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ABSTRACT

Background and Objective: Synthetic magnetic resonance imaging (MRI) is a low cost procedure that
serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require
very specific sequences or private protocols which have scarcely found integration in clinical scanners.
We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of
T1- and T2-weighted images customarily acquired in the clinical routine.

Methods: Our approach is based on a convolutional neural network (CNN) trained with synthetic data;
specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of
the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to
transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps.
Then, conventional weighted images unseen by the network are analytically synthesized from the para-
metric maps. The network can be fine tuned with a small database of actual weighted images and maps
for better performance.

Results: This approach is able to accurately compute parametric maps from synthetic brain data achiev-
ing normalized squared error values predominantly below 1%. It also yields realistic parametric maps
from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with
correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences.
Further, the synthesized weighted images are visually realistic; the mean square error values are always
below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps
improves performance, while training exclusively with a small database of actual maps shows a perfor-
mance degradation.

Conclusions: These results show that our approach is able to provide realistic parametric maps and
weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two in-
puts, which are in turn obtained from a common full-brain acquisition that takes less than 8 min of scan
time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach
acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in
clinical viable times and for the synthesis of additional weighted images to those actually acquired.

© 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

pulse sequence with a selection of parameters; their combination
gives rise to a specific weighting of the tissue magnetic proper-

Magnetic resonance imaging (MRI) is widely used in the clini-
cal routine due to its capability of providing meaningful anatomi-
cal and functional information. Images are obtained by applying a

Abbreviations: CNN, convolutional neural network; T1, spin-lattice relaxation
time; T2, spin-spin relaxation time; PD, proton density.
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ties, which, in turn, produce an image with an associated contrast.
Hereinafter, each of the different contrasts is referred as an image
modality. An MRI scan protocol consists of a number of sequences
that provide different image modalities, which are intended to pro-
vide complementary information for diagnosis [1].

These so-called weighted images are of a qualitative nature and
are routinely used by radiologists for diagnosis. Quantitative MRI,
on the other side, consists in finding the tissue magnetic properties
themselves (the so-called T1, T2, and PD maps, which are jointly
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referred to as parametric maps). These parametric maps are more
robust than weighted images due to their lower sensitivity to MRI
hardware and sequence configurations [2]. In addition, the depen-
dence of these maps with biophysical tissue properties plays an
important role in tissue characterization in healthy and diseased
stages, for pathologies such as epilepsy [3] or multiple sclerosis [4],
and for tumor detection [5]. Although, as indicated above, radiolo-
gists are not used to performing diagnosis solely on the basis of T1,
T2, and PD parametric maps [6], quantitative MRI is gaining popu-
larity [7].

Synthetic MRI has recently entered the field and it some-
how serves as a bridge between qualitative and quantitative
MRI [8]. It has been conventionally defined as a three-step pro-
cedure [9] where 1) a set of weighted images are acquired, 2)
quantitative parametric maps are computed from them and 3) any
weighted image can be synthesized using the equations that de-
scribe MR intensity as a function of sequence parameters and para-
metric maps. Thus, this low-cost procedure could retrospectively
enhance patient throughput and facilitate radiologists routine.

In this paper we propose a novel method for synthetic MRI in
which step 2 of the procedure described above is based on deep
learning. Its main novelty stems from the fact that the proposed
training is performed mainly on the basis of synthetic data. The
inputs to our method are two conventional sequences customar-
ily used in any brain acquisition protocol (step 1). A number of
weighted images unseen by the network can be then satisfactorily
obtained out of the parametric maps we provide (step 3). Thus,
the proposed method is not limited to a number of predefined
weighted images that have entered the learning process, but is able
to generalize to any image modality.

2. Related work
2.1. Quantitative MRI: classical relaxometry techniques

In the classical methods to obtain parametric maps —steps 1)
and 2) of synthetic MRI— a set of weighted images with differ-
ent sequence parameters is customarily acquired; from these im-
ages, the map is computed by voxelwise fitting a known relax-
ation model. These techniques are termed as relaxometry. In order
to perform this fitting, different estimation-based procedures have
been proposed [10-12]. Also, approaches that perform the fitting
by deep learning have been recently developed [13]. However, the
acquisitions needed to obtain a sufficiently large set of weighted
images are time consuming, a fact that limits their utility in clin-
ical routine. In addition, most of the proposed methods only pro-
vide information of a single parameter at a time [12-14], so addi-
tional sequences are needed to obtain the three parametric maps.

To overcome these limitations, MR fingerprinting (MRF) [15] is
able to estimate parametric maps within a short scan time. How-
ever, the specific spiral acquisition needed has rarely found inte-
gration into clinical scan protocols [16].

2.2. Medical image translation

Various deep learning approaches have been proposed that
learn the mapping between different pairs of images [17-19], a
procedure that we will refer to as medical image translation. These
approaches share the same objective as step 3) of synthetic MRI,
although their input is a set of weighted images as opposed to
parametric maps. Hence, they are not flexible as to which modali-
ties can be generated, since most of them are tailored for a specific
application where, given some input image modalities, new prede-
fined image modalities are synthesized. For example, in [18] the
authors synthesize T1-weighted images from T2-weighted images
(hereinafter, TIw and T2w).

Computer Methods and Programs in Biomedicine 210 (2021) 106371

These methodologies limit themselves to the image modali-
ties used in the learning stage since the potential of parametric
maps to synthesize any weighted image is not employed. This de-
sign choice may be the consequence of the nonexistence of large
datasets that contain both weighted images and the correspond-
ing parametric maps due to their long acquisition times. At first
glance, this would be mandatory since deep learning model train-
ing requires extensive datasets [20].

2.3. Synthetic MRI methods

Different methods that fit the conventional three-step definition
of synthetic MRI [9] have been proposed. Gulani et al. [21] pro-
posed an steady-state precession (IR-TrueFISP) sequence in which a
series of different IR time-delayed TrueFISP images are acquired to
quantify the parametric maps. Then T1w, T2w, PD-weighted (PDw),
and T2w fluid attenuated inversion recovery (T2w FLAIR) im-
ages were synthesized from these maps. Warntjes et al. [22] pro-
posed a multiecho acquisition of a saturation-recovery turbo spin-
echo readout (QRAPMASTER)! for the quantification of T1, T2, PD,
and B1 inhomogeneity parametric maps. After quantification, T1w,
T2w, and T2w FLAIR images were synthesized [24]. Finally, Cheng
et al. [25] suggested a multipathway multiecho (MPME) sequence
using an unbalanced steady-state sequence with two different flip
angles and resolution scans to quantify T1, T2, T2*, B1 inhomo-
geneity, and BO inhomogeneity parametric maps. Then, the authors
showed the synthesis of T1w, T2w, PDw, T2w FLAIR, and magne-
tization prepared rapid gradient echo (MPRAGE) images using a
neural network. Nevertheless, this latter method suffers from noise
amplification due to the multiple processing steps which leads to
somewhat noisy maps and synthesized images.

It is important to note, however, that all of these methods re-
quire very specific sequences or private protocols scarcely available
in clinical scanners. Also, these quantitative sequences are focused
on obtaining the parametric maps, but they are not valuable by
themselves for diagnosis purposes in the clinical routine.

2.4. Our contributions

In this work we propose a joint synthetic MRI approach for the
computation of the T1, T2, and PD parametric maps and the syn-
thesis of different weighted images from two common clinical rou-
tine sequences, through a convolutional neural network (CNN).

Our main contributions are summarized as follows:

¢ A novel three-from-two approach for the computation of T1, T2,
and PD parametric maps from only a pair of weighted images,
namely a T1w and a T2w. The mapping between the weighted
images and the parametric maps is carried out by means of a
CNN. The T1w and T2w input sequences are customarily used
in the clinical routine.

e A new training strategy based on a synthetic dataset generated

from the BrainWeb anatomical brain model is proposed. This

way, we overcome the need of large datasets with quantitative

parametric maps.

Realistic parametric maps with values in the range of the liter-

ature for 3T scanners are computed from actual MR brain ac-

quisitions. These achieve high correlation values compared to

parametric maps obtained from relaxometry sequences, here-

inafter referred to as silver standard.

o The synthesis of multiple realistic weighted images from these
computed parametric maps both for modalities previously seen

1 QRAPMASTER is nowadays referred to as a multidynamic multiecho (MDME)
sequence [23].
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Synthetic dataset generation used for training and testing of the CNN
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Fig. 1. Pipeline of the proposed training and validation approaches. a) Synthetic dataset generation used for training and testing of the supervised convolutional neural

network (CNN). b) Validation of the CNN with actual MR brain acquisitions.

by the network and for other modalities not used in the learn-
ing stage. Quantitative and qualitative comparisons between the
synthesized and the acquired weighted images are provided.

e The performance of our approach to synthesize additional im-
age modalities with different sequence parameters (i.e., TE, TR,
TI) is compared with other state-of-the-art methods.

3. Methods

In this manuscript we propose a joint synthetic MRI approach
for the computation of the T1, T2, and PD parametric maps and the
synthesis of different weighted images from only a pair of inputs,
namely a T1w and a T2w. To this end, we adapt the CNN proposed
by Chartsias et al. [17] and train it with a synthetic dataset where
the T1w and the T2w images were synthesized from their corre-
sponding parametric maps. The proposed dataset generation, neu-
ral network training, and validation procedures are shown in Fig. 1.

3.1. Sequences

Any weighted MR image can be analytically synthesized if the
parametric maps needed to feed the pulse sequence are known.
For simple cases, this synthesis can be performed using the well-
known equations that describe MR intensity as a function of se-
quence parameters, such as echo time (TE), repetition time (TR),
inversion time (TI) and flip angle («), in relation to the involved
parametric maps. In more complicated cases, more sophisticated
methods are needed [26]. In this manuscript, based on the T1, T2,
and PD maps, we synthesise weighted images corresponding to the
sequences magnetization prepared rapid gradient echo (MPRAGE),
spin echo (SE), gradient echo (GRE), and inversion recovery spin
echo (IR-SE), with respective Eqs. (1)-(4):

— 2 WhH®X) 4 o-Te/Ti(X)
+ sin(a)e” ER® (1)

1
Muprage (X) = PD(X) — ¥ cos(ar)e TN

mge (X) = PD(X) [1 —2e~>=Te/D/Ti(X) 4 o=To/Th (X)]e*TE/Tz(X) (2)
1— e TR/TX T
— i ~Tg/T(X)
Megre (X) = PD(x)1 —cos(@)e WA sin(o)e /2 (3)

Table 1

Ranges of the T1, T2, and PD values for each of
the three considered tissues in the anatomical brain
model (WM: white matter, GM: grey matter, and
CSF: cerebrospinal fluid) for the generation of 120
synthetic brain volumes. The specific value for each
parameter in each tissue and volume is selected
from a uniform distribution within these ranges. T1
and T2 values are given in seconds.

T1 (s) T2 (s) PD
WM 0.80-1.10 0.055-0.075 0.65-0.72
GM 1.40-1.60 0.075-0.120 0.77-0.82
CSF 4.50-4.80 1.200-1.600 1.20-1.30
Mig-sg (X)
= PD(x) [‘l _ 2~ T/hi(®) 4 2~ k=Te/2)/Ti (%) _ o=Te/Ty (X)]E*TE/TZ(X)

(4)
with x the voxel location defined on some domain X.
Equations (1) and (2) are employed for the generation of the
synthetic dataset used for training and testing the CNN. On the
other hand, the four of them are employed for the validation of
the proposed approach with actual MR brain acquisitions.

3.2. Proposed approach

3.2.1. Synthetic dataset generation

We create a synthetic dataset with 120 brain volumes starting
from the anatomical model of a normal brain obtained with Brain-
Web [27]. The pipeline to create the synthetic dataset is described
in the next four steps (see Fig. 1a).

First, we created 120 different sets of T1, T2, and PD maps from
the BrainWeb anatomical model by giving uniformly distributed
random values to the white matter (WM), grey matter (GM), and
cerebrospinal fluid (CSF) of each map, one value for each label. The
exact ranges of T1, T2, and PD values defined for each parameter in
each tissue are shown in Table 1. Note that these ranges are within
those reported in the literature for 3T MR scanners [28]. Also, ad-
ditive Gaussian noise was added to each volume with distribution
N(u=0,0 =0.01).
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Table 2
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Parameters of the acquisitions in Brain MRI and Quantitative Brain MRI protocols. The parameters are the echo time (TE), the repetition time (TR), the inversion time (TI),
the flip angle (alpha), the echo train length (ETL), the SENSE acceleration factor (SENSE), the number of signal averages (NSA), the number of slices (and its orientation), the
slice thickness, the in-plane resolution, the field-of-view (FOV), and the approximate acquisition scan time.

Brain MRI Quantitative Brain MRI
TIw(MPRAGE) T2*w(GRE)  T2w FLAIR(IR-TSE) PDw/T2w(TSE) T1(VFA GRE) T2(multiecho TSE) PD(GRE)
TE (ms) 3 20 100 30/85 2 17, 46, 75, 104, 133, 162 2
TR (ms) 6.44 746.99 11000 4000 18 1000 50
TI (ms) 900 - 2800 - - - -
o (%) 10 20 - - 2,3,4,5/7,9, 11, 14,17, 19, 22 - 5
ETL 192 1 12 10 1 30 1
SENSE 1.8/1/1.2 2 2 2 2 2 2
NSA 1 1 1 1 1 1 1
# Slices 170 27 27 50 150 150 150
(sagittal) (axial) (axial) (axial) (axial) (axial) (axial)
Thickness (mm) 1.2 5 5 3 1.5 1.5 1.5
Resolution (mm?2) 1.25 x 1.25 094 x 1.25 0.94 x 1.25 1.02 x 1.36 1.50 x 1.50 1.50 x 1.50 1.50 x 1.50
FOV (mm) 240 x 240 240 x 240 240 x 240 260 x 195 240 x 240 240 x 240 240 x 240
Scan time (min) ~ 4:00 2:30 - 4:00 2:30 - 4:30 2:30 - 4:30 ~ 17:00 ~ 18:00 4:00 - 4:30

Second, in order to introduce spatial variability across brain
volumes (i.e., brains with different anatomical features), the maps
were affine-registered to the PD25 atlas [29] using the FLIRT tool
of FSL (Oxford, UK) [30]. Then, each set of maps was non-linearly
registered to one out of the 120 different T1w volumes selected
from the PPMI database (www.ppmi-info.org), with the FNIRT tool
of FSL as described in [31]. The size of each of these maps is of 240
x 176 with 256 slices. Subsequently, all sets of parametric maps
were skull-stripped.

Third, for each set of skull-stripped T1, T2, and PD maps, a pair
of weighted images was analytically synthesized. A T1w image was
synthesized as a MPRAGE acquisition (Eq. (1)) with TE = 3 ms, TR
= 6.44 ms, Tl = 900 ms, and o = 10°. A T2w image was synthe-
sized as a SE acquisition (Eq. (2)) with TE = 85 ms and TR = 4000
ms. These particular sequences and parameter sets were chosen to
match the actual MR brain acquisitions described in Table 2. Note
that the weighted images have the same dimensions as the para-
metric maps (i.e., 240 x 176 with 256 slices).

Finally, we normalized the T1w and T2w images by dividing
each of them by its average intensity without considering the back-
ground. This facilitates convergence of the CNN during training
without altering image properties due to their qualitative nature.

3.2.2. The network

Network training with the synthetic dataset. The aforementioned
synthetic dataset was used to train an adapted version of the CNN
described in [17]; our adaptation pursued to perform an end-to-
end mapping function to transform the input T1w and T2w images
to their corresponding set of T1, T2, and PD parametric maps (see
Fig. 1a). Specifically, the weighted images were input to two en-
coders which embed these inputs into multi-channel latent spaces
with the same image size as the inputs. Note that the CNN pro-
cesses the inputs as 2D slices. The number of channels used is 16.
Then, the latent representations of the input are fused into a sin-
gle 16-channel representation using a maximum pixelwise func-
tion between each pair of corresponding channels. This fused la-
tent representation is next input to three decoders to obtain the
three desired parametric maps. Supervised training was carried out
using the cost function proposed in [17]. This cost function min-
imizes 1) the mean absolute error (MAE) between the ground-
truth parametric maps and the output’s decoders (i.e. the synthe-
sized parametric maps), and 2) the mean pixelwise variance be-
tween latent representations. The model was trained through a
mini-batch approach with a batch size of 8 images using Adam
optimizer [32] with a learning rate of 1 x 10~>. We performed
the training with early stopping to avoid overfitting. From the 120
brain volumes of the synthetic dataset with a set of three paramet-

ric maps and two weighted images each, we used 70 for training
(17920 slices), 36 for the early-stopping monitoring (9216 slices),
and 14 for test (3584 slices).

The adapted CNN is coded in Python with Keras. We run the
code using the TensorFlow backend on a single NVidia GeForce
GTX 1070. The total learning took about 10 h of computation time.
Note that once the CNN has been trained, the network computa-
tion time reduces to a few seconds.

Network testing with the synthetic dataset. We evaluated the
proper parametric mapping of the network through the 14 brain
volumes of the synthetic dataset remaining for testing. In addition
to visual evaluation, we carried out a quantitative analysis in the
parametric maps domain due to the existence of the correspond-
ing ground-truth. The comparison between the computed and the
ground-truth T1, T2, and PD parametric maps was performed with
the normalized squared error (NSE) map computed as

(MAP.(x) — MAP¢r(X))?
MAPZ;(x)

where MAP is one of the T1, T2, or PD maps, c¢ stands for computed
and GT for ground-truth. Similarly, they are also compared with the
scalar metrics described later in Section 3.3.

NSE(x) = x 100%, (5)

3.2.3. Validation with actual MR acquisitions

MRI acquisitions. The real data used in these experiments have
the approval of the institutional review board (IRB) and the eight
subjects involved —suspected of early Alzheimer disease— signed
the informed written consent; the Brain MRI protocol that fol-
lows was acquired with a 32-channel head coil on a 3T scanner
(Achieva, Philips, Best, The Netherlands). Local BO and B1 shim-
ming were used in order to correct for field inhomogeneities. Each
study was composed of four sequences and a total of five image
modalities. These sequences are: 1) 3D MPRAGE sequence to ob-
tain T1w images; 2) GRE sequence to obtain T2*w images; 3) IR-
TSE sequence to obtain T2w FLAIR images; 4) turbo spin echo (TSE)
multi echo sequence to obtain PDw and T2w images.

Additionally, for validation purposes in the same MRI unit and
with the same corrections, we also scanned five healthy volun-
teers with IRB approval and informed written consent. For these
volunteers, we performed the Quantitative Brain MRI protocol with
previous 1) and 4) sequences to input the CNN, sequence 3) only
for registration purposes, and the following set of relaxometry se-
quences: 5) The T1 map was retrieved using a variable flip angle
(VFA) of a 3D GRE sequence with 11 different flip angles. Then,
NOVIFAST algorithm [12] was employed for the T1 estimation; 6)
The T2 map was measured using a 3D multi echo sequence with
six different TEs and a least squares estimation procedure; 7) The
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PD map was obtained using a 3D GRE. We name the maps that
result from 5), 6) and 7) silver standard, since they are affected
by common artifacts as well as by physiological motion due to the
length of the sequences. The parameters of each of previous se-
quences are given in Table 2.

Data preprocessing. We preprocessed the actual MR brain vol-
umes in order to register all the image modalities to the same
image space and to adapt them to the network input layer. All
image modalities were affine-registered to the T2w FLAIR using
FLIRT (Oxford, UK) [30]. After registration, the size of each image
modality is of 256 x 256 with 27 slices with voxel size of 0.94
x 125 x 5 mm as shown in Table 2. Note that this registration
step is only necessary for training and validation purposes, because
in production mode —once the network is fully trained— the only
requirement is to have the input images with spatial alignment.
All images were then skull-stripped. Subsequently, all images were
cropped to 240 x 176 pixels which is the dimension of the net-
work’s input layer. We normalized the weighted images by divid-
ing each of them by its average intensity without considering the
background. This normalization was done in accordance with the
preprocessing steps of the CNN training data. In addition, the re-
laxometry PD maps were normalized so that their 99th percentiles
matched the maximum of the PD map from the synthetic train-
ing dataset. Finally, the 14 central slices of each actual MR brain
volume were then selected to avoid slices with predominant back-
ground areas and/or very prone to artifacts.

Validation. We validated the performance of the proposed ap-
proach to compute parametric maps and to synthesize different
weighted image modalities when actual T1w and T2w images are
input to the network following the pipeline in Fig. 1b). Synthesis
quality has been assessed both on the maps directly provided by
the network output as well as on the synthesized weighted im-
ages. Quality parameters have been defined both at region of in-
terest (ROI) level and at whole image level. Precise definitions for
these parameters are provided in the next section.

3.3. Quantitative parameters for quality assessment

We drew nine circular ROIs in each subject of the Brain MRI
protocol co-localized across the different parametric maps and
weighted images enumerated in Fig. 1b). From the nine ROIs, three
were located in the CSF (approximately 3 mm of radius), three in
the white matter (approximately 3 mm of radius), and three in the
grey matter (approximately 2 mm of radius). Let Xi" (n) denote the
set of voxels? belonging to ROI i, 1 <i < 3 from tissue k,1 <k <3
(say, 1 for CSF, 2 for GM, and 3 for WM) and subject n,1 <n < 8.
As for the parametric maps provided by the network from Brain
MRI, we define the following two parameters

8 3
W= g3 Y MAP) 6)
=1

Mo

| ()| =1 =1 xextm)

n=1i

8 3

fo g YY ¥ (ate-w) )

| Xk (n)| n=1 i=1 xext(m)

[Mee

n=1i=1

with MAPZ(x) a computed parametric map evaluated at point x
and | - | denotes the cardinality of a set.

For the particular case of the subjects that underwent the
Quantitative Brain MRI protocol, we drew 12 circular ROIs in
each tissue co-localized across the different parametric maps and

2 ROIs have been delineated in 2D, so the third component Vx € Xi"(n) coincides.
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weighted images. For its parametric maps we define:

>~ MAP}(x) (8)

xeXk(n)

k _ 1
ui(n)p = 7|Xi"(n)|

with MAP[ (x) a parametric map of the nth healthy subject evalu-
ated at point x and L is a label that takes the values c¢ for the MAP
computed by the network and Silver for the silver standard relax-
ometry maps; k follows the same convention as in Egs. (6) and (7),
1<i<12,and 1 <n<5.

As for the weighted images of Brain MRI, we define:

k) = | n 9
Ml (n) |A)lk(n)| XEXZ’{(n)m (x) ( )
K _ 1 " ok 2
sk(n) = \/ O] XZ() (m (%) — k() (10)
1 3 3
SOESDIPIEAC (11)

i=1 k=1

with m™(x) an image (either computed or acquired) of the nth sub-
ject evaluated at point x. Then, the following samples (per tissue
k,1 <k < 3) are created:

1. Intensity values uk(n),1<i<3,1<n<8.

2. Contrast:

pi(n) — phn)

() + ek (n)’
1<i,j<3,i#j,1<n<8.

3. Contrast-to-noise ratio (CNR):

ph(m) — k()

s(n)

1<i,j<3,i#j,1<n<8.

4. Signal-to-noise ratio (SNR):

uk(n)

s(n) ’

1<i<3,1<n<8.

chi(m) = (12)

CNRf;(n) = (13)

SNRK(n) = (14)

In addition, in each subject of Brain MRI we also drew a rectan-
gular ROI measuring approximately 70.50 mm x 33.75 mm, which
was chosen to encompass the occipital region of the brain. The
number of pixels of this rectangular ROI was of 2025.

At a whole image level, we used four well-known metrics com-
monly used in medical image translation methods. These metrics
are the mean squared error (MSE), the structural similarity index
(SSIM), the peak signal-to-noise ratio (PSNR), and the correlation
coefficient (CORR) defined as follows:

mt = |17|Zm"(x)

XeX
1 _ _
Copns = 7 2= (M40 ) (m 0~ 79)
XeX
MSE(n) = 3 3 (mi0) - m2(00)” (15)
XeX
max (m? (x))°
PSNR(n) = 10log,, <m1v15E(n)) (16)
Cmnmy
CORR(n) = —— ™ (17)

+/ Cmemg Cmzm
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2m?  mi +C) Qemrm +C2)
((TTT?)Z + (mig)z + Cl) (Cmpmg + Cmrmer + Cz)

SSIM(n) = (18)

with m?(x) and my§ (x) the computed and acquired images, respec-
tively, for the nth subject of Brain MRI, 1 <n < 8, evaluated at
point X; voxels take on values within domain . Unless otherwise
stated, this domain will consist of the brain area. These four met-
rics have also been used with parametric maps for performance
assessment on synthetic data.

3.4. Experiments

Network verification with synthetic images as inputs has been
accomplished by visual assessment as well as with the NSE map
defined in Eq. (5). In addition, the parameters defined in Egs. (15)-
(18) have also been employed.

As for the network validation with real images, all the parame-
ters defined in the previous section have been employed, and as-
sessment has been carried out both directly on the network out-
puts (i.e., on the parametric maps) as well as on the synthesized
weighted images. For the former, we have employed the silver
standard maps from the five subjects involved in the Quantita-
tive Brain MRI protocol. For the latter, and as indicated in Fig. 1b),
we analytically synthesized the same weighted images acquired
in the Brain MRI protocol with the same sequence parameters
as those described in Table 2. The equations used for each se-
quence are Eqs. (1)-(4) for the synthesis of T1w, PDw/T2w, T2*w,
and T2w FLAIR, respectively. In addition, we synthesized additional
weighted images with the same sequences as in the Brain MRI pro-
tocol, but varying the sequence parameters (i.e. TE, TR, TI). These
sequences are SE (Eq. (2)) with TE in the range of 20 to 100 ms
and TR of 120 and 4000 ms, and IR-SE (Eq. (4)) with three dif-
ferent combinations of TE, TR, and TI. We do not have the corre-
sponding acquired weighted images as ground-truth due to scan
time restrictions, but we pursue to investigate the versatility of
our approach to synthesize any weighted image with coherent
contrast.

We have also tested how the network deals with non skull-
stripped images, a fact that is indicated to be an issue in [17]. To
this end, non skull-stripped Tlw and T2w images were input to
the CNN. In this case, normalization was done by dividing each of
them by the skull-stripped images average intensity in accordance
with the synthetic dataset generation and network training. From
the parametric maps with skull computed by the CNN, we then
analytically synthesized the same weighted images acquired in the
Brain MRI protocol.

Finally, we propose a network refinement by performing ad-
ditional training with a small number of real weighted images
and their corresponding silver standard parametric maps obtained
with the Quantitative Brain MRI protocol. We have carried out a
cross validation procedure; specifically, we tested with 5 —t sub-
jects, where 2 <t <4, and the remaining t subjects have been di-
vided into training and early-stopping monitoring datasets; cross
validation stems from the fact that we have (f) combinations of
testing datasets for each t; each combination will be hereinafter
referred to as a split. Note that the case t =4 corresponds to a
leave-one-out scheme. Within this scheme, we have carried out
two experiments: (i) the CNN previously trained with the synthetic
dataset is fined tuned with the parametric maps and (ii) the CNN
is trained from scratch making use exclusively of the parametric
maps of the Quantitative Brain MRI protocol (i.e., no synthetic data
are shown to the CNN). Maps from experiment (i) will be referred
to as MAP__;) while maps from experiment (ii) will be denoted by
MAPC_(“).
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Fig. 2. A representative axial slice of the T1, T2, and PD maps computed from a
test brain volume of the synthetic dataset. a) Tlw and T2w images input to the
network. b-d) Computed, ground-truth, and normalized squared error (NSE) maps
from the same slice for the T1, T2, and PD parameter maps, respectively. The T1 and
T2 values are given in miliseconds (ms). Main differences between the computed
and the ground-truth maps appear in the boundary of the brain, although the NSE
is predominantly below 1% on the three computed T1, T2, and PD maps.

3.5. Statistical analysis

The parameters defined in Eqs. (15)-(18) when applicable, are
shown as averages (and sample standard deviation) along the 14
synthetic volumes used for testing or the 8 subjects used for sys-
tem validation; these parameters are calculated within a 3D do-
main of the 14 central slices (where largest brain areas are found).

As for parameters defined in Egs. (8), (9), (12)-(14) we have
measured the Pearson correlation coefficient and the intra-class
correlation coefficient ICC(2,1) [33]. As for the former, we run a
correlation test based on the Fisher transformation to test the hy-
pothesis that the correlation coefficient is less than or equal to a
predefined value; a p — value = P < 0.05 was considered significant
so as to reject the hypothesis. We have also analyzed Eqs. (12)-
(14) using linear regression. Additionally, for the rectangular ROI
drawn in the synthesized and acquired weighted images we have
computed the Pearson correlation coefficient and performed an F-
test for linear regression. Finally, we carry out a Bland-Altman plot
analysis of a representative slice per subject where pixel values
were normalized so that a value of "1.0” represented the signal
strength of WM for each particular weighted image as in [25].

4. Results
4.1. Network testing with the synthetic dataset

Figure 2 shows a representative axial slice of the T1, T2, and
PD maps computed from one of the test brain volumes of the syn-
thetic dataset together with their corresponding NSE maps. Main
differences between the computed and ground-truth maps appear
in the boundary of the brain and in the tissue interfaces to a lower
extent. Nevertheless, the NSE is predominantly below 1% on the
three computed T1, T2, and PD maps. Further, the mean evalua-
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Fig. 3. A representative axial slice of T1, T2, and PD maps computed from a subject of the Quantitative Brain MRI protocol. a) Computed T1, T2, and PD parametric maps.
b) Their corresponding silver standard relaxometry maps. c) Correlation of parameter ;L’i‘(n)L (Eq. 8) between the computed and the silver standard relaxometry maps for
the five healthy subjects. T1 and T2 values are given in miliseconds (ms). The markers indicate the mean values of WM (yellow diamonds), GM (red stars), and CSF (blue

circles). Diagonal lines represent the identity.

Table 3

Metrics (mean + std) used to evaluate the performance of the
CNN to compute each set of T1, T2, and PD maps from each pair
of Tlw and T2w images of the test brain volumes of the syn-
thetic dataset. These metrics are the mean squared error (MSE),
structural similarity error index (SSIM), peak signal-to-noise ratio
(PSNR), and correlation coefficient (CORR). The metrics were cal-
culated between the computed parametric maps and the ground-
truth T1, T2, and PD maps. Note that for the calculation of the
metrics the background voxels were not considered.

T1 map T2 map PD map
MSE 0.0072 0.0013 0.0004
(0.0044) (0.0010) (0.0002)
SSIM 0.9932 0.9933 0.9912
(0.0016) (0.0044) (0.0033)
PSNR 36.1274 33.8001 37.2614
(2.2800) (2.5282) (1.5868)
CORR 0.9983 0.9975 0.9990
(0.0007) (0.0007) (0.0004)

tion metrics obtained in the synthetic data testing of all 14 test
brain volumes show good agreement between the computed and
the ground-truth maps as can be seen in Table 3. The SSIM is al-
ways above 0.99 and the MSE below 1%.

4.2. Validation with actual MR acquisitions

Table 8 shows the parameters defined in Eqs. (6) and (7) for the
T1, T2, and PD parametric maps obtained from all the ROIs within
a tissue along all the subjects of the Brain MRI protocol. The values
obtained in this work are mostly within the range of the values
previously reported in the literature for a 3T scanner. As for the
particular case of the PD maps, the GM/WM ratio is close to the
ratio reported in the literature (1.22 vs. 1.10, respectively). In addi-

tion, Fig. 3 shows a representative axial slice of the T1, T2, and PD
maps computed from a subject of the Quantitative Brain MRI proto-
col and their corresponding silver standard relaxometry maps. The
computed parametric maps are visually realistic and capture most
of the structural information without computational errors. Note
that no outliers appear in the CSF of the T1 map. The correlation
diagrams include the values of parameter uff(n)L (Eq. (8)) for the
five subjects of the Quantitative Brain MRI protocol. There is high
correlation between the computed and the silver standard relax-
ometry maps, namely 0.9616, 0.9703, and 0.7707 for the T1, T2,
and PD, respectively; the first two values are statistically higher
than 0.90 (P < 0.01). Similarly, respective ICC values are 0.9454,
0.9445, and 0.6489.

Figure 4 shows a representative axial slice of weighted images
synthesized from one set of the T1, T2, and PD maps computed
by the CNN and their corresponding acquired images for a sub-
ject of the Brain MRI protocol. Overall, the synthesized and ac-
quired weighted images are visually similar regarding both struc-
tural information and contrasts between tissues. The image modal-
ities used to train the network present higher similarity than the
others, being the T1w the most similar and the T2w FLAIR the least
similar but yet with visual resemblance. The boundary of the CSF
on the cortical area is hyperintense on the synthesized T2w FLAIR,
which is presumably caused by partial volume effects. Supplemen-
tary Material Figure S1 shows an extended version of Fig. 4 with a
representative axial slice for each of the eight subjects of the Brain
MRI protocol.

Figure 5 shows a scatter plot between the synthesized and the
acquired weighted images (we show the pairs of values ,u%‘(n)
defined in Eq. (9) for the acquired and the synthesized images)
for the eight subjects of Brain MRI. There is high correlation
between the pairs of weighted images, namely 0.9979, 0.9952,
0.9912, 0.9820, and 0.9602 for the T1w, T2w, PDw, T2*w, and T2w
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Fig. 4. A representative axial slice of the weighted images synthesized from one set of the T1, T2, and PD maps computed by the CNN and their corresponding acquired

images. a—e) The synthesized T1w, T2w, PDw, T2*w, and T2w FLAIR images. f-j) Their corresponding acquired weighted images.
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Fig. 5. Correlation of parameter ;,Lf.‘ (n) (Eq. 9) between the synthesized and the acquired weighted images. a) T1w, b) T2w, c) PDw, d) T2*w, and e) T2w FLAIR. The markers
indicate the mean values of WM (yellow diamonds), GM (red stars), and CSF (blue circles). The diagonal lines represent the identity.

FLAIR, respectively; all of these values are statistically higher than
0.90 (P < 0.001). Similarly, respective ICC values are 0.9918, 0.9438,
0.8919, 0.7424, and 0.9367.

Figure 6 shows similar scatter plots of the contrast, CNR, and
SNR samples between the synthesized and acquired weighted im-
ages (as defined in Egs. (12)-(14)). There is high correlation with
values between 0.9907 and 0.9241 for the contrast, 0.9807 and
0.8739 for the CNR, and 0.9845 and 0.9082 for the SNR for all the
weighted images, as shown in Table 7; most of these values are
statistically larger than 0.90 (P < 0.05), except in the case of the
T2*w and T2w FLAIR for the CNR and SNR, and the PDw only for
the SNR, which are statistically greater than 0.84. The ICC values
for the three same samples are between 0.9730 and 0.9421 for the
T1w, between 0.9579 and 0.8954 for the T2w, and between 0.9120
and 0.8607 for the T2w FLAIR. In contrast, the ICC values are lower
for the PDw and T2*w, as shown in Table 7.

Linear regression showed that the SNR of the synthesized
weighted images is generally better with an improvement that
reaches 47.74% (CI: [41.93%; 53.54%]). CNR is fairly similar for

the Tlw (-5.31%, CI: [-6.33%; —4.29%]), the T2*w (-0.12%, CI:
[-2.75%; 2.52%]), and the T2w FLAIR (5.36%, CI: [1.67%; 9.05%]),
although it is slightly worse for the T2w (—17.46%, CI: [—18.94%;
—15.99%]) and the PDw (—26.45%, Cl: [-27.79%; —25.10%]). Finally,
contrast only improves in the T2w FLAIR (22.77%, Cl: [20.57%;
24.98%)). See details in Table 4.

Figure 7 shows a scatter plot between the pixel values of
the rectangular ROIs drawn on the synthesized and the acquired
weighted images of a representative subject of Brain MRI. There
is high correlation between the pairs of weighted images, namely
0.9911, 0.9684, 0.8898, 0.8477, and 0.6403 for the T1w, T2w, PDw,
T2*w, and T2w FLAIR, respectively; all of these values are statis-
tically significant (P << 0.0001) in the F-test for linear regression.
For the sake of completeness, the correlation values for each of the
eight subjects of the Brain MRI protocol are given in Supplementary
Material Table S1.

Additionally, the high values of the mean SSIM, SNR, and CORR
and low values of the MSE obtained in the subjects of Brain MRI
show good agreement between synthesized and acquired weighted
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Fig. 6. Correlation of the contrast, the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) between the synthesized and the acquired weighted images. a)
Contrast, b) CNR, and c) SNR of the T1w, T2w, PDw, T2*w, and T2w FLAIR images. For the Contrast (a) and the CNR (b) the markers indicate the contrast/CNR values
between each combination of the GM ROIs with the WM ROIs (yellow diamonds), each combination of CSF ROIs with the GM ROIs (red stars), and each combination of
CSF ROIs with the WM ROIs (blue circles). For the SNR (c) the markers indicate the mean SNR values of WM (yellow diamonds), GM (red stars), and CSF (blue circles). The
diagonal lines represent the identity.
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Table 4

Values defined in Eqgs. (6) and (7) (the latter, within braces) for each tissue in each of the computed
parametric maps (i.e. T1, T2, and PD maps). Comparison with the values previously reported in the
literature for a 3T scanner. Note that WM is the white matter, GM is the grey matter, and CSF is the
cerebrospinal fluid.

T1 (s) T2 (s) PD
This work Literature This work Literature This work Literature
WM 0.9741 0.7370-1.1000 0.0890 0.0560-0.0840 0.7222 0.6330
(0.0585) [Ref. [36,37]] (0.0061) [Ref. [38,39]] (0.0142) [Ref. [40]]
GM 1.4474 1.3310-1.8200 0.1257 0.0710-0.1320 0.7988 0.7720
(0.1361) [Ref. [39,41]] (0.0160) [Ref. [38,39]] (0.0135) [Ref. [40]]
CSF 4.6785 3.7000-6.8730 1.3705 0.5000-1.8700 1.2601
(0.1060) [Ref. [14,42]] (0.0335) [Ref. [43,44]] (0.0380)
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Fig. 7. Correlation between pixel values from the rectangular ROI of the synthesized and the acquired weighted images for a representative subject of the Brain MRI protocol.
a) Rectangular region of interest chosen for linear regression, b) T1w, c) T2w, d) PDw, e) T2*w, and f) T2w FLAIR. The markers indicate the value of each pixel in the
rectangular ROI (approximate 2025 values). The diagonal lines represent the identity. P << 0.0001 for all image modalities for the correlation test carried out (see correlation
values tested in main text).

Table 5 FLAIR. The absolute mean difference for the each image modality
Correlation coefficient (R) and intraclass correlation coefficient (ICC) of the contrast, is 0.0041, 0.0021, 0.0089, 0.0794 and 0.0249, respectively.
the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) between the . . . . . .
synthesized and the acquired weighted images (see Fig. 6). The bold correlation .Flgu1e .9 displays a .repres.entatlve axial slice of ad.dltlon%ll
values indicate that they are statistically significant superior to a correlation value weighted images synthesized with the same sequences as in Brain
of 0.9. The * indicates P < 0.05 and ** P < 0.001. MRI, but varying the sequence parameters. This proves the versa-
Tiw Tow PDw 2w T2w FLAIR tility of the proposed approach to synthesize any weighted images.
The images obtained are realistic and with coherent contrasts.

Finally, Fig. 10 shows a representative axial slice of the non

Contrast R 0.9907  0.9855*  0.9591*  0.9241*  0.9689*
ICC  0.9421 0.9155 0.6521 0.6530 0.8961

CNR R 09807+ 0.9658* 09453 09193 08739 skull-stripped weighted images synthesized from one set of the
ICC  0.9730 0.8954 0.7425 09187  0.8607 T1, T2, and PD maps computed by the CNN and their correspond-
SNR R 09845 0.9734~  0.9280 0.9082 09145 ing non skull-stripped acquired images for a subject of Brain MRI.

ICC 09712 09579 08300 04634  0.5120 Similarly to Fig. 4, both images are visually apparent regarding

both structural information and contrast between tissues. Never-
theless, the inhomogeneities in the skull interfaces might cause a
mismatch between the synthesized and the acquired images.

images as shown in Table 5. Specifically, the SSIM achieves values

above 0.96 for the T1w and the T2w, and of 0.91, 0.78, and 0.56 4.3. Fine tuning: refining the network with actual parametric maps
for the PDw, T2*w, and T2w FLAIR, respectively. The MSE is below

1% for the T1w, T2w, and PDw, and below 9% for the T2*w and Figure 11 shows a representative slice of both MAP.;, and
the T2w FLAIR. Similarly to Fig. 4, the image modalities used to MAP__) (columns a) and b), respectively) with MAP as T1, T2, and
train the network show higher SSIM, SNR, and CORR and lower PD (first, second, and third rows, respectively). For MAP., the

MSE than the others. figure also shows the correlation diagrams that include the val-
Figure 8 represents Bland-Altman plots including data from a ues of the ROIs for all subjects of the Quantitative Brain MRI pro-
representative slice of all subjects of Brain MRI. It compares synthe- tocol tested with a leave-one-out scheme (i.e., t =4). It can be

sized and acquired pixel values for T1w, T2w, PDw, T2*w, and T2w seen that the fine tuning procedure improves the accuracy of the

10
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Fig. 8. Bland-Altman plots used to compare synthesized and acquired weighted images as in [25]. Each plot combines results from a representative axial slice of all subjects
of the Brain MRI protocol. The corresponding image modalities are: a-e) T1w, T2w, PDw, T2*w, and T2w FLAIR, respectively. Red dashed lines represents the bias and blue

dashed lines the 95% confidence interval.

Table 6

Percentage of variation of the linear regression coefficient [95% confidence interval (CI)] in comparison to the identity (i.e., linear
regression coefficient of one) for the contrast, the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) samples. For the
linear regression computation, the x-axis is considered as the samples values of the acquired image and the y-axis the samples values
of the synthesized image as shown in Fig. 6. Positive values indicate an improvement of the corresponding samples.

Tiw T2w PDw T2*w T2w FLAIR
Contrast —-12.69% —-14.11% —31.22% —32.89% 22.77%
[-13.36%; —12.01%] [-14.88%; —13.33%] [—32.23%; —30.21%] [-34.37%; —31.34%] [20.57%; 24.98%]
CNR —-5.31% —17.46% —26.45% -0.12% 5.36%
[-6.33%; —4.29%] [—18.94%; —15.99%] [—27.79%; —25.10%] [—2.75%; 2.52%] [1.67%; 9.05%]
SNR 4.76% -3.10% 6.86% 47.74% —5.76%

[2.89%; 6.62%] [~5.92%; —0.28%]

[4.22%; 9.51%]

[41.93%; 53.54%] [~11.08%; —0.44%]

Table 7

Metrics (mean + std) used to evaluate the capability to synthesize
weighted images from a set of T1, T2, and PD maps computed by the CNN.
These metrics are the mean squared error (MSE), structural similarity in-
dex (SSIM), peak signal-to-noise ratio (PSNR), and correlation coefficient
(CORR). The metrics were calculated between both the synthesized and
the acquired weighted images. Note that for the calculation of the metrics
the background voxels were not considered.

Table 8

Mean correlation coefficient (R) and intraclass
correlation coefficient (ICC) of parameter ;L’i‘(n)L
(Eq. (8)) between the computed and the silver
standard relaxometry maps for three values of
the number of training subjects ¢t in the cross
validation of the fine tuning. Values reported
have been computed for each test subjects of
each split, and then, mean values were computed

Tiw T2w PDw T2'w T2w FLAIR along all splits and subjects.

MSE 00058 00095 00061 00392  0.0815 - - -
(0.0009)  (0.0020)  (0.0010)  (0.0058)  (0.0081)

SSIM 09651 09620 09194 07823  0.5693 t=4 09784 09682 08912
(0.0051)  (0.0039) (0.0078) (0.0222)  (0.0190) R t=3" 09733 09648 0.8857

PSNR  30.6338 262621 253160 18.9098  19.6598 t=21 09722 09645 08752
(1.5330)  (0.7607)  (0.7972)  (0.5905)  (1.9280)

CORR 09910 09858 09886 09438  0.8726 f=4 09517 0960707935
(0.0015)  (0.0023) (0.0017) (0.0076)  (0.0093) IcC =31 09324 09496 07930

t=21 09275 09475 0.7536

computed parametric maps in terms of ICC (compare the values
shown in Fig. 3), whereas without the previous synthetic train-
ing the results worsen noticeably and the maps blur. Furthermore,
Table 6 shows the mean correlation coefficient and ICC of param-
eter pcf (n); (Eq. (8)) for the different configurations of t. Both cor-

1

* five splits, T 10 splits.

relation and ICC have been computed for each test subject of each
split, and then, mean values were computed along all splits and
subjects. Results show that, as expected, both parameters increase
with the number of training subjects.
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Fig. 9. A representative axial slice of other weighted images synthesized varying the sequence parameters from a set of the T1, T2, and PD maps computed by the CNN. a)
Weighted images synthesized for a spin echo (SE) sequence with different TE and TR corresponding to T1w, T2w and PDw image modalities. b) Weighted images synthesized
for an inversion recovery spin echo (IR-SE) sequence with different TE, TR, and TI corresponding to short-TI inversion recovery (STIR), TIw FLAIR, and T2w FLAIR image
modalities. Note that the unlabeled images correspond to sequence parameter combinations which lead to weighted images with undefined contrast.

5. Discussion

In this work, we have presented a novel joint synthetic MRI ap-
proach for the computation of the T1, T2, and PD parametric maps
and the synthesis of different weighted images from only a pair of
input weighted images. The pair of input images are a Tlw and a
T2w acquired with clinical routine sequences. The parametric maps
are obtained by training the CNN with a synthetic dataset; hence,
we overcome the lack of a public and sufficiently large database of
conventional images that should be accompanied by their corre-
sponding parametric maps. Our synthetic training dataset departs
from 120 instances of BrainWeb maps, in which we add intensity
variability, by means of random noise, as well as spatial variabil-
ity, by registering these maps to different anatomies from the PPMI
database. We show the feasibility of this solution by computing ac-
curate and realistic parametric maps from both synthetic and ac-
tual MR brain acquisitions; the computed maps are then used to
synthesize different weighted images, so our end-to-end synthetic
MRI solution is not limited to a number of predefined weighted
images that have entered the learning process, but is capable of
generalizing to any image modality that can be synthesized out of
the parametric maps. Hence, our solution fulfils the three condi-
tions needed to become a synthetic MRI method. To the best of
our knowledge this is the first synthetic MRI method that is based
on conventional routine sequences and can be trained on the basis
of synthetic data.

12

We have shown that synthesized weighted images from five
clinical routine sequences achieve high similarity metrics, with
SSIM usually above 0.90 and low error with MSE always below 9%.
The correlation analysis shown in the scatter plots of Fig. 5 pro-
vide values above 0.95 for all modalities. Similarly, for the scatter
plots of contrast, CNR, and SNR (Fig. 6), both correlation and ICC
also obtain high values, as shown in Table 7. Note that the agree-
ment when the ICC values are above 0.75 is considered good while
when the values are above 0.90 is considered excellent [33]; our
results indicate that we lie in these ranges for at least one param-
eter for each synthesized modality. In addition, spatial resolutions
of training and test images do not need to exactly match. Our test-
ing images have resolution of 0.94 x 1.25 x 5 mm while the PPMI
datase resolution is of 1 x 1 x 1.2 mm,; despite the in-plane res-
olution does not differ much, slice thicknesses are clearly different
and no partial volumes effects in the through-plane direction are
obvious in our solution.

The synthetic MRI approach proposed may have important im-
plications in neuroimaging due to the utility of the parametric
maps for tissue characterization and the possibility of synthesiz-
ing any weighted image. Specifically, the obtained T1, T2, and PD
values of the three tissues (WM, GM, and CSF) present a good cor-
respondence with the values reported in the literature, as shown in
Table 8 and with the silver standard relaxometry parametric maps
with correlation values above 0.95 for the T1 and T2 maps. The
output quality increases noticeably when the network is fine tuned
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T2w FLAIR

Fig. 10. A representative axial slice of the non skull-stripped weighted images synthesized from one set of the T1, T2, and PD maps computed by the CNN and their
corresponding non skull-stripped acquired images. a—e) The synthesized T1w, T2w, PDw, T2*w, and T2w FLAIR images. f-j) Their corresponding acquired weighted images.
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Fig. 11. A representative axial slice of T1, T2, and PD maps computed from a subject of the Quantitative Brain MRI protocol in a leave-one-out scheme. a) T1, T2, and PD
parametric maps computed by the network trained from scratch with actual parametric maps. b) Corresponding maps computed by the fine tuned network with previous
synthetic training. c) Their corresponding silver standard relaxometry maps. d) Correlation of parameter ,u‘i‘(n)L (Eq. (8)) between MAP_;, and MAPg;,., for the five healthy

subjects. Diagonal lines represent the identity.

with a small number of silver standard maps. This provides a way
to obtain parametric maps with increased accuracy, at the cost of
employing a (small) number of silver standard maps for additional
training. Note, however, that training with synthetic data is a key
step, since training from scratch with this small amount of silver
standard maps by no means suffices. Moreover, the proposed ap-
proach avoids the need of lengthy relaxometry sequences; the total
scan time of the full-brain acquisition described in this manuscript
(T1w and T2w acquisitions) is less than 8 min versus the 18 min
scan time of an inversion recovery golden standard acquisition only
for T1 mapping [34], and the 17 min scan time of the DESPOT algo-
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rithm for T1 and T2 mapping [10]. The computed parametric maps
are therefore less prone to motion artifacts. Interestingly, the pro-
posed approach is not based on specific and complex sequences as
MREF [15], IR-TrueFISP [21], QRAPMASTER [22], and MPME [25] or
private protocols as the SyMRI IMAGE software [35]. Also, the fea-
sibility of synthesizing weighted images and/or retrospectively op-
timizing sequence parameters can further reduce scan time. Thus,
a radiologist could have the parametric maps together with vari-
ous conventional weighted images based on the same widespread
short scan protocol. In addition, we provide the possibility of cre-
ating databases of perfectly registered weighted images accompa-
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nied with their corresponding parametric maps; these databases
can be used to train machine learning algorithms for different pur-
poses, perform data augmentation or improve the performance of
registration or segmentation algorithms. The field of radiomics also
seems a natural target for our methodology.

We should stress that our method gives rise to different modal-
ities, some of them unseen by the network throughout the train-
ing process, with comparable quality with recent medical image
translation works; however, to the best of our knowledge, these
works are limited to the specific modalities that enter the training
and validation stages. Specifically, SSIM in our synthesized T1w,
T2w, and PDw images is slightly higher than the values reported
by Chartsias et al. [17] and Sohail et al. [19] for some of these
image modalities, albeit the T2w FLAIR and sometimes the T2*w
achieve lower quality. A more thorough comparison is not feasi-
ble since our actual acquired validation dataset is not large enough
to train the state-of-the-art medical image translation methods.
Also, note that in our approach no data from real acquisitions are
used in the training stage thanks to the synthetic training, and
only when fine tuning the network a very small database of ac-
tual maps is used; this is our main advantage with respect to
the state-of-the-art. The non skull-stripped synthesized images, al-
though visually realistic, achieve lower quality than their corre-
sponding skull-stripped counterparts; however, this seems to be
the case as well in [17]. The loss of quality is clearer in the neigh-
bouring parts of the skull, and other tissues such as the eyes.
We obtain a SSIM of 0.80 in both the T2w and the PDw im-
ages while in [17] the SSIM in the synthesis of the T2w from the
PDw is of 0.86. Nevertheless, it is important to note that, as op-
posed to [17], in our work the skull has not entered the training
process.

As for the comparison with synthetic MRI methods, in our work
the synthesized weighted images show higher visual resemblance
to the acquired images than in the other methods [21,25]. In addi-
tion, correlation coefficients calculated within the rectangular ROIs
described in Section 2.1 are higher with our approach [21]. How-
ever, except for the T2w FLAIR modality, our synthesized weighted
images present lower contrast values than the acquired weighted
images as compared with [24], although we achieve similar or
higher CNR and SNR figures. The Bland-Altman plots show bet-
ter agreement than [25] in Tlw and T2w, similar agreement in
PDw, and only a slightly lower agreement in T2w FLAIR images.
The T2*w modality is not synthetized by them. The loss of quality
in T2w FLAIR images is a common issue in synthetic MRI [6] where
the boundary of the CSF on the cortical area tends to be hyperin-
tense presumably due to partial volume effects.

This work has several limitations. The method was evaluated
in synthetic data, eight subjects —suspected of early Alzheimer
disease—, and five healthy volunteers, so further validation in a
larger cohort of both healthy volunteers and patients with other
pathologies is still needed. Moreover, BO and B1 inhomogeneties
have not been taken into account in the synthetic dataset genera-
tion. Thus, including these inhomogeneties in the synthesis could
be of interest. In addition, the equations used to synthesize the
weighted images did not consider all the effects that occur in prac-
tice. For example, the T2*w image is synthesized from the T2 map
instead of the T2* map which could be the cause of the worse
metrics compared to the metrics of the T2w image. Also, the T2w
FLAIR presents worse metrics than the other modalities, but the
images obtained are comparable with those of the literature [24].
To address this, methods focused on improving T2w FLAIR images
have been reported [45]. Additionally, the parametric maps of the
synthetic dataset were generated with values corresponding to 3T
scanners; hence our results do not directly carry over to other field
strengths. The extension to high field scanners will presumably re-
quire to modify the synthetic training dataset and further postpro-
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cessing corrections because B1 and BO field inhomogeneities are
specially problematic at high fields.

Future work includes improvement and further tuning in the
implemented CNN. In addition, the use of generative adversarial
networks (GAN) architectures may be studied due to the recent
works that achieve impressive results in medical image translation
capturing high-frequency texture information [18,46]. On the other
hand, the selection of the optimal input training sequences and/or
sequence parameters could improve the computation of the para-
metric maps and, subsequently, the synthesis of the weighted im-
ages. A more realistic synthesis of weighted images with a detailed
Bloch simulation [47,48] and other maps (e.g. T2*, BO, and B1
maps) could also enhance the synthesis quality of any MRI modal-
ity. Further, the simulation of motion in the synthetic dataset could
enhance the network robustness against such artifacts. In addition,
we could extend the proposed approach to other tissues, such as
the heart or the liver, as long as synthetic anatomical volumes can
be computed. To this end, for example, the extended Cardiac-Torso
(XCAT) phantoms [49] could be employed. We also plan to address
the oncology field, where parametric mapping may be a challeng-
ing task.

6. Conclusion

We propose a novel joint synthetic MRI approach for the com-
putation of the T1, T2, and PD parametric maps and the synthesis
of different weighted images which only needs two clinical rou-
tine weighted images as inputs (full-brain acquisition in less than
8 min of scan time). Based on a CNN, we are able to provide real-
istic parametric maps and weighted images when training the CNN
with a synthetic dataset. The results in both synthetic data and
actual MR acquisitions experiments demonstrate its feasibility for
quantitative MRI in clinical viable times as well as its applicability
for the synthesis of additional MR weighted image modalities.
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