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The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of
cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile func-
tion but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcrip-
tional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation
of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs
are short non-coding RNAs thatmodulate gene expression by post-transcriptional regulation of targetmessenger
RNA.
In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated
with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed
using cardiovascular disease-focusedmiRNA arrays in bothmouse and human cells. The potential clinical impor-
tance of actin polymerization in aortic aneurysmwas evaluatedusing biopsies frommildly dilated human thorac-
ic aorta in patients with stenotic tricuspid or bicuspid aortic valve.
By integrating information frommultiple qPCR basedmiRNA arrayswe identified a group of fivemiRNAs (miR-1,
miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpres-
sion in bothmouse and human vascular smoothmuscle. With the exception of miR-22, these miRNAs were also
relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be
dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease
in actin/MRTF-regulated miRNAs.
In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in
vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight
into themechanisms underlying vascular disease states, such as aortic aneurysm, aswell as novel ideas regarding
therapeutic strategies. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Jo-
achim Krebs and Jacques Haiech.
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1. Introduction

Calcium signaling is an important mechanism for regulation of
smooth muscle function as it controls smooth muscle contractility via
calcium/calmodulin and activation of myosin light chain kinase [1]. In-
terestingly, calcium influx via voltage gated, L-type calcium channels
can, together with other stimuli, promote the activation of the Rho/
Rho-kinase pathway [2–6]. Rho-kinase activation subsequently results
in both calcium sensitization and increased polymerization of actin fila-
ments [7]. Polymerization and stabilization of actin filaments by the Rho/
Rho-kinase pathway involves inhibition of the actin depolymerizing fac-
tor cofilin as well as activation of the actin binding protein profilin [8].
In certain situations, these effects can cause a hypercontractile smooth
muscle phenotype and lead to altered blood flow, increased vascular stiff-
ening and vascular remodeling,which contribute to the development and
progression of vascular disease.

Dynamic treadmilling of actinfilaments is an essentialmechanism in
most cell types, and is directly involved in a variety of cellular processes
including, cell migration, proliferation, cell adhesion and contractile
function of muscle cells. In addition to these functions, actin dynamics
can control SRF-dependent gene transcription via myocardin related
transcription factors (MRTF aka MAL/MKL) [9,10]. Unlike myocardin
which is primarily expressed in smooth and cardiac muscle, the two
MRTF isoforms MRTF-A and -B are ubiquitously expressed and their ac-
tivity is controlled by a reduction of the monomeric G-actin pool which
releases MRTF from binding to G-actin and thereby enables transloca-
tion to the nucleus where they act as co-factors for serum response fac-
tor (SRF) [9–11]. While MRTF-A is equally potent as myocardin in
activating smooth muscle differentiation, MRTF-B appears to be less ef-
ficient in this process [12,13].

The SRF/MRTF complex binds to promoter elements called CArG-
boxes with the consensus sequence CC[AT]6GG. These are present in
many genes associated with smooth muscle contraction and migration
[14]. The regulation ofMRTF by actin polymerization allows for a precise
titration of contractile/cytoskeletal gene expression in response to cellu-
lar demand. This mechanism is involved in growth and/or contractile
differentiation of smoothmuscle cells in response to a number of stimuli
including mechanical stretch, sphingosine-1-phosphate and TGF-beta
stimulation [15–18]. Increasing evidence also points towards a role for
actin polymerization and MRTF activity in vascular disease states such
as vascular injury [19], neointimal hyperplasia [20], aortic aneurysms
[21], retinal disease [22], and stroke [23] [24]. Several of these diseases
are known to be associated with a phenotypic shift of smooth muscle
cells but the underlying mechanisms are not completely understood.
Furthermore, MRTF activation is involved in migration in various cell
types, affecting both wound healing and metastasis of cancer cells [25,
26]. These findings emphasize the importance of clarifying the role of
actin polymerization and MRTF for gene expression in vascular cells.

The regulation of protein-encoding genes by Rho-signaling, actin po-
lymerization and MRTFs has been described previously [27–29]. How-
ever, some of the effects of MRTF-mediated transcription may also be
due to regulation of non-coding RNAs such as microRNAs (miRNAs)
and long-non-coding RNAs. Recent work has identified the first
myocardin-sensitive long-non coding RNA called myoslid, which pro-
motes contractile differentiation of smooth muscle cells [30]. Interest-
ingly, the mechanism behind the effects of myoslid involves actin
polymerization and nuclear translocation of MRTF-A. MiRNAs are en-
dogenous non-coding RNAs that regulate gene expression post-
transcriptionally through interaction with the 3′ untranslated region
(UTR) of target messenger RNA (mRNA) resulting in decreased mRNA
stability and/or inhibition of protein translation [31].We have previous-
ly demonstrated the importance of Dicer-dependent miRNAs for the
regulation of smooth muscle development, differentiation and normal
function [32–34]. The role of MRTF-A and myocardin for transcriptional
regulation of miRNAs has been reported in cardiomyocytes, where
MRTF-A regulates the miR-143/145 cluster, which is known to be
enriched in smooth muscle and promote contractile smooth muscle di-
fferentiation [35–38]. However, to our knowledge, the transcriptional
regulation of miRNAs by MRTF-A and actin dynamics has not been in-
vestigated previously in vascular smooth muscle, although multiple
lines of evidence point towards a crucial role of actin/MRTF in vascular
disease.

Herein, we have identified a number of actin/MRTF-A-regulated
miRNAs in mouse and human smooth muscle. Several of these miRNAs
are known to be involved in cardiovascular disease states such as hyper-
tension and aortic aneurysms. However, some of the miRNAs regulated
by actin/MRTF-A have not yet been ascribed a specific function in
smooth muscle.

2. Material and methods

2.1. Human samples

Aortic biopsies from patients with mild dilation of thoracic ascend-
ing aorta (maximal aortic diameter ≤4.5 cm) were collected during car-
diac valve replacements of either stenotic tricuspid (TAV) or bicuspid
aortic valves (BAV). Biopsies from healthy aortas from heart transplant
donorswith negative personal and familial history of bicuspid valve and
aortopathy were used as controls. Human renal arteries belonging to
the COLMAH collection (HERACLES network) were collected and cul-
tured as described previously [28]. The study was approved by the in-
volved institutions' ethics committees and performed in accordance
with the Declaration of Helsinki. All patients gave their informed con-
sent prior to their inclusion.

2.2. Cell culture and treatments

Primary human coronary artery smooth muscle cells (HCASMC)
were purchased from Gibco Life Technologies (#C-017-5C) and main-
tained in Medium 231 (Life Technologies, #M231500) supplemented
with 5% smooth muscle growth supplement (Life Technologies, #S-
007-25) and 50 U/50 ug/ml penicillin/streptomycin (Biochrom,
#A2212). Cell culture plates used for experiments were coated with
0.02% collagen (Sigma Aldrich, #G1393) to ensure cell attachment.
Mouse aortic SMCs were isolated by enzymatic digestion and main-
tained in culture as described previously [28,33]. Animal experiments
were approved by the Malmö/Lund Ethical Committee on Animal Re-
search and were carried out in accordance with the EU Directive
2010/63/EU for animal experiments. Human and mouse SMCs were
used at passages 2–8 and 2–4 respectively. Media was changed every
other day. For actin polymerization, cells were treated with 100 nM
jasplakinolide (Tocris Bioscience, #2792) or equivalent volume of
DMSO (Sigma Aldrich, # D5879), the last 24 h. Latrunculin B is an
actin depolymerizing agent, inactivated by serum. Treating cells with
this substance therefore required changing to serum-reduced media,
2% smooth muscle supplement in Medium 231, 24 h after seeding.
After another 24 h, 250 nM latrunculin B (Calbiochem, # 76343-94-7),
or DMSO as a vehicle control, were added to cells for 24 h.

MRTF-A and myocardin overexpression was achieved using adeno-
viral constructs. 24 h after seeding, cells were transduced with 100
MOI of Ad-hMKL1/eGFP (Vector Biolabs, ADV-215499) or Ad-h-
MYOCD (Vector Biolabs, ADV-216227) and maintained in virus-
containing media for 96 h. Ad-CMV-null (Vector Biolabs, #1300) was
used as a control.

2.3. Quantitative RT-PCR

Homogenized human tissue and cultured cells were lysed in
Qiazol (Qiagen). Total RNA was extracted using the Qiagen
miRNeasy kit (#217004) in a QIAcube (Qiagen) according to the in-
structions of the manufacturer. RNA concentration and quality was
determined with an ND-1000 spectrophotometer. 250–500 ng of
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RNA was reverse transcribed to cDNA using the miScript II RT kit
(Qiagen, #218161). The relative miRNA expression was determined
using the miScript SYBR Green PCR kit (Qiagen, #218076) and
miScript Primer Assays (Qiagen): Mm_miR-1_2 (#MS00011004),
Hs_miR-7_2 (# MS00032116), Mm_miR-22_1 (# MS00032305),
Mm_miR-143_1 (# MS00001617), Mm_miR-145_1 (# MS000093
31), Mm_miR-378_2 (#MS00032781). The human small Nucleolar
RNA, C/D Box 95 (Hs_SNORD95_11; # MS00033726) was used as
housekeeping gene. The mature miRNA sequences for indicated
miRNAs are identical in human and mouse. Amplification was per-
formed by real-time PCR (OneStepPlus qPCR cycler, Applied
Biosystems).
2.4. miRNA PCR array

500 ng RNAwas reverse transcribed to cDNA using the miScript II
RT kit (Qiagen, #218161). The cDNA from several samples in each
group was then pooled so that the value in the miRNA PCR array rep-
resents a mean of all samples in each experimental group. We then
performed several arrays using different conditions to identify the
group of miRNAs that were regulated in all conditions. MiRNAexpres-
sion profiling was performed using miScript PCR array for cardiovascular
diseases (Qiagen,MIHS-113ZC orMIMS-113Z) according to themanufac-
turer's instructions. SelectedmiRNAswere then confirmed using individ-
ual qPCR-reactions in multiple samples. The miRNA expression was
analyzed by PCR using the miScript SYBR Green PCR kit (Qiagen) in an
OneStepPlus qPCR cycler (Applied Biosystems).
2.5. F/G-actin ratio measurement

Actin polymerization was evaluated by determining the globular
(G-actin) and filamentous (F-actin) fractions using the G-actin/F-
actin In Vivo Assay Biochem kit (Cytoskeleton, Inc, BK037) according
to the manufacturer's instructions. Briefly, cells or homogenized tis-
sue were lysed using the LAS02 lysis buffer, containing F-actin stabi-
lizing reagents, ATP and protease inhibitor cocktail. The lysate was
centrifuged at 100,000 ×g using the Beckman ultracentrifuge for
1 h at 37 °C. The G-actin was found in the supernatant and was trans-
ferred to fresh tubes. F-actin was pelleted and dissolved in actin
depolymerizing buffer for 1 h on ice. 5× Laemmli sample buffer
was added to each of the pellet and supernatant samples to a final
concentration of 1× (60 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol).
Equal volumes of F- and G-actin fractions were loaded in each lane
on Bio-Rad Criterion TGX 4-15% gels followed by semi-dry transfer
to nitrocellulose membranes using the Trans-Blot Turbo system
(Bio-Rad). Protein detection was performed by immunoblotting
using rabbit smooth muscle alpha-actin primary antibody (Cytoskel-
eton, # AAN01) and anti-rabbit HRP-conjugated secondary antibody
(Cell Signaling, #7076 1: 5,000). Bands were detected by enhanced
chemiluminescence (SuperSignal West Femto Maximum Sensitivity
Substrate, Thermo Fisher Scientific) and images acquired in a Odys-
sey Fc Imager (LI-COR Biosciences)
2.6. Statistical analysis

All results are presented as means ± S.E.M. Significance was
assessed using the Student's t-test or by one-way analyses of variance
(ANOVA) followed by multiple comparisons with Bonferroni post-hoc
test. Statistical analysis was performed using GraphPad Prism 5.02 Soft-
ware. MiRNA expression data from human aortas were log2 trans-
formed prior to statistical analysis. Values two standard deviations
away from the mean were considered outliers. P b 0.05 was considered
statistically significant.
3. Results

3.1. A number of microRNAs are dysregulated in proliferating SMC versus
intact vascular tissue

Phenotypic modulation of smooth muscle cells from a quiescent
contractile state to amore proliferative synthetic phenotype is observed
in some vascular disease states such as neointimal hyperplasia. By com-
paring contractile smooth muscle cells in the intact aorta with prolifer-
ating aortic smooth muscle cells derived from the same tissue we can
get a signature profile of the gene expression in these two phenotypic
states of the smooth muscle. We have previously demonstrated that
the actin polymerization is significantly decreased in proliferating
smooth muscle and that this can inhibit the expression of genes in-
volved in contractile function [28].

To determine miRNA expression in contractile versus proliferating
smooth muscle, we used a cardiovascular disease-focused miRNA PCR
array and analyzed a pooled sample from culturedmouse aortic smooth
muscle cells (mAoSMCs) and compared this to a pooled sample of intact
aorta fromwhich the cultured cellswere derived. The results reveal dra-
matic changes in miRNA expression (Fig. 1A). In order to filter out the
miRNAs with the highest fold regulation we set a threshold to 9.0 for
miRNAs presented in the list in Fig. 1A.

3.2. Regulation of miRNA expression by actin polymerization in mouse
smooth muscle cells

Polymerization of actin filaments in smooth muscle cells can pro-
mote the expression of contractile markers via nuclear translocation of
the transcription factor MRTF-A. To determine the importance of this
mechanism for the regulation ofmiRNA expressionwe analyzed cardio-
vascular disease-associated miRNAs in mouse vascular smooth muscle
cells incubated with the actin stabilizer jasplakinolide. As shown in
Fig. 1B, jasplakinolide promotes the expression of several miRNAs that
are associated with the contractile phenotype such as miR-143/145,
miR-1, miR-133 and miR-378a. However, the effect of jasplakinolide is
not as dramatic as the difference observed in contractile versus prolifer-
ating smoothmuscle cells. The threshold for miRNAs included in the list
in Fig. 1B and C was therefore set to 1.5 fold.

To test if the expression ofMRTF-A is a limiting factor for the effect of
jasplakinolidewe overexpressedMRTF-A inmAoSMCs and then treated
these cells with jasplakinolide for 24 h. Using the same threshold for
fold change as in Fig. 1B, some additional miRNAs were found to be
up-regulated with the combination of MRTF-A and jasplakinolide in-
cluding miR-22, miR-199 and miR-29a/b (Fig. 1C).

3.3. Tissue specificity of microRNAs associated with the contractile pheno-
type of smooth muscle cells

Many of the genes associated with the contractile phenotype of
smooth muscle are also known to be highly enriched in smooth and/
or striated muscle cells. To determine the smooth muscle enrichment
of actin/MRTF-A-regulated miRNAs, we isolated various tissues from
mouse and analyzed the miRNA expression by quantitative reverse
transcription polymerase chain reaction (qRT-PCR). As demonstrated
previously [36], miR-143/145 is highly enriched in smooth muscle
(Fig. 2A). Furthermore, miR-1 and miR-133 were enriched in striated
muscle. However, these microRNAs are also expressed in significant
amounts in contractile smooth muscle as compared to the other non-
muscle tissues examined. Interestingly, bladder smooth muscle
contained higher amounts of miR-1, miR-133, miR-378a and miR-143/
145 compared to aortic smooth muscle (Fig. 2A). To confirm the results
in Fig. 1A,we included smoothmuscle cells isolated frommouse aorta in
the analysis. Similar to the effects in Fig. 1A, all of the miRNAs except
miR-22were expressed in much higher levels in the contractile smooth
muscle of intact aorta compared to proliferating aortic smooth muscle
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Fig. 1. Differentially expressed miRNAs associated with the contractile phenotype of smooth muscle cells. miRNA expression profiling was performed using a cardiovascular disease-
focused miRNA PCR array. Scatter plots show miRNA expression (A) in intact aorta vs. proliferating mouse aortic SMCs (mAoSMC), (B) in mAoSMCs treated with actin stabilizing agent
jasplakinolide vs. control and (C) in mAoSMCs transduced with Ad-MRTF-A and treated with jasplakinolide vs. control. Pooled samples from 3-6 replicates were used. Changes in
miRNA expression are presented in lists as fold regulation among groups. HKG refers to housekeeping genes used for data normalization. Grey lines signify upregulated (red circles)
and downregulated (green circles) miRNAs with an expression level greater than 9 fold (A) and 1.5 fold (B and C).

1091A. Alajbegovic et al. / Biochimica et Biophysica Acta 1864 (2017) 1088–1098
cells (Fig. 2A). To further confirm this result, we analyzed expression
levels of the miRNA group in human renal arteries compared to cells
cultured from each individual artery. In accordance with the results in
Figs. 1A and 2A, we found a significant decrease of the expression of
all miRNAs except miR-22 in the cultured cells (Fig. 2B).

3.4. Regulation of miRNA expression by actin dynamics in human coronary
artery smooth muscle cells

In order to evaluate species differences in the regulation of miRNA
expression by actin/MRTF-A in smooth muscle, we used human coro-
nary artery smooth muscle cells (HCASMCs) and analyzed miRNA ex-
pression by PCR based miRNA array. This confirmed that miR-1, miR-
378a, miR-22 and the miR-143/145 cluster are upregulated following
MRTF-A activation in both mouse and human smooth muscle
(Fig. 3A). Additional miRNAs such as miR-7 were specifically
upregulated in human cells (Fig. 3A). A number of miRNAs were
down-regulated by MRTF and/or jasplakinolide. However, no miRNA
was consistently reduced in human and mouse cells and we therefore
chose not to proceed with further analysis.

To validate the effects observed in the qPCR-based array we per-
formed individual qPCR-reactions on each of the samples used in the
array experiments. In these experiments we also included samples
treated with only jasplakinolide or the actin depolymerizing factor
latrunculin B. As shown in Fig. 3B, the effects of MRTF-A in combination
with jasplakinolide were confirmed in individual PCR reactions for se-
lected miRNAs. However, in contrast to mouse cells, we did not observe
any effect by jasplakinolide alone in human smooth muscle cells. How-
ever, depolymerization of actin filaments by latrunculin B vs. control re-
sulted in significant downregulation of all miRNAs except miR-378a,
demonstrating that changes in actin polymerization, in a setting of en-
dogenous levels of MRTF-A, is sufficient to regulate most of the selected

Image of Fig. 1
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miRNAs. The combined results from the arrays in Figs. 1 and 3 are sum-
marized in a Venn-diagram in Fig. 3C.With the exception ofmiR-7, all of
the actin/MRTF-A-regulated miRNAs were also induced by adenoviral-
mediated overexpression of myocardin (Supplementary Fig. 1). It
should be noted that expression levels of miR-1 in cultured cells is
close to the detection limit,whichmay explain the dramatic increase in-
duced by myocardin overexpression. Low expression levels in control
samples also precluded analysis of the effects of latrunculin B on miR-
1 expression.

3.5. Differences in the F/G-actin ratio in smooth muscle cells of human and
mouse origin

To determine the cause of the apparent differences in jasplakinolide-
sensitivity between mouse and human cells, we tested the hypothesis
that basal levels of F- versus G-actin ratio was higher in human smooth
Fig. 3. Identification of Actin/MRTF-A-regulatedmiRNAs in humanVSMCs. Human coronary arte
with jasplakinolide for 24 h. (A) MiRNA expression was assessed using miRNA PCR array for
transduced with Ad-MRTF-A and treated with jasplakinolide vs. control. Pooled samples from
a threshold set to ≥1.5 fold change. (B) Selected miRNAs that were differentially expressed
stabilizing agent jasplakinolide (Jasp) or actin destabilizing agent latrunculin B (LatB) were a
upregulated by the defined thresholds in the four miRNA arrays. All data are presented as mea
muscle cells compared tomouse cells. This would theoretically sensitize
mouse cells to stabilization of actin while human cells would be more
sensitive to destabilization of actin. In accordance with this hypothesis
we found that the F/G-actin ratio was significantly higher in human
cells compared to mouse cells (Fig. 4A). Furthermore, miR-145 expres-
sion was sensitive to latrunculin B but not jasplakinolide in human
smoothmuscle cells, while the oppositewas observed inmouse smooth
muscle cells (Fig. 4B).

3.6. Depolymerization of actin filaments and reduced expression of actin/
MRTF-A-regulated miRNAs in human dilated aorta

Thoracic aortic aneurysms are in some cases associated with muta-
tions in the smooth muscle actin gene, which negatively affects the sta-
bility of actin polymerization [39–41]. Recent work has also
demonstrated that inducible SMC deletion of myocardin causes
ry smoothmuscle cells (HCASMCs)were transducedwith Ad-MRTF-A and then incubated
cardiovascular diseases. Scatter plot shows differentially expressed miRNAs in HCASMCs
six replicates were used. Grey solid lines represent up- and downregulated miRNAs with
in the PCR arrays were validated using real-time RT-PCR. HCASMCs treated with actin
lso included in the validation. (C) Venn diagram depicting common and distinct miRNAs
n ± SEM (n = 3–6).*P b 0.05, **P b 0.01, ***P b 0.001.
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spontaneous aneurysms inmultiple arteries [42]. To our knowledge, the
polymerized state of actin in early aortic dilations has not been investi-
gated previously. Determining the early molecular events is crucial in
understanding the progression and development of pathologies, such
as aneurysm.Weused aortic biopsies fromdonors (DON)without aortic
dilation and compared these to patients withmild dilations undergoing
valve replacement surgery due to stenotic bicuspid (BAV) or tricuspid
(TAV) aortic valves. As shown in Fig. 5A, the F/G-actin ratio was signifi-
cantly reduced in both BAV- and TAV-associated aortic dilations. To de-
termine if this loss of filamentous actin also resulted in a reduced
expression of actin/MRTF-A-regulated miRNAs, we performed qPCR
analysis of miR-1, miR-7, miR-22, miR143/145 and miR-378a. While
the differences in miR-22 and miR-378a did not reach statistical signif-
icance, all of the other actin/MRTF-A-sensitive miRNAs that were ana-
lyzed, exhibited significantly reduced expression levels in dilated
aortic tissues (Fig. 5B). To verify that our results were not due to a gen-
eral downregulation of all miRNAs, we determined the expression level
of miR-146a, which was unchanged in dilated aorta.

4. Discussion

The expression of specific miRNAs in vascular smooth muscle is es-
sential for vascular function and disease development. Herein we iden-
tified a group of miRNAs that are regulated by actin polymerization and
the actin-sensitive transcriptional co-activatorMRTF-A (Fig. 6). Increas-
ing evidence points towards a crucial role for actin polymerization in
disease development and it is thus important to determine the potential
influence of cardiovascular enrichedmiRNAs in this process. By compar-
ing the regulation of 84miRNAs by jasplakinolide andMRTF-A inmouse
and human vascular smooth muscle cells we identified a group of five
miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were
upregulated in both species. With the exception of miR-22, all of these
miRNAs were highly enriched in contractile vs. synthetic smooth mus-
cle in both mouse and human samples. Furthermore, miR-7 was upreg-
ulated by MRTF-A specifically in human smooth muscle cells, while
miR-133a and miR-133b were specifically upregulated in mouse cells.

In contrast tomouse cells, human smoothmuscle cellswere relative-
ly resistant to stabilization of actin filaments, while depolymerization of
actin caused dramatic effects on miRNA expression. Interestingly, in-
creased basal levels of actin polymerization was observed in human
compared to mouse cells, which could explain the differences in sensi-
tivity to reagents that stabilize or disrupts actin filaments. Notably, the
difference observed in F/G-actin in humanversusmouse smoothmuscle
cells is in the same range as the effect of 100 nM jasplakinolide inmouse
cells [28]. Thus, further stabilization of the actin filaments in human
smooth muscle cells may have limited effects on MRTF-translocation
and gene transcription.

Several of the actin/MRTF-A-sensitive miRNAs identified in this
study have been demonstrated to play important roles in smooth mus-
cle by targeting specific mRNA sequences (Table 1). Most notably, the
miR-143/145 cluster is essential for smoothmuscle contractile differen-
tiation and vascular function [33,34,37,38,43–47]. Both of thesemiRNAs
are highly expressed in smooth muscle but the effect on contractile dif-
ferentiation is primarily attributed to miR-145 [36,44]. Several mecha-
nisms for the effect of miR-145 have been proposed including
regulation of actin dynamics, angiotensin signaling and L-type calcium
channel expression [33,34,36,37,48]. The effects of miR-145 on the ex-
pression of L-type calcium channels is most likely secondary to inhibi-
tion of its direct target Ca2+/calmodulin-dependent protein kinase II δ
(CamKIIδ) and reduced activation of the transcriptional repressor
DREAM/calsenilin/KChIP3 [34,38,49]. Since miR-145 has such promi-
nent effects on smooth muscle differentiation and function, this
miRNA has been a particular focus for pharmacological intervention
against a number of vascular disease states. In this regard, studies
have demonstrated that overexpression of miR-145 can prevent or re-
duce the development of atherosclerosis [50] and neointimal
hyperplasia [43], while inhibition of miR-145 protects against pulmo-
nary arterial hypertension [51].

Someof the actin-sensitivemiRNAs identified in this study including
miR-1/133a and miR-378a are highly expressed in striated muscle. For
example, miR-1 has been demonstrated to account for nearly 40% of
all known miRNA reads in cardiac tissues, suggesting extreme enrich-
ment of this miRNA [52]. Despite a relatively lower expression level in
vascular tissue, the expression levels of this group of miRNAs are still
likely to be physiologically relevant. We also found that the relative ex-
pression levels of these miRNAs are higher in bladder smooth muscle
compared to vascular smoothmuscle suggesting that themiRNA profile
can differ substantially among smooth muscle tissues. Information
about the relative abundance of a miRNA in specific tissues is likely
key in determining the potential for using that miRNA for directed ther-
apeutic intervention. For example, miR-122 is highly enriched in hepa-
tocytes, which results in limited off target effects of the miR-122
inhibitor, Miravirsen [53].

A similar expression pattern of miR-1 and miR-133 is expected con-
sidering that these miRNAs are expressed together as a bicistronic clus-
ter [54]. In accordance with our results, this miRNA cluster is regulated
by SRF and/ormyocardin in striated [54] and smoothmuscle [55,56]. In-
terestingly, in a negative feedback manner, miR-1 directly targets
myocardin, and in striatedmuscle, where miR-1 expression is relatively
high, it suppresses expression of smooth muscle genes by blocking
myocardin expression [57,58]. Similarly, overexpression of miR-1 can
inhibit myocardin-induced contractility in human vascular smooth
muscle cells [59]. However, miR-1 has also been demonstrated to play
a critical role in the determination of SMC fate during embryonic stem
cell differentiation by targeting Krüppel-like factor 4 (KLF4) [60]. Fur-
thermore, miR-1 targets the seine/threonine kinase Pim-1, leading to
decreased proliferation of smooth muscle cells [56]. In our screening
we found miR-1 to be the most downregulated miRNA in cultured
smooth muscle cells versus intact vascular tissue. In mouse aortic cells
the expression was reduced over 5000-fold while the downregulation
in human renal artery cells was nearly 1000-fold. Thus, miR-1 may act
as a buffer for myocardin expression by acting to maintain the expres-
sion at appropriate levels in striatedmuscle and in proliferating smooth
muscle cells.

The importance ofmiR-133 for vascular smoothmuscle function has
been investigated both in vivo and in vitro. Overexpression of miR-133
inhibits smooth muscle proliferation via down regulation of the direct
target SP-1 [61]. Accordingly, adenoviral delivery of miR-133 in vivo
reduces neointimal hyperplasia after balloon injury, while miR-133
inhibitors have the opposite effect. Overexpression of miR-133 can
also prevent transdifferentiation of smooth muscle cells to osteoblast-
like cells which may play a role in vascular calcification [62]. Both
miR-1 and miR-133 can influence calcium signaling in cardiomyocytes
by regulating protein phosphatase 2A activity resulting in increased
phosphorylation and activation of the ryanodine receptor 2 (RYR2)
[63,64]. These miRNAs are upregulated in heart failure and they are
associated with an increased arrhythmogenic potential in heart failure
myocytes.

MiRNA-378 is known to have important functions in both skeletal
[65] and cardiac muscle [66,67], while its role for smooth muscle func-
tion remains to be elucidated. Herein, we demonstrate that the expres-
sion level of miR-378a in bladder smooth muscle is in a similar range as
in striatedmuscle, while the expression level in vascular smoothmuscle
is relatively low. Furthermore, we have previously demonstrated, by
using a smooth muscle specific dicer KO mouse, that smooth muscle
cells are responsible for approximately 98% of miR-378a expression in
the bladder [68].MiR-378 belongs to a group ofmiRNAs calledmirtrons,
as they are localized in introns of protein coding genes. As such, miR-
378 is localized in the first intron of the Ppargc1b gene, encoding the
transcriptional co-activator PGC-1β [69]. Mirtrons are known to regu-
late the same cellular processes as their host gene [70], which, in the
case of PGC-1 involves mitochondrial biogenesis, thermogenesis and
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fatty acid metabolism [71]. By genetic deletion of miR-378 and miR-
378*, Carrer et al. found thatmice lacking thesemiRNAswere protected
against diet induced obesity [71]. Interestingly, recent evidence points
towards a role of myocardin related transcription factors in regulating
lipid homeostasis and adipogenesis but the specific involvement of
miRNAs in this process is still unknown [72]. In addition to its role in en-
ergy metabolism, miR-378 represses cardiomyocyte hypertrophy by
targetingmultiple components of the RAS/mitogen activated protein ki-
nase (MAPK) pathway [66,73]. MiR-378 is significantly downregulated
in hypertrophic heart and restoration of the disease-associated loss of
miR-378 has been suggested as a potential therapeutic strategy against
myocardial disease. The targets of miR-378a in the MAP-kinase path-
way are also involved in regulation of smooth muscle hypertrophy
and proliferation in vascular disease. It is thus possible that elevated ex-
pression of this miRNA in differentiated smooth muscle cells can assist
in maintaining a quiescent phenotype.

Similar to miR-378a, miR-22 regulates cardiac hypertrophy and re-
modeling in response to stress. However, in contrast to miR-378a,
miR-22 is upregulated during cardiac hypertrophy and genetic deletion
miR-145
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Fig. 5. Distinct downregulation of actin/MRTF-A-regulated miRNAs in patients with mild aor
indicated patient groups. Biopsies from mildly dilated thoracic aorta in patients with stenoti
ratio compared to control. Healthy aortas from heart transplant donors (DON) were used as c
graph. The F- and G-actin bands were analyzed on the same blot for all samples (n = 3–9). (
patient groups. Data are presented as mean ± SEM (n = 6–12).*P b 0.05, **P b 0.01, ***P b 0.0
of miR-22 protects against cardiac hypertrophy and remodeling in mice
[75,76]. Herein we found that, in contrast to other actin/MRTF-A-
regulated miRNAs, miR-22 is not reduced in smooth muscle cells cul-
tured from intact mouse aorta or human renal arteries. However, in
smooth muscle, miR-22 promotes contractile differentiation by down-
regulating methyl CpG-binding protein 2 (MECP2) [76] suggesting
that miR-22 may play a role in promoting both hypertrophic growth
and contractile differentiation. Previous studies from our group have
demonstrated that actin/MRTF signaling is involved in simultaneous
contractile differentiation and hypertrophic growth following mechan-
ical stretch of the vascular wall [15,16,77]. However, the potential in-
volvement of miR-22 in stretch-induced effects in smooth muscle has
not yet been tested.

As discussed herein, several of the miRNAs that are regulated by
actin polymerization andMRTF-A have important roles in smoothmus-
cle cells and are dysregulated in cardiovascular disease states. Actin ex-
ists in a monomeric and a filamentous pool and the balance between
these two pools can shift depending on extracellular cues and intracel-
lular signaling events. By analyzing the F- and G-actin pools in the
miR-378a
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tic dilations. (A) Actin polymerization was assessed by evaluating the F/G-actin ratio in
c tricuspid (TAV) or bicuspid aortic valve (BAV) show a significantly reduced F/G-actin
ontrol. A representative immunoblot of F- and G-actin expression is presented below the
B) Real-time PCR analysis of actin/MRTF-A-regulated miRNAs and miR-146a in indicated
01.
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thoracic ascending aorta of healthy donors and patientswithmild aortic
dilations we found a dramatic decrease in polymerized actin in the aor-
tic dilations, particularly in patients with tricuspid aortic valves. This is
in accordance with previous findings, demonstrating loss of contractile
smooth muscle differentiation markers in the concavity of mild aortic
dilation from TAV and BAV patients [78]. The contractile unit of smooth
muscle cells is essential to maintain structural integrity of the vascular
wall and several mutations in actin and other contractile genes have
been associated with arterial aneurysms and dissections [79]. More
than 40 mutations in the ACTA2 gene have been identified to date, but
for many of them the effects on cytoskeletal dynamics are unknown.
However, three mutations, R179H R256H and R258C, which are associ-
ated with poor prognosis of aortic aneurysms, have been shown to
cause destabilization of actin filaments and an increased G-actin pool
[39–41]. Although specific mutations were not tested in the patients in-
cluded in the present study, our data supports impaired actin polymer-
ization as an early event in aortic aneurysms. Interestingly, a
concomitant decrease in actin/MRTF-A-regulatedmiRNAs was detected
in most cases for both TAV and BAV patients. The decrease in miR-22
and miR-378a in dilated aorta did not reach statistical significance,
which may be related to their relatively lower sensitivity to actin/
MRTFmodulation. Taken together, our findings in dilated aorta, togeth-
er with other results presented herein, suggest that the destabilization
of actin filaments results in altered transcriptional regulation ofmiRNAs
in smooth muscle, and that this mechanism may be involved in the de-
velopment and progression of aortic aneurysms. However, it is not clear
Table 1
Selected validated targets of actin-regulated miRNAs in smooth muscle.

miRNA Target genes

miR-1 Pim1 [56], KLF4 [60]
miR-22 MECP2 [76]
miR-143 ELK-1 [44], PKC-ε [46], PDGF-Rα [46], Versican [47]
miR-145 KLF4 [37,44], KLF5 [37,43], Myocardin [44], ACE [36], Camkllδ [44],

Fascin [46]
miR-378a –
miR-7 –
if the changes inmiRNA expression and actin polymerization in the aor-
tic wall depend on a different cellular composition in the obtained biop-
sies. Even so, transdifferentiation of smooth muscle cells to a
macrophage-like phenotype can occur as a consequence of altered
miR-143/145 signaling [80]. It is thus possible that altered cellular com-
position of the media occurs as a consequence of changes in actin poly-
merization in smooth muscle cells. Further studies are warranted to
confirm these effects in a larger cohort of patients and to determine
the pathological impact of the observed changes in miRNA expression
in aneurysm development. In addition to the limited patient material,
this study is limited by the fact that not all miRNAs were tested in the
analysis. Thus, we cannot exclude that additional miRNAs are regulated
by actin/MRTF in smooth muscle.

In conclusion, the results presented herein suggest that actin poly-
merization and the actin sensitive transcriptional co-activator MRTF-A
regulate a subset of miRNAs that are known to play an important role
in smooth and/or striated muscle. Furthermore, we demonstrate that
several of these miRNAs are enriched in muscle tissues and associated
with the contractile phenotype of smooth muscle cells. Finally, the
data presented herein suggest a potential role for actin polymerization
and actin/MRTF-A-regulated miRNAs in early development of thoracic
aortic aneurysms. These findings may be of importance for future ther-
apeutic intervention of aortic aneurysms where signaling pathways in-
volved in actin polymerization, or actin regulated miRNAs can be
targeted.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamcr.2016.12.005.
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