1	Assessing the potential of purple phototrophic bacteria for the
2	simultaneous treatment of piggery wastewater and upgrading of biogas
3	David Marín ^{1, 2, 3} , Esther Posadas ¹ , Dimas García ^{1, 2, 5} , Daniel Puyol ⁴ , Raquel Lebrero ^{1, 2}
4	Raúl Muñoz* ^{1, 2}
5	
6	¹ Department of Chemical Engineering and Environmental Technology, School of Industrial
7	Engineering, Valladolid University, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
8	² Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011,
9	Valladolid, Spain.
10	³ Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica,
11	Tegucigalpa, Honduras.
12	⁴ Group of Chemical and Environmental Engineering (GIQA), University Rey Juan Carlos,
13	Madrid, Spain.
14	⁵ Centro para la Investigación en Recursos Acuáticos de Nicaragua, CIRA/UNAN-Managua,
15	Apdo. Postal 4598, Nicaragua.
16	
17	*Corresponding author: <u>mutora@iq.uva.es</u>
18	
19	ABSTRACT
20	The potential of purple phototrophic bacteria (PPB) for the simultaneous treatment of piggery
21	wastewater (PWW) and biogas upgrading was evaluated batchwise in gas-tight
22	photobioreactors. PWW dilution was identified as a key parameter determining the efficiency
23	of wastewater treatment and biomethane quality in PPB photobioreactors. Four times diluted

PWW supported the most efficient total organic carbon (TOC) and total nitrogen removals 24 25 (78% and 13%, respectively), with CH₄ concentrations of 90.8%. The influence of phosphorous concentration (supplementation of 50 mg L⁻¹ of P-PO4³⁻) on PPB-based PWW 26 treatment coupled to biogas upgrading was investigated. TOC removals of $\approx 60\%$ and CH₄ 27 concentrations of $\approx 90.0\%$ were obtained regardless of phosphorus supplementation. Finally, 28 29 the use of PPB and algal-bacterial consortia supported CH₄ concentrations in the upgraded 30 biogas of 93.3% and 73.6%, respectively, which confirmed the potential PPB for biogas upgrading coupled to PWW treatment. 31 32 **Keywords:** 33 Biogas upgrading, Biomethane, Piggery wastewater treatment, Purple phototrophic bacteria 34 35 **1. Introduction** 36 37 The annual production of pig meat in the European Union (EU) accounted for 24.1 million tons in 2017, which ranked the EU as the second largest pig producer in the world. In this 38 context, a total of 150.1 million pig heads were produced in the EU in 2017 (Statista, 2018). 39 40 Unfortunately, this key economic sector annually generates in the EU between 217 and 434 million m³ of piggery wastewater (PWW) containing high concentrations of organic matter, 41 42 nitrogen and phosphorus (De Godos et al., 2009; García et al., 2017). The management of such high volumes of PWW represents nowadays an economic, environmental and technical 43 challenge for the EU livestock industry. Anaerobic digestion and activated sludge processes 44

46 wastewater discharge regulations (Andreoli and Von, 2007). In addition, alternative

45

47 technologies based on the intensification of algal-bacterial symbiosis have been also tested

are typically implemented on-site or in centralized facilities in order to fulfill with European

both at lab and pilot scale in order to reduce the operating costs and enhance nutrient recovery
during PWW treatment compared to conventional technologies (De Godos et al., 2009;
García et al., 2018, 2017). Nevertheless, PWW treatment based on algal-bacterial symbiosis
is limited by the high NH4⁺ concentrations of this type of wastewater and its poor
performance at low temperatures, which requires the development of more resilient
biotechnologies capable of cost-competitively recovering the carbon and nutrients from
PWW.

55

In this context, purple phototrophic bacteria (PPB) have emerged as a promising technology 56 57 platform for wastewater treatment based on their ability to assimilate a higher fraction of the carbon, nitrogen and phosphorous present in wastewater compared to their aerobic and 58 anaerobic counterparts (Hiraishi et al., 1991; Khatipov et al., 1998; Takabatake et al., 2004). 59 60 Compared to microalgae, PPB utilize infrared radiation (IR) as source of energy, which reduces the power required by photon emission and allows a deeper light penetration into the 61 cultivation broth (thus reducing the footprint of the process) (Hülsen et al., 2014). In addition, 62 the influence of temperature on the growth of PPB is low, which makes them ideal 63 microorganisms to support wastewater treatment under multiple weather conditions. 64 65 Literature studies have shown the promising potential of these microorganisms for municipal and PWW treatment. For instance, Kim et al. (2004) reported chemical oxygen demand 66 (COD) and orthophosphate removals of 50% and 58%, respectively, under anaerobic 67 68 conditions in a PPB photobioreactor. PPB have been also successfully applied for industrial wastewater treatment in membrane photobioreactors and sequencing batch stirred tank 69 photobioreactors with COD removal efficiencies of 73-75% (Chitapornpan et al., 2012; 70 71 Kaewsuk et al., 2010). The ability of PPB to simultaneously remove COD, nitrogen and phosphorus from domestic wastewater has been recently evaluated in photo-anaerobic batch tests and in a continuous membrane photobioreactor (Hülsen et al., 2016, 2014). A recent comparison between the use of PPB and microalgae for the recovery of carbon, nitrogen and phosphorous from pork, poultry, sugar, dairy and red meat wastewater was carried out by Hülsen et al. (2018), who confirmed that PPB are more efficient for organic and nutrient removal than microalgae.

78

On the other hand, biogas from the anaerobic digestion of wastewater or organic solid waste 79 80 represents a renewable energy vector with potential to partially reduce the current world's dependence on fossil fuels (Andriani et al., 2014; Muñoz et al., 2015). In the EU, the 81 contribution of biogas to the energy sector has increased by a factor of 3 concomitantly with 82 an increase in the number of biogas plants from 6227 in 2009 to 17662 by the end of 2016 83 (European Biogas Association, 2017). Biogas upgrading to biomethane is required prior 84 injection into gas grids or use as a vehicle fuel due to the large number and high 85 concentrations of impurities: CO₂ (15-60%), H₂S (0.005-2%), O₂ (0-1%), N₂ (0-2%), CO 86 (<0.6%), NH₃ (<1%), volatile organic compounds (<0.6%) and siloxanes (0-02%)87 (Ryckebosch et al., 2011); while most international regulations require concentrations of CH₄ 88 89 \geq 95%, CO₂ \leq 2-4%, O₂ \leq 1% and negligible amounts of H₂S (Muñoz et al., 2015). Algalbacterial systems have been consistently investigated as a low cost and environmentally 90 91 sustainable technology to simultaneously remove CO_2 and H_2S from biogas. However, O_2 92 stripping from the cultivation broth to the biomethane as a result of the oxygenic nature of algal photosynthesis represents the main limitation of algal-bacterial systems in biogas 93 upgrading (Marín et al., 2018; Posadas et al., 2017, 2015). In this sense, the versatile 94 metabolism of PPB, capable of using H_2S in biogas or the organic matter present in 95

96 wastewater as electron donor to reduce CO_2 from biogas without O_2 generation, could 97 eventually support a cost-effective biogas upgrading. Overall, there is a lack of comparative 98 studies assessing the potential of PPB and algal-bacterial systems in order to determine the 99 most cost-effective and environmentally friendly biotechnology for biogas upgrading.

100

101 This study aimed at evaluating, for the first time, the potential and limitations of using PPB for the simultaneous treatment of PWW and upgrading of biogas under IR in batch 102 photobioreactors. The influence of PWW dilution and phosphorous concentration on PPB-103 based PWW treatment coupled to biogas upgrading were also investigated batchwise. The 104 105 mechanisms and limiting factors underlying wastewater treatment and CO₂/H₂S removal by 106 PPB were investigated. A comparative evaluation of PPB-based biogas upgrading vs. algaebased photobioreactors was finally conducted batchwise. The use of batch photobioreactors 107 108 allowed to systematically test multiple environmental conditions. This work constitutes, to the best of our knowledge, the first proof of concept of the biogas upgrading using PPB under 109 IR. 110

111

112 **2. Materials and methods**

113 **2.1 Cultivation media**

114 Fresh centrifuged PWW was collected from a nearby farm at Segovia (Spain) and stored at 115 4°C prior to use. The composition of the PWW was: total organic carbon (TOC) 116 concentration of 10350 mg L⁻¹, inorganic carbon (IC) concentration of 215 mg L⁻¹, total 117 nitrogen (TN) concentration of 2685 mg L⁻¹, P-PO₄³⁻ concentration of 15 mg L⁻¹, total 118 suspended solids (TSS) concentration of 5.9 g L⁻¹. Prior to each test, PWW was centrifuged 119 at 10000 rpm for 20 min in order to separate the soluble from the solid phase. A mineral salt medium (MSM) consisting of distilled water with 1.00 g (NH₄)₂SO₄, 0.05 g K₂HPO₄, 0.02 g

121 g MgSO₄ and 2.00 g NaCl per liter was used in the control tests. A synthetic biogas mixture

122 composed of CO₂ (29.5%), H_2S (0.5%) and CH₄ (70%) was used as a raw biogas in the

- 123 present study (Abello Linde; Spain).
- 124

125 **2.2 Inocula**

126 A set of duplicate glass bottles of 1.2 L was initially filled with 450 ml of centrifuged PWW under a helium headspace, while another set was filled with 440 ml of centrifuged PWW and 127 10 ml of activated sludge (Valladolid wastewater treatment plant) under a helium headspace. 128 The pH of the cultivation broth was 7.3. The systems were incubated batchwise under 129 magnetic agitation at 200 rpm, 30 °C and continuous IR of 50 W m⁻² (Oslon black series 130 model SFH4780S with centroid wavelength of 850 nm, OSRAM GmbH, Germany) for 24 131 days in order to enrich PPB to a final concentration of 0.88 g TSS L⁻¹. A mixture of the 132 enrichments from both sets of bottles was used as inoculum to conduct test series 1-3. 133

134

2.3 Piggery wastewater treatment coupled to biogas upgrading in purple phototrophic
 bacteria photobioreactors

137 2.3.1. Test series 1: Influence of piggery wastewater dilution on purple phototrophic 138 bacteria-based piggery wastewater treatment coupled to biogas upgrading

The influence of PWW dilution on PPB-based treatment performance was evaluated in 1.2 L bottles under a biogas headspace. The bottles were filled with 360 ml of PWW (undiluted, 2 times diluted and 4 times diluted) and 40 ml of PPB inoculum, and incubated under magnetic agitation at 200 rpm, 30 °C and 50 W m⁻² of continuous IR for 25 days. A test with 2 times diluted PWW, prepared as above described and incubated in the darkness, was used 144 as control to assess the influence of IR. An additional set of duplicate glass bottles was filled 145 with 360 ml of MSM and 40 ml of inoculum under a biogas headspace to serve as biotic 146 control. Finally, a set of glass bottles was prepared with 360 ml of MSM and 40 ml of 147 inoculum under a biogas headspace and its pH adjusted to 2.0 (thus preventing biological 148 activity) to serve as abiotic control. The assays were conducted in duplicate.

149

2.3.2 Test Series 2: Influence of phosphorous concentration on purple phototrophic bacteria-based piggery wastewater treatment coupled to biogas upgrading

A set of duplicate glass bottles of 1.2 L was filled with 360 ml of 4 times diluted PWW and 40 ml of inoculum under a biogas headspace. A second set of duplicate glass bottles was filled with 360 ml of 4 times diluted PWW, 40 ml of inoculum and supplemented with a P-PO₄³⁻ concentration of 50 mg L⁻¹ under a biogas headspace. The systems were incubated under magnetic agitation at 200 rpm, 30 °C and IR at 50 W m⁻² for 22 days. The assays were conducted in duplicate.

158

159 **2.3.3** Test Series 3: Comparative evaluation of the potential of purple phototrophic

160 bacteria and algal-bacterial consortia for biogas upgrading

A set of duplicate glass bottles of 1.2 L was filled with 360 ml of 4 times diluted PWW and 40 ml of inoculum under a biogas headspace. A second set of bottles was prepared with 400 ml of MSM under a biogas headspace to serve as abiotic control. The systems were incubated under magnetic agitation at 200 rpm, 30 °C and an IR of 50 W m⁻² for 23 days.

165

166 At the same time, a set of duplicate glass bottles of 1.2 L was filled with 360 ml of MSM and

167 40 ml of algal-bacterial inoculum (obtained from an outdoor high rate algal pond treating

biogas and centrate at the Valladolid University (Spain)) under a biogas headspace. The pH of the cultivation medium was adjusted to 7.0. A second set of duplicate bottles was prepared with 400 ml of MSM under a biogas headspace to serve as abiotic control. The bottles were incubated under magnetic agitation at 200 rpm, 30 °C and 200 μ mol m⁻² s⁻¹ of photosynthetic active radiation provided by high intensity LED PCBs (Phillips SA, Spain) for 23 days. The assays were conducted in duplicate.

174

In all test series, the pH, headspace gas composition (CH₄, CO₂, H₂S, O₂, and N₂) and concentrations of dissolved TOC, IC, TN, N-NO₃⁻, N-NO₂⁻, P-PO₄³⁻, SO₄²⁻ and volatile fatty acids (VFAs) were periodically monitored. The initial and final biomass concentrations (measured as TSS) were also determined.

179

180 **2.4 Analytical Procedures**

Dissolved TOC, IC and TN concentrations were analyzed using a Shimadzu TOC-VCSH 181 analyzer (Japan) equipped with a TNM-1 chemiluminescence unit. N-NO₃⁻, N-NO₂⁻, P-PO₄³⁻ 182 and SO₄²⁻ concentrations were quantified by HPLC-IC according to Serejo et al. (2015). 183 VFAs were analyzed in an Agilent 7820A GC-FID (Agilent Technologies, Santa Clara, 184 185 USA) according to López et al. (2018). The pH was determined with an Eutech Cyberscan pH 510 (Eutech instruments, The Netherlands), while the determination of TSS concentration 186 was performed according to Standard Methods (APHA, 2005). The concentration of CH₄, 187 CO₂, H₂S, O₂, and N₂ in the headspace of the bottles was determined using a Varian CP-188 3800 GC-TCD (Palo Alto, USA) according to Posadas et al., (2015). 189

190

191 **2.5 Statistical analysis**

192 The results here presented were provided as the average values along with their standard 193 deviation from replicate measurements. An analysis of variance (ANOVA) was performed 194 to determine how changes in PWW dilution influenced the quality of the upgraded biogas.

195

196 **3. Results and discussion**

197 3.1 Influence of piggery wastewater dilution on purple phototrophic bacteria-based 198 piggery wastewater treatment coupled to biogas upgrading

TOC concentration in biotic and abiotic control tests conducted with MSM remained constant 199 at $134 \pm 16 \text{ mg L}^{-1}$ and $69 \pm 9 \text{ mg L}^{-1}$, respectively (Fig. 1a). On the other hand, TOC 200 concentration in undiluted PWW and non-irradiated biotic control tests remained constant at 201 $10318 \pm 957 \text{ mg L}^{-1}$ and $3535 \pm 236 \text{ mg L}^{-1}$, respectively (Fig. 1a). A significant TOC 202 removal from 3977 \pm 336 mg L⁻¹ to 1453 \pm 134 mg L⁻¹ (TOC-removal efficiencies (REs) of 203 63%) in 2 times diluted PWW tests, and from 1989 \pm 12 mg L⁻¹ to 436 \pm 14 mg L⁻¹ (TOC-204 205 REs of 78%) in 4 times diluted PWW tests (Fig. 1a) was observed. The TOC-REs herein recorded were higher than those obtained by Hülsen et al. (2018), who reported removal 206 207 efficiencies of COD of approximately 10% for the treatment of PWW in batch tests. At this point it should be highlighted that the TOC instrumental methodology exhibited an error 208 lower than 2 %, while the error of the COD analytical methodology was < 10 %. These results 209 confirmed the potential of PPB to anaerobically degrade organic matter at high 210 concentrations in the presence of IR as energy source, although the high TN concentrations 211 212 in undiluted PWW seems to inhibit PWW treatment. The pH in the undiluted, biotic control 213 and non-irradiated biotic control tests initially decreased as a result of the CO₂/H₂S acidification mediated by biogas, but remained stable at 6.9 ± 0.1 , 6.7 ± 0.1 and 6.6 ± 0.1 , 214 215 respectively, from day 4 onwards. Meanwhile, the pH in the abiotic control remained constant

at 2.1 \pm 0.1. However, an increase from 6.6 \pm 0.1 and 6.8 \pm 0.1 (day 4) to 7.8 \pm 0.1 and 8.0 \pm 216 217 0.0 was observed by day 25 in 2 and 4 times diluted PWW tests likely mediated by the release of basic TOC biodegradation metabolites. The high TN concentration in PWW (mainly 218 composed by 80-90% of NH_4^+ (Godos et al., 2010)) and relatively high pH represents a 219 220 perfect combination for microbial toxicity by free ammonia (FA). Indeed, the main inhibitory 221 mechanism of ammonium in anaerobic organisms is specifically the concentration of FA as a result of a high pH in anaerobic systems (Hansen et al., 1998). FA is a potent uncoupler of 222 membrane transport in any microorganism, as is capable of destabilizing the proton gradient, 223 thus preventing phosphorylation (Gallert et al., 1998; Rajagopal et al., 2013). In this context, 224 only the presence of valinomycin, a potent antibiotic and a K^{2+} transporter in membranes, can 225 activate a similar effect over photophosphorylation in PPB (Fleischman and Clayton, 1968). 226 PWW may contain other organic Na⁺-K²⁺ transporters that could boost the toxicity of FA 227 228 upon proton motive force in PPB. Indeed, PWW usually contains a wide variety of emerging pollutants like antibiotics or animal health-care products that may act as FA transporters in 229 membranes (Milić et al., 2013). 230

231

Similarly, in the assays conducted with undiluted PWW, the IC concentration remained approximately constant at $179 \pm 21 \text{ mg L}^{-1}$. In 2 and 4 times diluted tests, IC concentrations increased from 105 ± 9 by day 7 to 336 ± 46 and $397 \pm 15 \text{ mg L}^{-1}$, respectively, by day 20 (Fig 1b). This increase in IC concentration was mediated by the absorption of a fraction of the CO₂ present in the biogas. IC concentrations in the non-irradiated biotic control tests remained constant at $119 \pm 19 \text{ mg L}^{-1}$, which confirm the absence of biological activity of PPB without IR radiation.

Finally, while TN concentration remained constant in the tests without biological activity 240 241 (undiluted, abiotic, biotic and non-irradiated biotic control), TN concentration decreased from 1083 ± 75 to 811 ± 15 mg L⁻¹ and from 563 ± 5 to 488 ± 18 mg L⁻¹ in 2 and 4 times 242 diluted PWW assays, respectively (Fig. 1c). This removal was likely due to nitrogen 243 244 assimilation into PPB biomass, which amounted 1.5 ± 0.3 and 2.2 ± 0.2 g TSS L⁻¹ by the end of the tests conducted in 2 and 4 times diluted PWW, respectively. Neither NO₂⁻ nor NO₃⁻ 245 were detected regardless of the TN concentration, which ruled out the occurrence of NH4⁺ 246 247 nitrification (as expected from the reductive conditions prevailing in the tests).

248

249 PWW dilution and the presence of IR significantly impacted on the biogas upgrading performance. Thus, a decrease in CO₂ headspace concentrations from $28.7 \pm 0.4\%$ to $26.2 \pm$ 250 251 0.2%, 23.1 \pm 2.0% and 25.7 \pm 0.9% mediated by CO₂ absorption in the cultivation broth was 252 recorded in the assays containing undiluted, biotic and non-irradiated 2 times diluted PWW control tests, while in the abiotic test no significant variation in CO₂ concentration was 253 254 observed (Fig. 1d). The largest reductions in CO₂ headspace concentrations, down to 9.6 \pm 1.4% and 7.5 \pm 0.1%, were recorded in 2 and 4 times diluted PWW tests (Fig. 1d). This 255 removal of CO₂ from biogas was mediated by both an absorption into the cultivation broth 256 257 (promoted by the above reported increase in pH) and a PPB-based CO_2 fixation using H_2S from biogas and the biodegradable TOC as electron donor. Indeed, H₂S in the headspace 258 decreased from 0.40 to 0.24% and 0.04% in 2 and 4 times diluted PWW tests under reductive 259 260 conditions, which suggests its biological utilization as electron donor (Fig. 1e). The 261 unexpected increase in H₂S concentration to 1.0% in undiluted PWW tests and 0.7% in the non-irradiated biotic control tests was likely induced by the use of dissolved sulphate as 262 electron acceptor by sulfate-reducers in the mixed culture during the biodegradation of a 263

minor fraction of biodegradable TOC. Finally, H₂S concentration in the headspace initially 264 265 decreased to 0.19% and 0.15% in the biotic and abiotic tests, respectively, as a result of H_2S absorption in the MSM. On the other hand, CH₄ headspace concentrations of 88.7% and 266 90.8% were recorded at the end of the tests containing 2 and 4 times diluted PWW under IR 267 radiation, which confirmed the technical feasibility of combining PWW treatment and biogas 268 269 upgrading in PPB photobioreactors (Fig. 1f). In addition, a similar variation in CH₄ 270 concentration in the headspace was recorded in the biotic and abiotic tests, increasing from 70 % up to 74.7% and 74.2%, respectively. The biomethane herein obtained in the test 271 272 conducted with 2 and 4 times diluted PWW and irradiated PPB could be used as a vehicle 273 fuel (a CH₄ content > 80% is required in some countries of the European Union) (Muñoz et 274 al., 2015).

275

Finally, an ANOVA was carried out to elucidate how changes in PWW dilution influenced the quality of the upgraded biogas. Since the F values for CH₄ and CO₂ (5.6 and 5.2, respectively) were greater than the F critical value of 3.5, it can be concluded that the stated hypothesis was correct and therefore the quality of the upgraded biogas varied significantly with PWW dilution.

281

282

<Figure 1>

283

 CO_2 capture in the Calvin cycle by PPB is possible only when the organic substrates present in the cultivation medium are in a reduced form, since PPB need CO_2 for maintaining the redox homeostasis (McKinlay and Harwood, 2010). This is crucial to achieve a net CO_2 capture, thus allowing biogas upgrading by using the biodegradable organic matter present

in wastewater as electron donor. In order to confirm this hypothesis, the time course of VFAs 288 in the experiments conducted with diluted PWW was recorded (Fig. 2). The initial 289 characterization of the wastewater revealed that PWW contained highly reduced organics in 290 the form of VFAs. The main VFAs detected were acetate (963 mg L⁻¹), propionate (230 mg 291 L^{-1}), isobutyrate (126 mg L^{-1}), butyrate (109 mg L^{-1}), isovalerate (72 mg L^{-1}) and valerate (27 292 mg L⁻¹). The average oxidation state of the VFAs in the PWW herein used was calculated as 293 -0.63 following (McKinlay and Harwood, 2010). These environmental conditions require 294 PPB to use CO₂ to support microbial growth. Indeed, PPB consumed the VFAs 295 concomitantly with biomass growth and CO₂ assimilation in the 2 and 4 times diluted tests 296 297 (Fig. 2b and 2c, respectively), which confirmed the hypothesis proposed. Meanwhile VFAs remained constant in the undiluted and non-irradiated biotic control tests (Fig. 2a and 2d, 298 respectively). Therefore, PPB use the excess of electrons from the VFAs to assimilate CO₂ 299 300 in the Calvin cycle. The other major mechanism to achieve redox homeostasis is H_2 production, which was strongly inhibited by the high nitrogen concentration in these 301 particular assays (Sweet and Burris, 1981). 302

303

Since 4 times diluted PWW (with a TN concentration of 600 mg L^{-1}) supported the most efficient TOC, TN, CO₂ and H₂S removal, test series 2 and 3 were conducted under these experimental conditions.

307

- 308
- 309

310 3.2 Influence of phosphorous concentration on purple phototrophic bacteria-based 311 piggery wastewater treatment coupled to biogas upgrading

13

<Figure 2>

A significant TOC removal from 1712 ± 143 to 803 ± 123 mg L⁻¹ (TOC-REs of 53%) was 312 313 recorded in 4 times diluted PWW, while phosphorus supplementation supported a decrease in TOC concentration from 1625 ± 86 to 646 ± 110 mg L⁻¹ (TOC-REs of 60%) (Fig. 3a). The 314 high TOC-REs recorded in test series 2 were mediated by the assimilation as biomass instead 315 316 of by TOC oxidation to CO₂, and confirmed the potential of PPB to anaerobically degrade 317 organic matter assisted by IR regardless of phosphorus supplementation. A pH increase from 318 6.7 ± 0.1 and 6.8 ± 0.0 (day 4) to 7.5 ± 0.1 and 7.7 ± 0.0 was observed by the end of day 22 in tests conducted without and with phosphorus supplementation to 4 times diluted PWW, 319 respectively, due to PPB-based TOC biodegradation. IC concentration increased as a result 320 321 of pollutant mineralization and CO₂ capture/fixation from 56 ± 3 to 369 ± 21 and 364 ± 9 mg L^{-1} (day 19) without and with phosphorus addition, respectively (Fig 3b). TN concentration 322 decreased from 620 ± 20 to 308 ± 39 mg L⁻¹ without phosphorous addition and from $611 \pm$ 323 10 to 285 ± 33 mg L⁻¹ when phosphorus was supplemented (Fig. 3c). This removal was likely 324 due nitrogen assimilation into PPB biomass, which averaged 1.8 ± 0.8 and 1.9 ± 0.1 g TSS 325 L^{-1} by the end of the tests without and with phosphorus supplementation, respectively. The 326 327 TN-REs herein recorded were higher those reported by Hülsen et al. (2018), who achieved values of approximately 10% during the batch treatment of PWW by PPB. Neither NO₂⁻ nor 328 NO3⁻ were detected in these tests series. The results here recorded for TOC, IC and TN 329 concentrations confirmed that phosphorous supplementation did not enhance significantly 330 PPB-based PWW treatment under photo-anaerobic conditions. Finally, P-PO₄³⁻ in the test 331 supplemented with phosphorus was completely removed by day 13 mainly due to P 332 assimilation into biomass, while $P-PO_4^{3-}$ in the non-supplemented test remained below the 333 detection limit of the HPLC-IC (3 mg P L⁻¹). 334

336 The impact of phosphorus supplementation was more noticeable in the upgrading of biogas. 337 A reduction in CO₂ concentration from 29.4% to 8.2% and from 29.0% to 5.2% was recorded with and without phosphorus supplementation, respectively (Fig. 3d). H₂S concentration in 338 the headspace decreased from 0.36% to 0.07% without phosphorus supplementation, while 339 340 phosphorus supplementation supported a complete removal of H₂S. This suggested its 341 biological utilization as electron donor to support CO_2 assimilation (Fig. 3e). Finally, an 342 increase in CH₄ concentration from 70 % to 89.2% and 91.9% without and with phosphorus supplementation was recorded (Fig. 3f). The quality of the biomethane produced in P-343 supplemented tests complied with biomethane requirements for use as a vehicle fuel (Muñoz 344 345 et al., 2015).

346

347

<Figure 3>

348

349 3.4 Comparative evaluation of the potential of purple phototrophic bacteria and algal-

350 bacterial consortia for biogas upgrading

351 The ability of PPB and an algal-bacterial consortium to simultaneously treat PWW and upgrade biogas was comparatively assessed. A limited decrease in CO₂ headspace 352 353 concentrations from 28.6% to 24.1% was recorded in the test inoculated with the algalbacterial consortium, while CO₂ concentrations of 3.3% were obtained at the end of the 354 experiment inoculated with PPB (Fig. 4a). The low pH in the cultivation broth of the algal-355 356 bacterial system (5.4 \pm 0.7) imposed by the biogas headspace likely inhibited photosynthetic activity of microalgae. H₂S concentration in the headspace of the PPB tests decreased from 357 0.35% to 0.10%, while in the algal-bacterial systems a H₂S concentration of 0.47% was 358 recorded by day 23 (Fig. 4b). CH₄ headspace concentration reached values of 93.3% and 359

360	73.6% in the tests with PPB and algal-bacterial consortium, respectively (Fig. 4c). Therefore,
361	an enhanced biogas upgrading capacity was observed for PPB compared with the algal-
362	bacterial consortium.
363	
364	Finally, the TOC concentration in the algal-bacterial tests remained constant at $38 \pm 7 \text{ mg L}^2$
365	¹ , and gradually decreased from 2498 ± 0 to 1483 ± 7 mg L ⁻¹ (TOC-RE of 41%) in PPB tests
366	(Fig. 4d). On the other hand, the IC concentration in the algal-bacterial tests remained
367	constant at 14 \pm 4 mg L^{-1} and increased in the PPB tests from 108 \pm 0 to 459 \pm 40 mg L^{-1} by
368	day 12 (Fig. 4e). Finally, no significant variation in the TN concentration was observed
369	regardless of the consortia (624 \pm 33 mg L $^{-1}$ in PPB tests and 200 \pm 13 mg L $^{-1}$ in algal-
370	bacterial tests) (Fig. 4f).
371	
372	<figure 4=""></figure>
373	
374	4. Conclusions
375	PPB represent an innovative biological platform for the simultaneous treatment of PWW and
375 376	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600
375 376 377	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L^{-1} provided the best conditions for wastewater treatment and biogas upgrading. The
375 376 377 378	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L^{-1} provided the best conditions for wastewater treatment and biogas upgrading. The presence of VFA in PWW supported CO ₂ fixation in the Calvin cycle, thus allowing biogas
375 376 377 378 379	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L ⁻¹ provided the best conditions for wastewater treatment and biogas upgrading. The presence of VFA in PWW supported CO ₂ fixation in the Calvin cycle, thus allowing biogas upgrading. The low phosphorous concentrations inherent to PWW did not significantly
 375 376 377 378 379 380 	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L^{-1} provided the best conditions for wastewater treatment and biogas upgrading. The presence of VFA in PWW supported CO ₂ fixation in the Calvin cycle, thus allowing biogas upgrading. The low phosphorous concentrations inherent to PWW did not significantly impact on wastewater treatment performance but slightly improved biomethane quality. CH ₄
 375 376 377 378 379 380 381 	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L^{-1} provided the best conditions for wastewater treatment and biogas upgrading. The presence of VFA in PWW supported CO ₂ fixation in the Calvin cycle, thus allowing biogas upgrading. The low phosphorous concentrations inherent to PWW did not significantly impact on wastewater treatment performance but slightly improved biomethane quality. CH4 concentrations of 93.3% can be achieved using PPB, which complied with most international
 375 376 377 378 379 380 381 382 	PPB represent an innovative biological platform for the simultaneous treatment of PWW and upgrading of biogas under photo-anaerobic conditions. PWW with TN concentrations of 600 mg L ⁻¹ provided the best conditions for wastewater treatment and biogas upgrading. The presence of VFA in PWW supported CO ₂ fixation in the Calvin cycle, thus allowing biogas upgrading. The low phosphorous concentrations inherent to PWW did not significantly impact on wastewater treatment performance but slightly improved biomethane quality. CH4 concentrations of 93.3% can be achieved using PPB, which complied with most international regulations for biogas use as a vehicle fuel.

384 E-supplementary data of this work can be found in online version of the paper.

385

386 Acknowledgements

- 387 This work was supported by the regional government of Castilla y León and the EU-FEDER
- programme (UIC 71 and CLU 2017-09). Daniel Puyol greatly thanks the Spanish Ministry
- of Science, Innovation and Universities for the Ramon y Cajal grant.

390

391 **REFERENCES**

- 392 (1) Andreoli, C.V., Von, M., 2007. Sludge Treatment and Disposal, Environmental
- 393 Protection. doi:10.1016/B978-1-85617-705-4.00021-6
- 394 (2) Andriani, D., Wresta, A., Atmaja, T.D., Saepudin, A., 2014. A Review on
- 395 Optimization Production and Upgrading Biogas Through CO₂ Removal Using
- 396 Various Techniques. Appl. Biochem. Biotechnol. 172, 1909–1928.
- 397 doi:10.1007/s12010-013-0652-x
- 398 (3) APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st
- ed. Public Health Association, Washington DC.
- 400 (4) Chitapornpan, S., Chiemchaisri, C., Chiemchaisri, W., Honda, R., Yamamoto, K.,
- 401 2012. Photosynthetic bacteria production from food processing wastewater in
- 402 sequencing batch and membrane photo-bioreactors. Water Sci. Technol. 65, 504–512.
- 403 doi:10.2166/wst.2012.740
- 404 (5) De Godos, I., Blanco, S., García-encina, P.A., Becares, E., Muñoz, R., 2009.
- 405 Bioresource Technology Long-term operation of high rate algal ponds for the

406		bioremediation of piggery wastewaters at high loading rates. Bioresour. Technol. 100,
407		4332-4339. doi:10.1016/j.biortech.2009.04.016
408	(6)	European Biogas Association, 2017. EBA Statistical Report 2017 [WWW Document].
409		URL http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-
410		soon/ (accessed 11.13.18).
411	(7)	Fleischman, D.E., Clayton, R.K., 1968. The effect of phosphorylation uncouplers and
412		electron transport inhibitors upon spectral shifts and delayed light emission of
413		photosynthetic bacteria. Photochem. Photobiol. 8, 287–298. doi:10.1111/j.1751-
414		1097.1968.tb05872.x
415	(8)	Gallert, C., Bauer, S., Winter, J., 1998. Effect of ammonia on the anaerobic
416		degradation of protein by a mesophilic and thermophilic biowaste population. Appl.
417		Microbiol. Biotechnol. 50, 495–501. doi:10.1007/s002530051326
418	(9)	García, D., Posadas, E., Blanco, S., Acién, G., García-Encina, P., Bolado, S., Muñoz,
419		R., 2018. Evaluation of the dynamics of microalgae population structure and process
420		performance during piggery wastewater treatment in algal-bacterial photobioreactors.
421		Bioresour. Technol. 248, 120–126. doi:10.1016/j.biortech.2017.06.079
422	(10)	García, D., Posadas, E., Grajeda, C., Blanco, S., Martínez-Páramo, S., Acién, G.,
423		García-Encina, P., Bolado, S., Muñoz, R., 2017. Comparative evaluation of piggery
424		wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor
425		conditions. Bioresour. Technol. 245, 483-490. doi:10.1016/j.biortech.2017.08.135
426	(11)	Godos, I. de, Vargas, V.A., Blanco, S., González, M.C.G., Soto, R., García-Encina,
427		P.A., Becares, E., Muñoz, R., 2010. A comparative evaluation of microalgae for the

428	degradation of piggery wastewater under photosynthetic oxygenation. Bioresour.
429	Technol. 101, 5150–5158. doi:10.1016/j.biortech.2010.02.010
430	(12) Hansen, K.H., Angelidaki, I., Ahring, B.K., 1998. Anaerobic digestion of swine
431	manure: inhibition by ammonia. Water Res. 32, 5-12. doi:10.1016/S0043-
432	1354(97)00201-7
433	(13) Hiraishi, A., Yanase, A., Kitamura, H., 1991. Polyphosphate Grown Accumulation
434	under Different by Rhodobacter Environmental on the sphaeroides Conditions with
435	Special Emphasis Phosphate Effect of External Concentrations. Bull. Japanese Soc.
436	Microb. Ecol. 6, 25–32.
437	(14) Hülsen, T., Barry, E.M., Lu, Y., Puyol, D., Keller, J., Batstone, D.J., 2016. Domestic
438	wastewater treatment with purple phototrophic bacteria using a novel continuous
439	photo anaerobic membrane bioreactor. Water Res. 100, 486-495.
440	doi:10.1016/j.watres.2016.04.061
441	(15) Hülsen, T., Batstone, D.J., Keller, J., 2014. Phototrophic bacteria for nutrient recovery
442	from domestic wastewater. Water Res. 50, 18-26. doi:10.1016/j.watres.2013.10.051
443	(16) Hülsen, T., Hsieh, K., Lu, Y., Tait, S., Batstone, D.J., 2018. Simultaneous treatment
444	and single cell protein production from agri-industrial wastewaters using purple
445	phototrophic bacteria or microalgae – A comparison. Bioresour. Technol. 254, 214–
446	223. doi:10.1016/j.biortech.2018.01.032
447	(17) Kaewsuk, J., Thorasampan, W., Thanuttamavong, M., Seo, G.T., 2010. Kinetic
448	development and evaluation of membrane sequencing batch reactor (MSBR) with
449	mixed cultures photosynthetic bacteria for dairy wastewater treatment. J. Environ.

450	Manage.	91,	1161–1168.	doi:10.1016/j.	jenvman.2010.01.012
	<u> </u>				

451	(18) Khatipov, E., Miyakea, M., Miyakec, J., Asadaa, Y., 1998. Accumulation of poly- L -
452	hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen
453	substrates. FEMS Microbiol. Lett. 162, 39–45.
454	(19) Kim, M.K., Choi, K., Yin, C., Lee, K., Im, W., Lim, H., Lee, S., 2004. Odorous swine
455	wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris,
456	isolated from eutrophicated ponds. Biotechnol. Lett. 26, 819-822.
457	(20) López, J.C., Arnáiz, E., Merchán, L., Lebrero, R., Muñoz, R., 2018. Biogas-based
458	polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in
459	anaerobic digestion biorefineries. Chem. Eng. J. 333, 529-536.
460	doi:10.1016/j.cej.2017.09.185
461	(21) Marín, D., Posadas, E., Cano, P., Pérez, V., Blanco, S., Lebrero, R., 2018. Seasonal
462	variation of biogas upgrading coupled with digestate treatment in an outdoors pilot
463	scale algal-bacterial photobioreactor. Bioresour. Technol. 263, 58-66.
464	doi:10.1016/j.biortech.2018.04.117
465	(22) McKinlay, J.B., Harwood, C.S., 2010. Carbon dioxide fixation as a central redox
466	cofactor recycling mechanism in bacteria. Proc. Natl. Acad. Sci. 107, 11669–11675.
467	doi:10.1073/pnas.1006175107
468	(23) Milić, N., Milanović, M., Letić, N.G., Sekulić, M.T., Radonić, J., Mihajlović, I.,
469	Miloradov, M.V., 2013. Occurrence of antibiotics as emerging contaminant substances
470	in aquatic environment. Int. J. Environ. Health Res. 23, 296–310.
471	doi:10.1080/09603123.2012.733934

472	(24) Muñoz, R., Meier, L., Diaz, I., Jeison, D., 2015. A review on the state-of-the-art of
473	physical/chemical and biological technologies for biogas upgrading. Rev. Environ.
474	Sci. Biotechnol. 14, 727-759. doi:10.1007/s11157-015-9379-1
475	(25) Posadas, E., Marín, D., Blanco, S., Lebrero, R., Muñoz, R., 2017. Simultaneous biogas
476	upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.
477	Bioresour. Technol. 232, 133-141. doi:10.1016/j.biortech.2017.01.071
478	(26) Posadas, E., Serejo, M.L., Blanco, S., Pérez, R., García-Encina, P.A., Muñoz, R.,
479	2015. Minimization of biomethane oxygen concentration during biogas upgrading in
480	algal-bacterial photobioreactors. Algal Res. 12, 221-229.
481	doi:10.1016/j.algal.2015.09.002
482	(27) Rajagopal, R., Massé, D.I., Singh, G., 2013. A critical review on inhibition of
483	anaerobic digestion process by excess ammonia. Bioresour. Technol. 143, 632-641.
484	doi:10.1016/j.biortech.2013.06.030
485	(28) Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of
486	biogas to biomethane. Biomass and Bioenergy 35, 1633–1645.
487	doi:10.1016/j.biombioe.2011.02.033
488	(29) Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R.,
489	2015. Influence of biogas flow rate on biomass composition during the optimization of
490	biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49, 3228-
491	3236. doi:10.1021/es5056116
492	(30) Statista, 2018. Global pork production in 2018, by country [WWW Document]. URL
493	https://www.statista.com/ (accessed 1.8.19).

494	(31) Sweet,	W.J.,	Burris,	R.H.,	1981.	Inhibition	of nitrogenase	activity by	NH+4 in
-----	-------------	-------	---------	-------	-------	------------	----------------	-------------	---------

495 Rhodospirillum rubrum. J. Bacteriol. 145, 824–831.

- 496 (32) Takabatake, H., Suzuki, K., Ko, I.-B., Noike, T., 2004. Characteristics of anaerobic
- 497 ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria.
- 498 Bioresour. Technol. 95, 151–158. doi:10.1016/j.biortech.2003.12.019

500 FIGURE CAPTIONS

Figure 1. Time course of (a) total organic carbon, (b) inorganic carbon, (c) total nitrogen, (d)

- 502 CO₂, (e) H₂S and (f) CH₄ concentrations during the biodegradation of undiluted (\blacksquare) , 2 times
- 503 diluted (\circ), and 4 times diluted (\blacktriangle) PWW coupled to biogas upgrading. Inoculated IR-
- bod deprived control test with 2 times diluted PWW (◊). Biotic control test with MSM (♦) and
- abiotic control test with MSM at pH 2.0 (\Box).
- **Figure 2.** Time course of VFA concentration during the biodegradation of (a) undiluted, (b)
- 507 2 times diluted and (c) 4 times diluted PWW coupled to biogas upgrading. (d) Inoculated IR-
- 508 deprived control test with 2 times diluted PWW.
- **Figure 3.** Time course of (a) total organic carbon, (b) inorganic carbon, (c) total nitrogen, (d)
- 510 CO₂, (e) H₂S and (f) CH₄ concentrations during the treatment of 4 times diluted PWW (\Box)

and 4 times diluted PWW supplemented with 50 mg P-PO₄³⁻ $L^{-1}(\blacktriangle)$.

- 512 Figure 4. Time course of (a) CO₂, (b) H₂S, (c) CH₄ (d) total organic carbon, (e) inorganic
- 513 carbon and (f) total nitrogen concentration during biogas upgrading with a PPB consortium
- treating PWW (\Box) and an algal-bacterial consortium (\bullet).

Figure 1. Time course of (a) total organic carbon, (b) inorganic carbon, (c) total nitrogen, (d) CO₂, (e) H₂S and (f) CH₄ concentrations during the biodegradation of undiluted (\blacksquare), 2 times diluted (\circ), and 4 times diluted (\blacktriangle) PWW coupled to biogas upgrading. Inoculated IR-deprived control test with 2 times diluted PWW (\diamond). Biotic control test with MSM (\blacklozenge) and abiotic control test with MSM at pH 2.0 (\Box).

Figure 2. Time course of VFA concentration during the biodegradation of (a) undiluted, (b) 2 times diluted and (c) 4 times diluted PWW coupled to biogas upgrading. (d) Inoculated IR-deprived control test with 2 times diluted PWW.

Figure 3. Time course of (a) total organic carbon, (b) inorganic carbon, (c) total nitrogen, (d) CO₂, (e) H₂S and (f) CH₄ concentrations during the treatment of 4 times diluted PWW (\Box) and 4 times diluted PWW supplemented with 50 mg P-PO₄³⁻ L⁻¹ (\blacktriangle).

Figure 4. Time course of (a) CO₂, (b) H₂S, (c) CH₄, (d) total organic carbon, (e) inorganic carbon and (f) total nitrogen concentration during biogas upgrading with a PPB consortium treating PWW (□) and an algal-bacterial consortium (●).

1	Assessing the potential of purple phototrophic bacteria for the
2	simultaneous treatment of piggery wastewater and upgrading of biogas
3	David Marín ^{1, 2, 3} , Esther Posadas ¹ , Dimas García ^{1, 2, 5} , Daniel Puyol ⁴ , Raquel Lebrero ^{1, 2}
4	Raúl Muñoz* ^{1, 2}
5	
6	¹ Department of Chemical Engineering and Environmental Technology, School of Industrial
7	Engineering, Valladolid University, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
8	² Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011,
9	Valladolid, Spain.
10	³ Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica,
11	Tegucigalpa, Honduras.
12	⁴ Group of Chemical and Environmental Engineering (GIQA), University Rey Juan Carlos,
13	Madrid, Spain.
14	⁵ Centro para la Investigación en Recursos Acuáticos de Nicaragua, CIRA/UNAN-Managua,
15	Apdo. Postal 4598, Nicaragua.
16	
17	*Corresponding author: <u>mutora@iq.uva.es</u>
18	

Inoculum enrichment

24

Figure S2. Time course of pH during the biodegradation of undiluted (\bullet), 2 times diluted (\circ), and 4 times diluted (\blacktriangle) PWW coupled to biogas upgrading. Inoculated IR-deprived control test with 2 times diluted PWW (\diamond), biotic control test with MSM (\blacklozenge), abiotic control test with MSM at pH 2.0 (\Box).

30

31

Figure S3. Time course of pH in test series 2. Four times diluted PWW without (□) and with
P-PO₄³⁻ supplementation (▲).

Figure S4. Time course of pH in test series 3. Purple phototrophic bacteria treating 4 times
diluted PWW under a biogas atmosphere (□), algal-bacterial consortium in MSM under a
biogas atmosphere (▲).

Figure S5. Time course of P-PO4³⁻ concentration in the cultivation broth of the assays
conducted with 4 times diluted PWW (●) and 4 times diluted PWW supplemented with PO4⁻
³ (■) in test series 3.

Table S.1. Analysis of variance

	Sum of squares	Degrees of freedom	Mean square	F value	F critical
CH ₄ 410.8		2	205.4	5.6	3.5
Error	775.1	21	36.9		
CO_2	380.6	2	190.3	5.2	3.5
Error	763.9	21	36.4		
H_2S	1.4	2	0.7	35.4	3.5
Error	0.4	21	0.1		