written in the
SPARQL query language and posed via SPARQL endpoints, which iaterSBPARQL queries
and serves its results.

» Exchangeis the process of information interchange between publishers and corssukttough
the information is represented in RDF, note that consumers could obtairediffa/iews” and
hence formats, some of them not necessarily in RDF. For instance, theaea SPARQL query
could be provided in a CSV file or the consumer would request a summary tatistiss of the
datasetin a XML file. As we are issuing management of semantic datasetstwetiexchange to
RDF interchange. Thus we rephrase exchange as the process @XRbdnge between publishers
and consumers after an RDF dump request, a SPARQL query resolutemotrer request or
service provided by the publisher.

« Consumptioncan involve, as stated, a wide range of processes, from directrogtisn to inten-
sive processing and composition of data sources. Let us simply deficertiamption as the use
of potentially large RDF data for diverse purposes.

A final remark must be done. As we stated when defining Big Semantic D213),(§e do not
restrict management to large RDF datasets. We open scalability issues ta aangke of publishers and
consumers with more limited resources. For instance, similar scalability problesasvdnen managing
RDF in mobile devices; although the amount of information could be potentially sinthiése devices
have more restrictive requirements for transmission costs/latency, apadg$tprocessing due to their
inherent memory and CPU constrainte{Phuoc et aJ. 2010. Thus, although we provide approaches
for managing large RDF datasets, we assume similar decisions could bedakemtéd configurations
with equivalent scalability issues.

6.2.1 State of the Art

This section summarizes some of the current trends to address publicattbange and consumption
at large scale.

Publication schemes. Current straightforward publication of Big Semantic Data presents dgveita
lems, at all levels:

* RDF dumps. A massive empirical study of Linked Open Data datasetdibgan et al.(2012
draws discouraging conclusions: few providers attach metadata to theiroes (authoring, sum-
mary of content, statistics, etc.) or licensing information. In accordance dtbotire work
by Ferrandez, Malfinez-Prieto, and Gu#irez(2010, the paradoxical fact is that the lack of sys-
tematic metadata is so worrying that RDF dumps do not encourage its consunfatiential users
know almost nothing about the content they are going to download befiodehus, managing
millions (and billions) of RDF triples in Big Semantic Data is, first, a matter of blind trust.

» SPARQL endpointsSame features can be applied to SPARQL endpoints in which consumers,
most times, do not even know which are the vocabularies used in the datdingoda these
cases, to query a dataset is an exploration task in which queries ateictets by “trial and error”.

In addition, SPARQL endpoints are services built on top of an RDF engimelvhas to address
efficient querying of such big data.

» Dereferenciation of HTTP URIDeferenceable URIs can be done in a straightforward way, pub-
lishing one document per URI, or set of URIs. However, the publisbemsonly materializes the

6.2. The Workflow of Publication-Exchange-Consumption 77

output by querying its RDF engine at URI resolution time. This moves the proatgain to the
underneath RDF store, which is potentially solving other SPARQL queriles.empirical study
by Hogan et al(2012 also confirmed that publishers often do not provide locally-known inlinks
in the dereferenced response which must be taken into account bhyncerss

In general terms, except for the general Linked Data recommendatieadh & Bizer 2011), few
works address the publication of RDF at large scale. The Vocabulamtefinked Datasets, VoiD
(Alexander, Cyganiak, Zhao, & Hausenhla&009), is the nearest approximation to the discovery prob-
lem, providing a bridge between publishers and consumers. Publisheesusekf a specific vocabulary
to add metadata to their datasetg. to point to the associated SPARQL endpoint and RDF dump, to
describe the total number of triples and to connect to linked datasets. d¢nsymers can look up
this metadata to discover datasets or to reduce the set of interesting datdsderated queries over
the Web of DataAkar, Halac, Ekinci, & Dikenelli 2012. Finally, the proposal of Semantic Sitemaps
(Cyganiak, Stenzhorn, Delbru, Decker, & TummarglR008 extends the traditional Sitemap Protocol
for describing RDF data. They include new XML tags so that crawling tosisi{ as Sindic® can
discover and consume the datasets.

RDF Serialization Formats. As we previously stated, we focus on exchanging large-scale RDF data
(or smaller volumes in limited resources stakeholders). Under this consiherthe RDF serialization
format directly determines the transmission costs and latency for consumptidortihately, datasets
are currently serialized in plain and verbose formats such as RDF/>8étkett 2004 or Notation3:
N3 (Berners-Leg 1998.

RDF/XML (Beckett 2004 was released hand in hand with the latest W3C RDF Recommendation.
In fact, it was a good solution to take advantage of all solutions managing atNHat time. However, it
terribly overloads the representation with verbose information “for hufaitereas humans should not
be the focus when downloading, for instance, hundreds of millions of $ti@ame consideration could
be argued when optimizing the representation for limited devices, in which wddshprioritized the
efficiency. RDF/XML includes, though, some naive compacting featsw@smarized in the list below
(Ferrandez, Maiinez-Prieto, Guérrez, Polleres, & Arigs2013:

» Omitting Blank Nodes Beckett 2004 section 2.11): The attributelf:parseType="Resource”
allows to implicitly create blank nodes.

» Omitting Nodes Beckett 2004 section 2.12): Under certain conditions, object nodes with string
literals can be moved to property attributes, hence the subject node beempis

« Abbreviating URI referencedBBeckett 2004 section 2.14): First, a base URI attributel:base
can be set. This is the base URI for resolving relative RDF URI refeieratherwise the base URI
is that of the current document. Then, ta&ID attribute on a node element can be used instead
of rdf:about This attribute must be interpreted as a relative RDF URI reference.

» Collections Beckett 2004 section 2.14): It allows ardf:parseType="Collection”attribute to be
defined on a property element. This provides a set of node elements tteldhedsubject node.

In turn, Notation3 (N3 Berners-Leg 1998) is a language which was originally intended to be
a compact and readable alternative to RDF/XML, optimized for reading bgtsc Thus, it reduces
verbosity and represents RDF with a simple plain grammar. It also allows somgacting features
such as abbreviations for URIs prefixes (and base URI), shogHand@dommon predicates and square
bracket blank node syntax. One major advantage is the use of lists. Fmdasrepetition of another

3h'[tp://sindice.com/

78 6. Introduction

objects for the same previous subject and predicate using a comma “gpetition of another predicate
for the same subject using a semicolon *;".

Turtle (Beckett & Berners-Lee2011) is a more compact and readable alternative. It is intended to
be compatible with, and a subset of, N3, thus it inherits its compact fearigeghe abbreviation of
RDF collections. N-TriplesGrant & Beckett 2004 is also a subset of N3, restricting to only one triple
per line, using hardly any syntactic sugar. It simplifies the parsing psaaiethe expense of avoiding
compact structures.

RDF/JSON Alexander 2008 resembles Turtle, with the advantage of being coded in a language
easier to parse and more widely accepted in the programming world. It is @deéndbe easy for humans
to read and write and easy for machines to parse and generate.

Although most of these formats present features to “abbreviate” catising like URIs, groups of
triples, common datatypes or RDF collections, the compactness of the rejptesedefinitely was not
the main concern of their design. Finally, Steride@ver & Williams 2011) is designed as a subset
of Turtle for optimizing parallel I/0. Although it collaterally addresses somigonaof initial metadata
and compactnes&.g. all prefix declarations must occur at the beginning of a document andnaéd-e
Ziv compression over Sterno is evaluated), its main purpose is to allow paraltessing (divisibility)
disregarding publication facilities as well as native query support.

In order to reduce exchange costs and delays on the network, salie@mpressore(g. gzip) are
commonly used over these plain formats. In addition, specific interchareyged representations may
be also used. For instance, the Efficient XML Interchange Format: B&trieider & Kamiya 2011
may be used for representing any valid RDF/XML dataset.

Efficient RDF Consumption. The aforementioned variety of consumer tasks hinders to achieve a
one-size-fits-all technique. However, some general concernseauthned. In most scenarios, the
performance is influenced by i) the serialization format, due to the ovetalleahange time, and ii) the
RDF indexing/querying structure. In the first case, if a compressediRiBbeen exchanged, a previous
decompression must be done. In this sense, the serialization formas affeconsumption through the
transmission cost, but also with the easiness of parsing. Once the cortmsrmwnloaded the dataset,
the most likely scenario is indexing it in order to operate with the RDF graglifor intensive operation
of inference, integration, etc., but also for the most simple query. Cusesialization formats do not
provide any means of direct access to the datathey only provide sequential parsing.

Although the indexing at consumption could be performed once, the amouesairces required
for it may be prohibitive for many potential consumers (specially for mobiécgs comprising a limited
computational configuration). In both cases, for publishers and owers, an RDF store indexing the
datasets is the main actor for efficient consumption.

RDF is a logical data model which does not limit its physical storage or indekiogrever, these pro-
ceedings are strongly related with the later querying process, which isitiypgierformed by SPARQL
gueries (see&1.2. The semantics and complexity of the SPARQL query language have aiglgn f
studied theoretically, showing that full SPARQL evaluation is PSPACE-caefp(Perez et a). 2009
due to the OPTIONAL operator alon8¢hmidt, Meier, & Lausen2010. However, our empirical study
of real-world SPARQL queriesAtias, Ferandez, Maiihez-Prieto, & de la Fuente2011) reveals that
most SPARQL queries are simple. In fact, over a large DBPedia log, 66.40% of the queries just
contain one single triple pattern (see Definit@n In other logs, such as the Semantic Web Dog Fpod
the percentage of these simple queries reaches 9p26%.

Several RDF indexes and RDF stores explore efficient SPARQL temolmethods. We review the
most important approaches in Sectitih 2 showing that the vast majority of them suffers from lack of

“A problem is PSPACE-complete if it can be resolved taking polynomialespad the input and every PSPACE problem
can be converted to it in polynomial time.
5ht'[p://data.semanticweb.org

6.3. Our Goal 79

scalability in Big Semantic Data. There is still a large interest in querying optimizé&ohmidt et al.
2010, whose performance is diminished when the RDF stores manage veryl&egets.

6.3 Our Goal

Managing Big Semantic Data yields to optimize each process in the Web of Datflomor In other
words, all steps must be designed to address the three Big Data dimemsiansg, \elocity and \ariety.
Whereas we already argue that variety is already addressed with RDfR@hinked Data principles,
four brief insights can be gleaned from the study of the stakeholdersegses and current state of the
art in the Web of Data:

1. Data serialization has a big impact on the workflow, as traditional RDHigatian formats are
designed to be human readable instead of machine processable. They smagllér scenarios
in which volume or velocity are not an issue but, under the presented peertlisy become a
bottleneck in the workflow. Moreover, current RDF serializations onbém sequential scan.

2. Besides inadequate overweighted serializations, most publishing sslobwiates metadata and
other facilities to upgrade publication and enable discovery for consumption

3. Even for simple operations, current serialization formats do not pe@ngt means of direct access
to the data. Thus, offline RDF consumption typically results in a painful seosily tasks: ex-
change, decompression, indexing all plain data and, finally, use. Althtbeghformation remains
semantically the same, note that each of these processes managestdifitaarepresentations
with different levels of functionality.

4. Diverse stakeholders acts in the Web of Data, with different pugpostowever, all them are
influenced by plain, non-functional, human-readable formats while mag&jiinSemantic Data.

Moreover, the aforementioned skewed structure of real-world RDF(dagsacterized in Chaptd)
gives insights showing that a compact RDF representation should be&edhiléhe motivation and state
of the art call for a binary representation for RDF aim at reducing thie leigels of verbosity/redundancy
and weak machine-processable capabilities of the datasets. We colleciimequérements for an RDF
serialization format of Big Semantice. our hypothesis (8.2) which will be addressed hereinafter.

« Efficient conversion from and into another RDF format. In particular, RDF stores must be able
to manage such optimized exchange format both to dump their information andltodaeone.

 Clear publication scheme.For publishing, the format must rely on a clear scheme, providing a
standard way to add provenance and other metadata for discoverycsging by consumers.

« Efficient space.lt must create compressed representations. Big semantic datasetsagesitae
Web of Data, and they may be transferred through the network infrasteuSpace minimization
reduces, then, both bandwidth costs and latency. In other wordsjroens start processing the
information faster, which can be essential for real-time processes.

e Easy parsing. As stated, consumers are used to perform a sequential triple-to-tripleisgdor
any post-processing task. This results in several minutes (or houes) pdst-processing Big
Semantic Data at the consumer. In addition, most of the aforementioned R&®gdse variants
of B-Trees, which are more inefficient to construct on unsorted elements

* Ability to locate pieces of data within the whole dataset.Nowadays, the most basic lookup
requires to full scan the plain triples or to re-index the exchanged RDFatlaansumer, which
was potentially indexed at publisher. We conceive two desirable requitsifoe our format:

80 6. Introduction

1. It must be ready to solve, natively, a limited core of SPARQL queriesnitance the basic
triple patterns. As shown, triple patterns resolution covers a very sigmifisrcentage of
the real-world SPARQL querieg\fias et al, 2011).

2. It must provide enough flexibility to build additional indexes to efficientlyolee complex
SPARQL queries.

In summary, as we argued, “data must be encoded to be the index”. Khehapter presents
our proposal addressing the core format which fulfills the requirementefficient publication and
exchange. TherRart [l andIV will present new structures to enhance the initial core with additional
query functionality.

You know what's left after the big storm
comes and takes out all the big trees?
The little trees. The little guys that held
on through out the storm.

Very Bad Things (1998)

HDT. A Binary Serialization for RDF

Our approachHDT: Header-Dictionary-TriplegFerrandez et aJ. 2013, considers the previous re-
quirements, addressing a machine-processable RDF serialization fotraaables Big Semantic Data
to be efficiently managed within the common workflows of the Web of Data.

This chapter formalizes thdDT serialization for publication and exchange over a network. First,
we present a conceptual description of HigTlogical components: Header, Dictionary and Triples. As
HDTallows different implementations for each component, we characterizeghgaments, operations
and the intended use of each component. Next, we provide a practidayoemt of HDTwith simple
implementations of each component. Then, we design a geREBIHDT syntax specification and
provide specific details for the previous deployment. Finally, we perfannerapirical study which
analyzedHDTfeatures on real-world datasets.

In the following chapters we present succinct data structures to bitdid@$encoded datasets (direct
access to any piece of data) in harmony with all aforementioned requirements

7.1 Conceptual Description

HDTis designed as an RDF binary encoding which succinctly represents trenatfon of an RDF
dataset by organizing and representing the RDF graph in terms of thrieallagmponentsHeader,
Dictionary andTriples (Figure7.1).

« Header. The Header holds metadata describing a big semantic dataset encétied ilthough
the binary representation should be machine-oriented, this component istaigegtier a human-
friendly context of the dataset. In spite of the existence of dedicated RPé&bularies to describe
datasetsd.g. VoiD (Alexander, Cyganiak, Hausenblas, & Zha2011) and annotation properties
in OWL (Motik, Patel-Schneider, & Parsia2009 Section 10)), current serialization formats do
not provide means on how to publish these metadata along with datasets. rrwotie, the
metadata, when present, is currently provided in the same RDF graph istandard way which
makes difficult to extract and process them automatically.

In contrast, we propose the metadata to be encoded together with the data bigtinguishable
component, the Header, making metadata a first-class ciftagrandez et al.2013. The Header
is, by itself, a plain RDF graph, thus leveraging the current semantic infcaisre for management
and discovery. The Header triples use standard vocabularies tob#eer dataset. For instance,
one publisher can provide information about the provenance (authpribgcation dates, version),
statistics (size, quality, vocabularies), physical organization (subpectgion of files) and other
type of information (intellectual property, signatures).

e Dictionary. The Dictionary component organizes the catalog of all different termg unsthe
dataset (URIs, literals and blank nodes). A unique identifier (ID) is aeslitp each term, enabling
triples to be represented as tuples of three IDs which, respectivetyerefe the corresponding
terms in the dictionary.

82 7. HDT: A Binary Serialization for RDF

H eader

g @®metadata describing the RDF dataset

{ Dictionary
e
u

@®Mapping between IDs €->elements in the dataset

I riples

\ —d 3
§ 2\‘<’7 /11 @ Structure of the data after the ID replacement

=]

Figure 7.1: Description diDTComponents: Header-Dictionary-Triples.

Note that most RDF stores (such as the well-known RDF-RKumann & Weikum 2010 or
Virtuoso Erling & Mikhailov, 2007)) make use of a dictionary as it allows the graph structure to
be indexed as an integer-stream. We propose to incorporate into the RD&ryepresentation
this simple but effective decision for managing RDF. As we will argue, thisfissastep toward
compactness, since it avoids long terms to be repeatedly represented.

« Triples. The triples take advantage of the dictionary mapping to represent a gripé avoiding
to manage nodes and edges with long strings. This is, in fact, the key contgorguery the
RDF structure. On the one hand, an efficient triples encoding can helfple scanning for
post-processing tasks. On the other hand, if data can be easily indmsd,queries (such as
SPARQL triple patterns) could be resolved natively. Ideally, the dataasgdd would not need
of decompression nor re-indexing to be consumed (or these proceagdse performed but in a
marginal timew.r.t traditional approaches).

Figure7.2shows a typical Publication-Exchange-Consumption scenaHi®ifi We make use of the
following definitions (revised from our previous workérrandez et a). 2011)).

Definition 26 (HDTprocessor) An HDTprocessor is a component used by application programs to en-
code their data intdHDTand/or to decodéiDTdata to make the data accessible.

Definition 27 (HDTencoder) An HDTencoder is arHDT processor which, at least, is able to encode
application data intdHDTdata.

Definition 28 (HDTdecoder) An HDTdecoder is arHDT processor which, at least, is able to decode
and post-processlDTdata for the purposes of an application program.

Definition 29 (HDTcore data) TheHDTcore data of arHDTrepresentation consists of its Dictionary
and Triples components, whether it is present in a unique or sevemabfilstreams. This core data must
be self-contained,e., it must contain enough information to consume the full dataset.

The HDT processorconcept generalizes the notion of publishers and consumers. Thiscialgpe
useful for environments in which stakeholders can act with severa,releh as consumers which look
up and integrate diverse sources and publish big semantic data. Incanariss, one could distinguish
if the involved sources can (or not) manddgBTdata, that is, if they incorporate &#DTprocessor.

7.1. Conceptual Description 83

1. PUBLICATION \ D ,,,,,,,,,,,,,,,,,,, , 3. CONSUMPTION
ictionary ém
e O h O, b O
¥ A ﬁ> dOO 3bu — A
Q) t L O
HDT Encoder Triples ‘ HDT Decoder
j r 4 @ 0 © ©
o) metadata parse query
EC@ 2. EXCHANGE ﬁ
Publisher Consumer

Figure 7.2: The common processhbDTencoding/decoding.

A “pure” HDT consumer (not acting as publisher) may be only interested in decodingcstd p
processing the exchangétDTdata, including then aRlDTdecoderfunctionality. In turn, a publisher
willing to encode data téIDT, will run anHDTencodersoftware. In both cases they mainly exploit the
HDTcore data that is, the Dictionary and Triples components, without denying the impatahthe
metadata of the Header.

Thus, Figurer.2illustrates a content publisher making use oHidTencoder (a program module or
an external library) in order to genera#®Tfrom its RDF content. Once published and exchanged, the
consumer uses aADTdecoder to efficiently access th#DTheader and the core data (dictionary and
triples). TheHDTdecoder should provide the consumer with distinct access possibilitiésasgetting
the original full RDF dataset, retrieving the metadata of the header, patsiimfjormation into another
data structures and querying the data.

Figure7.3illustrates a variant of the previous encoding. One could effectiveediftat a consumer
would be interested in downloading only the Header with metadata in order tovdisand filter the
properties of the dataset. In this case, the Header includes links téDfieore data. Moreover, the
Dictionary and Triples components allow diverse configurations andi@naity, which can exploit the
trade-off between the compression ratio for exchanging and the nagiwpported operations. Thus, the
dictionary and triples could be split in several chunks or streams, ondifferent configuration. The
user can select the appropriate format for the intended purpose.

The previousHDT basic description was flexible enough to allow this possibility. In order to for-
malize these variations, in the following we detail the third&T components and list potential uses and
levels of functionality.

84 7. HDT: A Binary Serialization for RDF
2. EXCHANGE
3. CONSUMPTION
1. PUBLICATION N TR
o & h m\j O)
Ev@: d |:> d E\Q metadata
u}j HDT Decoder ﬁ
HDT Encoder
ﬁ B AR N Consumer
: ﬂ <HDT 2>
Publisher L
Triples 1 Triples 2 Triples n
Figure 7.3: A variant oHDTencoding/decoding for discovery.
7.1.1 Header

The Header is an RDF graph describing the dataset. The use of RDF ir#ueiprovides flexibility in
the metadata itself. This way, publishers can include the set of propertiesio€hoice to describe the
dataset. We distinguish four general types of metadata:

Publication Metadata provides information about the publication act itself, for instance when
was the dataset generated, when was it made public, who is the publisieee, i the associated
SPARQL endpoint, which is the version of the publication, etc. Many ptaseof this type can

be described using the popular Dublin Core Vocabdlary

Statistical Metadata provides statistical information about what follows in the dataset. This class
of metadata is valuable for humans to get a glimpse of the content but alsocespes such as
visualization, indexing optimization for RDF engines or federated quenyatian.

Metadata can be simple (such as the number of triples, the number of diSetgects, predicates,
objects, etc.), aggregated (histograms) or slightly richer such as our snet@hapte#.

Format Metadata describes the concrete format of tiBTdataseti.e., which specific Dictionary
and Triples implementations are used. Format metadata also allows i) to state thablisber

provides different available dictionary or triples representations if egefbr example with dif-
ferent space/time tradeoffs, and ii) that the information has been split @nadestreams. In both
cases, format metadata points to the URI locations of each representation.

Additional Metadata collects other informations provided by the publisher using any RDF vocab-
ulary, e.g.tags, annotations, or signatures. It also holds specific application metadata

1ht'[p://dublincore.org/

7.1. Conceptual Description 85

Header Uses and Operations for Consumption

The Header serves as an entry point for a consumer, who can loakigincproperties to have an idea
of the contents of the dataset.

Physically, the header can i) precede HBTcore data and be downloaded together with the rest of
the information, or ii) be a standalone file, downloaded alone. In the fisst danay not serve to decide if
a (potentially huge) dataset worth to be downloaded, as the whole dasasairéady been downloaded.
Nevertheless, the metadata could help discriminate whether a dataseieddsebe really consumed.
In addition, features such as statistics could optimize consumption processess indexing. In the
latter case, the consumer can discover and filter the properties of adat@set, for instance, through
SPARQL queries toward the RDF graph of metadata. This process is é@ore betrieving the whole
dataset. Moreover, if the header metadata can be retrieved and qudires] the user could consume
the header online. Last, if tHdDTcore data is distributed in several chunks and available in different
formats the user can discriminate the relevant chunk and format to download

Publishers need simple operations over the Header as it is a genergifenadly small) RDF graph.
Thus, the set of operations providedBipTencoders can be reduced to the following simple set:

o write(RDF header, HDT core data) : Include an RDF description of the header within
theHDTcore data, conforming ddDTdataset.

e update(RDF header, HDT dataset) . Update arHDTdataset with a novel Header. Pub-
lishers typically write the Header once, but it could be updated several tiitlesiewer informa-
tion (Ferrandez et a). 2013.

In turn, consumers can download and access the Header locally, omilgay consume it using
SPARQL queries. In the first cagddDTdecoders should provide an operation such as:

e extract(HDT dataset, RDF header) . Extract the header out of atDTdataset.

Both the filtering in this case as well as the SPARQL query in the latter caseiaeead operations a
semantic library can deal with.

7.1.2 Dictionary

Historically, a dictionary is a repository of information about data such asimgarelationships to other
data, origin, usage, and formdBW, 1993. NonethelessHDTmakes a simpler conceptualization:
the HDT dictionary maps each term used in a dataset to a unique integer ID. Thustiibates to
compactness and more efficient triples management since each termeaceus now replaced by its
corresponding ID, whose encoding requires less bits in the vast majobtiig cases.

To the best of our knowledge, the dictionary has not been proposet iRRF representation syn-
tax. Current RDF syntaxes achieve compactness by means of elemafitaignaries” for namespaces
and prefixesKerrandez et a). 2013. Other approaches exploit the dictionary construction apart from
the RDF storesNlartinez-Prieto, Ferandez, & Gnovas 20123 Urbani, Maassen, & Bal 2010. A
detailed state of the art of RDF dictionaries is addressed in Ch@pter

Dictionary Characterization for Exchanging

The Dictionary component illDT allows multiple implementations. It is clear, though, th#dTen-
coders and decoders must agree on how to manage a specific endodirgfollowing, we distinguish
a set of properties that typically characterize a dictionary implementation:

* Mapping Function. As we described, the dictionary mapping assigns an ID to each term. Ob-
viously, this assignment is not chosen at random, but it follows a clearpatter instance, one

86 7. HDT: A Binary Serialization for RDF

could sort all the terms used in a graph by alphabetic order and assighatioe IDs. In turn, an
important decision concerns the dictionary partitions. Instead of holdirigbamigmapping, one
could distinguish into the different sets of subjects, predicates and gbjettsuse each compo-
nent in a triple can be then independently named. Thanks to these partittbdeato the limited
number of different predicates (studied in Chagfethe range of IDs for predicates is limited too.
Thus, the ID-stream in triples can make use of fewer bits per predicageldition, RDF engines
usually map shared subject-object elements with the samAti® ét al, 2010.

» Terms encoding.Several decisions affect the specif encodings of terms. First, dicisnasually
make use of namespaces and prefixes, already present in most R@akesynThis allows to
abbreviate long and repeated strings. ThusHBS encoder must share this information so that
the decoder can undo the abbreviation. Next, a mechanism to separageidhizesl terms must
be established. Typically, a reserved character delimits terms and dictjgaxditions (if present).
Finally, the encoding of each term can strongly differs (plain, differéatiaoding, etc.) and must
be defined to enable the correct deserialization.

All these issues must be clearly formalized when designing and exchamgiogelHDTdictionary.

Dictionary Uses and Operations for Consumption

For publication and exchanging, the main goal of the Dictionary is to contrtbutempactness. Then,
once the information is exchanged, the consumer needs two main operatrice@mapping (further
developed in §.1):

* locate(term) : returns the unique identifier for the givetementif it appears in the dictionary.

 extract(id) . returns the term with identifigd in the dictionary, if it exists.

In order to serve these operations, consumers typically load the exadhangionary into a func-
tional data structure. This is usually referred topassing For instance, consumers could load the
serialization into Hashes, B-Trees or other well-known traditional forntSationaries. An “intelligent”
encoding for the dictionary could help make this parsing more efficient. Btarioe, a lexicographically
order in the encoding could alleviate the posterior sorting made by some sdaustich as B-Trees.

Besidedocate andextract operations, more advanced techniques might also provide the fol-
lowing operations at consumption time:

* prefix(p) . finds all terms starting with the prefix 'p’.
o suffix(s) . finds all terms ending with the suffix ’s’.
* substring(s) : finds all the terms containing the substring 's’.

» regex(e) : finds all strings matching the specified regular expression 'e’.

For instance, these advanced operations are very convenient efvamgsguery suggestions to the
user, or when evaluating SPARQL queries. As shown in Chaht&iLTER operations in SPARQL
restrict the final result by a given condition, typically a regular expoessut also language or datatype
selection (8.1.9. All these can be evaluated first over the Dictionary which can delimit gerah IDs
satisfying the condition (we describe these possibilitieslid. 4.

In Part Ill, we study compressed rich-functional encodings for dietites which provide all these
operations natively once they are loaded at consumption time.

7.1. Conceptual Description 87

7.1.3 Triples

The Dictionary mapping allows the RDF graph to be encoded as a graplsofA®we will show, the
triples organization is the cornerstone to i) exploit inherent graph rexshaydand ii) allow triples to be
efficiently traversed.

Triples Characterization for Exchanging

Once againHDTdevises multiple configuration for Triples encoding, varying in space/timeofésiand
diverse functionalities. A novel implementation has to clearly define two maipepties for a correct
serialization/deserialization process:

« Triples organization. After ID replacement, the RDF graph is managed as a graph of IDs. Nev-
ertheless, the serialization of such ID-graph can be made in many difigesrs. For instance, a
triples component could perform an in-order traversal, seeing thdizatian as a continuous ID-
stream of three IDs per triple. In contrast, one could make use of traditioneepts of adjacency
lists or other types of structures to achieve compactness.

« ID-terms encoding. As we have described in the dictionary, there are different mappinestizig
the potential range of IDs. Then, one could codify every ID with the sameber of bits €.9.23
bits) or to leverage the range in each partition to use fewerdaigslog (| P|) for predicates). These
and other decisions taken to promote compactness, such as using tédfered VByte encoding
(Williams & Zobel, 1999, must be explicitly known and shared B\DTencoders and decoders.

Triples Uses and Operations for Consumption

Similarly to the previous remark in dictionaries, an “intelligent” encoding forHE triples component
can improve parsing at consumption time. We distinguish here four diffenesit of triples functionality
(revised from our previous worlkEerrandez et a). 2013) at consumption time:

LO ExchangeAt the most basic level, an RDF Triples component solely serves to encedettbf RDF
statements, optimizing the objective of exchange. Then, it must allow the minimerative to
retrieve all triples:

e scanTriples(HDT dataset) : Returns a sequential scan of all RDF statements in an
HDTdataset.

L1 Triple Pattern SearchAn RDF Triples encoding under this level provides basjle patternreso-
lution?, serving a search operation such as:

» searchTriplePattern(triplePattern, HDT dataset) . Returns the solution
for the given triple pattern in thelDTdataset.

Ideally, RDF Triples component should be able to resolve efficiently allswofdriple patterns
(see Definition3). However, this ability can be achieved at the cost of more complex stasctur
For instance, if a lightweight structure organizes data by subject, it czel &t triple patterns
providing a constant subject. In contrast, the performance may be significdlegraded if the
subject is not provided in the query. For this reason, we refer to the“lege Full Triple Pattern
Searchi when the encoding is able to efficiently resolve all triple pattern combination.

2In these operations we consider a prior ID replacement of the triple psiter

88 7. HDT: A Binary Serialization for RDF

L2 BGP Resolutionln this case, the Triples facilitates to resolve SPARQL BGPs (see Defiditioks
stated, BGPs imply matching two or more triples patterns which share one or ar@eles, being
one of the most common constructions in RDF queries. Thus, RDF Triplesar@npserves an
operation:

 resolveBGP([triplePatterns]?, HDT dataset) : Returns the solution for the
given BGP of one or more triple patterns in tHBTdataset .

L3 Full SPARQL Ideally, the engine should be able to answer efficiently any SPARQL 11, caezv-
ing:

* resolveQuery(SPARQL query, HDT dataset) : Returns the solution for the given
SPARQL query in thédDTdataset.

Note that, compared to the previous level, full SPARQL involves resolvirapPatterns (see
Definition 5). That is, this level must address tPTIONALand UNION operators (shown in
Chapter2.1.2). Thus, as we also refer to “efficient” resolution, the triples componest oansider

guery evaluation optimization techniques.

In Part IV, we study a rich-functional encoding for triples which pr@ddlL1 level natively once it
is loaded at consumption time. Moreover, we propose additional succidetas which can be built on
top to provide higher levels of functionality.

7.2 Practical HDTDeployment for Publication and Exchange

HDTis designed as a modular format in which different implementations can begalilgig components
as long as they provide the minimum basis. In this section we provide a pratbdaleployment aimed
at clean publication and compact exchange.

7.2.1 A Specific Vocabulary for the Header

The Header component is always an RDF graph itself in order to take@adsaof current applications
and services for management and discovery. A practical deploymenghhdeals with the appropriate
standard vocabularies to describe the dataset. We propose a dpéicifiocabulary, with the namespace
http://purl.org/HDT/hdt#hdt . The mandatory structure of this practical Header is illustrated
in Figure7.4. The explanation of its main features is guided by a running example of aeHieldigure
7.5. This Header is given in Turtle syntaRéckett & Berners-Lee2011) and it corresponds to the RDF
graph in Figuret.1 Note that the choice of a specific RDF syntax for the Header is an issheldDT
syntax (we address it in783).

First of all, the Header describes BDT dataset, which is of typhdt:Dataset (line 10). As
seen in the structure (Figured) thehdt vocabulary states that:

(hdt:Dataset,rdfs:subClassOf,void:Dataset)

, anHDTdescription is then an extension of the Vocabulary of Interlinked Dataggi3 (Alexander et al.

2009. Thus, the Header can make use of VoiD properties to descridé@dielataset in a standard way.
In addition, it enhances the VoID Vocabulary to provide a standardiireybdataset description.

Next, the Header distinguishes four “sections”, corresponding to thielfasic types of metadata
detailed in Sectio.1.2 Publication, statistical, formaandadditional Metadataln practice, we model
these sections by means of four blank nodes (litfled4) grouping the metadata of each type. These
are the most important remarks.

7.2. PracticalHDT Deployment for Publication and Exchange 89

rdf:type
<dataset> hdt:DataSet
> & _ rdfsisubClassOf

-

-~
-
-
-~
-~

By ~
t; -
fo’"h - N
a{/nfOr I’ . N
i \ Void:DataSet }

e

— -

~
\
6(\\!0&/ /\ hdt:triplesPlain 4
_:publication _additional \)v?‘cf o’ S -
- ‘&gﬁl -
ey R -

- =

- “dfs: subPropertyOf, <
. &= == 2T —’ hdt trlplesCompact)

~ \ s
/ P4
hdt tdlctmnaryPIam f dictionary
\ _____ = -

() fomms @

Figure 7.4: The structure of the propodeDTpractical deployment.

- ...—-'

 Publication Metadata (hdt:publicationinformation), group the statements about the publication
act (linesl16-22). As can be seen in the example, it is strongly recommended to use standard
vocabularies such as Dublin Core and FOAF. Additionally, VoiD proped#sprovide specific
RDF features, such as the location of the associated SPARQL endpa#Zlin

« Statistical Metadata (hdt:statisticalinformation) include statistics such as the number of RDF
triples of the dataset, or the number of different predicates. This is sholimes 14-25 , exploit-
ing VoiD properties. Note that statistics in VoiD are limited, hence a specificbudaey could
also include the metrics presented in ChagteOther well-known vocabularies for statistics are
encouraged, such as RDFStdtarfgegger & Woss2009 for histograms, semantic statistics with
SDMX (Cyganiak, Field, Gregory, Halb, & Tennisor?010 or the RDF Data Cube Vocabulary

(Cyganiak & Reynolds 2013.
e Format Metadata (hdt:formatinformation) link to the concrete dictionary and triples encodings.
Thehdt:dictionary andhdt:triples properties group the metadata about the dictionary

and triples respectively. Two mandatory properties are required toildeslbese components:

— The specifictype of the Dictionary and Triples implementations. This can be specified in
two different ways:

1. Stating thedf:itype of the component. In the header example, the Bestates

that the dictionary is of typédt:dictionaryPlain (this is explained in the next
section §.2.2.

2. Using RDFS subproperties bfit:dictionary and hdt:triples , as shown in
Figure7.4. In the example, lin@8 points to thehdt:triplesCompact configura-

tion, implicitly denoting that the triples are fdompact Triplegormat (this is described
in the following section, 8.2.3.

© 0 N O s W NP

B A DN DN D DD WL WWWWWWWWNNNNRNRNDNDRNNDNDERRRPR B B B B
D OB WNRFP O ®©®MNO®O S ®WNEP O ®©®WNO®U S WNREF O ®© NN WNRE O

90 7. HDT: A Binary Serialization for RDF

@prefix void: <http://rdfs.org/ns/void#.

@prefix dc: <http:// purl.org/dc/terms*t.

@prefix foaf: <http://xmlns.com/foaf/0.1%.

@prefix hdt: <http:// purl.org/HDT/hdt#.

@prefix xsd: <http: //www.w3.0rg/2001/XMLSchema#

@prefix rdfs: <http://www.w3.0rg/2000/01/rdfschemas.
@prefix rdf: <http://www.w3.0rg/1999/02/22 rdf —syntax—ns#-.
@prefix swp:<http: //www.w3.0rg/2004/03/trix /swp2/f>.

<http://example.org/myinfo.hdt a hdt:Dataset;
hdt:publicationinformation _:publication;
hdt:statisticallnformation _:statistics;
hdt:formatinformation _:format;
hdt:additionallnformation _:additional

_:publication dc:issued'2013-01-01"
dc:license<http: //www.gnu.org/copyleft/fdl.htmt;
dc:publisher [a foaf:Organization;
foaf:homepage<http: // example.org/theCompany;
dc:source<http://downloads.example.org/1.0/en;/
dc:title "mylnformation” ;
void:spargqlEndpoint<http: //example.org/myinfo/spargl .

_:statistics void:triples"7" ;
void:properties"4"

_:format hdt:dictionary _:dictionary;
hdt:triplesCompact_:triples

_:dictionary rdf:type hdt:dictionaryPlain;
hdt:fileLocation <http: //example.org/mylnfo.hdt ;
dc:format "application/x-gzip" ;
hdt:dictionaryEncoding"utf8" ;
hdt:dictionaryNamespaces [hdt:namespace [hdt:prefikkh"ex" ;
hdt:prefixURI "http://fexample.org/" 11;
hdt:dictionaryOrder<hdt:alphabeticalorder>;
hdt:dictionarySeparator\o"

_:triples hdt:fileLocation<http: //example.org/ mylnfo. hdt .
hdt:predicateStream [dc:formatapplication/octet-stream"” ;
hdt:IDCodification hdt:logBits];
hdt:objectStream [dc:formatapplication/octet-stream” ;
hdt:IDCodification "32"];

_:additional swp:signature’AZ8BQWE..." ""<xsd:base64Binary;
swp:signatureMethodkswp:JjcC1l4N-md5-xor—rsa> .

Figure 7.5: A Header example HDT.

— The URI to localize the dictionary and triples. If they are provided in the same file as the
Header (in a standalone configuration), this URI will coincide with the car#DTURI.
This is the case of our example, in which the URIs of the dataset inllnis equal to the
URI of the dictionary, line31, and triples, line39. If the components are split in several
chunks, one could make use of an RDF sequerdfeéSeq) to number all the locations.

In turn, additional format metadata depend on the concrete implementatiothddlotionary and
Triples components. Hence the metadata for our dictionary and triples pitagtjgroaches (lines
32-37 and40-43) are detailed in the following sections. It is worth noting that all the additional
metadata provided here are intended for discovering. The specifi¢atecier HDTdecoding are
delegated to specific control information described inHiETsyntax (§.3).

» Additional Metadata (hdt:additionalinformation) gather all kind of additional information. Lines
44-46 provide a basic signature.

7.2. PracticalHDT Deployment for Publication and Exchange 91

7.2.2 Plain Dictionary Encoding

We propose #lain Dictionary by default, denoted in the Header with thdt:dictionaryPlain
type, an RDFS subproperty oidt:dictionary . Plain dictionary is aimed at publishing and ex-
change, but it should contribute to an efficient parsing post-progesSimat is, we must acknowledge
that this plain dictionary is only a serialization which has to be loaded into sometataure in order
to allow the minimurmocate andextract operations at consumption time (deietionary uses and
operations for Consumption 87.1.2.

Similarly to any dictionary implementation, Plain Dictionary takes specific decismribé mapping
between RDF terms an IDs and its codification for serialization:

Mapping Function: We split the dictionary in the four common subsets commonly used by RDF
engines Atre et al, 2010, mapped as follows. Let us suppose an RDF grépwith Si, Pg, Og
different subjects, predicates and objects:

1. Common subject-objectdenoted as the s8¢, are mapped tol, |SO¢|].
Sal)-
Oc¢l].

2. Thenon common subjectS; — SO¢, are mapped t§SO¢| + 1,

3. Thenon common objecté — SO, are mapped t§SO¢| + 1,

4. Predicatesare mapped tfl, | Pg|].

Note that the subject-object ratio (Definitidi®) characterizes the proportion of common subject-
objects in the dictionary. The empirical study of this ratio already denoteti@eable value of common
subject-objects (see48.1). Thus, the dictionary size is reduced versus a disjoint assignmenbef su
jects and objects, because the common elements are encoded once. Imattditget of predicates is
treated independently because of their low number and the infrequetdmyiag with other sets. This
configuration minimizes the range of predicate IDs, hence it contributesnipaciness in the triples
substitution (smaller IDs are equivalent to less bits per ID).

An example of these four sets is shown in Figré, built upon the graph in Figurd.L One
could argue that a potential ambiguity could be present when extractindthéles. Note that an
ID, such as2 in the figure belong to different setSubjects Objectsand Predicates However, the
disambiguation is trivial as long as we know that the ID in a triple is acting asjacul predicate or
an object Ferrandez et aJ. 2013. Let us suppose that we are parsing and ID-triple sucf2as 3).
The first ID-term is a subject, then it could be mapped whether irfCibramon Subjects-Objeot the
Subjectgartition. As the maximum ID i€Common Subjects-Objeist 1, it is obvious thaR belongs to
the Subjectgartition. An extract operation will returathttp://example.org/Javier. Next, the predicate
in the triple is numbered & As it is a predicate, it is unambiguously mapped inBnedicatepartition,
and then thextract operation retrievefoaf:mbox Finally, the process runs similar for the objé&ct
retrieving “jfergar@example.org”.

Terms encoding: We assume an alphabetic order inside each set, and a sequential numegilcgnap
The physical serialized data comprises a list of plain strings (typicaliyfB) in order from (1) to (4).
This is shown in Figur&.7. We make use of a reserved character to delimit strings and sections. In
particular, we reserve thgd' ASCII character. A double0\0' denotes the end of dictionary section.
Finally, it is worth mentioning that one could modify these by-default paraméseich as the delim-
iting character), but it must be described by specific control informatiothie dictionary (described in
theHDTsyntax7.3). These decisions can also be described irHbB&Header for discovering purposes.
For instance, the example in Figures describes the use of “utf8” encoding in terms (I3@), the al-
phabetic order in each partition (lir3®) and the delimiting character (lir87). In addition, we declare

92 7. HDT: A Binary Serialization for RDF

Dictionary
1 (<http://example4org/VaIladolid>\ (o)

2 <http://example.org/Javier>
3 <http://example.org/Pablo> S
4 <http://example.org/Santiago>

2 <http://example.org/Researcher>

3 “ifergar@example.org” o
4 “ifergar@infor.uva.es”

5

“Valladolid” @es

“Valladolid” @es

<http://example.org/Researcher>

foaf:name

<http://example.org/Valladolid>

“jfergar@infor.uva.es”
ex:areaOfWork ex:areaOfWork

<http://example.org/Santiago> <http://example.org/Pablo>

Figure 7.6: An example of the different sections inDTplain dictionary.

ex:birthPlace

<http://example.org/Javier>

foaf:mbox

1 ex:areaOfWork

2 ex:birthPlace

3 foaf:mbox P
4 foaf:name

5 rdf:type

“jfergar@example.org”

<http://example.org/Valladolid \0\O <http://example.org/Javier \O <http://example.org/Pabte \O <http://example.org/Santiagg
\O\O <http://example.org/Researctrer\0 ‘‘jfergar@example.ory \0 ‘‘jfergar@infor.uva.¢ \O ‘‘Valladolid” @es \0\0
ex:areaOfWork \0 ex:birthPlace\0 foaf:mbox \0 foaf:name \0 rdf:type \0\0

Figure 7.7: Serialized data of &DTplain dictionary (from Figuré&'.6).

a “ex” prefix (lines34-35). Last, note that, in order to improve the final size for exchanging, all the
dictionary stream is compressed with gzip (IB).

7.2.3 Triples Encodings

We propose two simple encodings for the Triples componBtdin Triplesand Compact Triples In-
tuitively, both are aimed at compact serialization for exchange, thus itldHhi@upost-processed for
consumption. Figur&.8illustratesPlain andCompact Triple®ver the example in Figurg.6.

* Plain Triples encoding (hdt:triplesPlain) is the most basic approach. Plain Triples (PT) only ex-
ploits dictionary to perform the ID substitution of triples. Thus, the physieaaszation contains
three IDs per triple (shown in Figui@8(A)). In order to provide a certain order, the triples stream
is sequentially sorted by subject, predicate and object IDs respecitivisiyorth noting that one
would make use of a number of fixed bits per I®d. 32 or 64) or each ID can be encoded with
log n bits, beingn the number of total subjects, predicates or objects.

These decisions must be specified in the specific control information faripies (described in
theHDTsyntax7.3), and can also be described in tHBTHeader for discovering purposes.

e Compact Triples encoding (hdttriplescompact) reduces verbosity by creating adjacency lists
in a similar way than N-Triples and Turtle do. As stated in Sec@dhl, these syntaxes avoid
repetitions, i) using a semicolon “;” to separate different predicates ofahmee subject, and ii)
using a comma “,” to separate different objects of the same pair of sulnie@giradicate. We take
the same underlying concept of adjacency list, though we overcome thitakieg advantage of

the implicit order of the IDs. Let us consider the set of triples:

{(s1,p1,011), -, (51,D1,01n,), (S1,P2,021), - - (51,2, 02ns), - - - (51, Dk, Okny) }

can be written then as the adjacency list (organized by subject):

51— [(p1, (011, ,01ny), (P2, (021, ,0205)), - - (DK, (Okny,))]-

7.2. PracticalHDT Deployment for Publication and Exchange 93

D ictionary
D
1 (<hnp://examp\e.org/Va||ado|id>\
so

2 <http://example.org/Javier>
3 <http://example.org/Pablo>
4 | <nttp://example.org/Santiago> |S
2 | <nttp://example.org/Researcher>
3 “jfergar@example.org”
4 “ifergar@infor.uva.es” o
5 “Valladolid” @es
1 ex:areaOfWork
2 ex:birthPlace
3 foaf:mbox
4 | foaf:name P
5 \rdf:type / 145 subjectl subject2 subject3 subject4
233 Predicates: 40 0101
<
(2) ID-based 234 Y
Replacement 252 S T 033050401
P 311 Objects: | 5010340201010 |
(1) Dictionar 411
Building
Plain Triples COmpact Triples
(A) (B)
<http://example.org/Javier> rdf:type <http://example.org/Researcher
<http://example.org/Javier> foaf:mbox “ifergar@example.org” .
<http://example.org/Javier> foaf:mbox “ifergar@infor.uva.es” .
<http://example.org/Javier> ex:birthPlace <http://example.org/Valladolid>
<http://example.org/Santiago> ex:areaOfWork <http://example.org/Valladolid>
<http://example.org/Pablo> ex:areaOfWork <http://example.org/Valladolid>
<http://example.org/Valladolid> foaf:name “Valladolid” @es .

Figure 7.8: Practical approaches féDTtriple serialization.

Assuming a set of subjects; = {s1,s9, -+, sy}, the graph can be represented as all the adja-
cency lists of subjects:

S1 — [(plv (0117 te 701n1)7 (an (0215 t 702712))7 t (pk’v (Ok"k,))]'
52 -],

sv =[],

Compact Triples (CT) encodes these lists (a list of lists) compactly. Firsttimatefollowing the
same sequential order as Plain Triples, subjectsiDss,, - - - , sy are a correlative sequence. Thus,
an immediate saving can be achieved by omitting the subject representatioa fimatlencoding,
the first list corresponds to the first subject, the second list to the secidnject, and so on. Next,
the representation is slightly modified. We split the list of lists into two coordinatedrss of
Predicates andObjects , as shown in Figur&.8(B).

— The Predicate stream lists the predicates associated with subjects, maintaining the
implicit grouping order. The end of a list of predicates is marked with thervedezero
ID3. In other words, predicate lists are separated by 0s, thereforetithest belongs ta-th
subject.

— TheObject stream lists the objects for each paisubject, predicate)In this case, the
zero ID marks a change @lubject, predicatepair, moving forward in the first stream pro-
cessing. Thatis, thgth list belongs to thg-th (subject, predicatepair in the former stream.

This underlying representation entails several remarks:

— All predicates related to a subject are sorted in increasing way. For aestarFigure?.8, the
predicates for the second subject are sorte@&&5 }. Thisis very similar to a well-known

Note that the dictionary assigns IDs fram

94 7. HDT: A Binary Serialization for RDF

problem: posting list encoding for information retrieval purpof8=sza-Yates & Ribeiro-Neto
2011 Witten, Moffat, & Bell, 1999.

— Objects are ordered for each pésubject, predicate)in our example, the objeét is listed
first (because it is related to the p&ir,4)), thenl (related to(2,2)), next the objects
3,4 (by considering that both are related to the ¢ajB)), and so on.

— A Depth First Search (DFS) traversal of the forest retrieves all trigdeted by ID. That is, it
obtains the Plain Triple list.

Similarly to PT, Compact Triples would make use of a number of fixed bits peB#Do(64 in
practice) or each ID can be encoded according to the logarithm of thesponding number of
elements. CT includes two streams by default, hence different codificatéonbe used in each
stream. Again, this must be specified in the specific control information fdrifiles (&.3), and

can also be described in th#DTHeader for discovering purposes. For instance, the example in
Figure7.5describes the use édg bits in the predicate stream (lind®-41) but a fixed number

of 32 bits in the object stream (line&2-43).

Finally, it is very significant to note that some of the metrics proposed in Chédpperfectly
characterize both streams in CT. In short:

— The labeled out-degree of a given subject is the number of differedigates related to this
subject. Thus, for every subjecte S¢, the length of its list in thé’redicate stream
is exactly its labeled out-degreé;g L~ (s).

— In general, one could characterize the expected mean and maximum letigghisfs in the
Predicate stream , given bydegL—(G) anddegL~ (G) respectively.

— Symmetrically, the partial out-degregsg~ (s, p), denotes the size of the corresponding list
in theObject stream for every valid pairs € S, p € Pq.

— In general, mean and maxim values of the lists in @igect stream are given by
deg—~(G) anddeg™~ (G) respectively.

7.3 RDF/HDT Syntax Specification

We have stated th&tDTis flexible and provides multiple configurations for each of its three compenen
hence we provided a practical deployment for publication and exchdndbis section we summarize
the RDF/HDT syntax specification to standardize the encoding of these multiple variatiamsheF
details can be found in our W3C Member Submissibar(andez et a). 2011). Note that the W3C
specifications were published in 2011. Thus, the following details of theagsyntroduce some novel
improvements which make the format slightly differ from the original apprdgehrandez et aJ. 20117).

7.3.1 The Structure of anHDTFile

Despite multiple configurations]DTprocessors have to know how to man&jeTfiles. In other words,
clear instructions on the structure @D Tfiles allow to implement ailDTencoder/decoder in any lan-
guage/platform. ArHDTfile consists of the following items:

* One mandatory initiaControl Information preamble.
» TheHDTHeader.
« Zero or moreHDTDictionary, each one preceded byantrol Information

» Zero or moreHDTTriples, each one preceded byantrol Information

7.3.RDF/HDT Syntax Specification 95

| Cookie [Type | Codification [[Options] |

Table 7.1:HDTControl Information.
| Component Bits| Stands for |
00 | Global

01 | Dictionary Component]

10 | Triples Component
11 | Reserved

Table 7.2: Valid types in thelDTControl Information.

Thus, anHDT file must be headed by @ontrol Information preamble which establishes
some general properties (described in the next section). It is worth megithat everyControl
Information is perfectly delimited as it starts with a “6HDT” keyword and ends with “SEND3th
are reserved keywords). Thus, thl®THeader component, which provides metadata about the RDF
dataset, is located right after the fiGdntrol Information preamble. ThélDTHeader is encoded
in Turtle by default. Note that a void content could be provided (but reimemended).

Both the Dictionary and Triples components are optional. This feature mayenmdmmonly used,
but it allows to exchange only header information, which could be usefulicovering datasets. As
stated, thedDTcore data can be distributed in several chunks and under differanafe. The metadata
of the header could help retrieve the appropriiEl core data.

Dictionary and Triples components are also preceded Gprrol Information which can
provide additional properties for each concrete implementation.
In the next sections we present tBentrol Information structure, and commonalities for

every Dictionary and Triples implementations.

7.3.2 The Control Information

A Control Information (Cl) is a preamble describing configuration options. It is used at the
beginning of theHDTfile as well as the Dictionary and Triples components. It has the followingtsirel
(showed in Tabl&.1):

Cookie. The Cl starts with allDTCookie, a magic keyword '$HDT’, as four ASCII characters. These
four bytes are particular talDTand specific enough to distinguistDTfiles and streams from a broad
range of data types.

Type. The second part of the Cl consists of two bits identifying the componenbmiponents that
follow the Cl,i.e. the component described by the CI. The valid values are provided in Tabla “00”
value stands for the initial global preamble, whereas “01” and “10” irtditiaat the Cl is describing a
Dictionary or a Triples component respectively. We reserve the “1llieva

Codification. The third part of the CI identifies the codification being used in the following o
nent (Dictionary or Triples). If the CI is the initial preamble of the file, thisiat indicates théiDT
syntax version. The codification is given as a null-terminated string conggmidRI of the concrete
implementation. This way i) we leverage the same URI infrastructure and ii) reffezible for future
codifications. Tabl&.3shows the default URIs for the aforementioned practical deployments. tNat
for the global descriptiomdt:HDTv0.9 stands for this current version of tRDF/HDTsyntax. Thus,
future version could be added by defining the appropriate URI.

96 7. HDT: A Binary Serialization for RDF

| HDTPractical Componenf Reference URI |

currentRDF/HDTsyntax | hdt:HDTv0.9

Plain Dictionary hdt:dictionaryPlain
Plain Triples hdt:triplesPlain
Compact Triples hdt:triplesCompact]

Table 7.3: Reference URIs of tiéDTpractical components.

Options. The last part of the CI provides a mechanism to specify additional piepef the global
HDTfile or the concrete Dictionary or Triples component. Properties are ASfigs with the scheme:

<property >= <valug >; <property >= <valug>; - -- <propertyy>= <valuey>;\ 0

noting that the list of properties is finished by a NULL character and, aisiyoneither properties nor
values can include “=" nor “;” symbols.

These auxiliary properties are used to provide the necessary informatimocess the data. We
reserve one propertiprmat , as a standard property to identify the MIME type of the Header (in case
of a global ClI), Dictionary or Triples component. This is the propertyjristance, in which we set up
the concrete RDF syntax used in the Header.

Finally, a reserved word “6END” must be added at the end of the CI to detsréngth.

7.3.3 Plain Dictionary Encoding

Plain Dictionary encoding follows the description of Sectib8.2 As stated, the serialization consists
of a plain bulk of the strings in each dictionary section, with a reservedapdetween them. This
was shown in Figuré&.7. We provide additional remarks to complete a standard serialization.

Strings encoding. Plain Dictionary follows the N3 syntax for the RDF terms,, to distinguish be-
tween URIs, literals and blank noddsefrandez et aJ. 2013:

* URIs are delimited by angle brackets™and “>".

* URIs can be absolute or relative to the base URI (defined as a propéiy CI of the Dictionary
component).

» URIs can make use of prefixes (defined as a property in the ClI of thebacy component) or
predefined prefixes (described below).

 Blank nodes are named with thenamespace prefie.g._:b83 represents a blank node.

* Literals are written using double-quotesd. “literal”). The “literal

they may contain linebreaks.

string form is used when

« Literals representing numbers or booleans can be written directly pomding to the right XML
Schema Datatype: xsd:integer, xsd:double, xsd:decimal or xsd:boolean.

e Comments are not allowed in any form.

Table 7.4 shows the predefined prefixes whereas Taliedescribes the string escaping sequences
which follows N3.

7.3.RDF/HDT Syntax Specification 97

| | Stands for

a <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
= <http://www.w3.0rg/2002/07/owl#sameAs>

= <http://www.w3.0rg/2000/10/swap/log#implies>
<= | <http://www.w3.0rg/2000/10/swap/log#implies>,
but in the inverse direction

Table 7.4: Dictionary predefined prefixes.

] | Stands for
\newline Ignored
\\ Backslash)
\' Single quote ()
\" Double quote (7)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uhhhh character in BMP with Unicode value U+hhhh
\UOOhhhhhh | character in plain 1-16 with Unicode value U+hhhhhh

Table 7.5: Dictionary string escaping sequences.

| Property | Use
dictionaryEncoding Set up the dictionary encoding. By default, utf8.
dictionarySeparator Define the reserved separator character. As stated, the defaulis/&l@&.
dictionaryOrder Describe the order inside each defined subset in the dictionary.
PrefixBaseURI Set up the base prefix to be used in the dictionary when parsing relatikee UR

PrefixLabell, PrefixLabel2, etc. | Set up prefixes labels to be used in the dictionary.
PrefixURL1, PrefixURL2, etc. Set up the corresponding URIs to the predefined prefix labels.
Sequence Identify the order in the sequence of all the dictionary chunks in casglitifrey.

Table 7.6: Plain Dictionary properties in the Control Information.

Properties in Control Information. As stated above, both Base URI and user-defined prefixes can
be established. These and other decisions of encoding are provide@raitlrties in the ClI of the
dictionary section. Tabl&.6 shows the possible parameters for a Plain Dictionary. For instance, if
present, thelictionaryOrderproperty establishes the order of the mapping within each of the four Plain
Dictionary sections. By default the order is “alphabetic”, but other pisckvalues are “none” and
“frequency”. In the latter case, terms are ordered by number of caroess within the triples.

7.3.4 Triples Encodings

In Section7.2.3we proposed two practical encodings for the Triples componBidin Triples and
Compact TriplesThe concrete encoding of &tDTdataset is established in thedification value
of the Control Information. The reference URI of each proposahismgin Table7.3.

Properties in Control Information. Obviously, the properties depends on the concrete triples ap-
proach. Nevertheless, both encodings share a set of common pasamigier can be defined its corre-
sponding Cl. These parameters are summarized in Taile

Plain Triples. It follows the same simple notions provided in SectibB.3 The final physical serial-
ization contains a continuous streams of IDs, with three IDs per triple. liti@cldo the properties in
Table7.7, it must provide the number of bits per element in the CI:

 IDCodificationBits: establishes the number of bits per ID. One could expect a number
(the default value is 32 bits) or the URbOt:logBits denoting that each ID is encoded with

98 7. HDT: A Binary Serialization for RDF

| Property | Use |
Triples Indicate the total number of triples.
Order Set up the triples ordering: SPO (default), SOP, PSO, POS, OPS, GfoRar
Subjects, Predicates and Objegts$rovide the number of different elements respectively.
Sequence Identify the order in the sequence of all the triples chunks in case of splitting

Table 7.7: Common triple properties in the Control Information.

log(n) bits, beingn the number of total subjects, predicates or objects. These numbers nrust the
be provided in the CI (as shown in Tabler).

Compact Triples. The CT encoding splits the representation into two streams of IDs (Predarades
Objects in case of a SPO order). The streams are encoded one aftéreghdroorder to know the limit
and bits per ID of each stream, both Compact and Bitmap Triples make usditibaal properties in
the CI.

 FirstStreamLength: indicates the number of elements in the first stream.
e SecondStreamlLength: indicates the number of elements in the second stream.
* FirstiIDCodificationBits: provides the number of bits of each ID in the first stream. The

default value is set to 32. The value logBits must be interpreted as follaedt I® is encoded
with log(n) bits, beingn the number of the elements in this stream.

e SecondIDCodificationBits: provides the number of bits of each ID in the second stream,
with the same policy than the previous property.

7.4 Experimental Evaluation

This section evaluates the size and performance of the pratti@@ideployment for publication and
exchange presented in the previous Secti@n

First, we measure the size of tA@TDictionary and Triples to show its compactness.&1). Then,
we evaluate the scalability éfDTbased on the implementation of Plain Dictionary and Compact Triples
(87.4.2. Finally, we perform and evaluate traditional compression on top éfl2hdataset (8.4.3.

This experimentation runs on the datasets described in Chg8ectiord.2 For the evaluation, we
consider a Header in Turtle syntax such as the one in Fig&réNote that the size of the Header (a few
KB at most) is negligible at large scale.

As this section studies the Publication-Exchange workflow, we design-aveel setup in which
two main stakeholders are involved (TalBl& details their characteristics):

e The data publisher is implemented on a powerful computational configuration. It simulates an
efficient data provider within the Web of Data.

» The consumeris designed on a configuration able to play the role of an agent consuming Big
Semantic Data. Thus, we assume a powerful computational configurdtlwoygh slightly more
limited than the data publisher.

Finally, let us remark that we use a g++ 4.7.2 compiler wdh optimization for all the tools, which
are openly provided dittp://rdfhdt.org

7.4. Experimental Evaluation 99
Machine Data publisher Consumer
Num. of CPUs 4 8
CPU Intel Xeon X5675 Intel Core i7 3820
CPU speed 3.07 GHz 3.6 GHz
cache size L1/L.2 1 MB/ 256 KB 64 KB/ 256 KB
RAM size 48 GB 16 GB
I/O cached reads: 7,200 MB/sec 13,100 MB/sec
1/0 buffered disk reads 190 MB/sec 194 MB/sec
RAID disks 8 of 1TB, SAS 7,200 RPM | 1 of 1TB, SATA 7200 RPM
RAID level 10 -
Operating System Ubuntu/Precise 12.04.2 LTS Debian 7.1

Table 7.8: Machines configuration of the experimental framework.

7.4.1 Dictionary and Triples Compact Ability

Table 7.9 shows the compact ratios of each proposed componedDifiwith respect to the original
N-Triples format (one triple per line). For the sake of clarity, we preffemtatasets in ascending order
of triples. Plain Triples (PT) and Compact Triples (CT) are represemsatding to the logarithm of the
corresponding number of elements (s&e283.

First of all, it is remarkable that in all datasets, except for2B880 US Censusommented below,
the size of the Dictionary is significant bigger than the corresponding siz&riples (both in PT and
CT). Whereas the size of the Plain Dictionary is around 12% the size of ihmalrdataset, and up
to 21%, Plain and Compact Triples are all in the range 2.5% - 5.6%. In sorae,cash adamendo
SWDFor DBLP, the dictionary is 6 times bigger than the triples. This first result points to the ofee
improving the representation of both components to boost the final corgressult. These insights
encourage the design of compact but functional Dictionaries and Tilpé¢sve address in Part Il and
IV respectively.

In addition, Table7.9 shows that PT and CT have a comparable ratio. Nevertheless, as vategkpe
Compact Triples outperforms Plain Triples in all datasets. The only exceistiagain the2000 US
Census Note that this dataset includes a particular structure in which almost allcssiojke use of
shared blank nodes to organize the different types of census figuresasures. In this scenario, it is
possible that i) the triple structure exceeds the dictionary size, as theransaraber of different values
and ii) PT outperforms CT, as the adjacency lists are too short and CTimagserhead of the delimiting
character of each list. Nevertheless, this is a corner case and thedimpfession ratio figures remain
very close.

Next, Table7.10 compares the compression ratiolDTwith Plain and Compact Triples against
three well-known universal compressors. We chogsip 4 andlzma ° as two dictionary-based tech-
niques on Lempel-Ziv compression, aozip2 based on the Burrows-Wheeler Transform.

The most effective universal compressors for all datasetbzp®? andlzma which achieve ra-
tios of around4%. Note that theHDT representation is completely “in plain”. That is, these results
are obtained by representing the dictionary and triples components asigirg references in the
dictionary, using dog bits (of the corresponding number of elements) codification in ID-tripled, an
using adjacency lists (in CT). In other words, with these simple decisiong)@ssion ratios are around
16%, only 2 times bigger (on average) than a pure data compression withTgagpdemonstrates the
previously cited ability oHDTto obtain compact representations of RDF.

Nonetheless, we present below an additional compression on tdp®{§7.4.3, which can fit in
very strict exchanging scenarios requiring even a better compressioitréditional compressors.

*http:/Avww.gzip.org
5h'[tp://www.?-zip.org

100 7. HDT: A Binary Serialization for RDF

Original Size . . Triples

Dataset (MB) Plain Dictionary Plain _ Compact

SWDF 16 15.26%| 2.93% 2.65%
2011 Australian Census 52 5.88% | 2.82% 2.63%
Jamendo 144 21.13%| 3.73% 3.51%
AEMET 726 11.20%| 2.56% 2.49%
LinkedMDB 850 11.66%| 4.22% 4.12%
Wordnet 974 9.10% | 3.75% 3.57%
Affymetrix 6,526 11.97%| 4.20% 3.67%
Flickr 6,714 12.05%| 4.53% 3.80%
Dbtune 9,566 10.39%| 4.19% 4.02%
DBLP 9,799 16.82%| 3.80% 3.32%
2000 US Census 21,796 2.63% | 4.81% 4.87%
Linked Geo Data 39,423 21.49%| 5.58% 5.47%
Dbpedia 3-8 63,053 12.78%| 5.55% 3.77%
ke 102,662 8.40% | 3.47% 3.31%

Table 7.9: Compression ratio of the Dictionary and Triples components witkeceto the original size
of each dataset.

Dictionary Entries versus Triples
1le+09 T
Yy=X
y=25.75 X10.77 -+

1e+08 | T

1le+07

SWIRY

#Dictionary entries

1e+06 | +

100000

0000 L L L
100000 1e+06 1e+07 1e+08 1e+09
#Triples of the Dataset

Figure 7.9:HDTdictionary growth with respect to the number of triples in the dataset. Bothares
drawn in logarithmic scale.

7.4.2 Scalability Evaluation

We evaluate thédDT scalability in three correlated aspects: dictionary si#BT compact ability and
performance (at publisher and consumer). First, we studyittt@nary growth with respect to the
number of triples. Note that the dictionary is seen as the lakgpIicomponent, as shown in Table9.
Figure7.9represents (in logarithmic scale) the number of entries of the dictionanys/érs number
of triples of the dataset. Each point corresponds to one of the 14 diffex@luation datasets. We
consider a Plain Dictionary {82.2, hence the “number of entries” is the sum of all the elements in each
subdivision:common subject-objectson common subjegtson common objecandpredicates
Note that Figurer.9 also represents the= x function and the adjusted function fitting the distribu-
tion, y = 25.752%77. As can be seen, the number of unique dictionary entries has a subliogahg

7.4. Experimental Evaluation 101

Dataset Triples Size HDT Universal Compressors
(millions) (MB) PT CT gzip bzip2 Izma
SWDF 0.1 16 | 18.21% 17.92% 9.68% 6.63% 7.039
2011 Australian Census 0.4 52| 8.70% 851% 2.80% 1.33% 1.859
Jamendo 1.0 144 | 24.87% 24.64% 5.83% 4.16% 4.009
AEMET 35 726 | 13.77% 13.69% 2.57% 1.20% 1.379
LinkedMDB 6.1 850 | 15.89% 15.79% 4.75% 2.79% 3.239
Wordnet 6.3 974 | 12.85% 12.66%9 4.97% 3.22% 4.329
Affymetrix 44.2 6,526 16.17% 15.64% 5.42% 3.43% 3.919
Flickr 49.1 6,714| 16.58% 15.84% 9.03% 7.40% 6.289
Dbtune 58.9 9,566 | 14.57% 14.41% 11.24% 7.65% 5.98%
DBLP 60.1 9,799| 20.62% 20.14% 5.42% 3.49% 4.599
2000 US Census 149.2| 21,796| 7.45% 7.50%| 4.62% 2.27% 2.839%
Linked Geo Data 274.7| 39,423| 27.07% 26.96% 5.90% 4.13% 4.399
Dbpedia 3-8 431.4| 63,053| 18.32% 16.559%9 8.01% 5.90% 6.179
Ike 514.8| 102,662| 11.86% 11.71% 3.22% 1.08% 1.509

Table 7.10: Compression ratio BIDTwith Plain and Compact Triples and universal compressors.

w.r.t. the number of triples. This result points that we can assure that the ajgpecpeatment itHDT
can maintain the sublinear tendency in size, guaranteeing the scalability epttesentation.

Next, we study théiDT compact ability with incremental sizes To do so, we test the compression
ratios of the Ike dataset (see description in Seci@), incrementally split in steps of 50 million triples
up to the total size of the dataset (515 M.). We choose this particular datsaise it includes similar
meteorological measures in different days. This way, we assure thmatieatal sizes actually share the
same data modeling and identical properties. This gives the opportunityryoocdia precise evaluation
of the evolution of the size iRIDT.

The evaluation is shown in Figuie1Q The top table studies théDTevolution of effectiveness. As
can be seen, the compression ratios for Plain and Compact Triples areiwithirthe previous results.
This ensure$iDT effectiveness by considering that the effectiveness is achieveddiegs the size of
the dataset. Moreover, we can observe that the ratios decrease asniber of triples increases, going
between15% for 50 M. triples to around 2% for the 515 M. dataset. This can be seen as a natural
reflection of the sublinear tendency of the dictionary growth. In othemsjofor increasingly large
datasets, the proportion of new entries tends to decrease (the dictiomarnptes to the totaHDTsize
in less proportion), and thus more compression ratios can be achievedwdhightmost columns of
the top table show the memory usage for the creatidd@T (PT and CT figures are comparable). We
provide the memory peak usage in GB and the ratio over the original sizewtirte noting that the
creation process always employs less than 40% of the original sizeo fodltsvs a decreasing tendency
in accordance to the number of triples. For the complete dataset, only 1/3 ofigiveal size is used,
resulting in a highly scalable process.

The bottom graph on Figuré.10 shows theHDT creation times in the publisher machine In
this scenario, thereationtime stands for the time required to transform an RDF dataset (from plain
N-Triples) intoHDT. This process is only performed once at publishing and shows a lineatlgrNote
that both Plain and Compact Triples configurations provide comparable thioegtheless, CT remains
below PT times: as less information is managed in CT, it requires less trattstisk for the final dump
of the representation.

Finally, we study theéHDT performance at the consumer This evaluation is done on incremental
sizes of the2000 US Censusee description in Sectigh?2), in steps of 15 million triples up to the total
size of the dataset (150 M.). We choose this particular dataset becgusgittes similar features as

102 7. HDT: A Binary Serialization for RDF

Triples Size HDT Memory Peak Usage (creation)
(millions) | (GB) PT CT Size (GB) % meml/origina
50 9| 15,68% 15,37% 3,6 38,17%
100 19| 15,91% 15,54% 6,9 36,18%
150 28 | 15,88% 15,45% 10 35,13%
200 38 | 15,33% 15,22% 13 34,02%
250 48 | 14,46% 14,35% 15 31,28%
300 58 | 13,88% 13,82% 19 32,71%
350 68 | 13,52% 13,52% 23 33,73%
400 78 | 13,16% 13,17% 25 32,02%
450 88 | 12,89% 12,89% 27 30,78%
500 97 | 12,11% 12,00% 30 30,80%
515 100 | 11,86% 11,71% 32 31,92%
Creation time versus Triples
ISR
pamer AR
1000 *% :
PES
é’ 100 — E
10 A E

50 100 150 200 250 300 350 400 450 500
#Triples of the Dataset

Figure 7.10: Performance 6fDT(Plain andCompact) with incremental size frorntke. The top table
shows effectiveness, whereas the bottom figure draws creation times.

the previous meteorological case (the structure remains similar for inogeasmber of triples) and it
perfectly fits in a typical client such as the proposed in our evaluation frenke(87.4).

Figure 7.11 shows the results of this evaluation. The top table representslEfiePlain Triples
effectiveness in space, the memory used for creation at publishefprlodding at consumption. It is
important mentioning that, in this caségading’ means to retrieve the dictionary and triples components
of theHDTrepresentation and to load them in memory structures, being functionadimrdonsumption.

In this test, we load each of the four sets in Plain Dictionary into a Hash steuitence we compute
its overhead in size), and the Plain Triples in a sorted array. We obviate@parison for the sake of
clarity as it provided very close results.

As can be seen, both tH¢DTPT size and the memory peak usage at publisher follow a similar
tendency to that observed fike: the compression and memory usage ratio decrease as the number of
triples increases. In addition, we can observe an identical tendency uis¢haf memory at loading. For
the full dataset, the memory usage in the consumer is slightly above 20% ofigheabN-Triples size.
Note that this size computes all the aforementioned structures in memoryeeépriRDFretrieval.

In turn, the bottom graph on Figuiel1lshows the creation and loading times KIDT, in the pub-
lisher and consumer machines respectively. As in the previous cdgke, ahe creationtime follows

7.4. Experimental Evaluation 103

Triples Size UDT PT Memory Peak Usage (creation) Memory Peak Usage (load
(millions) | (GB) Size (GB) % meml/original Size (GB) % mem/origina
15 2 9.77% 0.87 36.39% 0.86 35.97%
30 5 8.15% 1.4 30.10% 1.3 27.95%
45 7 7.80% 1.9 28.07% 1.8 26.60%
60 9 7.29% 2.5 27.27% 2.1 22.91%
75 11 7.25% 3.1 27.40% 2.6 22.98%
90 13 7.34% 3.7 27.71% 3.2 23.97%
105 15 7.26% 4.1 26.52% 3.5 22.64%
120 17 7.45% 4.6 26.31% 4 22.88%
135 19 7.43% 5.1 26.17% 4.3 22.06%
150 21 7.39% 55 25.63% 4.7 21.90%

Creation/Load time versus Triples

10000 T T T
Creation Time PT ~ +
Load Time PT X
y=6.75x"1.02 -
y=0.12x"1.16

o T

wof AT B

Time (s)
X
X
X
X

10 f X g

ot 1‘5 3‘0 ;5 éo ;5 s;o 155 1‘20 155 1‘50
#Triples of the Dataset

Figure 7.11: Performance &fDT(Plain) with incremental size from th2000 US Censudlhe top ta-

ble shows effectiveness, whereas the bottom figure draws creatiblisfger) and load times (consumer).

a linear growth, which is also replicated for tlimding time: as can be seen, the loading time is only
a very small fraction£ 3%) of the creation one. Note again that the creation phase is made once at
consumption, whereas loading is made in every potential consumer.

7.4.3 Additional HDTCompression

HDTachieves a significant reduction of the RDF dataset size by means of thdDRidonary and the
Plain or Compact Triples configurations. This provides a clean publicatioense together with efficient
compression ratios. However, we have stated that traditional compreagioerforms the size of this
representation. Obviously, this reduction is at the cost of decompreasimmmsumption time (which
can be very significant for techniques suctbap2 andlzma). Moreover, data after decompression
remain in the same plain RDF format (such as N-Triples).

Thus, we state th&iDTcan be even more compressible with little effort, fitting very strict exchanging
scenarios. We tesiDT compressibility with a particular deployment calleddT CT-Compressed .
This deployment simply applies a gzip compression orHbd dataset in Compact Triples.

Table 7.11 shows the results diDT CT-Compressed with respect to the traditional gzip and
bzip2 compression (over the original N-Triples). As can be se@®1, CT-Compressed achieves the

104

7. HDT: A Binary Serialization for RDF

Dataset Size HDT Universal Compressor|
(MB) CT CT-Compressed gzip bzip2
SWDF 16 | 17.92% 5.67% 9.68% 6.63%
2011 Australian Censu 52| 8.51% 0.80%| 2.80% 1.33%
Jamendo 144 | 24.64% 4.15% 5.83% 4.16%
AEMET 726 | 13.69% 1.03% 2.57% 1.20%
LinkedMDB 850 | 15.79% 2.35% 4.75% 2.79%
Wordnet 974 | 12.66% 2.27% 4.97% 3.22%
Affymetrix 6,526 | 15.64% 2.44% 5.42% 3.43%
Flickr 6,714 | 15.84% 3.57% 9.03% 7.40%
Dbtune 9,566 | 14.41% 2.58% 11.24% 7.65%
DBLP 9,799 | 20.14% 3.52% 5.42% 3.49%
2000 US Census 21,796 7.50% 1.30%| 4.62% 2.27%
Linked Geo Data 39,423| 26.96% 3.70% 5.90% 4.13%
Dbpedia 3-8 63,053 | 16.55% 4.64% 8.01% 5.90%
ke 102,662| 11.71% 0.78% 3.22% 1.08%

Table 7.11: Compression results of a gzipp&tDT Compact Tiples representatiorHDT

CT-Compress).

most effective results with ratios between- 4% for all the considered datasets (except for a slight
difference inDBLP). This implies reductions betwe8&n- 4 times with respect t®lain HDT and, con-
sequently, proportional improvements on exchanging processesn|iHiDiT-Compress outperforms
results a mean af5%.

universal compressors, improving the blezip2

These results show thetDTand its subsequent compression arises as the most efficient choice for
exchanging RDF within the Web of Data. In the next parts we focus on malkengxchanged datasets

gueryable for consumption.

- Why, you wouldn’t follow that beast
alone? - Someone’s got to stay on his
trail while it's hot!

King Kong (1933)

Discussion

In this part of the thesis we have addressed the scalable publication @mehge of Big Semantic Data.
This chapter ends this part with a brief summary illustrating our main contribut@n® and a compact
overview of the next steps 882), retaken in the following parts of this thesis.

8.1 Contributions

We started this part of the thesis, in Chagewith an introduction to the scalability drawbacks arising
in Big Semantic Data. We developed a simple classification on the main differkahstders acting in
the current Web of Data. Although this categorization may be extended &v athcorner cases, it is a
first step in the identification of the roles, natures, and different scalapiiitylems of the stakeholders.

We then presented and characterized a common Publication-Exchangaer@aion workflow tak-
ing part in almost every application in the Web of Data. After reviewing the sfates art, we stated that
these processes (and their stakeholders) are compromised at ldegeygalain, non-functional, human-
readable formats while managing Big Semantic Data. In short, we arguedelarenvery verbose and
space-inefficient, they obviate metadata and other facilities to upgrade gtidsliand enable discovery
for consumption, and more importantly, they do not provide any means af diceess to the data.

These problems motivated the need of an efficient machine-processabladpresentation, ad-
dressed in Chaptét. In this Chapter, we proposddDT, a binary serialization format for RDF publi-
cation and exchange at large scale, and the basis for direct consulfgativassed in the following parts
of this thesis).

We first described the conceptyriilosophyof theHDTcomponents (Header, Dictionary and Triples).
We provided the definition of each flexible component, detailing their diftesparations and intended
use. Then, we instantiate a concrete practical deploymddbdiwith aPlain Dictionaryencoding and
two simple encodings for the Triple®lain Triplesand Compact Triples In turn, we developed the
RDF/HDT syntax specification as a well-defined but flexible containétDdT-based datasets.

Finally, we performed a deep evaluation which analy28§ features on real-world datasets. Main
conclusions can be summarized as follows:

» The size of the dictionaryl@ — 21%) is significant bigger than the corresponding size for Triples
(2.5 — 5.6%). This pushes the need of addressing both components (addressatllihdhd 1V)
to enrich the final representation.

» The mereHDTdecomposition leads to large space savings: This simple decision takes &68and
of the original representation (N-Triples) and only 2 times more space thaip @ompression.

« HDT CT-Compressed, a particular deployment which applies a gzip compression o ie
dataset in Compact Triples, outperforms traditional compression (inclgdipy. It improves the
bzip2 results a mean af5%.

106 8. Discussion

» Our study of scalability shows that the number of unique dictionary entagssublinear growth
w.r.t. the number of triples. We also report that compression ratios remain higlratriental
sizes, guaranteeing the scalability of the representation.

» Both the creations and loading BIDT are highly scalable processes: the creation performance
employs less than 40% of the original size for the considered datasetsifgla decreasing ten-
dencyw.r.t the number of triples. The memory usage for loading in the consumer catirbatesl
in 1/3 of the original size, with a similar decreasing tendency.

» The creation and loading times follow a linear growth, and the loading time is ongyyasmall
fraction (= 3%) of the creation one.

These results demonstrate significant opportunities for RDF compredianing important size
reduction of the huge datasets that are being published in the Web of Baptie providing an efficient
RDF exchange.

8.2 Next Steps

HDTis designed as a binary RDF format to fulfill the requirements of portabilityr{fand to other
formats), clear publication scheme, compact ability, parsing efficieneylifress for post-processing)
and direct access to pieces of data in the dataset.

In the next parts of this thesis, we argue thidTFencoded datasets can be directly consumed. We
will show that lightweight indexes can be created once the different coemis are loaded into the
memory hierarchy at the consumer. Thus, more complex operations cahibeel almost directly on
the exchangetiDTdatasets. This positiori4DTas an integrated solution to manage Big Semantic Data
in a Publication-Exchange-Consumption workflow.

Part Il

Compressed Rich-Functional RDF
Dictionaries

The world is not in your books and maps.
It's out there.

The Hobbit: An Unexpected Journey
(2012)

Introduction

We start a new part of the thesis, specifically focused on RDF dictionaFigis chapter motivates the
need of advanced RDF dictionaries when managing Big Semantic Dau.(8s RDF dictionaries
could be seen as a particular case of string dictionaries, we reviewetifferchniques for compressed
dictionaries of general stringsq8). We also study the specific RDF dictionaries used in the Web of
Data (8.3). Finally, we list our future goals &4) which concern the adaptation of the former techniques
to provide specific and scalable RDF dictionaries.

9.1 Motivation

The previous Chapter presented the notion of RDF dictionary. Rephrasing the definition, an RDF
dictionary is a bijective functionD : string — I D, which maps the strings representing the terms and
the integer values (IDs) which identify them. Then, all triples in the datasgbeaewritten by replacing
the terms with their corresponding ID.

Later in Section/.2.2 we proposed a Plain Dictionary encoding showing high compression.ratios
This approach, though, is a serialization aimed at exchange and it derdditisnal structures to be
functional at consumption. As we statéid has to be loaded into some structure (hash, B-trees) in order
to allow searches (locate, extract, etc.) at consumption time”

In particular, a functional dictionary for consumption must provide two dempntary operations
(detailed in Sectior?.1.2: (i) the string-to-1D operation locate(term) , Which returns the ID of a
given term, and (i) théD-to-string, extract(id) , Which retrieves the term identified by a given ID.

When most query processors perform on the ID-triples representdtearmann & Weikum 2010,
both operations are exhaustively used by SPARQL engines during &émg gsolution process. Let us
consider a SPARQIriple pattern, (x,y,z)in which x, y, or z may be a term in the RDF graph or a
variable. Thus, the engine proceeds as follows:

1. It makes use of the dictionary tocate the IDs associated to the terms provided in the SPARQL
triple patterns.

2. It transforms the given triple pattern of strings into a triple pattern of IDs.

3. It searches the pattern into the ID-triples representation, whereghkimg ID values are bound
to the variables given in the query.

4. It extractsthe terms associated to these bounded IDs and returns the resultingsigisegs.

Note that, for SPARQL queryinggxtract is used many times as results are returned for each
variable in the query, whereas the usdaziate is limited to the number of terms bounded in the query.
In this scenariogxtract is overused in comparison tocate

Most semantic applications implementing SPARQL are well-founded on a similaasoehence a
functional dictionary is highly exploited in consumption processes. In additiee dictionary could be

110 9. Introduction

Technique Operations Scenario Stand out

Hash (Hashing) L,E General Fast locate

PFC (Front-Coding) L,E, pref Repeated prefixes Tradeoff spairee

HTFC (Front-Coding) L,E, pref Repeated prefixes Tradesfbacétime
Re-Pair (Grammar-Comp.) L,E, pref Repeated substrings ~ Tradesffacétime
FM-Index (Self-Indexing) L,E, substr General Broad functional coverage

Table 9.1: Techniques for compressed string dictionatigsstand forlocate andextract respec-
tively; pref andsubstr denotes support for prefix and substring locates.

used to resolve more specific matchings like the requiretilfering. This is an interesting challenge by
considering that an earlyILTER evaluation allows query performance to be improved when the space
of RDF triples to be explored is considerable reducgchfnidt, Hornung, Lausen, & Pinke2008.

However, the use of functional RDF dictionaries for consumption is alsgpecomised in Big Seman-
tic Data. The space required by the dictionaries is even larger than tithfardbe resulting ID-triples
representations (as showed in Sectiof.l). Whereas specific ID-triple indexes have been proposed
for RDF (detailed in SectioB.2.1), specific RDF dictionaries are not fully addressed to the best of our
knowledge. In other words, RDF stores currently make use of clasgpabaches for string dictionaries,
and they do not scal@(isaboa, @novas, Claude, Mdrtez-Prieto, & Navarrp2011).

These classical techniques suffer from scalability issttEshing for instance, holds plain strings
and hence it dissuades applications handling the large vocabulariemedritaBig Semantic Data. The
use ofB-tree(Bayer & McCreight 1970 based solutions is the alternative, considering their optimiza-
tion for large scale disk representations. However, the efficiency ismniged by the 1/0 costs derived
from disk transfers.

In this scenariocompressiorarises as the natural solution for increasing the amount of data which
can be efficiently managed in memory. This fact was already pointed ddbbgn(2011), when claims
that a dictionary of URIs (for a web reasoning application) requireohipitive amount of memory to
be stored and its compression would help increase the in-memory capacity.

Next section revises different approaches for compressed didésrargeneral strings. Then, we
review the state of the art for RDF dictionaries. Finally, we describe thectigs of our compressed
rich-functional RDF dictionary for Big Semantic Data.

9.2 Compressed String Dictionaries

RDF terms consists of elements from the vocabulary of Uniform Resodertifiers URIs), blank
nodes, and literals. As all three can be seen as strings, the complete lkratiaro (referred to as
vocabulary can be mapped as a traditional string dictionary.

String dictionaries (such as hashing or B-trees) are, in fact, the nate@@dent of RDF dictionaries.
Their conception and basic functionality is actually similar. A string dictiorfaityolds an ID-mapping
of all different strings{sy, s, . .., s, } used in a datasetvgcabulary, providing the operation:

* locate(s;) which maps the string; into itsID in D.

Typically, an additional structure must be implemented on top td provide the reverse operation:
* extract(i) which returns the string; identified ag in D.

Compressed string dictionaries(Brisaboa et aJ. 201]) introduce compression and succinct data
structures to lightweight scalability issues of string dictionaries, remainingegftiin performance.

9.2. Compressed String Dictionaries 111

An initial work by Bender, Farach-Colton, and Kuszm#&2006 starts proposing a variant of the B-
tree technique. They develop a cache-oblivious tree in which leavesarpressed with a technique
called Front-Coding\Witten et al, 1999, described in Sectio8.2.2 Later, this approach was improved
by the compressepermuterm(Ferragina & Venturini 2010. The originalpermuterm(Garfield 1979
augmented each term with various rotations of its characters, resolvingygutries with one wild-card
symbol. The compressed version is a space-efficient variant whidhtically, gives efficient support
forlocate andextract inacompressed space.

A more recent work byBrisaboa et al(2011) revisits the problem proposing compressed variants
of well-known string dictionaries, introducing some novel ones. Thep@se practical approaches in
which a dictionary of URIs is also tested, achieving promising results in spateerformance.

Based on this work, we review four techniques potentially subject to betedito RDF dictionaries.
Table9.1shows all techniques and gives, for each one, its supported operatsomore suitable scenario
and its most remarkable feature.

« Compressed Hashin@9.2.1) as representative of classical solutions for string dictionaries.

» Front-Coding(89.2.2, based on the premise that it excels for representing long common grefixe
shared between many strings.

» Grammar-based Compressi@df9.2.3 which exploits the repetitions in the text, finding a small
grammar reproducing the text.

» Self-indexe$89.2.4, an interesting choice to achieve competitive compressed indexes olbene
text collections.

All these techniques are shown by following the description giveBligaboa et al(2011). Thus,
the dictionary encoding regards a teXf;.;, which concatenates all strings of the vocabulary ended by a
reserved$’ symbolt.

9.2.1 Compressed Hashing

TraditionalHashing(Cormen, Leiserson, Rivest, & Steir2001]) is a natural choice fokey-valuestruc-
tures, hence itis intensively used for string dictionaries (string-1DariKis to the hash functiotgcate
can be performed in constant time (in the absence of collisions). Howepersents several drawbacks:

e The hash table itself does not provide thaéract operation (ID-to-string). In such scenario, an
additional structure is needed.

« Hashing needs space to holdaltlifferent strings of the vocabulary, which are stored in plain.

» Due to the well-known collisions of non-perfect hashing, extra stosagee is required for repre-
senting the hash table itsélf[1, m]. Theload factor n/m (n < m) influences the space usage
and the performance time.

Addressing these difficultie®&risaboa et al(2011) consider a technique nametashB(dh) Thedh
suffix denotes that it employdouble hashingi.e., it computes another hash function to solve collisions.
In addition, it achieves compression through two main decisions:

* It removes all empty cells, storing a compact hash table in an ddfgyn]. A bitmap structure
B[1, m] marks with al-bit the nonempty cells off. Thus,B[i| = 1 if H[i] is a non-empty cell
andB[i] = 0 if H[:] is empty.

In practice, the separator character is the ASCII zero code.

112 9. Introduction

* |t compresses the stringg;.; with canonical HuffmanKuffman, 1952 and performs the hash
function over the compressed strings.

Compared to traditional hashing, HashB(dh) excels in space. The fraggh, is an overhead of
time. Note thatocate(s) implies several operations. First, it has to get the Huffman encoding of
and to apply the hash function on it. Let us suppose that it has to retrievaltiein H [i]. As empty cells
have been removed, it is easy to see that it has to retfié\jé, being;j the number of nonempty cells in
H{[1,4]. This operation is efficiently achieved hy= rank;(B,i). To support thisank operation, an
RG-encoded bitmap faB is used (8.4).

HashB(dh) makes another important decision in order to natively res@wextract operations
(without the need of another auxiliary structure). It perforn¥g;a; reordering to store the words in the
same order that they are stored in H. This decision allows for supporfiogeaf extraction: the answer
to extract(i) is simply calculated by decompressing the string pointed ffdfij as it stores the
position in the compresseéfy;.; for the i-th string.

9.2.2 Front-Coding

Front-Coding Witten etal, 1999 is a technique commonly used for compressing lexicographically
sorted dictionaries. Itis based on the premise that consecutive stranltijssdy to share a common prefix
which is obvious in the case of the URIs in RDF datasets. Then, it achiewegressiordifferentially
encoding a string with respect to the previous one. Each string is enesdad components:

1. Aninteger indicating the number of prefix characters shared with tivéopiestring.

2. A string which represents the substring suffix after the prefix.
For instance, consider the strings:

http://www.example.org/about
http://www.example.org/javier
http://www.example.org/resources/pablo
http://www.example.org/resources/santiago

A feasible codification for these strings can be:
(0, http://www.example.org/about) (23, javier) (23,resources/pabl®,) ¢&ntiago)

As can be seen, retrieving the complete strin¢33fsantiagojmplies to move backward, which can
be costly for a long series of shared prefixes. Thus, Front-Codirigigas the sorted dictionary into
buckets ofh strings. Each bucket is encoded independently of others: the firgy &raxplicitly stored,
whereas the othér— 1 ones are differentially encoded as described above.

Operations are performed as follows:

* Thelocate(s) operation has to locate first the bucket containing the string. To do sanit co
pares the first explicit string of each buckety. through a binary search. Then, it starts decoding
the strings in the bucket until it finds (or not) the required string.

» The extract(i) operation, again, has to locate the appropriate bucket. As we assume a se-
quential numbering, the required bucket for t® is |i/b|. Then, it decodes all strings until the
required number of string.

9.2. Compressed String Dictionaries 113

The parametrization df yields to different space/time tradeoffs. A highvalue produces longer
buckets which can take more advantage of shared prefixes, achieghrey kompression ratios. How-
ever, this leads to perform more decoding operations, hence it losemrdfc In contrast, a smalleér
value performs faster (fewer strings to decode inside each bucke8 ebsh of compression.

Note that higher levels of compression can be achieved by compressipgefhelengths and the
suffix strings. First, th@lain Front-Coding (PFQ technique Brisaboa et aJ. 2011 uses VByte encod-
ing (Williams & Zobel, 1999 for the prefix length. In short, VByte is used to represent numbersavhe
many are small. Within each byte, the last bit signals whether the number cantintlee following
byte, or not. Actually, it is not limited to work on bytes and it can be used famaom number of bits
in each chunk, but byte-alignments decodes efficiently as they runyfestise operations.

Finally, theHu-Tucker Front-CodindHTFQ technique compresses both the prefix length and the
suffix strings. It uses a single Hu-Tucké&r{uth, 1973 code to compress all the byte-stream, performing
all operations over this compression. This is the most compressed FrdimgJepresentation, though
it slightly increases querying times because of decompression.

9.2.3 Grammar-based Compression

This kind of compressors infers a grammar which generates the givenTiesy. are particularly suit-
able for texts comprising many repeated substrings because these d¢fattdaety encoded through the
grammar rulesRe-Pair (Larsson & Moffat 2000 is the representative of grammar-based compres-
sors, running in linear timeRe-Pair recursively replaces the most-repeated pair of symbols by a rule
drawn from a context-free grammar. It outputs the compressed text argtdmmar of inferred rules.
Re-Pair allows fast sequential decompression by simple rule expansion.

Brisaboa et al(2011) also proposdre-Pair for representing string dictionaries because it com-
presses effectively all repeated substrings (non-only prefixes lk@rvious techniques). A little re-
striction is used in the algorithm to avoid that rules cross for two differemgstr The compressed
sequence must be enhanced to support direct access to each stang (dguired forlocate and
extract). Itis achieved through a symbol reorganization baseBioectly Addresable Codg®AC)
(Brisaboa, Ladra, & Navar;o2013. The resultant technique also suppgnsfixbased retrieval.

9.2.4 Self-Indexing

A compressed text self-indeklavarro & Makinen 2007) represents a teff[1, N] in a space close to its
compressed counterpart, while providing search functionality. It tattesraage of the compressibility
of the text, commonly applying succinct data concep&4&o provide random access.

As the self-index can reproduce any text substring, it actually replaectext (.e. the text is not
encoded but its index). In particular, a self-index supports, at leaskttact the original text between
two given positions and to return the positions where a given substringscc

Of all self-indexes Nlavarro & Makinen 2007, the FM-Index (FMI) family Navarro & Makinen
2007) achieves the best compression ratios remaining fast in operaBoissijoa et aJ. 2011). The
FM-Index (Ferragina & Manzini 2000 models the text on the so-called Burrows-Wheeler Transform
(BW7 (Burrows & Wheeler 1994. In short, the BWT of a text is a permutation of its symbols which
maximizes its compressibility. For instance, the BWT is the core of the well-kiiag2compressor.

Brisaboa et al(2011) propose an FMI-based compressed string dictionary also performiadexi-
cographicTy;.; ordering. Their study shows that this approach is specially recommeadgelferal texts
where no prior assumptions.@.long prefixes) can be done. Moreover, it provides a powerfultsulgs
searching, with no limitation. In contrast, it can be less competitivéolmate andextract

To complete this brief review, two recent approaches revisit formerremes in trie-guided solu-
tions Ferragina, Grossi, Gupta, Shah, & Vitt&x008 and LZ78 parsing4iv & Lempel, 1978, propos-
ing solutions for string dictionaries$srossi and Ottavian(2012) introduce a new succinct data structure

114 9. Introduction

which transforms the trie representing the string in the dictionary into a nevsliaged structure in
which each node represents a path in the original tree. In Armand Fische(2013 adapt the LZ78
method to perform on string dictionaries. Both adaptations excel in spaceepart promising results
forlocate andextract resolution.

9.3 RDF Dictionaries

RDF dictionaries are massively used within the Web of Data because of its &biléguce the represen-
tation space of the dataset. As previously explained, dictionaries arendlssua for querying: SPARQL
engines make intensive use of dictionary indexes, in conjunction with dia@iuend histogram indexes
for physical optimizatioriGroppe 2011).

Neumann and Weikur(2010 remark this fact and suggest the use of dictionaries because it “com-
presses” the dataset and implies a great simplification for the query pooc&tus, the dictionary-based
replacement is accepted as the first step for RDF indexihgiig, Das, Eadon, & Srinivasa2005. It
is worth mentioning that the solutions implementing the dictionary traditionally depemideounderly-
ing indexing technologies.

Some RDF indexes perform on top of relational databases, such assdirgiding & Mikhailov,
2007 or Jena TDB \Vilkinson, Sayers, Kuno, & Reynolds2003, and therefore they delegate the dic-
tionary resolution to the own database. A common approach is to maintain atdddiable with the
string-to-ID mapping, and to built indexes on its columns to speedoopte andextract
Some solutions, such as Virtuoso, do not use IDs for short liteeaisléss than 12 characters). Instead,
they store these literals inlinee., in the same table storing the triples, thus saving dictionary accesses.

A special case arises for column-oriented databa&kadi et al, 2007). Storing data in these sys-
tems increases the similarity of adjacent recor@slifourgos, Goncalves, Kersten, Nes, & Manegold
2008 which can be effectively compressedibadi, Madden, and Ferreir006 show that the use
of compression schemes significantly improves the query processirmmparfce of column-oriented
databases. Based on this premiBenig, Hildenbrand, and&ber(2009 introduce a novel indexing
approach based on codifying variable-length string values in shanegslgat provides efficient access
to the dictionary while compressing the index data.

Other approaches, like RDF-3XNéumann & Weikum 2010 use aB™-tree forlocate and a
direct mapping index foextract (an array), almost doubling the space used for the dictionary. The
absence of any dictionary solution in triple indexes such as Bitlae(et al, 2010 denotes that its
representation is an open problem. The most recent full-in-memory ind&iples also supports this
fact (Alvarez-Garéa, Brisaboa, Fedndez, & Marinez-Prietp 2011). Besides, it devises the use of
compactrepresentations because of the very large sizes of the dictionariesesbfeom the datasets
currently published.

High-performance computing also addresses the problem of RDF digésnaometimes recalled
asdictionary encoding Urbani et al.(2010 state that fast and scalable compression is crucial for high-
performance applications and propose a MapReduce solution for disttidictionaries. Later, their
results have been improve@godman et a). 2011) using two hash-tablestfing-to-ID / ID-to-string)
and an array with all strings in the dataset. Its compressed dictionarysakdsnes less space in disk
than the original dataset, but this size increases a factor betiveand? to be loaded in memory.

ID-based engines need additional operations over the dictionariesentordupport full SPARQL
resolution. In particular, we highlight theegex filter as an interesting challenge because it needs
support forsubstring queries Virtuoso, for instance, allows to create additional indexes to support
efficient full text search Lee etal.(2010 propose a solution to resolve regular expressions which
outperforms Sesameuerying times at the price of using 5 times its space.

thtp://docs.openIinksw.com/virtuoso/sparqIextension s.html
3ht'[p://www.openrdf.org/

9.4. Our Goal 115

9.4 Our Goal

We have shown that RDF dictionaries is a common practice among those app8gaiforming on Big
Semantic Data. However, the dictionary size is not negligible and the teclsniged for their represen-
tation also suffer from scalability issues. In parallel, we have presengezhtiergent field of compressed
string dictionaries. This decision greatly compacts the dataset and thersligétes scalability issues.

In the following, we propose a novel compressed RDF dictionary techrimaddress current scala-
bility problems arising from Big Semantic Data. We pursue three main objectives:

» Reduce the dictionary sizeapplying techniques of compress string dictionaries (showr®ig) 8
An effective compression provides several advantages in ourrsgcena

1. Thescalabilityis upgraded, as these techniques achieve high compression ratios.

2. The dictionary can fit and full-processed in main memory, thanks to tltensticlata struc-
tures performing on the compressed representation.

3. The query performance of thecate andextract operations can be improved taking
advantage of the memory hierarchy.

» Enhance the dictionary functionality to natively supporSPARQL filtering We envision two
complementary researches: i) reorganizing the dictionary into subdidésreccording to each
role and term vocabulary and ii) leveraging the underlying structures) as FMI, to provide
searching in a compressed space.

Then, the compressed dictionary can be directly incorporated intdlfi@epresentation, improving
space efficiency and directly providing the aforementioned operatiahs@rsumption time.

| can do almost anything that could pos-
sibly be asked of me. | can assist your
employees. | can make your organiza-
tion more efficient. | can carry out direc-
tives that my future counterparts might
find distressing or unethical. | can blend
in with your workforce effortlessly.

Prometheus (2012) O u r Ap p ro ac h Dcomp

This chapter presents our proposal for a compressed RDF dictioaéaged to ad,..,,. On the one
hand, it can be used as a general approach for representingenyihguan RDF vocabulary. On the other
hand,D...,, perfectly fits in theHDTDictionary component, providing native operations performing on
compressed space at consumption.

First, we describe, over a running example, a partitioning of the RDF wtaat(810.1) which can
be exploited for compression. Then, we present the conceptuaiptestof D..,,, (810.2 and the
locate andextract algorithms over the proposed organization8.9. Next, we show SPARQL
filtering on top ofDcymy, (810.4).

Finally, we perform an empirical evaluation with real-world datasets. Wediivaracterize RDF dic-
tionaries, evaluating its compressibility with different techniques. In tixy,,, features (compression,
performance time folocate andextract and filtering resolution) are widely evaluated.

10.1 RDF Vocabulary Partitioning

We base our explanation on the running example shown in Figufe This RDF excerpt consists @b
triples providing basic descriptions of the staff of a university. As caseemMyUniversityis composed
of three members. We make use of a blank node (of tgfiBag) to model this compositionJavier
andSantiagoare researchers wherelablois a student. They are described at different levels of detail,
providing information such as the age, birthplace, category, etc. The fciglladolid is also shortly
described. Note that different languages (English and Spanishyjaadypes (integer, float, date) are
present in literals.

As we argued (8.2.2, RDF enginesAtre et al, 2010 as well as thaedDTPlain Dictionary, make
use of a role-based partitioning for the RDF vocabulary. In other wdrid¥= dictionaries split the
mapping according to the role of the terms in the dataset. For our running kxdfigurel0.2extracts
the vocabulary of al36 different terms according to the aforementioned partitioningoohmon subject-
objects subjectsobjectsandpredicateq87.2.2.

An RDF dictionary technique must be optimized from two correlated perspscti)) the space
used for its representation, and ii) the time required for answering, meiogte and extract
The previous role-based partitioning has several advantages in bettialis. On the one hand, this
partition contributes to ID-triples compression. First, the common subjectislgszmapped only once,
thus reducing the dictionary size versus over a disjoint assignment @#cssitand objects. In turn,
predicates are treated independently. For Big Semantic Data, the numbredafapes is limited, thus
reducing the range of predicates IDs and, consequently, the numbés gfer ID. On the other hand,
this partition allows to employs not a unique dictionary for consumption butdaiionaries, one per
partition. In other words, the most feasible solution to provmmte andextract facilities is to
load each partition into a different dictionary structure. That is, onetstrei©; would hold the common
subject-object mappind)- for the subjectsDs for objects and, finallyD, for predicates. The scalability
issues are slightly mitigated as we have split and isolate four different stegcttior instancdocate

118 10. Our Approach: D omy

<http://example.org/MyUniversity> ex:members : _nodes106 .

_:nodes106 rdf:type rdf:Bag .

_:nodes106 rdf: 1 <http://example.org/Javier>

_:nodes106 rdf: 2 <http://example.org/Santiago>

_:nodes106 rdf: 3 <http://example.org/Pablo>

<http://example.org/Javier> rdf:type <http://example. org/Researcher> .
<http://example.org/Javier> foaf:mbox “jffergar@exampl e.org" .

<http://example.org/Javier> foaf:mbox “ifergar@infor. uva.es" .

<http://example.org/Javier> ex:birthPlace <http://exa mple.org/Valladolid> .
<http://example.org/Javier> ex:age 29" <http://www. w3.0rg/2001/XMLSchema#integer> .
<http://example.org/Javier> ex:category "Estudiante de doctorado. Personal Investigador'@es .
<http://example.org/Javier> ex:category "PhD student. J unior Researcher"@en .
<http://example.org/Javier> ex:birthPlace <http://exa mple.org/Valladolid> .
<http://example.org/Santiago> rdf:type <http://exampl e.org/Researcher> .
<http://example.org/Santiago> ex:birthPlace <http:/le xample.org/Valladolid> .
<http://example.org/Santiago> ex:birthDate “01/01/197 6" <http://www.w3.0rg/2001/XMLSchemat#date> .
<http://example.org/Santiago> ex:category "Associate" @en .

<http://example.org/Santiago> ex:age 37 .

<http://example.org/Pablo> rdf:type <http://example.o rg/Student> .
<http://example.org/Pablo> ex:birthDate "26/01/1987"" “<http://iwww.w3.0rg/2001/XMLSchematdate> .
<http://example.org/Pablo> ex:age 26

<http://example.org/Valladolid> dbpedia:lat "41.84805 7" <http://www.w3.0rg/2001/XMLSchema#float> .
<http://example.org/Valladolid> dbpedia:long "-5.9061 11" <http://www.w3.0rg/2001/XMLSchema#float> .
<http://example.org/Valladolid> foaf:name "Valladolid "

<http://example.org/Valladolid> foaf:name "Pucela” .

Figure 10.1: An RDF example with a diverse vocabulary.

andextract operations over the predicates/in, would perform faster on a smaller and potentially
optimized dictionary. In fact, this dictionary of predicates could be managglim due its limited size.
Despite its benefits, this partition provides undesirable effects, it distegiae direct application of
techniques from compressed string dictionariex 48 As we studied, most of these techniques take
advantage of vocabulary regularities. However, role-partition mixesdah partition, different sets from
U (RDF URI references)B (Blank nodes), and, (RDF literals). For instance, attending to the definition
of a triple (see Definitiorl), an objecto in the Object partitionof the dictionary, would belong to
(U U B U L). In other words, the dictionary @bjectsmixes up three very different kinds of terms.

 URIs. The URI set is characterized by the well-known fact that many elementgs siuan-
mon long prefixes Nlartinez-Prieto, Ferandez, & Gnovas 2012h. Note that two substrings
can be identified within a URI. First, an initial prefix gives the root contekinfain) of the
resource, and a second substring identifies the concrete resourcecantéxt. For instance,
the resourcdlavierin our example is identified with a URI which firstly describes the domain
(http://example.org/) and next identifies the concrete resourgdavier). Both Santiago,
Pablo, Valladolid,etc., in the example, share the same context. It is worth mentioning that, in
Linked Data, there exist two standard policies for naming resources rapenties: slash URIs
and hash URIsSauermann & Cyganiak2008. They both establish a common scheme to be
followed in the assignment of URIs, sharing an initial prefix in any casés Jiggests the use of
techniques, such &~Cor HTFCfor its efficient representation, as they can detect and effectively
compress these repetitions.

e Blank nodes. They name anonymous nodes within the RDF graph and usually serveesd par
nodes to a grouping of data. For our purposes, we consider the naomagrtion of N3, as the
concatenation of: with a specific label. In most cases, the RDF engine renames the Blank nodes
consecutively, establishing an initial keywordd. bnodes8&nodes99bnodes100etc.). In such
scenario, the previous technique could also excel for representink indtales.

« Literals. Although literals are strings which can be tagged with an optional languadgetatype,
no general characteristics can be considered beforehand aboutdhtent. Its features are
strongly related to the knowledge represented in the dataset. For instaijm®t represents
biological sequences, wheredbpedia stores descriptive texts in natural language. General
solutions, like the self-indekMI, seem the better choices in this scenario.

10.2. Dcomp Conceptual Description 119

<http://example.org/Javier>
<http://example.org/Pablo>
Common Subject-Objecty <http://example.org/Santiago>
<http://example.org/Valladolid>
_:nodes106

Subjects <http://example.org/MyUniversity>
"-5.906111" <http://www.w3.0rg/2001/XMLSchema#floa >
"01/01/1976" <http://www.w3.0rg/2001/XMLSchematdat e>
"25""<http://www.w3.0rg/2001/XMLSchema##integer>
"26/01/1987" <http://www.w3.0rg/2001/XMLSchematdat e>
"29"<http://www.w3.0rg/2001/XMLSchema#integer>
"41.848057" " <http://www.w3.0rg/2001/XMLSchema#floa >

"Associate"@en

"Estudiante de doctorado. Personal Investigador'@es
Objects "PhD student. Junior Researcher"@en
"Pucela”

"Valladolid"
"ifergar@example.org"
"jfergar@infor.uva.es"

26

37
<http://example.org/Researcher>
<http://example.org/Student>
dbpedia:lat

dbpedia:long

ex:age

ex:birthDate

ex:birthPlace

ex:category

Predicates ex:members

foaf:mbox

foaf:name

rdf: 1

rdf: 2

rdf: 3

rdf:type

Figure 10.2: Vocabulary for the running example in Figliel

This is well illustrated on Figur&0.2 in which strings and URIs coexist. In addition, as each section
is sorted lexicographically, tagged strings are completely mixed with othereatitféags and non-tagged
strings, numbers, dates, etc. Filtering, in this case, is natively unfeasible.

All this encourages the use of specific modeling techniques for eachaflakstionary. In other
words, a dictionary technique which detects and compresses speciiowary regularities allows spa-
tial requirements to be optimized. In the following, we present the organizatiorctures and algorithms
for our dictionary proposalD...,, (Martinez-Prieto, Ferndez, & Gnovas 20123 20121).

10.2 D.,mp Conceptual Description

Dcomp Provides a specific organization combining the partitioning attending the rdlhariverse types
of terms in each partition. Figurk0.3 (left) illustrates the resulting organization. First, the previous
four-sectioned role-based partitioning is considered. It takes the samgngaas the previous Plain
Dictionary (&7.2.2, hence three ID-ranges are considered. Let us refer this mapgpitigeglobal ID

mapping
* Subjects are mapped in the rarfige |SO+|S|] .
* Objects, intherangl, [SO+|Q].

* Predicates are mapped[ih |P[] .

As stated, a given ID can belong to different ranges but ambiguity ¢amise inextract because
the general role (subject, object or predicate) is always known arrdvided together with the term 1D
in a query.

Then, each partition is subdivided attending to the potential classes (BRig nodes or Literals)
that they can store. As can be seen in Figl®e3 the partitionsSOandS are split into URIs (subdic-
tionariesD; andDs respectively) and Blank node®{ andD,). ObjectsOalso contains URISIP5) and

120 10. Our Approach: D omy

Dictionary ptrs
Subdictionary
[b1 4 URIs P W P,
SO —
b2 _ Blank nodes D)/ P,
s [URIs i VR — P,
S =

D4 \ Blank nodes D ———————————————————— P,
Ds /7 URls \-e P,
Ds Blank nodes <« {---——--——-————-————- P
b7 Literals R P
o D71 General |- P71 - p
| 8

D7.2.[%] [Lang-tagged] ®—————— [P;,] ﬂ'g }

|

|

D7.3.[%] \ [Datatype-tagged] 7 ***** [P;] ﬂpe }

|

— |

|

P { Ds (URIs <—} 777777777777777777 |

Figure 10.3:D,,,;, organization (dictionary (left) + ptrs (right)).

Blank nodesDs), but also a partition for literal<§;). In addition, literals are subdivided again in order
to keep a distinction between strings: i) The subdictiorfayy holds the untagged strings, referred to as
generalstrings. Next, we keep ii) a list of subdictionaries, notate®as ,;, one per different language
tag and iii) another list of subdictionaries, notatedl3s;), one per different datatype tag. We will
show that this could help in resolving SPARQL filteringL(84). Finally, the partition of predicate,
only contains URIs.

Thus, D, allows to choose the best dictionary fitting each subdictionary, hence leearages
the particularities of each class within each partition. In other words, edatictionary holds one and
only one class, with an isolated local mapping. We show beld/@.@, the correspondence between
“local” and “global” mapping.

Figure 10.4 (left) shows theD..,,, organization for the running example (Figur3.1and10.2).
Note that, for explanation purposes, we describe the local ID within eatibrtary and the correspond-
ing global ID on both sided of each term. This information, though, is noédtas it remains implicit
in the representation. Note also that each dictionary holds a specific tysejelimiting characters can
be removed: £” and “>" for URIs, “:_" for blank nodes and quotes (") for literals. In turn, the tags
can be also extracted as they are kept in the secondary structure eltpstirhtransforming local IDs to
global IDs (and vicecersa), which is then explained.

10.3. Data Structures and Algorithms 121

Global IDj& Dictionary Local ID

1 http://example.org/Javier D1 1 ptrs
URIs 2 http://example.org/Pablo 2
SO 3 http://example.org/Santiago Bl - — — — — = = e 0
4 http://example.org/Valladolid 4
4
Blank nodes 5 nodes106 R e, L
URIs 6 http://example.org/MyUniversity D3 4 o\ 5
ba 6
Blank nodes [
,,,,,,,,,,,,,,,,, 5
/ 6 | http://example.org/Researcher Ds ; e\ J
URIs 7 | http://example.org/Student 2y 7
I
|
Blank nodes - --——----——---
v 7
. A 4
Literals s [Pucela T 7
g Valladolid 2
10 Ifergar@example.org 3 11
11 ifergar@infor.uva.es 4
12| Associate D721,
(0] 13 PhD student. Junior Researcher 2

D722
14 Estudiante de doctorado. Personal Investigador 1

15 01/01/1976 D731,
16 26/01/1987 2
17, -5.906111 D732
18 41.848057 3
19/ 25 D733,
20 26

NN
N =
w N
N ©

1 dbpedia:lat

2 dbpedia:long
3 ex:age

4 ex:birthDate
5 ex:birthPlace
6 ex:category
P URIS 7 ex:members
8 foaf:mbox

9 foaf:name
10 rdf:_1

11 rdfi_2

12 rdf:_3

13 rdf:itype

Figure 10.4:D.,,,;, organization for the RDF excerpt described in the Figli@&4 and10.2

10.3 Data Structures and Algorithms

Whereas subdictionaries own a local mapping, the RDF graph after IBcepent (ID-triples) is en-
coded with the aforementioned global ID mapping@8). In turn, alocate operation provides a term
and must return its global ID (not local), aedtract provides a global ID (not local), returning the
mapped term. Thud).., has to implement a mechanism for translating global and local IDs.

This mechanism leverages the organizatiorDgf,,,,,, which perfectly delimits the global IDs as
they are correlatives within different partitions of the same rdlg,,,,,, just requires a simple additional
structure, referred to g#rs, shown in Figurel0.3and in practice in Figur&0.4 This is a very small
array of one cell per subdictionary. Each celpirs stores two elements:

1. A pointer to the corresponding subdictionary.
2. Aninteger value representing the number of terms previously stored @otlresponding role.

Assuming that we number the cells s from 1, the i cell in ptrs stores the valugtrs[i] =
ptrs[i — 1] + t;_1, wheret;_; is the number of terms organized in the subdictionaryl, havingi and
1 + 1 the same role. Some remarks must be considered:

122 10. Our Approach: D omy

* ptrs[l] = 0 andptrs[8] = 0, always, as no previous subdictionaries can be present be@aad
predicated roles respectively.

* ptrs[b] = ptrs[3] = ptrs[2]+t2, always, because both cells store the number of terms represented
in the partitionSQ For instance, in the running example (Figd@4), ptrs[5] = ptrs[3] = 5
because there are five previous terms inS@partition.

A second level of pointers is stored insiges[7] in order to manage the literal subpartitionsOn
Three subcells are used:

* The first subcellptrs|7, 1], points to the subditionary of general strings. As can be seen in the
running example (Figur&0.4), this is equivalent to state thatrs[7, 1] = ptrs[7], as this is the
first subdictionary in literals.

» The second subcell points to the lang-tagged literals representatiotoeesithe valugtrs|7, 2] =
ptrs[7,1] + t7 1, wheretr ; is the number of general literals M.,,,.

« Finally, the third subcell points to the datatype-tagged literals representatibatores the value
ptrs|7,3] = ptrs[7,2] + t7 2, wheretr 5 is the number of lang-tagged literalsin., ..

In addition,ptrs stores two simple indexes for language-tagged litelatg), and another for datatype-
tagged literalsdtype. These indexes respectively point to the beginning of each langualgdasatype
subdictionary. They store, respectively sorted, the datatype anddgedieys allowing them to be
deleted in each literal. This decision saves space because each tiffeyés represented once, and
helps in SPARQL filtering (£0.4).

In the running example (Figurg0.4), general literalsstores four terms, whereas there are three
language-tagged literalsswo English (“en” lang keyword) and one Spanish (“es”), and edgtatype-
tagged literals two dates (“xsd:data”), two floats (“xsd:float”) and four integers @steger”). As can
be seen, all these tags are indexed and represented once. Note e26ahd 37 were originally given
without quotes (see original excerpt in Figur@.1), which is allowed for numbers (see Turtle common
datatype abbreviation8¢ckett & Berners-Leg2011, section 2.4)) D, takes this into consideration
and perform an implicit tagging when possible.

Let us detail these two functions of the indexes.

* lang(z) returns the dictionaryD; storing the string lang-tagged with. For instance, in our
running examplelang(es) = Dr.a1.

* dtype(z) returns the dictionar; storing the string datatype-tagged within our running exam-
ple,dtype(xsd : date) = Dr.3 1.

Abusing from notation, let us also dendtexg[;j] anddtype[j] as the language and dictionary tags
for the dictionaryD; respectively. For instandeng(7.2.1] =@en or lang[7.3.1] =xsd:date

Ptrs implementation can make use of basic data structures as its size is negligible for real-world
RDF dictionaries. On the one hand, the first two levelgtof are stored through an array of cells:
8 for the first level, an® for the second one. On the other hand, the number of different langusaml
datatypes modeled in an RDF dictionary depends on the dataset featovesvdt, this number is very
small in practice (only several tens, in the worst case), and these mdarée efficiently implemented
through two lexicographically sorted arrays which enable efficientkearfor key and global ID.

It is worth noting thatang anddtypeare also small indexes due to the reduced number of langs and
datatype. For instance, two sorted arrays can be used and lkence) anddtype(z) can be achieved
by means of a binary search. Other implementations can make use of a srhafirte®ther sorted
structure such as a linked list.

10.3. Data Structures and Algorithms 123

10.3.1 Transforming Local and Global IDs.

Ptrs is the key structure for transforming local IDs into global IDs and vicezel et us define these
operations more formally. Assuming that we denigtto thei-th local ID in thej-th subdictionary, and
r is a role of the term such thate Subject, Predicate, Object, then:

» Thelocal-to-global operation, denoteglobal(l;), returns the global ID for the given local
ID ;.
e The global-to-local operation, denotetbcal(i, r) returns the subdictionary and local 1D,

l;, in which the global IDi is mapped with the given role(Subject, Object or Predicate).

Note that theglobal-to-local operation requires the role of the term in order to disambiguate
ID overlapping €.g. the global ID6 is used in Subjects, Predicates and Objects). For instance, in the
running example (Figur0.4), the term*http://fexample.org/Researcheli$ located inDs with the local
ID 1 but the global ID6. Thus, the correct transformations giebal(15) = 6 andlocal (6, Object) =
15.

In the first operationpcal-to-global , itis clear that a local I1D; is transformed into its global
counterpart as:

global(l;) =1 + ptrs[j] 10.1

In the previous examplglobal(15) = 1 + ptrs[5] = 1 + 5 = 6. The same formula can be applied
with the second level of literal subdictionaries. In this case, one has gid=srthe appropriate subcell
of ptrs. For instance, for the terff®1/01/1976” (Figure10.4) with local ID 1 in dictionaryDr; 3.1, we
proceediglobal(1731) = 1 + ptrs[7.3.1] = 1+ 14 = 15.

The opposite transformatiogiobal-to-local , is also implemented overrs. Given a global
ID i and a roler, the first step is to determine th&" subdictionary in which is represented with the
given roler. Last, an operation — ptrs[j| undoes the global mapping, resulting in the expected local
ID.

For instance, consider the operatial(2, Subject) in the running example (Figurk0.4). First,
we delimit that Subjects are if»y,D5,D3 or Dy, and then the starting global ID of each dictionary is
obtained agtrs[1] + 1, ptrs[2] + 1, ptrs[3] + 1, andpirs[4] + 1 respectively. Apitrs[2] = 4, it means
that the first global ID ofD; is 5, then if we are looking fo2, it has to be mapped iR, . Last, the local
ID is obtained ag — ptrs[l] =2—-0=0

Let us define this operation formally. First, we make use diconariesper.role function,dpr(r),
which groups the dictionaries containing the given rglsuch that:

* dpr(Subject) = {D;y, D2, D3, Dys}.
e dpr(Object) = {Ds5, Ds, D7.1, D7.2.4, D7.3.4 }
* dpr(Predicate) = {Ds}.

Then, if we look for alocal(i,), the dictionary mapping is aD; € dpr(r). From this set, the
dictionaryj is that satisfyingptrs[j] < i < ptrs[j + 1]. Finally, the local ID is obtained by subtracting
ptrs[j] fromi. Formally:

local(i,r) = i — ptrs[j], whereD; e dpr(r), andptrs[j] < i < ptrs[j + 1] 10.2

Note that this formula exactly applies for literal subdictionaries as they aveaissidered inmlpr.

124 10. Our Approach: D omy

10.3.2 Basic Lookup Operations

We detail below howD,.,,, provideslocate andextract operations. In fact, thextract opera-
tion is straightforward achieved by means of the previglabal-to-local operation. In contrast,
locate will also make use of the indexésng anddtype.

Let us exemplify this functionality through the SPARQL que&dyis shown in Figurel0.5 This
query retrieves all the categories of the researcher from the gragpir ofinning example (Figur0.1).

PREFIX exx< http ://example.org

SELECT ?someone ?category

FROM <http :// example . org

WHERE{
?someone rdf:type<http :// example.org/Researcher.
?someone ex:category ?category .

}

Figure 10.5: An SPARQL querg for the RDF graph in Figur&0.1

As stated in the previous chaptero($), a SPARQL processor firstly pars€sto obtain the cor-
responding sets of termg;, and variables). Therefore, the SPARQL processor obtains the set of
terms (in order of appearancéﬁ = {rdf:type , <http://example.org/Researcher> , ex:category }, and
the variables:V = {2someone, 2category }. The next step consists of locating the ID correspond-
ing to each termt; € 7. It requires as manjocate lookups as terms in the s&t. In our case,
Iocate(rdf:type,Predicate) = 13 Iocate(<http://fexample.org/Researcher>,0Object) = 6and
locate(ex:category,Predicate) = 6. Using these IDs, the SPARQL query is rewritten, and it is run
over the ID-triples representation. The query resolution outputs a sdriBsvalues matching for the
variables iny. Thus, the last step performs as mamract operations as results are obtained, for
each variable in/, and the corresponding terms are reported within the final query reqwdtsdlution
to our case are:

?someone= <http://example.org/Javier>, ?category=" Estudiante de doctorado. Personal Investigador "@es
?someone= <http://example.org/Javier>, ?category="Ph D student. Junior Researcher’@en
?someone= <http://example.org/Santiago> and ?category= “Associate” @en

We detail below how the location and extraction processes are implemerifeg,ip and illustrate
them using the example query above.

Locate. This operation implements the translat&tnng-to-id . As stated, it has to provide the
role of the string in order to resolve overlappings. Thus the operationes @is:

* locate(s, r) which maps the string with role r € (Subject, Predicate, Object) into its 1D
iN Deomp-

D.omp Organizes subdictionaries by vocabulary classes (URI, Blank nagemral literals, etc),
hence the first process is to identify the type of the terniThis is done by a simply parsing of the
syntax, identifying, if present, also the language and datatype tags. slreffer to aparsefunction,
parse(s), which identifies the vocabulary clasg,and tags, in s. It is clear that the role, classs; and
tags; unequivocally identifies the subdictiona#y,, to be queried. Therpcate(¢;) is performed on
Dj, and the ID representing the teri; is returned. Howevet, is a local ID and must be transformed
into its global counterpart by using thecal-to-global method explained above.

Two variants exist in this process. On the one hand, terms playing as sab@gject can be rep-
resented in the common partiti®Oor in their specific one. It implies that locating a subject or object

10.3. Data Structures and Algorithms 125

firstly looks for the smallest dictionary and if the term is not found, the otimerie queried. On the
other hand, as stated, tagged literal terms need to make use of their oadiespindex,lang(x) or
dtype(x)to determine the subdictionary representing their language or datatype both cases, the
local-to-global method is used for translation purposes.

Let us analyze the operations in our example:

* locate(rdf:type,Predicate), searches for a URI (due to the syntax) playing the predicate role.
Then, the subdictionary of predicates is queried and the globaBId returned. Note that, with
the current mapping, the local and global mapping for predicates aasgsquivalent.

* locate(<nhttp://example.org/Researcher>,Object) , searches for a URI playing a subject role.
The parsefunction identifies the URI and also erases the delimiting charactets'>" as they
are not stored in the subdictionaries. This term can be found in the sulbdigtiof Object URIs,
Ds, or the subdictionary of common Subject-Objects URs, Then, this term is firstly searched
in D5 as it is smaller in this case. The term is found with the localllDransformed into the
corresponding global ID though globalB) =1 + ptrs[5] = 6.

e Finally, locate(ex:category,Predicate) runs similar to the first case.

Extract. This operation implements the translatidrto-string . Thanks taD,,,, organization
it can be simply achieved by a firgtobal-to-local operation over the given ID, and an extract
process over the subdictionary involved. Thus:

extract(i,r) = Dj.extract(l), wherel anj are obtained akcal(i,r) = I; 10.3

in whichD;.extract(l) denotes thextract — operation over the Dictionar;.

A simple final modification must be done. Note that.extract(l) extracts the stored term, which
is kept without neither delimiters in general nor tags for literals. Les usuoglarsingto the process of
undoing the previous parsing. Unparsing first adds delimiters to the obt&imad Then, for those sub-
dictionaries storing tagged literals, it makes uséafy|;] or datatype[j] to retrieve the corresponding
lang or datatype tag for the dictionaBy;. This tag is included in the final returned term.

For our previous example, the bindings are extracted for each variafolead in the query. Let us
exemplify the process for the first responseafier.

* The variable?someone (as a subject) is binded to the global 1DFirst,local(1, Subject) = 14,
that is, theglobal-to-local operation returns the local ID within the D, subdictionary.
Then, the corresponding term is extracted with the operdfipaxtract(1), which is, after un-
parsing:<http://example.org/Javier>

» The variable?category is binded to the global IL4. First,local(14, Object) = 1729, that is,
the global-to-local operation returns the local ID within the D7 5 5 subdictionary. Then,
the corresponding term is extracted &%;2 .extract(1), obtaining after parsing: “ Estudiante de
doctorado. Personal Investigador”. As we have explained, beinfp@ictionary of lang-tagged

literals,lang[7.2.2] = @es which is then appended to the previous string to return the final string.

As shown,locate andextract can be easily achieved leveraging the organization and simple

data structures dD..,,,. These operations are the basis of any RDF dictionary. In the following we
present advanced operations supporte@®Ry,,,.

126 10. Our Approach: D omy

10.4 Filter Resolution

D.omp Organization keeps a distinguishable partition of roles, vocabulary slalss®ys and datatypes.
Most SPARQLFILTER conditions (see descriptionil.2 are restrictions playing with these partitions.
In particular, unary SPARQL filters can be directly resolved over thpgsed dictionary. We emphasize
on three types of SPARQL filtering:

» Vocabulary testsare used for checking if a query result is drawn from a given ternsclabus,
three different tests are available for filteringtRI, isBlank , andisLiteral

» Simple accessorsise basic internal term information for filtering. Three different acmessare
distinguished:

— str : returns the lexical form of a given term. In practice, this accessor i faseetrieving
the string version of the argument passed t@iuCharme 2011).

— lang : returns the language tag of a given literal, if it has one. In other casetuins an
empty string.

— datatype : returns the datatype tag of a given literal. Ifitis a simple (general) literdljor
tagged with any language informatiatgtatype returns the string tagcksd:string>).

» Regexis an accessor which restricts the string values to those matching a givdarrexxpression.

Efficient filtering is a cornerstone in real-world scenarios as we shoatdoughly thes0% of the
gueries perform any kind of filteringA¢ias et al, 2011). Filter resolution is traditionally resolved by
means of two different strategies which comes from its SQL counterpagtrdditional non-early test
evaluation runs the query by matching the triple patterns against all triples in the détadéten, the
result set must be checked, one-on-one, with respect to the filteitiomnabtaining the final resultant
bindings. In contrast, thearly test evaluation is based orpushing-up filter evaluatianThat is, if
possible, filter conditions are evaluated first, reducing the set of triples ¢égored in the query which
is run next. It can be seen as querying a redugedbeingG’ a subgraph of in which all conditions of
the filters are evaluated to true.

D.omp provides direct filter resolution over the dictionary facabulary testandsimple accessors
natively on both strategies, which is described below. Howeegexhas to leverage on the specific
implementation of literals subdictionaries. This latter is evaluated in the evaluatiborsggi0.5.3.

10.4.1 Vocabulary Tests

As explained above, these filters only rely on checking the vocabulasy ofderms. We slightly modify
the previous query example to illustrate the resolution &gy,,. The novel query is shown in Figure
10.6and it restricts to those categories being literals. Although all categoridisesiads in our previous
graph (Figurel0.1), this query still makes sense as categories could perfectly point to dRisla

PREFIX ex<http ://example.org

SELECT ?someone ?category

FROM <http :// example . org

WHERE{
?someone rdf:typechttp :// example.org/Researcher.
?someone ex:category ?category .
FILTER isLiteral (?category)

}

Figure 10.6: An SPARQL querg with a vocabulary test for the RDF graph in Figu@. 1

10.4. Filter Resolution 127

The traditional non-early test evaluationn,,,, performs directly on the IDs.e., without the need
of extraction of the literal mapped to each ID. This is due to the fact that parthion (subdictionary)
only holds a type of term; URIs, Blank nodes or Literals. Then,dglubal-to-local operation,
which returns the subdictionary of a global ID, directly points to the volzapclass of the term.

For instance, in the example query, one binding for the variabd¢éegory playing the role of an
object, is the global IL4. The operatioriocal (14, Object) returnly; o2, and therefore this solution is
in the dictionaryD7 5 » which stores lang-tagged literals. Thus, this solution truly matches the filter. In
addition, no extra operations are performed, asglibbal-to-local operation is required for the
final extract operation in order to return the string result.

In contrast, early test evaluation is resolved beforehand by measis.ofn the example query, the
filtered variable:?category , plays as object and the filter condition restricts its bindings to literals.
Thus, the space of possible results is first limited to the triples whose objeetisfield within the range
[ptr[7] + 1, ptr[7.3.3] + |D7.3 3], as these are the ranges assigned to the literals. In our running example,
this range ig8, 22]. These ranges are then provided to the engine which only searchemfching
results in them.

10.4.2 Simple Accessors

These filters extract and test specific information about the terms. Inydartithestr operation returns
the lexical form of a term and then it cannot be resolved on the IDs.,ThesD is firstly extracted and
then compared with respect to the string in the filter. In contrastiatg anddatatype filters can

be resolved natively o®,,,,, as well. To illustrate the resolution, we reformulate the previous query to
only retrieve comments expressed in English. This is shown in Fibwz

PREFIX ex< http ://example.org

SELECT ?someone ?category

FROM <http :// example . org

WHERE{
?someone rdf:typechttp :// example.org/Researcher.
?someone ex:category ?category .
FILTER isLiteral (?category)

}

Figure 10.7: An SPARQL querg with simple accessors for the RDF graph in Figlifel

In the traditional non-early evaluation method, again, the query is firsbvanthe full dataset and
the result set must be individually checked. Then, each ID can belgicemmpared against the range
assigned to the corresponding language or datatype. In this casesohation requires querying the
second level optrs and the indexesang anddtype. In the current query, comments are restricted to
those expressed in English, so the retrieved globalllRs13 and14 are first localized by means of
the global-to-local operation, which returns the subdictionariss;, andD7 5. As we are
looking for Spanish term, the operatidang(@es) returns the dictionary storing Spanish term, thus
Dr22. In such case, only the global terid is held in this dictionary, performing then a common
extraction process.

The early evaluation algorithm proceeds as in the previous vocabulagaes That is, the ranges
of possible results are firstly obtained and the query is exclusively npeefd over them. This way, the
set of returned results is already filtered. In our example query, vily firscess to théang index and
retrieves that the dictionaf®- 5 o stores the Spanish term. Then, the range of global ID for such terms is
in [ptrs[7.2.2] + 1, ptrs[7.3.1]]. In our scenario, this range is orfi¥4,14] . This range is provided to
the engine which only searches possible results among those triples cantairobject ID in this range.
In this case, the returned result contains the vdlaad it is extracted with the common procedure.

128 10. Our Approach: D omy

[Dataset [Triples [#Subjects| #Predicates]| #Objects [#Common SO|
2011 Australian Census 361,842 51,768 26 6,901 508
Jamendo 1,049,637 335,925 26 440,602 290,291
AEMET 3,547,154 394,289 23 793,664 433
Dbtune 58,920,361 | 12,401,228 394 14,264,221 10,076,199
2000 US Census 149,182,415| 23,904,658 429 23,996,813 23,815,829
Dbpedia 3-8 431,440,396| 24,791,728 57,986 | 108,927,201 22,762,644

Table 10.1: Details of the evaluation corpora for compressed RDF diciggsnar

10.5 Experimental Evaluation

This section studies the size and performance of compressed RDF diggooarreal-world datasets.
We run the evaluation on a heterogeneous corpora described inItakléVe choose six datasets from
our evaluation setup in Secti@n2, covering different application domains and number of triples.

First, we test compressed string dictionaries on each vocabulary partifiers, blank nodes and
literals (8L0.5.7. Next, the conclusions of this study help us address two functionalgeoafions for
Deomp: DEO% is focused on compression effectiveness mﬁa)np is optimized for querying. Finally,
we evaluate the size and performance of these configurati@0syg.

All querying tests are performed on the “consumer” computer present&egétion7.4. We re-
port user times for all experiments.D.,,,, prototypes are developed in C++ using structures from
libcds (Compact Data Structures Library (libcds012. We use two bitmap implementations (de-
scribed in Sectior2.4.1): plain, referred to as RGGonzlez et al. 2005, andcompressedeferred to
as RRR Raman et a). 2002. Both bitmaps can be parameterized witkaanpling valuavhich will be
referred in each experiment. All sources are compiled on g++ 4.7.2-@8thoptimization.

10.5.1 Analyzing Compressed String Dictionaries for RDF

We analyze space/time tradeoffs of each technique from compressegditiionaries (8.2) applied

to the subsets of URIs, blank nodes (referred to as Bnode here)naiter literal dictionaries. These
techniques are setup as follows. THash technique reserves a table with a size overhead %f and
compacts it with a bitmap RG, using a sampling26f Note that tests performed on other load factors
reported comparable results. TRECandHTFCtechniques are setup on different bucket sizes: 2%,

for all 2 € [1,10]. Thus, we obtain results for buckets containing frdhto 2!° terms. Finally, the FM-
Index (FMI) technique is implemented by using plaFMI-RG) and compressed-MI-RRR) bitmaps.
FMI-RG is parameterized with sampling values- {4, 20,40}, andFMI-RRR with s = {16, 64, 128}.

Compression. Table10.2summarizes the compression ratios obtained in each vocabulary partition
of the datasets. Note again that we give compression ratiQg &s wheres. ands, are thecompressed
and the originaraw dictionary sizes respectively. The well-knowzip compressor is shown as a
reference of our compression achievements.

We provide the best and the worst ratios for all parameterizable tectmigieve will show below,
these parameters affect the query performance. Note that all techrgqalke in size, yet some of the
considered implementations fail for large corpora. This is marked as aalu#t in Tablel0.2

Results folURI vocabularies define a clear scenario. On the one Hdash achieves a poor com-
pression of aroun@8% of the original raw size. This result is mainly due to the Huffman code, which
performs a character-based compression and obviates the longere@melations existing between the
terms in the vocabulary. This discourages its use for large vocabuldrlgRls. On the other hand,
Re-Pair andHTFCobtain the best ratios for all datasets. Whereas the latter effectively essgwthe
long common prefixes, the first one takes advantage of all repeatedisgbs

As expectedHTFCoutperformsPFCthanks to the Hu-Tucker compression. Both maximize their
effectiveness for increasing bucket sizes. As can be seehTth€representations take betwe2h3%

10.5. Experimental Evaluation 129

URIs sr (MB) gzip Hash PFC HTFC Re-Pair FMI

2011 Australian Census 2.80 | 4.52% | 72.97% | 5.43%-54.99%| 2.53%-36.48% | 5.55% | 19.85% - 72.50%

Jamendo 19.36 6.23% | 77.89% | 11.40% -58.37%| 7.74% - 40.60% 9.21% | 21.76% - 75.60%

AEMET 36.80 3.46% | 69.68% | 6.99% -55.05%| 4.47%-37.19%| 3.6%% | 19.44% -76.13%

Dbtune 281.54 | 19.47% | 78.42% | 68.30% - 30.88%| 20.0%% -48.23% | 26.26% | 31.47% - 80.39%

2000 US Census 7.52 6.23% | 67.15% | 27.01% - 65.10%| 16.01% - 40.70%| 8.53% | 20.20% - 71.88%

Dbpedia 3585.31 | 14.36% | 79.73% | 27.88% - 67.24%)| 20.7%% - 49.43% - | 26.97%-66.12%
Bnodes sy (MB) gzip Hash PFC HTFC Re-Pair FMI

Dbtune 623.73 | 9.69% | 71.14% | 22.83% - 64.08%| 14.50% -42.66%| 7.30% | 20.75% - 72.92%

2000 US Census 534.50 | 11.13% | 92.89% | 17.09% - 66.20%| 7.726 - 47.45% - | 28.20% - 70.83%
Literals sy (MB) gzip Hash PFC HTFC Re-Pair FMI

2011 Australian Censu 0.26 | 7.55% | 84.24% | 92.30% - 98.84%)| 64.30% - 72.00%| 9.6%% | 27.45% - 83.76%

Jamendo 11.90 | 28.93% | 71.37% | 95.98% - 98.81%| 66.23% - 69.00%| 35.46% | 34.5%% - 82.99%

AEMET 44.47 5.54% | 75.07% | 18.92% - 62.07%| 12.44% - 43.84%| 6.58%6 | 20.70% - 75.60%

Dbtune 79.39 | 20.99% | 90.37% | 70.05% - 89.02%| 52.04% - 68.36%| 27.9®6 | 32.56% - 87.52%

2000 US Census 9.06 5.18% | 78.70% | 91.55% - 98.62%| 61.64% -69.59%| 7.09% | 21.73% -77.99%

Dbpedia 4513.11 | 22.48% - | 78.31%-89.13%| 53.78% - 64.01% - | 30.2% - 82.62%

Table 10.2: Compression of general techniques for string dictionaries the dictionary raw size).

(for the small2011 Australian censdisand20.75% (for Dbpedig of the raw size. In the first case, it
even surpasses the effectivenesgzip , being comparable in all datasets. This is a very significant
achievement because it demonstrates that these techniques camitepeegecabulary in a space close
to that used by a universal compressor and also prdoilde andextract operations.

Note that the=MI technique is less effective for URIEMI-RRR always obtains more compressed
representations thaAMI-RG, being FMI-RRR with samplings = 128, andFMI-RG with sampling
s = 4, the best and worst cases respectively. Thus, the range of caigprestios presented in the table
corresponds to thEMI-RRR variant.

This analysis for URIs can be extrapolated to Bredesvocabulary, presented iDbtuneand the
2000 US CensusHowever, a less clear situation arises [fdterals. As can be seerkEMI is the best
choice forJamendo andDbpedia , whereasRe-Pair is the most effective for the other datasets.
Nevertheless, the effectivenesskMll is the most uniform. Experiments show tHa¥Il-RRR largely
outperformg=MI-RG, and larger sampling values improve compression in both cases. IiPfe@and
Hash obtain very poor results for literals. This fits our initial expectations: in gankteral vocabularies
show less regularities than URIs or Bnodes, hence their poor comprasdio. Nonetheless, some
particular cases such as the two census dataseSEME T also present regularities in literals (repetition
of words or literal tags) which is clearly exploited Be-Pair

These results entail several remarks. URIs and Bnodes can be haghjyressed, being TFCand
Re-Pair the most effective techniques. However, the compression of literalsrisecmore compli-
cated as they can contain any type of information. In this case, a prefedlmmpression is not always
sufficient and a general technique, suchFddl, arises as an interesting solution. In fageMI-RRR
outperformsHTFCin most cases. As showHhlashing is clearly discouraged when compact represen-
tations are required. Finally, note that the classic Front-Cod#i@(achieves limited success, but we
will show below that it excels in query performance.

Querying. Next, we evaluate the performance of floeate andextract operations on the
considered techniques. To do so, we design specific micro-benchfoatksting querying operations
on each vocabulary partition: ipcate is studied through a batch of 10,000 terms randomly chosen
for each vocabulary, and ii) another batch containing 10,000 randanait® used foextract . We
run 50 independent executions of each batch and averagass#alimes to isolate our measurements of
external events. These averaged times per batch are then divided fyntier of queries (10,000) to
obtain the time per query.

The results foDbtuneand the2000 US Censuare reported in Figures0.8and10.9respectively.
The graphics comparecate (left) andextract (right) performance for th&RI (upper),blank
nodes(middle) anditeral (bottom) vocabularies. Each graphic draws compression ratios on this X ax

130 10. Our Approach: D omy

DBTUNE :: LOCATE URIS DBTUNE :: EXTRACT URIS
1000 1 ' ' Hash —— 7] 1000 ¢ ' ' Hash ——
--)en PFC ---%--
HTFC %+ HTFC =%+
RePair -3 RePair -3
| FMI-|
* FMI-RRR - -@ % FMI-RRR - - @
100 | : %% ..o 1 100 | : ® ... B
* * A
I H 7 H
g * g *
4 : g :
E * x E B X
€ Ll X @ 1 & 0f * : E
£ * B E ¥ X
b *. X pot B !
H L O * * 8 * X
g e STV oremmemnaneaneas X 3 S
)(X """" * +
1t 4 1t R Homrmmmmmmnaae X 4
01 I I I I I 0.1 I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
total space (% of original) total space (% of original)
DBTUNE :: LOCATE BLANKS DBTUNE :: EXTRACT BLANKS
1000 |- ' ' Hash —— 1 1000 |- ' ' Hash —— 1
PFC -~ PFC -~
HTFC =%+ HTFC %+
RePair -} RePair -}
FMI-RG FMI-RG
FMI-RRR - -@- - FMI-RRR - -@- -
100 | X oo 1 100 | X e o]
_ * - *
4 : 8 H
S X
é O); X E * X
10 X Y q o 10 X H g
g x * £ *; X
£ - z o
% ;@;{ K, * + g *, X
8 e e X 3 L
5 XX % .
s q 1r Keroggennnnnn Howmmmmmmmnmnnm e X]
01 1 1 1 1 L 0.1 L L ! L L
0 20 40 60 80 100 0 20 40 60 80 100
total space (% of original) total space (% of original)
DBTUNE :: LOCATE LITERALS DBTUNE :: EXTRACT LITERALS
1000 [T T Hash —— 1 1000 F T T T Hash —
PFC ---%-- PFC ---%--
HTFC -+ HTFC -+ -+
RePair -} RePair -}
* FMI-RG * FMI-RG
FMI-RRR - -@- - FMI-RRR -- - @
*
100 | f 4 100 | * i
_ % ...0 * - %. -0 ¥
@ H H
b * 2 *
3 : g :
5 * X g * X
£ 4 ; E H :
S 10} * X 1 3T 1wof * X B
£ O * X s * X
8 KK + £ a e Hx
S Rexc.. S Koo F
MemmmeeX N
1k q 1h B
01 1 1 1 1 1 1 01 1 1 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
total space (% of original) total space (% of original)

Figure 10.8:locate andextract times for URIs (top), blanks (middle) anditerals (bottom) of
Dbtune

and querying times (ips/query) on the Y axis (in logscale). All the conclusions below can be extended
to the other datasets in the current setup.

A general conclusion is achieved from all the graphics: the space/timeoffadorHash are never
the best choice, neither for compression (as shown in Tebh nor at querying times. In general terms,
we can state that hashing is not an option for representing RDF dictioméitege scale. Nonetheless,
this compressed hashing technique could always be a choice in simpleigsemighout scalability
problems: the performance lofcate andextract are around 1-3s/query.

The performance results reported for URIs (top) and blank nodes l@hidde very clear:PFC
always outperformsI TFCin querying because the latter pays the price of the Hu-Tucker decosigres
However, as commented aboRF, Cpays a spatial overhead with respecH®FC With a similar setup,

10.5. Experimental Evaluation 131

2000 US CENSUS :: LOCATE URIS 2000 US CENSUS :: EXTRACT URIS
1000 | ' ' Hash —— 7] 1000 ¢ ' ' Hash —— 1
- PFC -~
FREORN HTFC -3~
RePair -3 RePair -3
FMI-RG
% FMI-RRR - -@- - x FMI-RRR - - @
100 |- D% 1 100 - L] 1
* e * o
2 : & f
a H
5 i k] X
3 * ! E % X
s o O 3 X 4 ° 10 > i 4
£ * f £ * X
: %o X + 3 *,
g > S g ...
g R X 3 o W *
%
1+ 4 1+ Hemmmmmn) P mmmmmmm e) X 4
0.1 I I I I I 0.1 I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
total space (% of original) total space (% of original)
2000 US CENSUS :: LOCATE BLANKS 2000 US CENSUS :: EXTRACT BLANKS
1000 F . . T prw gl 1000 [' ' ' Hash —— 1
PFC ---%-- PFC ---%--
HTFC =%+ HTFC =%+
RePair -} RePair -}
FMI-RG FMI-RG
FMI-RRR - -@- - FMI-RRR - -@- -
100 - b 100 b
2 2
g o % ..o 3 N
5 * g * &
£ : E H °
9 wop Xy 1 & wF %]
£ * £ ; x
e x X 3 X
g K. s x * g &%
° %3 + 3 X %
* %
1k 1 1L *)ﬁx O ™ + 4
0.1 1 1 1 1 1 01 1 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
total space (% of original) total space (% of original)
2000 US CENSUS :: LOCATE LITERALS 2000 US CENSUS :: EXTRACT LITERALS
1000 F T T T T pro— | 1000 F T T T T pra— |
PFC ---%-- PFC ---%--
HTFC -+ HTFC -+ -+
RePair -} RePair -}
* FMI-RG * FMI-RG
: FMI-RRR - -@- - f FMI-RRR - -@- -
100 | * 1 100 | X 1
- . * s . *
@ s e H 8 o H
e H g H
g X X E * X
Y 10 | * Y q 10 " : q
g X X g * X
B 5 X 5 X %
T a] &* + X “;’ K %
°) 3 i
ex o vk
1b B 1 e B
0.1 1 1 1 1 1 1 01 1 1 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
total space (% of original) total space (% of original)

Figure 10.9:locate andextract times forURIs(top), blanks (middle) antiterals (bottom) of the
2000 US Census

the HTFCcompression ratio is around 8-10 percentage points better than the olt@ifelC, but its
performance is 1.5 to 10 times slower theRC The only exception presenting comparable times is
the blank nodes performance of tB@00 US Censu@-igure10.9 middle). Note that the performance
difference betweePFCandHTFCis always more noticeable iextract . In this operation, all the
strings have to be decompressed up to the position of the desired string.

RegardingRe-Pair , which presented very competitive compression ratiosloitate perfor-
mance shows a clear degradation with respect to the other techniquiasylady in comparison with
PFC In contrastRe-Pair remains competitive iextract except for the blank nodes performance
of the2000 US Census

Thus,HTFCand Re-Pair are well-suited for scenarios focused on compressionPB@is the

132 10. Our Approach: D omy

Dataset | s, (ve) | ROF3X || D), | Diony |

2011 Australian Census 3.05| 147.98%|| 8.54% | 17.52%
Jamendo 31.26| 133.66%]| 18.55% | 37.01%
AEMET 81.27 | 148.33% || 14.25% | 44.69%
Dbtune 984.66| 145.15%/|| 20.73% | 43.16%

2000 US Census 551.08| 230.54%/|| 13.54% | 28.96%
Dbpedia 8098.42| 130.71%]|| 30.32% | 64.11%

Table 10.3: Compression results®f,,,, versus RDF3x dictionaries.

best choice if spatial requirements are slightly relaxed. Finally, noteRKk#tperformance is never
competitive for URISs.

The analysis for literals is, again, more complB¥Cachieves excellent time$ £ 10us/query), but
its space i$ — 10 times larger than that used by the most effective technidtMsRRR andRe-Pair
In turn, HTFClargely improvePFCcompression, but querying times evolveste- 7 us/query for com-
petitive tradeoffs. FinallyFMI takes betweef?5 and75 us per query. ThusRe-Pair achieves the
most competitive tradeoffs for literals (although the considered implementatffarsfrom scalability
problems in large corpora). In generBMI-RRR andRe-Pair must be chosen for optimizing space,
but PFCmay be the option in scenarios where time prevails. Nevertheless, noteMhéa still the pre-
ferred choice when more sophisticated queries (such as substriad-drzes) are desireBiisaboa et aJ.
2011). This is consistent with the devised SPARQL filter resolution.

10.5.2 D, Performance

As explained above, two functional configurationsy,,, are evaluated. Based on our previous evalu-
ation, we choose those techniques (and their setup parameters) optimizerglastiquery performance
or the dictionary size. In both cases, we keep a competitive space/timeftradeoresultant configura-
tions are as follows:
. Dgoc%p is optimized for compression. It implements URI and blank node dictionariddTd+C
(b = 16), and represents literals witfMI-RRR, samplings = 128.

. DgoQ%p is optimized for querying. It implements URI and blank node dictionarieBie@ (b = 8),
and represents literals withMI-RG, samplings = 4.

Table10.3shows compression effectiveness 1ay,,,,,,,. In this case, the raw size of the dictionaries
(columns,) considers the raw dump of &l.,,,, partitions (80.2. We also include the sizes of the
dictionaries used in RDF-3XNeumann & Weikum 2010 to compare our results with respect to a
real-world solution (note that we measure the spaceZha,, takes in memory, but RDF-3X size is
measured on disk).

As can be seen, our configuration aimed at compres@é& , takes more than half of the space

used by the configuration optimized for query performad@é‘;%p. This difference allows for some
other configurations whose size can be tuned in accordance to spegiiication requirements. The
comparison of our two variants with respect to RDF-3X gives a magnitudriofichievements with
regard to the representation of RDF dictionaries. Whereas RDF-3X/aluses more space than the

original raw dictionary, our Worspgfﬁzlp result for the largdbpedia dataset use®4.11% of the origi-

nal space, while the best one fDEOC,)np is only 30.32%. Thus, D, reduces the space taken by RDF-3X
betweer?2 and18 times for the studied datasets.

10.5. Experimental Evaluation 133

DBTUNE :: LOCATE 2000 US CENSUS :: LOCATE

DComp (C) DComp (C)
DComp (Q) e DComp (Q) mewan
RDF3X m— RDF3X m—

10 10

s

locate time (microseconds)
-
T

locate time (microseconds)

0.1 0.1

Figure 10.10:locate times of D, versus RDF3x dictionaries, iDbtune(left) and the2000 US
Censugright). Y-axis is represented in logarithmic scale.

DBTUNE :: EXTRACT 2000 US CENSUS :: EXTRACT

DComp (C) DComp (C)
DComp (Q) Fww=mn DComp (Q) z===sse
RDF3X et

10 RDF3X s

o

o

IS

extract time (microseconds)
extract time (microseconds)

w

N

N

e
-
-

Figure 10.11:extract times ofD.,,, versus RDF3x dictionaries, iDbtune(left) and the2000 US
Censugright).

These results guarantee thay,,,, can be finely tuned to achieve highly-compressed dictionaries.
This saves processing resources and enables larger dictionariemembged in a fixed main memory.
Next, we studyD,.,,,, efficiency at querying.

We design a similar random corporalotate andextract queries, following the procedure
used in the previous experiments. In this caseldoate performance evaluation, we consider a batch
of 10,000 random queries for each subdictionarylf,,,,, and average it i60 independent repetitions.
Figure 10.10shows thdocate times inDbtune(left) and the2000 US Censugight) compared to
RDF3X (note that the y-axis is in logarithmic scale). As can be S@éﬁ%?w always outperform@ﬁoc%p,
achieving significant differences. It is worth noting that times obtainedupyveo D..,,,,,, configurations
are always less thatOus per query except for literals. In this case, the usé&fl, a more general
representation, slightly reduces the performance obtained by the otheitees.

The RDF-3X performance is also analyzed. To do so, we run the quech land measure the
performance time in two different scenarios: “cold” (no data is preloaddie system main memory)
and “warm” (each query is run 5 times prior to the final measure, hencethired data are available
in main memory). The comparison is unfair in the cold scenario because RDte&ds data to be
transferred from disk; these operations are performed in some millisedoné order of magnitude

134 10. Our Approach: D omy

DBTUNE :: LOCATE SUBSTRING
100

DComp (C)
DComp (Q) 2ssssss

locate time per occurrence(microseconds)
=
o
T

Figure 10.12D,,,, locate time per occurrence of the substrings (lengths 5, 10, 15, 20, 25 and 30)

above our technique). Thus, the graphics always report a warnagcevhich reduces the times to
the level of microseconds. As can be seen, RDF3X performance mepeoves our approaches for
locate , except for general literals. Note that, RDF3X is unable to handle taggealditit erases the
tags when loading the dataset), whereas our approaches give spegfart for them.

In turn, we evaluatextract performance in Figurd0.11 In this case, we design similar mi-
crobenchmarks of 10,000 random queries but restricted to each notgecss, predicates and objects.
This way, we emulate a real-world extraction of SPARQL results, in whichDhRtm solution and its
role are known. Results show thettract is faster than the previolscate operation in all cases.

As expectedDé,?%p remains faster tha@éoc%p, obtaining around i.s per query except for thBbtune

literals (that are potentially long). This is the only case in which RDF3X omnmﬂ)é?%p. Finally,
note thaﬂ)goc%p is competitive forextract , although the performance in general literaldituneis

degraded for the same reason.

Thus, in general terms, we can state t@éf%p achieves the best performance for the most used
operation in SPARQL engines, remaining highly compressed. In additiopdte4ime tradeoff can be

finely tuned, bringing it closer t@ﬁf%p if compression requirements prevalil.

10.5.3 D, Regex Resolution

As stated, th&=MI self-index could not excel for literal compression, but it is the choicedsolving
sophisticated queries such as the required for SPARQé&xresolution. Thus, we aim at evaluating the
performance of substring retrieval on tﬁéf;%%p andDgocn)w configurations. We design a batch of random
substring queries of thBbtuneliterals. To do so, we randomly choose 2,000 substrings of length 5, 10,
15, 20, 25 and 30, and we perform substiiocate using theFMI functionality.

Figure10.12shows the results of the evaluation (in microseconds per occurreneelokeabstring
in the dictionary). As can be seeD,(:?%p clearly outperforms th@ﬁoc%p configuration.Dﬁ?%p performs
significant fast, in the range [13-3pk per occurrence. As expected, the larger is the substring pattern,
the more time is needed to locate. This remains a direct consequence e¥itheperation, which
performs the pattern matching character by character.

Finally, it is worth noting that this result is obtained with &MWI internal sampling of suffixes,
by means of a bitmap index. In the current implementation, this bitmap is compregted RRR

configuration and parameter 64. Figur@.13shows the performance considering other configurations

10.5. Experimental Evaluation 135

DBTUNE :: LOCATE SUBSTRING LITERALS
35

FMI-RG with sampling RRR-64 —+—
FMI-RG with sampling RRR-128 --->--
FMI-RG with sampling RG-4 ---3%---

30

25 -

20

locate time per occurrence (microsecs)

15

10

I I I I I I
0 5 10 15 20 25 30
substring length

Figure 10.13: D, locate time of substrings (lengths 5, 10, 15, 20, 25 and 30) with different
FMI-RG samplings, showing a similar performance.

for this sampling. In particular, we evaluate the saﬂé@n)@p configuration with a sampling bitmap
RG(parameter=4)RRR(parameter=64) anBRR(parameter=128). The graphic reports that, although
the sampling with a bitmaRGis slightly faster, the difference is not significant. In addition, the size
of the literal dictionary with theRGsampling becomes 9% and 10% more thanRfRRalternatives.
Nevertheless, note that this time is given “per occurrence” and, thusaimpling could be an important
tradeoff to take into account if resolution time prevails. Finally, note that, in alatternatives of Figure
10.13 thelocate times present a linear growttr.t the length of the substring patterns.

It's not a question of where he grips it! It's
a simple question of weight ratios! A five
ounce bird could not carry a one pound
coconut.

Monty Python and the Holy Grail (1975)

Discussion

This chapter briefly summarizes the contribution$1(8) of this part of the thesis devoted to RDF dic-
tionaries. We also devise future work and applicatioris (8.

11.1 Contributions

Through the previous chapters, we have addressed compressesergptions for RDF dictionaries.
First of all, in ChapteB, we have introduced the problem of effective representations of RidiBrkaries
in the novel scenario of Big Semantic Data. We stated that current tecsnigad for their representation
suffer from scalability issues. We then reviewed existing techniquefaopressed string dictionaries.
Next, in Chapterl0, we applied these techniques to the specific case of RDF and obtained simple
compressed representations for URI, blank node and literal dictiondiésexperience was integrated
within a novel RDF dictionary, calle®..,,, which addresses specific management of compressed RDF
dictionaries.D..,,, reorganizes the RDF dictionary into subdictionaries according to its rolesand
vocabulary, allowing for specific compression of each part. We detailddtitgsstructures and algorithms
able to perform typical queryindgcate andextract) and we introduced advanced filter resolution
leveragingD..,, features.
Finally, we performed a deep evaluation on real-world datasets, showimgimtaresting remarks:

* The application of the techniques from compressed string dictionaries fodiiflonaries is able
to achieve high compression ratios. These ratios are, in general, cdieptrahat achieved by
universal compressors. In addition, these techniques provide fumetionality (ocate and
extract operations) on compressed space.

 Traditional hashing is discouraged for large RDF vocabularies asate#jime tradeoff is never
the best choice. Nonetheless, it presents comparable performamedireg a simple solution for
basic scenarios.

* A prefix-based compressioR,TFG and a grammar-based compressi@e;Pair , are the most
effective techniques for compressing URIs and blank noBesPair and theFM-Index self-
index, are the best techniques for compressing literals.

* Dc.omp achieves highly-compressed dictionaries, betwee4% of its original size, and it excels
in query performance, answering queried i 60us.

» Compared to th&™ — tree proposal in RDF-3XD.,,,, reduces its space between 2 and 18 times.
D.omp performs significant faster except for literals, being comparable in teis.ca

* TheFM-Index self-index used for literals ifv,,,,, resolves SPARQlregexqueries in the range
of microseconds per occurrence (with a linear growitt the length of the substring pattern).

138 11. Discussion

Allthis experience guarantees ttiat,,,,;, is an innovative technique which i) achieves highly-compressed
dictionaries, ii) is highly parameterizable, allowing to configure its space/timeafgdii) achieves an
extraordinary performance for the most used dictionary operationsARQPE engines; and iv) opens
up further optimizations for filter resolution.

11.2 Future Work and Applications

As stated, our proposdP..,, perfectly fits the philosophy afiDT, and it can be directly plugged as
the representation of the dictionary component. However, we have sti@wiRDF dictionaries are
commonly used in all kind of applications performing on the Web of Data. Qurduvork focuses on
elaborating a toolkit of RDF dictionaries and a set of best practices taetifelomains. The idea is
to be able to easily integrat®..,,, as a dictionary index within an existing application performing on
Big Semantic Data, such as a SPARQL engine. A (semi-) automatic analysistgpthef data and the
expected functionality would help recommend the correct parametrization.

Besides, the use dP..,,, provides interesting features for filtering which can be further exploited.
First, a line of future work is to integrat®.,,,, features into a SPARQL query planner to fully exploit
its organization and characteristics, in particular for early filter evaluatioturn, theregexresolution
in compressed space opens up many interesting applications. In thistregpdmve managed multi-
media metadataifias, Corcho, Ferandez, Maiinez-Prieto, & Sarez-Figueroa2013 in practice: we
made use oD, (andHDT) to provide full-text search of multimedia metadata in compressed space.
Performance experiments reported that our solution overcame Virtuosdl fpueries in the setup (see
Arias et al.(2013 for further details).

Finally, an additional line of future work focuses on evolviRg,,,, to support dynamic operations
of insert, delete, and update. These operations are essential to intBggajein semantic databases
in which dictionaries evolve according to triples management. Neverthelesdewise two lines of
work. On the one hand, one could work on making the original techniqoes ¢ompressed string
dictionaries also dynamic. This would help in thg,,,,, evolution, although some problems (such as the
efficient movement of terms between subdictionaries), should be treaded @s the other hand ...,
madification could be studied as a subproblem of the alteration of Big Semartdc Daother words,
one could work in infrastructures allowing to modify Big Semantic Data, andporate the dictionary
component as a problem to contend with. We will provide some notes on tbesipl infrastructures
in future chapters.

Part IV

Compact RDF Triple Indexes

You're gonna need a bigger boat.
Jaws (1975)

Introduction

This part of the thesis completely focuses on triple indexes. The curhater first motivates the
scalability problems of RDF triple indexes1(8.1), and reviews the state-of-the-art techniquek2(g.
Their drawbacks help define our goalsl283 which mainly comprises the design of compact triple
indexes on top of HDT-encoded datasets.

12.1 Motivation

The ID-triples in anrHDT-encoded dataset can be directly accessed once its components ackifdad
the memory hierarchy of any computational system. As we review belb2g the state of the artin ID-
triple indexes is large. Nonetheless, we first highlight some interesting kermpaimted out throughout
this thesis.

First of all, some consumption processes does not need to resolve cdBRARQL queries, but a
minimum set of operations. For instance, if the entity: > is dereferenced in accordance to the third
Linked Data principle, one should perform a query such as:

CONSTRUCT < e > ?predicate ?object }
WHERE < e > ?predicate ?0bject }

or, at most, one could also retrieve all the resources pointed to this samgiéntity > is playing as an
object), or the triples in witk< e > is playing as an object (if exist). Then:

CONSTRUCT e ?predicate ?object .
?subjectP< e > ?objectP .}

?subjectO predicate® e > . }

WHERE < e > ?predicate ?object }

UNION{ ?subjectP< e > ?objectP .}

UNION{ ?subjectO predicate@ e > . }

We can find another simplified scenario in the area of RDF streaming, in whiichitad set of
queries is repeated over a stream of data. Thus, in some scenariogsstieh presented above it is
interesting to provide small indexes with partial functionality regarding SPARQis was also pointed
out inHDT triples encoding , classifying four levels of triple functionality @81.3. However it
is clear than state-of-the-art indexes are guided by an intensivgiagexerspective, corresponding to
L2-Join Resolutioror L3-Full Spargllevels.

In addition, RDF indexes suffer from scalability issues in Big Semantic Datlaegsbarely address
compression notions. The space optimization achievetDitencoded datasets is not fully exploited if it
is then loaded into burdensome structures. In contrast, one could aggsedhkinct data structures could
be added to thelDT-encoded dataset in order to provide direct access to the triple informbtameover,

142 12. Introduction

if complex SPARQL resolution is needed, advanced succinct indexés @iso be constructed on top of
theHDTencoded dataset. In other words, tBTencoded data is not parsed to pre-built RDF indexes,
but RDF indexes are built for theDTencoded data at consumption time.

This goal is detailed at the end of this chaptetd®), and developed in the next chapter. We first
review the state of the art in RDF triple indexes and stores.

12.2 State of the Art

Several RDF indexes and RDF stores explore efficient RDF retrie@bE&ARQL resolution. As RDF
does not prevent any technique, the implementation of these proposalslinast effect on the retrieval
efficiency, and therefore on the success of SPARQL-based solutidhe Web of Data. We review
below the existing techniques for modeling, partitioning, and indexing RDd,déstuss their use in
some real RDF stores.

Although the explosion of novel RDF engines could make this review uncaetpleve focus on
showing the main achievements and shortcomings in the state of the art. Waurimsiasize those
approaches (and their technigues) based on a relational infraseru€hen, we show solutions natively
designed for RDF.

12.2.1 Relational Solutions

Some logical schemes have been proposed for representing RDF eviefrdstructure provided by
relational databases. Although they leverage the “strictness” of the redatioodel for handling the
semi-structured RDF features, there is still room for optimizati®@ek(& Al-Naymai 2010. We
describe below the most used schemes.

Single three-column table. This is the most straightforward scheme modeling RDF over a relational
infrastructure. It represents RDF as a huge single table of three callwiding an RDF triple (S,P,0).
Systems such as 3stotddfris & Gibbins 2003 or the popular Virtuosbimplement this scheme.

Virtuoso Erling & Mikhailov, 2007 2009 is probably the main representative of these approaches.
In particular, Virtuoso extends each triple in the three-column table with ami@ua column holding
the graph (G) it belonds To minimize redundancy, Virtuoso makes use of an RDF dictionary, heece th
S, P, O and G columns store IDs. Another (dictionary) table holds the mapptageen each ID and the
term representing it from the subject, predicate, object or graph utagb

As can be seen, SPARQL resolution involves many expensive self-joirtkeohuge single four-
column table. Nevertheless, Virtuoso uses two indexes: (G,S,P,0) and (&),&@m version 6, it also
includes 3 partial indexes (SP, OP and GS). Note that, if there are fregpeates, keeping this amount
of indexes fresh would affect performance. Instead, Virtuoso «éep full-indexes updated and can i)
completely drop and recreate the partial indexes or even ii) disable thé paeial indexes for intensive
updates. In any case, Virtuoso indexes are optimized for workloadslkfldad and read-intensive
access patterns with few deletes

Several compression techniques are considered. First, each @gpalggsstore only distinct values
and, then, gzip is applied to these pagBslifig & Mikhailov, 2009. In addition, from version 7,
indexes are column-wise storeBr{ing, 2012, saving 1/3 of space. This latter version introduces
other important improvements to boost query parallelization, such as vectagkecution of queries
(Sompolski, Zukowski, & Boncz 2017). As can be seen in the BSBM evaluation, Virtuoso (version 7)
is one of the most scalable solutions. It excels in performance and renginsompetitive in space.

lhttp://www.openIinksw.com/
2Note that multiple graphs (datasets) can be managed in a single schemitsTthe notion of N-quad<Jarothers 2013.
3Seeh'[tp://virtuoso.openlinksw.com/dataspace/doc/dav/wi ki/Main/VirtRDFPerformanceTuning

12.2. State of the Art 143

Property tables. This model arises as a natural practical scheme for RDF organizatiotational
databases as it proposes to create relational-like property tables of &RF Each table holds multi-
ple predicates (properties) over a list of subjects. Thus, a giverefsofable has many columns as
different predicates (one per column) are used for describing tHedslihat it stores (in rows). Al-
though this model reduces significantly the number of self-joins, the ctlsé @fuery resolution remains
high. Besides, the use of property tables induces two additional probl@m#he one hand, note that
subjects can appear in one table even if some columns (predicates) aré. niissther words, storage
requirements increase because NULL values must be explicitly stored iéphesented subject is not
described for a given property in the table. On the other hand, multi-valtigdutes are abundant in
semantic datasets and they are somewhat awkward to express in propksy@bdadi et al, 2007).
Thus, property tables are a competitive choice for representing wethgted datasets, but they lose
potential in a general case. Systems like JaNdk{nson, 2006 Wilkinson et al, 2003 or Sesame
(Broekstra, Kampman, & van HarmeleB003 use property tables for modeling RDF.

Jena TDB is a persistent module to implement a high performance RDF store for the in-piemor
Jena. A dataset is stored in persistent data structures by a custom implemesitéhreaded B+Trees
for triples and triples plus graphs. A dictionary of ID-terms is also usethigncase, the ID is a hash of
the term (a 128 bit MD5 hash), indexed by a B+Tree.

Of all Sesame-based implementations, we highlight BigOWLIM (recently reda®DWLIM-SE)
belonging to the family of OWLIM native semantic repositoriBsspop et al. 2011). Itis a commercial
Java implementation designed as a database management system implementisanteesSAIL APIs.
BigOWLIM holds two main indexes, (P,0,S) and (P,S,0). It can also enabéxdésdby graph (context)
and partial indexes similar to Virtuoso. In addition, the data on disk can beressgd using ZIP with a
compression parameter to manage the space/time tradeoff.

Vertical partitioning. The vertical partitioning (VP) schem@lfadi et al, 2007) is based on the fact
that few predicates are used to describe a dataset. This way, VP usgtafvlas as different predicates
are used in the dataset, each one storing tuf@e3) that represent all (subject,object) pairs related
through a given predicate. Each table is sorted by the subject colummaémnadeso particular subjects
can be located quickly, and fast merge joins can be used to reconstarotd@tion about multiple prop-
erties for subsets of subjectst{adi et al, 2007). In the absence of other indexes, though, this decision
penalizes queries by object.

Nevertheless, the main weakness of VP-based solutions is the lack cdreffidor queries with
unbounded predicates. In this case, all tables must be queried ancbthais must then be then merged
to obtain the final results. This cost increases linearly with the number efreliff predicates used in
the dataset. Thus VP is not the best choice for representing datasets wittpredicates, unless other
partial indexes are used.

In contrast, VP-based solutions avoid the weaknesses previoushyaepor property tables because
only non-NULL values are stored, and multi-valued attributes are listedcagssive tuples in the corre-
sponding table. Moreover, VP can be perfectly used in combination wittmeelwriented databases.

Abadi et al.(2007) andAbadi, Marcus, Madden, and Hollenba@009 report that querying perfor-
mance in column-oriented databases is up to one order of magnitude bett¢hdahabtained in row-
oriented ones. This fact motivates the implementation of their system SW-Stare extension of the
column-oriented database C-Stotdnebraker et gl.2005. SW-Store leverages all the advantages re-
ported above, but also suffers from a lack of scalability for queries wittounded predicate. SW-Store,
also perform a dictionary encoding that maps long URIs and literal valuesciger IDs. In addition to
the VP scheme, SW-Store also indexes some materialized path expressisrgpeeds up path expres-
sions resolution at the price of increasing storage requirem8iaisourgos et al(2008 show additional

4h'[tp://jena.apache.org/documentation/tdb/index.html

144 12. Introduction

experiments on VP. They replace C-Store by MonetbBhe database layer; these systems show a cou-
ple of differences$chmidt, Hornung, Kichlin, Lausen, & Pinkel 2008 i) data processing in C-Store

is disk-based while it is memory-based in MonetDB; and ii) C-Store implemenéfutigroptimized
merge joins and makes heavy use of them, whereas MonetDB uses merdegsifiequently. Even so,
MonetDB arises as a competitive choice in this scen&idifourgos et aJ. 2008. The findings reported

in these works differ from each. Whereabadi et al.(2007) andAbadi et al.(2009 conclude that VP
overcomes property tableSidirourgos et al(2008 refute this conclusion and show that the comparison
depends on the dataset features.

12.2.2 Native Solutions

Native solutions are designed from scratch to better address RDF pii@diaAlthough some works
(Anglés & Guterrez 2005 Bonstbm, Hinze, & Schweppe2003 J. Hayes & Gutrrez 2004 pro-
pose different graph-based models, the main line of research fomusadti-indexing solutions. YARS
(Harth & Decker 2005 Harth, Umbrich, Hogan, & Decker2007) proposes a six B+-tree indexes for
managing N-quads: (S,P,0,C), (P,0,C), (O,C,S), (C,S,P), (C,P) and [®jSkscheme allows all quads
conforming to a given query pattern (in which the context can also beablayto be quickly retrieved.
This experience has been integrated in many systems within the currentfstia¢eapot for RDF man-
agement. Note also that YARS performs on a dictionary encoding, then #us d@nhanced with the
contexts) are regarded as ID groups.

Hexastore \(Veiss, Karras, & Bernstejn 2008 adopts the rationale of VP and multi-indexing. In
contrast to VP, Hexastore treats subjects, predicates, and objeclly.eTiuat is, whereas VP prioritizes
predicates and indexes pairs (subject,object) around them, Hexastdeedpecific indexes around each
dimension and defines a priority between the other two. This way, Hexasimnages six indexes:
(s,pP,0) ,(s,0,P) ,(P,sS0O) , (PO, ,(O,sSP) ,and(0O,P,S) .In a naive comparison, the
VP scheme (sorted by subject) can be seen as an equivalent reéatieseto the indexS,P,0) in
Hexastore. Thus, Hexastore stores triples in a combination of sortedrszzgthat requires, in the worst
case, 5 times the space used to index the full dataset in a single triples talideis PRcause some
sequences can be shared between different indexes (for instla@odject sequence is interchangeably
used in the indexeSPOandPSQ. The Hexastore organization ensures primitive resolution for all triple
patterns and also that the first step in pairwise joins can be always implenmanfadt merge joins.
However, its large storage requirements slow down Hexastore whessegpting large datasets, because
it is implemented as aim-memorysolution.

RDF3X (Neumann & Weikum 2010 goes one step further and introduces index compression to
reduce the spatial requirements reported above. In contrast to Hexd®Ri-3X creates its indexes over
a single “giant triples table” (with columns;,v »,v 3), and stores them in a (compressed) clusteréd B
tree. Triples, within each index, are lexicographically sdtttbwing SPARQL patterns to be converted
into range scans.

The collation order implemented in the RDF3X table causes neighboring triples verg simi-
lar. In most cases, neighboring triples share the values iandv,, and the increases w are very
small. This fact facilitates differential compression to represent a givele twith respect to the pre-
vious one. This scheme is leaf-oriented within the-Bee, so the compression is individually applied
on each leaf. Although the authors test some well-known bitwise cadesdes-codes, and Golomb
codes Galomon 20078), they finally apply a bytewise code specifically designed for differétitfaes
compression. This technique ensures highly-efficient decompresgioa wlight spatial overhead with
respect to the most effective codes. Finally, it is worth noting that RDASX manages aggregated in-
dexegSP) , (PS) , (SO), (0OS), (PO) , and(OP) , which store the number of occurrences of each pair

Shttp:/Amvww.monetdb.org/
®RDF3X also performs dictionary encoding, so the ordering is carriedmthe element IDs.

12.2. State of the Art 145

in the dataset. RDF3X also contributes with a RISC-style query processtomtinly relies on merge
joins over the sorted indexes. Besides, it implements a query optimizer mostgefbou join ordering
in its generation of execution plans.

RDF3X reports a very efficient performance that outperforms SWeStgra large margin. These
results make it a leading reference in the area. However, despite its @migorechievements, the
spatial requirements in RDF3X remain very high. This involves an indireeth@ad to the querying
performance because large amounts of data need to be transfemedigioto memory, and this can be
a very expensive process with respect to the query resolution i&efingidt, Hornung, Kchlin, et al,
2008 Sidirourgos et a). 2008.

BitMat (Atre et al, 2010 follows the idea of managing compressed indexes, but it goes another
step further and proposes querying algorithms that directly performerdmpressed representation.
BitMat introduces an innovative compressed bit-matrix to represent thesRDé&ture. It is conceptually
designed as a bit-culi&< Px O, but its final implementation slices to get two-dimensional matri&£3:
andOSfor each predicat®, POfor each subjec$, andPS for each objecO. These matrices are run-
length Salomon 20078H compressed by taking advantage of their sparseness. Two addititamedys
are used to mark non-empty rows and columns in the bit®@&EndOS The results reported for BitMat
show that it only overcomes the state of the art for low selectivity queriesveMer, it is an interest-
ing achievement because it demonstrates that avoiding materializaton of idigenesults is a very
significative optimization for these queries.

A novel solution {ran et al, 2013 explore the RDF structuredness and index groups of predicates
and their instantiated data. Its performance for large datasets is still pending.

Finally, we highlight the novel hybridSakr, Elnikety, & He 2012 and the full in-memory RDF
stores Binna, Gassler, Zangerle, Pacher, & SpecP®11;, Janik & Kochut 2005 which represent an
emerging alternative in this scenario. Nevertheless, their current rasailt$ten limited to manage small
datasets. Their scalability is clearly compromised by the use of structures)didees and hash tables,
that demand large amounts of memory. However, some semantic applicaticnsstuference-based
ones, claim for scalable in-memory stores because they perform afdmegnitude faster if the entire
dataset is in memonHuang, Abadi, & Ren 2011), and they also support a higher degree of reasoning.

Arecent VP-based approach, callégtkiples Q&Ivarez-Garéa et al, 2011), uses compact data struc-
tures to compress and index the triples full in-memory. It represents thl ggiP| adjacency matrices
of SxOcells. Each matrix is represented with &tkee Brisaboa, Ladra, & Navarfo 2014, a com-
pact structure leveraging the very sparse 1 distributions to achieve arcaltipressed representation.
A recent improvement, ktriples+ Q&Ivarez—Gar(la, Brisaboa, Feandez, Maiihez-Prieto, & Navarrp
2013, enhances the vertical partitioning with additional SP and OP indexes. nTitigmtes the main
VP drawback (inefficiency in queries with unbounded predicates) atdsieof a limited space overhead.

New opportunities arise also thank to the advances in distributed computirggclass of solutions,
recently studiedluang et al. 2011, Urbani et al, 2010 on the MapReduce framework, allows arbi-
trarily large RDF data to be handled because more nodes can be adddddteawhen more resources
were necessary. BigDdtas an horizontally scaled storage inspired by the Google bigtable architecture
It can be deployed in a single machine as well as over a cluster of machittes, dynamic key-range
partitioning. This latter allows to manage larger datasets once the federatiatake incrementally
adding new machines without reloading the data.

The underlying RDF representation reflects the YARBarth et al, 2007 scheme, using three
indexes, (S,P,0), (P,0,S) and (O,S,P), scaling up to six if graph (contéxtniation is managed.

BigData uses a concurrency control for readers and writers. Writeys are absorbed onto specific
pre-sized nodes, which are migrated to optimized read-only B+Tree files Wiey are filled. Caching
is also used to reduce inter-node communicafions

"htp://www.systap.com/bigdata.htm
8More details on specific distributed indexes can be fourtdtjrv/www.systap.com/pubs/graph _databases.pdf

http://www.systap.com/pubs/graph_databases.pdf

146 12. Introduction

Nevertheless, these distributed systems still require further reseansuieeefficient RDF exchang-
ing (Ferrandez et a). 2011, Ferréndez et a). 2013, as well as efficient performance in each node.

In summary, the vast majority of these approaches suffers from lackatdislity (specially no-
ticeable using vertical partitionings{dirourgos et aJ. 2008), and uses naive compression approaches.
There is still a large interest in querying optimizatiddchmidt et al. 2010, whose performance is
diminished when the RDF stores manage very large datasets.

12.3 Our Goal

We have presented current scalability problems arising in RDF triple index&g Semantic Data. In
turn, we have shown that several scenarios require an index seubairkeeps the compactness of the
encoding providing basic or complex queries over triples. These arerimary, our main objectives:

 To desigrtriple indexes on top ofHDTFencoded datasetdeveraging its compression ability.

» To provide afast index constructionprocess at consumption time.

To allow for specific tuningto perform basic or complex queries.

To provide differenspace/time tradeoffsfor different purposes.
» To make use o$uccinct data structuresfor such indexes, achieving several advantages:

1. To reduce the size of indexes, thus mitigating scalability problems.

2. To perform in main memory on large compressed datasets, thanks to theessiop and
functionality of these succinct data structures.

3. To take advantage of the memory hierarchy to improve performance time.

Although these indexes are aimedHd T-encoded datasets, one could argue that a standalone config-
uration is equally efficient. The only difference lies on the workflow ofrgseIn the original proposal
we leverage the previousxchangedHDTto build an index on top, “as fast, compressed, and perfor-
mance efficient as possible” for the scenario one wish to play. In conaratandalone configuration
stands for an RDF index whose “file systemHBT, no matter if data is or not exchanged after o before
the consumption process.

| am big! It's the pictures that got small.
Sunset Boulevard (1950)

13

Compact RDF Indexes on top bfDTENncodings

As stated, several Triples encoding are feasible with different tréfiddsetween the compression ratio
(exchanging) and some natively supported operations over the trilasuimption). We first revisit
our HDT Triples encoding, proposing a more practical Bitmap Triples (BT) cordigpm (813.1). This
encodes the structure of the graph in two correlated bitsequences varnidhecindexed by means of
succinct data structures at consumption time3(&.2. This provides a basic retrieval feature which can
perfectly fit simple scenarios (such as the proposed in the motivation t66&2.1). Next, we consider
the use of additional compressed succinct data structures to resolwedatifkKSPARQL triple patterns
(813.2. This sets the basis of full SPARQL resolution. Finally, we experiment ¢inepcessibility and
query performance of all indexes on a testbet3(§).

13.1 HDTBitmap Triples Encoding

As stated, the triples in RDF could be represented as adjacency lists, psalgpect. InHDT, the
proposed Compact Triples encoding used this conceptualization. Howeie that an adjacency list
can also be seen as a tree, and then an RDF dataset comprises af finreest, @ne per subject. This is
represented in the top of Figui®.1 A graph, then, contains one tree per subject ID, the filgivel of
the tree. As stated, subject IDs are sequential, hence the first lewathjetts is implicitly represented.
Then, the second level lists all predicates (also sorted IDs) related toltfects and finally the leaves
organize all objects (sorted) for each p@ubject, predicate)

Compact Triples encoded this conceptualization roughly. 'eavere auxiliary values denoting a
change of list, hence they represent, implicitly, the tree-shaped structtoreever, these values were
embedded in each stream, mixing data and structure.

Bitmap Triples (BT) follows this idea and encodes the forest of trees in ametégent way, shown
in 13.1(C). First, subjects are again implicitly represented. Two structures areuties for predicates:

* An ID sequenceg,) concatenates predicate lists following the tree ordering.

A bitsequencel§,) uses one bit per element &),: 1-bits mean that this predicate is the last one
for a given tree, wheredksbits are used for the remaining predicates.

For instance, in Figur&3.1(C), the second-bit in B, marks the end of the predicate adjacency list
for the second subject which{g, 3, 5}.
In turn, object encoding is performed in a similar way:

* An ID sequenceg§,) concatenates object lists following the tree ordering.

* A bitsequencel§,) uses one bit per element &,: 1-bits represent the last object related to the
correspondingsubject,predicatedair, and0-bits the remaining ones.

148 13. Compact RDF Indexes on top oHDTEncodings

D ictionary

Underlying representation

ex:areaOfWork
ex:birthPlace
foafimbox

foaf:name P

¥ subjectl subject2 subject3 subject4
\d:type / 145 sublects subjects subjects sublectd . Se| 423511
= - Predicates:

221)
B,| 100111

233 Predicates: ‘40 @ 01 0 1
(2) ID-based 234 v e aRuR .
Replacement| " | 2 52 Y o P S R o| 5134211
P 311 | | Objects: | 5010320201010 | Objects:

ID
1 ' <http://example.org/Valladolid> \
SO
2 <http://example.org/Javier>
3 | <http://example.org/Pablo>
4 | <http://example.org/Santiago> |5 P
2 <http://example.org/Researcher>
3 “ifergar@example.org” 0
4 “ifergar@infor.uva.es” o
5 | “valladolid”@es
1
2
3
4
5

Bo| 1101111

i

(1) Dictionar 411
Building
Plain Triples COmpact Triples Bitmap Triples
@ (®) © J
<http://example.org/Javier> rdf:type <http://example.org/Researcher> .
<http://example.org/Javier> foaf:mbox “ifergar@example.org” .
<http://example.org/Javier> foaf:mbox “ifergar@infor.uva.es” .
<http://example.org/Javier> ex:birthPlace <http://example.org/Valladolid> .
<http://example.org/Santiago> ex:areaOfWork <http://example.org/Valladolid> .
<http://example.org/Pablo> ex:areaOfWork <http://example.org/Valladolid> .
<http://example.org/Valladolid> foaf:name “Valladolid” @es .

Figure 13.1: The proposed practi¢#DTtriple encodings.

In Figure13.1(C), the thirdl-bit in B, refers the end of the object adjacency list for the third predicate
in S, which is related to the second subject as we have previously explained, fiiis adjacency list
stores all objects related to t(gubject,predicatepair (2, 3).

Note also that the characterization of the lists with the proposed metrics renadith$or Bitmap
Triples as well as Compact Triples (see characterizatio7if.§. In short:

+ The length of predicates for a given subjéat S, is exactly its labeled out-degreé;g L~ (7).

» The expected mean and maximum length of the predicates listsane given byleg L~ (G) and
degL~ (QG) respectively. Remember that the empirical evaluation in Sedti8r83shows that few
predicates are related to the same subject, les2han average.

» Foragiven §ubject, predicate) pair, @, 7), its partial out-degreeleg— (i, j), denotes the size of
the corresponding list i,

» The expected mean and maxim values of the object lists irSthare given bydeg——(G) and
deg~~ (G) respectively. The evaluation in SectidrB.4states that the mean partial out-degree is
slightly bigger than 1, which implies short object lists for each (subject, paegipair.

13.1.1 BT Conceptual Navigability

The proposediDTBitmap Triples encoding (&82.3 allows the RDF graph to be largely compressed by
isolating ID-terms from the link structure, which is represented in two coatdthbitmaps. Thus, these
bitmaps are the core for accessing and querying the RDF graph athaptisn.

For illustration purposes, we show in Figut8.2 an excerpt from the previous example in Figure
13.1 As can be seen, adjacency lists draw tree-shaped structures canpthmisubject ID in the root,
the predicate IDs in the middle level, and the object IDs in the leaves (notedtiatieee has as many

13.1.HDTBitmap Triples Encoding 149

Subjects: @ @ @@

B,[100 111 |
Predicates:

Underlying representation

o 11 s,] 423511 |
. a1 Bo1101111|
Objects:
o) o s [s5134211]
Bitmap Triples

Figure 13.2: Detail of Bitmap Triples from Figue3.1

leaves as occurrences of the subject in the dataset). Each triple in thetdataow represented as a full
path root-to-leave in the corresponding tree.

The structure is encoded in the bitsequence and it can be interpretelioas f-errandez et aJ.
2013. Let P, be the list of predicates.€. the predicate adjacency l)dor the i-th subject.

* The ith 1-bitin B, marks the end of’;.

 The number of predicates if; can be obtained by subtracting the positfoaktwo consecutive
1-bitin B,.

For instance, the secoridbit in 5, marks the end of the predicate adjacency list for the second
subject (%»). There are three positions between the second and thé& fini¢tin B,. Thus, P» contains
three predicates, which are represented by the second, third atidl idaiin S, henceP, = {2,3,5}.

In turn, object encoding is performed in a similar way, hence the interpretatiows an analogous
approach. LeO,, be the list of objectsife. the object adjacency listor the n¢h (subject,objectpair.

e The nth 1-bit in B, marks the end o,,.

» The number of objects i@,, can be obtained by subtracting the positions of two conseclithies
in B,.

For example, the third-bit in 5, refers the end of the object adjacency list for the third predicate in
Sp, Which is the ID3. This predicate is related to the second subject as we have previousynexh
Thus, this adjacency list stores all objeatelated to thésubject,predicatedairs(2, 3).

13.1.2 BT Succinct Index

BT gives a practical representation of the graph structure which allggiedrto be sequentially listed.
However, direct accessing to the triples in thil list would require a sequential search until thth 1-
bit is found in the bitsequence. Thus, we propose to exploit the basieptsef succinct data structures
presented in Chapt&(82.4). In particular, we aim at building one succinct index per eBgland,
binary sequences, at consumption time.

As we have already introduced, there exist practical approache$ whiwidesrank , select
andaccess operations (described ir2&) over the bitsequences in constant time, with a little spatial
overhead. This overhead depends on the particular implementation boe séred iro(n), being n the
original size of each bitsequence. In the following, we provide formalismisow to access the encoded

'Note that we always consider that positions are numbered from.&l’heinga an arraya[0] is the position number “1”.

150 13. Compact RDF Indexes on top oHDTEncodings

ID-graph through these primitives. We assume that BT keeps the origuhating by subject-predicate-
object (SPO), but an analogous reasoning could be made for distterimys.

We denoteB; and3; to the binary sequences with the succinct index already incorporateddgdo
into memory at consumption time. The final configuration is then referredB3"as

Definition 30 (BT*) The Bitmap Triples configuration at consumption time, den&#ed, is the set of
succinct bitsequence indexBs and 3; together with the integer streans and S,

We show below that this configuration provides efficient resolution ferda@iple patterns. In par-
ticular, letG be an ID-triples graph, with € Si, p € Pg, o € Og andv a SPARQL variabley € V,
BT* resolves:

* (s,p,0), which is equivalent to test the existence of a triple.

0)
s, p,v), thatis, retrieve all the objects for a given p@ubject, predicate)

(
(
* (s,v,p), retrieving all predicates with which the given subject and object areeckla
(
(

)
s,v,v), which means to retrieve all the information from a given subject.
)

v, v,v) is trivially achieved with an in-order scan.

As can be seen, all these triple pattern provide the subject and, fronyitakigate its corresponding
tree. For explanation purposes, these triple patterns are given as lveitriigs clear that BT manages
an ID-graph. Thus, a pattern liKe, p, 0) is equivalent td, j, k) after an ID replacement =i, p = j
ando = k.

Intuitively, the triple pattern resolution is based on usgaject operations to localize the adja-
cency list of predicate®; for the i-th subject and the adjacency list of objects for (hg pair. We first
provide an example of resolution, and next we generalize the process.

Example. Let us illustrate the resolution of checking the existence of the t(ipl&, 4) in our running
example (Figurd.3.2. First, one has to locate the adjacency list of predicates for the seobjatts P».
This is equivalent to locate the initigldgin P) and final €ndP) positions of the list. Note that the.2d
1-bit in B; marks the end of*. Thus, the final position is achieved wittsalect operation ovei3;:

endP = select1(B,,2) = 4
In turn, as every list begins at the end of the previous list (or zero if thigeidirst list),begin P is:
beginP = select1(By,1) +1=1+1=2

Then, P, is retrieved fromS, [begin P, endP], which returnsS,[2,4] = {2,3,5}. In this list of
predicates, we look for the predicateas we are checking the existence of the tr{gle3, 4). This search
can be performed on a binary search, which actually retusegion = 2 as the predicatg actually is
in the second position. Thus, we are positioned on the {suibject, predicatepair, S,[3] = 3. Note
that we calculate that this is the third pair witkyin P + position — 1 = 2+2-1 = 3.

Next, the third list of objects)s is marked in the third-bit in B}, then we retrieve their delimiting
positions as:

endO = selecty(B},3) =4
beginO = select1(B%,2) +1=2+1=3

Therefore, the lisDs is retrieved asS,[beginO, endO], which returnsS,[3,4] = {3,4}. Again,
we perform on it a binary search to look for the objécis we are checking the existence of the triple
(2,3,4). It actually exists, an therefore the final resultrise. [

13.1.HDTBitmap Triples Encoding 151

Algorithm 1 findPredicate(i) Algorithm 2 findObject(x)
1: function FINDPREDICATE(i) 1: function FINDOBJECT(X)
2: endP < selecty(B,,1); 2: endO <« selectq (B}, z);

3 beginP < selecty(B,,i — 1) + 1, 3 beginO <« selecty (B}, x — 1) + 1;
4: sizep, < endP — beginP; 4 sizeo, < endO — beginO,

5: P; + S,[beginP, endP); 5: Oy, + SolbeginO, endO];

6: return (P, beginP); 6 return Oy;

7: end function 7: end function

The previous example shows how to test the existence of a triple by mearsetsfd) operation$
over B, and3}, ii) access to given positions &}, andS,, and iii) binary searches over the intermediate
retrieved adjacency lists. In fact, the rest of the presented triple pat@nise resolved in a similar way.
For instance, if no object is given, such(@s3, v), the process runs exactly the same until the last step,
in which all the list of valid objects)s, is returned. In turn, a pattefg, v, 4) starts in the same way, but
it repeats the last step for every predicate in the adjacency list of pteslica

We generalize this process and distinguish below four primitives whicheaypgestially performed
to test a ID-triple existence and therefore they constitutes the basis toad¢selaforementioned triple
patterns inBT™.

« findPredicate (1) — (P;, beginP). This function returns the list of predicates related to the
subjecti , P;, and the positioegin P in which this list begins irS,. For instance, as we showed
in our running examplefind Predicate(2) = ({2,3,5}, 2).

Algorithm 1 generalizes the required operations that we have illustrated in the exarnrptewe
obtain the delimiting positions af; (Lines 2-3). The size of the list is also calculated for future
estimation purposes (Line 4). Then, we retrieve the list of predicate ks &, (Line 5) and
return the result (Line 6).

« filterPredicate (P;,j) — position. It performs a binary search oR; and returns the
position of the predicatgin P;, or0 if it is notin the list. For instancefilter Predicate(Ps, 3) =
2 in our running example, as the predicatis located in the second position {if, 3, 5}.

Note that the predicatg is located then irS,[n] wheren = beginP + position — 1. In other
words, the objects for th@, j) pair is represented in theti-list in S,,.

* findObject (x) — O,. This function returns the A list of objects,O,, which is related to the
x-th (subject,predicatefpair represented i, [x]. For instance, as shown in our running example,
findObject(3) = {3,4}.

Algorithm 2 generalizes the required operations. First, we obtain the delimiting positiails of
(Lines 2-3). Similarly to the previous case, the size of the listis also calculatédure estimation
purposes (Line 4). Finally, the list of objects is retrieved fr§p(Line 5) and returned (Line 6).

« filterObject (On, k) — position: performs a binary search @»; and returns the position of
the objectt in O;, or 0 if it is not in the list. In our examplefilterObject({3,4},4) = 2.

2Note that naank operations are used, thouglselect operation can be performed which successirg operations

152

13. Compact RDF Indexes on top oHDTEncodings

Algorithm 3 (i,j,k) TP resolution

Algorithm 4 (i,j,v) TP resolution

1:
: position < FILTERPREDICATE(P;, j);
i n < beginP + position — 1,

: Oy, < FINDOBJECT(n);

: pos < FILTEROBJECT(Oy, k);

. if (pos # 0) then

[y
o

© O N O U WN

(P;, beginP) < FINDPREDICATE(:);

output(true);
else
output(false);

- end if

=

. (P;,beginP) < FINDPREDICATE(:);
2: position < FILTERPREDICATE(F;, j);
3: n < beginP + position — 1;

4: Oy, < FINDOBJECT(n);

5. output(O,,);

The resolution of the triple patterns (TP) by means of these four primitives is performed as follows:

* (4,4, k) - Algorithm 3: As shown in the previous example, the four primitives are called in order

(Lines 1-5). The last operatiorfilterObject returns the position of the given object in its adja-
cency list, if present. A value of O stands for the nonexistence of the trgiterp and then the
output is false (Line 9). Otherwise the output is true (Line 7).

(i,4,v) - Algorithm 4: The firsts three function calls (Lines 1-4) are exactly equal to the pusvio
case. The last step does not check an object, but it directly outputs allljgaeency list of objects
(Line 5).

(i,v, k) - Algorithm 5: First, the process runs similar to the previous cases, obtaining the list of
predicates for the given subjed®; (Line 1). Then, for each predicate (Line 2), it retrieves the
corresponding list of objects (Line 4) and tests the existence of tiigect (Line 5). A nonzero
value stands for the existence of the object and thus the predicate is outfirntes 5-6). We
assume here a stream of output values matching the predicate variable.

(i,v,v) - Algorithm 6: First, we retrieve the list of predicates for the given subjégt(Line 1).

Then, for each predicate in the list (Line 2), we retrieve the corredgpgribt of objects (Lines
3-4). We assume here a stream of pairs as output values (Line 5), sechpb the matching
predicate and the list of objects for this predicate.

(v,v,v) - Algorithm 7: This pattern retrieves all the dataset in order, and it is performed with a
double loop. For every subjéotLine 1), we perform as the previous pattern, retrieving the list of
predicates (Line 2) and, for each predicate (Line 3), the correspgiidt of objects (Lines 4-5).

In this case, we assume to output a stream of three elements composedudijtue, predicate,
and list of objects for thigsubject,predicatepair (Line 6).

Algorithmic costs. The aforementioned metrics enables an accurate estimation of the TP resolution
in Bitmap Triples. Tablel3.1summarizes the cost of each TP and the average cost in a general case.
Agreeing an O(1) cost faelect operations, and logarithmic costs of binary searches, the explanation
of the algorithmic cost is straightforward. First, let us detail the cost ofahefrimitives:

* findPredicate(i): It performsselect operations , O(1), and basic retrieval on an array,

O(1). Thus, this operation runs in time O(1).

3We assume that we know the maximum subject ID, which is always posgitele a basic mapping.

13.1.HDTBitmap Triples Encoding 153

Algorithm 5 (i,v,k) TP resolution Algorithm 6 (i,v,v) TP resolution
1: (P;,beginP) < FINDPREDICATE(7); 1: (P;,beginP) < FINDPREDICATE(%);
2: for (it:=0to P;.size()); do 2: for (it:=0to P;.size()); do
3: n < beginP + it; 3: n < beginP + it;

4: Oy, < FINDOBJECT(n); 4: O,, <~ FINDOBJECT(n);
5: if (FILTEROBJECT(O,,, k) # 0) then 5: output(P;[it], Oy);

6: output(F;[it]); 6: end for

7 end if

8: end for

Algorithm 7 (v,v,v) TP resolution

1: for (i:=0 to maxSubjectI D); do

2:

3
4:
5:
6
7
8:

(P;, beginP) < FINDPREDICATE(7);
for (it:=0to P;.size()); do
n < beginP + it;
O,, + FINDOBJECT(n);
output(z, P;[it], Oy);
end for

end for

filter Predicate(P;, j): It performs a binary search on the list of predicates related to the $ubjec
i. As stated, the size of this list is delimited by the labeled dedegé.~ (i), and thus it runs in
time O(og(degL~(7))). In the general case, we take into account the mean value of all pieslica
hence this operation runs in an average timb@degL—(G)))*.

Remember that, in all the considered datasets, the value of the labeled degrésss than 20
(even in the biggest datasets).

findObject(n): It performs similar tofind Predicate, with select and basic operations, run-
ning in time O(1).

filterObject(Oy, k): It performs similar tofilter Predicate, but with a binary search on the list
of objects related to the givefsubject, predicate) pair. The size of this list fori(j) is exactly
delimited by the partial degreéeg— (4, j), hence this operation runs in §(deg= (i, 7)))-
Remember that, in all the evaluated datasets, this partial degree was clositnteuth case, a
binary search is even unnecessary (there is only one element in theristy lcase, the general
case runs in an average timel@(deg——(G))).

As shown, all these operations runs efficiently and they are well delimitedeogresented metrics.

Thus, TP resolution costs can be summarized as follows:

* (4,4, k) - Algorithm 3: As the four primitives are called in order (Lines 1-5), this TP runs in a

logarithmic time with respect to the size of the involved predicate list and objectHamally,
it runs in time O{og(degL~(i)) + log(deg—~(i,7))). For the general case, this TP runs in an
average time @¢g(degL—(G)) + log(deg—(Q))).

“Note that we always consider hereinafter that the logarithm of an awésam upper limit due to the Jensen’s inequality
(Kuczma 2008. In short, for a concave functiohand numbers, zs, - - - , z, in its domain, itis true thaf (=) > =Si),
Thus, it remains true in our case whéfw) = log(x), being x one of the degrees in our metrics.

154 13. Compact RDF Indexes on top oHDTEncodings

[Triple Pattern| Average time |

(3,4, k) O(log(degL—(G)) + log(deg™—(G)))
(4,4,v) O(log(degL~(G)))

(i,v, k) O(degL—(Q) * log(deg——(Q@)))
(4,v,v) O(degL— (G))

(v,v,v) O(|S| * degL— (G))

Table 13.1: Triple pattern resolution times on*BT

* (i,4,v) - Algorithm 4: It runs similar to the previous case, but it obviates the last binary search
objects (the operatiofilterObject) as it returns all the list. Thus, itruns intimeloq(degL~(i))).
For the general case, this TP runs in an average timleyQlegL—(G))).

* (i,v,k) - Algorithm 5: As shown, for each predicate related to the subjedt retrieves the
object list and check the existence of the given object. As this numberedigates is the la-
beled degredegL ™ (i), it is clear that it performs in time @¢gL~ (i) * log(deg™(4))), where
deg~ (i) is the maximum partial degree of all paiisv). The average time is then @{gL—(G)x*

log(deg=~(G)))-

* (i,v,v) - Algorithm 6: The resolution performs similar to the previous case, but it obviates the last
binary search on objects (the operatififiter Object) as it returns all the list. Thus, the resolution
of this TP runs in time Qfeg L~ (7)). In other words, the algorithm performsg L~ (i) iterations,
and the cost of each iteration is in O(1). In the general case, the avaregis then Qleg L~ (G)).

* (v,v,v) - Algorithm 7: This pattern retrieves all the dataset in order with a double loop. One
can see that the cost of each iterations run in time O(1) (find operatioha}, T performs in an
average time QF| x degL—(Q)).

13.1.3 Application

HDTwas originally intended for publication and exchange but, as shown ait®B&map Triples compo-
nent provides enough information for efficient RDF retrieval onceddad he so-called Bitmap Triples
configuration at consumption time (B) provides arSP-O index which allows some triple patterns to
be efficiently resolved (Tabl&3.1). In fact, one could argue that these TP cover a vast range of real
SPARQL queries. As we stated in an empirical study of real-world SPARG¥igs Arias et al, 2017),
most SPARQL queries contains just one simple triple pattern. The propoftismch simple queries
reaches up to 66% ibbpediaand 97% in theSemantic Web Dog Foddgs. If we analyze the TP com-
binations used in all queries (including those from BGPs), the combinatipattdrns resolved by BT
cover the 89% of the TP combinations in the Dbpedia query logs, and the Btbfise from SWDF.

If we combine these results we can state that, in plain words, the exchgeé®Iitmap Triples, after
a lightweight loading process at consumption time (resulting in the so-calléfdah resolve about the
50% of the most common queries in SPARQL.

Note that, in some scenarios, the resolved TP could cover all the requisenier instance, that
could be the case of applications a) checking triple existence, b) making giespilietions over subjects
or b) traversing all the graph.

13.2. Additional Compressed Succinct Data Structures 155

Underlaying graph

Underlaying Wp representation

423511

100100

B,J100 111 2311 45
Predicates: | 0100 | I 01 |
W42 3511
______ =={1,2 =3
B,|1101111 /\)
Obijects:
Ss|5134211 it .) ’
=={3} T={4} Z={5}

BTW' = BT +W,
4 5
z={1} Z={2}

Figure 13.3: BTW: The proposed encoding of Bitmap Triples with a Wavelet Tiggin predicates.

13.2 Additional Compressed Succinct Data Structures

The original Bitmap Triples (BT) representation draws adjacency listsifizied by subject. This deci-
sion addresses fast querying for the patterns providing the subjgcesented above, but makes retrieval
by predicate and object difficult.

This section presents hadDTcan be enhanced with additional indexes at consumption time in order
to resolve all kind of triple pattern in SPARQL. In particular, we proposesaéhét Tree-based solution
for PS-O indexing (8.3.2.7 and an additional adjacency list faP-S indexing (8.3.2.2.

13.2.1 A Wavelet Tree-based Solution foPS-O Indexing

In this section we focus on enabling access by predicate on topof Bt is, we address the resolution
of the Triple Patterns presented below:

* (v,p,v), which means to retrieve all the information from a given predicate.

* (v,p,0), thatis, retrieve all the subjects for a given p@iredicate, object)

In both cases, the occurrences of each predicate must be quicklyd@atehis operation demands
adirect access to the predicate stregynHowever, as predicates are scattered along the stream, locating
all predicate occurrences in Bdemands a full scanning of the sequence, resulting in poor performance

Thus, the predicate-based retrieval demands indexed acc§sat@onsumption time, which could
be satisfied with multiple alternatives. For instance, an additional B+ inddg beubuilt once BT is
loaded. Nevertheless, in order to keep the same compact conceptionreptheentation, one should
consider thatS, can be seen as a general sequence of symbols and then succinesipdexding
efficientrank /select andaccess operations can be build on top of this sequence.

In particular, we propose the consumer to Idadn a Wavelet Tree structure (see the definition and
basic concepts in Sectidh4.2. WhereasS, lists plain predicates, the Wavelet Tréd),, represents

156 13. Compact RDF Indexes on top oHDTEncodings

Algorithm 8 occsPred(j)
1: function ocCsPRED(j)

2: numQccs < rank;(W,, W).size());
3 for (x = 1 to numOccs); do

4: posPred[] < select;(W,, z);

5 end for

return posPred;
6: end function

them by a balanced tree of height= [log|P|]. Figure13.3shows the schema of the representation for
the example in Figur&3.2 The configuration is then referred toBSW.

Definition 31 (BTW*) The Bitmap Triples configuration at consumption time enhanced with a Wavele
Tree index, denoteBTW*, is the set of succinct bitsequence inde¢sand 57, the succinct Wavelet
TreeW, together with the integer streas),.

In the following, let us trea¥V,, as a black box holding the predicates and serving the aforementioned
operations (described in detail i2.8.2):

* rank ;(W,, m) counts the occurrences of the predicate W, [1, m].
* select ;(W,, m) locates the position for the:-th occurrence of the predicajen WV,

 access (W,, m) returns the symbol idV,[m)].

Note that thél//p structure adds an additional overhead@it)log|P| bits to the space used in the
original S,,, and serves all these operations in tiM@og| P|) (see 8.4.2. This is an acceptable cost for
our purposes because of the small number of predicates used, in@rémtiRDF modeling (see48?).

The Wavelet Tree structure allows access by predicate to be supporbee aew primitive retrieving
the position of each predicate occurrence in the subject adjacency lists:

» occsPred(j) : returns the positions of the predicaten)V,. This operation is described in
Algorithm 8. First, a simplerank (Line 2) counts the number of occurrences of the predigate
along the full size ofV,. Then, for each occurrence ¢f(Line 3), it makes use of aelect
operation to get the position of the occurrence (Line 4), storing an afr@psitions which is
finally returned as result.

For instance, in the example in Figut8.3 the operatioroccPred(1) runs as follows. First, it
counts the number of total occurrences of the predicate 1, which ar@lg@u Then, we iterate
obtaining each position: the operatiofgect; (W), 1) andselect; (W), 2) obtain the position 5
and 6 respectively which are returned in an array as result.

Thus, the resolution of the triple patterns by predicate is performed as follow

* (v,j,v) - Algorithm 9: First, the process obtains the list of occurrence positions of the given
predicatej, posPred (Line 1). Then, for each occurrence (Line 2), it retrieves the spwading
subject (Line 3) and list of objects (Line 4), which are outputted as réisinié 5). Note that it
is simple to obtain the related subject of a predicate position, as it is marked witlutiger of

13.2. Additional Compressed Succinct Data Structures 157

Algorithm 9 (v,j,v) TP resolution
1: posPred]] <— OCCSPRED(j);
2: for (z = 1 to posPred.size()); do
3. subject < ranky (B}, posPred[z] — 1) + 1;
4: Oy, < FINDOBJECT(posPred|x]);
5: output(subject, O,,);
6: end for

Algorithm 10 (v,j,k) TP resolution
1: posPred]] < OCCEPRED(j);
2: for (z = 1 to posPred.size()); do
3: O,, - FINDOBJECT(z);
4 posObject < FILTEROBJECT(O,,, k);
5 if (posObject # 0) then
6: subject <= ranki (B, posPred[z] — 1) + 1,
7
8
9:

output(subject);
end if
end for

1-bits in B,, up to the previous position plus oheThis is simply retrieved with aank operation
over theB;; componerit (Line 3).

For instance, let us explain the resolution of the patterr, v) in the example in Figurd3.3
The process first uses the Wavelet Tree operatienPred(1) to retrieve the predicate positions

5 and 6 in which the predicate occurs. Next, it iterates over these positions. For position 5,
rank;(B,,4) + 1 returns 3, which means that the subjectdis related with this position. The
object list for position 5 is retrieved bfindObject(5) = {1}. The first outputted solution is then
(3,1), i.e,, subject=3 and object=1. The process is similar for position 6, obtaining#ot 4, 1).

* (v,j,k) - Algorithm 10: It performs similar to the previous case, but it restricts to those objects
equal to the given objedét. First, the process obtains the list of occurrence positions of the given
predicate (Line 1). Then, for each occurrence (Line 2), it retrighvedist of objects (Line 3), and
tests the existence of thkeobject (Line 4). A nonzero value stands for the existence of the object
and thus the subject is retrieved similarly to the previous case (Line 5) apdttad as a valid
result (Line 7).

For instance, let us briefly present the resolution of the pafter® 4) in the example in Figure
13.3 The process starts making usevofs Pred(3) to retrieve the position in which the predicate
ID 3 takes place in the Wavelet Tree. In this case, the retrieved position is 3, Wexobtain
the list of objects related to the third subject-predicate pair Wih= findObject(3) = {3,4}.
Then, we test if the objeet is in such list with filterObject(Os,4). The object actually exists
(in position2), and the related ID of the subject is obtained, as stated with, (B}, 2) + 1 = 2.
Thus, the outputted value sstating that the subject IR is solution for this pattern.

SIt is easy to see that this formula allows to discount the intermediate zenosimtg repetitions.
®We assume here thatink: (0) = 0.

158 13. Compact RDF Indexes on top oHDTEncodings

Algorithmic costs. The Wavelet Tree contributes withP5-0 index which allows the TP by predicate
to be efficiently resolved. Nevertheless, it is worth noting that the Wavegst fluns in timeO (log| P|)
for all rank , select andaccess operations. As shown in the TP resolution 81 (813.1.2,
the sequence of predicatéy is always accessed. In particular, it is easy to see that it is accessed by
the findPredicate(i) function (Algorithm1, Line 5) which is called by all TP resolution algorithms
(Algorithms3to 7, Line 1). Whereas this access was previously performed iniBiime O(1) (we have
assumed the sequence has been loaded into an array), irf BIe/¢ubstitution of5, by the Wavelet
TreeWV,, makes this time&) (log| P|).

Table 13.2 updates this overhead of time for the previous patterns working on ‘BTMéte that
for the special case db, v, v) this overhead is a multiplicative factor as we iterate over the number of
subjects. Nevertheless, we have previously justified the reduced timeeadktin the limited number of
different predicates per dataset (sde2g

The latest two rows on Tabl#3.2 show the estimation of time for the novel pattefnsj, o) and
(v, j,v) which can now be resolved thanks to the Wavelet Tree. The explanatitvesd costs is also
simple. We first detail the cost of thecsPred(j) primitive:

* occsPred(j): It performs arank operation over the Wavelet Tre@(log|P|) and for each occur-
rence it retrieves its position withselect operation,O(log|P|). The number of occurrences
of a predicate in the stream is perfectly describe by its “predicate in-el'egegl‘.ﬁ (7), hence this
primitive runs in time Olog|P| + (log| P| x deg)(j))), that is, time Olog| P| (deg} (4) + 1)).
The general case runs in an average time@p| (deg(G) + 1)).

As expected, the cardinality of each predicate has a strong influence effittient performance of
the primitive, and consequently of the TP resolutions. The cost of theskition can be summarized as
follows:

* (v,j,v) - Algorithm 9: This algorithm first calls thecssPred(j) primitive (Line 1), Ofog|P| *
(degp(j) + 1)). Next, for each retrieved position, it usegank operation over the bitmaps,
O(1), and calls gindObject primitive, O(1). We can assume an efficient implementation which
obviates the loop over the positions (Line 2) as it can be done directly asaowe get the
positions in thexcc Preds code (line 4). Thus, formally, it runs in time @g| P| * (deg} (j) + 1)).

For the general case, this TP runs in an average tineyd| = (deg} (G) + 1)).

* (v,j,k) - Algorithm 10: The algorithm performs similar to the previous case. It first calls the
ocssPred(j) primitive (Line 1), Ofog|P| x (deg} (j) + 1)). Next, for each retrieved position, it
calls afindObject primitive, O(1), and afilterObject primitive, O(og(deg™ " (x, j)) beingx
the subject involved in each case. Finally, whenever the objsdiound, it uses aank operation
over the bitmaps, O(1). Assuming again an efficient implementation obviatingap€lline 2) as
part ofoccPreds code (line 4), the general case runs in an average tirhg/@{|« (deg}, (G)+1)+
log(deg——(G))). Note that the latest componetig(deg——(G)), computes all thgFilterObject
calls. In practice, this mean partial out-degree is close to 1 in our evaluataskeds (see4g3.4.

Application. We have shown that a Wavelet Tree can effectively replace the ptedittaam at con-
sumption time, conforming the so-called BTWonfiguration. The integrateBS-O index provides
access by predicate, allowing efficient resolution of two novel TP (latestows in Tablel3.2).

It is worth mentioning that these novel possibilities are, as stated, at thefcastlightO(log|P|)
overhead in time for the rest of patterns and an extra spacéwfog|P| bits to the space used in the
original S,,.

13.2. Additional Compressed Succinct Data Structures

159

[Triple Pattern |

Average time

|

O(log|P| + log(degL—(QG)) + log(deg——(G)))
O(log|P| + log(degL— (G)))

O(log|P| + degL— (G) * log(deg——(G)))
O(log|P| + degL—(Q))

O(|S] * log|P| * degL—(G))

O(log|P| * (degh (G) + 1))
+1)

G
O(log|P| * (degh (G) + 1) + log(deg——(G)))

Table 13.2: Triple pattern resolution times on BTW

Thus, consumer applications should consider this configuration oveiopseeBT* in scenarios in
which a) Triple patterns by predicate, j, v) or (v, j, k) are required or b) efficient access by predicate
is required. Nevertheless, the study on SPARQL query logArias et al.(2011) shows that accesses
by predicate are less common for the first patterry, v) than for(v, j, k). For instance, 3.45% of the
TPs inDbpediaare of type(v, j,v), versus 7% ofwv, j, k). In SWDF, up to 4.21% are of type, j,v),

versus a significant 46.08% 64, j, k).

These results shows that, in some scenarios such as the one pointed irdthithstaomplete BTW
can resolve about the 99% of those queries with one simple TP. Averagenghe total types of queries
(including BGPs), we can state that BTWan cover the 80% of the total queries asked to a dataset.

13.2.2 An Additional Adjacency List for OP-S Indexing

The Wavelet-Tree based enhancement in BTiAves object-based access as the only non-efficient
retrieval in our approach. As we illustrated in Figudss2and13.3(for BT* and BTW respectively),
objects are always represented as leaves of the tree drawn fordgachreey list. Thus, all the occurrence
of an object are scattered throughout the sequépaehich prevent this from efficient access by object.

In this case, we require an additional indeR-S which allows adjacency lists to be traversed from
the leaves in an efficient manner and supports the following not addrésse

* (v,v,0), retrieving all the information from a given object.

In addition, theOP-S index would also help in efficient resolution of the T# i, k). Although this
TP was addressed by means of the Wavelet T¥gen the BTW* configuration, its resolution was not
straightforward. In fact, the previous approach run in time proportitm#iie product of the logarithm
of the different number of predicates and the number of triples in whichrindigatei is present (see
Table13.2). Note thati¥,, contributes with &S-O index, whereas the TR, i, k) would benefit from a

more appropriate@P-S index.

One could be tempted to address tBiB-S index with an structure like another Wavelet Tree sub-
stituting the sequencg,. However, this would become highly inefficient: the operations in the Wavelet
Tree run in time proportional to its height, which is the logarithm of the involvezhtalary. In this case,
the vocabulary consists of all different objects of a datasets, and litecarassively big (see experimental

results in Sectiod.2). Thus, it would result in very expensive operations.

We propose to replicate instead an adjacency list of objects occurreefsrsed to a®©-Index This
representation is illustrated in the example in FiglBe4 TheO-Indexdraws an adjacency list with one
list per different object. Each list stores the positionjirnn which this object appears. In other words,
each list clusters all the occurrences of objects, each one relatdddbjact, predicate) pair.

As in BT, the underlying adjacency list &f-Indeximplicitly represents the objects and makes use of
an integer sequence and a bitsequeige: stores the list of positions ifi, for each object, whereas the
bitsequencd, p is used for representing the cardinalities of the lists as in the upper levelsmstnce,

160 13. Compact RDF Indexes on top oHDTEncodings

Underlaying graph

P
Underlaying Wp representation
(0]
423511
X
Q -
2 4 2311 45
- Predicates: 0100 01
o w,[42 3511 | | | |
+ L
e T 5 T 1 T={1,2 =3

3 B,[1101111 */\” /\

Objects:]|
N : So[5134211 211 3 ¢
= - #1#2 #3 #4 #5 #6 #7 ={3} I={4} I={5}
[+1]
]| -
* S 6725341
O| Oindex: | 4 5
; Bpl 0011111 ={1} 3={2}
E\ -)

wiects: (D QODE
106 7 2. is ordered by the related predicate in W,;: (P1) (P1) (P2)

Figure 13.4: BTWO: Bitmap Triples encoding enhanced with two additional indexes by predidgfe (
and object O-Indey.

in Figure 13.4 the first 1-bit inB,p delimits the end of the list for the first object. This list stores the
values{6,7,2 }, which, as can be seen, are the positionSiin which the first object occurs.

The only difference between a common adjacency list is that we sort titeopesn ascending order
of the related predicate. That is, in the previous example, the pos{t®A® } corresponds to related
predicateg1,1,2 }. As we will explain below, this does not affect the rest of operationsiaaitbws
for query performance optimizations.

The complete configuration in Figule.4is referred to aBTWO'.

Definition 32 (BTWO*) The Bitmap Triples configuration at consumption time enhanced with a Wavele
Tree index and ®-Index denotedBTWO®, is the set of succinct bitsequence indegs3; and B} p,
the succinct Wavelet Tré#/,, and the integer streant$, andS,p.

In relative terms, thigD-Indexhas a significant impact in the total configuration of BT¥WWQn
particular, note thaS,p andB,p are of sizen (beingn the total number of triples) as they hold one
element per occurrences,p stores bits and the(n) overhead for the operations on the bitsequences,
whereasS, p is an array of positions, each of them represented {#itl || bits. Thus, itis clear that the
O-Indexadds an overhead afflog|n|] + o(n) bits. However, in absolute terms, the total size required
by BTWO is small in comparison to that required by the other competitive soluitiothe state of the
art (as we will see in Sectioh3.3.

This indexOP-S enables efficient object-based retrieval trough one new primitive whisteitses
adjacency lists from the leaves:

» occsObj(k) : returns the positions of the objéein S,,. This operation is described in Algorithm
11 First, twoselect operations o3, delimit the list of positions inS, for the given object

13.2. Additional Compressed Succinct Data Structures 161

Algorithm 11 occsObj(k)

1: function occOBI(k)

2:

endO < selecty(B:p, k);
beginO <+ selecty(B}p, k —1) +1;
for (x = beginO to endO); do
posObj[| < ranky (B}, Sip[z] — 1) + 1;
end for
return posObj;

7: end function

Algorithm 12 (v,v,k) TP resolution Algorithm 13 (v,j,k) TP resolution in BTWO
1: posObj[] «— occOBI(k); 1: posObj[] + occOBI(k);
2: for (x = 1 to posObj.size()); do 2: for (z = 1 to posObj.size()); do
3. predicate < access(W,, posObjx]); 3. predicate < access(W, posObjx]);
4. subject < rank: (B}, posObj[z] —1)+1; 4 if (predicate = j) then
5: output(subject, predicate); 5 subject « ranki (B, posObj[x]—1)+1;
6: end for 6: output(subject);
7 end if
8: end for

(Line 2-3). Note that the position &, of a position inS, can be obtained the counting the number
of 1-bits inB,, up to the previous position plus one (in order to discount intermediate zdues).
Thus, for each occurrence bfLine 4), it makes use of @nk operation or3, to get the position

of the occurrence i, (Line 5), storing an array of positions which is finally returned as result.

For instance, in the example in Figut8.4 the operatioroccsObj(1) runs as follows. First,
the select operations delimit the list of positions for the objgctbeing this list{6,7,2 }.
We iterate obtaining each position: the operatiensk;(B,,5) + 1, ranki(B,,6) + 1 and
ranki(B,,1) + 1 returns 5, 6 and 2 respectively. These are the positiorts, iof those predi-
cates related with the object 1, which are returned in an array as result.

The resolution of triple patterns by object is performed as follows:

* (v,v, k) - Algorithm 12: First, the process obtains the positions of the oljéntS,,, posObj (Line

1). Then, for each occurrence (Line 2), it retrieves the corredipgrpredicate (Line 3) and subject
(Line 4), which are outputted as result (Line 5). Note that the relatedqatieds achieved directly
accessing each position in the Wavelet Tree. In turn, as previously stla¢eictlated subject of a
predicate position is simply retrieved witlrank operation over thé3; component.

For instance, let us explain the resolution of the patterm, 1) in the example in Figur&3.4 The
process first uses tt@-IndexoperatiorocesObj (1) to retrieve theS, positions 5, 6 and 2 in which
the objectl occurs. Next, it iterates over these positions. For positiancggss(W,,5) returns

1, which means that the predicate 10s related with this position. In turn, the related subject is
retrieved withrank: (B, 4) + 1 = 3. Then, the first outputted solution (8, 1), that is, subject=3
and predicate=1. The process is similar for position 6 and 2, obtainingshkgset, 1) and(2, 2)
respectively.

(v, J, k) - Algorithm 13: The process runs almost similar to the previous case. The only differenc
is that it does not retrieve all the subjects, as it previously check if theetbfaedicate is equal to

162 13. Compact RDF Indexes on top oHDTEncodings

Triple Pattern[Average time |

(4,5, k) O(log|P| + log(degL—(G)) + log(deg™~(G)))
(4,9,v) O(log|P| + log(degL~(G)))

(i,v, k) O(log|P| + degL— (G) * log(deg——(G)))
(i,v,v) O(log|P| + degL— (Q))

(v,v,v) O(|S| * log| P| * degL—(QG))

(v, 4,) O(log|P| * (degy (G) + 1)

(v,v, k) O(degT(G) * log| P])

(v, 4, k) O(log deg™ (G) * log| P))

Table 13.3: Triple pattern resolution times on BTWO

Index Order Triple Patterns
SP-O | PS-O| OP-S @i,j,k) (@i,J,v) vk | Gv,v) | (vywv) | (VK | (vj,v) | (vvK)
BT* N - - SP-O | SP-O | SP-O | SP-O | SP-O - - -
BTW* Vv Vv - SP-O | SP-O | SP-O | SP-O | SP-O | PS-O | PS-O -
BTWO* Vv v v SP-O | SP-O | SP-O | SP-O | SP-O | OP-S | PS-O | OP-S

Table 13.4: Summary of indexes and Triple Pattern resolution through inotahpeoposals.

the given predicatg (Line 4). In such case, it actually retrieves the related subject (Lin@d) a
outputs it as result.

For instance, the resolution of the patt¢tn2, 1) in the example in Figur&3.4starts similar to
the previous case, and iterates over $igositions 5, 6 and 2 in which the objetibccurs. For
each one, it access the predicate to retrieve the related predicate. Ifetlisgbe is equal to the
given predicate, it retrieves and outputs the subject as results. In the first two positidiadsit
retrievingaccess(W,,5) = 1 andaccess(W,,6) = 1, as the predicate in both cases is 1. In
contrast, the latter 2 position is valid asCess(W;, 2) = 2, the second asked predicate. Thus, it
retrieves the related subject by means@ik;(B,, 1) + 1 = 2, hence returningubject = 2.

Finally, note that, although the predicate test is made sequentially on the lissitibps of the
objectk, one could reduce the number of checks: Once the elemestg-iare ordered by pred-
icate ID, a binary search can be made in the list for objecthe condition of this search, is that
the retrieved predicate of each position is less, equal, or higher to the gigdicatej. This way
we can reduce the number of comparison logarithmically with respect to theamwithe size of
listsinS,p.

Algorithmic costs. The OP-S costs are perfectly described by the aforementioned in-degree metrics,
as they characterize the cardinality of objects. In particular, the coseef:thObj(j) primitive can be
parametrizes as follows:

* occsObj(k): It performs twoselect operations over the bitsequenBgp, O(1), and for each
occurrence it retrieves its position withrank operation on the bitsequend®,, O(1). The
number of occurrences of an object is perfectly parametrized by itseftymes"deg™ (k), hence
this primitive runs in time Qfeg™ (k)).The general case runs in an average timé@t (G)).

As can be seen, the cost of retrieving all occurrences of an objecbvp®gtional to the number of
occurrences. This was obviously expected as the adjacency Gstridexgroups all these occurrences.
Then, the cost of the TP resolution presented above can be summaripidwas:

e (v,v,k) - Algorithm 12: This algorithm first calls thecssObj (k) primitive (Line 1), O¢eg™ (k)).
Next, for each retrieved position, it accesses the Wavelet TrgeDflog| P|) and uses sank op-
eration over the bitmaps, O(1). As for previous cases, we can assuefiiceant implementation

13.2. Additional Compressed Succinct Data Structures 163

which obviates the loop over the positions (Line 2) as paxatOb; code (line 4). Thus, this
resolution runs in time Qleg™ (k) = log| P|). For the general case, this TP runs in an average time
O(deg™ (G) * log| P)).

* (v,7,k) - Algorithm 13: The algorithm performs similar to the previous case. It first calls the
ocssObj (k) primitive (Line 1), O¢eg™ (k)). Next, for each retrieved position, it accesses the
Wavelet Tree W, O(log|P|). In contrast to the previous resolution, it only retrieve subjects, in
O(1) when the predicate is exactly Nevertheless, the time remains indd{™" (k) = log|P|). For
the general case, this TP runs in an average time O(G) * log| P|).

Note that, the aforementioned optimization performing a binary search in thet @lojurrences
can significantly reduce this time. With this optimization, we do not iterate on alii¢he (k)
occurrences of the objeé&t but we perform a binary search in logarithmic time. Thus, the time
decreases to @Qfg deg™ (k) * log| P|). For the general case, this optimization runs in an average
time O(og deg™ (G) * log| P|).

Table 13.3represents the resolution times of all TP in BTWNote that, compared to the times
for BTW* (Table13.2 we have updated the cost of resolvifig j, k), as As we have shown, th@-
Indexprovides a more efficient time. In particular, one can see that this time wasysty O(og|P| *
(deg(G) + 1) + log(deg—(@))) versus the novel @¢g deg™ (G) * log| P|) with the O-Index

One could effectively assume thaty degt (G) << (deg)(G) + 1) + log(deg=(G)). In plain
words, the logarithm of the mean number of triples in which an object apjgeansich less than the
average number of subjects in which a predicate occurs.

Application. TheO-Indexenhancement contributes with an indeR-S and allows access and TP by
object to be efficiently performed (latest two rows in TabB3. Two remarks should be done. First, we
have stated that this efficient performance is at the cost of a non-néglégiace overhead. In particular,
the O-Indexadds an overhead of[logn]| + o(n) bits, although we will justify in the empirical study
(Section13.3 that the total size remains small in comparison to other competitive solutions.Isd/e a
remark that thi©-Indexaccesses the Wavelet Tree and this adds an &xf&| term in the resolution.
This extra term is present in the latest two rows in TAAe3 Thus, if access by predicate is not required,
one configuration could maintain the stream of predicajgl®aded in an array (with access O(1)).
Table1l3.4summarizes the included indexes as well as the main index used to resolvdPezaimant.
In short, BTWO resolves all combination of TP. Note that, in accordance Witilas et al.(2012), it
covers a mean of up to 66% of all querieddhpediaand 97% in the&Semantic Web Dog Foddg. That
is, the presented BTWGCconfiguration, without additional optimizations nor query planners, is able to
efficiently resolve more than all 80% of the SPARQL quefies
In addition, resolving all TP variants implies that BTW@olds the basis to resolve joins of triple
patterns (the SPARQL BGPs formalized in Definiténand thus all SPARQL queries from the point of
view of triple indexing.

A compressed alternative for theO-Index. We end this section with an additional remark on @e
Index Note that this index does not replace the original stream of objects,ibebihstructed on top of it
with a significant space overhead. Thus, we point out that other ditexiséructures could be considered
for the requiredOP-S index, exploiting the space/performance tradeoff. In the following, vexide
brief notes on BTWO-GMR a more compact representation at the cost of performance degradation
BTWO-GMR* substitutes the previo-Index using instead a succinct structure perfornmiagk ,
select andaccess operations on the objects &,. In particular, we propose to loas}, on aGMR

"This is the average iBbpediaand theSemantic Web Do tune withArias et al.(2011).

164 13. Compact RDF Indexes on top oHDTEncodings

Algorithm 14 occsObj(k) in BTWO-GMR*
1: function occ0BJI(k)

2: numQccs <+ ranky(G,, G,.siz¢());
3 for (z = 1 to numOccs); do

4: posObj[| < selecty(G,, x);

5 end for

return posObj;
6: end function

structure Golynski et al, 2007 (see the definition in Sectiod.4.2. As we stated, this structure per-
forms efficiently on large alphabets (in contrast to other alternativesasittie Wavelet Trees).

Definition 33 (BTWO-GMR *) The Bitmap Triples configuration at consumption time enhanced with a
Wavelet Tree index and@MR structure, denoteB TWO-GMR?, is the succinct bitsequence indeXgs
and B}, the succinct Wavelet Tré#/, and theGMR structureg,.

Similar to the Wavelet Tree, thHeMR structureg, serves the following operations :
* rank x(G,, m) counts the occurrences of the objédh G,[1, m].
 select (G,, m) locates the position for the:-th occurrence of the objeétin G,,.

* access (G,, m) returns the symbol i@, [m].

Theg, structure useslogo + o(nlogo) bits, but it fully replaces the origindl, stream. Regarding
its performance, we consider t@MRrepresentation which suppogscess andrank in O(loglogo),
beingo = |0|, andselect in O(1) (see our basic concepts in Sect#d.2and the original proposal
by Golynski et al.(2007) for additional details). This decision is based on the resolution shown in the
following, which makes extensive usesd#lect operations.

It is worth noting that the resolution of triple patterns by object in BTWO-GNERperformed very
similar than in BTWO. In fact, Algorithms12 and13 run exactly similar. The only difference is that
we replace theccsObj(k) function by the corresponding object retrievaldpn This substitution is
illustrated in Algorithm14, and the operative is very similar to the previmcssPred function in the
Wavelet Tree (see Algorithi8). As can be seen,rank operation over the sequence returns the number
of occurrences (Line 2) and, for each one (Line 3), we retrieve diséipn of the occurrence i, with
aselect operation.

Without going into more details, one can easily see that the general periendagradation in
BTWO-GMR*, compared with BTWO, is due to two main reasons:

* In BTWO* we directly retrieve an object in O(1) by accessing the array of obje&s im contrast,
BTWO-GMR* has to perform aaccess operation oveg, in O(loglogo), beinge = |O].

» The operatioroccsObj is also slightly faster in BTW@ It runs in an average time @{g*(G)),
that is, proportional to the mean number of occurrences of an objecontnast, BTWO-GMR
performs ongank operation and then orselect operation per occurrence. Thus, the general
case in BTWO-GMR runs in an average time @glogo + deg}, (G))).

As we will show in the experiments {8.3.5, the BTWO-GMR performance degradation is mod-
erate and it can be perfectly assumed by many solutions. In particular(BGWMR* provides a good
space/tradeoff opportunity for those applications which show more restgpatial requirements.

13.3. Experimental Evaluation 165

Original Size Triples
Dataset (MB) PT CT BT
SWDF 16 | 2.93% 2.65% 1.76%
2011 Australian Census 52| 2.82% 2.63% 1.99%
Jamendo 144 | 3.73% 3.51% 2.18%
AEMET 726 | 2.56% 2.49% 1.54%
LinkedMDB 850 | 4.22% 4.12% 2.60%
Wordnet 974 | 3.75% 3.57% 2.23%
Affymetrix 6,526| 4.20% 3.67% 2.49%
Flickr 6,714 | 453% 3.80% 2.55%
Dbtune 9,566 | 4.19% 4.02% 2.49%
DBLP 9,799| 3.80% 3.32% 2.15%
2000 US Census 21,796| 4.81% 4.87% 3.00%
Linked Geo Data 39,423| 5.58% 5.47% 3.46%
Dbpedia 3-8 63,053| 5.55% 3.77% 2.92%
lke 102,662| 3.47% 3.31% 1.95%

Table 13.5: Compression ratio of Bitmap Triples (BT) component the original size of each dataset,
in comparison with Plain and Compact Triples.

13.3 Experimental Evaluation

In this section, we evaluate the size and TP query performance of thegawmndexes on top ¢tiDT.
We make use of the corpora we are employing in the rest of the thesisibdekicr Sectiort.2

First, we briefly study the size of the Bitmap Triples representation in compawgh Plain and
Compact Triples (83.3.). We also measure the space overhead oBifie BTW, andBTWO' succinct
indexes (83.3.9. Next, we compare thBTWO performance at consumption with two indexes from
the state of the art (8.3.3. These tests are performed on the “consumer” computer presentettionSe
7.4, reportingusertimes. Finally, we analyze the impact of alternative orderings for the triplE3.38)
and the BTWO-GMR variation (8.3.3.5, in size and query performance.

All sources are developed in C++ and compiled on g++ 4.7.2 v@i¢h optimization. We use the
bitmap and Wavelet Tree structure frdibcds (Compact Data Structures Library (libcds)2012).
The parametrization will be referred in each experiment.

13.3.1 Bitmap Triples Compression

We first analyze the impact of our Bitmap Triples (BT) configuration inHiET representation. Table
13.5shows the compression ratio of BT over the total size of the dataset (inphedy. We compare
BT with respect to the Plain Triples (PT) and Compact Triples (CT) reptaiens presented in Section
7.2.3 As can be seen, BT achieves the most compressed representatiandad#rlying graph, clearly
outperforming Compact Triples: BT size is about 60% the size of CT and tp%othe size of PT.

We take up again the evaluation performed in Sectighl, establishing a comparison when using
Bitmap Triples in theHDTrepresentation. Thus, Tabl8.6 comparedHDTwith universal compressors
(9zip and bzip2). Note that we do not use an advanced functional dacti¢such ad,,,,,), but a plain
dictionary encoding of references (see Secfich?. We also codify the ID-triples withog bits (of
the corresponding number of elements). As expected, Tehkkshows thaHDTwith Bitmap Triples
achieves the most compressed ratios, being 10% smaller (on averagdtiaith the Compact Triples
variant. Again, compression ratios are only around 2 times bigger (omgeethan those for gzip,
demonstrating the ability diDTto obtain compact representations of RDF .

166 13. Compact RDF Indexes on top oHDTEncodings

Dataset Triples Size HDT Universal Compressors
(millions) (MB) PT CT BT gzip bzip2
SWDF 0.1 16 | 18.21% 17.92% 17.02% 9.68% 6.63%
2011 Australian Census 0.4 52| 8.70% 851% 7.87% 2.80% 1.33%
Jamendo 1.0 144 | 24.87% 24.64% 23.31% 5.83% 4.16%
AEMET 3.5 726 | 13.77% 13.69% 12.74% 2.57% 1.20%
LinkedMDB 6.1 850 | 15.89% 15.79% 14.26% 4.75% 2.79%
Wordnet 6.3 974 | 12.85% 12.66% 11.32% 4.97% 3.22%
Affymetrix 44.2 6,526 | 16.17% 15.64% 14.46% 5.42% 3.43%
Flickr 49.1 6,714| 16.58% 15.84% 14.60% 9.03% 7.40%
Dbtune 58.9 9,566 | 14.57% 14.41% 12.87%11.24% 7.65%
DBLP 60.1 9,799| 20.62% 20.14% 18.97% 5.42% 3.49%
2000 US Census 149.2| 21,796| 7.45% 7.50% 5.63% 4.62% 2.27%
Linked Geo Data 274.7| 39,423| 27.07% 26.96% 24.95% 5.90% 4.13%
Dbpedia 3-8 431.4| 63,053| 18.32% 16.55% 15.70% 8.01% 5.90%
ke 514.8| 102,662 11.86% 11.71% 10.34% 3.22% 1.08%

Table 13.6: Compression ratio BIDTwith Plain, Compact and Bitmap Triples, and universal compres-
sors results.

It is worth mentioning that, to boost exchanging, two methods can achieve tsecmmpressed
representation foHDT (outperforming traditional text compression for RDF). On the one hara, w
proposed an “additiondlDTCompression” in Sectio.4.3 which applies text compression of tR®T
representation. This already outperformed text compression, andscamesapplied when using Bitmap
Triples. On the other hand, compressed RDF dictionaries, suéh.asg,, can encode the Dictionary
component. We experiment with this possibility in the next part of this thesis.

13.3.2 Analyzing the Space Overhead &TWO*

Table13.7reflects the space requirements of the particular indexes in BT¥Wi@n loaded at consump-
tion time. We provide the size of the indexes with respect to the Bitmap Triples siacim dataset.
Thus, the second column corresponds to the size of the bitnipsnd 3;) introduced since the BT
configuration. The third column considers the size of the Wavelet T¢&9 {ntroduced since the BTW
configuration. Finally, the®OP-S index of BTWO' is presented in the fourth column. Note that our
implementation uses RG bitmaps (samplin@@f both for our bitmap indexes and the Wavelet Tree.

Several comments can be drawn from these results. First, théiBfiaps required to act as an SP-O
index (as summarized in Tahl8.4) are only 8% (on average) the size of the Bitmap Triples. That is, the
consumer can resolve about 50% of the most common queries in SPAR€Bdstonl3.1.3, with a
little 8% overhead over the transferred triples representation.

In turn, the third column in Tabl&3.7 shows that a mean of 20% of space overhead is required to
build the Wavelet TreeRS-O index). As stated, in the final BTWQonfiguration, this index contributes
to resolve the (v,j,k) patterns which, in practice, are not massively usstA(gas et al.(2011). In
addition, it adds a logarithmic cost to access the predicates. We will discties mext Chapter that this
index could be obviated if such type of access is not required.

Finally, theO-Indexsize is provided in the fourth column. It is easy to see, though, that this index
supposes a significant space overhead, around 84% of the origiraz& TheO-Indexsize covers the
array of positions§,pr) of lengthn (the number of triples) and its bitmap inde®,¢). Nonetheless,
the O-Indexi) completes the index structure at consumption time, ii) it resolves the common &nfv)
(v,v,k) patternsArias et al, 2011), and iii) it performs efficiently (see the evaluation in Sectiéh3.3.

13.3. Experimental Evaluation 167

Dataset Bitmap Triples Indexes
(MB) BT* bitmaps BTW Wavelet Tree BTWO O-Index
SWDF 0.28 10.41% 27.08% 80.44%
2011 Australian Census 1.04 11.45% 21.87% 84.92%
Jamendo 3.14 9.99% 17.27% 85.05%
AEMET 11.18 9.82% 17.65% 88.39%
LinkedMDB 22.10 8.64% 24.91% 80.84%
Wordnet 21.70 8.84% 21.99% 83.79%
Affymetrix 162.24 7.52% 16.33% 85.67%
Flickr 171.37 7.77% 11.74% 90.10%
Dbtune 237.98 7.61% 24.43% 80.80%
DBLP 210.46 7.83% 12.00% 93.25%
2000 US Census 654.24 7.39% 25.08% 79.85%
Linked Geo Data 1,362.76 6.12% 32.77% 69.68%
Dbpedia 3-8 1,841.18 5.47% 19.95% 82.06%
ke 1,997.88 7.98% 11.46% 93.31%
] MEAN \ - \ 8.35% 20.32% 84.15%

Table 13.7: Space requirements of the indexe$ Biimap indexes, the BTWWavelet Tree and the
BTWO* O-Index given as ratios (in %o).r.t the original Bitmap Triples size of each dataset.

Table13.8shows the total sizes of the incremental configurations, which are a doeséquence of
the index sizes presented above. Thus; Bdds the bitmap overhead directly to the BT size, resulting
in a mean of 8% space overhead. In turn, the Wavelet Tree may contrilibterwimportant overhead in
BTW* but, as can be seen, BTV@nly adds a 9.33% overhead over the BT size (on average). Thaereaso
is simple: the Wavelet Tree do not append its overhead but it completelgeshthe integer sequence
S, by the Wavelet Tree W This assures that, thanks to this succinct structure, we can pro#AGe
index with a very limited overhead. Finally, tli@P-S index overhead is also directly added to the BT
size, resulting in a total of around 93% space overhead (on averdtbepapect to the BT size.

In summary, the final BTWOconfiguration adds three indexes (SP-O, PS-O and OP-S) and mwovide
total TP resolution with a mean of 93% space overhead of the exchangedBitipkes component.

13.3.3 BTWO* Performance Comparison

In the following, we analyze the performance of BTWWIth respect to the state of the art. In particular,
we compare and analyze the representation space and the triple patbdutioegperformance against
RDF3X (Neumann & Weikum 2010 and K-triples Q&Ivarez-Gar(w etal, 2011). Sectionl2.2.2in-
cludes a detailed review of both solutions. RDF3X is a native multi-indexingisolon the basis of
BT -trees. K-triples follows a vertical partitioning strategy, creating &t#ee index per predicate. We
also test the improvedkriples+ (Alvarez-Garéa et al, 2013 which includes additional SP and OP
indexes. Thus, it addresses better performance at the cost of adb#ate overheads.

We first compare the space requirements of each solution. We chooseaaydset of six datasets
from our evaluation setup in Secti@gn2 These datasets correspond to that used for evaluating,
as they cover different application domains and number of triples. Tab8shows the space ratio with
respect to the original Plain Triples size, that is, three IDs per triple (iniksd As can be seen, thék
triples solution takes advantage of the sparse distributions per predieatiegeo the most compressed
solution for RDF triple indexing. On average’-kiples outperforms 7 times our BTWQ@ompression
and up to 42 times the results of RDF3X. The improvéeriples+ proposal, including SP and OP

8Note that $ is destroyed after the creation of the Wavelet Tree.

168 13. Compact RDF Indexes on top oHDTEncodings

Dataset Bitmap Triples Triples
(MB) HDTBT* HDTBTW* HDTBTWO*
SWDF 0.28 | 110.41% 111.91% 192.35%
2011 Australian Census 1.04| 111.45% 112.51% 197.42%
Jamendo 3.14 | 109.99% 110.82% 195.87%
AEMET 11.18| 109.82% 110.66% 199.05%
LinkedMDB 22.10| 108.64% 109.83% 190.67%
Wordnet 21.70| 108.84% 109.89% 193.67%
Affymetrix 162.24| 107.52% 108.30% 193.97%
Flickr 171.37| 107.77% 108.33% 198.43%
Dbtune 237.98| 107.61% 108.78% 189.57%
DBLP 210.46| 107.83% 108.40% 201.65%
2000 US Census 654.24| 107.39% 108.58% 188.43%
Linked Geo Data 1,362.76| 106.12% 107.69% 177.37%
Dbpedia 3-8 1,841.18| 105.47% 106.43% 188.49%
ke 1,997.88| 107.98% 108.52% 201.83%
] MEAN \ - \ 108.35% 109.33% 193.48%

Table 13.8: Total space requirements of BBTW* and BTWO w.r.t the original Bitmap Triples size.

Dataset Plain Triples In-memory configuration
Size(MB) | HDTBTWO* k2-Triples K-Triples+ RDF3X

2011 Australian Census 1.47 139.33% 13.83% 15.84% 681.81P%
Jamendo 5.38 114.48% 13.52% 23.61% 993.74%
AEMET 18.61 119.64% 8.07% 11.13% 665.20%
Dbtune 400.36 112.68% 38.06% 46.85% 673.460%
2000 US Census 1,049.25 117.49% 33.09% 39.50% 508.73%
Dbpedia 3-8 3,497.36 99.23% 38.56% 51.00% 570.97%

Table 13.9: Space requiremenmts.t the original Plain Triples size (in log. bits) of each dataset.

indexes, is 5 times more compressed than BTW®lonetheless, we will show below that BTWO
performs several orders of magnitude better than bdthigles proposals. In turn, the BTWGolution
uses almost 6 times less space than RDF3X, on average. Note also that'B3\bfly slightly bigger
than the Plain Triples size, except Idbpediawhich is even smaller (99.23%).

Then, we analyze the retrieval ability of our BTW®&blution. To do so, we evaluate the performance
on triple pattern solution as it is the core for BGP resolution in SPARQL. Theeygiestbed consists
of randomly generated TP: for each dataset, we consider 1,000 ramigbdenpatterns of each type.
Nonetheless, note that the type (v,p,v) is limited by the number of differedigates.

Figuresl13.5and13.6show the resolution times f@btuneand Dbpediarespectively. We design a
warm scenario for the RDF3X on-disk solution in order to reduce thelizatian of the 1/O transactions
w.r.t. the in-memory solutionstriples and BTWO. Thus, RDF3X figures report the mean resolution
time of six consecutive repetitions of each query, forcing results to bablein main memory.

Several remarks can be drawn from Figut8s5and13.6 The most important remark is that, in gen-
eral terms, BTWO clearly outperforms ktriples and RDF3X on both datasets. In particular, BTWO
excels in most triple patterns, improving RDF3X by 1 level of magnitude and 8ddok>-triples. Let
us particularize the analysis by BTW@ndexes and the triple pattern resolution.

For Dbpediag we test all the 57,986 predicates as the random generation couldtoeslimited.

13.3. Experimental Evaluation 169

Querying time for triple patterns (dbtune)

1000 T T T T T
BTWO* C——1
k2-triples]
k2-triples+ |
RDF3X me—
100
10
%)
=}
c
o
o
Q
£ 1
E
()
£
Z
0.1 B
0.01 =
0.001

v;;v
Figure 13.5HDT BTWOTP query performance ipbtune

Querying time for triple patterns (dbpedia)

loo T T T T T
BTWO* C——1
k2-triples & ! -
k2-triples+ >
RDF3X mm— o8
10 Z 2 [
> <
< o 2
* 5 <
- ot & %
3 1 * s <
c > \& X!
3 o 5 %
Q pe! S <
2 s , W,
E i < P
e o
E 0.1 ot i
= !
0.01 ¢ 4
i
0.001 -
spo sV VVo

Figure 13.6.HDT BTWOTP query performance iDbpedia

e BT* index -access by subjecThis corresponds to the triple patterns (s,p,0), (s,p,V), (s,V,V), and
(s,V,0) in the figures. As stated, BSP-O ordering favors the access by subject, hence BTWO
excels in these triple patterns. For instanceDbtune BTWO* resolves (s,p,V) 9 and 66 times
faster than k-triples and RDF3X respectively. As expecteditkples pays its vertical partitioning
overload with unbounded predicates, as all matrix have to be queried md¢hsss: irDbpedia
k2-triples performs 2397 and 246 times slower than BTWI®(s,V,V) and (s,V,0) respectively.
However, the additional indexes irfriples+ significantly reduce this difference. In fact-k
triples+ resolves (s,V,0) 7 times faster than BTWan addition, one can see that-kiples also
outperforms BTWO in (s,p,0) resolutioni.e., those queries checking the existence of a triple. In
this case, BTWO performs two binary searches (see SectiBil.? whereas k-triples uses its
optimized operation of checking a cell in the S-O adjacency matrix of the gikexficate.

170 13. Compact RDF Indexes on top oHDTEncodings

» O-index -access by objeciThis index accesses the triples by object and, thus, it helps resolve the
triple patterns (V,p,0) and (V,V,0) in the figures. As can be seen, BT\WI€arly emerges as the
fastest solution resolving these triple patterns, beating the other propgsageral orders of mag-
nitude. For instance, iBbpedia BTWO* is 1979 and 43 times faster thah-kiples and RDF3X
respectively for the (V,V,0) triple pattern. Although the additional indexds’itriples+ improve
its performance, BTWOis still one order of magnitude faster. Note that, as explained in Section
13.2.2 theO-Indexfinds the adjacency list of the given object in constant time (proportioritd to
number of occurrences).

* Wavelet Tree index access by predicateThe Wavelet TreéV,, in predicates provides BS-O
index in BTWO', resolving the (V,p,V) triple pattern in the figures. As expected, the higbsisc
of the Wavelet Tree index (logarithmic with the number of predicates as sho@ection13.2.])
have a noticeable effect in the reported times for (V,p,V): BTW&3 to 6 times slower than the
other solutions in both datasets. In this cagetriples reports the best performance once it has to
“dump” the adjacency matrix of the given predicate.

Thus, in general, BTWOreports the best overall performance for RDF retrieval. Taking the mean
of the performance (in times faster) per triple pattern and dafa&fWO* runs 33.25 times faster than
RDF3X, 344.80 than*ktriples and 15.32 thar?ktriples+.

13.3.4 BTWO" Order Comparison

We had assumed that BT always keeps the original ordering by Subjdie&te-Object (SPO) up until
now. In fact, this is the logical order according to the notion of RDF triplestatement). We then
study other alternative orders for the BT representation and the sudgeigdexes: BT, BTW* and
BTWO*. We first analyze the space requirements of each alternative. Themowsse the most efficient
alternatives to compare the query performance against the traditionabiSleing.

Space requirements. The space requirements of all the alternative orders are shown in Higutén
which each bar draws the ratio against the size of the correspondimtusérin SPO order. The given
ratio is the average of the presented fourteen datasets (see experiimanéaiork in Sectior.2). We
summarize below the most important implications of the alternative orders:

e Subject-Object-Predicate (SOM).this case, we swap the order of the adjacency lists in BT. That
is, in the top level of BT we list all the objects related to each subject, and ttienbdevel
represents all the predicates for a giysabject,objectpair. Regarding the indexes at consumption,
the original Wavelet Tree of predicates is substituted by a Wavelet Trebjetts. In such case,
the alphabet of symbols is the number of different objects, which is muclebibgn the number
of predicates. This overhead is reflected in the size of BEW BTWO in Figure13.7. For
instance, the BTWOindex in SOP order i$.42 times bigger than those in SPO order.

 Predicate-Subject-Object(PSO) and Predicate-Object-Subject(ROBdth cases, BT acts simi-
lar to a Vertical Partitioning technique. For each predicate, its related elemenlisted. Note
that, as in the previous case, the middle index for POS will be an overloadavgle¥ Tree of
objects. In contrast, a Wavelet Tree of subjects will be constructedSa@r, which also becomes
much bigger than the original Wavelet Tree of predicates. This results inspace requirements,
as shown in Figurd 3.7. Although the BT structure and the BTndex are comparable in size
to those in SPO, the Wavelet Tree overhead in PSO and POS is predominast.BIIIW" and
BTWO* demand more space than the originals in SPO.

This is equivalent to choosing a TP at randonDistuneor Dbpedia

13.3. Experimental Evaluation 171

Order Comparison versus SPO
1 1 1 1 1

18 |

16 A

11.42

(o0}
(! ™ — V)

14 | _ Ba a .
o 1 .
) : had
i;) -
3 1| 8 i
2 o
5 - .°
o 08 4
Q
©
&

0.6 | B

04 | B

0.2 B

0
3 2 : i g
] o a o] o
Order

Figure 13.7: Comparison of alternative orders for BT and its indexesrestuenption. Each graph repre-
sents the ratio against the size of the corresponding structure in SPO orde

Note that all the structures are smaller in POS than in PSO. One should firaLbeaf this differ-
ence in the BT adjacency lists, characterized by our metrics. That is, thefdize lists of objects

in POS are delimited by the predicate out-degree: the number of differgrutslbelated to given
predicates. The bigger is the predicate out-degree, the larger are tloé dibjscts in POS. In turn,
larger lists group more triples and, thus, they yield to more compact repatises. Regarding

the lists of subjects in PSO, they are delimited by the predicate in-degreeinaitat seasoning

can be made. In general terms, the mean predicate out-degree is smallretitanresponding
in-degree (see Sectigh3.5, i.e., a predicate is related to more objects than subjects. Thus, the
grouping lists in POS are larger than in PSO, resulting in more compact BT &hd B

» Object-Subject-Predicate(OSPlhis ordering places the objects at the top of the BT represen-
tation, and keeps the lists of subjects related to each object, relegating theafee at the bot-
tom. As we stated in our experiments, it is common that only one predicate is redaa€dub-
ject,predicate)air (see Section.3.4. Thus, the BT compact structure is poor (it does not group
references) and its size is significant bigger than the SPO orderingn&#®seen in Figurk3.7. In
addition, the middle index should be again a Wavelet Tree of subjects whidls yiea significant
overhead: the BTWOindex is1.33 times bigger than the corresponding in SPO order.

» Object-Predicate-Subject(OPS)he OPS ordering is, surprisingly, the most compact alternative.
As shown in Figurd 3.7, itimproves the size of all structures in SPO order, being around 10% more
compact. Note that in OPS, as in SPO, the predicate is in the middle position anddsreay list
is indexed with a Wavelet Tree on a short alphabet. The improvement &@ic8n be explained
simply by the codification of the elements. In BT, the bottom stream alwayssstoggements,
beingn the number of triples. These are encoded with a given number of bits: thsattog of
the number of different elements. In SPO, BT codifiesbjects with the logarithm of different
objects, whereas in OPS it codifiessubjects with the logarithm of different subjects. In general,
the number of different subjects is significant smaller than the number efreliff objects (see
Sectiord.2). This is the main reason OPS ordering demands smaller space than SPO.

172 13. Compact RDF Indexes on top oHDTEncodings

Querying time for triple patterns (dbtune)
1000

T T
BTWO* ——

BTWO*-OPS &5%7a

BTWO*-POS

100

10

Size ratio (in %) against SPO:
]Order\ BT \ BTWO*

OPS | 83.60% 86.48%
POS | 95.04%| 104.88%

Time (miliseconds)
-

0.1

0.01

spo spV sV sVo Vpo VVo VpV

0.001

Figure 13.8HDT BTWOTP query performance iDbtune comparison between different orders.

Querying time for triple patterns (dbpedia)

10000 ! !
BTWO* ——1

BTWO*-OPS]

BTWO*-POS

1000

100

[N
o

B Size ratio (in %) against SPO:
| Order| BT | BTWO*

OPS | 96.80%| 98.07%
POS | 107.65%| 116.08%

Time (miliseconds)

0.1

0.01

Vpo Wo

Figure 13.9:HDT BTWOTP query performance iDbpedia comparison between different orders.

0.001

spo spv swW sVo

Vpv

Query performance. We choose the two most compact alternatives from the previous study: POS
and OPS. The first one is almost as compact as SPO, and it is the reatigsenf a Vertical Partitioning
technique in BT. The latter, OPS, is 10% more compact than SPO, and itdat/eke same philosophy
but it reverses the order of the elements. Fig'@8and13.9show the TP resolution time of these two
alternative in comparison with the original SPO orderind)btuneandDbpediarespectively. Note that
we perform over the same previous TP testbed (see Sek3i@13. The rightmost tables in the figures
show, for each dataset, the ratio of the orders against the size in SBO ord

The POS performance reports similar figures in both datasets. As caarhéatsethe worst solution
in all cases except for (V,p,V) resolution. In this particular case, thelugsn takes advantage of the
Vertical Partitioning by predicate, outperforming the other solutions a megh6otimes. In addition,
as shown in the rightmost tables, the BTWiBdexes in POS always demands more space requirements
than both SPO and OPS orderings. It is also worth noting that (s,p,V) tiesola extraordinary slow
with a POS order: the algorithm would retrieve the list of objects related to the giredicate and,
for each object, it checks if the given subject is related to(finedicate,objectpair. This operation is
extremely low once many objects can be related to each predicate (see gtihn

13.3. Experimental Evaluation 173

All these facts implies that POS is discouraged in favor of the other solutiNesertheless, we
outline that the POS order could be chosen in some scenarios demanditigréxaaes in (V,p,V)
resolution in spite of the other weakness: a little overhead in space anuh cetmadation in the rest of
queries, in particular for (s,p,V) resolution.

The analysis of OPS performance is more complex. Note that the resolution t®RSrorDbtune
is slightly better than SPO, whereas this is not the casBligedia Let us analyze the following cases
of triple patterns:

* (V,p,0) and (V,V,0). In these triple patterns the OPS ordering alwaystéme best performance as
it indexed the triples by object. In the SPO ordering, both cases aresaccésough the BTWO
O-Index in contrast with the faster BTindex used in the OPS case. Algorithmically speaking,
one can easily note that the degrees are multiplier factors when resolymg)(séind (V,V,0) in
SPO (See Tabl&3.3. The costs are additive, though, using8m OPS.

* (V,p,V). Its resolution in OPS also improves the SPO ordering in the studiedeta. In this case,
one can find the reason in the asymmetric degrees of the predicates., Tt 18) resolution first
retrieves all the occurrences of the given predicate in the first strelam, Tor each occurrence,
it locates the associated top element in the structure (subjects in SPO or abjeRS). Last,
the corresponding adjacency list of elements (objects in SPO or subjectBI) i© retrieved.
The algorithmic cost is proportional to the number of occurrences of tédigate in the stream,
denoted by its predicate in-degree in SPO (see Set8dh)), and then to the predicate out-degree
in OPS. In general terms, the mean predicate in-degree is bigger tharthegpe out-degree (see
Figure4.12in our experiments)i.e. a predicate is related to more subjects than objects. Thus,
(V,p,V) resolution costs are also bigger for SPO ordering than for OPS.

* (s,p,0) and (s,V,0). In these patterns, OPS ordering is slightly worseSR@nin both datasets.
Note that, in the traditional SPO order, the resolution performs binarylsemmhich depend on
the number of predicates per subject and the number of objects relatésitaect, predicateair
(see costs in Tabl#3.3. In turn, in OPS, this corresponds to costs which are proportional to the
number of predicates per object and the number of subjects relatddlgeat, predicatepair. In
Dbpedia an object can appear related to many subjects. This resulted in sucrepols that, in
fact, we decide to resolve these patterns in OPS starting from the subjdotsoypobjects. With
this decision, performance results are close in SPO and OPS as werpatémtically over the
same elements, but they are represented in different indexes. SP@@mslgghtly outperforms
OPS because the latter pays the overload of searching the predicated tela subject in the
bottom index of references.

e (s,p,V) and (s,V,V). Again, OPS improves SPO resolution timeBhbtunebut they suffer from
performance degradation Dbpedia The reason is partially different than the previous case. In
these triple patterns, SPO uses the*Bidex whereas the bottom index of subject positions is
used in OPS ordering (eé®-Indexin tune with the originaD-Indexin SPO). The resolution with
this latter depends on the number of triples in which the subject takes padeggnee as seen in
Table13.3. In a scenario such d@3bpediag with potentially frequent subjects, the OPS is clearly
discouraged over SPO.

In summary, as expected, OPS order should be chosen if access tyi®pjéoritized over access by
subject. Nonetheless, the rightmost tables in the Figl@e&and13.9show that OPS ordering is slightly
more compact than SPO. This tradeoff places OPS as an interesting ¢arndidany scenarios at the
price of some performance degradation in (s,p,V) and (s,V,V) whendyjects tend to be massively
repeated (such iDbpedig.

174 13. Compact RDF Indexes on top oHDTEncodings

G, comparison versus O-Index
1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12

|1.08
|1.07
|1.11

H
T
|0.94
lo.86
|0.85
lo.79
|0.80
|0.01
|0.79
|0.84
|0.86

08

lo.71
|0.68

Space ratio over O-Index

04

02

SWDF 4
Flickr
Dbtune
DBLP
ke -
MEAN -+

2011 Australian Census - 0.57
1 1

Wordnet -
Affymetrix

Jamendo
AEMET 4
LinkedMDB A
2000 US Census -
Linked Geo Data -
Dbpedia 3-8

Figure 13.10: Comparison of tlig index and the originaD-Index Each bar represents the ratio against
the size of theé-Indexstructure (the-Index+ the object arrays,) (in SPO order).

13.3.5 The BTWO-GMR* Alternative

We end this evaluation with a brief study on the aforementidDdddexalternative, BTWO-GMR (see
Sectionl13.2.9. We first analyze its space requirements in the normal SPO configuratime. \le have
shown the OPS achievements in the previous section, we verify the BTWR:@Mnpressibility on an
OPS ordering. We finally test the query performance of BTWO-GMRboth SPO and OPS orderings.

Space requirements. Figure 13.10shows the size ratio of th€, index against the originaD-Index
structure, in the evaluated datasets (see details in Set@pnThat is, a value 0f.68 in Dbpediastates
that the substitutg,, structure irDbpediarequire8% the space of the replac&tindexstructure. Note
that under the size of the replac®dindexstructure we include, in fact, the size of all the object structure,
that is,S,, S,p, andB,p. The last column in Figur&3.10computes the mean of all the datasets.

As can be seen, thg, alternative achieves significant space savings: it takes a mexi¥oand up
to 57% w.r.t the originalO-Index In large datasets, these savings can be crucial to scale up applications.
For instance, iDbpedia the G, index saves almost 1 GB of consumer main memory.

Nevertheless, it is worth mentioning that, with this alternative, only three platidatasets achieve
slightly bigger figures than th@-Index(up to 111%):JamendpDBLP andLinked Geo DataWe stated
that theO-Indexadds an overhead afflogn | +o(n) bits (see Sectioh3.2.2) to the representation. In to-
tal, for the original object structure in BTWQwe also have to consider+o(n) bits for B, andnlog|O|
for S,. In turn, theg, index usesulog|O| + o(nlog|O|) bits. One can easily see that the difference is
comparable. Thus, one should find the reason if@WR construction which implicitly hides some pa-
rameters (see our basic concepts in Secidni2and the original proposal bgolynski et al.(2007) for
additional details). Without going into too much details, GEIR structure used in thg, index builds
a virtual matrix of|O| rows andn columns. In these three datasets, the vocabulary of different objects is
extremely bigger with respect to the total number of triples. For instandaénked Geo Datdhere are
more than 121 millions of different objects in 274 million triples (see Tdh?dn Section4.2) (almost 1
different object each 2 triples). In such special casesGikR virtual matrix is almost as long as wide,
hence th&j, index achieves comparable ratios than the origixihdex

13.3. Experimental Evaluation 175

G, comparison versus O-Index
1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BTWO-OPS LIIZIID

1o | BTWO-GMR-OPS meseem

I
0. 47‘4

0.8

071

0.66

0.6

1070
067

0.70'

061

067

070

0563
055

0.6

Space ratio over O-Index

02

o
|
I
I
I
|
I
I
I
I
|
I
I

SWDF
Jamendo
AEMET
LinkedMDB
Wordnet
Affymetrix
Flickr
Dbtune
DBLP
2000 US Census
Linked Geo Data
Dbpedia3-8
MEAN

2011 Australian Census

Figure 13.11: Comparison between the BTWO-GNdd the BTWO configuration in SPO and OPS
orderings. Each graph represents the ratio against the size of BTWO

Figure13.11first compares the final BTWO-GMRconfiguration size, which makes use of fig
index instead of the origindD-Index This corresponds to the first bar in Figurg.11for all datasets,
given as a ratio against the original BTWO-GNBonfiguration size. The last group of bars represents
the mean of all datasets. As expected, the ratios follow the same tendeney@fshvings: BTWO-
GMR* takes a mean of 88% of the space of the original BTWO

Finally, we study the impact of BTWO-GMRon an OPS ordering, once we established that this
ordering also achieves large saving$38.4. Note that, in OPS, thEMRindex is built on the subjects
(at the bottom of the representation). Th@VIR also acts on a large alphabet and a good behavior
could also be expected. The second and third bars in FitRitErepresent the respective space ratios
of BTWO* and BTWO-GMR both in OPS order. These ratios are given against BTW®OSPO order.

As can be seen, BTWO-GMRon OPS order (referred to &T'WO-GMR-OP9 largely outperforms
BTWO* whether on OPS or on SPO order. In fact, it achieves an extraordineay compression: in
general, BTWO-GMR on OPS order uses 70% of the original BTWsize (in SPO order). IDbpedia

for instance, this saves up 1.1 GB of consumer main memory. In tutinked Geo Datawhich was a
corner case for th&MR solution in SPO order, BTWO-GMROPS saves more than 744 MB. All this
makes BTWO-GMR, and particularly BTWO-GMR-OPS, the best candidate for those applications
with tight space requirements.

In the following, we test if th€&SMR savings are, as expected, at the cost of performance degradation.

Query performance. We end this section evaluating tl@&VIR alternative in TP resolution. To do
S0, we use the same previous TP testbed (see Sd@i83, and we perform on BTWO-GMR(SPO
ordering), as well as over the OPS ordering, BTWO-GMBRPS. Figuresl3.12and 13.13show the
TP resolution times. To establish a comparison, the figures also include teenafttioned results for
BTWO* and BTWO-OPS. The rightmost tables in the figures represent the size ratio of elatios
against the size of the common BTW@pproach (similar to Figurg3.117).

Let us compare first the results of BTW@nd BTWO-GMR. We analyze two categories: triple
patterns by object, thus making use of the particularities ofthedex, and the rest of TPs.

176 13. Compact RDF Indexes on top oHDTEncodings

Querying time for triple patterns (dbtune)

1000 T T
BTWO* ——
BTWO-GMR
BTWO*-OPS
BTWO-GMR*-OPS

100

10

Size ratio (in %) against BTWO

Time (miliseconds)
[

Structure \ Size ratio
BTWO-GMR * 92.67%
o BTWO*-OPS 86.48%

BTWO-GMR *-OPS | 73.64%

0.01

o
S I ’— -
I 5
s o o 50

0.001 = A
sVo Vpo VVo VpV

Figure 13.12HDT BTWOTP query performance of BTWO-GMRn Dbtune

Querying time for triple patterns (dbpedia)
1000

T T T T T
BTWO* ——1
BTWO-GMR
BTWO*-OPS
BTWO-GMR*-OPS

100

10

Size ratio (in %) against BTWO

Time (miliseconds)
[

] Structure \ Size ratio\
BTWO-GMR * 72.05%
01 BTWO *-OPS 98.07%

BTWO-GMR *-OPS | 67.48%

0.01

0.001

spo spv swW sVo Vpo VVo VpV

Figure 13.13HDT BTWOTP query performance of BTWO-GMRn Dbpedia

* (V,p,0) and (V,V,0). In these triple patterns, the BTWO-GM&ternative uses thg, index to
retrieve the object occurrences, in contrast to@xmdexused in the traditional BTWOconfigu-
ration. Thus, the difference in the resolution time is solely due to the diff@exfdrmance of both
indexes. As can be seen, the theoretical degradation of this alterrsitidée(] in Sectiorl3.2.9
is shown in practice. Nonetheless, the degradation is very moderate indiaffets: the resolution
time of these patterns is 40% slower in BTWO-GMiRan in BTWCO, on average.

e (5,p,0), (s,p,V), (s,V.V), (s,V,0) and (V,p,V). As stated, in the rest oftth@e patterns, thej,
index introduces a theoretical slight degradation when accessing thetsofgee Sectioh3.2.2.
Obviously, the more objects are accessed in a TP, the more important is thdategn. This can
be appreciated in the figures, as the degradation of BTWO-GisIRoticeable bigger iDbpedia
TPs, which access more objects, tha®istune On average, the resolution time of these patterns
is 63% slower in BTWO-GMRthan in BTWCO'.

Surprisingly, the performance degradation due todhédex is slightly more pronounced in those
triple patterns which do not access by object. Averaging over all the $étutgons in both datasets,

13.3. Experimental Evaluation 177

Structure Size Ratio | Mean Performance Performance Ratio by Triple Pattern

(in %) Ratio PO | 5PV [5VV) | (5V:0) [(Vip,0) [(VVio) [(VipV)
BTWO-GMR * 84% 1.8 15 1.3 1.9 1.8 3.3 1.6 14
BTWO *-OPS 87% 0.8 1.0 1.0 1.0 1.0 0.9 0.7 0.3
BTWO-GMR *-OPS 70% 2.1 3.4 3.3 2.0 2.0 2.0 1.2 0.6

Table 13.10: Space/performance tradeoffs of BTWa@riants. Average of six datasets (see Tdltlel).

BTWO-GMR* is 56% slower than BTWQ In any case, the reported times are comparable and this
BTWO-GMR* performance degradation could be perfectly assumed by many applicafitiessize
ratios shown in the rightmost tables in Figueés12and13.13complete the analysis of the interesting
space/performance tradeoff of BTWO-GRKR-or instance, BTWO-GMRonly demands 72.05% of the
space required by BTWQn Dbpedia Thus, an application running @bpediacan save up to 970 MB
of consumer main memory at the cost of 60% slower TP resolution.

Next, we compare the results on OPS ordering represented in FituEzand13.13 Note that, in
this case, th6& MR-based7, index is built on the subject stream, replacing it.

e (s,p,0), (s,p,V), (s,V,V) and (s,V,0). In OPS ordering, all these casesesolved accessing the
index structure by subject (see Sectih3.4. Thatis, the BTWO-GMR-OPS alternative uses the
bottomGMR-based index to retrieve all the subject occurrences. As can beisdmih datasets
the reported times of all four TPs are close. In fact, the performancelddM@ GMR*-OPS for
(s,p,0) and (s,p,V) is noticeable worse than on BTWA@PS. Note that, on average, a subject has
more occurrences than an object (see Tdhiten Chapterd). As we perform proportional to the
number of occurrences, thus the degradation o@N&R-based index is more pronounced in OPS
(acting on subjects) than in SPO ordering (acting on objects). Taking the ofi#@e performance
in both datasets, BTWO-GMROPS is 2.5 times slower than the BTVI®OPS configuration, but
3.7 times slower than BTWO-GMRin SPO ordering).

* (V,p,0), (V,V,0) and (V,p,V). In the first two cases, an OPS orderingesakse of the BTindex
to first retrieve the object occurrences. In the latter, the predicatelg¥avee is used. Thus, in
any case the theoretical degradation is due to the subject access@fiRdased index. This
is actually reported in the figures: On average, the BTWO-GNIRS alternative is 60% slower
than the BTWO-OPS configuration, and only 8.5% slower than BTWO-GMR SPO ordering).

As can be seen, th@MR-based index on OPS ordering suffers from performance degradsis
cially for those TP accessing by subject. Averaging over all TPs, the BI®WIR*-OPS configuration is
2.5 times slower than BTWGQOPS, and 2.1 times slower than the BTYM@ SPO order). Nevertheless,
the rightmost tables in Figurds.12and13.13show the high compression ratios of BTWO-GMRPS:
it takes 73.64% and 67.48% the size for BTWi@ DbtuneandDbpediarespectively.

Finally, we summarize the most important tradeoffs in Tal8elQ We represent the space ratio
(in %) and the performance ratio (in each TP as well as the total mean) evBTWO" proposal. We
average over six datasets (described in Tabld): 2011 Australian CensysamendpAEMET, Dbtune
2000 US Censuand Dbpedia This table should be interpreted carefully. For instance, attending to
these results, the BTW®OPS could be the candidate representation in most scenarios: it takese37% th
size of BTWO and its performance is 0.8 times the corresponding in BTWiperforms 20% faster).
However, we have described the resolution algorithms in detail, and weshaven that BTWO-OPS
strongly depends on the particular distribution of objects. In practice,esified that it suffers from
significant degradation in (s,p,V) and (s,V,V) whenever objects tend to bsivety repeated (see Section
13.3.9: in Dbpedia the resolution of (s,p,V) and (s,V,V) in BTWGDPS is 53% and 50% slower than
BTWO* respectively, in contrast to the mean 1.0 values shown in the table.

Therefore, although these results can vary on specific datasets,1Bablprovides, though, a good
indicator of the space/performance tradeoffs of the proposed triplgesdd consumer.

Gentlemen, you can't fight in here! This
is the War Room.

Dr. Strangelove or: How | Learned to
Stop Worrying and Love the Bomb
(1964)

14

Discussion

We briefly summarize the main contributions of this part devoted to RDF triple indé&14.1). We
also depict potential uses besid¢ST(814.2).

14.1 Contributions

This part of the thesis is focused on scalability problems arising in RDF tripkxesifor Big Semantic
Data. Chaptet2 motivated this problem and provided a summary of the state of the art in RDkeiside
and stores. We documented that most approaches suffer from scaliaBiligg and use naive compres-
sion. With that in mind, we established the main goals of compact triple indexep oftbTencoded
datasets. These goals are addressed in Chagtearoposing lightweight indexes built efficiently at
consumption time.

We employed succinct data structures for such indexes. First, weggdonovel structure, referred
to as Bitmap Triples (BT), which codifies the structure of the graph throw tweetated bitsequences.
Its main advantage is that BT encoding can be enhanced (always atmuenswith a succinct index
over the bitsequences, providing efficient (constant) SP-O accées, We introduced a Wavelet Tree
which can replace the sequence of predicates, operating as a PSxOnirogarithmic time (v.r.t the
number of predicates). Finally, an additional adjacency list of objectsibates with an OP-S index-
ing, completing the so-called BTWQproposal for efficient RDF retrieval on top 6fDT. One of the
main contributions in this sense is that the resolution of all triple patterns in BTW&3 described
algorithmically, and the costs were clearly detailed with the metrics proposedhiot€H.

We also presented@MR-based alternative for the OP-S index. This configuration, BTWO-GMR
is aimed at obtaining a more compact representation at the cost of perfmmegradation.

In our tests, we experimented the compressibility and query performanderafexes on a testbed
of real-world datasets, reporting important remarks:

« BT is the most compressed configuration for H@Ttriples: in the considered datasets, BT size is
about 60% the size of Compact Triples (CT) and up to 50% the size of PligiedrIin turn HDT
with BT is 10% smaller thakDTwith CT, on average.

« The SP-O index is a little 8% overhead over the transferred triples mqped®n, whereas a mean
of 20% of space overhead is required to build the Wavelet TP&@ index). In contrast, the
OP-Sindex could represent a cost of around 84% space overhead.

e The final BTWO configuration provides total TP resolution with a mean of 93% space agrhe
of the exchanged BT.

* In general, our approach BTWQeports the best overall performance for RDF retrieval, in com-
parison with K-triples and RDF3X proposals.

* BTWO* reports the worst performance in (V,p,V) patterns in which we pay theitbgac costs
of accessing the Wavelet Tree.

180 14. Discussion

« On average, the?triples solution outperforms 7 times our BTW@ompression. In contrast,
BTWO* performs most triples patterns several order of magnitudes faster, deiegn of 344.80
times faster thantriples. The improved %triples+ solution is 5 times more compressed than
BTWO*, but 15.32 times slower in query performance.

« BTWO* uses 6 times less space than RDF3X, and performs a mean of 33 times faster.

In addition, we analyzed other ordering variants for the triples. In pdaticwe show that OPS
ordering demands a mean of 10% less space than SPO, and it excels itrifflegeatterns providing
a constant object. In addition, it is competitive in the rest of the querieseh®mme scenarios could
choose this ordering instead of the SPO by default. In turn, POS orderslightly less compact than
SPO, it excels retrieving by predicate but suffers significant detjcadim the rest of the queries.

Finally, we studied the BTWO-GMRinteresting space/performance tradeoffs on both SPO and OPS
orderings. This latter configuration, BTWO-GMIOPS, constitutes our most compressed solution: it
takes a mean of 70% the size of BTW@t the cost of doubling the TP resolution time.

14.2 Other Applications

It is clear than all proposed indexes on topHIDTare closely tight to its particular representation. In
particular, all them require i) a dictionary+triples partitioning and ii) a bitmap tsiptenfiguration (or a
similar representation separating the data streams, predicates and olpecthe structure). Nonethe-
less, one might well wonder if these indexes could work olOfT or with other diverse purposes.

In fact, all the proposed indexes could potentially be usedd@fffras additional structures comple-
menting other systems. We summarize below the applicability with respect to SPAE¥QIution and
we briefly devise some applications. The coverage of the queries isahepgrted with respect to the
aforementioned empirical study of real-world SPARQL querfgsas et al, 2017).

» BT* resolves the most used TP combinations. For instance, it covers the 8% TP combina-
tions in the Dbpedia query logs. As BTs much smaller than other solutions (such as RDF3X as
seen in the experimentation in Sectid®.3, one could perfectly substitute (or complement) part
of the indexes of the other solutions with BT

* We have shown that the Wavelet Tree pays a logarithmic time and performerdioan other
solutions resolving (V,p,V). Nonetheless, only 3.45% of the TPs irDibgediaquery logs are of
this type. In addition, if this TP is part of a SPARQL BGP, a query plannatdcprobably tend
to avoid its early resolution, as it can provide too many results. All this state§ tha Wavelet
Tree construction could potentially be obviated, or ii) another variant afxesl can be raised.
Alternatively, the POS ordering could be chosen in some scenarios priagi{iz,p,V) resolution.

 Although theO-Indexresults in the most overloaded structureHDT, its size can also compete
with the indexes of other approaches. Thus,@akdexcould be integrated within other solutions,
as it also provides constant time in object accessingsM& alternative provides noticeable space
savings in conjunction with an OPS ordering at the cost of performargradiation.

« Our study of the impact of alternative triples orderings, as well as theoselGMR-based index,
provides a full set of flexible configurations to exploit those spacedpadnce tradeoffs required
by particular solutions.

* The demonstrated scalability in size and performance makes out indesg@sgoadidates to take
part of hybrid stores in-memory/disk in order to minimize 1/O transactions.

Part V

Querying HDT-encoded Datasets

An elegant solution for keeping track of
reality. Was it your idea?.
Inception (2010)

HDTFocusing on QueryingHDT-FoQ)

As we have motivated in the previous chaptersH&T-encoded dataset can be directly accessed once its
components are loaded into the memory hierarchy. Part Il and IV of thessthpeovided compact dictio-
nary and triples components both for exchanging, as well as enhaipledirtdexes built at consumption
time. Thus, the next step was obvious: the integration of both reseambh@sinto an integrated pro-
posal for RDF consumption.

This part of the thesis simply presents this integration, the so-chll2@Focusing on Querying
(HDT-FoQ). In plain words,HDT-FoQ is the result of post-processitdDT for RDF consumption
(Martinez-Prieto, Arias, & Ferdndez 2012.

This chapter briefly presents some minor remarks on this integratidh4)§ as most of the work
involves the development of the components described in the previousopdhnis thesis. After these
remarks, we evaluate the Publication-Exchange-Consumption workfiog H®TandHDT-FoQon a
real-world setup (85.2. We analyze the performance of each step as well as the overalspracd the
query resolution.

15.1 Towards an HDT-FoQ Engine

HDT-FoQis built, at consumption, on top of the exchand#dTand exploits the presented dictionary
and triple indexes to allow exchanged RDF to be directly consumed at laafge sc

Previous chapters have shown that both dictionary and triples can leedarefully by considering
the volume of the datasets and the retrieval velocity needed by specificajmpig&c Nonetheless, we
provide in the following a set of general decisions for post-processiagguerying.

15.1.1 HDT-FoQ Generation

HDT-FoQ starts out from the idea of exchangirTwith the D, dictionary (see Chaptet0) and
the Bitmap Triples (see Chapt&8). Then, at consumption time, two processes are performed:

* It loadsD,,,, into the memory structures required to be functional. That is, it retrievesatae d
of all the compressed dictionary partitionsin,,,,, and loads them in the appropriated succinct
data structures. Note that th2,,,, pointers ptr) and the language and type indexim@ and
dtypé have to be incorporated.

« It builds the BTWCO enhanced triple indexes. First, the object structure in Bitmap Triples is

scanned to build th®-index Then, the Wavelet Tree is constructed, deleting the previous predi-
cate stream in Bitmap Triples.

The result is a compact RDF representation optimized to be managed aretlqunenain memory.

184 15.HDTFocusing on Querying HDT-FoQ)

15.1.2 HDT-FoQ Querying

HDT-FoQinfrastructure enables basic triple patterns to be resolved, in compsgsssa] at higher levels
of the hierarchy of memory. Note thax,,, provides the lookup operation®¢ate andextract)
whereas BTWO efficiently performs ID-triples retrieval. The conjunction of both compdségads to
resolve all SPARQL triples patterns.

Although this kind of queries are massively used in practhigag et al, 2011), the SPARQL core
is defined around the concept of Basic Graph Pattern (BGP) and its sesnnbuild conjunctions,
disjunctions, and optional parts involving more than a single triple patterns, HT-FoQ must pro-
vide more advanced query resolution to reach a full SPARQL coveragtis moment, we focus on
resolving conjunctive queries by using specific implementations of the welllkmergeandindexjoin
algorithms Ramakrishnan & Gehrke2000. Additional operations and optimizations are relegated to
future work.

BGP resolution. Efficient BGP resolution relies on i) the performance achieved for indalidriple
pattern resolution, ii) the efficiency of the join algorithms, and iii) the optimizatioatefgies used
for triple pattern reordering within the BGP. Query optimization is orthogon& D¢ retrieval, thus
HDT-FoQ could take advantage of any existing technique within the state of the art. folkhweing,
we provide insights into efficient join implementations on topH&f T-FoQ triple pattern resolution.

Merge andIndex joins can be directly resolved IHDT-FoQ. Merge join is used when the
results of both triple patterns are sorted by the join variable. It is worth nttimigtriple pattern results
are given in the order provided by the index used (see TERK. If the results of one triple pattern are
not sorted by the join variabléndex join can always be performed. It first retrieves all results for
the join variable in one triple pattern and replaces them in the other one.

In our HDT-FoQ implementation (evaluated in Secti@b.2), we follow a simple approach and our
algorithm always performs index join. To do so, we first resolve the begsresive pattern, in terms of
the expected number of results, substituting the join variable by the obtaihezsyand continue with
the rest of the TPs. As we show below, the BTWiAdexes allow to obtain an expected number of
results efficiently:

e (i,v,v) or (i,j,v) . we pre-process the triple pattern making usérafPredicate(i)
Bitmap Triples functionality (see Sectidr8.1.9. The range of positions i1, indicates the ex-
pected object results.

* (v,v,k) or(vjk) : we pre-process the triple pattern by mean®oésObj operation of
the OP-S index (see Sectioh3.2.9. If the predicate is given, in (v,j,k), we restrict the number of
expected results to the number of predicate-object pairs.

o (i,v,k) . this is the less tight estimation, we estimate it as (i,v,v). Nonetheless, note that his
estimation should be very close to the real value, if we consider the resaolts stiructural metrics;
the out- and in-degrees were comparable to their corresponding deg@eas, stating that if a
subject and an object are related, only one predicate brings these togd¢her, on average (see
results in Sectiod.3.9).

e (V,j,V) . due to the high Wavelet Tree costs, we store an histogram with the numtrgrled
for each predicate beforehand, accessing it when deciding for thexegnsive pattern. The size
of this histogram is depreciable.

As mentioned, there is room for other optimizations on toplDIT-FoQ, but the presented approach
sets the basis of BGP resolution and, thus, full SPARQL support.

15.2. Experimental Evaluation 185

] Dataset | Original size| gzip | HDT HDT+gzip |
2011 Australian Census 52 1.46 1.57 0.35
Jamendo 144 8.41 14.71 6.17
AEMET 726 18.67 47.50 9.50

Dbtune 9,566 | 1,074.79| 662.94 259.73

2000 US Census 21,796| 1,007.79| 813.85 209.44
Dbpedia 3-8 63,053 | 5,049.22| 6,792.55 2,767.91

Table 15.1: Compressed sizes (MB).

15.2 Experimental Evaluation

This section analyzes the Publication-Exchange-Consumption workfldve s€&tup is similar to the
configuration presented in Chapftérthe data publisher is implemented on a powerful computational
configuration whereas theonsumeris slightly more limited (see Sectioh4 for complete details). In
addition, we consider here a third involved agent, the network:

» Thenetwork is regarded as an ideal communication channel for a fair comparisorohssdered
free of errors and any other external interference. We assumesartission speed of 2Mbyte/s.

We make use of the corpora we are employing in the rest of the thesisibdekitr Sectiort.2 As
usual, we report “user” times in all experiments. THBT-FoQ prototype is also developed in C++,
compiled usingg++-4.6.1 -O3 -m64 and is publicly available aitp://www.rdfhdt.org

We first analyze the impact of usitpPTas a basis for publication, exchange and consumption within
the studied workflow, and compare its performance with respect to traditiogthlods currently used in
each process. Then, we focus on studying the performane®®dfFoQ as the querying infrastructure
for SPARQL: we measure response times for triple pattern and join resolution

15.2.1 Analyzing the Publication-Exchange-Consumption Wdflow

Our analysis always considers that the publication is a one-time pro@$sr(ped only once), whereas
exchanging and preprocessing costs are paid each time that any constriieees the published dataset.
The publication policy affects the size of the datasets and, thus, i) the timgdoarge but also ii) the
decompression time, as this should be the initial consumption step when tradittomatession is used
for publication. We analyze the use a gzip compression as it reportedagoogression ratios in our
previous evaluation (see Sectigrt.l) while providing the best size/time tradeoff.

We assume that the publication process begins with the dataset alreatlyeskrighus, gzip-based
publication only considers the compression time, whereas processelsdras®Tcomprise the times
required for generating théD Trepresentation (always at publisher) and its subsequent gzip caigures
(to obtain higher compression ratios). For thBTdictionary, we make use of tIﬂéﬁOQ%p configuration,
optimized for querying (see Sectidi®.5. The triples are encoded in Bitmap Triples (see Chap®gr

Table15.2shows the time used for publication in the data providgip is the faster choice and
largely outperforms th&lDT-based publication. Nevertheless, remember that this process is only per-
formed once, hence size is a more important factor due to its influence omltkegaient processes.
The publication size is drawn in Tablé.1, showing thatHDT+gzip is the best choice. It achieves
highly-compressed representations. For instaHE®l+gzip takes 1.8 times less space ttgmip for
Dbpedia and less than 3 times averaging all datasets. This spatial improvement detetineirseibse-
guent exchange and decompression (for consumption) times as shoal@s5.3and15.4

In turn, the combination oHDTandgzip excels in exchange due to its high compressibility. Its
transmission costs are clearly smaller than the other alternatives, beingeabtgisaving in the largest

186 15.HDTFocusing on Querying HDT-FoQ)

datasetsHDT+gzip saves 1141 seconds (19 minutes) downloadibgedia and 399 seconds (almost
7 minutes) for th000 US Census . Moreover, thanks to its compressibilisyDT+gzip is also more

efficient at decompression than universal compression over plain(BR&Tablel5.3. Note thatHDT
(not gzipped) does not need decompression, hence the 0-sedonthdn Tablel5.3

Thus,HDTFbased publication and its subsequent compression arises as the noasttetfioice for
exchanging RDF within the Web of Data.

] Dataset | gzip | HDT HDT+gzip |
2011 Australian Census 0.73 2.19 2.25
Jamendo 1.65 12.18 12.93
AEMET 5.66 47.79 49.81

Dbtune 142.33| 512.12 536.88

2000 US Census | 201.66| 990.41 1,012.51
Dbpedia 3-8 861.61| 7,209.55 7,521.63

Table 15.2: Publication times (seconds).

Dataset | gzip | HDT HDT+gzip |

2011 Australian Census 0.73 0.79 0.18
Jamendo 4.21 7.36 3.09
AEMET 9.34 23.75 4.75
Dbtune 537.39| 331.49 129.87

2000 US Census 503.90| 406.93 104.72
Dbpedia 3-8 2,524.61| 3,396.28 1,383.96

Table 15.3: Exchange times (seconds).

Dataset | gzip | HDT HDT+gzip |

2011 Australian Census 0.18 | 0.00 0.01
Jamendo 0.52| 0.00 0.13
AEMET 2.29| 0.00 0.36
Dbtune 87.27| 0.00 4.46

2000 US Census | 165.70| 0.00 4.94
Dbpedia 3-8 540.81| 0.00 61.64

Table 15.4: Decompression times (seconds).

Dataset | Vituoso | RDF3X| HDT-FoQ |
2011 Australian Census 1.53 2.45 0.11
Jamendo 4.88 8.84 0.28
AEMET 18.98 33.65 0.87
Dbtune 324.46 846.57 16.27
2000 US Census 699.00| 1,977.60 29.52
Dbpedia 3-8 12,900.00| 10,712.00 54.83

Table 15.5: Indexing times (seconds).

15.2. Experimental Evaluation 187

] Dataset | 9zip->RDF3x | gzip->Virtuoso | HDT+gzip->HDT-FoQ |
2011 Australian Census 3.36 2.44 0.29
Jamendo 13.56 9.60 3.50
AEMET 45.28 30.60 5.98

Dbtune 1,471.23 949.13 150.60

2000 US Census 2,647.20 1,368.60 139.18
Dbpedia 3-8 13,777.42 15,965.42 1,500.43

Table 15.6: Overall times for exchanging+decompressing+indexingrfges.

The next step focuses on making the exchanged RDF datasets quéoyaiolesumption. As stated,
the traditional process relies on indexing the plain RDF through any RDE. sWe test this approach
with two systems:Virtuoso 7 (relational solution) andRDF3X (multi-indexing solution). These
solutions are reviewed in Sectid2.2 We compare their performance agaiH®T-FoQ, which builds
additional structures on tHéDTserialized datasets previously exchanged.

Table 15.5 compares these times. As can be sdéDT-FoQ excels for all datasetsHHDT-FoQ
indexing time is at least one order of magnitude faster than that obtainecefottar techniques. For
Dbpedig HDT-FoQ loads in less than a minute, whereas Virtuoso and RDF3X performs in the cding
3 hours. This demonstrates hé¥iDT-FoQ leverages the binadDTrepresentation to efficiently create
its additional indexes and make RDF quickly queryable. This fact alsosti@twe successfully reduce
the computation required by the consumer to make queryable RDF obtained téhiveb of Data.

Overall Performance. We analyze, in the following, the time of the overall process for a consumer.
Note that the publication process is decoupled from this analysis becasipeiformed only once, and

its cost is attributed to the data provider. Thus, we consider the times foamgicly and consumption.
These times are shown in Tallé.6 which compares the time needed for a conventional implementa-
tion against thédDTdriven approach. In the traditional approach, the RDF is exchanggdpndecom-
pressed at consumption and indexing with RDF3X or Virtuoso. WL, we takeHDT-gzipped datasets

for exchanging and the subsequent fast decompressioHReFoQ generation at consumption.

As can be seen, this workflow is completed faster usingHbBd driven approach. In particular,
the HDTsolution finishes the workflow a mean of 7 and 10 times faster, on average)ihuoso and
RDF3X respectively. This states that the consumer can start using thim dasaorter time (7-10 times
faster on average), but also with a more limited computational configuration.

15.2.2 HDT-FoQin Consumption: Performance for SPARQL Querying

Once the consumer has at his disposalHiEr-FoQ infrastructure, we study the performance of our
HDT-FoQ proposal as the basis for SPARQL querying. We first show the spagalsrofHDT-FoQto
be efficiently loaded in the consumer configuration. Then, we measuretfagmance of triple pattern
resolution, expecting good results on the basis of the triple indexe®apng dictionary (see Chapters
13and10). Additionally, we test our basic join query resolution, presented in Settoh2 Our main
goal is to show thélDT-FoQ efficiency for RDF retrieval, but also to envision the potential for joins and
thus to demonstrate its capabilities for SPARQL resolution on tap®F-FoQ. We compare our results
with respect to the indexing systems presented above, Virtuoso and RDF3X

Table 15.7 summarizes the sizes of the indexes of each studied solution. The rightnhasinep
HDTandHDT-FoQ respectively, show the size of the origindlD Trepresentation (after decompression)
and the resultant in-memory configuration built on top of it. It is worth rememgehat the figures
reported forHDT-FoQ also include the overhead required for managing it in main memory. In turn, we
emphasize that the sizes reportedRDF3XandVirtuoso are in-disk figures.

188 15.HDTFocusing on Querying HDT-FoQ)

y Dataset | Original Size (MB)| Virtuoso | RDF3X || HDT| HDT-FoQ |
2011 Australian Census 52| 38.46%| 27.91%| 3.02% 4.96%
Jamendo 144 | 109.72%| 66.15% || 10.22%| 12.31%
AEMET 726 | 65.33%| 33.67%|| 6.55% 8.07%
Dbtune 9,566 | 41.48%| 43.13%| 6.93% 9.16%

2000 US Census 21,796| 25.40%| 30.32%| 3.73% 6.39%
Dbpedia 3-8 63,053 73.91%| 48.46%| 10.77%| 13.36%

| MEAN \ - | 59.05%] 41.61%]| 6.87%] 9.04%]

Table 15.7: Indexing sizes (% over the original).

Querying time for triple patterns (dbtune)

HDT-FOQ ——1 | ' ' '
1000 | Virtuoso7 &5
RDF3X iz7zeew

100

10

X

Time (miliseconds)

0.1

0.01

G N I

A
spo spV sV sVo

Figure 15.1:HDT-FOQTP query performance iDbtune

These results placelDT-FoQ as the most compact index in this evaluation. Note that we have
shown, in the evaluation in Sectidr8.3.3 that K-triples was the most compressed solution for RDF
triple indexing. However, it performed significant slower tHdDT-FoQ, and it lacks of a functional
dictionary, hence it was not a potential candidate, at this moment, for SEAR&uation.

As can be seen in Tabl.7, HDT-FoQ takes a mean of 39% of extra space on topiDTrepre-
sentations, and around 9% the original size of the dataset (in N-Triflesimmary, one could see that
HDT-FoQ excels in size: the consumer can manage more than 431 million tripleSi{pedig using
HDT-FoQ, sizing slightly more than 8GB in memory.

Finally, query performance is evaluated oistuneand the2000 US CensusFor each one, we
design a testbed of randomly generated queries which covers the eetiteusp of triple patterns and
joins. We consideb000 random triple patterns of each typ@$,P,?0) s limited by the number of
different predicates). To test conjunctive queries, we split joins intpeftrSubject$S), Object-Object
(OQ and Subject-ObjectSO categories. These represent the most used variants in which theleariab
of the join appearsArias et al, 2011). For each category, we generat#0 random queries with the
appropriate constant values in the non-join positions. The join variable getbeted projection,e. the
expected result of the query.

Querying times are obtained by running 5 independent executions of thedesnd averaging total
user times. We compaiDT-FoQ against RDF3X and Virtuoso in a warm scenario (we run 5 previous

15.2. Experimental Evaluation 189

Querying time for triple patterns (2000 US Census)

HDT-FOQ —— | ' ' ' ' K
Virtuoso7 &< S
1000 = " RDF3X =

100

10

S

Time (miliseconds)

N
VOSSN
X

SO
AN A

KN

0.1

0.01

LR

5% sVo Vpo VVo VpV

0.001
spo

Figure 15.2.HDT-FOQTP query performance in tH2000 US Census

executions before measuring time).

Figuresl5.1and15.2show the triple pattern resolution time Dbtuneand the2000 US Censuse-
spectively. Itis worth noting thaiDT-FoQexcels for almost every individual triple pattern. It speeds-up
their resolution up to 2 orders of magnitude, only losing performance in (Y, m\Which a logarithmic
cost is paid for accessing predicates in the Wavelet Tree. Even in agehanly RDF3X performs faster
thanHDT-FoQin both datasets.

The analysis of join performance is based on the results reported in Eitbu@and15.4 These
results show that iHDT-FoQ is faster than RDF3X for the three considered categories of two-ways
joins, in both datasets. In fact, it clearly outperforms RDF3X resolutioimgog mean of 8 times faster.
This difference is slightly reduced in SS joins: as the join variable is in the stybgsition, all accesses
are by object, and thus the potential walks over the Wavelet Tree arkzeehan contrast, iHDT-FoQ
is slower than Virtuoso (version 7) in joins. Althou¢tDT-FoQ is the most efficient choice for triple
pattern resolution, the join queries in Virtuoso are clearly optimized. Nonsthedptimized join algo-
rithms implemented on top ¢iDT-FoQwould allow it to compete fairly in this latter case by leveraging
HDT-FoQ performance for triple pattern resolution.

190 15.HDTFocusing on Querying HDT-FoQ)

Querying time for joins (dbtune)

1000 T
HDT-FOQ —
Virtuoso7
RDF3X
100
10 B
o
el
c
3
Q
£ 1 7
E
[}
£
Z
0.1 -
0.01 B
0.001
SS
Figure 15.3:HDT-FOQjoin performance irbbtune
Querying time for joins (2000 US Census)
1000 T T
HDT-FOQ ——
Virtuoso7
RDF3X
100
10 B
w
=]
c
3
Q
2 1 .
E
[}
£
Z
0.1 -
0.01 B
0.001

SO SS e]e]

Figure 15.4:HDT-FOQjoin performance in th000 US Census

Part VI

Thesis Summary

Maybe some day you forget what it's like
to be human and maybe then, it's ok.

Mystic River (2003)

16

Conclusions and Future Work

This chapter concludes summarizing the most important contributions of this (826.1) as well as
devising future work (86.2. Note that detailed discussions are also provided in the final chapters of
each part of the thesis (Chapt&s8, 11 and14).

16.1 Summary of Contributions

This thesis presents basic foundations for Big Semantic Data managementwé&itiace a route from
the current data deluge, the concept of Big Data and the need of mawlsicessable semantics on the
WWW. The Resource Description Framework (RDF) and the Web of (ldnhkata naturally emerge in
this well-grounded scenario. The former, RDF, is the natural data modskfnantic data, combining
the flexibility of semantic networks with a graph data structure that makes it egllext choice for
describing metadata at Web Scale. The latter, the Web of (Linked) Datagdesa set of rules to publish
and link Big Semantic Data.

Nonetheless, the Web of Data suffers from diverse scalability probleneswnoving to a RDF
data-intense processing era. We justify the different and various reareay problems arising in Big Se-
mantic Data by characterizing their main stakeholder. Then, we define a comankitow Publication-
Exchange-Consumptipmxisting in most applications in the Web of Data. Traditional verbose RDF
formats remain as one of the main bottlenecks at exchanging and possginacelnherent scalability
drawbacks of huge RDF graphs discourage their consumption due foabe they take up, the powerful
resources and the large time required to process them.

This thesis addresses these problems i) studying the underlying RDF stressence, ii) proposing
a novel RDF binary formatH{DT) iii) giving compact RDF dictionaries and iv) succinct triple structures
which can be efficiently serialized for exchanging and can be enhamiteddditional indexes to be
queried at consumption without decompression.

We propose and define novel metrics characterizing real-world RDFE Wéggprovide a toolkit of
parameters determining common and particular features in RDF modeling. medses are used in
the thesis to finely parametrize our proposed indexes. We hope they bacosedul handbook when
developing or optimizing any kind of semantic data structures.

The scalability problems arising to the current state-of-the-art managewietipns within this sce-
nario set the basis of our integrated propd$@lT. HDTis designed as a binary RDF format to fulfill the
requirements of portability (from and to other formats), compact ability,pguesfficiency (readiness for
post-processing) and direct access to any piece of data in the datasdet&l the design diDTcom-
ponents (Header, Dictionary and Triples), their different operatiodsrgended use. We also instantiate
a concrete practical deploymentidDTfor publication and exchanging and we developRIDF/HDT
syntax specification.

Next, we focus on optimizing both dictionary and triples components, with efficiensumption in
mind. We first address compressed representations for RDF dictigreatagsting existing techniques for
compressed string dictionaries. The proposed solution, a novel RDFrigficalledD,.,,, achieves

194 16. Conclusions and Future Work

the best compression ratios in the experimentation. Besides, its space/time fiaglyotuned, outper-
forming the lookup performance of traditional approaches. Moret@iverganization of subdictionaries
in D.,mp and itsregexresolution features open up further optimizations for filter resolution.

Regarding the RDF structure encoded in the triples component, we fodagosting its navegability
and ulterior consumption processes. To do so, we first propose &atripleeorganization and encoding
called Bitmap Triples: it sees the graph as a forest of trees and codifi¢ruittuse in two correlated
bitsequences. This decision improves size but, more important, allows sutaiastructures to operate
in the encoded structure.

We argue thaDTencoded datasets can be directly consumed within the presented workifilosy
we show that novel indexes, on the basis of succinct data structare$ieccreated once the different
components are loaded into the memory hierarchy at the consumer. This@llprmwside a compressed,
in-memory solution which resolves all kind of SPARQL triple patterns. Moegdhe final configuration
of triple indexes at consumer, called BTW,Os perfectly described algorithmically, and the costs were
clearly detailed with the metrics proposed. Our experimentation shows thatnémajeour approach
BTWO* reports the best overall performance for RDF retrieval. We also presierent variants (in
triples ordering and alternative indexes) to provide a complete set ofyjooafions exploiting space/per-
formance tradeoffs.

Finally, we integrate th®,,,,, dictionary in the core oHDTbased solutions, and we consider the
creation of the BTWO indexes at consumption. This compact infrastructure, calBd-FoQ (HDT
Focused on Querying) is evaluated toward the traditional combination wénsal compression (for
exchanging) and RDF indexing of the plain RDF (for consumption).

Experiments show hoMDTexcels at almost every stage of the Publication-Exchange-Consumption
workflow. Experiments reports that the publisher could spend a bit more tieretmle the Big Semantic
dataset inHDT, but in return, this hugely favours the consumption; consumer is able twapge it
three times faster (on average), and, more important, the indexing time is laedelged to just a few
seconds for huge datasets with a limited configuration of resourcesfdrerthe time since a machine
or human client discovers the dataset until she is ready to start queryicantisnt is reduced up to 19
times by usindHDTinstead of the traditional approaches (8.66 times on average). Furtletimoguery
performance is very competitive compared to state-of-the-art RDF stbeeaggressive size reduction
allows to operate a vast amount of triples in main memory, avoiding slow I/O &aarafesHDT-FoQ
excels in triple pattern resolution and remain competitive in basic join resolutitiimgsthe base of an
HDTbased store serving SPARQL.

In short,HDT-based solutions arises as the most efficient choice for publication ahdreye of Big
Semantic Data, and set the basis of optimal consumption in the Web of Data.

16.2 Future Work

These results open up interesting issues for future work. We shouldomamproving predicate-based
retrieval because it reports the less-competitive performance. Ogoiog-work relies on the optimiza-
tion of the predicate index by tuning the trade-off between access time atidlspeeds. In addition,
we plan to optimize our join algorithms wiideways Information Passii{§IP) mechanisms, proposed
by Neumann and WeikurR009. SIP is about passing on-the-fly information between both TPs, hence
the join is interactively evaluated without materialization of intermediate resultsbéNeve that our
efficient resolution of TPs as well as early cardinality estimations cangirfé the SIP mechanism.

In parallel, there are several areas whidigT can be further exploited. We foresee a huge potential
of HDTto support many aspects of the workflow Publication-Exchange-CortsampiDT-based tech-
nologies can emerge to provide supporting tools for both publishers arsdicers. For instance a very
useful tool for a publisher is setting up a SPARQL endpoint on top dfiifile. As the experiments
show,HDT-FoQis very competitive on queries, but there is still plenty of room for SPAR@linaiza-

16.2. Future Work 195

tion, by leveraging efficient resolution of triple patterns, joins and quégrpng. Another useful tool
for publishers is configuring a dereferenceable URI materialization &a@ivenHDT. Here the experi-
ments also show that performance will be very high bec&l3€-FoQ is really fast on queries with a
fixed RDF subject.

Finally, although the use of succinct data structures allows more data to tegethin the main
memory, it could still remain excessive for consumers with limited memory. Undestenario, we
devise an evolution ofiDT-FoQ to perform as an in-memory/on-disk system providing dynamic data
management,e., efficient insertion, updating and deletion of triples at consumption. In #rises we
works on a particular architecture for Big Semantic Data management in real@uarenitial proposal
is called SOLID Cuesta, Maiihez-Prieto, & Ferandez 2013. This tiered architecture separates the
complexities of Big Semantic Data management from their real-time data genenati@oasumption.
Whereas the Big Semantic Data can be stored followdBJ and indexed asIDT-FoQ, the dynamics
of real-time are addressed using NoSQL technology. Two additionaldayer required to integrate
both worlds i) when resolving questions, as both novel and historic datcshe queried and their
results have to be integrated and ii) when merging, at a given moment, thamealata with theHDT
information HDT-FoQ indexes must be rebuilt as well). We hope this architecture to fully accomplish
the requirements of Big Semantic management in most practical scenarios.

All right. This one time I'll let you ask me
about my affairs.

The Godfather (1972)

Publications and other Results

This chapter summarizes the publications of the author directly related with tisis'th&Ve finally
include the research stays during the research period.

SELECTED PUBLICATIONS

ISI-Ranked Journals
¢ 2013

— Javier D. Ferandez, Miguel A. Maihez-Prieto, Claudio Guairez, Axel Polleres, Mario
Arias Gallego. Binary RDF Representation for Publication and ExchaiDé). Journal of
Web Semanti¢c$9:22-41, Elsevier, 2013. ISSN 1570-8268.

This article has been cited by:

(1) Hagedorn, S., Sattler, K. U. Efficient Parallel Processing of ArcaiQueries on Linked
Data. InOn the Move to Meaningful Internet Systems: OTM 2013 Conferepped52-
469. Springer Berlin Heidelberg, 2013.

(2) Zimmermann, A., Gravier, C., Subercaze, J., Cruzille, Q. Nel2RDFdRlea Web,
and turn it into RDF. Ir2"? International Workshop on Knowledge Discovery and Data
Mining Meets Linked Open Da{&now@ LOD), 2013.

(3) Kasten, A., Scherp, A. lterative signing of RDF(S) graphs, nagraghs, and OWL
graphs: Formalization and application. Technical report Nr. 3/2013yeusity of
Koblenz-Landau, 2013. Available akitp://uni-koblenz.de/ ~ fb4reports/2013/2013
03_Arbeitsberichte.pdf , retrieved October 2013.

— (PR) Gustavo A. Pdin, Claudio Gugrrez, Javier D. Feandez, Miguel A. Maiinez-Prieto.
Publication of Linked Open Census Microdalaurnal of the American Society for Informa-
tion Science and Technology4 (9):1802-1814, ASIS&T, 2013. ISSN 1532-2890.

Other Journals
e 2012

— Miguel A. Martinez-Prieto, Javier D. Feamdez, Rodrigo @novas. Querying RDF Dictio-

naries in Compressed Spag¢eCM SIGAPP Applied Computing Reviel2(2): 64-77, ACM,
2012. ISSN 1559-6915.

— Javier D. Ferandez, Miguel A. Maihez-Prieto, Mario Arias. Scalable Management of
Compressed Semantic Big DaEeRCIM News89: 29-30, ERCIM, 2012. ISSN 0926-4981.

Those articles partially related with this thesis are markeRRisPartially Related.

http://uni-koblenz.de/~fb4reports/2013/2013_03_Arbeitsberichte.pdf
http://uni-koblenz.de/~fb4reports/2013/2013_03_Arbeitsberichte.pdf

198 A. Publications and other Results

This article has been cited by:

(1) Adamou, A. An architecture for scaling ontology networkectoral dissertationUni-
versita di Bologna, 2013. Available aittp:/amsdottorato.cib.unibo.it/5528/ , re-
trieved October 2013.

Chapters in Books
» 2013

— Javier D. Ferandez, Mario Arias, Miguel A. Mamez-Prieto, Claudio Glérrez. Manage-
ment of Big Semantic Data. Akerkar, Rajendra (Ed.): Big Data Computingoifayd
Francis/CRC, ISBN: 978-1-46-657837-1.

Standards
¢ 2011

— Javier D. Ferandez, Miguel A. Maihez-Prieto, Claudio Guérrez, Axel Polleres. Binary
RDF Representation for Publication and Exchange (HDM3C Member Submissiparch
30, 2011 http://www.w3.org/Submission/2011/03/

This standard has been cited by:

(1) Thoma, M., Antonescu, A. F., Mintsi, T., Braun, T. Linked ServicasM@M commu-
nication with Enterprise IT systems. 9% International Wireless Communications and
Mobile Computing Conferend@VCMC), pp. 1212-1216, 2013.

(2) Kaoudi, Z., Koubarakis, M. Distributed RDFS Reasoning Over Stradt®verlay Net-
works. Journal on Data Semanticpp. 1-39, 2012

(3) Barnaghi, P., Wang, W., Henson, C., Taylor, K. Semantics for thenatef Things:
Early Progress and Back to the Futurkternational Journal on Semantic Web and
Information System@JSWIS), 8(1): 1-21, 2012.

International Conferences and Workshops
* 2013

— (PR) Carlos E. Cuesta, Miguel A. Mamnez-Prieto, Javier D. Feandez Towards an Architec-
ture for Managing Big Semantic Data in Real-Time7th European Conference on Software
Architecture (ECSA)p. 45-53, LNCS 7957, Springer-Verlag, 2013.

» 2012

— Miguel A. Martinez-Prieto, Javier D. Feandez, Rodrigo @novas. Compression of RDF
Dictionaries. In27* ACM International Symposium on Applied Computing (SAC 2012) -
Track The Semantic Web and Applications (SVgp) 340-347, ACM Press, 2012.

This paper has been cited by:

(1) Grund, M., Cudre-Mauroux, P., Krueger, J., Plattner, H. Hybraph and relational
query processing in main memory. 268" International Conference on Data Engineer-
ing WorkshopgICDEW), pp. 23-24, 2013.

199

— Miguel A. Martinez-Prieto, Mario Arias, Javier D. Fémdez. Exchange and Consumption
of Huge RDF Data. I Extended Semantic Web Conference (ESWC), pp. 437-452,

LNCS 7295, Springer-Verlag, 2012.

This paper has been cited by:

(1) Ashraf, J. A semantic framework for ontology usage analysis. RBLEtin University,
School of Information Systems, Curtin Business School, 2013. Available a
http://trove.nla.gov.au/work/183091728?qg&versionld= 199455331 , retrieved October 2013.

— Javier D. Ferandez. Binary RDF for Scalable Publishing, Exchanging and Consuniption
the Web of Data. 1r21% International World Wide Web Conferenf&WW), pp. 133-138,

2012,

This paper has been cited by:

(1) Horridge, M., Redmond, T., Tudorache, T., Musen, M. Binary OWLi10"* OWL:
Experiences and Directions Worksh@WLED 2013), 2013. Available at:
http://webont.org/owled/2013/papers/owled2013 _12.pdf , retrieved October 2013.

» 2011

— Mario Arias, Javier D. Feiandez, Miguel A. Maiinez-Prieto, Claudio Gutierrez. HDT-it:
Storing, Sharing and Visualizing Huge RDF Datasets10f# International Semantic Web
Conference (ISWC 2011tyack: poster session, 2011. Available &tp://dataweb.infor.
uva.es/wp-content/uploads/2011/10/iswc2011.pdf , retrieved October 2013.

— SandraAlvarez, Nieves R. Brisaboa, Javier D. Fandlez, Miguel A. Maihez-Prieto. Com-
pressed k-Triples for Full-In-Memory RDF Engines. It7?* Americas Conference on Infor-
mation Systems (AMCIS 201&yticle 350, 2011.

This paper has been cited by:

(1) Brisaboa, N. R., Ladra, S., Navarro, G. Compact representativveb graphs with
extended functionalitynformation System$9(1):152-174, 2014.

(2) Joshi, A. K., Hitzler, P., Dong, G. Logical Linked Data CompressionThe Semantic
Web: Semantics and Big Datap. 170-184, Springer Berlin Heidelberg, 2013.

(3) Tran, T., Ladwig, G., Rudolph, S. Managing Structured and Semiatec RDF Data
Using Structure Indexef£EE Transactions on Knowledge and Data Engineerizig(9):
2076-2089, 2013.

(4) Brisaboa, N. R., de Bernardo, G., Navarro, G. Compressedrbigrinary Relations.
In Data Compression Conferen@@CC), pp. 52-61, 2012.

(5) Joshi, A. K., Hitzler, P., Dong, G. Towards Logical Linked Data Coesgion. In the
Joint Workshop on Large and Heterogeneous Data and Quantitativedhaation in
the Semantic Wet. HD+ SemQuant), 2012.

— Javier D. Ferandez, Miguel A. Maiinez-Prieto, Claudio Guirez. Publishing Open Statis-
tical Data: the Spanish Census.1i2f” Annual International Conference on Digital Govern-
ment Research (dg.o 201pp. 20-25, 2011Best Policy Paper Award.

http://dataweb.infor.uva.es/wp-content/uploads/2011/10/iswc2011.pdf
http://dataweb.infor.uva.es/wp-content/uploads/2011/10/iswc2011.pdf

200 A. Publications and other Results

This paper has been cited by:

(1) Meraio-Pdiuela, A., Geéret, C., Hoekstra, R., Schlobach, S. Detecting and Reporting
Extensional Concept Drift in Statistical Linked Data. 1ifi International Workshop on
Semantic StatistidsSemStats 2013), 2013. Available attp:/mwww.cedar-project.nl/
wp-content/uploads/semstats2013 _submission _7.pdf , retrieved October 2013.

(2) Otjacques, B., Stefas, M., Cornil, M., Feltz, F. Open data visualizatiepikg traces of
the exploration process. lif* International Workshop on Open Datap. 53-60, 2012.

— Mario Arias Gallego, Javier D. Feandez, Miguel A. Maithez-Prieto, Pablo de la Fuente.
RDF Visualization using a Three-Dimensional Adjacency Matrix.41h International Se-
mantic Search Workshop (SemSearch 202011. Available athttp:/km.aifb.kit.edu/
ws/semsearch11/8.pdf , retrieved October 2013.

This paper has been cited by:

(1) Gottron, T., Pickhardt, R. A detailed analysis of the quality of streare¢bashema con-
struction on linked open data. Bemantic Web and Web Sciengp. 89-102. Springer
New York. 2013

— Javier D. Ferandez. HDT: Logical RDF Partitioning for Publishing and Exchanging in the
Web of Data. Irb*" Alberto Mendelzon Workshop (AMW 201%)udent Papers, 2011. Avail-
able athttp://dataweb.infor.uva.esfamw2011 _submission _16.pdf , retrieved October 2013.

— Mario Arias Gallego, Javier D. Feandez, Miguel A. Maiihez-Prieto, Pablo de la Fuente.
An Empirical Study of Real-World SPARQL Queries. 1fi International Workshop on
Usage Analysis and the Web of D@GSEWOD 2011), 2011Best Challenge Paper Award.
Available at:http://arxiv.orglabs/1103.5043 , retrieved October 2013.

This paper has been cited by:

(1) Atre, M. OptBitMat: For SPARQL OPTIONAL (left-outer-join) queriel arXiv pre-
print, 2013. Available abttp:/arxiv.org/pdf/1304.7799v2 , retrieved October 2013.

(2) Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P. XR&R. Web-Querying
Infrastructure: Ready for Action? 162" International Semantic Web Conference
(ISWC), to be published, 2013. Available attp:/mwww.deri.ie/sites/default/files/
publications/paperiswc.pdf , retrieved October 2013.

(3) Rietvelda, L., Hoekstraa, R. YASGUI: How do we Access Linked Rata Seman-
tic Web journa) in review, 2012. Available athttp://www.semantic-web-journal.net/
system/files/sw;j538.pdf , retrieved October 2013.

(4) Shekarpour, E. M. S., Auer, S., Ngomo, A. C. N. Large-scale RRfaset Slicing. In
7" IEEE International Conference on Semantic Compu(if@SC 2013), to be pub-
lished, 2013. Available atittps:/bitbucket.orglemarx/rdfslice/downloads/slic e.vl.
2.pdf , retrieved October 2013

(5) Urbani, J. On Web-scale Reasonindoctoral dissertation Amsterdam: Vrije Uni-
versiteit, 2013. Available athttp:/mww.cs.vu.nli~bal/dissertation-Urbani.pdf , re-
trieved October 2013.

(6) De Saint-Marcq, V. L. C., Deville, Y., Solnon, C., Champin, P. A. Un salvieger
efficace pour interroger le Webkeghantique. IrHuitiemes Jourées Francophones de
Programmation par ContraintegFPC), (in French), 2012. Available at:
http://hal.inria.fr/docs/00/80/98/59/PDF/ifpc2012.p df , retrieved October 2013.

(7) De Virgilio, R. A linear algebra technique for (de) centralized pretesof SPARQL
queries. InConceptual Modelingpp. 463-476, Springer Berlin Heidelberg, 2102.

http://www.cedar-project.nl/wp-content/uploads/semstats2013_submission_7.pdf
http://www.cedar-project.nl/wp-content/uploads/semstats2013_submission_7.pdf
http://km.aifb.kit.edu/ws/semsearch11/8.pdf
http://km.aifb.kit.edu/ws/semsearch11/8.pdf
http://dataweb.infor.uva.es/amw2011_submission_16.pdf
http://www.deri.ie/sites/default/files/publications/paperiswc.pdf
http://www.deri.ie/sites/default/files/publications/paperiswc.pdf
http://www.semantic-web-journal.net/system/files/swj538.pdf
http://www.semantic-web-journal.net/system/files/swj538.pdf
https://bitbucket.org/emarx/rdfslice/downloads/slice_v1.2.pdf
https://bitbucket.org/emarx/rdfslice/downloads/slice_v1.2.pdf

201

(8) Elbedweihy, K., Wrigley, S. N., Ciravegna, F. Improving Semantic 8ebising Query
Log Analysis. InWorkshop on Interacting with Linked DatéLD 2012), pp. 61-74,
2012.

(9) Karnstedt, M., Sattler, K. U., Hauswirth, M. Scalable distributed indexind query
processing over Linked DataWeb Semantics: Science, Services and Agents on the
World Wide Wep10:3-32, 2012.

(10) Kotoulas, S., Urbani, J., Boncz, P., Mika, P. Robust runtime optimizatimhskew-
resistant execution of analytical SPARQL queries on pigThe Semantic Web-ISWC
2012 pp. 247-262, Springer Berlin Heidelberg, 2012.

(11) Letelier, A., Rrez, J., Pichler, R., Skritek, S. Static analysis and optimization of seman-
tic web queries. 815" symposium on Principles of Database Systepps 89-100,
2012. Girlitz, O., Thimm, M., Staab, S. SPLODGE: systematic generation of SPARQL
benchmark queries for linked open dataThe Semantic Web-ISWC 20pp. 116-132,
Springer Berlin Heidelberg, 2012.

(12) Picalausa, F., Luo, Y., Fletcher, G. H., Hidders, J., Vansummetref,s§uctural ap-
proach to indexing triples. Iithe Semantic Web: Research and Applicatigps 406-
421, Springer Berlin Heidelberg, 2012.

(13) Prasser, F., Kemper, A., Kuhn, K. A. Efficient distributed quergcpssing for au-
tonomous RDF databases. 16" International Conference on Extending Database
Technologypp. 372-383, 2012.

(14) Raghuveer, A. Characterizing Machine Agent Behavior thrdsiBARQL Query Min-
ing. In2"? International Workshop on Usage Analysis and the Web of Pa8EWOD
2012), 2012. Available atittp:/ir.i.uam.es/usewod2012/usewod2012 _raghuveer.pdf
retrieved October 2013.

(15) Umbrich, J. A Hybrid Framework for Querying Linked Data Dynamicaldpctoral
dissertation National University of Ireland, Galway, 2012. Available attp:/nd.
handle.net/10379/3360 , retrieved October 2013.

(16) Umbrich, J., Hogan, A., Polleres, A., Decker, S. On Link Trave@zerying for a
diverse Web of Data. Isemantic Web journain review, 2012. Available atittp://
www.semantic-web-journal.net/system/files/swj318 _0.pdi , retrieved October 2013.

(17) Berendt, B., Hollink, L., Hollink, V., Luczak-&ch, M., Mller, K., Vallet, D. Usage
analysis and the web of data. ACM SIGIR Forum45(1), pp. 63-69, ACM, 2011.

(18) Elbedweihy, K., Mazumdar, S., Cano, A. E., Wrigley, S. N., Ciragedmn Identifying
Information Needs by Modelling Collective Query Patterns2'lfi International Work-
shop on Consuming Linked Da{€OLD2011), 2011. Available atuttp:/ceur-ws.
org/Vol-782/ElbedweihyEtAl _CcoLD2011.pdf , retrieved October 2013.

(19) Ell, B., Vrandecic, D., Simperl, E. Deriving human-readable labesfiISPARQL
queries. In7t" International Conference on Semantic Systeps 126-133, ACM,
2011.

(20) Lin, F., Krizhanovsky, A. Multilingual ontology matching based on Wik&on data
accessible via SPARQL endpoint. 13" All-Russian Scientific Conference “Digital
libraries: Advanced Methods and Technologies, Digital Collectiof®CDL 2011), pp.
1-8, 2011.

(21) Mazumdar, S., Elbedweihy, K., Cano, A. E., Wrigley, S. N., Ciragedgh SEMLEX-
A Framework for Visually Exploring Semantic Query Log Analysis. 15t" Interna-
tional Semantic Web Conferen@&WC), (Demo), 2011. Available afttp://iswc2011.

semanticweb.org/fileadmin/iswc/Papers/PostersDemos/ iswcllpd _submission _87.pdf , Ie-

trieved October 2013.

http://ir.ii.uam.es/usewod2012/usewod2012_raghuveer.pdf
http://hdl.handle.net/10379/3360
http://hdl.handle.net/10379/3360
http://www.semantic-web-journal.net/system/files/swj318_0.pdf
http://www.semantic-web-journal.net/system/files/swj318_0.pdf
http://ceur-ws.org/Vol-782/ElbedweihyEtAl_COLD2011.pdf
http://ceur-ws.org/Vol-782/ElbedweihyEtAl_COLD2011.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/PostersDemos/iswc11pd_submission_87.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/PostersDemos/iswc11pd_submission_87.pdf

202 A. Publications and other Results

(22) de Saint-Marcq, V. L. C., Deville, Y., Solnon, C. An efficient light salf¥or querying
the semantic web. IRrinciples and Practice of Constraint Programmi(@P 2011), pp.
145-159, Springer Berlin Heidelberg, 2011.

(23) Williams, G. T., Weaver, J. Enabling fine-grained HTTP caching &ARBPL query
results. InThe Semantic Web-ISWC 20dd. 762-777. Springer Berlin Heidelberg,
2011.

(24) Picalausa, F., Vansummeren, S. What are real SPARQL queriés lika"® Interna-
tional Workshop on Semantic Web Information Managenaetitle 7, 2011.

— Javier D. Ferandez. DataWeb: Compression, Indexing and Applications on Larges®ata
In 7" Reasoning Web Summer School (RW 2040} 1.Best Poster Award.

» 2010

— Javier D. Ferandez, Claudio Gu&irez, Miguel A. Marinez-Prieto. RDF Compression: Ba-
sic Approaches. 119" International World Wide Web Conference (WWW 20{f) 1091-
1092, ACM Press, 2010.

This paper has been cited by:

(1) Joshi, A. K., Hitzler, P., Dong, G. Logical Linked Data CompressianThe Semantic
Web: Semantics and Big Datpp. 170-184, Springer Berlin Heidelberg, 2013.

(2) Urbani, J. On Web-scale Reasoninoctoral dissertation Amsterdam: Vrije Uni-
versiteit, 2013. Available athttp:/mww.cs.vu.nli~bal/dissertation-Urbani.pdf , re-
trieved October 2013.

(3) Urbani, J., Maassen, J., Drost, N., Seinstra, F., Bal, H. ScalabledaFcompression
with MapReduce. IrConcurrency and Computation: Practice and Experieriz®(1):
24-39, 2013.

(4) Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., DecgeAn empirical
survey of Linked Data conformance. Web Semantics: Science, Services and Agents
on the World Wide Weli4:14-44, 2012.

(5) Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S. Sleakain Dis-
tributed Methods for Resolving, Consolidating, Matching and Disambiguatiigiés
in Linked Data Corpora. Idournal of Web Semantic$0: 76-110, 2012.

(6) Joshi, A. K., Hitzler, P., Dong, G. Towards Logical Linked Data Cossgion. In the
Joint Workshop on Large and Heterogeneous Data and Quantitative dhaattion in
the Semantic Wefh. HD+ SemQuant), 2012.

(7) Hogan, A. Exploiting RDFS and OWL for Integrating Heterogenedwsge-Scale,
Linked Data Corpora.Doctoral dissertation National University of Ireland, Galway,
2011. Available at: nttp:/sw.deri.org/~aidanh/docs/thesis/thesis-one-s ided.pdf
retrieved October 2013)

— (PR) Miguel A. Martnez-Prieto, Joadn Adiego, Pablo de la Fuente, Javier D. Rerdez.
High-Order Text Compression on Hierarchical Edge-Guideddata Compression Confer-
ence (DCC 201Q).543, IEEE Computer Society Press, 2010.

— Javier D. Ferandez, Miguel A. Maiinez-Prieto, Claudio Gu#rrez. Compact Representation
of Large RDF Data Sets for publishing and exchange9*fninternational Semantic Web
Conference (ISWC 201A)NCS 6496, pp. 193-208, Springer-Verlag, 2010.

203

This paper has been cited by:

(1) Joshi, A. K., Hitzler, P., Dong, G. Logical Linked Data CompressianThe Semantic
Web: Semantics and Big Datap. 170-184, Springer Berlin Heidelberg, 2013.

(2) Kunze, S. R., Auer, S. Dataset Retrieval. 7 |IEEE International Conference on
Semantic ComputingCSC 2013), to be published, 2013.

(3) Tzitzikas, Y., Kampouraki, M., Analyti, A. Curating the Specificity of Onwilzal De-
scriptions under Ontology Evolution. ournal on Data Semanticpp. 1-32, 2013.

(4) Chekol, M. W. Analyse Statique de Rexja pour le Web &mnantique Doctoral disser-
tation, Universie de Grenoble, 2012. Available at:
http://tel.archives-ouvertes.fr/tel-00834448/ , retrieved October 2013.

(5) Hasemann, H., Kroller, A., Pagel, M. RDF Provisioning for the Inteaielhings. In
37 International Conference on the Internet of Thir{t®T), pp. 143-150, IEEE, 2012.

(6) Jagalpure, A. G. RGIS: Efficient Representation, Indexing amerging of Large RDF
Graphs.Master thesisUniversity of Georgia, Athens, 2012. Available at:
https://getd.libs.uga.edu/pdfsfjagalpure _aniruddha _g_201212 _ms.pdf , retrieved Oc-
tober 2013.

(7) Peroni, S., Poggi, F., Vitali, F. Tracking changes through EARMARIheoretical per-
spective and an implementation. 1ff International Workshop on Document Changes:
Modeling, Detection, Storage and Visualizati@Changes), 2013. Available at:
http://ceur-ws.org/Vol-1008/paper6.pdf , retrieved October 2013.

(8) Brunsmann, J. Long term preservation of product lifecycle metadd@#IS archives,
Doctoral dissertationFernUniversit in Hagen, 2012. Available at:
http://deposit.fernuni-hagen.de/2798/ , retrieved October 2013.

(9) Joshi, A. K., Hitzler, P., Dong, G. Towards Logical Linked Data Coespion. In the
Joint Workshop on Large and Heterogeneous Data and Quantitative diaation in
the Semantic Welh. HD+ SemQuant), 2012.

(10) Leblay, J. SPARQL query answering with bitmap indexes4*tninternational Work-
shop on Semantic Web Information Managemariicle 9, ACM, 2012.

(11) Rousset, M. M. C. Static Analysis of Semantic Web Queri@sctoral dissertation
Universie de Grenoble, 2012. Available atitp:/itel.archives-ouvertes.fr/docs/
00/83/44/48/PDF/these _de_Melisachew _Wudage CHEKOL.pdf, retrieved October 2013.

(12) Skritek, S. Foundational aspects of semantic web optimizatiorSIGMOD/POD$
2012 PhD Symposium, pp. 45-50, ACM, 2012.

(13) Brisaboa, N. R., &novas, R., Claude, F., Marez-Prieto, M. A., Navarro, G. Com-
pressed string dictionaries. Experimental Algorithmspp. 136-147, Springer Berlin
Heidelberg, 2011.

(14) Weaver, J., Williams, G. T. Reducing I/O Load in Parallel RDF SystemBPata Com-
pression. In1%t Workshop on High-Performance Computing for the Semantic Web
(HPCSW), Vols. CEUR-WS 736, paper 4, 2011.

https://getd.libs.uga.edu/pdfs/jagalpure_aniruddha_g_201212_ms.pdf
http://tel.archives-ouvertes.fr/docs/00/83/44/48/PDF/these_de_Melisachew_Wudage_CHEKOL.pdf
http://tel.archives-ouvertes.fr/docs/00/83/44/48/PDF/these_de_Melisachew_Wudage_CHEKOL.pdf

204 A. Publications and other Results

National Conferences

» 2013

— Mario Arias, Oscar Corcho, Javier D. Famdez, Miguel A. Martinez-Prieto, Mari Carmen
Suarez-Figueroa. Compressing Semantic Metadata for Efficient MultimedigeiRatr In
15" Conference of the Spanish Association for Artificial Intellige(@AEPIA), to be pub-
lished, 2013. Available at:
http://dataweb.infor.uva.es/wp-content/uploads/2013 /06/caepia2013.pdf , retrieved Oc-

tober 2013.

— Mario Arias, Carlos E. Cuesta, Javier D. Fandez, Miguel A. Maiihez-Prieto. SOLID:
una Arquitectura para la Gegti de Big Semantic Data en Tiempo Real Xlll Jornadas
de Ingeniera del Software y Bases de DatGBSBD), to be published (in Spanish), 2013.
Available at: http://dataweb.infor.uva.es/wp-content/uploads/2013 106/jisbd2013.pdf , re-
trieved October 2013.

— Mario Arias, Javier D. Fergndez, Miguel A. Maihez-Prieto. Aplicaciones Sémticas
basadas en RDF/HDT. IXVIII Jornadas de Ingeniéa del Software y Bases de Datos
(JISBD), to be published (in Spanish), 2013. Available at:

http://dataweb.infor.uva.es/wp-content/uploads/2013 /06/jisbd20131.pdf , retrieved Oc-
tober 2013.

« 2011

— Javier D. Ferandez, Miguel A. Maihez-Prieto, Mario Arias, Claudio Gutierrez, Sandra
Alvarez-Garéa, Nieves R. Brisaboa. Lightweighting the Web of Data through Compact
RDF/HDT. In 15t Workshop en Tecnol@gs de Linked Data y sus aplicaciones en Hspa
(TLDE 2011), 2011.14** Conference of the Spanish Association for Atrtificial Intelligence
(CAEPIA), pp. 483-493, LNCS 7023, Springer-Verlag, 2011.

This paper has been cited by:

(1) Kunze, S. R., Auer, S. Dataset Retrieval. 7t IEEE International Conference on
Semantic ComputingCSC 2013), to be published, 2013.

— Javier D. Ferandez, Miguel A. Maiinez-Prieto, Claudio Gutierrez. Compact Representation
of Large RDF Data Sets for publishing and exchange X\fi Jornadas de Ingenié del
Software y Bases de Dat@dSBD 2011), 2011.

— Javier D. Ferandez, Miguel A. Maiihez-Prieto, Mario Arias, Claudio Gutierrez. HDT End-
Points: una Arquitectura Eficiente para la Web de DatoX\hJornadas de Ingenié del
Software y Bases de Dat@dSBD 2011), 2011.

RESEARCH DISTINCTIONS

* Best Management/Policy track Paper Award. 12th Annual InternatiGoaference on Digital
Government Research (dg.o 2011). Publishing Open Statistical Data:p#resB Census. In
conjunction with Miguel A. Mafiinez-Prieto and Claudio Gétirez.

» Best Challenge Paper Award. 1st International Workshop on Usaghysis and the Web of Data
(USEWOD 2011). An Empirical Study of Real-World SPARQL Queries. dmjanction with
Mario Arias, Miguel A. Martnez-Prieto and Pablo de la Fuente.

205

RESEARCH STAYS

August 2013-September 2013.Department of Computer Science, Univ. of Chile (Santiago,
Chile). Claudio Gutierrez, supervisor.

September 2012-October 2012 Department of Computer Science, Univeaisitella Sapienza
(Rome, Italy). Stefano Leonardi, supervisor.

March 2011-July 2011. Department of Computer Science, Univ. of Chile (Santiago, Chile).
Claudio Gutierrez, supervisor.

July-October 2010. Department of Computer Science, Univ. of Chile (Santiago, Chile). Claudio
Gutierrez, supervisor.

July 2010-January 2011. Department of Computer Science, Univ. of Chile (Santiago, Chile).
Claudio Gutierrez, supervisor.

| hate waiting. | could give you my word
as a Spaniard.

The Princess Bride (1987)

Summary (in Spanish)

B.1 Hip 6tesis y Objetivos

El actual estado del arte confirma la necesidad de disponer de uraae{@@n binaria de RDF, con
el objetivo de reducir los altos niveles de verbosidad/redundancia lyalas capacidades operativas
actuales de los conjuntos de datosnigel fisico, dicho formato binario de representacidebe facilitar
gue el procesamiento, el manejo y el intercambio de inforomatanto entre sistemas como intercambio
memoria-disco) sean eficientes a gran escala. Por ello, dicho formatorileibgizar la redundancia
al tiempo que garantice lmodularidadde la representa@n. A nivel operacional las caractésticas
esperadas incluyen un soporte nativo para verificar la simple existensentenciadqokupg as como
la resolucdbn de otros patrones simples de consulta.

Nuestra hiptesis, por tanto, puede resumirse en:

Dado un conjunto de datos RDF, potencialmente grande, un fornmta de RDF, binario y ligero,
puede codificar los datos aprovechando la estructura sesgada tes grafos RDF, con el objetivo
de conseguir (i) un notable ahorro de espacio, (ii) una publicadin centrada en los datos, dcil y
modular, asi como (iii) soportar operaciones para la recupera@n de datos.

Con esta hiptesis, proclamamos la necesidad de avanzar hacia sintaxis de RDF agmnalbs
datos. Proponemos un formato binario de serial@adHDT, que organiza la informagn y usa la
estructura sesgada de los grafos RDing & Finin, 2006 Oren et al. 2008 para conseguir notables
ahorros de espacio. Presentamos, a contibnalds principales requisitos de un formato de serial@aci
RDF, que s&an por tanto los objetivos de nuestra propuesta:

» Deber ser generado eficientemente desde otro formato RDF y sigualmente sencilla su con-
version a otras representaciones Por ejemplo, un publicador de datos que mantiene la infor-
macbn en un almaen de datos seamticos debe ser capaz de realizar un volcado eficiente a un
formato de intercambio optimizado para tal opedaciDe igual modo, el proceso de convérsi
a otro formato (potencialmente binario) puede completarse de mamerafivaz si el formato de
serializacdn permite un recorrido de los datos eficiente.

» Debe basarse en un esquema de publicaci claro. El formato debe mantener un esquema
esfindar que incluya metadatos acerca de la pubboagisu contenido, junto con informaci
relevante para recuperar el conjunto de datos.

» Debe ser eficiente enérminos de espacio El formato de intercambio deliargenerar tanfes
tan reducidos como fuera posible, introduciendo para ello nocionesnderesbn de datos. El
hecho de reducir tanfi@ no $lo minimiza los costes de ancho de banda para el servidor, sino que
tambén ahorra tiempo de espera para el consumidor que desea reclipergueto de datos para
cualquier tipo de consumo.

208

B.2

B. Summary (in Spanish)

Debe estar preparado para su posterior procesamientdJn caso de usdgico en casi cualquier
tarea de procesamiento consiste en ejecutar una serie de lecturassdesisentencia a sentencia.
Aunque pueda parecer trivial, esta lectura, claramente, consume @wmerg@antidad de tiempo
cuando procesemos grandesiynknes de datos en el consumidor.

Deberia ser capaz de localizar ciertos datos concretos dentro del comjto de datos completo

Ante tales valimenes de datos, $arciertamente deseable poder evitar realizar una lectura com-
pleta de todo el conjunto de datos para localizdcamente un dato concreto. Para ello, el formato
de serializad®n debe contener las claves necesarias para permitir la locahzéedatos concretos.

En particular, un formato de serializaoi debeia ser capaz de resolver la maigode las combi-
naciones de patrones de sentencias SPARQL (combinaciones posiloi@sstintes o variables

en sujetos, predicados u objetos). Por ejemplo, urbpdipico es proveerinicamente, un sujeto
concreto, estableciendo como resultado esperado las variables goeglimgjeto. En este caso, se
pretende localizar todas las sentencias que hablan de un sujettiesheEn otras palabras, este
requisito contiene una inter@zi subyacente; los datos deben codificarse de tal manera que “los
datos sean éhdice”.

Metodologia

Para conseguir los objetivos perseguidos, se ha llevado a cabo umlblog#ode investigadin en cuatro
etapas licas. Se ha realizado una iter@cicompleta por@. A continuaddn resumimos los pasos
dados en cada una de ellas a lo largo de las distintas fases.

1.

Estudio del contexto y las soluciones existenteSe estudi los formatos RDF existentes, las posi-
bilidades de indexaon y consulta. Para ello, se estudian en profundidad los procesosegste
en la Web de Datos, identificando un flujo de datos @womie Publicadin-Intercambio-Consumo,
y se centra la investigam en abordar esta problatica.

. Deteccbn de problemas En esta etapa se detecfue el rendimiento del flujo de datos anterior se

encuentra muy influenciado por i) el formato de intercambio de datos y indiices existentes de
RDF. En primer lugar, se detécque los formatos existentes de RDF sobrecargan de verbosidad
a la representagn, siendo inmanejables para grandedin@nes de datos. Del mismo modo,

la indexacdbn y consulta de RDF se basan en estructuras auxiliares que no daovedas las
caracteisticas de la esencia de RDF como grafo etiquetado, y su distiibeesgada.

. Propuesta de solum. En primer lugar, se estudia la compresibilidad de RDF, proponiendo una

separadn en Diccionario y Triples y una compréai espeffica para cada componente. Se de-
muestra que mejora sustancialmente a los compresores existentes. Erosegande propone
una estructura de representactHDT6ptima para su publica@n e intercambio eficientes. Dicha
representadin no $lo permite mejorar la compresibilidad (por tanto optimizando el intercam-
bio) sino que proporciona las herramientas adecuadas para la cordsidta de RDF sin grandes
estructuras auxiliares. Por ello, a contindacse propone usatDTpara el consumo de datos, apli-
cando écnicas de estructuras de datos compactas que permiten consultar |csrdatresidad

de descompresh. Se proponen ddadices complementarios creados en el consumidor de datos
para poder realizar todas las operaciongsidas de consulta requeridas en SPARQL, el lenguaje
estindar para consumir RDF.

. Desarrollar la nueva sol@i. En esta etapa se implementa la propuesta existente. En concreto

se formaliza el eéndarHDT, y se implementan sus componentes en un prototipo de herramienta

INobtese que esta consulta puede emplearsedeaederenciauna entidad siguiendo el tercero de los principios de Linked

Data.

B.3. Principales Resultados del Trabajo 209

HDT para dar cabida a la creaai deindices en el consumidor. Asse implementa un compo-
nente de diccionario comprimido y doglices complementarios para los triples: el primero de los
indices se implementa sobre una propuestartiel balanceado mientras que el segundo es una
lista ordenada compacta de referencias objeto.

5. Evaluar la nueva solumn. Finalmente, se muestra como la sdbncimejora las propuestas exis-
tentes, y se evahn las propuestas coniattlos presentados ante la comunidad ¢feat nacional
e internacional.

B.3 Principales Resultados del Trabajo

La principal contribudn de esta tesis es un formato novedoso para representar RDF de binagea
denominaddHDT. Header-Dictionary-Triplesque aborda la publicamn, intercambio y consumo (in-
dexacbn/consulta) de RDF a gran escal#DTrepresenta la informa@n de un conjunto de datos RDF
mediante tres componentes optimizados:

» La cabeceraHeade), incluye todo tipo de metadatos para describir el (potencialmente grande)
conjunto de datos seanticos.

« El diccionario Dictionary), organiza todos los identificadores (IDs) en el grafo RDF. Provee u
catalogo de las entidades de inform@tien el grafo RDF, con altos niveles de compesi

e La estructura de sentencias RDFiples), comprende la estructura pura del grafo RDF subya-
cente, mitigando el ruido producido por I@hinos textuales, en su majede gran longitud y
ampliamente repetidos.

Junto con varios ditulos y publicaciones ciefficas importantes que se detallan en el anexo de pub-
licaciones de la tesis (ver AneX9, cabe mencionar especialmente que la propuesta de formanalast
HDTfue presentada al Consorcio de la Web (W3C) en calidad de “MembeniSsibn”. Esta propuesta
fue apoyada por ocho socios internacionales, siendo aceptada erd®la011 Ferrandez et a). 2011),
lo que representun hito por el reconocimiento global de la comunidad ¢fiat y tcnica en la Web
Senantica.

Otras contribuciones esgécas de la tesis pueden resumirse en:

1. Marco tédrico de la estructura de RDFEN primer lugar, abordamos la problatica de compren-
der la estructura real de los grandes grafos RDF. Para ello, llevanai®maun estudio detallado
de estos grafos, revelando su estructura y comps®ibyacentes. El principal objetivo no es
otro que poder aislar caracitgicas comunes que nos permitan caracterizar de manera objetiva
los datos RDF del mundo real. Esta caracterizag@uede ser de utilidad a la hora de realizar
mejores disBos de conjuntos de datosj asmo en el desarrollo de estructuras de datalices y
compresores de RDFam eficientes.

Con este objetivo en mente, proponemosapatros espéficos para caracterizar los datos RDF.
Nos centramos, espiicamente, en aflorar la redundancia de cada conjuritapaso sus posibil-
idades de compresn. Dichos paaimetros han sido evaluados en conjuntos de datos reales.

2. Especificaddin de RDF binario Basandonos en nuestro alisis previo de los principales prob-
lemas de escalabilidad en el manejo de granddswehes de datos samticos, distamos, anal-
izamos, desarrollamos y evaluamos el mencionado formato binario de RizifoeddHDT, que
da respuesta a nuestra biiesis.

210

B. Summary (in Spanish)

3. Diccionarios RDF comprimidos y funcionaleSobre la base del diccionartdDT definido pre-

viamente, proponemoganicas espéficas para diccionarios RDF. En particular, abordamos el
diséno de diccionarios RDF altamente comprimidos y que, al mismo tiempo, nos piaypeErc

una resolu@n de consultas eficiente. Para ello, adaptamositas existentes en el campo de dic-
cionarios comprimidos de cadenas. La sduagiropuesta, un nuevo diccionario RDF denominado
D.omp, S€ demuestra sobresaliente en espacio (consigue las mejores tasap@s@o en nues-

tra evaluadn) y en rendimiento (frente a diccionarios tradicionales del estadote®l Adenas,

su rango de funcionamiento, e@rmino de espacio/tiempo puede ser ajustado de acuerdo a las
necesidades particulares, gracias a la orgarimaen subdiccionarios que realiza,,,. Final-
mente, se propone una funcionalidaédsvavanzada para ayudar a resolver filtros SPARQL desde
el propio diccionario.

. Indices compactos de la estructura de sentencias .RErdamos la creash y uso deindices

compactos de la estructura del grafo codificaddd®T. Disdiamos implementacionesgaticas
gue emplean estructuras de datos sucintas y ciertas nociones de comgEegprimer lugar, con-
sideramos una nueva estructura de grafo para intercambio, denorBiiada Triples(BT) que
codifica el grafo como un bosque @gboles, uno por cada sujeto y sus relaciones. A contiboaci
proponemosndices ligeros que el propio consumidor puede construir sobre la inf@@midDT
intercambiada. La configurdm final deindices de la estructura del grafo (en el consumidor) se
denomina BTWO. Describimos en detalle los algoritmos para la reséludie patrones de senten-
cias a traes de estomdices y, &n mas importante, detallamos los costes operacionales @strav
de las nétricas propuestas previamente. Todas las configuraciones hantsdia@ss y evaluadas
en escenarios reales.

. Implementadn practica de RDF binario Una vez se han asentado los objetivos sobre el dic-

cionario y la estructura del grafo, abordamos la inte@ra@ficiente de ambos componentes.
Consideramos, por tanto, qi#DTse serializa con sus componentes en forniatg,,,, para el
diccionario, y BT, para la estructura del grafo. Sobre ellos, en ewuidor, se cargan las es-
tructuras requeridas para consulfay,,,, y se construyen logxdices BTWO. Esta propuesta
se implementa y evah frente a otras soluciones existentes earea de los almacenes de RDF.
Nuestros experimentos muestran caridTsobresale en casi todos los pasos del flujo publicaci
intercambio-consumo, mant@nidose competitivo en la resolanide consultas.

References

Abadi, D. J., Adam, M., Madden, S. R., & Hollenbach, K. (2007). Scal&gmantic Web Data Man-
agement Using Vertical Partitioning. Froc. of the Very Large Data Bases (VLDB) Conference
(pp. 411-422).

Abadi, D. J., Madden, S. R., & Ferreira, M. (2006). Integrating Cosgicen and Execution in Column-
Oriented Database Systems.Rroc. of the ACM SIGMOD International Conference on Manage-
ment of datgp. 671-682).

Abadi, D. J., Marcus, A., Madden, S. R., & Hollenbach, K. (2009). Stte: a vertically partitioned
DBMS for semantic Web data managemerte VLDB Journgl18, 385—406.

Abramson, N. (1963)Information theory and codingicGraw-Hill.

Adamic, L. A. (1999). The Small World Web. Froc. of the European Conference on Digital Libraries
(ECDL) (pp. 443-452).

Adida, B., Herman, I., Sporny, M., & Birbeck, M. (Eds.). (201RDFa 1.1 Primer W3C Working
Group Note. fttp://www.w3.org/TR/xhtml-rdfa-primer/ , retrieved October 2013)

Akar, Z., Halag, T. G., Ekinci, E. E., & Dikenelli, O. (2012). Querying eb of Interlinked Datasets
using VOID Descriptions. IfProc. of the Linked Data on the Web Workshop (LDOW).

Albert, R., Jeong, H., & Barabasi, A. L. (1999). Diameter of the World Wilfeb. Nature
401(February), 130-131.

Alexander, K. (2008). RDF in JSON: A Specification for serialising RDESON. InProc. of the
Workshop on Scripting for the Semantic Web (SF§\W.)76-81).

Alexander, K., Cyganiak, R., Hausenblas, M., & Zhao, J. (201Dgscribing Linked Datasets with
the VoID VocabularyW3C Interest Group Note htfp://www.w3.org/TR/void/ , retrieved October
2013)

Alexander, K., Cyganiak, R., Zhao, M., & Hausenblas, M. (2009).ddbmg Linked Datasets - On the
Design and Usage of voiD, the “Vocabulary of Interlinked DatasetsProc. of the Linked Data
on the Web Workshop (LDOW).

Alvarez-Garta, S., Brisaboa, N. R., Feandez, J. D., & Maihez-Prieto, M. A. (2011). Compressed
k2-Triples for Full-In-Memory RDF Engines. IRroc. AMCIS.(http:/arxiv.org/abs/1105.4004 ,
retrieved October 2013)

Alvarez-Garta, S., Brisaboa, N. R., Feandez, J. D., Mamez-Prieto, M. A., & Navarro, G.
(2013). Compressed Vertical Partitioning for Full-In-Memory RDF Maragnt. ArXiv e-prints
(http://arxiv.org/abs/1310.4954 , retrieved October 2013)

Anderson, C., & Andersson, M. P. (200Tong tail. Bonnier fakta.

Anglés, R., & Gutéerrez, C. (2005). Querying RDF Data from a Graph Database Rdinapeln Proc.
2nd European Semantic Web Conference (ESip|&)346—-360).

Anglés, R., & Gutérrez, C. (2008). The Expressive Power of SPARQLPtac. of the International
Semantic Web Conference (ISWED. 114-129).

Arenas, M., Bertails, A., Prud’lhommeaux, E., & Sequeda, J. (Eds.)12(20A Direct Mapping of
Relational Data to RDF (http://www.w3.org/TR/rdb-direct-mapping/ , retrieved October 2013)

Arias, M., Corcho, O., Feandez, J. D., Mamez-Prieto, M. A., & Sarez-Figueroa, M. C. (2013).
Compressing Semantic Metadata for Efficient Multimedia RetrievalPrbt. of CAEPIA. (To

appear.)

Arias, M., Ferrandez, J. D., Mamez-Prieto, M. A., & de la Fuente, P. (2011). An Empirical Study of
Real-World SPARQL Queries. IIAroc. of USEWOD(http://arxiv.org/abs/1103.5043 , retrieved
October 2013)

Arz, J., & Fischer, J. (2013). LZ-Compressed String DictionarieSCoRR abs/1305.0674
(http://arxiv.org/abs/1305.0674 , retrieved October 2013)

Atemezing, G., Corcho, O., Garijo, D., Mora, J., Poveda-\ditalM., Rozas, P, ... Villam-Terrazas, B.
(2012). Transforming Meteorological Data into Linked Dasemantic Web Journa(To appear.

212 REFERENCES

http:/Avww.semantic-web-journal.net/system/files/sw j281 _1.pdf , retrieved October 2013)

Atre, M., Chaoji, V., Zaki, M. J., & Hendler, J. A. (2010). Matrix “Bit” loade a scalable lightweight
join query processor for RDF data. Froc. of the World Wide Web Conference (WWYY§.
41-50).

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., & Ives, Z. (2007). B&p: A Nucleus for a Web of
Open Data. IrProc. of the 6th International Semantic Web Conference (IS{M&)11-15).

Bachlechner, D., & Strang, T. (2007). Is the Semantic Web a Small Worlé?ok. of the International
Conference on Internet Technologies and Applications ((pR) 413-422).

Baeza-Yates, R., Hurtado, C., & Mendoza, M. (2007, October). Iwipgosearch engines by query
clustering.J. Am. Soc. Inf. Sci. Techndb8(12), 1793-1804.

Baeza-Yates, R., & Ribeiro-Neto, B. (201Modern Information Retrieval - the concepts and technol-
ogy behind searcf2nd ed.). Pearson Education Ltd.

Bayer, R., & McCreight, E. (1970). Organization and maintenance oélardered indices. IRroc. of
ACM SIGFIDET(pp. 107-141).

Beckett, D. (2004)RDF/XML Syntax Specification (Revisehtp:/iwww.w3.org/TR/REC-rdf-syntax/ ,
retrieved October 2013)

Beckett, D., & Berners-Lee, T. (2011)Turtle - Terse RDF Triple Language (http:/imww.w3.org/
TeamSubmission/turtle/ , retrieved October 2013)

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990)ext compressiarPrentice Hall.

Bender, M., Farach-Colton, M., & Kuszmaul, B. (2006). Cache-ohlisistring B-trees. IfProc. of
PODS(pp. 233-242).

Berners-Lee, T. (1996). WWW: Past, Present, and FulisieE Computer29(10), 69-77.

Berners-Lee, T. (1998).Notation3 (http:/mwww.w3.org/Designissues/Notation3 , retrieved October
2013)

Berners-Lee, T. (2006)Linked Data: Design Issues(http://www.w3.org/Designissues/LinkedData.
html , retrieved October 2013)

Berners-Lee, T., Fielding, R., & Masinter, L. (2005RFC 3986, Uniform Resource Identifier (URI):
Generic Syntax.

Berners-Lee, T., Hendler, J. A., & Lassila, O. (2001). The Semantlz. Beientific American Magazine
284(5), 28-37.

Binna, R., Gassler, W., Zangerle, E., Pacher, D., & Specht, G. (2&hlderStore: A native main mem-
ory approach for graph storage. Rroc. 23rd Workshop Grundlagen von Datenbanken (GvDB)
(pp. 91-96).

Binnig, C., Hildenbrand, S., &&ber, F. (2009). Dictionary-based Order-preserving String Cessn
for Main Memory Column Stores. IRroc. of the ACM SIGMOD International Conference on
Management of datépp. 283—-296).

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashey, Z., & VielkR. (2011). OWLIM: A family
of scalable semantic repositori€emantic Wel®2(1), 33—42.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The\88w Far.International Journal
on Semantic Web and Information Systebnd—22.

Bizer, C., Heath, T., Idehen, K., & Berners-Lee, T. (2008). Prdcahe Linked Data on the Web
Workshop (LDOW). InWWW(pp. 1265-1266).

Bloomberg, J. (2013)'he Big Data Long Tail(http://iwww.devx.com/blog/the-big-data-long-tail.htm ,
retrieved October 2013)

Bonstbm, V., Hinze, A., & Schweppe, H. (2003). Storing RDF as a Grapl®Rrbt. 1st Latin American
Web Congress (LA-WEB)p. 27-36).

Borges, J., & Levene, M. (2000). Data Mining of User Navigation Pasterinn B. Masand &
M. Spiliopoulou (Eds.)Web Usage Analysis and User Profilifgol. LNAI 1836, pp. 92-112).
Springer Berlin Heidelberg.

http://www.semantic-web-journal.net/system/files/swj281_1.pdf
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

REFERENCES 213

Brickley, D. (2004). RDF Vocabulary Description Language 1.0. RDF Schema
(http://Awww.w3.org/TR/rdf-schema/ , retrieved October 2013)

Brisaboa, N. R., @novas, R., Claude, F., Manez-Prieto, M. A., & Navarro, G. (2011). Compressed
String Dictionaries. IfProc. of the Symposium on Experimental Algorithms (Sgp)136-147).

Brisaboa, N. R., Ladra, S., & Navarro, G. (2013). DACs: BringingebirAccess to Variable-Length
Codes.Information Processing and Management (IPMI9(1), 392—-404.

Brisaboa, N. R., Ladra, S., & Navarro, G. (2014). Compact Reptaten of Web Graphs with Extended
Functionality.Information System89(1), 152-174.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Rata.. Wiener, J. (2000).
Graph structure in the WelCcomputer Networks33(1-6), 309-320.

Broekstra, J., Kampman, A., & van Harmelen, F. (2003). Spinning the Senvdeb. In (pp. 197-222).
MIT Press.

Burrows, M., & Wheeler, D. (1994)A Block-Sorting Lossless Data Compression Algoriffiech. Rep.
No. 124). Digital Equipment Corporation.

Campinas, S., Perry, T. E., Ceccarelli, D., Delbru, R., & Tummarello, G.ZR0dtroducing RDF Graph
Summary with Application to Assisted SPARQL FormulatioRroc. of the 23rd International
Workshop on Database and Expert Systems Applications (DE264)266.

Carothers, G. (2013N-Quads W3C Working Group Note.hftp:/mww.w3.org/TR/n-quads/ , retrieved
October 2013)

Carroll, J. J. (2003). Signing RDF Graphs.I8WC 2003pp. 369-384).

Cheng, G., Ge, W., & Qu, Y. (2008). Falcons: searching and broweitities on the semantic web. In
Proc. of the World Wide Web Conference (WWjy). 1101-1102).

Cheng, G., & Qu, Y. (2008). Term Dependence on the Semantic WePron of the International
Semantic Web Conference (ISW@). 665—680).

Chong, E., Das, S., Eadon, G., & Srinivasan, J. (2005). An effiS€t-based RDF querying scheme.
In Proc. of VLDB(pp. 1216-1227).

Clark, D. (1996).Compact PAT treedJnpublished doctoral dissertation, University of Waterloo.

Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distrilms in Empirical Data.
SIAM Review51(4), 661—-703.

Cleary, J. G., & Witten, I. H. (1984). Data compression using adaptigegngand partial string matching.
IEEE Transactions on Communicatioid2(4), 396—-402.

Compact Data Structures Library (libcdg2012). 6ttp:/ibcds.recoded.cl/ , retrieved October 2013)
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (200hjroduction to Algorithms MIT
Press.

Cuesta, C. E., Mamez-Prieto, M. A., & Ferandez, J. D. (2013). Towards an Architecture for Managing
Big Semantic Data in Real-Time. In K. Drira (Ed9pftware Architecturé\Vol. 7957, pp. 45-53).
Springer Berlin Heidelberg.

Cyganiak, R. (2005). A relational algebra for SPARQRigital Media Systems Laboratory HP Lab-
oratories Bristol. HPL-2005-17.0 (http:/Awww.hpl.hp.com/techreports/2005/HPL-2005-170 html
retrieved October 2013)

Cyganiak, R., Field, S., Gregory, A., Halb, W., & Tennison, J. (201@méntic statistics: Bringing
together SDMX and SCOVALDOW 2010 at WWW 201@-6.

Cyganiak, R., & Reynolds, D. (Eds.). (2013)he RDF Data Cube Vocabulary?v3C Working Draft.
(http://www.w3.0rg/TR/vocab-data-cube/ , retrieved October 2013)

Cyganiak, R., Stenzhorn, H., Delbru, R., Decker, S., & Tummarello, GO§R0Semantic Sitemaps:
Efficient and Flexible Access to Datasets on the Semantic Wdbroa of the Extended Semantic
Web Conference (ESWQ)p. 690—704).

De, S., Elsaleh, T., Barnaghi, P. M., & Meissner, S. (2012). An Inteshé&hings Platform for Real-
World and Digital ObjectsScalable Computing: Practice and Experient&(1), 45-57.

214 REFERENCES

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processiagge clustersCommuni-
cations of the ACM51(1), 107-113.

Ding, L., & Finin, T. (2006). Characterizing the Semantic Web on the WePrdwe. of the International
Semantic Web Conference (ISWE). 242-257).

Dorogovtsey, S. N., & Mendes, J. F. F. (20038volution of Networks: From Biological Nets to the
Internet and WWW\ol. 51). Oxford University Press.

DuCharme, B. (2011)Learning SPARQLO'Reilly.

Duerst, M., & Suignard, M. (2005, 1). RFC 3987, InternationalizedoRese Identifiers (IRIs) [RFC].

IETF.
Dumbill, E. (2012). What is Big Data?StratgJanuary, 11). hftp:/strata.oreilly.com/2012/01/
what-is-big-data.html , retrieved October 2013)

Erling, O. (2012). Virtuoso, a Hybrid RDBMS/Graph Column StdieEE Data Eng. Bull.35(1), 3-8.

Erling, O., & Mikhailov, I. (2007). RDF Support in the Virtuoso DBMS. Rroc. of the Conference on
Social Semantic Web (CSSWp. 59-68).

Erling, O., & Mikhailov, I. (2009). RDF Support in the Virtuoso DBMS. In Pellegrini, S. Auer,

K. Tochtermann, & S. Schaffert (EdsNetworked Knowledge - Networked Mediél. 221, pp.
7-24). Springer Berlin Heidelberg.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-latioreships of the Internet topology.
ACM SIGCOMM Computer Communication Revig®4), 251-262.

Ferrandez, J. D., Arias, M., Mdriez-Prieto, M. A., & Gutrrez, C. (2013). Management of Big
Semantic Data. In R. Akerkar (EdBjg Data Computindchap. 4). Taylor and Francis/CRC.
Ferrandez, J. D., Guéirrez, C., & Marinez-Prieto, M. A. (2010). RDF Compression: Basic Approaches.

In WWW(pp. 1091-1092).

Ferrandez, J. D., Mamez-Prieto, M. A., & Guirrez, C. (2010). Compact Representation of Large RDF
Data Sets for Publishing and Exchange.Pimc. of the International Semantic Web Conference
(ISWC)(pp. 193-208).

Ferrandez, J. D., Mamez-Prieto, M. A., Guérrez, C., & Polleres, A. (2011Binary RDF Represen-
tation for Publication and Exchange (HD:T }nttp:/Avww.w3.org/Submission/2011/03/ , retrieved
October 2013)

Ferrandez, J. D., Mamez-Prieto, M. A., Guérrez, C., Polleres, A., & Arias, M. (2013). Binary RDF
Representation for Publication and Exchange (HDJburnal of Web Semantic$9, 22—-41.

Ferragina, P., Grossi, R., Gupta, A., Shah, R., & Vitter, J. S. (2008)s&anching compressed string
collections cache-obliviously. IRroc. of the 27th symposium on principles of database systems
(pods)(pp. 181-190).

Ferragina, P., & Manzini, G. (2000). Opportunistic Data Structures witplidations. InProc. of the
IEEE Symposium on Foundations of Computer Science (FGQ%)390—-398).

Ferragina, P., & Venturini, R. (2010). The compressed permuterm ided Trans. Alg.7(1), art. 10.

Foulonneau, M. (2011). Smart Semantic Content for the Future Intemé#letadata and Semantic
Research{\Vol. CCIS 240, pp. 145-154). Springer Berlin Heidelberg.

Garda-Silva, A., Corcho, O., Alani, H., & Gmez-Rerez, A. (2012). Review of the state of the art: dis-
covering and associating semantics to tags in folksononies.Knowledge Engineering Review
27(01), 57-85.

Garfield, E. (1976). The permuterm subject index: An autobiograpt@eeew. Journal of the American
Society for Information Scienc27(5), 288—291.

Garlik, S. H., Seaborne, A., & Prud’hommeaux, E. (2013§PARQL 1.1 Query LanguageWN3C
Recommendation hip://www.w3.org/TR/sparql11-query/ , retrieved October 2013)

Ge, W, Chen, J., Hu, W., & Qu, Y. (2010). Object Link Structure in the Sgim&Veb. InProc. of the
Extended Semantic Web Conference (ESWR)257-271).

Gil, R., & Garda, R. (2004). Measuring the Semantic WéthS SIGSEMIS Bulletirl(2), 69-72.

http://strata.oreilly.com/2012/01/what-is-big-data.html
http://strata.oreilly.com/2012/01/what-is-big-data.html

REFERENCES 215

Gil, Y., & Groth, P. (2011). LinkedDatalLens: linked data as a networketfvorks. InProc. of the
International Conference on Knowledge Capture (K-CA#D). 191-192).

Golynski, A., Grossi, R., Gupta, A., Raman, R., & Rao, S. S. (2007). Oisihe of Succinct Indices.
In L. Arge, M. Hoffmann, & E. Welzl (Eds.)Algorithms - ESA 200{Vol. 4698, pp. 371-382).

Gonzlez, R., Grabowski, S., Bkinen, V., & Navarro, G. (2005). Practical Implementation of Rank and
Select Queries. IfProc. of the Workshop on Efficient and Experimental Algorithms (WEJ)
27-38).

Goodman, E., Jimenez, E., Mizell, D., Al-Saffar, S., Adolf, B., & Haglin, D(2D11). High-performance
computing applied to semantic databasesThie Semantic Web: Research and Applicatioms
31-45). Springer.

Govindan, R., & Tangmunarunkit, H. (2000). Heuristics for InternepMéscovery.Proc. of the Annual
IEEE International Conference on Computer Communications (INFOELQBV1-1380.

Grant, J., & Beckett, D. (2004)RDF Test Cases (http:/www.w3.org/TR/rdf-testcases/ , retrieved
October 2013)

Groppe, S. (2011)Data Management and Query Processing in Semantic Web Datab@geaager.

Grossi, R., Gupta, A., & Vitter, J. S. (2003). High-order entropy-casped text indexes. Froc. of
the Symposium on Discrete Algorithms (SOQ#). 841-850).

Grossi, R., & Ottaviano, G. (2012). Fast Compressed Tries throughDrRatbmpositions. IriProc. of
the 14th Meeting on Algorithm Engineering & Experiments (ALEN@X) 65-74).

Gueéret, C., Groth, P., Van Harmelen, F., & Schlobach, S. (2010). Findingc¢héles Heel of the Web
of Data: using network analysis for link-recommendationProc. of the International Semantic
Web Conference (ISW@)p. 289-304).

Guns, R. (2008). Unevenness in Network Properties on the Socialrfieréeb. Scalable Computing:
Practice and Experienc®(4), 271-279.

Gutiérrez, C. (2011). Reasoning Web. Semantic Technologies for the YARata - 7th International
Summer School 2011, Galway, Ireland, August 23-27, 2011, Tutbeetures. In Polleres, A.
and d’Amato, C. and Arenas, M. and Handschuh, S. and KronendPOasowski, S. and Patel-
Schneider, P.F. (Ed.Reasoning Wepvol. 6848, pp. 416—444). Springer.

Gutiérrez, C., Hurtado, C., Mendelzon, A. O., & Perez, J. (2011). Fatimus of Semantic Web
DatabaseslJournal of Computer and System Scien@@s520-541.

Haas, K., Mika, P., Tarjan, P., & Blanco, R. (2011). Enhanced resoite/éb search. IfProc. of the
34th International Conference on Research and Development in IatmmRetrieval (SIGIRjpp.
725-734).

Halfon, A. (2012). Handling Big Data Variety. (http:/mww.finextra.com/community/fullblog.aspx?
blogiD=6129 , retrieved October 2013)

Harris, S., & Gibbins, N. (2003). 3Store: Efficient Bulk RDF Storage. Ptoc. 1st International
Workshop on Practical and Scalable Semantic Systems (RR%3)-15).

Harth, A., & Decker, S. (2005). Optimized Index Structures for QuerRDF from the Web. IfProc.
3rd Latin American Web Congress (LA-WHB) 71-80).

Harth, A., Umbrich, J., Hogan, A., & Decker, S. (2007). YARS2: A Faded Repository for Querying
Graph Structured Data from the Web. In K. Aberer et al. (Ed$i Semantic Welvol. 4825, pp.
211-224). Springer Berlin Heidelberg.

Hausenblas, M., & Karnstedt, M. (2010). Understanding Linked Opata @s a Web-Scale Database.
In Proc. of the 1st International Conference on Advances in Datab@ge$6—61).

Hayes, J., & Guérrez, C. (2004). Bipartite Graphs as Intermediate Model for RDFPrtie. of the
International Semantic Web Conference (ISW§p). 47—61). Springer Berlin Heidelberg.

Hayes, P. (2004)RDF Semantics(http://iwww.w3.org/TR/rdf-mt/ , retrieved October 2013)

Heath, T., & Bizer, C. (2011)Linked Data: Evolving the Web into a Global Data Spa&ynthesis
Lectures on the Semantic Web: Theory and Technology, Morgan & Ctdypo

http://www.finextra.com/community/fullblog.aspx?blogID=6129
http://www.finextra.com/community/fullblog.aspx?blogID=6129

216 REFERENCES

Hey, T., Tansley, S., & Tolle, K. M. (2009). Jim Gray on eScience: asfiamed scientific method. In
The Fourth ParadigmMicrosoft Research Redmond, WA.

Hitzler, P., Kibtzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (20@®JL 2 Web Ontol-
ogy Language Primer (Second Edition(http://www.w3.org/TR/owl2-primer/ , retrieved October
2013)

Hogan, A. (2011). Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scatdket
Data Corpora Unpublished doctoral dissertation, National University of Ireland)wag
(nttp://sw.deri.org/~aidanh/docs/thesis/thesis-one-s ided.pdf , retrieved October 2013)

Hogan, A., Harth, A., Passant, A., Decker, S., & Polleres, A. (2010¢awvig the Pedantic Web. In
LDOW 2010 at WWW 201@®Raleigh, USA.

Hogan, A., Polleres, A., Umbrich, J., & Zimmermann, A. (2010). Some entitiesrare equal than
others: statistical methods to consolidate Linked Datanémkshop on New Forms of Reasoning
for the Semantic Web: Scalable & Dynamic (NeFoRS2010).

Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., & Decker, S. (2082palable and distributed
methods for entity matching, consolidation and disambiguation over linked dgtarao Web
Semantics: Science, Services and Agents on the World Widdliyv@b - 110.

Hu, W., Chen, J., Zhang, H., & Qu, Y. (2011). How Matchable Are Foaoudsand Ontologies on the
Semantic Web. IfProc. of the Extended Semantic Web Conference (E@pC290-304).

Huang, J., Abadi, D., & Ren, K. (2011). Scalable SPARQL Queryingaofle RDF Graph$roceedings
of the VLDB Endowmen#(11), 1123-1134.

Huffman, D. A. (1952). A Method for the Construction of Minimum-RedumclaCodes.Proc. of the
Institute of Radio Engineerd((9), 1098-1101.

IBM. (1993). IBM Dictionary of ComputingMcGraw-Hill.

Jacobson, G. J. (1988)Succinct static data structureddnpublished doctoral dissertation, Carnegie
Mellon University.

Janik, M., & Kochut, K. (2005). BRAHMS: A workbench RDF store arigthperformance memory
system for semantic association discovery.Phoc. 4th International Semantic Web Conference
(ISWC)(pp. 431-445).

Jeong, H., Mason, S. P., Barabasi, A. L., & Oltvai, Z. N. (2001, Mathklity and centrality in protein
networks.Nature 411(6833), 41-42.

Khatchadourian, S., & Consens, M. P. (2010). ExpLOD: Summare@&sploration of Interlinking and
RDF Usage in the Linked Open Data Cloud. Rroc. of the Extended Semantic Web Conference
(ESWC)pp. 272-287).

Knoblock, C. A., Szekely, P., Ambite, J. L., Gupta, S., Goel, A., Muslea, MMallick, P. (2012). Semi-
Automatically Mapping Structured Sources into the Semantic WelRrde. of the 9th Extended
Semantic Web Conference (ESWj). 375-390).

Knuth, D. E. (1973).The Art of Computer Programming, volume 3: Sorting and Searchiugdison
Wesley.

Kuczma, M. (2008).An introduction to the theory of functional equations and inequalities: Cdachy
equation and Jensen’s inequalitgpringer.

Langegger, A., & Woss, W. (2009). RDFStats - An Extensible RDF Stati&@gerator and Library. In
DEXA 2009(pp. 79-83).

Larsson, N. J., & Moffat, J. A. (2000). Offline Dictionary-Based Caagsion.Proc. of the IEEE 88,

1722-1732.
Lassila, O., & Swick, R. R. (1999Resource Description Framework (RDF) Model and Syntax Specifi-
cation. http://imww.w3.0rg/TR/1999/REC-rdf-syntax-19990222/ , retrieved October 2013.

Lee, J., Pham, M., Lee, J., Han, W., Cho, H., Yu, H., & Lee, J. H. (20R®cessing SPARQL queries
with regular expressions in RDF databasesPioc. of DTMBIO(pp. 23—-30).
Le-Phuoc, D., Parreira, J. X., Reynolds, V., & Hauswrth, M. (20RI)F On the Go : An RDF Storage

REFERENCES 217

and Query Processor for Mobile Devices.Rroc. of the International Semantic Web Conference
(ISWC) Posters&Demos.

Lorenz, M. O. (1905). Methods of measuring the concentration of weRlihlications of the American
Statistical Associatiord(70), 209-219.

Makinen, V., & Navarro, G. (2007). Rank and Select Revisited and Beg:nTheoretical Computer
Science387(3), 332—-347.

Mallea, A., Arenas, M., Hogan, A., & Polleres, A. (2011). On blank reodén Proc. of the 10th
International Conference on the Semantic Web (IS\1¢6) 421-437).

Manola, F., & Miller, E. (Eds.). (2004)RDF Primer W3C Recommendation. (www.w3.org/TR/rdf-
primer/)

Martinez-Prieto, M. A. (2010). Estudio y aplicacion de nuevos metodos de compresion de texto
orientada a palabras ProQuest Dissertations and Theses. (Doctoral dissertation in Span-
ish. http://dataweb.infor.uva.es/wp-content/uploads/2012 /02/Phd-Miguel.pdf) retrieved Octo-
ber 2013)

Martinez-Prieto, M. A., Arias, M., & Ferandez, J. D. (2012). Exchange and Consumption of Huge RDF
Data. InProc. of ESWGQpp. 437-452).

Martinez-Prieto, M. A., Ferandez, J. D., & @novas, R. (2012a). Compression of RDF Dictionaries. In
Proc. of the ACM International Symposium on Applied Computing ($#6)1841-1848).

Martinez-Prieto, M. A., Ferandez, J. D., & @novas, R. (2012b). Querying RDF Dictionaries in
Compressed SpacACM SIGAPP Applied Computing Reviel(2), 64-77.

McGuinness, D. L., & Van Harmelen, F. (2004 OWL Web Ontology Language OverviewvV3C
Recommendation hip://www.w3.org/TR/owl-features/ , retrieved October 2013)

Mendelzon, A. O., & Milo, T. (1998). Formal Models of Web Querias. Syst, 23(8), 615-637.

Milgram, S. (1967). The small world probler®sychology Today(1), 60-67.

Miller, E. (1998). An Introduction to the Resource Description Framew®ulletin of the American
Society for Information Science and Technoldgf(1), 15-19.

Motik, B., Patel-Schneider, P. F., & Parsia, B. (2009). OWL 2 Web Ontology Lan-
guage Structural Spcification and Functional Style-Syntax W3C Recommendation.
(ttp://Awww.w3.0rg/ TR/owl2-syntax/ , retrieved October 2013)

Munro, I. (1996). Tables. Ifoundations of Software Technology and Theoretical Computer Science
(pp. 37-42).

Musser, J., & Oreilly, T. (2007).Web 2.0 Report: Principles and Best Practice®’Reilly Media,
Incorporated.

Navarro, G. (2013). Wavelet Trees for Allournal of Discrete AlgorithmsTo appear)

Navarro, G., & Makinen, V. (2007). Compressed Full-Text Indexé&CM Computing Survey89(1),
art. 2.

Neumann, T., & Weikum, G. (2009). Scalable Join Processing on VelgelRDF Graphs. IProc. of
the ACM SIGMOD International Conference on Management of (fia627-640).

Neumann, T., & Weikum, G. (2010). The RDF-3X Engine for Scalable Man@nt of RDF datalhe
VLDB Journa) 19(1), 91-113.

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., & Tummagll2008). Sindice.com:

a document-oriented lookup index for open linked daigernational Journal of Metadata Seman-
tics and Ontologies3(1), 37-52.

Pasco, R. C. (1976)Source coding algorithms for fast data compressigmpublished doctoral disser-
tation, Stanford University.

Perez, J., Arenas, M., & Gatirez, C. (2009). Semantics and Complexity of SPAR@LCM Transac-
tions on Database Systen®s(3), 1-45.

Powers, S. (2003)Practical RDF. O'Reilly & Associates, Inc.

Prudhommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF

218 REFERENCES

(http:/Awww.w3.org/ TR/rdf-spargl-query/ , retrieved October 2013)

Quesada, J. (2008). Human Similarity theories for the semantic wellPrdeeedings of the First
International Workshop on Nature Inspired Reasoning for the Semaric(Véls. CEUR-WS
419, paper 7).

Ramakrishnan, R., & Gehrke, J. (200@atabase Management Syster@sborne/McGraw-Hill.

Raman, R., Raman, V., & Rao, S. S. (2002). Succinct indexable dictienaite applications to
encodingk-ary trees and multisets. IRroc. of ACM-SIAM Symposium on Discrete Algorithms
(SODA)(pp. 233-242).

Redner, S. (1998). How popular is your paper? An empirical studyeogitation distributionEuropean
Physical Journal B4(2), 131-134.

Rissanen, J. J. (1976). Generalized kraft inequality and arithmetic godiBM J. Res. Dey.2((3),
198-203.

Sakr, S., & Al-Naymat, G. (2010). Relational Processing of RDF quesi&urvey.SIGMOD Records
38, 23-28.

Sakr, S., Elnikety, S., & He, Y. (2012). G-SPARQL: a hybrid enginedaerying large attributed
graphs. InProc. 21st ACM Conference on Information and Knowledge Managef@&dM) (pp.
335-344).

Salomon, D. (2007a)Data Compression: The Complete Referer@gringer-Verlag London Limited.

Salomon, D. (2007b)Variable-length Codes for Data Compressi@pringer.

Sauermann, L., & Cyganiak, R. (2008Lool URIs for the Semantic WelW3C Interest Group Note.
(http:/Awww.w3.org/TR/cooluris/ , retrieved October 2013)

Schmidt, M., Hornung, T., Kchlin, N., Lausen, G., & Pinkel, C. (2008). An Experimental Compar-
ison of RDF Data Management Approaches in a SPARQL Benchmark &zena Proc. 7th
International Conference on The Semantic Web (IS{§@)82-97).

Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2008). SP2BenclSPARQL Performance
Benchmark.CoRR abs/0806.4627

Schmidt, M., Meier, M., & Lausen, G. (2010). Foundations of SPARQL r@Q@ptimization. InProc.
of the International Conference on Database Theory (IC[pp) 4-33).

Schneider, J., & Kamiya, T. (201 1gfficient XML Interchange (EXI) Format 1.&/3C Recommendation.
(http://www.w3.0rg/ TR/exi/ , retrieved October 2013)

Schwarte, A., Haase, P., Hose, K., Schenkel, R., & Schmidt, M. (20EQXFoptimization techniques
for federated query processing on linked data.Piac. of the 10th International Conference on
the Semantic Web (ISW@)p. 601-616).

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., & Manegold, 8082 Column-store Support for
RDF Data Management: not All Swans are Whiteroceedings of the VLDB Endowme(2),
1553-1563.

Sompolski, J., Zukowski, M., & Boncz, P. (2011). Vectorization vs. contipitein query execution. In
Proc. of the Seventh International Workshop on Data ManagemenearHdrdwargpp. 33-40).

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., éim@r M., ... others (2005).
C-store: a column-oriented DBMS. Proc. of the Very Large Data Bases (VLDB) Conference
(pp. 553-564).

Styles, R. (2012).RDF, Big Data and The Semantic Welttp://dynamicorange.com/2012/04/24/
rdf-big-data-and-the-semantic-web/ , retrieved October 2013)

Taheriyan, M., Knoblock, C. A., Szekely, P., & Ambite, J. L. (2012). Kpintegrating Services into
the Linked Data Cloud. If#roc. of the 11th International Semantic Web Conference (IS{picC)
559-574).

Theoharis, Y., Tzitzikas, Y., Kotzinos, D., & Christophides, V. (2008h @raph Features of Semantic
Web SchemadEEE Transactions on Knowledge and Data Engineeri2if5), 692—702.

Tran, T., Ladwig, G., & Rudolph, S. (2013). Managing Structured agmiStructured RDF Data Using

http://dynamicorange.com/2012/04/24/rdf-big-data-and-the-semantic-web/
http://dynamicorange.com/2012/04/24/rdf-big-data-and-the-semantic-web/

REFERENCES 219

Structure IndexedEEE Transactions on Knowledge and Data EngineerR9), 2076—2089.

Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., & &e& (2010). Sig.ma:
Live views on the Web of DataWWeb Semantics: Science, Services and Agents on the World Wide
Weh 8(4), 355-364.

Urbani, J., Maassen, J., & Bal, H. (2010). Massive Semantic Web dataression with MapReduce.
In HPDC 2010(pp. 795-802).

\Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Discovering &aintaining Links on the Web
of Data. InProc. of the 9th International Semantic Web Conference (IS{pitc)650—665).

Watts, D. J. (1999). Networks, Dynamics, and the Small World PhenomeAorerican Journal of
Sociology 1052), 493-527.

Weaver, J., & Williams, G. T. (2011). Reducing I/O Load in Parallel RDF Systeia Data Compression.
In Proc. of the Workshop on High-Performance Computing for the SemaebdMPCSW 2011)
(Vols. CEUR-WS 736, paper 4).

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: Sextuglexing for Semantic Web Data
ManagementProc. of the VLDB Endowmerit(1), 1008-1019.

Wilkinson, K. (2006). Jena Property Table ImplementationPtac. of the International Workshop on
Scalable Semantic Web Knowledge Base Systems (8W35—46).

Wilkinson, K., Sayers, C., Kuno, H., & Reynolds, D. (2003). EfficiemMRStorage and Retrieval in
Jena2. IrProc. of the International Workshop on Semantic Web and DatabageBB3(pp. 7-8).

Williams, H., & Zobel, J. (1999). Compressing Integers for Fast File Acxc&he Computer Journal
42,193-201.

Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing Gigabytes : Compressing and Indexing
Documents and ImageMorgan Kaufmann.

Wood, D. (2010)Linking Enterprise DataSpringer. Kttp:/3roundstones.com/led _book/led-contents.
html , retrieved October 2013)

Zhang, H. (2008). The scale-free nature of semantic web ontologfrde. of the World Wide Web
Conference (WWW(pp. 1047-1048).

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential dadenpressionlnformation Theory,
IEEE Transactions or23(3), 337-343.

Ziv, J., & Lempel, A. (1978). Compression of individual sequencesai&ble-rate codingnformation
Theory, IEEE Transactions ¢84(5), 530-536.

http://3roundstones.com/led_book/led-contents.html
http://3roundstones.com/led_book/led-contents.html

	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Contribution
	1.4 Thesis Structure

	2 Basic Concepts
	2.1 The Semantic Web
	2.1.1 Describing Semantic Data
	2.1.2 Querying Semantic Data

	2.2 The Web of (Linked) Data
	2.3 Big Semantic Data
	2.4 Succinct Data Structures
	2.4.1 Rank and Select over Binary Sequences
	2.4.2 Rank and Select over General Sequences
	2.4.3 Basic Compression Notions

	I Characterizing the RDF Structure
	3 Introduction
	3.1 Motivation
	3.2 Power Law Distributions. Scale-free Network
	3.3 Small-world Phenomenon
	3.4 Other Studies

	4 Our proposal: Metrics for RDF Graphs
	4.1 Proposed Metrics
	4.1.1 Subject and Object Degrees
	4.1.2 Predicate Degrees
	4.1.3 Common Ratios
	4.1.4 Subject-Object Degrees
	4.1.5 Predicate Lists
	4.1.6 Typed Subjects and Classes

	4.2 Experimental Framework
	4.3 Results
	4.3.1 Ratios
	4.3.2 Out- and in-degrees
	4.3.3 Predicates per Subject and Object
	4.3.4 Partial and Direct Degrees
	4.3.5 Predicate Degrees
	4.3.6 Study of Predicate Lists
	4.3.7 Study of Classes and Typed Subjects

	5 Discussion
	5.1 Contributions
	5.2 Result Summary
	5.3 Applications

	II Binary RDF Representation for Publication and Exchange
	6 Introduction
	6.1 Stakeholders in Big Semantic Data Management
	6.1.1 Participants and Witnesses

	6.2 The Workflow of Publication-Exchange-Consumption
	6.2.1 State of the Art

	6.3 Our Goal

	7 HDT: A Binary Serialization for RDF
	7.1 Conceptual Description
	7.1.1 Header
	7.1.2 Dictionary
	7.1.3 Triples

	7.2 Practical HDT Deployment for Publication and Exchange
	7.2.1 A Specific Vocabulary for the Header
	7.2.2 Plain Dictionary Encoding
	7.2.3 Triples Encodings

	7.3 RDF/HDT Syntax Specification
	7.3.1 The Structure of an HDT File
	7.3.2 The Control Information
	7.3.3 Plain Dictionary Encoding
	7.3.4 Triples Encodings

	7.4 Experimental Evaluation
	7.4.1 Dictionary and Triples Compact Ability
	7.4.2 Scalability Evaluation
	7.4.3 Additional HDT Compression

	8 Discussion
	8.1 Contributions
	8.2 Next Steps

	III Compressed Rich-Functional RDF Dictionaries
	9 Introduction
	9.1 Motivation
	9.2 Compressed String Dictionaries
	9.2.1 Compressed Hashing
	9.2.2 Front-Coding
	9.2.3 Grammar-based Compression
	9.2.4 Self-Indexing

	9.3 RDF Dictionaries
	9.4 Our Goal

	10 Our Approach: Dcomp
	10.1 RDF Vocabulary Partitioning
	10.2 Dcomp Conceptual Description
	10.3 Data Structures and Algorithms
	10.3.1 Transforming Local and Global IDs.
	10.3.2 Basic Lookup Operations

	10.4 Filter Resolution
	10.4.1 Vocabulary Tests
	10.4.2 Simple Accessors

	10.5 Experimental Evaluation
	10.5.1 Analyzing Compressed String Dictionaries for RDF
	10.5.2 Dcomp Performance
	10.5.3 Dcomp Regex Resolution

	11 Discussion
	11.1 Contributions
	11.2 Future Work and Applications

	IV Compact RDF Triple Indexes
	12 Introduction
	12.1 Motivation
	12.2 State of the Art
	12.2.1 Relational Solutions
	12.2.2 Native Solutions

	12.3 Our Goal

	13 Compact RDF Indexes on top of HDT Encodings
	13.1 HDT Bitmap Triples Encoding
	13.1.1 BT Conceptual Navigability
	13.1.2 BT Succinct Index
	13.1.3 Application

	13.2 Additional Compressed Succinct Data Structures
	13.2.1 A Wavelet Tree-based Solution for PS-O Indexing
	13.2.2 An Additional Adjacency List for OP-S Indexing

	13.3 Experimental Evaluation
	13.3.1 Bitmap Triples Compression
	13.3.2 Analyzing the Space Overhead of BTWO*
	13.3.3 BTWO* Performance Comparison
	13.3.4 BTWO* Order Comparison
	13.3.5 The BTWO-GMR* Alternative

	14 Discussion
	14.1 Contributions
	14.2 Other Applications

	V Querying HDT-encoded Datasets
	15 HDT Focusing on Querying (HDT-FoQ)
	15.1 Towards an HDT-FoQ Engine
	15.1.1 HDT-FoQ Generation
	15.1.2 HDT-FoQ Querying

	15.2 Experimental Evaluation
	15.2.1 Analyzing the Publication-Exchange-Consumption Workflow
	15.2.2 HDT-FoQ in Consumption: Performance for SPARQL Querying

	VI Thesis Summary
	16 Conclusions and Future Work
	16.1 Summary of Contributions
	16.2 Future Work

	A Publications and other Results
	B Summary (in Spanish)
	B.1 Hipótesis y Objetivos
	B.2 Metodología
	B.3 Principales Resultados del Trabajo

	Bibliography

