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eInstitute of Sustainable Processes, University of Valladolid, Spain

Abstract

The allocation of distributed generation and capacitor banks is critical
for success in the planning of power grids. A methodology is developed
for the optimal placement of distributed renewable generation (wind and
photovoltaic powers) and capacitor banks is developed based on technical and
economic parameters. In order to preserve the horoseasonal and stochastic
dependence nature of the wind and solar power, the methodology uses a
model that integrates the sequential Monte Carlo method and the diagonal
band Copula model, integrating historical data of wind speed, solar radiation
and feeder load from the region of study. An efficient algorithm based on
Genetic Algorithms is proposed to implement the optimization. The algorithm
validation demonstrates a reduction of up to 71.7% in annual losses of active
power in the Bandeira feeder and 73.4% in the Recife feeder, with adequate
voltage levels and a return on investment of 6-7 years.”

Keywords: Generation forecast, stochastic correlation, distributed
generation, capacitor banks, genetic algorithm.

1. Introduction

The renewable energies that are currently most installed are photovoltaic
and wind power, whose primary sources of energy are intermittent and
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stochastic [1]. In terms of Electric Power Systems (EPS), they are considered
Distributed Generation Units (DG), defined as electric power sources con-
nected directly to the distribution network or at the consumer measurement
site [2]. They are implemented as presented in Figure 1. This introduction of
DG into the electric distribution system generates new issues related to the
energy quality and operating costs in the technical planning of EPS.

Figure 1: Architecture of the Electric Power Systems considered.

Medium and long-term load forecasting are important tools for the plan-
ning of the distribution network[3]. These tools provide information necessary
for the network and distribution line planning, as well as the work required
for its reinforcement and extension [4]. However, the connection of DG makes
the prediction of the demanded power a difficult task along the feeders [5],
which in turn makes it necessary to apply an approach that incorporates the
non-deterministic nature of the power generated by the DG. The incorpo-
ration of prediction uncertainties into the system management is necessary
for the optimal operation of systems with a high penetration of these energy
sources [6]. Such uncertainties should take into account the correlation of
such primary energy sources as wind speed for wind power and solar radiance
for photovoltaic generation.
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In addition to the DG power generation forecast, the correct allocation
of these generators in the electrical system is decisive in the planning of the
EPS [7]. The allocation of DG, as well as their type and size, can significantly
affect the technical, economic and environmental performance of distribution
systems [8]. Thus, for the allocation of these units, voltage levels, economic
viability, loss analysis, electric power quality, reliability and safety should all
be considered. However, the insertion of generation in the feeder reduces the
active power value, while the reactive power remains practically the same,
i.e., it causes the system power factor to decrease. Systems operating with a
low power factor result in high active power losses and poor voltage profile.
So it is essential to perform the simultaneous optimal allocation of CBs and
DG to improve system performance.

Therefore, the problem of selecting ideal locations for the installation of
DG and CBs has multiple objectives and constraints. According to [7], with
the proper allocation, it is possible to improve the system’s reliability and
energy quality, minimize investment and operating costs, and mitigate the
harmful effects that power generation might create in the power quality. This
problem of allocation combines different aspects. So, one attractive solution
is to use meta-heuristic algorithms, which use randomness in the search for
optimal solutions.

Meta-heuristic methods are generally stochastic approaches that use ran-
domness in the search for optimal solutions and are applied to problems in
which there is no previous information. In meta-heuristics, when a good
solution is found, a new search is carried out, incorporating new information
in order to find a new optimal solution. Although there are other methods
that can be applied to mono and multi-objective problems, the meta-heuristic
one best meets the characteristics of the problem cue to its ability to change
and adapt. Thanks to this, meta-heuristic algorithms can optimize a large
number of discrete, continuous parameters or combinations of them and
perform simultaneous searches in various regions of the search space.

1.1. Related Works

Several works in the literature have addressed some of the problems that
have emerged. For instance, [9] reviewed types of DGs and [10] investigated the
challenges arising from the presence of DGs in electrical grids and optimization
methods applied to solve the stated allocation problem. Zakaria et al. [11]
comprehensively reviewed the generic steps of stochastic optimizations in
renewable energy applications, from the modeling of the uncertainties and
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sampling of relevant information. In [12], several conventional and meta-
heuristic methodologies to address the optimal DG planning problem are
reviewed and compared.

In [13], the authors used the Quasi Oppositional Chaotic Symbiotic Or-
ganisms Search technique, which is a meta-heuristic method that optimizes
the allocation of distributed generation units in radial distribution networks.
The objective of this study is to optimally reduce the real power loss, improve
the voltage profile, and increase the voltage stability, with demonstration on a
grid with 33, 69, and 118-bus. In [14] the authors developed a decision-making
procedure for efficient placement and sizing of energy storage system in a
virtual power plant composed of wind turbine, photovoltaic system, curtailable
loads and diesel generators. The objective was to minimize the overall cost of
the virtual power plant within a fixed time horizon planning and to optimize
the power and the energy of the plant. In [15], the authors studied the impact
of the input data resolution on the optimal allocation and power management
of controllable and non-controllable renewable energy sources distributed
generation system. The optimization problem in that paper considers the
optimal allocation of all distributed generations and the optimal power con-
trol of controllable distributed generations. The authors proposed the use of
an artificial neural network to estimate the optimal output of controllable
distributed generations, which significantly decreases the dimensionality of
the optimization problem.

In [16] a multi-objective DG and CBs allocation was addressed, integrated
with a distribution network reconfiguration using the improved particle swarm
optimization method to reduce annual energy loss, peak power losses, and
substation capacity, while also maintaining better feeder current and voltage
profiles. On the other hand, [17] proposed an improved gray wolf algorithm to
allocate DG, CB and voltage regulators to minimize the investment costs of
coordinated equipment and maximize the benefits arising from the reduction
of energy losses and the purchase of energy from the network.

A modified version of a teaching–learning optimization algorithm was
proposed in [18] to reduce the power losses and energy interruption for the
costumers. It considered simultaneous DG scheduling, reconfiguration of
the distribution networks and capacitor sizing. [19] presented a model for
the simultaneous allocation and sizing of CBs (fixed and switched) and DG
(dispatchable and stochastic) to reduce investments and operating costs. To
solve the proposed model, an algorithm combining Tabu Search and Chu-
Beasley Genetic Algorithms was proposed and evaluated. A multi-objective
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particle swarm optimization algorithm (MPSO) was used in [20] for the DG
and CB allocation problem. The objective function encompassed technical,
economic and environmental aspects. Moreover, an MPSO method was
applied to the allocation problem in [21], showing that power losses can be
reduced, while the voltage stability and profile can be improved. In [22], a
heuristic algorithm based on the Harmony search algorithm (HSA) and the
particle artificial bee colony algorithm was proposed to deal simultaneously
with feeder reconfiguration, and the allocation and sizing of DG and CBs.
[23] proposed Bi-level programming, in which the high level optimization
defined the location and sizing of DG and CB, while soft open points were
optimized with respect to costs. A lower level optimization then performs a
24-hour dispatching to minimize power losses. A water cycle algorithm was
applied in [24] for the DG allocation problem, taking into account technical,
economic, and environmental aspects. In [25], a simplified heuristic method
was studied for this problem, aiming for simplicity in the implementation
and application to large distribution systems. An analytical optimization
method is developed in [26] to minimize interconnection costs.The optimization
considered geographical data of the network topology for the generation land-
use and network infrastructure, which are neglected in most works.

In [27], a multi-objective DG and CB allocation was addressed, integrated
with distribution network reconfiguration, using the improved particle swarm
optimization method to reduce annual energy loss, peak power losses and
substation capacity, while also maintaining better feeder current and voltage
profiles. On the other hand, [28] proposed an improved gray wolf algorithm
to allocate DG, CBs and voltage regulators to minimize the investment costs
of coordinated equipment, while maximizing the benefits arising from the
reduction of energy losses and the purchase of energy. [29] used a hybrid
optimizer for optimal placement and sizing of GDs and CBs. The proposed
hybrid method has a high convergence speed and is not stuck in an optimal
location. Two IEEE standard distribution systems were used to demonstrate
the effectiveness of the methodology. There was an improvement of the results
in the different conflicting objectives. In [30], allocation of CBs was presented
for a microgrid with DG and different load levels. The objective function
included minimizing the cost of energy losses, peak power losses and the
cost of the capacitors. The results demonstrated the ability of the algorithm
to reduce the losses and improve the voltage profile during injection and
non-injection of reactive power.
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1.2. Our Contributions

This paper proposes a methodology for the simultaneous, optimal alloca-
tion of CBs and DG based on wind and photovoltaic energy in distribution
feeders. Previous works in the literature have not performed this simultaneous
allocation considering the effects of the stochastic correlation of historical
data series. Moreover, predictions did not use data from different regions.
Therefore, the main contributions of this work are: the integration of the
Sequential Monte Carlo method and the diagonal band Copula to preserve
the horoseasonal and stochastic dependence nature of the generation, as
well as the use of an efficient algorithm based on a Genetic Algorithm. The
effectiveness is evaluated in two real feeders.

1.3. Paper Organization

The rest of the article is organized in six sections: Section 2 presents the DG
stochastic generation model, considering the stochastic correlation between
solar irradiation, ambient temperature, wind speed and the system load. The
algorithm for performing the radial load flow is described in Section 3. Section
4 contains the mathematical formulation of the optimization problem. Some
simulation results are commented in Section 5, and conclusions are provided
in Section 6.

2. DG stochastic generation model considering the stochastic cor-
relation

To preserve the stochastic nature of solar irradiation and wind speed,
probabilistic methods are used, including the Monte Carlo simulation, that
have already demonstrated significant advantages [31].The allocation of DG
goes beyond the availability of primary energy sources, since their location
critically affects distribution systems by increasing or decreasing the active
power losses of the system [32]. Therefore, it is necessary to develop an
optimization model that indicates the ideal place of penetration of the DG
and CB units, for the planning of the EPS [33]. The main steps to be carried
out in the proposed methodology are:

Algorithm 1: Proposed Methodology.

∙ Step 1) Obtain and treat the historical series of wind speed, solar
irradiation and temperature in the region of study;
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∙ Step 2) Generate the cumulative distribution functions (CDF) from
the mean and standard deviation of each historical series;

∙ Step 3) Obtain the correlation between wind speed and solar irradiation
from the method of Diagonal Band Copulation;

∙ Step 4) Apply the Monte Carlo Simulation to obtain the probabilistic
model of energy generation from DG;

∙ Step 5) Determine the power of the DG;

∙ Step 6) Determine the optimal location of the DG and CB units using
a Meta-heuristic.

2.1. Wind Speed and Solar Irradiation Modeling

In order to carry out a technical analysis implementation of wind generators
and photovoltaic panels, it is necessary to have information of the wind speed
and solar irradiation characteristics in the studied region. In fact, wind speed
modeling can be performed through the representation of the time series
occurrence frequencies, using a probabilistic distribution 𝑓(𝑉 ), according to
(1) [34]:

𝜕𝐹 (𝑉 )
𝜕𝑉

= 𝑓(𝑉 ) (1)

where the probabilistic distribution expression, the mean wind speed (𝑣)
and the variance (𝜎2) are obtained through (2) and (3), respectively:

𝑣 =
∫︁ ∞

0
𝑣𝑓(𝑣)𝑑𝑣 (2)

𝜎2 =
∫︁ ∞

0
(𝑣 − 𝑣)𝑓(𝑣)𝑑𝑣 (3)

The CDF should represent the histogram of the simulated wind regime.
There are several CDFs that are used to model wind speed, but the most
commonly used is the Weibull CDF, whose mathematical model is described
by (4) [35]:

𝑓(𝑣) = 𝑘(𝑖)
𝑐(𝑖)

(︃
𝑣

𝑐(𝑖)

)︃𝑘−1

𝑒(− 𝑣
𝑐(𝑖) )𝑘

, (𝐾 > 0, 𝑣 > 0, 𝑐 > 1) (4)
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where 𝑣, 𝑘 and 𝑐 are the wind speed (𝑚/𝑠), the form factor and the scaling
factor, respectively.

To determine the form factor value, an acceptable approximation is given
in [35] as (5):

𝑘(𝑖) = 𝜎(𝑖)−1,086

𝜇(𝑖) , (1 ≤ 𝑖 ≤ 96) (5)

where 𝜇(𝑖) and 𝜎(𝑖) are the mean and standard deviation of the wind speed
in the range 𝑖, respectively.

Once the form factor has been determined, the scaling factor can be
determined through (6):

𝑐(𝑖) = 𝜎(𝑖)
Γ
(︁
1 + 1

𝑘(𝑖)

)︁ , (1 ≤ 𝑖 ≤ 96) (6)

where Γ is the Gamma function.
As for the solar irradiation modeling, the beta distribution is widely used

in the literature for this purpose. As this distribution requires the variables to
be in the range of [0-1], then the solar irradiance data should be normalized,
as in (7) [36].

𝑓(𝑟) = Γ(𝛼(𝑖) + 𝛽(𝑖))
Γ(𝛼(𝑖)) × Γ(𝛽(𝑖))

(︃
𝑟

𝑟𝑚𝑎𝑥(𝑖)

)︃𝛼−1 (︃
1 − 𝑟

𝑟𝑚𝑎𝑥(𝑖)

)︃𝛽−1

, 𝛼 > 0, 𝛽 > 0,

(7)

where 𝑟 is the solar irradiation (𝑘𝑊/𝑚2), 𝑟𝑚𝑎𝑥(𝑖) the maximum irradiation in
the period 𝑖 (𝑘𝑊/𝑚2), and 𝛼(𝑖) and 𝛽(𝑖) the shape parameters in the period
𝑖. With the average 𝜇(𝑖) and the standard deviation 𝜎(𝑖) of solar irradiation,
it is possible to determine the parameters in the form 𝛽(𝑖) and 𝛼(𝑖) of the
beta distribution, through (8) and (9), respectively:

𝛽(𝑖) = (1 − 𝜇(𝑖)) ×
(︃

𝜇(𝑖)(1 − 𝜇(𝑖))
𝜎(𝑖)2 − 1

)︃
(8)
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𝛼(𝑖) = 𝜇(𝑖)𝛽(𝑖)
1 − 𝜇(𝑖) (9)

In this work, 96 CDF of Weibull and 96 CDF Beta are generated to model
the wind velocity and the solar irradiation, respectively. Each CDF represents
one hour of the day of the four seasons.

2.2. Stochastic Dependence Modeling

In the wind and solar energy generation process, there is a stochastic
dependence between the different random variables, the sources that generate
such energies. To determine the correlation between wind velocity and solar
radiation, the model used by [33] is used as reference. To measure the
dependency strength among random variables, the correlation rank (𝜌𝑟) is
used. This rank has two random variables 𝑋, 𝑌 and can be obtained by (10):

𝜌 (𝑋, 𝑌 ) = 𝜌 (𝐹𝑋(𝑋), 𝐹𝑌 (𝑌 )) (10)

where 𝜌(𝐹𝑋(𝑋), 𝐹𝑌 (𝑌 )) is the Pearson correlation (𝜌) between two FDC
(𝐹𝑋(𝑋) and 𝐹𝑌 (𝑌 )), obtained from (11):

𝜌 (𝐹𝑋(𝑋), 𝐹𝑌 (𝑌 )) = 𝐶𝑜𝑣(𝐹𝑋 , 𝐹𝑌 )
𝜎(𝐹𝑋)𝜎(𝐹𝑌 ) (11)

where 𝐶𝑜𝑣 and 𝜎 are the covariance and standard deviation, respectively. The
correlation rank is symmetric and assumes values in the interval [−1, 1], where
the negative end means that there is an inversely proportional correlation
and the positive end a directly proportional correlation. The variables are
completely independent when the correlation rank is zero. For uniform
variables, the Pearson correlation is equal to the correlation rank (𝜌 = 𝜌𝑟),
but in most cases they are different. For normal multivariate distributions,
the relation between 𝜌 and 𝜌𝑟 is shown in (12):

𝜌 (𝑋, 𝑌 ) = 2𝑠𝑖𝑛
(︂

𝜋

6 𝜌𝑟 (𝑋, 𝑌 )
)︂

(12)

where 𝑋 and 𝑌 are random vectors with normal multivariate distribution.

By using the 𝐹𝑋(𝑋) and 𝐹𝑌 (𝑌 ), we deal with the rank of the distri-
butions and no longer with exact values. With these ranks, it is possible
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to model the functional dependence of 𝑋 and 𝑌 . In order to investigate
the properties of these distributions, the notion of copula for the modeling
of stochastic dependence in the uncertainty analysis is used. The notion of
copula was introduced to separate the effect of the dependence of the marginal
distributions on a joint distribution, formulating multivariate distributions so
that any dependency can be represented. Copulation is the joint cumulative
distribution in a unit cube, such that the marginal distributions are uniform
in the interval [0, 1]. The random variables 𝑋 and 𝑌 can be joined by copula
𝐶 if their joint distribution can be written by (13):

𝐹𝑋𝑌 (𝑋, 𝑌 ) = 𝐶 (𝐹𝑋(𝑋), 𝐹𝑌 (𝑌 )) (13)

By definition, if CDF 𝐹𝑋(𝑋) and 𝐹𝑌 (𝑌 ) are invertible, then they can be
written as 𝐹𝑋(𝑋) = 𝑢 and 𝐹𝑌 (𝑌 ) = 𝑣, according to relation (14):

𝑋 = 𝐹 −1
𝑋 (𝑈) ⇔ 𝑈 = 𝐹𝑋(𝑋) (14)

where 𝑢 and 𝑣 are realizations for the uniform random variables 𝑈 and 𝑉 and
can be written as (15):

𝐶𝑉 |𝑈(𝑢, 𝑣) = 𝐹 (𝑋, 𝑌 ) = 𝐹 (𝐹 −1
𝑋 (𝑢), 𝐹 −1

𝑌 (𝑣)) (15)

where 𝐶𝑉 |𝑈 is the conditional distribution of 𝑉 |𝑈(𝑋 and 𝑌 copula) and the
inverse of the standard univariate normal distribution function.

In the literature, there are many families of copulas. However, the proposed
methodology uses the diagonal band copula (DBC) to model the stochastic
dependence of wind speed with solar irradiation. DBC is selected as it is
easily calculated and does not require numerical approximations, which makes
it attractive in modeling correlated events. The DBC representation is shown
in Figure 2.

The DBC has a vertical bandwidth of 1 − 𝜃, where 𝜃𝜖[0, 1]. According to
its width, the variables can be directly correlated (𝜃 = 1), inversely correlated
(𝜃 = −1) or independent (𝜃 = 0). Using this copula, it is possible to calculate
the reverse conditional distribution:
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Figure 2: Diagonal band copula.

𝐶−1
𝑉,𝑈(𝑡|𝑢, 𝜃) =

⎧⎪⎨⎪⎩
(1 − 𝜃)𝑡, 𝑢 < 1 − 𝜃, 𝑡 < 1 − 𝑢

1−𝜃

(1 − 𝜃)𝑡 + 𝜃, 𝑢 > 𝜃, 𝑡 > 1−𝑢
1−𝜃

2(1 − 𝜃)𝑡 + 𝑢 − 1 + 𝜃, 𝑜𝑡ℎ𝑒𝑟𝑠

(16)

In order to obtain the correlation of wind velocity with solar irradiance
using DBC, the following algorithm is followed:

Algorithm 2: Diagonal Band Copula.

∙ Step 1) Starts with the first hour (ℎ = 1) of 96ℎ;

∙ Step 2) Two independent vectors are generated (𝑈1 and 𝑈2), each
with 10, 000 randomly distributed values in the interval [0, 1]. The
embodiments 𝑢1 and 𝑢2 are defined by (14);

∙ Step 3) The correlation rank between Weibull’s CDF ((𝐹𝑋(𝑋)) and
Beta (𝐹𝑌 (𝑌 )) is calculated through (10);

∙ Step 4) The Pearson coefficient of the wind speed and solar irradiation
are calculated, using (12);
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∙ Step 5) 𝜃 is calculated for the CDF Weibull and Beta correlation, using
(16);

∙ Step 6) The simulation of the correlation of random variables with the
DBC can be done through (17), where 𝐶−1

𝑉 |𝑈 is obtained in (16):

𝑢 = 𝑢1
𝑣 = 𝐶−1

𝑉 |𝑈(𝑢2|𝑢, 𝜃) (17)

∙ Step 7) The original probabilistic density functions (PDF) of the wind
speed and solar radiation are obtained through the inverse of the CDF
in (10).

∙ Step 8) ℎ = ℎ + 1;.

∙ Step 9) While (ℎ ≤ 96), go back to step (2). Otherwise, the algorithm
finishes.

To obtain the annual correlation (divided into 96h), the algorithm must
be repeated for the next hour until the 96h of the season is completed.

2.3. Wind Power Generation

There are several methods in the literature to model the power of wind
generators, among which we can mention the models based on the equations
of energy available in the wind and the models based on the power curve of
the wind turbine. Better precision in modeling is obtained with the latter,
since the power curve directly provides the power generated for a specific
wind speed [37]. Most small wind turbines use stall control to operate at
maximum capacity, due to its simplicity and low cost. The machines that
operate with the stall control have four operating modes, described below:

∙ The wind speed is less than the turbine cut-in speed (𝑉𝑖): the wind
power is not sufficient, therefore the turbine does not start and there is
no generation of power.

∙ The wind speed is greater than 𝑉𝑖, but less than the nominal speed (𝑉𝑛):
this activates the power control system of the machine by adjusting the
aerodynamic stall in order to work with the maximum allowed power.

12



∙ The wind speed is between 𝑉𝑛 and the cut out speed (𝑉𝑜): the power
control system of the machine acts through the aerodynamic stall in
order to work with the nominal power, preventing the machine to operate
above the rated power.

∙ The wind speed is greater than 𝑉𝑜: the turbine is turned off in order to
avoid damage to its physical structure.

Based on the technical specifications and power data generated as a
function of wind speed obtained from the manufacturer’s manual, this work
uses the least squares method to model wind power, whose mathematical
model is described in 18, where 𝑤 is the wind speed and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ,
𝑖, 𝑗 are the ninth degree polynomial coefficients, which are determined using
the polyfit tool of the Matlab software [38]:

𝑃𝑤 =

⎧⎪⎨⎪⎩
0; 0 ≤ 𝑉 < 𝑉𝑖

𝑎 * 𝑉 9 + ... + 𝑖 * 𝑉 + 𝑗; 𝑉𝑖 ≤ 𝑉 < 𝑉0
0; 𝑉 ≥ 𝑉0

(18)

where:
𝑉 is the wind speed (m/s);
𝑉𝑖 is the cut-in speed (m/s);
𝑉0 is the cut-out speed (m/s);
𝑎, ..., 𝑗 are the coefficients of the polynomial.
𝑃𝑤 is the power generated by wind (W).

2.4. Photovoltaic Power Generation

The output power of photovoltaic panels depends on solar radiation, the
temperature of the location and the physical characteristics of the photovoltaic
module. The methodology proposed in [39] was used to model it. The
mathematical model is presented in (19):

𝑇𝑐 = 𝑇𝑎 + 𝑟(𝑁𝑜𝑡−20
0,8 )

𝐼 = 𝑟[𝐼𝑠𝑐 + 𝐾𝑖(𝑇𝑐 − 25)]
𝑉 = 𝑉𝑜𝑐 − 𝐾𝑣(𝑇𝑐 − 25)

𝐹𝐹 = 𝑉𝑚𝑝𝑝𝑡·𝐼𝑚𝑝𝑝𝑡

𝑉𝑜𝑐·𝐼𝑠𝑐

𝑃𝑝ℎ = 𝑁*𝐹 𝐹 *𝑉
𝐼

(19)
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where:
𝑇𝑐 - photovoltaic cell temperature (𝑜C);
𝑇𝑎 - average ambient temperature in the period (𝑜C);
𝑁𝑜𝑡 - nominal cell operating temperature (𝑜C);
𝐼 - current in cell (A);
𝐼𝑠𝑐 - cell short circuit current (A);
𝐾𝑖 - current/temperature coefficient (A/𝑜C);
𝑉 - voltage in the photovoltaic module (V);
𝑉𝑜𝑐 - open circuit voltage of the module (V);
𝐾𝑣 - stress/temperature coefficient (V/𝑜C);
𝐹𝐹 - form factor (dimensionless);
𝑉𝑚𝑝𝑝𝑡 - voltage at the point of maximum power (V);
𝐼𝑚𝑝𝑝𝑡 - current at the point of maximum power (A);
𝑁 - Number of panels;
𝑃𝑝ℎ - power generated by the panels (W).

2.5. Determining the Power of DG

To determine the power supplied by the DG, preserving their stochastic
nature, the Monte Carlo Simulation (MCS) is used, as it uses the generation of
random numbers to assign values to the investigated variables. This method
can be applied to both deterministic and stochastic problems. The Monte
Carlo method is a numerical procedure that uses random, or pseudo-random,
numbers to treat quantities that are not necessarily random, based on the Law
of Large Numbers and the Central Limit Theorem. The technique consists in
generating random values for each probability distribution within a model, in
order to simulate a relatively large number of scenarios. In MCS, the average
value of the number of simulations (𝑁) is associated with the statistical error
estimate (𝜖), given by (20) [40]:

𝑁 = 1
4 × 𝛿 × 𝜖2 (20)

where 𝛿 is the sample variance, which can be determined according to the
(𝜁) confidence interval in (21):

𝛿 = 1 − 𝜁 (21)

To obtain an error of 5%, with a confidence interval of 99%, it is necessary
to generate 10000 random numbers, that is, 10000 scenarios. The power value
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with the highest probability of occurrence, among the 10000 random numbers
of wind speed and solar radiation, is obtained through (22). The convergence
of the MCS is guaranteed with a very high number of simulations (10000
simulations):

𝑃𝑜 = 1
𝑁

𝑁∑︁
𝑗=1

𝑃 (𝑗) (22)

where 𝑃𝑜 is the power value with the highest probability of occurrence
calculated for each hour of each station, 𝑃 (𝑗) is the power of the DG for each
iteration and 𝑁 is the number of iterations. In this work, MCS is applied 96
times (once for each hour of the four seasons) and receives the PDF for wind
speed and solar radiation. At the end of the 10000 iterations, there is a PDF
of the power of the DG. The simulation algorithm is shown below:

Algorithm 3: Monte Carlo Simulation

∙ Step 1) 10000 random numbers are generated;

∙ Step 2) The CDF of the wind speed and solar radiation is obtained;

∙ Step 3) The correlation between the incoming CDF through the DBC
is determined;

∙ Step 4) The inverse CDF is obtained (returning to the original PDF
values);

∙ Step 5) The power of wind generators and photovoltaic panels is
determined through the mathematical modeling shown in section 3.4;

∙ Step 6) The PDF of the power of the DG with the highest probability
of occurrence is obtained.

3. Radial Load Flow Algorithm

The load flow, or power flow, determines the state and distribution of
the electrical network flows for a given load. In this problem, the network is
represented by a set of algebraic equations and inequalities, meaning that the
system model is static. To calculate the load flow, computational methods
specifically developed to solve systems of algebraic equations and inequalities
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are used. To model the network feeder, the radial topology was chosen, since
it is the most used type in electricity distribution networks.

To calculate the load flow of the feeders, the sum of the power method
was used, adapted from [41]. This method uses a simple solution process,
presenting an excellent performance to solve load flow problems in radial
feeders. The algorithm for obtaining the flow is shown below:

Algorithm 4: Radial Load Flow

∙ Step 1) The system parameters are defined, such as the identification of
the substation voltage (reference node) and the tolerance for convergence
(𝜖);

∙ Step 2) The voltage values of the nodes are defined as being equal to
the reference voltage with a zero angle and the total losses of active and
reactive power are considered to be null;

∙ Step 3) Upstream operation: the sum of the powers at each node
(starting at the most extreme nodes and going up to the substation) is
calculated, including the losses obtained in (23) and (24):

𝑃𝑘𝑚𝑝 = 𝑟𝑘𝑚
𝑃 2 + 𝑄2

𝑉 2
𝑚

(23)

𝑄𝑘𝑚𝑝 = 𝑥𝑘𝑚
𝑃 2 + 𝑄2

𝑉 2
𝑚

(24)

where 𝑃𝑘𝑚𝑝 and 𝑄𝑘𝑚𝑝 are the active and reactive losses between the
bars 𝑘 and 𝑚, 𝑟𝑘𝑚 and 𝑥𝑘𝑚 are the resistance and reactance of the 𝑘𝑚,
𝑃 and 𝑄 are the active and reactive powers of the load, and 𝑉𝑚 is the
modulus of the voltage in the load.

∙ Step 4) Downstream operation: new voltage values are calculated on
all system bars (starting at the substation and going to the extreme
nodes) using (25);

𝑉 4
𝑚 +

[︁
2(𝑟𝑘𝑚𝑃 + 𝑥𝑘𝑚𝑄) − 𝑉 2

𝑚

]︁
𝑉 2

𝑀 + (𝑃 2 + 𝑄2)(𝑟2
𝑘𝑚 + 𝑥2

𝑘𝑚) = 0 (25)

where 𝑉𝑘 and 𝑉𝑚 are the voltages of the 𝑘 and 𝑚 nodes, 𝑟𝑘𝑚 and 𝑥𝑘𝑚

are the resistance and reactance of the 𝑘𝑚, and 𝑃 and 𝑄 are the active
and reactive powers of the load.
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∙ Step 5) The new values of the active and reactive losses are calculated
using (23) and (24);

∙ Step 6) Convergence criteria: if the difference between the total losses
of the current iteration and the previous iteration is less than the
tolerance value for convergence, the process must be ended. Otherwise,
go back to step (3).

4. Problem formulation and the Proposed Genetic Algorithm Op-
timization

In this work, we opted to allocate the CB on the same bar in which the DG
were installed. The presence of CB in the electrical network allows the surplus
of the circuit reactive to be supplied, consequently increasing the power
factor and the current of the feeder. As a result, there is an improvement in
the voltage profile of the network, an increase in the supply capacity and a
contribution to the reduction of system losses. The CBs used were those of
commercial values, 600 kvar and 1200 kvar.

As input to the AG, there is a vector with 96 values of active power
(24ℎ × 4 seasons) from the DG and, for each feeder, the heavy load level
(higher load value) observed hour, considering the horizon of one year, as in
[42]. The location of the DG is represented by a chromosome with 2 × 𝑘 bits,
𝑘 being the number of bars in the feeder. The encoding used is binary, where
each pair of elements on the chromosome indicates whether there will be the
installation of DG and CB units, so that 00, 01, 11, 10 mean, respectively, that
there is no DG or CB; there is no DG, but there are CBs; there are DGs and
CBs; and there are DGs, but there is no CB.

When inserting a DG and a CB in a certain bar, it will be possible to
supply the load of this bar and, when necessary, supply the surplus to the
system. The necessary modifications to represent the presence of DG and CB
are shown in (26) and (27), respectively.

Δ𝑃𝑘 = 𝑃𝐷𝑘 − 𝐷𝐺𝑘 × 𝑃𝐷𝐺𝑘 (26)

Δ𝑄𝑘 = 𝑄𝐷𝑘 − 𝐶𝐵𝑘 × 𝑄𝐶𝐵𝑘 (27)

where Δ𝑃𝑘 is the resulting active power variation (𝑊 ) in the 𝑘 bar, 𝑃𝐷𝑘 is
the active power (𝑊 ) demanded in the 𝑘 𝑏𝑎𝑟, 𝐷𝐺𝑘 is the binary variable for
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determining the presence of 𝐷𝐺 in the 𝑘 bar, 𝑃𝐷𝐺𝑘 is the active power (𝑊 )
injected by the 𝐷𝐺 into the 𝑘 bar, Δ𝑄𝑘 is the variation of reactive power
(𝑘𝑣𝑎𝑟) resulting in the bar 𝑘, 𝑄𝐷𝑘 is the reactive power (𝑘𝑣𝑎𝑟) demanded in
the bar 𝑘, 𝐶𝐵𝑘 is the variable binary to determine the presence of 𝐶𝐵 in the
𝑘 bar and 𝑄𝐶𝐵𝑘 is the reactive power (𝑘𝑣𝑎𝑟) injected by 𝐶𝐵 into the 𝑘 bar.

4.1. Mathematical Formulation of the Problem

In practice, in addition to minimizing active power losses, it is also
necessary to minimize the overall cost of the project. Although this problem
is multiobjective, a mono-objective formulation can be used that integrates
the losses of active power and the global cost in a single function as follows:

Minimize:Annual active power losses and Global Cost
S.T.

Active and reactive power balance
Current magnitude limit on EPS lines
Voltage magnitude limits at EPS nodes

Operational limit of DG
Quantitative limit of DG

(28)

In the proposal, we seek to minimize the annual active power losses of the
feeders, as well as the overall cost of implementing the project. In this work,
the costs related to the installation and maintenance of the DG and CB units
are considered, in addition to respecting the maximum voltage limits on the
bars as stipulated by the regulatory agency. For each hourly interval, the
insertion of DG and CB must meet the restriction of the balance of active
and reactive power in the EPS bars, according to (29) and (30), respectively:

Δ𝑃𝑘 = 𝐷𝐺𝑘 × 𝑃𝐷𝐺 − 𝑃𝐷𝑘 − 𝑃𝑘(𝑉, 𝜃) = 0 (29)

Δ𝑄𝑘 = 𝐶𝐵𝑘 × 𝑄𝐶𝐵 − 𝑄𝐷𝑘 − 𝑄𝑘(𝑉, 𝜃) = 0 (30)

The number of DG and CB units installed in the EPS is limited by the
restrictions shown in (31) and (32):

𝑛𝑏∑︁
𝑘=2

𝐷𝐺𝑘 = 𝑁𝐷𝐺 (31)
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𝑛𝑏∑︁
𝑘=2

𝐶𝐵𝑘 ≤ 𝑁𝐶𝐵 (32)

where 𝐷𝐺𝑘 is the binary variable for determining the presence of 𝐷𝐺 in
the 𝑘 bar, 𝐶𝐵𝑘 is the binary variable for determining the presence of 𝐶𝐵 in
the 𝑘 bar, 𝑁𝐷𝐺 is the maximum allowed number of 𝐷𝐺 in the system and
𝑁𝐶𝐵 is the maximum allowed number of 𝐶𝐵 in the system.

4.2. Objective Function

The proposed GA uses an objective function (𝑂𝐹 ) to minimize the global
cost of installing the 𝐷𝐺, 𝐶𝐵 and annual losses of active power of the system
and to meet the operating restrictions of the distribution network, as shown
in (33):

𝑂𝐹 = 𝑚𝑖𝑚

⎡⎣(︃𝛼1𝐶𝑔 − 𝛼2

(︃ 96∑︁
𝑖=1

(Δ𝑃 𝑖
𝑙 + 𝑃 𝑖

𝐷𝐺)
)︃

× 𝑡𝑒

)︃
+ 𝛽

96∑︁
𝑖=1

(︃
𝑏𝑛∑︁

𝑘=1
|Δ𝑉 𝑘|

)︃
𝑖

⎤⎦
(33)

where Δ𝑃 𝑖
𝑙 represents the reduction of active power losses in the hourly

interval 𝑖 in relation to the original feeder losses before the insertion of DG
and CB, 𝑃 𝑖

𝐷𝐺 represents the active power generated by the 𝐷𝐺 in the hourly
interval 𝑖, 𝑡𝑒 is the tariff of the energy purchased by the concessionaire, 𝐶𝑔

represents the cost of installation and maintenance of the DG and CB and
represents the deviations of tension in the 𝑘-th node of the network. The
constants 𝛼1, 𝛼2 and 𝛽 are the penalties imposed on the terms of the objective
function in order to obtain the best solution to the optimization problem.

A scheme of the GA integrated with the power flow to obtain the optimal
allocation of the DG and CB units is shown in the subsection 4.3. In the
evaluation step, each solution (power of an hourly interval) is subjected to
the calculation of the power flow until the 96 hourly intervals are completed.
Therefore, for each hourly interval, the total annual active power losses and
the total cost of installation and maintenance of the DG and CB units are
updated.

When calculating the power flow, the system bus voltages are also obtained.
If any bar does not meet the voltage restrictions, or if the system does not
have the maximum number of DG, then the individual is penalized, so that it
has less chance of generating descendants in the next generation.
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4.3. Binary Genetic Algorithm

A genetic algorithm is a meta-heuristic inspired by the theory of evolution,
in which the best individual is normally more likely to pass its genetic load
on to future generations [43]. Through computation, the algorithm tries to
recreate the necessary conditions to find a better individual after a certain
number of iterations (generations).

The initial population of the GA is randomly generated and the genetic
operators on the chromosomes are selection, crossing and mutation. Selection
is the genetic operation in which the most suitable chromosomes are chosen
to form the genetic basis for the subsequent generation. The crossing adopted
in this work consists of drawing two individuals through the roulette method,
where a cut is made in the chromosomes (individuals) drawn. From this, two
new individuals are generated through an exchange of stretches of genes. The
mutation operator is necessary for the introduction and maintenance of the
genetic diversity of the population, arbitrarily altering one or more genes on
a chromosome. The chromosome is represented by a vector that assumes 0
for possible positions when certain equipment is not considered and 1 for
positions when it is intended to consider the equipment.

The GA performs the following steps:

Algorithm 5: Genetic Algorithm

∙ Step 1: Generate the initial random population and evaluate each
solution obtained;

∙ Step 2: Draw the members of the population who will perform the
crossing;

∙ Step 3: The solutions chosen in the previous step will be recombined
given a probability of crossing;

∙ Step 4: The mutation is applied to all members of the population
limited by a probability;

∙ Step 5: Choose the elite solution and place it in the current population,
avoiding the loss of the best solution from the previous generation;

∙ Step 6: Evaluate the solutions obtained using the objective function
using (33);
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∙ Step 7: If the specified number of generations is reached, then the
algorithm finishes. Otherwise, return to step (2).

5. Results

In this work, to demonstrate the proposal, two real radial feeders from
Light Serviços de Eletricidade S.A are used: the one corresponding to the
distribution line Bandeira, which has 78 bus and the one corresponding to the
distribution line Recife, with 96 bus, located in Rio de Janeiro city (22o54’23”
south latitude and 43o10’21” west longitude), Brazil [42]. The methodology
proposed in this work was implemented in Matlab R○ and the results of each
stage of the methodology are now presented.

5.1. Meteorological and load historical series

To model power generation, data from the historical series of wind speed,
solar irradiance and temperature were used in the period between 2010 and
2014, every 1 hour, from a meteorological station close to the region of study.
The data of wind speed, solar irradiance and temperature varied according to
the time of day and month of the year, so, its seasonality must be preserved.
Each season of the year was subdivided into 24 hour segments (hour of day),
with each hour representing a specific time for the entire season. Therefore,
the year is divided into 96 time segments (24h × 4 stations). Considering 30
days a month, each time segment had 450 data readings (5 years × 30 days
/ month × 3 months / station × 1 read / hour). With this division, it was
possible to preserve the seasonality characteristics in the generation.

The mean and standard deviation of each hourly interval of solar irradiation
and wind speed are needed to obtain its probabilistic model from the Beta
and Weibull distributions, respectively. The annual mean values of solar
irradiation for each time interval are shown in 3.(a), and the same for wind
speed in 3.(b).

According to Figure 3.(a), as expected, there is negligible solar radiation
between approximately 7pm and 5am, so, there is no generation of solar
energy in this period. It is also noted that the peak irradiation occurs around
noon, being higher in summer than in other seasons. In turn, according to
Figure 3.(b), there is wind throughout the day, and the wind speed is higher at
the end of the day, between 4pm and 8pm. Furthermore, summer and spring
were the seasons in which the highest wind averages occurred throughout the
year.

21



0 5 10 15 20

Hour

0

0.2

0.4

0.6

0.8

1

S
o

la
r 

ir
ra

d
ia

ti
o

n
 (

k
W

/m
2
)

(a)

Autumn

Winter

Spring

Summer

0 5 10 15 20

Hour

1

2

3

4

5

6

7

8

W
in

d
 s

p
e
e
d
 (

m
/s

)

(b)

Autumn

Winter

Spring

Summer

Figure 3: Historical series of a) solar irradiation b) wind speed, in 96 hourly intervals.

5.2. Monte Carlo simulation

In this subsection, the results obtained with the proposed methodology to
model wind and solar generation are presented, considering their horoseasonal
nature and stochastic correlation.

5.2.1. Wind Speed PDF Modeling

With the scale factor and shape values of the Weibull distribution obtained
from a specific time interval, a Monte Carlo Simulation was performed with
10,000 iterations, in order to generate 10,000 random wind speed values,
chosen randomly in the PDF of that time interval. The PDF of the wind
speed of a time interval obtained by the Monte Carlo simulation described
above is shown in Figure 4 and compared to the PDF of the real time series
data.

5.2.2. Wind Power Generation

In this validation, a group of 60 small wind generators is considered, which
corresponds to a total installed power of 600kW. To model the power generated
by the generator when operating between the starting and cutting speed range,
a 9 degree polynomial is used, whose coefficients were determined, using the
least squares method, from the technical data provided by the manufacturer.
The modeling of the turbine power with the 9 degree polynomial obtained a
coefficient of determination (𝑅2) of 0.9998, proving the precision of the model
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Figure 4: Annual PDF generated by Monte Carlo Simulation, and historical series for wind
speed.

to describe the phenomenon. The curve obtained with the adopted model
and the curve generated by the data in the manufacturer’s manual are shown
in Figure 5.
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Figure 5: Power curves from the proposed model and the manufacturer’s manual.
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Using the 9 degree polynomial, the power generated by the turbine as a
function of wind speed is obtained for the 10,000 random wind speed numbers,
considering each 96 PDF hourly interval. To obtain the total power of the
generator group, it is necessary to multiply the power generated by the number
of generators (60 generators). Figure 6 shows the PDF of power generated by
the wind generators corresponding to 15 hours of autumn.
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Figure 6: PDF of the active power generated from wind in fifteen hourly intervals during
autumn.

As it can be seen in Figure 6, 48% of the time the wind turbine is switched
off in this time interval; this is because the wind speed is smaller than the
cut-in speed of the machine (2.5 m/s); the same percentage of time, the study
region does not have a great wind potential.

5.2.3. Solar Irradiation PDF Modeling

As with the modeling of the wind speed profile, for each time interval, the
respective solar irradiation profile was modeled using the beta distribution,
which uses its mean and deviation values to obtain the 𝛼(𝑖) and 𝛽(𝑖) shape
factors. Thus, the PDF of one of the 96 intervals is created by the 10,000 solar
irradiation values generated by the MCS. Figure 7 shows the solar irradiation
PDF generated by the MCS and the respective PDF of the real historical
series corresponding to 15 hours of autumn.

5.2.4. Photovoltaic Generation

In this study, a group of 6000 photovoltaic modules is considered, which
corresponds to a total installed power of 1500 kWp. To model the power
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Figure 7: Annual PDF generated by MCS, and the historical series of solar irradiation.

generated by the panels, the methodology described in section 2.4 was used.
Figure 8 shows the PDF of power generated by the solar panels corresponding
to 15 hours of autumn.
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Figure 8: PDF of the active power generated by PVs in fifteen hourly intervals during
autumn.

5.2.5. Stochastic correlation of variables

To model the stochastic dependence between the variables of wind speed,
solar radiation, ambient temperature and load, the Diagonal Band Copula
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method was used, correlating each of the quantities with the wind speed and
the load with the ambient temperature. Figure 9 shows the correlation rank
among the listed variables.

The correlation rank informs the degree of correlation between the quanti-
ties, ranging from independent when equal to 0, to strongly dependent directly
when equal to 1, or strongly dependent inversely when equal to -1. It can be
observed that there is a predominance of weak to moderate direct dependence
among the quantities, since the maximum correlation modulus is always less
than 0.5. The highest dependence values were found near the 12th hour and
it is positive (i.e., dependent directly) when analyzing the wind speed versus
solar radiation, and wind speed versus temperature.
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Figure 9: Correlation of the load with meteorological data.

5.2.6. Total Power of DG

The total power of the DG corresponds to the sum of the power of the
wind generation with the power of the photovoltaic generation, obtained
through the integration of the sequential Monte Carlo method and diagonal
band Copula. The annual power generation, considering and not considering,
the stochastic dependence modeling can be seen in Figure 10.

Analyzing Figure 10, it is clear that the photovoltaic power has more
impact than the wind power because, in addition to having greater installed
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Figure 10: Results of annual power generation by DG a) using stochastic dependence
modeling and b) without the model

capacity, the solar potential is better than the wind potential in the study
region. It is also worth noting that the power generated by the DG (solar +
wind), considering the correlation model is lower close to midday (at peak
generation), but higher in the late afternoon (between 4 and 7 pm), because
it has the highest positive Pearson coefficient of the wind speed and solar
irradiation at these moments.

5.3. Optimal Allocation of DG

In this work, GA is used as a method of meta-heuristic optimization to
search for the ideal installation location for the DG and CB units, with the
premise of minimizing the overall cost of installing them and minimizing
the annual loss of active power. To analyze the behavior of the proposed
method, computer simulations were performed using the MATLAB software.
The software and hardware used have the following configurations: Asus
K45A-VX282H Notebook, 2.5 GHz Intel Core i5-3210M Processor, 4 GB
RAM, MATLAB R2013a (8.1.0. 604).

Two radial systems were used: the 78-bus feeder from the Bandeira
network and the 96-bus feeder from the Recife network. For each feeder, a
total of five scenarios were considered for analysis: the base case, where no
DG were connected to the system, with the allocation of five, four, three units
and two DG.

The GA configuration was chosen from several tests and the parameters
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adopted were: Selection by roulette method, Crossing with a cutoff point,
Crossover rate: 60%, Mutation rate: 0.5%, Size of the population: 40 individ-
uals, Stopping criterion: maximum of 50 iterations (generations). The 𝛼1, 𝛼2
and 𝛽 constants of the GA objective function, as shown in (33), were defined
from various tests and assumed the following values: 𝛼1 = 0.000001, 𝛼2 = 10
and 𝛽 = 1000.

The quantities used in this work are presented in a standardized way (Per
Unit, p.u.), that is, based on predetermined base values. The basic values
adopted for power and voltage are 1 𝑀𝑉 𝐴 and 13.8 𝑘𝑉 , respectively. The
AG receives the 96 PDF of power as input from the DG, which represent the
24 hours of the day of the four seasons and the load levels of the feeders. The
total annual power of the DG is approximately 33.90 𝑝𝑢, which is used as
the total fixed amount generated by the DG, that is, for each scenario, the
total installed power is 33.90 𝑝𝑢 , and it can be divided equally into up to
five generation units. The tests were used considering the worst case of load
demand, that is, that with the highest hourly load.

From the feeder point of view of the voltage profile in steady state, the
voltage in each feeder bus is classified as adequate, precarious and critical
according to:

∙ Adequate: Voltage >= 0.93 and <= 1.05 p.u.;

∙ Precarious: Voltage >= 0.90 and < 0.93 p.u.;

∙ Critical: Voltage < 0.93 or > 1.05 p.u.;

Next, the results from the different test scenarios are presented and
discussed.

5.3.1. Base Case with no DG Connected to the System

In this scenario, it is considered that no DG are connected to the system
and that the values of the active power annual losses for the Bandeira (78
bus) and Recife (96 bus) feeders is approximately 44.70 p.u. and 37.17 p.u.,
respectively.

For this scenario, the voltage level of almost all the bus on both feeders
is at a precarious or critical level, i.e., directly affecting the energy quality
delivered to the consumer, while also generating a fine to the concessionaire
for breach of voltage. The voltage profile of the 78 bus, when no DG are
allocated, is shown (as a black line) in Figure 13.
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5.3.2. Allocation of Five DG

In this scenario, it is considered that five DG are connected to the system,
together with the possibility of connecting up to five CBs to correct the critical
voltage level in the feeder bus. Table 1 shows the optimal location of the bus
for installing the DG and the value of the installed CB. The voltage profile of
the 96 bus feeders, with the allocation of five DG, is shown in Figure 11.

Table 1: Capacitor bank installed in the DG allocation bus.

Bus Power Bus Power
Bandeira (kVAr) Recife (kVAr)

16 1200 32 1200
41 600 46 1200
45 - 75 600
60 600 88 600
64 1200 89 -
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Figure 11: Annual voltage profile of the 96 bus feeder with allocation of 5 DG.

In the scenario with the allocation of five DG, according to Figures 11,
the voltage levels remain within the range considered adequate (between 0.93
and 1.05 𝑝.𝑢.) for all 96 hourly intervals of the 96 bus feeder. In both feeders,
the best solution verified by the GA was the installation of four CBs.

29



5.3.3. Allocation of Four DG

In this scenario, it is considered that four DG are connected to the system,
together with the possibility of connecting up to four CB to correct the critical
voltage level in the bus feeder. The voltage profile of the 78 bus feeder, with
the allocation of four DG, is shown in Figure 12.
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Figure 12: Annual voltage profile of the 78-bus feeder with allocation of 4 DG.

Table 2 shows the optimal location of the bus for installing the DG and
the value of the CBs, when installed.

Table 2: Capacitor bank installed in the DG allocation bus.

Bus Power Bus Power
Bandeira (kVAr) Recife (kVAr)

50 1200 32 1200
52 1200 50 1200
60 - 86 600
78 600 94 -

5.3.4. Analysis of all scenarios

By reducing the number of DG allocated, according to Figure 13, the
voltage levels remain adequate; however, it is noticeable that there is an
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approximation to the lower limit of adequacy (0.93 𝑝.𝑢.). In both feeders, the
best solution verified by the GA was the installation of three CBs.

In order to better visualize the relationship between the number of DG
allocated and the voltage level of the bus feeder, Figure 13 shows, respectively,
the voltage profile in the 78 bus feeder and in the 96 bus feeder at 3 pm in
the autumn for the different proposed scenarios.
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Figure 13: Voltage profile on the a) 78 bus and b) 96 Bus feeder at 3 pm in the autumn.

According to Figure 13, it can be observed that the voltage profile in both
feeders increases as more DG are installed in the system. For the hourly
interval of 3 pm in the autumn, it appears that, even in the scenario with
two DG allocated, the voltage profile remains at adequate levels. This fact is
due to the low demand for load in this hourly interval, in contrast to other
intervals where the demand is greater and the tension reaches precarious
levels for this same scenario.

To perform a voltage profile analysis across all 96 time intervals, the Table
3 shows the number of bus from the Bandeira and Recife feeders that are in
the precarious or inadequate range in at least one of the 96 intervals.

According to Table 3, it can be observed that most bus are at the critical
voltage level for at least one time interval, in both feeders, in the base case
(without DG). In the case of 2 DG installed, the voltage profile improves, as
it does not have bars with voltage at a critical level, but the Bandeira feeder
still has 56 bus with voltage at a precarious level, while the Recife feeder has
9 bars in this situation. In scenarios with three or more DGs installed, all
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Table 3: Number of bus from the feeders that are in precarious or inadequate range in at
least one of the 96 intervals.

Scenario Voltage bus profile (unit)
Adequate Precarious Critical

Bandeira (78 bus)

Base case 10 7 61
2 DG 26 56 0
3 DG 96 0 0
4 DG 96 0 0
5 DG 96 0 0

Recife (96 bus)

Base case 1 3 92
2 DG 87 9 0
3 DG 78 0 0
4 DG 78 0 0
5 DG 78 0 0

buses are always within the critical voltage range, that is, the feeder voltage
profile is within desirable standards.

5.3.5. Annual losses of active power in the feeders

Table 4 shows the annual losses of active power in the Bandeira and Recife
feeders in the different test scenarios for installing the DG. It can be seen
in Figure 14 that, for both feeders, the insertion of DG together with the
CBs minimized annual losses significantly. There was a reduction of up to
71.7% in annual losses of active power in the Bandeira feeder and 73.4% in
the Recife feeder in the best case (5 DG installed).

Table 4: Comparison of active power losses for different allocation scenarios of the DG.

Scenario Annual losses (p.u.) Annual losses (p.u.)
Bandeira Recife

Base case 44.70 37.17
5 DG 12.65 9.87
4 DG 18.37 11.26
3 DG 20.02 13.67
2 DG 23.09 17.02

Analogous to the voltage profile, the active power losses also increase with
the number of installed DG, as shown in Figure 15.
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Figure 14: Annual active power losses, in relation to the Base case, of Bandeira (78-bus)
and Recife (96-bus) feeders, with DG allocation.
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Figure 15: Profile of active power losses in the 96-bus feeder with DG allocation.

5.3.6. Return on investment in feeders

Tables 5 and 6 compare the investment needed, the annual maintenance
costs, the annual revenue recovered and the Return on Investment (ROI)
with the installation of the DG and CB units. The ROI is an expectation,
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considering the investment and maintenance costs and the revenue recovered
annually by the DG and CB units installed in the network.

Table 5: Analysis of the Return on Investment (ROI) for the Bandeira feeder

Scenario Invest(R$) Maint.(R$/yr) Annual inc(R$) ROI (yrs)

Case 1 11,413,266 142,806.60 2,042,817.11 6.08
Case 2 11,408,626 142,342.60 1,865,651.69 6.65
Case 3 11,408,626 142,342.60 1,814,328.52 6.84
Case 4 11,403,986 141,878.60 1,719,403.43 7.30

Table 6: Analysis of the ROI for the Recife feeder installation

Scenario Invest(R$) Maint.(R$/yr) Annual inc(R$) ROI(yrs)

Case 1 11,413,266 142,806.60 1,895,603.25 6.55
Case 2 11,408,626 142,342.60 1,852,504.37 6.68
Case 3 11,411,979 142,677.90 1,778,140.46 7.06
Case 4 11,403,986 141,878.60 1,674,316.05 7.49

It can be seen that the recovered revenue grows as the number of installed
DG and CB increases. The expected ROI is around 6-7 years, which is ade-
quate, especially considering the useful life of wind generators and photovoltaic
panels, which is around 20 years (without considering the converters).

6. Conclusions

This paper first presented a methodology to obtain the probabilistic
model of electric energy generation through wind generators and photovoltaic
panels. The model consists of the load prediction through the historical series
correlation of the wind speed and the solar irradiation of a specific region
(Recife, Brazil). In order to preserve the seasonality, the year is divided into
96 hourly intervals, representing the 24 hours of the day of the four seasons.
In addition, a technique to obtain the optimal location of the Distributed
Generation Units is proposed using a meta-heuristic Genetic Algorithm. The
optimization aims to minimize the annual losses of active power and the
overall cost of investment, taking into account the inherent constraints of the
problem.
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To validate the approach, several case studies were analyzed using data
from two feeders from the LIGHT distribution network located in Rio de
Janeiro city (22o54’23” south latitude and 43o10’21” west longitude), Brazil.
For an analysis closer to reality, the worst-case demand values were used when
the network overloaded. The network is composed of 60 wind generators
and 6000 photovoltaic panels, equally distributed among the Distributed
Generation Units. This makes it possible to analyze the influence of the
distribution of these generators in the feeders bars. Capacitor Banks were
used, as they contribute to regulating the voltage at suitable levels.

The results showed that the proposed methodology to optimize the alloca-
tion of the Distributed Generation Units and Capacitor Banks significantly
reduces the losses of active power in the system. Among the different test
scenarios, those with the highest number of Distributed Generation Units
obtained lower losses and a higher financial return. The expectation of the
return on investment was estimated to be between 6 and 7 years, which is
quite satisfactory.

In summary, it has been shown that the proposed methodology for load
forecasting and optimizing the Distributed Generation Units allocation can
be an important tool for planning electric power systems. This methodology
deals with the stochastic nature of the Distributed Generation Units through
a probabilistic model, with the aim of improving the technical and opera-
tional performance of the distribution networks with the proper allocation of
Distributed Generation Units.

Finally, it should be stressed that the methodology proposed in this paper
is universal, and can be applied to other feeders. Its application requires only
the measurements of a local weather station, and the consumption history of
the feeder.”
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