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Abstract. Gaze control is an important issue in the interaction between
a robot and humans. In particular, the decision of who to pay attention
to in a multi-party conversation is a way of improving a robot’s nat-
uralness in human-robot interaction. A system based on a competitive
neural network can decide who to look at with a smooth transition in
the focus of attention when significant changes in stimuli are produced.
One important aspect in this process is the configuration of the different
parameters of such a neural network. The weights of the different stimuli
have to be computed in order to achieve behavior similar to humans.
This article explains how these weights can be obtained by solving an
optimization problem. The experiments carried out and some results are
also presented.
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1 Introduction

Gaze control represents an important discipline in the development of intelligent
social robots so as to achieve higher evaluations of a robot’s comprehension and
naturalness in human-robot interaction [15]. When robots behave like a person,
humans feel more comfortable. An approach to this problem consists in using a
competitive neural network that receives different stimuli and returns a stable
determination of the focus of attention that must be followed with the robot’s
eyes. One of the advantages of this approach is that the response of the com-
petitive network is smooth and stable, avoiding erratic behavior. This approach
also keeps, in the robot’s memory, the information about people who previously
interacted with the robot, regardless of whether they have left the robot’s field of
view. Different factors are taken into account: the human’s gaze, who is speaking,
pose, proxemics, visual focus of attention, hoarding conversation, habituation,
etc. These factors produce stimuli which create a dynamic behavior, giving the
human interlocutors the feeling of speaking to another human. However, a prob-
lem that emerges is the need to determine the importance of the stimuli so as
to be able to decide who should be the focus of attention. We have modeled this
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importance through a set of gain weights that are adjusted by optimization from
an experimentation data set.

These gain weights represent how each stimulus contributes to a particular
output of the neural network. In our experimentation, training is carried out
by three people who interact with each other and with the robot. At this step,
during an initial training, an external user (teacher) analyzes the sequence and
establishes who the robot should pay attention to. This information is written
down jointly with recorded stimuli. After the initial training, the gain weights
are computed and the robot should pay attention to people as learned in the
experiments. To validate the proposed methodology, a robotic head with a pro-
jected face that simulates the movement of the eyes has been developed. The
result of the competition makes the robot set the focus on the person, using the
combined movement of neck and eyes.

The present paper is structured as follows: Section 2 explores the state-of-
the-art of the technologies considered in this paper. Section 3 briefly explains
how the gaze control works with the competitive network. Section 4 presents the
approach for computing the weights of the stimuli. In Section 5, the different
experiments and results are reported. Finally, Section 6 notes the conclusions of
the presented work and suggests future developments.

2 Overview of the Related Work

Human–Robot Interaction (HRI) is a discipline that allows robots that can com-
municate and respond to ongoing human communications and behavior to be
improved [13]. Gaze control is an important issue concerning HRI. A recent
survey of the state of the art in social eye gaze for HRI was presented by [1],
distinguishing three different approaches to the problem: Human-focused, cen-
tered on understanding the characteristics of human behavior during interactions
with robots; Design-focused, which studies how the design of a robot impacts
on interactions with humans; and Technology-focused, centered on researching
how to build tools to guide the robot’s gaze in human interaction. The main
challenges in a conversation are the management of attention and turn-taking
between partners, controlling the gaze and adopting the right conversational
roles [1].

According to [15], when a robot is a listener in a multi-party conversation
and tracks the conversation with its gaze, it promotes higher evaluations of its
comprehension and naturalness than a robot performing random gazing between
speakers. Also, in [3], the authors showed how gaze control more effectively
motivates users to repeatedly engage in therapeutic tasks. In addition, as seen
in [8], the virtual agents which use turn-taking gaze during conversations are
evaluated as more natural and pleasant than others that use none, or a random
gaze control in their communication. At the same time, the robots with humanoid
features positively influence people’s behavior towards the machine and their
expectations about its capabilities [24].
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There have been different works on gaze control, as in [2], where the authors
used a circular array of microphones in a social robot, named Maggie, to de-
termine in which direction the robot should look. An infrared laser was used
to obtain the distance with respect to the person so that the robot could move
forward/backward. A Robot Assisted Therapy (RAT) method was presented in
[20], where a robot perceived different stimuli (visual, auditory and tactile) to
track a certain colored object, a face or a directional voice. These two previous
works did not address the problem of who to pay attention to in a natural way.
Different authors have indicated the benefits of fusing sensory information, such
as [20], [26] or [28]. In [26], a person is localized with a robotic head by simulta-
neously processing visual and audio data. However, these works do not focus on
a conversation between multiple participants. In [28], the authors created a sys-
tem to guide a robot’s gaze at multiple humans who were interacting, by adding
different stimuli: social features, proxemics values, orientation, and a memory
component. This approach considered a limited number of stimuli and the max-
imum value could change abruptly and lead to erratic changes in the focus of
attention. Our proposed method is based on a competitive neural network and
fixes this problem, creating smooth transitions between participants.

The stimuli used by a robot can be diverse, but those based on computer
vision, audio and memory represent some of the most commonly used. Visual
information represents an important aspect of HRI [9]. In particular, the Robot’s
Field of View (FOV) has to be considered to detect visually people situated in
front of the robot’s camera. But when people are not situated in front of the
robot, some information has to be kept in memory. A hypotheses generation was
proposed by [21], inferring the people’s position by using peripheral vision. Even
though a person was not present in the foveal vision, the robot kept plausible
hypotheses about the location. In [25], the authors proposed a dynamic visual
memory to store information about objects from a moving camera on board
a robot and created an attention system based on where to look to reobserve
objects in memory and the need to explore new areas. The Visual Focus of
Attention (VFOA) represents who or what people are looking at. As presented in
[17], there is a relation between head poses and object locations. Audio represents
an important stimulus, since microphone arrays can indicate the direction of the
incoming sound. As explained previously, some works using microphone arrays,
such as [2], [26], have been used with social robots.

When a robot is interacting with people, their detection is required. Some
methods are able to detect human bodies, such as Haar filters [27], HoG [5], or
Deep Convolution Neural Networks (DCNN) [18]. However, in our approach, a
face recognition algorithm has been preferred, since the participants are assumed
to look directly at the robot or have a slightly turned position to look at other
people interacting with it. As indicated for human body detections, Haar clas-
sifiers, HoG detectors or Deep Learning based solutions are widely used. Haar
classifiers detect faces at different scales, but do not deal with non-frontal faces
or occlusions. It also returns a large number of false predictions. The HoG fea-
ture descriptor is fast, but does not work with small faces. The DLIB library
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[14] implements a CNN face detector using a Maximum-Margin Object Detector
[7], which works for different face orientations and occlusions. Recognition can
be implemented with Deep Residual Learning algorithms, which are very accu-
rate. DLIB implements a ResNet network with 29 convolution layers and uses
a pre-trained model which takes the 68 face landmarks obtained from an image
[12].

Moreover, lip activity is important to detect whether a person is speaking or
not. When several people are situated in front of the robot and some audio is
detected, it is likely that the person who is moving the lips is currently speaking.
Some works have explored different techniques to detect lip activity, such as
[4], where the degree of disorder of pixel directions around the lips using the
optical flow technique is measured; or [22], where a statistical algorithm using
two detectors based on noise to characterize visual speech and silence in video
sequences is created.

Competitive neural networks [10] can process different inputs and decide the
winner in a dynamic and natural way. This kind of network can also have habit-
uation capabilities. However, the problem is how to determine the importance
of some stimuli over others. This can be done by a set of weights. These weights
have to be configured or learned to replicate human behavior when the same
stimuli are produced.

3 Gaze Control with a Competitive Network

Gaze control is usually implemented considering different stimuli ([20], [26], [28]).
Our approach for the stimuli integration is the use of an on-center off-surround
competitive model [10]. Different stimuli are considered, which are the inputs of
the competition at an instant of time t, Itkx, where k is the number of persons
who interact and x the number of stimuli. These stimuli have a binary value,
indicating whether they are present or not, and are balanced by a weight, wx.
In some stimuli, such as speech detection, the value is activated if the different
indicators exceed a threshold.

– Itk1 shows if a person k is situated in the robot’s FOV at the instant of
time t. People situated in front of the robot’s FOV are usually candidates
to interact with the robot. w1 is the corresponding weight associated to that
stimulus.

– Itk2 shows that a person k is considered to be speaking. This stimulus is
obtained by performing lip movement detection, based on mouth landmarks.
In addition, incoming audio has to be detected in the direction of the person
k.

– Itk3 shows that a person k is gazing directly at the robot. The pose of a
person is used to verify if that person is visually interacting with the robot,
as shown in Figure 1. Engagement in an interaction is increased by the
mutual gaze, a kind of shared looking [23].

– Itk4 shows that a person k is continuously moving. In a conversation with
several people, an individual tends to look at another restless person. This
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Fig. 1. Pose of a person given the DLIB face landmarks

stimulus requires the individual to be situated in the FOV of the robot. If
the sum of the differences in a person’s position between several frames is
over a given threshold, the person is assumed to be restless.

– Itk5 shows that a person k is not situated in the robot’s FOV, but for whom
incoming audio could have been detected. When the robot does not see a
person who has previously interacted, it keeps the previous position of the
person in its memory and, if incoming audio is detected in his/her direction,
the stimulus for that person k is activated. In a conversation between hu-
mans, when someone is speaking at their left/right side, a person tends to
turn their head in the direction of the person who is speaking.

– Itk6 shows that a person k is in the VFOA of other people, but is not situated
in the robot’s FOV (see Figure 2). When two or more people are looking at
another person in a conversation, a stimulus is given to people in the direction
of the gaze. Since the focus of attention is given to a concrete person, the
corresponding stimulus is increased.

Fig. 2. Two people with their VFOA in another person
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– Itk7 indicates the proxemics of a person. People situated at a certain distance
are likely to be interacting with the robot ([2], [28]). In addition to the weight
w7, this stimulus is balanced by a tuning factor, depending on the distance
between the robot and the person.

4 Analysis of the System

The different stimuli that influence a gaze control system must be weighted in
such a way that it allows the system to behave similarly to humans. The gaze
control system is implemented through a competitive neural network, where
each stimulus competes with the others to provide a smooth dynamic result.
However, the input of the competitive network, composed by the relation of
stimuli and their weights, must be correctly assigned for the robot to have a
realistic behavior. Figure 3 shows the system scheme, in which an optimization
problem allows the weights that will be used in the gaze control system to be
obtained. This optimization requires the data to be split into winners and losers.

Fig. 3. Scheme of the training system

The competitive network is shown in Figure 4, where each input Itk is ob-
tained by adding the stimuli of the person k, Ik1,..., Ik7, balanced by their
respective weights, at time t. Thus, the input of the network produces an output
Otk that represents if a person k is the winner. The output with the highest value
corresponds to the winner. The configuration of the weights, wx, is not initially
known, so a mechanism has been implemented to obtain it. The competitive
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network keeps information about preceding states and dynamically adapts the
outputs depending on its configuration.

Fig. 4. Competitive neural network

At a given time t, there is an input vector of the network, It, composed by
the value associated to each person (It1, ..., Itn). Itk is computed as shown in
Equation 1.

Itk =

7∑
x=1

wx · Itkx (1)

The output of the network depends on the input vectors obtained previously,
as seen in Equation 2, where C, H and S are, respectively, the layers associated
to the competitive, habituation and short time memory (STM) operations.

Ot = C(H(S(I1, ..., It))) (2)

The STM, habituation and competitive layers are based on the model of
Grossberg [10] and use the differential Equations 3, 4 and 5, respectively.

dxi

dt
= −A1xi + C1(B1 − xi)[Iiwi] (3)

dgi
dt

= E(1− gi)− FI
′

igi (4)
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dyi
dt

= −A2yi + C2(B2 − yi)[I
′′

i + Dyi
2]− yi

∑
i6=j

Dyi
2 (5)

These equations are solved using a trapezoidal integration, as shown in Equa-
tions 6, 7 and 8 for STM, habituation and competition, respectively.

xi(kh) = xi((k − 1)h) + gi(kh)+gi(k−1)h
2

gi(kh) = −A1xi(kh) + C1xi(kh)
+C1(B1 − xi(kh))[Iiwi]

(6)

{
gi(kh) = gi((k − 1)h) + p(kh)+p((k−1)h))h

2

p(kh) = E[1− gi(kh)]− FI
′

i(kh)gi(kh)
(7)


yi(kh) = yi((k − 1)h) + qi(kh)+qi(k−1)h

2
qi(kh) = −A2yi(kh) + C2yi(kh)

+C2(B2 − yi(kh))[I
′′

i wi]

−
∑
i6=j

Dyj((k − 1)h)2

(8)

The STM layer, where A1 corresponds to the decay rate, B1 to the saturation
and C1 to the growth rate, receives the input stimuli, Ii, and produces an output
where the duration of the stimuli is increased. The STM output is the input of
the habituation layer, I

′

i , where the permanent stimuli lose interest through time.
In the habituation layer, gi is the gain for the stimuli. When a stimulus is active,
the habituation gain decreases from a maximum value, 1, to the value given by
E/(E + FI

′

i), where E and F correspond to the charge and discharge rates. The

output of the habituation layer is the input of the competitive layer, I
′′

i , where
A2 is the decay rate, B2 the saturation value and C2 marks the growth rate. D
balances the parabolic function yi

2, reinforcing the winner against the rest, which
represents a lateral inhibition (off-surround). The output of the competitive layer
shows the winner of the competition, as explained previously.

The exit from the network takes into account the dynamic nature of previous
states by filtering spurious stimuli and producing a smooth change of the winning
person focus of attention. However, the input of the network, Ii, corresponding to
the stimuli, has to be optimized to obtain a group of weights which are optimal in
the gaze control process. To this optimization, the training has to be carried out
in a sequential way, following a list of steps previously recorded. The training
is carried out by three people. At the same time, an external user (teacher)
observes the interaction and annotates the time instants when a person should
be the focus of attention.

When all data have been obtained, stimuli from expected winners and losers
are separated based on the said manual annotation. At an instant t, there is an
input value for the winner, It,winner, and an input value for every k loser, It,k.
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The process is modeled as an optimization problem, where the aim is to obtain
the optimal weights that maximize the sum of the distances between the winners
and the losers at each time instant t, as shown in Equation 9. This procedure
ensures that the weights are optimal to make the selected persons winners and
separate them from the losers.

max

m∑
t=1

( ∑
k∈losers

It,winner − Itk

)

= max

m∑
t=1


∑

k∈losers


7∑

x=1

wx · It,winner,x

−
7∑

x=1

wx · It,k,x




(9)

Some constraints have to be considered. First of all, the sum of all weights
has to be equal to 1, as shown in Equation 10. In addition, the weights range
between 0 and 1, being bigger than 0 (Equation 11).

7∑
x=1

wx = 1 (10)

∀x ∈ [1...7] : wx ∈ [0, 1] ∧ wx > 0 (11)

Secondly, there is a constraint for each case evaluated. The input of the
winner, It,winner, is bigger than or equal to the losers at an instant t, as shown in
Equation 12. With this constraint, the problem is forced to behave as annotated
during the training phase.

∀t ∈ [1..m] ∧ k ∈ losers at t : It,winner ≥ It,k (12)

Another consideration is related to the proxemic stimulus. This is balanced
by a factor depending on the distance between the person and the robot dur-
ing the gaze control operation. During the training phase, a fixed value of 1
is assigned. The training is carried out by people who are situated at the far
phase of the personal space (0.76m to 1.22m) or at the close phase of the social
space (1.22m to 2.10m) [11], a region where this distance factor is 1. Beyond
2.10 meters, this factor decreases and is not significant for the calculation of
weights because, during our training, the participants have been situated within
these distances. During normal operation time, an adjustment factor balances
the weight of people situated beyond 2.10 meters.
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5 Experiments and Results Discussion

The experiment consisted in obtaining the optimal weights during training with
three people interacting with the robot. The weights were not initially known
and the persons followed a list of actions previously established, as shown in
Table 1. The complete list of actions had 726 states. The table shows the losers
in green and the winners in red. Only 12 out of the 726 states are shown, but
all of them were evaluated in the maximization problem.

Table 1. Sequence of behavior of three people

State / Person 1 Person 2 Person 3 Winner
Stimuli 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2
2 2
3 1
4 2
5 3
6 1
7 2
8 1
9 3
10 2
11 3
12 1

The optimization problem was solved using the SLSQP algorithm [16], which
obtained the results in 18 iterations and 0.23 seconds (in an intel i9-9900K,
with 32Gb of RAM). The obtained results were w1 = 0.06, w2 = 0.25, w3 = 0.06,
w4 = 0.16, w5 = 0.16, w6 = 0.25 and w7 = 0.06.

These weights were evaluated in the previously self-developed robotic head
(see Figure 5), where the competitive network had been deployed. The network
created smooth transitions between the focus of attention, resulting in a natural
behavior but, at the same time, considering properly which stimuli were more
important according to the obtained weights. Figures 6 and 7 show the sum
of input stimuli balanced by their weights, Itk, and the output stimuli, Otk,
respectively.

As can be seen at the output of the neural network, the input stimuli are
smoothed out to avoid sudden changes in the robot’s focus. The results of the
winning person are consistent with the choice made during the learning phase,
being satisfactory in 99.03% of the test cases. The adjustment of these weights
has allowed the creation of a robot that responds in a similar way to how a
person behaves.
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Fig. 5. Self-developed robot head

Fig. 6. Input stimuli of three people balanced by the weights

Fig. 7. Output stimuli of three people after the competitive network
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Although the system has been trained with 3 people, the stimuli generated
during the training are independent of the person. The methods of obtaining
stimuli that have been used are generic and suitable for any person. The 726
cases used allow to refine the weights to a very wide range of situations. Training
with more people may slightly vary these weights but not in a significant way.
At normal operation time, the system works with 3 or more people, having
even performed some test with more than 8 participants. Beyond the increase in
computing time, the system was able to correctly gaze at the participants who
were winning the competition. For performance reasons, our system has been
limited to 10 participants.

When a participant disappears from the robot’s FOV, the head is able to
estimate the position using a Kalman filter [19]. If the robot interacts with 3
participants and one disappears, either because the person moves or because
the head turns, when audio is detected in his direction or the other participants
are looking at him (VFOA), stimuli will be provided to that participant and
the head will gaze at this person in case of being winner, using the estimated
Kalman position. When no stimuli are received from a participant for more than
20 seconds, the participant is removed. When a new person arrives on the scene,
regardless of whether the robot is able to detect him in the FOV or not, if audio
is detected in his direction or if this person is in the VFOA of other participants,
the new participant will enter the competition. If this new person becomes a
winner, the head will turn to look for him. If no one is detected, it will go back
to the old winner.

Although the main aim of this work has been to obtain the weights of our
neural network, the head has quantitatively behaved as we expected in operation
time in 99.03% of cases, higher compared to other works, such as [28], where the
authors obtained results close to 89.4% but with different experiment conditions.
A complete explanation about the functioning of the neural network and the
robotic head as well as the experiments performed and results obtained are
presented in [6].

6 Conclusions

This work presents an optimization process for a robotic gaze control system.
This gaze control system uses a competitive network which receives a large num-
ber of visual, auditory or presence stimuli. It allows a smooth transition, chang-
ing the focus of attention between participants, avoiding erratic movements. In
addition, it has habituation capabilities to avoid someone from hoarding the con-
versation. The weights of each stimulus are not known a priori and a strategy
based on an optimization problem has been developed to obtain them through
experiential learning.

The computed weights were integrated into the gaze control system of a
self-developed robotic head with combined body and eye movement, and the
robot showed a natural interaction behavior similar to those annotated during
the learning phase. The proposed method significantly improved the sensation of
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naturalness and realism of the robotic head. The movement of the robot joints
and the expressions of the virtual agent projected on its 3D facial display were
controlled by the system integrated in a ROS-based architecture. The design of
the robot and the gaze control system creates a more realistic HRI system, which
is more acceptable to interlocutors than other not-so-human robots.

The future objectives of the project will consist in integrating speech ca-
pabilities into the ROS architecture, offering a low-cost, intelligent robot with
human-like behavior.
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