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Background and Objective: Synthetic magnetic resonance imaging (MRI) is a low cost procedure that 

serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require 

very specific sequences or private protocols which have scarcely found integration in clinical scanners. 

We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of 

T1- and T2-weighted images customarily acquired in the clinical routine. 

Methods: Our approach is based on a convolutional neural network (CNN) trained with synthetic data; 

specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of 

the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to 

transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps. 

Then, conventional weighted images unseen by the network are analytically synthesized from the para- 

metric maps. The network can be fine tuned with a small database of actual weighted images and maps 

for better performance. 

Results: This approach is able to accurately compute parametric maps from synthetic brain data achiev- 

ing normalized squared error values predominantly below 1%. It also yields realistic parametric maps 

from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with 

correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences. 

Further, the synthesized weighted images are visually realistic; the mean square error values are always 

below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps 

improves performance, while training exclusively with a small database of actual maps shows a perfor- 

mance degradation. 

Conclusions: These results show that our approach is able to provide realistic parametric maps and 

weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two in- 

puts, which are in turn obtained from a common full-brain acquisition that takes less than 8 min of scan 

time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach 

acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in 

clinical viable times and for the synthesis of additional weighted images to those actually acquired. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Magnetic resonance imaging (MRI) is widely used in the clini- 

al routine due to its capability of providing meaningful anatomi- 

al and functional information. Images are obtained by applying a 
Abbreviations: CNN, convolutional neural network; T1, spin-lattice relaxation 

ime; T2, spin-spin relaxation time; PD, proton density. 
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ulse sequence with a selection of parameters; their combination 

ives rise to a specific weighting of the tissue magnetic proper- 

ies, which, in turn, produce an image with an associated contrast. 

ereinafter, each of the different contrasts is referred as an image 

odality. An MRI scan protocol consists of a number of sequences 

hat provide different image modalities, which are intended to pro- 

ide complementary information for diagnosis [1] . 

These so-called weighted images are of a qualitative nature and 

re routinely used by radiologists for diagnosis. Quantitative MRI, 

n the other side, consists in finding the tissue magnetic properties 

hemselves (the so-called T1, T2, and PD maps, which are jointly 
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1 QRAPMASTER is nowadays referred to as a multidynamic multiecho (MDME) 

sequence [23] . 
eferred to as parametric maps). These parametric maps are more 

obust than weighted images due to their lower sensitivity to MRI 

ardware and sequence configurations [2] . In addition, the depen- 

ence of these maps with biophysical tissue properties plays an 

mportant role in tissue characterization in healthy and diseased 

tages, for pathologies such as epilepsy [3] or multiple sclerosis [4] , 

nd for tumor detection [5] . Although, as indicated above, radiolo- 

ists are not used to performing diagnosis solely on the basis of T1, 

2, and PD parametric maps [6] , quantitative MRI is gaining popu- 

arity [7] . 

Synthetic MRI has recently entered the field and it some- 

ow serves as a bridge between qualitative and quantitative 

RI [8] . It has been conventionally defined as a three-step pro- 

edure [9] where 1) a set of weighted images are acquired, 2) 

uantitative parametric maps are computed from them and 3) any 

eighted image can be synthesized using the equations that de- 

cribe MR intensity as a function of sequence parameters and para- 

etric maps. Thus, this low-cost procedure could retrospectively 

nhance patient throughput and facilitate radiologists routine. 

In this paper we propose a novel method for synthetic MRI in 

hich step 2 of the procedure described above is based on deep 

earning. Its main novelty stems from the fact that the proposed 

raining is performed mainly on the basis of synthetic data. The 

nputs to our method are two conventional sequences customar- 

ly used in any brain acquisition protocol (step 1). A number of 

eighted images unseen by the network can be then satisfactorily 

btained out of the parametric maps we provide (step 3). Thus, 

he proposed method is not limited to a number of predefined 

eighted images that have entered the learning process, but is able 

o generalize to any image modality. 

. Related work 

.1. Quantitative MRI: classical relaxometry techniques 

In the classical methods to obtain parametric maps —steps 1) 

nd 2) of synthetic MRI— a set of weighted images with differ- 

nt sequence parameters is customarily acquired; from these im- 

ges, the map is computed by voxelwise fitting a known relax- 

tion model. These techniques are termed as relaxometry. In order 

o perform this fitting, different estimation-based procedures have 

een proposed [10–12] . Also, approaches that perform the fitting 

y deep learning have been recently developed [13] . However, the 

cquisitions needed to obtain a sufficiently large set of weighted 

mages are time consuming, a fact that limits their utility in clin- 

cal routine. In addition, most of the proposed methods only pro- 

ide information of a single parameter at a time [12–14] , so addi- 

ional sequences are needed to obtain the three parametric maps. 

To overcome these limitations, MR fingerprinting (MRF) [15] is 

ble to estimate parametric maps within a short scan time. How- 

ver, the specific spiral acquisition needed has rarely found inte- 

ration into clinical scan protocols [16] . 

.2. Medical image translation 

Various deep learning approaches have been proposed that 

earn the mapping between different pairs of images [17–19] , a 

rocedure that we will refer to as medical image translation. These 

pproaches share the same objective as step 3) of synthetic MRI, 

lthough their input is a set of weighted images as opposed to 

arametric maps. Hence, they are not flexible as to which modali- 

ies can be generated, since most of them are tailored for a specific 

pplication where, given some input image modalities, new prede- 

ned image modalities are synthesized. For example, in [18] the 

uthors synthesize T1-weighted images from T2-weighted images 

hereinafter, T1w and T2w). 
2 
These methodologies limit themselves to the image modali- 

ies used in the learning stage since the potential of parametric 

aps to synthesize any weighted image is not employed. This de- 

ign choice may be the consequence of the nonexistence of large 

atasets that contain both weighted images and the correspond- 

ng parametric maps due to their long acquisition times. At first 

lance, this would be mandatory since deep learning model train- 

ng requires extensive datasets [20] . 

.3. Synthetic MRI methods 

Different methods that fit the conventional three-step definition 

f synthetic MRI [9] have been proposed. Gulani et al. [21] pro- 

osed an steady-state precession (IR-TrueFISP) sequence in which a 

eries of different IR time-delayed TrueFISP images are acquired to 

uantify the parametric maps. Then T1w, T2w, PD-weighted (PDw), 

nd T2w fluid attenuated inversion recovery (T2w FLAIR) im- 

ges were synthesized from these maps. Warntjes et al. [22] pro- 

osed a multiecho acquisition of a saturation-recovery turbo spin- 

cho readout (QRAPMASTER) 1 for the quantification of T1, T2, PD, 

nd B1 inhomogeneity parametric maps. After quantification, T1w, 

2w, and T2w FLAIR images were synthesized [24] . Finally, Cheng 

t al. [25] suggested a multipathway multiecho (MPME) sequence 

sing an unbalanced steady-state sequence with two different flip 

ngles and resolution scans to quantify T1, T2, T2 ∗, B1 inhomo- 

eneity, and B0 inhomogeneity parametric maps. Then, the authors 

howed the synthesis of T1w, T2w, PDw, T2w FLAIR, and magne- 

ization prepared rapid gradient echo (MPRAGE) images using a 

eural network. Nevertheless, this latter method suffers from noise 

mplification due to the multiple processing steps which leads to 

omewhat noisy maps and synthesized images. 

It is important to note, however, that all of these methods re- 

uire very specific sequences or private protocols scarcely available 

n clinical scanners. Also, these quantitative sequences are focused 

n obtaining the parametric maps, but they are not valuable by 

hemselves for diagnosis purposes in the clinical routine. 

.4. Our contributions 

In this work we propose a joint synthetic MRI approach for the 

omputation of the T1, T2, and PD parametric maps and the syn- 

hesis of different weighted images from two common clinical rou- 

ine sequences, through a convolutional neural network (CNN). 

Our main contributions are summarized as follows: 

• A novel three-from-two approach for the computation of T1, T2, 

and PD parametric maps from only a pair of weighted images, 

namely a T1w and a T2w. The mapping between the weighted 

images and the parametric maps is carried out by means of a 

CNN. The T1w and T2w input sequences are customarily used 

in the clinical routine. 
• A new training strategy based on a synthetic dataset generated 

from the BrainWeb anatomical brain model is proposed. This 

way, we overcome the need of large datasets with quantitative 

parametric maps. 
• Realistic parametric maps with values in the range of the liter- 

ature for 3T scanners are computed from actual MR brain ac- 

quisitions. These achieve high correlation values compared to 

parametric maps obtained from relaxometry sequences, here- 

inafter referred to as silver standard . 
• The synthesis of multiple realistic weighted images from these 

computed parametric maps both for modalities previously seen 
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Fig. 1. Pipeline of the proposed training and validation approaches. a) Synthetic dataset generation used for training and testing of the supervised convolutional neural 

network (CNN). b) Validation of the CNN with actual MR brain acquisitions. 
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Table 1 

Ranges of the T1, T2, and PD values for each of 

the three considered tissues in the anatomical brain 

model (WM: white matter, GM: grey matter, and 

CSF: cerebrospinal fluid) for the generation of 120 

synthetic brain volumes. The specific value for each 

parameter in each tissue and volume is selected 

from a uniform distribution within these ranges. T1 

and T2 values are given in seconds. 

T1 (s) T2 (s) PD 

WM 0.80–1.10 0.055–0.075 0.65–0.72 

GM 1.40–1.60 0.075–0.120 0.77–0.82 

CSF 4.50–4.80 1.200–1.600 1.20–1.30 
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by the network and for other modalities not used in the learn- 

ing stage. Quantitative and qualitative comparisons between the 

synthesized and the acquired weighted images are provided. 
• The performance of our approach to synthesize additional im- 

age modalities with different sequence parameters (i.e., TE, TR, 

TI) is compared with other state-of-the-art methods. 

. Methods 

In this manuscript we propose a joint synthetic MRI approach 

or the computation of the T1, T2, and PD parametric maps and the 

ynthesis of different weighted images from only a pair of inputs, 

amely a T1w and a T2w. To this end, we adapt the CNN proposed

y Chartsias et al. [17] and train it with a synthetic dataset where 

he T1w and the T2w images were synthesized from their corre- 

ponding parametric maps. The proposed dataset generation, neu- 

al network training, and validation procedures are shown in Fig. 1 . 

.1. Sequences 

Any weighted MR image can be analytically synthesized if the 

arametric maps needed to feed the pulse sequence are known. 

or simple cases, this synthesis can be performed using the well- 

nown equations that describe MR intensity as a function of se- 

uence parameters, such as echo time (TE), repetition time (TR), 

nversion time (TI) and flip angle ( α), in relation to the involved 

arametric maps. In more complicated cases, more sophisticated 

ethods are needed [26] . In this manuscript, based on the T1, T2, 

nd PD maps, we synthesise weighted images corresponding to the 

equences magnetization prepared rapid gradient echo (MPRAGE), 

pin echo (SE), gradient echo (GRE), and inversion recovery spin 

cho (IR-SE), with respective Eqs. (1) –(4) : 

 MPRAGE (x ) = P D (x ) 
1 − 2 e −T I /T 1 (x ) + e −T R /T 1 (x ) 

1 + cos (α) e −T R /T 1 (x ) 
sin (α) e −T E /T 2 (x ) (1) 

 SE (x ) = P D (x ) 
[
1 − 2 e −(T R −T E / 2) /T 1 (x ) + e −T R /T 1 (x ) 

]
e −T E /T 2 (x ) (2) 

 GRE (x ) = P D (x ) 
1 − e −T R /T 1 (x ) 

1 − cos (α) e −T R /T 1 (x ) 
sin (α) e −T E /T 2 (x ) (3) 
N

3 
 IR-SE (x ) 

= P D (x ) 
[
1 − 2 e −T I /T 1 (x ) + 2 e −(T R −T E / 2) /T 1 (x ) − e −T R /T 1 (x ) 

]
e −T E /T 2 (x ) 

(4) 

ith x the voxel location defined on some domain X . 

quations (1) and (2) are employed for the generation of the 

ynthetic dataset used for training and testing the CNN. On the 

ther hand, the four of them are employed for the validation of 

he proposed approach with actual MR brain acquisitions. 

.2. Proposed approach 

.2.1. Synthetic dataset generation 

We create a synthetic dataset with 120 brain volumes starting 

rom the anatomical model of a normal brain obtained with Brain- 

eb [27] . The pipeline to create the synthetic dataset is described 

n the next four steps (see Fig. 1 a). 

First, we created 120 different sets of T1, T2, and PD maps from 

he BrainWeb anatomical model by giving uniformly distributed 

andom values to the white matter (WM), grey matter (GM), and 

erebrospinal fluid (CSF) of each map, one value for each label. The 

xact ranges of T1, T2, and PD values defined for each parameter in 

ach tissue are shown in Table 1 . Note that these ranges are within

hose reported in the literature for 3T MR scanners [28] . Also, ad- 

itive Gaussian noise was added to each volume with distribution 

 (μ = 0 , σ = 0 . 01) . 
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Table 2 

Parameters of the acquisitions in Brain MRI and Quantitative Brain MRI protocols. The parameters are the echo time (TE), the repetition time (TR), the inversion time (TI), 

the flip angle (alpha), the echo train length (ETL), the SENSE acceleration factor (SENSE), the number of signal averages (NSA), the number of slices (and its orientation), the 

slice thickness, the in-plane resolution, the field-of-view (FOV), and the approximate acquisition scan time. 

Brain MRI Quantitative Brain MRI 

T1w(MPRAGE) T2 ∗w(GRE) T2w FLAIR(IR-TSE) PDw/T2w(TSE) T1(VFA GRE) T2(multiecho TSE) PD(GRE) 

TE (ms) 3 20 100 30/85 2 17, 46, 75, 104, 133, 162 2 

TR (ms) 6.44 746.99 11000 4000 18 1000 50 

TI (ms) 900 - 2800 - - - - 

α ( ◦) 10 20 - - 2, 3, 4, 5, 7, 9, 11, 14, 17, 19, 22 - 5 

ETL 192 1 12 10 1 30 1 

SENSE 1.8/1/1.2 2 2 2 2 2 2 

NSA 1 1 1 1 1 1 1 

# Slices 170 27 27 50 150 150 150 

(sagittal) (axial) (axial) (axial) (axial) (axial) (axial) 

Thickness (mm) 1.2 5 5 3 1.5 1.5 1.5 

Resolution (mm 

2 ) 1.25 × 1.25 0.94 × 1.25 0.94 × 1.25 1.02 × 1.36 1.50 × 1.50 1.50 × 1.50 1.50 × 1.50 

FOV (mm) 240 × 240 240 × 240 240 × 240 260 × 195 240 × 240 240 × 240 240 × 240 

Scan time (min) ∼ 4:00 2:30 - 4:00 2:30 - 4:30 2:30 - 4:30 ∼ 17:00 ∼ 18:00 4:00 - 4:30 
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Second, in order to introduce spatial variability across brain 

olumes (i.e., brains with different anatomical features), the maps 

ere affine-registered to the PD25 atlas [29] using the FLIRT tool 

f FSL (Oxford, UK) [30] . Then, each set of maps was non-linearly 

egistered to one out of the 120 different T1w volumes selected 

rom the PPMI database (www.ppmi-info.org), with the FNIRT tool 

f FSL as described in [31] . The size of each of these maps is of 240

176 with 256 slices. Subsequently, all sets of parametric maps 

ere skull-stripped. 

Third, for each set of skull-stripped T1, T2, and PD maps, a pair 

f weighted images was analytically synthesized. A T1w image was 

ynthesized as a MPRAGE acquisition ( Eq. (1) ) with TE = 3 ms, TR

 6.44 ms, TI = 900 ms, and α = 10 ◦. A T2w image was synthe-

ized as a SE acquisition ( Eq. (2) ) with TE = 85 ms and TR = 40 0 0

s. These particular sequences and parameter sets were chosen to 

atch the actual MR brain acquisitions described in Table 2 . Note 

hat the weighted images have the same dimensions as the para- 

etric maps (i.e., 240 × 176 with 256 slices). 

Finally, we normalized the T1w and T2w images by dividing 

ach of them by its average intensity without considering the back- 

round. This facilitates convergence of the CNN during training 

ithout altering image properties due to their qualitative nature. 

.2.2. The network 

Network training with the synthetic dataset . The aforementioned 

ynthetic dataset was used to train an adapted version of the CNN 

escribed in [17] ; our adaptation pursued to perform an end-to- 

nd mapping function to transform the input T1w and T2w images 

o their corresponding set of T1, T2, and PD parametric maps (see 

ig. 1 a). Specifically, the weighted images were input to two en- 

oders which embed these inputs into multi-channel latent spaces 

ith the same image size as the inputs. Note that the CNN pro- 

esses the inputs as 2D slices. The number of channels used is 16. 

hen, the latent representations of the input are fused into a sin- 

le 16-channel representation using a maximum pixelwise func- 

ion between each pair of corresponding channels. This fused la- 

ent representation is next input to three decoders to obtain the 

hree desired parametric maps. Supervised training was carried out 

sing the cost function proposed in [17] . This cost function min- 

mizes 1) the mean absolute error (MAE) between the ground- 

ruth parametric maps and the output’s decoders (i.e. the synthe- 

ized parametric maps), and 2) the mean pixelwise variance be- 

ween latent representations. The model was trained through a 

ini-batch approach with a batch size of 8 images using Adam 

ptimizer [32] with a learning rate of 1 × 10 −5 . We performed 

he training with early stopping to avoid overfitting. From the 120 

rain volumes of the synthetic dataset with a set of three paramet- 
4 
ic maps and two weighted images each, we used 70 for training 

17920 slices), 36 for the early-stopping monitoring (9216 slices), 

nd 14 for test (3584 slices). 

The adapted CNN is coded in Python with Keras. We run the 

ode using the TensorFlow backend on a single NVidia GeForce 

TX 1070. The total learning took about 10 h of computation time. 

ote that once the CNN has been trained, the network computa- 

ion time reduces to a few seconds. 

Network testing with the synthetic dataset . We evaluated the 

roper parametric mapping of the network through the 14 brain 

olumes of the synthetic dataset remaining for testing. In addition 

o visual evaluation, we carried out a quantitative analysis in the 

arametric maps domain due to the existence of the correspond- 

ng ground-truth. The comparison between the computed and the 

round-truth T1, T2, and PD parametric maps was performed with 

he normalized squared error (NSE) map computed as 

SE (x ) = 

( MAP c (x ) − MAP GT (x )) 2 

MAP 

2 
GT ( x ) 

× 100% , (5) 

here MAP is one of the T1, T2, or PD maps, c stands for computed 

nd GT for ground-truth . Similarly, they are also compared with the 

calar metrics described later in Section 3.3 . 

.2.3. Validation with actual MR acquisitions 

MRI acquisitions. The real data used in these experiments have 

he approval of the institutional review board (IRB) and the eight 

ubjects involved —suspected of early Alzheimer disease— signed 

he informed written consent; the Brain MRI protocol that fol- 

ows was acquired with a 32-channel head coil on a 3T scanner 

Achieva, Philips, Best, The Netherlands). Local B0 and B1 shim- 

ing were used in order to correct for field inhomogeneities. Each 

tudy was composed of four sequences and a total of five image 

odalities. These sequences are: 1) 3D MPRAGE sequence to ob- 

ain T1w images; 2) GRE sequence to obtain T2 ∗w images; 3) IR- 

SE sequence to obtain T2w FLAIR images; 4) turbo spin echo (TSE) 

ulti echo sequence to obtain PDw and T2w images. 

Additionally, for validation purposes in the same MRI unit and 

ith the same corrections, we also scanned five healthy volun- 

eers with IRB approval and informed written consent. For these 

olunteers, we performed the Quantitative Brain MRI protocol with 

revious 1) and 4) sequences to input the CNN, sequence 3) only 

or registration purposes, and the following set of relaxometry se- 

uences: 5) The T1 map was retrieved using a variable flip angle 

VFA) of a 3D GRE sequence with 11 different flip angles. Then, 

OVIFAST algorithm [12] was employed for the T1 estimation; 6) 

he T2 map was measured using a 3D multi echo sequence with 

ix different TEs and a least squares estimation procedure; 7) The 
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D map was obtained using a 3D GRE. We name the maps that 

esult from 5), 6) and 7) silver standard, since they are affected 

y common artifacts as well as by physiological motion due to the 

ength of the sequences. The parameters of each of previous se- 

uences are given in Table 2 . 

Data preprocessing . We preprocessed the actual MR brain vol- 

mes in order to register all the image modalities to the same 

mage space and to adapt them to the network input layer. All 

mage modalities were affine-registered to the T2w FLAIR using 

LIRT (Oxford, UK) [30] . After registration, the size of each image 

odality is of 256 × 256 with 27 slices with voxel size of 0.94 

1.25 × 5 mm as shown in Table 2 . Note that this registration 

tep is only necessary for training and validation purposes, because 

n production mode —once the network is fully trained— the only 

equirement is to have the input images with spatial alignment. 

ll images were then skull-stripped. Subsequently, all images were 

ropped to 240 × 176 pixels which is the dimension of the net- 

ork’s input layer. We normalized the weighted images by divid- 

ng each of them by its average intensity without considering the 

ackground. This normalization was done in accordance with the 

reprocessing steps of the CNN training data. In addition, the re- 

axometry PD maps were normalized so that their 99th percentiles 

atched the maximum of the PD map from the synthetic train- 

ng dataset. Finally, the 14 central slices of each actual MR brain 

olume were then selected to avoid slices with predominant back- 

round areas and/or very prone to artifacts. 

Validation . We validated the performance of the proposed ap- 

roach to compute parametric maps and to synthesize different 

eighted image modalities when actual T1w and T2w images are 

nput to the network following the pipeline in Fig. 1 b). Synthesis 

uality has been assessed both on the maps directly provided by 

he network output as well as on the synthesized weighted im- 

ges. Quality parameters have been defined both at region of in- 

erest (ROI) level and at whole image level. Precise definitions for 

hese parameters are provided in the next section. 

.3. Quantitative parameters for quality assessment 

We drew nine circular ROIs in each subject of the Brain MRI 

rotocol co-localized across the different parametric maps and 

eighted images enumerated in Fig. 1 b). From the nine ROIs, three 

ere located in the CSF (approximately 3 mm of radius), three in 

he white matter (approximately 3 mm of radius), and three in the 

rey matter (approximately 2 mm of radius). Let X 

k 
i 
(n ) denote the 

et of voxels 2 belonging to ROI i, 1 ≤ i ≤ 3 from tissue k, 1 ≤ k ≤ 3

say, 1 for CSF, 2 for GM, and 3 for WM) and subject n, 1 ≤ n ≤ 8 .

s for the parametric maps provided by the network from Brain 

RI , we define the following two parameters 

k = 

1 

8 ∑ 

n =1 

3 ∑ 

i =1 

|X 

k 
i 
(n ) | 

8 ∑ 

n =1 

3 ∑ 

i =1 

∑ 

x ∈X k 
i 
(n ) 

MAP 

n 
c (x ) (6) 

 

k = 

√ √ √ √ √ 

1 

8 ∑ 

n =1 

3 ∑ 

i =1 

|X 

k 
i 
(n ) | 

8 ∑ 

n =1 

3 ∑ 

i =1 

∑ 

x ∈X k 
i 
(n ) 

(
MAP 

n 
c (x ) − μk 

)2 
(7) 

ith MAP n c (x ) a computed parametric map evaluated at point x 

nd | · | denotes the cardinality of a set. 

For the particular case of the subjects that underwent the 

uantitative Brain MRI protocol, we drew 12 circular ROIs in 

ach tissue co-localized across the different parametric maps and 
2 ROIs have been delineated in 2D, so the third component ∀ x ∈ X k 
i 
(n ) coincides. 

C

5 
eighted images. For its parametric maps we define: 

k 
i (n ) L = 

1 

|X 

k 
i 
(n ) | 

∑ 

x ∈X k 
i 
(n ) 

MAP 

n 
L (x ) (8) 

ith MAP n L (x ) a parametric map of the n th healthy subject evalu- 

ted at point x and L is a label that takes the values c for the MAP

omputed by the network and Silver for the silver standard relax- 

metry maps; k follows the same convention as in Eqs. (6) and (7) ,

 ≤ i ≤ 12 , and 1 ≤ n ≤ 5 . 

As for the weighted images of Brain MRI , we define: 

k 
i (n ) = 

1 

|X 

k 
i 
(n ) | 

∑ 

x ∈X k 
i 
(n ) 

m 

n (x ) (9) 

 

k 
i (n ) = 

√ 

1 

|X 

k 
i 
(n ) | 

∑ 

x ∈X k 
i 
(n ) 

(
m 

n (x ) − μk 
i 
(n ) 

)2 
(10) 

 (n ) = 

1 

9 

3 ∑ 

i =1 

3 ∑ 

k =1 

s k i (n ) (11) 

ith m 

n (x ) an image (either computed or acquired) of the n th sub-

ect evaluated at point x . Then, the following samples (per tissue 

, 1 ≤ k ≤ 3 ) are created: 

1. Intensity values μk 
i 
(n ) , 1 ≤ i ≤ 3 , 1 ≤ n ≤ 8 . 

2. Contrast: 

c k i j (n ) = 

μk 
i 
(n ) − μk 

j 
(n ) 

μk 
i 
( n ) + μk 

j 
(n ) 

, (12) 

1 ≤ i, j ≤ 3 , i � = j, 1 ≤ n ≤ 8 . 

3. Contrast-to-noise ratio (CNR): 

CNR 

k 
i j (n ) = 

μk 
i 
(n ) − μk 

j 
(n ) 

s ( n ) 
, (13) 

1 ≤ i, j ≤ 3 , i � = j, 1 ≤ n ≤ 8 . 

4. Signal-to-noise ratio (SNR): 

SNR 

k 
i (n ) = 

μk 
i 
(n ) 

s (n ) 
, (14) 

1 ≤ i ≤ 3 , 1 ≤ n ≤ 8 . 

In addition, in each subject of Brain MRI we also drew a rectan- 

ular ROI measuring approximately 70.50 mm × 33.75 mm, which 

as chosen to encompass the occipital region of the brain. The 

umber of pixels of this rectangular ROI was of 2025. 

At a whole image level, we used four well-known metrics com- 

only used in medical image translation methods. These metrics 

re the mean squared error (MSE), the structural similarity index 

SSIM), the peak signal-to-noise ratio (PSNR), and the correlation 

oefficient (CORR) defined as follows: 

m 

n = 

1 

|X | 
∑ 

x ∈X 
m 

n (x ) 

c m 

n 
1 
m 

n 
2 

= 

1 

|X | 
∑ 

x ∈X 

(
m 

n 
1 (x ) − m 

n 
1 

)(
m 

n 
2 (x ) − m 

n 
2 

)
SE (n ) = 

1 

|X | 
∑ 

x ∈X 
( m 

n 
c (x ) − m 

n 
s (x ) ) 

2 
(15) 

SNR (n ) = 10 log 10 

( 

max 
x ∈X ( 

m 

n 
c (x ) ) 

2 

MSE (n ) 

) 

(16) 

ORR (n ) = 

c m 

n 
c m 

n 
s √ 

c m 

n 
c m 

n 
c 
c m 

n 
s m 

n 
s 

(17) 
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Fig. 2. A representative axial slice of the T1, T2, and PD maps computed from a 

test brain volume of the synthetic dataset. a) T1w and T2w images input to the 

network. b–d) Computed, ground-truth, and normalized squared error (NSE) maps 

from the same slice for the T1, T2, and PD parameter maps, respectively. The T1 and 

T2 values are given in miliseconds (ms). Main differences between the computed 

and the ground-truth maps appear in the boundary of the brain, although the NSE 

is predominantly below 1 % on the three computed T1, T2, and PD maps. 
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4

4

P
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i

e

t

SIM (n ) = 

(2 m 

n 
c m 

n 
s + C 1 )(2 c m 

n 
c m 

n 
s 
+ C 2 ) ((

m 

n 
c 

)2 + 

(
m 

n 
s 

)2 + C 1 

)(
c m 

n 
c m 

n 
c 
+ c m 

n 
s m 

n 
s 
+ C 2 

) (18) 

ith m 

n 
c (x ) and m 

n 
s (x ) the computed and acquired images, respec-

ively, for the n th subject of Brain MRI , 1 ≤ n ≤ 8 , evaluated at

oint x ; voxels take on values within domain X . Unless otherwise 

tated, this domain will consist of the brain area. These four met- 

ics have also been used with parametric maps for performance 

ssessment on synthetic data. 

.4. Experiments 

Network verification with synthetic images as inputs has been 

ccomplished by visual assessment as well as with the NSE map 

efined in Eq. (5) . In addition, the parameters defined in Eqs. (15) –

18) have also been employed. 

As for the network validation with real images, all the parame- 

ers defined in the previous section have been employed, and as- 

essment has been carried out both directly on the network out- 

uts (i.e., on the parametric maps) as well as on the synthesized 

eighted images. For the former, we have employed the silver 

tandard maps from the five subjects involved in the Quantita- 

ive Brain MRI protocol. For the latter, and as indicated in Fig. 1 b),

e analytically synthesized the same weighted images acquired 

n the Brain MRI protocol with the same sequence parameters 

s those described in Table 2 . The equations used for each se- 

uence are Eqs. (1) –(4) for the synthesis of T1w, PDw/T2w, T2 ∗w, 

nd T2w FLAIR, respectively. In addition, we synthesized additional 

eighted images with the same sequences as in the Brain MRI pro- 

ocol, but varying the sequence parameters (i.e. TE, TR, TI). These 

equences are SE ( Eq. (2) ) with TE in the range of 20 to 100 ms

nd TR of 120 and 40 0 0 ms, and IR-SE ( Eq. (4) ) with three dif-

erent combinations of TE, TR, and TI. We do not have the corre- 

ponding acquired weighted images as ground-truth due to scan 

ime restrictions, but we pursue to investigate the versatility of 

ur approach to synthesize any weighted image with coherent 

ontrast. 

We have also tested how the network deals with non skull- 

tripped images, a fact that is indicated to be an issue in [17] . To

his end, non skull-stripped T1w and T2w images were input to 

he CNN. In this case, normalization was done by dividing each of 

hem by the skull-stripped images average intensity in accordance 

ith the synthetic dataset generation and network training. From 

he parametric maps with skull computed by the CNN, we then 

nalytically synthesized the same weighted images acquired in the 

rain MRI protocol. 

Finally, we propose a network refinement by performing ad- 

itional training with a small number of real weighted images 

nd their corresponding silver standard parametric maps obtained 

ith the Quantitative Brain MRI protocol. We have carried out a 

ross validation procedure; specifically, we tested with 5 − t sub- 

ects, where 2 ≤ t ≤ 4 , and the remaining t subjects have been di- 

ided into training and early-stopping monitoring datasets; cross 

alidation stems from the fact that we have 
(

5 
t 

)
combinations of 

esting datasets for each t; each combination will be hereinafter 

eferred to as a split. Note that the case t = 4 corresponds to a

eave-one-out scheme. Within this scheme, we have carried out 

wo experiments: (i) the CNN previously trained with the synthetic 

ataset is fined tuned with the parametric maps and (ii) the CNN 

s trained from scratch making use exclusively of the parametric 

aps of the Quantitative Brain MRI protocol (i.e., no synthetic data 

re shown to the CNN). Maps from experiment (i) will be referred 

o as MAP c-(i) while maps from experiment (ii) will be denoted by 

AP c-(ii) . 
6 
.5. Statistical analysis 

The parameters defined in Eqs. (15) –(18) when applicable, are 

hown as averages (and sample standard deviation) along the 14 

ynthetic volumes used for testing or the 8 subjects used for sys- 

em validation; these parameters are calculated within a 3D do- 

ain of the 14 central slices (where largest brain areas are found). 

As for parameters defined in Eqs. (8) , (9) , (12) –(14) we have

easured the Pearson correlation coefficient and the intra-class 

orrelation coefficient ICC(2,1) [33] . As for the former, we run a 

orrelation test based on the Fisher transformation to test the hy- 

othesis that the correlation coefficient is less than or equal to a 

redefined value; a p − v alue = P < 0 . 05 was considered significant 

o as to reject the hypothesis. We have also analyzed Eqs. (12) –

14) using linear regression. Additionally, for the rectangular ROI 

rawn in the synthesized and acquired weighted images we have 

omputed the Pearson correlation coefficient and performed an F- 

est for linear regression. Finally, we carry out a Bland-Altman plot 

nalysis of a representative slice per subject where pixel values 

ere normalized so that a value of ”1.0” represented the signal 

trength of WM for each particular weighted image as in [25] . 

. Results 

.1. Network testing with the synthetic dataset 

Figure 2 shows a representative axial slice of the T1, T2, and 

D maps computed from one of the test brain volumes of the syn- 

hetic dataset together with their corresponding NSE maps. Main 

ifferences between the computed and ground-truth maps appear 

n the boundary of the brain and in the tissue interfaces to a lower 

xtent. Nevertheless, the NSE is predominantly below 1% on the 

hree computed T1, T2, and PD maps. Further, the mean evalua- 
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Fig. 3. A representative axial slice of T1, T2, and PD maps computed from a subject of the Quantitative Brain MRI protocol. a) Computed T1, T2, and PD parametric maps. 

b) Their corresponding silver standard relaxometry maps. c) Correlation of parameter μk 
i 
(n ) L ( Eq. 8 ) between the computed and the silver standard relaxometry maps for 

the five healthy subjects. T1 and T2 values are given in miliseconds (ms). The markers indicate the mean values of WM (yellow diamonds), GM (red stars), and CSF (blue 

circles). Diagonal lines represent the identity. 

Table 3 

Metrics (mean ± std) used to evaluate the performance of the 

CNN to compute each set of T1, T2, and PD maps from each pair 

of T1w and T2w images of the test brain volumes of the syn- 

thetic dataset. These metrics are the mean squared error (MSE), 

structural similarity error index (SSIM), peak signal-to-noise ratio 

(PSNR), and correlation coefficient (CORR). The metrics were cal- 

culated between the computed parametric maps and the ground- 

truth T1, T2, and PD maps. Note that for the calculation of the 

metrics the background voxels were not considered. 

T1 map T2 map PD map 

MSE 0.0072 0.0013 0.0004 

(0.0044) (0.0010) (0.0002) 

SSIM 0.9932 0.9933 0.9912 

(0.0016) (0.0044) (0.0033) 

PSNR 36.1274 33.8001 37.2614 

(2.2800) (2.5282) (1.5868) 

CORR 0.9983 0.9975 0.9990 

(0.0007) (0.0007) (0.0004) 
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ion metrics obtained in the synthetic data testing of all 14 test 

rain volumes show good agreement between the computed and 

he ground-truth maps as can be seen in Table 3 . The SSIM is al-

ays above 0.99 and the MSE below 1%. 

.2. Validation with actual MR acquisitions 

Table 8 shows the parameters defined in Eqs. (6) and (7) for the 

1, T2, and PD parametric maps obtained from all the ROIs within 

 tissue along all the subjects of the Brain MRI protocol. The values 

btained in this work are mostly within the range of the values 

reviously reported in the literature for a 3T scanner. As for the 

articular case of the PD maps, the GM/WM ratio is close to the 

atio reported in the literature (1.22 vs. 1.10, respectively). In addi- 
7 
ion, Fig. 3 shows a representative axial slice of the T1, T2, and PD 

aps computed from a subject of the Quantitative Brain MRI proto- 

ol and their corresponding silver standard relaxometry maps. The 

omputed parametric maps are visually realistic and capture most 

f the structural information without computational errors. Note 

hat no outliers appear in the CSF of the T1 map. The correlation 

iagrams include the values of parameter μk 
i 
(n ) L ( Eq. (8) ) for the

ve subjects of the Quantitative Brain MRI protocol. There is high 

orrelation between the computed and the silver standard relax- 

metry maps, namely 0.9616, 0.9703, and 0.7707 for the T1, T2, 

nd PD, respectively; the first two values are statistically higher 

han 0.90 ( P < 0.01). Similarly, respective ICC values are 0.9454, 

.9445, and 0.6489. 

Figure 4 shows a representative axial slice of weighted images 

ynthesized from one set of the T1, T2, and PD maps computed 

y the CNN and their corresponding acquired images for a sub- 

ect of the Brain MRI protocol. Overall, the synthesized and ac- 

uired weighted images are visually similar regarding both struc- 

ural information and contrasts between tissues. The image modal- 

ties used to train the network present higher similarity than the 

thers, being the T1w the most similar and the T2w FLAIR the least 

imilar but yet with visual resemblance. The boundary of the CSF 

n the cortical area is hyperintense on the synthesized T2w FLAIR, 

hich is presumably caused by partial volume effects. Supplemen- 

ary Material Figure S1 shows an extended version of Fig. 4 with a 

epresentative axial slice for each of the eight subjects of the Brain 

RI protocol. 

Figure 5 shows a scatter plot between the synthesized and the 

cquired weighted images (we show the pairs of values μk 
i 
(n ) 

efined in Eq. (9) for the acquired and the synthesized images) 

or the eight subjects of Brain MRI . There is high correlation 

etween the pairs of weighted images, namely 0.9979, 0.9952, 

.9912, 0.9820, and 0.9602 for the T1w, T2w, PDw, T2 ∗w, and T2w 
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Fig. 4. A representative axial slice of the weighted images synthesized from one set of the T1, T2, and PD maps computed by the CNN and their corresponding acquired 

images. a–e) The synthesized T1w, T2w, PDw, T2 ∗w, and T2w FLAIR images. f–j) Their corresponding acquired weighted images. 

Fig. 5. Correlation of parameter μk 
i 
(n ) ( Eq. 9 ) between the synthesized and the acquired weighted images. a) T1w, b) T2w, c) PDw, d) T2 ∗w, and e) T2w FLAIR. The markers 

indicate the mean values of WM (yellow diamonds), GM (red stars), and CSF (blue circles). The diagonal lines represent the identity. 
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LAIR, respectively; all of these values are statistically higher than 

.90 ( P < 0.001). Similarly, respective ICC values are 0.9918, 0.9438, 

.8919, 0.7424, and 0.9367. 

Figure 6 shows similar scatter plots of the contrast, CNR, and 

NR samples between the synthesized and acquired weighted im- 

ges (as defined in Eqs. (12) –(14) ). There is high correlation with 

alues between 0.9907 and 0.9241 for the contrast, 0.9807 and 

.8739 for the CNR, and 0.9845 and 0.9082 for the SNR for all the 

eighted images, as shown in Table 7 ; most of these values are 

tatistically larger than 0.90 ( P < 0.05), except in the case of the 

2 ∗w and T2w FLAIR for the CNR and SNR, and the PDw only for

he SNR, which are statistically greater than 0.84. The ICC values 

or the three same samples are between 0.9730 and 0.9421 for the 

1w, between 0.9579 and 0.8954 for the T2w, and between 0.9120 

nd 0.8607 for the T2w FLAIR. In contrast, the ICC values are lower 

or the PDw and T2 ∗w, as shown in Table 7 . 

Linear regression showed that the SNR of the synthesized 

eighted images is generally better with an improvement that 

eaches 47.74% (CI: [41.93%; 53.54%]). CNR is fairly similar for 
8 
he T1w ( −5.31%, CI: [ −6.33%; −4.29%]), the T2 ∗w ( −0.12%, CI:

 −2.75%; 2.52%]), and the T2w FLAIR (5.36%, CI: [1.67%; 9.05%]), 

lthough it is slightly worse for the T2w ( −17.46%, CI: [ −18.94%; 

15.99%]) and the PDw ( −26.45%, CI: [ −27.79%; −25.10%]). Finally, 

ontrast only improves in the T2w FLAIR (22.77%, CI: [20.57%; 

4.98%]). See details in Table 4 . 

Figure 7 shows a scatter plot between the pixel values of 

he rectangular ROIs drawn on the synthesized and the acquired 

eighted images of a representative subject of Brain MRI . There 

s high correlation between the pairs of weighted images, namely 

.9911, 0.9684, 0.8898, 0.8477, and 0.6403 for the T1w, T2w, PDw, 

2 ∗w, and T2w FLAIR, respectively; all of these values are statis- 

ically significant ( P << 0.0 0 01) in the F-test for linear regression. 

or the sake of completeness, the correlation values for each of the 

ight subjects of the Brain MRI protocol are given in Supplementary 

aterial Table S1. 

Additionally, the high values of the mean SSIM, SNR, and CORR 

nd low values of the MSE obtained in the subjects of Brain MRI 

how good agreement between synthesized and acquired weighted 
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Fig. 6. Correlation of the contrast, the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) between the synthesized and the acquired weighted images. a) 

Contrast, b) CNR, and c) SNR of the T1w, T2w, PDw, T2 ∗w, and T2w FLAIR images. For the Contrast (a) and the CNR (b) the markers indicate the contrast/CNR values 

between each combination of the GM ROIs with the WM ROIs (yellow diamonds), each combination of CSF ROIs with the GM ROIs (red stars), and each combination of 

CSF ROIs with the WM ROIs (blue circles). For the SNR (c) the markers indicate the mean SNR values of WM (yellow diamonds), GM (red stars), and CSF (blue circles). The 

diagonal lines represent the identity. 

9 
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Table 4 

Values defined in Eqs. (6) and (7) (the latter, within braces) for each tissue in each of the computed 

parametric maps (i.e. T1, T2, and PD maps). Comparison with the values previously reported in the 

literature for a 3T scanner. Note that WM is the white matter, GM is the grey matter, and CSF is the 

cerebrospinal fluid. 

T1 (s) T2 (s) PD 

This work Literature This work Literature This work Literature 

WM 0.9741 0.7370–1.1000 0.0890 0.0560–0.0840 0.7222 0.6330 

(0.0585) [Ref. [36,37] ] (0.0061) [Ref. [38,39] ] (0.0142) [Ref. [40] ] 

GM 1.4474 1.3310–1.8200 0.1257 0.0710–0.1320 0.7988 0.7720 

(0.1361) [Ref. [39,41] ] (0.0160) [Ref. [38,39] ] (0.0135) [Ref. [40] ] 

CSF 4.6785 3.7000–6.8730 1.3705 0.5000–1.8700 1.2601 

(0.1060) [Ref. [14,42] ] (0.0335) [Ref. [43,44] ] (0.0380) 

Fig. 7. Correlation between pixel values from the rectangular ROI of the synthesized and the acquired weighted images for a representative subject of the Brain MRI protocol. 

a) Rectangular region of interest chosen for linear regression, b) T1w, c) T2w, d) PDw, e) T2 ∗w, and f) T2w FLAIR. The markers indicate the value of each pixel in the 

rectangular ROI (approximate 2025 values). The diagonal lines represent the identity. P << 0 . 0 0 01 for all image modalities for the correlation test carried out (see correlation 

values tested in main text). 

Table 5 

Correlation coefficient (R) and intraclass correlation coefficient (ICC) of the contrast, 

the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) between the 

synthesized and the acquired weighted images (see Fig. 6 ). The bold correlation 

values indicate that they are statistically significant superior to a correlation value 

of 0.9. The ∗ indicates P < 0.05 and ∗∗ P < 0.001. 

T1w T2w PDw T2 ∗w T2w FLAIR 

Contrast R 0.9907 ∗∗ 0.9855 ∗∗ 0.9591 ∗∗ 0.9241 ∗ 0.9689 ∗∗

ICC 0.9421 0.9155 0.6521 0.6530 0.8961 

CNR R 0.9807 ∗∗ 0.9658 ∗∗ 0.9453 ∗∗ 0.9193 0.8739 

ICC 0.9730 0.8954 0.7425 0.9187 0.8607 

SNR R 0.9845 ∗∗ 0.9734 ∗∗ 0.9280 0.9082 0.9145 

ICC 0.9712 0.9579 0.8300 0.4634 0.9120 
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mages as shown in Table 5 . Specifically, the SSIM achieves values 

bove 0.96 for the T1w and the T2w, and of 0.91, 0.78, and 0.56 

or the PDw, T2 ∗w, and T2w FLAIR, respectively. The MSE is below 

% for the T1w, T2w, and PDw, and below 9% for the T2 ∗w and

he T2w FLAIR. Similarly to Fig. 4 , the image modalities used to 

rain the network show higher SSIM, SNR, and CORR and lower 

SE than the others. 

Figure 8 represents Bland-Altman plots including data from a 

epresentative slice of all subjects of Brain MRI . It compares synthe- 

ized and acquired pixel values for T1w, T2w, PDw, T2 ∗w, and T2w 
10 
LAIR. The absolute mean difference for the each image modality 

s 0.0041, 0.0021, 0.0089, 0.0794 and 0.0249, respectively. 

Figure 9 displays a representative axial slice of additional 

eighted images synthesized with the same sequences as in Brain 

RI , but varying the sequence parameters. This proves the versa- 

ility of the proposed approach to synthesize any weighted images. 

he images obtained are realistic and with coherent contrasts. 

Finally, Fig. 10 shows a representative axial slice of the non 

kull-stripped weighted images synthesized from one set of the 

1, T2, and PD maps computed by the CNN and their correspond- 

ng non skull-stripped acquired images for a subject of Brain MRI . 

imilarly to Fig. 4 , both images are visually apparent regarding 

oth structural information and contrast between tissues. Never- 

heless, the inhomogeneities in the skull interfaces might cause a 

ismatch between the synthesized and the acquired images. 

.3. Fine tuning: refining the network with actual parametric maps 

Figure 11 shows a representative slice of both MAP c-(ii) and 

AP c-(i) (columns a) and b), respectively) with MAP as T1, T2, and 

D (first, second, and third rows, respectively). For MAP c-(i) the 

gure also shows the correlation diagrams that include the val- 

es of the ROIs for all subjects of the Quantitative Brain MRI pro- 

ocol tested with a leave-one-out scheme (i.e., t = 4 ). It can be 

een that the fine tuning procedure improves the accuracy of the 
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Fig. 8. Bland-Altman plots used to compare synthesized and acquired weighted images as in [25] . Each plot combines results from a representative axial slice of all subjects 

of the Brain MRI protocol. The corresponding image modalities are: a–e) T1w, T2w, PDw, T2 ∗w, and T2w FLAIR, respectively. Red dashed lines represents the bias and blue 

dashed lines the 95% confidence interval. 

Table 6 

Percentage of variation of the linear regression coefficient [95% confidence interval (CI)] in comparison to the identity (i.e., linear 

regression coefficient of one) for the contrast, the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) samples. For the 

linear regression computation, the x-axis is considered as the samples values of the acquired image and the y-axis the samples values 

of the synthesized image as shown in Fig. 6 . Positive values indicate an improvement of the corresponding samples. 

T1w T2w PDw T2 ∗w T2w FLAIR 

Contrast −12.69% −14.11% −31.22% −32.89% 22.77% 

[ −13.36%; −12.01%] [ −14.88%; −13.33%] [ −32.23%; −30.21%] [ −34.37%; −31.34%] [20.57%; 24.98%] 

CNR −5.31% −17.46% −26.45% −0.12% 5.36% 

[ −6.33%; −4.29%] [ −18.94%; −15.99%] [ −27.79%; −25.10%] [ −2.75%; 2.52%] [1.67%; 9.05%] 

SNR 4.76% −3.10% 6.86% 47.74% −5.76% 

[2.89%; 6.62%] [ −5.92%; −0.28%] [4.22%; 9.51%] [41.93%; 53.54%] [ −11.08%; −0.44%] 

Table 7 

Metrics (mean ± std) used to evaluate the capability to synthesize 

weighted images from a set of T1, T2, and PD maps computed by the CNN. 

These metrics are the mean squared error (MSE), structural similarity in- 

dex (SSIM), peak signal-to-noise ratio (PSNR), and correlation coefficient 

(CORR). The metrics were calculated between both the synthesized and 

the acquired weighted images. Note that for the calculation of the metrics 

the background voxels were not considered. 

T1w T2w PDw T2 ∗w T2w FLAIR 

MSE 0.0058 0.0095 0.0061 0.0392 0.0815 

(0.0009) (0.0020) (0.0010) (0.0058) (0.0081) 

SSIM 0.9651 0.9620 0.9194 0.7823 0.5693 

(0.0051) (0.0039) (0.0078) (0.0222) (0.0190) 

PSNR 30.6338 26.2621 25.3160 18.9098 19.6598 

(1.5330) (0.7607) (0.7972) (0.5905) (1.9280) 

CORR 0.9910 0.9858 0.9886 0.9438 0.8726 

(0.0015) (0.0023) (0.0017) (0.0076) (0.0093) 

c

s

i

T

e  

Table 8 

Mean correlation coefficient (R) and intraclass 

correlation coefficient (ICC) of parameter μk 
i 
(n ) L 

( Eq. (8) ) between the computed and the silver 

standard relaxometry maps for three values of 

the number of training subjects t in the cross 

validation of the fine tuning. Values reported 

have been computed for each test subjects of 

each split, and then, mean values were computed 

along all splits and subjects. 

T1 T2 PD 

t = 4 ∗ 0.9784 0.9682 0.8912 

R t = 3 † 0.9733 0.9648 0.8857 

t = 2 † 0.9722 0.9645 0.8752 

t = 4 ∗ 0.9517 0.9607 0.7935 

ICC t = 3 † 0.9324 0.9496 0.7930 

t = 2 † 0.9275 0.9475 0.7536 

∗ five splits, † 10 splits. 

r

s

s

w

omputed parametric maps in terms of ICC (compare the values 

hown in Fig. 3 ), whereas without the previous synthetic train- 

ng the results worsen noticeably and the maps blur. Furthermore, 

able 6 shows the mean correlation coefficient and ICC of param- 

ter μk 
i 
(n ) L ( Eq. (8) ) for the different configurations of t . Both cor-
11 
elation and ICC have been computed for each test subject of each 

plit, and then, mean values were computed along all splits and 

ubjects. Results show that, as expected, both parameters increase 

ith the number of training subjects. 
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Fig. 9. A representative axial slice of other weighted images synthesized varying the sequence parameters from a set of the T1, T2, and PD maps computed by the CNN. a) 

Weighted images synthesized for a spin echo (SE) sequence with different TE and TR corresponding to T1w, T2w and PDw image modalities. b) Weighted images synthesized 

for an inversion recovery spin echo (IR-SE) sequence with different TE, TR, and TI corresponding to short-TI inversion recovery (STIR), T1w FLAIR, and T2w FLAIR image 

modalities. Note that the unlabeled images correspond to sequence parameter combinations which lead to weighted images with undefined contrast. 
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. Discussion 

In this work, we have presented a novel joint synthetic MRI ap- 

roach for the computation of the T1, T2, and PD parametric maps 

nd the synthesis of different weighted images from only a pair of 

nput weighted images. The pair of input images are a T1w and a 

2w acquired with clinical routine sequences. The parametric maps 

re obtained by training the CNN with a synthetic dataset; hence, 

e overcome the lack of a public and sufficiently large database of 

onventional images that should be accompanied by their corre- 

ponding parametric maps. Our synthetic training dataset departs 

rom 120 instances of BrainWeb maps, in which we add intensity 

ariability, by means of random noise, as well as spatial variabil- 

ty, by registering these maps to different anatomies from the PPMI 

atabase. We show the feasibility of this solution by computing ac- 

urate and realistic parametric maps from both synthetic and ac- 

ual MR brain acquisitions; the computed maps are then used to 

ynthesize different weighted images, so our end-to-end synthetic 

RI solution is not limited to a number of predefined weighted 

mages that have entered the learning process, but is capable of 

eneralizing to any image modality that can be synthesized out of 

he parametric maps. Hence, our solution fulfils the three condi- 

ions needed to become a synthetic MRI method. To the best of 

ur knowledge this is the first synthetic MRI method that is based 

n conventional routine sequences and can be trained on the basis 

f synthetic data. 
12 
We have shown that synthesized weighted images from five 

linical routine sequences achieve high similarity metrics, with 

SIM usually above 0.90 and low error with MSE always below 9%. 

he correlation analysis shown in the scatter plots of Fig. 5 pro- 

ide values above 0.95 for all modalities. Similarly, for the scatter 

lots of contrast, CNR, and SNR ( Fig. 6 ), both correlation and ICC 

lso obtain high values, as shown in Table 7 . Note that the agree-

ent when the ICC values are above 0.75 is considered good while 

hen the values are above 0.90 is considered excellent [33] ; our 

esults indicate that we lie in these ranges for at least one param- 

ter for each synthesized modality. In addition, spatial resolutions 

f training and test images do not need to exactly match. Our test- 

ng images have resolution of 0.94 × 1.25 × 5 mm while the PPMI 

atase resolution is of 1 × 1 × 1.2 mm; despite the in-plane res- 

lution does not differ much, slice thicknesses are clearly different 

nd no partial volumes effects in the through-plane direction are 

bvious in our solution. 

The synthetic MRI approach proposed may have important im- 

lications in neuroimaging due to the utility of the parametric 

aps for tissue characterization and the possibility of synthesiz- 

ng any weighted image. Specifically, the obtained T1, T2, and PD 

alues of the three tissues (WM, GM, and CSF) present a good cor- 

espondence with the values reported in the literature, as shown in 

able 8 and with the silver standard relaxometry parametric maps 

ith correlation values above 0.95 for the T1 and T2 maps. The 

utput quality increases noticeably when the network is fine tuned 
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Fig. 10. A representative axial slice of the non skull-stripped weighted images synthesized from one set of the T1, T2, and PD maps computed by the CNN and their 

corresponding non skull-stripped acquired images. a–e) The synthesized T1w, T2w, PDw, T2 ∗w, and T2w FLAIR images. f–j) Their corresponding acquired weighted images. 

Fig. 11. A representative axial slice of T1, T2, and PD maps computed from a subject of the Quantitative Brain MRI protocol in a leave-one-out scheme. a) T1, T2, and PD 

parametric maps computed by the network trained from scratch with actual parametric maps. b) Corresponding maps computed by the fine tuned network with previous 

synthetic training. c) Their corresponding silver standard relaxometry maps. d) Correlation of parameter μk 
i 
(n ) L ( Eq. (8) ) between MAP c-(i) and MAP Silver for the five healthy 

subjects. Diagonal lines represent the identity. 
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ith a small number of silver standard maps. This provides a way 

o obtain parametric maps with increased accuracy, at the cost of 

mploying a (small) number of silver standard maps for additional 

raining. Note, however, that training with synthetic data is a key 

tep, since training from scratch with this small amount of silver 

tandard maps by no means suffices. Moreover, the proposed ap- 

roach avoids the need of lengthy relaxometry sequences; the total 

can time of the full-brain acquisition described in this manuscript 

T1w and T2w acquisitions) is less than 8 min versus the 18 min 

can time of an inversion recovery golden standard acquisition only 

or T1 mapping [34] , and the 17 min scan time of the DESPOT algo-
13 
ithm for T1 and T2 mapping [10] . The computed parametric maps 

re therefore less prone to motion artifacts. Interestingly, the pro- 

osed approach is not based on specific and complex sequences as 

RF [15] , IR-TrueFISP [21] , QRAPMASTER [22] , and MPME [25] or 

rivate protocols as the SyMRI IMAGE software [35] . Also, the fea- 

ibility of synthesizing weighted images and/or retrospectively op- 

imizing sequence parameters can further reduce scan time. Thus, 

 radiologist could have the parametric maps together with vari- 

us conventional weighted images based on the same widespread 

hort scan protocol. In addition, we provide the possibility of cre- 

ting databases of perfectly registered weighted images accompa- 
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ied with their corresponding parametric maps; these databases 

an be used to train machine learning algorithms for different pur- 

oses, perform data augmentation or improve the performance of 

egistration or segmentation algorithms. The field of radiomics also 

eems a natural target for our methodology. 

We should stress that our method gives rise to different modal- 

ties, some of them unseen by the network throughout the train- 

ng process, with comparable quality with recent medical image 

ranslation works; however, to the best of our knowledge, these 

orks are limited to the specific modalities that enter the training 

nd validation stages. Specifically, SSIM in our synthesized T1w, 

2w, and PDw images is slightly higher than the values reported 

y Chartsias et al. [17] and Sohail et al. [19] for some of these

mage modalities, albeit the T2w FLAIR and sometimes the T2 ∗w 

chieve lower quality. A more thorough comparison is not feasi- 

le since our actual acquired validation dataset is not large enough 

o train the state-of-the-art medical image translation methods. 

lso, note that in our approach no data from real acquisitions are 

sed in the training stage thanks to the synthetic training, and 

nly when fine tuning the network a very small database of ac- 

ual maps is used; this is our main advantage with respect to 

he state-of-the-art. The non skull-stripped synthesized images, al- 

hough visually realistic, achieve lower quality than their corre- 

ponding skull-stripped counterparts; however, this seems to be 

he case as well in [17] . The loss of quality is clearer in the neigh-

ouring parts of the skull, and other tissues such as the eyes. 

e obtain a SSIM of 0.80 in both the T2w and the PDw im- 

ges while in [17] the SSIM in the synthesis of the T2w from the

Dw is of 0.86. Nevertheless, it is important to note that, as op- 

osed to [17] , in our work the skull has not entered the training

rocess. 

As for the comparison with synthetic MRI methods, in our work 

he synthesized weighted images show higher visual resemblance 

o the acquired images than in the other methods [21,25] . In addi- 

ion, correlation coefficients calculated within the rectangular ROIs 

escribed in Section 2.1 are higher with our approach [21] . How- 

ver, except for the T2w FLAIR modality, our synthesized weighted 

mages present lower contrast values than the acquired weighted 

mages as compared with [24] , although we achieve similar or 

igher CNR and SNR figures. The Bland-Altman plots show bet- 

er agreement than [25] in T1w and T2w, similar agreement in 

Dw, and only a slightly lower agreement in T2w FLAIR images. 

he T2 ∗w modality is not synthetized by them. The loss of quality 

n T2w FLAIR images is a common issue in synthetic MRI [6] where 

he boundary of the CSF on the cortical area tends to be hyperin- 

ense presumably due to partial volume effects. 

This work has several limitations. The method was evaluated 

n synthetic data, eight subjects —suspected of early Alzheimer 

isease—, and five healthy volunteers, so further validation in a 

arger cohort of both healthy volunteers and patients with other 

athologies is still needed. Moreover, B0 and B1 inhomogeneties 

ave not been taken into account in the synthetic dataset genera- 

ion. Thus, including these inhomogeneties in the synthesis could 

e of interest. In addition, the equations used to synthesize the 

eighted images did not consider all the effects that occur in prac- 

ice. For example, the T2 ∗w image is synthesized from the T2 map 

nstead of the T2 ∗ map which could be the cause of the worse 

etrics compared to the metrics of the T2w image. Also, the T2w 

LAIR presents worse metrics than the other modalities, but the 

mages obtained are comparable with those of the literature [24] . 

o address this, methods focused on improving T2w FLAIR images 

ave been reported [45] . Additionally, the parametric maps of the 

ynthetic dataset were generated with values corresponding to 3T 

canners; hence our results do not directly carry over to other field 

trengths. The extension to high field scanners will presumably re- 

uire to modify the synthetic training dataset and further postpro- 
14 
essing corrections because B1 and B0 field inhomogeneities are 

pecially problematic at high fields. 

Future work includes improvement and further tuning in the 

mplemented CNN. In addition, the use of generative adversarial 

etworks (GAN) architectures may be studied due to the recent 

orks that achieve impressive results in medical image translation 

apturing high-frequency texture information [18,46] . On the other 

and, the selection of the optimal input training sequences and/or 

equence parameters could improve the computation of the para- 

etric maps and, subsequently, the synthesis of the weighted im- 

ges. A more realistic synthesis of weighted images with a detailed 

loch simulation [47,48] and other maps (e.g. T2 ∗, B0, and B1 

aps) could also enhance the synthesis quality of any MRI modal- 

ty. Further, the simulation of motion in the synthetic dataset could 

nhance the network robustness against such artifacts. In addition, 

e could extend the proposed approach to other tissues, such as 

he heart or the liver, as long as synthetic anatomical volumes can 

e computed. To this end, for example, the extended Cardiac-Torso 

XCAT) phantoms [49] could be employed. We also plan to address 

he oncology field, where parametric mapping may be a challeng- 

ng task. 

. Conclusion 

We propose a novel joint synthetic MRI approach for the com- 

utation of the T1, T2, and PD parametric maps and the synthesis 

f different weighted images which only needs two clinical rou- 

ine weighted images as inputs (full-brain acquisition in less than 

 min of scan time). Based on a CNN, we are able to provide real-

stic parametric maps and weighted images when training the CNN 

ith a synthetic dataset. The results in both synthetic data and 

ctual MR acquisitions experiments demonstrate its feasibility for 

uantitative MRI in clinical viable times as well as its applicability 

or the synthesis of additional MR weighted image modalities. 
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