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aDepartamento de Informática, Universidad de Valladolid, Valladolid, Spain

Abstract

There are many studies that identify important deficits in the voice production of people with Down syndrome. These
deficits affect not only the spectral domain, but also the intonation, accent, rhythm and speech rate. The main aim of this
work is the identification of the acoustic features that characterize the speech of people with Down syndrome, taking into
account the different frequency, energy, temporal and spectral domains. The comparison of the relative weight of these
features for the characterization of Down syndrome people’s speech is another aim of this study. The openSmile toolkit
with the GeMAPS feature set was used to extract acoustic features from a speech corpus of utterances from typically
developing individuals and individuals with Down syndrome. Then, the most discriminant features were identified using
statistical tests. Moreover, three binary classifiers were trained using these features. The best classification rate, using
only spectral features, is 87.33%, and using frequency, energy and temporal features, it is 91.83%. Finally, a perception
test has been performed using recordings created with a prosody transfer algorithm: the prosody of utterances from
one group of speakers was transferred to utterances of another group. The results of this test show the importance of
intonation and rhythm in the identification of a voice as non typical. As conclusion, the results obtained point to the
training of prosody in order to improve the quality of the speech production of those with Down syndrome.

Keywords: Speech characterization, Prosody, Down syndrome, Intellectual disabilities, Automatic classification,
Perceptual test

1. Introduction

Individuals with Down syndrome (DS) have problems
in their language development that make their social re-
lationships and their developmental ability more problem-
atic (Cleland et al., 2010; Martin et al., 2009; Chapman,
1997). Many DS individuals have some physiological pecu-
liarities that affect their voice production, such as a smaller
vocal tract with respect to the tongue size or soft palatal
shape, among others Guimaraes et al. (2008). Muscular
hypotonia also affects their capabilities for performing a
correct articulation, degrading the quality of the spectral
characteristics of sounds (Markaki and Stylianou, 2011).
In addition, hearing loss during childhood (Shott et al.,
2001) and fluency deficits (Devenny and Silverman, 1990)
influence the frequency, energy and temporal domains of
the voice signal.

Although problems derived from physiological pecu-
liarities are permanent (only surgery (Leshin, 2000) or
prostheses (Bhagyalakshmi et al., 2007) could improve them),
intonation and fluency deficits can be improved by speech
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therapy and training. There are tools available for this
goal (González-Ferreras et al., 2017) based on perception
and production activities to be performed with the assis-
tance of therapists who help patients to properly manage
their breathing and intonation patterns. Although there
is general consensus about the importance of improving
prosody by training (see (Kent and Vorperian, 2013) for a
complete state of art revision), there are very few works
that provide empirical evidence of the importance of the
prosody related features (those belonging to fundamental
frequency, energy and duration domains) with respect to
other acoustic features belonging to the spectral domain.

The use of the video game described by González-Ferreras
et al. (2017) has allowed the formation of a speech corpus,
which has been used in this work to analyze and char-
acterize the speech of people with Down syndrome. This
corpus, described in section 3.1, contains recordings of peo-
ple with Down syndrome and typically developing people.
Both groups recorded the same sentences, so statistical and
perceptual tests have been used to compare the acoustic
features of the two groups of speakers, so that the most
relevant differences could be identified.

This work aims to find the best acoustic features to
characterize the speech of people with Down syndrome.
To do this, features of frequency, energy, temporal and
spectral domains have been extracted from the recordings
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of the gathered corpus. In addition, the relative weight of
each domain in the characterization of people with Down
syndrome has been included in this paper, especially the
comparison between the spectral and the other domains.

The methodology described above was developed to
answer two main research questions (RQ):

RQ1 : Which are the most discriminative acoustic fea-
tures between the recordings of speakers with Down
syndrome and typically developing speakers?

Issue 1.1 : Are there statistical differences between
these features?

Issue 1.2 : Are these differences in accordance with
what is expected or described in the state of the
art?

RQ2 : What is the relative weight of the spectral features
in comparison with the rest of the domains?

Issue 2.1 What is the relative weight of the differ-
ent features when identifying atypical speech
using automatic classifiers?

Issue 2.2 What is the relative weight of the differ-
ent domains when identifying atypical speech in
a perceptual test?

The structure of the article is as follows. Section 2 re-
views related works from the state of the art and presents
the innovation of our proposal. Section 3 describes the
experimental procedure, including the corpus description,
the features extraction process, the automatic classifica-
tion experiment and the perceptual test. Section 4 shows
the statistical test results of the different domain features,
the automatic classification results and the perceptual test
results. Finally, section 5 describes the discussion and sec-
tion 6 the conclusions.

2. Background and related work

The age of the population selected for the study seems
to be important for the results obtained, due to the physi-
ological differences between children and adults. Concern-
ing adults, Lee et al. (2009), Rochet-Capellan and Do-
hen (2015), Albertini et al. (2010) and Corrales-Astorgano
et al. (2016) found significantly higher F0 values in adults
with Down syndrome as compared to adults without in-
tellectual disabilities. In addition, Lee et al. (2009) and
Seifpanahi et al. (2011) found lower jitter (frequency per-
turbations) in adult speakers with Down syndrome. As
for energy, Albertini et al. (2010) found significantly lower
energy values in adults with Down syndrome. Moreover,
Saz et al. (2009) concluded that adults with Down syn-
drome had poor control over energy in stressed versus un-
stressed vowels. Albertini et al. (2010) found lower shim-
mer (amplitude perturbations) in male adults with Down
syndrome than in adults without intellectual disabilities.

Finally, temporal domain results depend on the unit of
analysis employed. Saz et al. (2009) found that people
with cognitive disorders presented an excessive variabil-
ity in vowel duration, while Rochet-Capellan and Dohen
(2015) and Bunton and Leddy (2011) reported longer du-
rations of vowels in adults with Down syndrome. Albertini
et al. (2010) discovered a lower duration of words in male
adults with Down syndrome. Moreover, people with Down
syndrome present some disfluency problems. Although
disfluency (stuttering or cluttering) has not been demon-
strated as a universal characteristic of Down syndrome, it
is a common problem of this population ((Van Borsel and
Vandermeulen, 2008; Devenny and Silverman, 1990; Eg-
gers and Van Eerdenbrugh, 2017)). These disfluencies can
affect the speech rhythm of people with Down syndrome.

On the other hand, Zampini et al. (2016) indicated that
children with Down syndrome had lower F0 than children
without intellectual disabilities. Moura et al. (2008) found
higher jitter in children with Down syndrome than chil-
dren without intellectual disabilities. In terms of energy,
Moura et al. (2008) indicated higher shimmer in children
with Down syndrome than in children without intellectual
disabilities.

The unit of analysis and the phonation tasks used by
the researchers are different. Rochet-Capellan and Dohen
(2015) used Vowel-Consonant-Vowel bysyllabes, Saz et al.
(2009) and Albertini et al. (2010) recorded words, Rodger
(2009) and Zampini et al. (2016) built these corpora us-
ing semi-spontaneous speech and Corrales-Astorgano et al.
(2016) analyzed sentences. Lee et al. (2009) combined
words, reading and natural speech. The majority of the
studies are focused on the English language (Kent and
Vorperian, 2013), but there are others focused on Ital-
ian (Zampini et al., 2016; Albertini et al., 2010), Spanish
(Corrales-Astorgano et al., 2016; Saz et al., 2009), French
(Rochet-Capellan and Dohen, 2015) or Farsi (Seifpanahi
et al., 2011).

The use of spectral features to assess pathological voice
has frequently been applied in the literature. Dibazar et al.
(2006) used MFCCs and pitch frequency with a hidden
Markov model (HMM) classifier for the assessment of nor-
mal versus pathological voice using one vowel as the unit
of analysis. Markaki and Stylianou (2011) suggested the
use of modulation spectra for the detection and classifica-
tion of voice pathologies. Markaki and Stylianou (2010)
created a method for the objective assessment of hoarse
voice quality, based on modulation spectra, using a corpus
of sustained vowels. The voice quality was evaluated using
the long term average spectrum (LTAS) and alpha ratio by
Leino (2009). Although these works do not refer to people
with Down syndrome, they do refer to some aspects that
appear in this kind of speakers and we refer to them in the
discussion section.

Formant frequency and amplitude have also been stud-
ied in people with Down syndrome. A larger vowel space in
people with Down syndrome was found by Rochet-Capellan
and Dohen (2015), while other studies denoted a reduction
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of the vowel space in children (Moura et al., 2008) and
adults (Bunton and Leddy, 2011). Moreover, the voice of
people with Down syndrome showed significantly reduced
formant amplitude intensity levels (Pentz Jr, 1987).

In order to compare our study with the state of the
art, a summary of other similar studies is shown in Table
1. A description of the corpus employed by these studies is
shown in Table 2. To the best of our knowledge, our study
is one of the first to analyze some features from the fre-
quency, energy, temporal and spectral domains together.
These features were extracted from the same recordings,
which can help in the study of the relative importance of
each domain in the characterization of the speech of people
with Down syndrome. The use of a standard feature set
(extended Geneva Minimalistic Acoustic Parameter Set,
eGeMAPS; detailed in section 3.2 and Appendix A) can
reduce the extraction methodology dependence, which can
make it easier to compare the results of different studies.

Perceptual studies show mixed results. Moura et al.
(2008) described the voice of children with Down syn-
drome as being statistically different from the voice of chil-
dren without intellectual disabilities in five speech prob-
lems: grade, roughness, breathiness, asthenic speech and
strained speech. Moran and Gilbert (1982) judged the
voice quality of adults with Down syndrome as hoarse. In
addition, Rodger (2009) noted discrepancies between per-
ceptual judgments of pitch level and acoustic measures of
F0. In our study, we did not want to compare each acoustic
measure with a perceptual judgment of the same feature.
Our aim is the assessment of the domain relevance in the
identification of a recording as being from a person with
Down syndrome, using automatic classifiers and percep-
tual tests.

3. Experimental procedure

Figure 1 shows the experimental methodology that we
have followed. Firstly, the speech corpus recorded by peo-
ple with Down syndrome and by typically developing peo-
ple was gathered. Secondly, acoustic features were ex-
tracted from all the recordings of each corpus and a sta-
tistical test to analyze the differences between groups was
carried out. Finally, the automatic classification experi-
ment was carried out, in which the features with significant
differences were used.

3.1. Corpus collection

We developed a computer video game to improve the
prosodic and communication skills of people with Down
syndrome (González-Ferreras et al., 2017). This video
game is a graphic adventure game where users have to
use the computer mouse to interact with the elements on
the screen, listen to audio instructions and sentences from
the characters of the game, and record utterances using
a microphone in different contexts. The video game was
designed using an iterative methodology in collaboration

with a school of special education located in Valladolid
(Spain). The feedback provided by teachers of special
education was complemented by research into the diffi-
culties of this population to use information and commu-
nication technologies. They have some difficulties, such
as attention deficit(Mart́ınez et al., 2011), lack of moti-
vation(Wuang et al., 2011), or problems with the short
term memory (Chapman and Hesketh, 2001) that had to
be taken into account when developing the video game.
The game was developed for the Spanish language.

Inside the narrative of the game, some learning activi-
ties were included to practice communication skills. There
are three different types of activities: comprehension, pro-
duction and visual. Firstly, the comprehension activities
are focused on lexical-semantic comprehension and on im-
proving prosodic perception in specific contexts. Secondly,
production activities are focused on oral production, so
the players are encouraged by the game to train their
speech, keeping in mind such prosodic aspects as intona-
tion, expression of emotions or syllabic emphasis. At the
beginning of these activities, the video game introduces
the context where the sentence has to be said. Then, the
game plays the sentence and the player must utter the sen-
tence while it is shown on the screen. The production ac-
tivities include affirmative, exclamatory and interrogative
sentences. Finally, visual activities include other activi-
ties designed to add variety to the game and to reduce the
feeling of monotony while playing.

The video game collected examples of sentences with
different modalities (i.e. declarative, interrogative and ex-
clamatory). Usually, the intonation patterns vary depend-
ing on the modality. Neutral declarative sentences usually
end with a decline to a low tone, while total interroga-
tives end with an upgrade to a high pitch. On the other
hand, partial interrogative sentences, which are character-
ized by an interrogative element at the beginning of the
sentence, start with a high tone associated with that in-
terrogative element and usually end with a fall. Finally,
exclamatory sentences are usually a marked variation of
the corresponding declarative, so the variation lies basi-
cally in such aspects as the intensity, volume and tonal
range used by the speaker.

Moreover, the combination of different sentences al-
lows the inclusion of inflections that indicate a particular
segmentation in oral production. Depending on the con-
text and speed of elocution, these inflections may corre-
spond to a pause, which implies a silence and, normally,
the end of the sentence, or a semi-pause, which implies
an intonation change in the same sentence. For instance,
one of the examples collected in the corpus includes the
three modalities and forces the speaker to make a pause
between sentences: ¡Hola! ¿Tienen lupas? Queŕıa com-
prar una. (Hello! Do you have magnifiers? I wanted to
buy one). In other cases, the tonal inflection corresponds
to a semi-pause involving no change of modality or silence:
¡Hasta luego, t́ıo Pau! (See you later, uncle Pau! ). Thus,
the combination of these types of inflection allows the col-
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Author Group Frequency Duration Loudness
Rodger 2009 Adults and Children No differences

Zampini 2016 Children
Good control for linguistics
low for pragmatics. Lower F0.

Saz 2009 Adults and Children Good control in pronounced vowels
Longer pronounced vowels
Dispersed mispronounced vowels

Low control of intensity
in unstressed vowels

Albertini 2010 Adults Higher F0 Lower duration (only for men)
Lower energy.Shimmer
lower (only men)

Rochet-Capellan 2015 Adults Higher F0 Longer vowels

Lee 2009 Adults
Smaller pitch range.
Higher F0.
Lower jitter.

Corrales 2016 Adults Higher F0 excursions More pauses to complete turns Different range

Table 1: Results of different studies in the state of the art

Author Group Down syndrome Control Type Size Language
Rodger 2009 Adults and Children 22 52 Semi spontaneous 5 picture descriptions per speaker English
Zampini 2016 Children 9 12 Semi spontaneous 20 minutes per speaker Italian

Saz 2009 Adults and Children 3 168 Words
9576 words (6 hours) Control
684 words (38 minutes) Down syndrome

Spanish

Albertini 2010 Adults 30 60 Words NA Italian
Rochet-Capellan 2015 Adults 8 8 Vowel-consonant-vowel 144 per speaker French

Lee 2009 Adults 9 9 Vowel. Reading. Natural speech
3 vowels per speaker
1 reading per speaker
1 minute per speaker

English

Corrales 2016 Adults 18 20 Sentences 479 utterances Spanish

Table 2: Description of the corpus used in the state of the art

Figure 1: Scheme of the experimental procedure which includes corpus collection, feature extraction and automatic classification
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lection of examples with different segmentation. The sen-
tences recorded can be seen in Table 3.

The recording sessions were carried out in the same
facilities of the centers where the players attended their
regular classes to assure the comfort of the players. In ad-
dition, a staff member of the centers was always with the
players. The players were selected by the staff members
because the distinct cognitive abilities of each student lim-
ited their possibilities as potential players, as some of them
were not able to follow the structured process of the game
in a reliable way. Eighteen speakers with Down syndrome
participated, 11 males (chronological ages: 16, 16, 18, 20,
21, 21, 23, 24, 25, 26 and 30) and 7 females (chronological
ages: 16, 17, 18, 19, 21, 22, 25). All of them were native
speakers of Spanish, aged 16 to 30. They were students
of two special education schools located in Valladolid and
Barcelona(Spain) and have a moderate or mild intellec-
tual disability. Besides, to reduce the ambient noise in
the recording process, the players used a headset with a
microphone incorporated (Plantronics USB headset). In
addition, players recorded a different number of sentences,
depending on their performance in the video game and the
number of game sessions they did. It should be noted that
for the production activities, not all speakers with Down
syndrome reproduced the target sentence exactly. Some
of them had hearing problems, while others had reading
difficulties or cluttering derived from their intellectual dis-
ability.

To obtain a control sample of the recordings, twenty
two adult speakers without any intellectual disability, 13
males and 9 females, were recorded. Therefore, two groups
representing different populations were thus obtained: typ-
ically developing adults (TD) and people with Down syn-
drome (DS). Table 4 shows the number of users of each
group of speakers, the number of recordings made by them
and the total length in seconds of the recordings.

3.2. Feature extraction

Acoustic low-level descriptors (LLD) and temporal fea-
tures were automatically extracted from each recording us-
ing the openSmile toolkit (Eyben et al., 2013). Two mini-
malistic feature sets were used. On the one hand, these sets
provided enough features to characterize the audio record-
ings. On the other hand, the problem of having too many
parameters relative to the number of observations. This
problem can produce overfitting in the training phase, be-
cause the classifier adapts to the concrete set of inputs.
This adaptation can produce good classification results
for this particular set, but negatively affects the gener-
alization capacity of the classifier. The Geneva Minimalis-
tic Standard Parameter Set (GeMAPS) and the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS),
described by Eyben et al. (2016), were selected. The fea-
tures extracted from each recording are sorted into four
groups:

• Frequency related features: fundamental frequency
and jitter.

• Energy related features: loudness, shimmer and
Harmonics-to-Noise Ratio.

• Spectral features: alpha ratio, Hammarberg index,
spectral slope, formant 1, 2, 3 relative energy, har-
monic difference H1-H2, harmonic difference H1-A3,
formant 1, 2, 3 frequency and formant 1, 2, 3 band-
width.

• Temporal features: the rate of loudness peaks per
second, mean length and standard deviation of con-
tinuous voiced and unvoiced segments and the rate
of voiced segments per second, approximating the
pseudo syllable rate.

In total, there are 25 LLD. The arithmetic mean and
the coefficient of variation are calculated on these 25 LLD.
Some functionals are applied to fundamental frequency
and loudness: 20-th, 50-th, and 80-th percentile, the range
of 20-th to 80-th percentile, and the mean and standard
deviation of the slope of rising/falling signal parts. All
these functionals are computed by the openSmile toolkit.
In addition, the process used by the openSmile toolkit to
extract the eGeMAPS features did not differentiate be-
tween silences and unvoiced regions, which can produce
errors in the functions applied to each feature. Therefore,
the Praat software (Boersma, 2006) was used to extract
all silences from each recording and these silences were
excluded from the analysis process.

Furthermore, 4 additional temporal features were added:
the silence and sounding percentages, silences per second
and the mean silences. These new features were added to
improve the information about the temporal characteriza-
tion of the recordings. In this case, the initial and final
silence of each recording were excluded from the analy-
sis process because their lengths were different due to the
recording process. To sum up, the acoustic feature set con-
tains 88 features from the eGeMAPS feature set and 4 new
features introduced from the research team (92 features).

A statistical test was used to detect the significant dif-
ferences between the features extracted from the recording
of each group. The Mann-Whitney non-parametric test
was used. Only the features with a p-value lower than
0.01 were selected for analysis and classification.

3.3. Automatic classification

In order to make an automatic classification of the
recordings, the Weka machine learning toolkit (Hall et al.,
2009) was used. This toolkit permits to a collection of
machine learning algorithms to be accessed for data min-
ing tasks. Three different classifiers were used to compare
their performance: the C4.5 decision tree (DT), the mul-
tilayer perceptron (MLP) and the support vector machine
(SVM).
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Sentence in Spanish Sentence in English
¡Hasta luego, t́ıo Pau! See you later, uncle Pau!
¡Muchas gracias, Juan! Thank you very much, Juan!
¡Hola! ¿Tienen lupas? Queŕıa comprar una. Hello, do you have magnifiers? I wanted to buy

one.
Śı, la necesito. ¿Cuánto vale? Yes, I need it. How much is it?
¡Hola t́ıo Pau! Ya vuelvo a casa. Hello uncle Pau! I’ll be back home.
Śı, esa es. ¡Hasta luego! Yes, it is. Bye!
¡Hola, t́ıo Pau! ¿Sabes dónde vive la señora
Luna?

Hello uncle Pau! Do you know where Mrs Luna
lives?

¡Nos vemos luego, t́ıo Pau! See you later, uncle Pau!
Has sido muy amable, Juan. Muchas gracias! You have been very kind, Juan. Thank you very

much!
¡Hola! ¿Tienen lupas? Me gustaŕıa comprar
una.

Hello, do you have magnifiers? I would like to
buy one.

Śı, necesito una sea como sea. ¿Cuánto vale? Yes, I really need one. How much is it?
Śı, lo es. Vivo alĺı desde pequeño. ¡Hasta luego! Yes, it is. I have lived there since I was a child.

Bye!
¡Hola, t́ıo Pau! Tengo que encontrar a la señora
Luna ¿Sabes dónde vive?

Hello uncle Pau! I have to find Mrs Luna. Do
you know where she lives?

Table 3: Sentences included in the corpus

User type #Users #Recordings Length(seconds)

Control (TD) 22 250 650
Down syndrome (DS) 18 349 1442

Table 4: Number of users and recordings of each group of the corpus

In addition, the 10-fold cross validation technique was
used to create the training and testing datasets. To avoid
classifier adaptation, all folds were created by recordings
of different speakers. Therefore, the recordings of each
speaker were joined in the same fold and each fold was
balanced in terms of the number of recordings.

To analyze the performance of the classification, we
used the classification rate. The unweighted average recall
(UAR) (Schuller et al., 2016) was also used. This metric
is the mean of sensitivity (recall of positive instances) and
specificity (recall of negative instances). UAR was chosen
as the classification metric because it equally weights each
class regardless of its number of samples, so it represents
more precisely the accuracy of a classification test using
unbalanced data.

3.4. Perception test

In order to evaluate the impact of prosody in the per-
ception of the listeners, we used prosody transfer tech-
niques. These techniques have previously been used in
other studies of the state of the art. For instance, Luo
et al. (2017) investigated the role of different prosodic fea-
tures in the naturalness of English L2 speech. The prosodic
modification method was applied to native and L2 learn-
ers’ speech. Later, they used a perceptual test to evaluate
the impact of prosody modification. A similar methodol-

ogy was used by Escudero et al. (2017), where the char-
acteristic prosodic patterns of the style of different groups
of speakers was investigated. After the prosodic modifica-
tion of the utterances, the characteristic prosodic patterns
were validated using a perceptual test. The procedure de-
scribed in Escudero et al. (2017) for transferring prosody
is used in the experiments reported in this paper.

Figure 2 shows the experimental procedure used to per-
form the perception test. The sentence ¡Hola t́ıo Pau!
¿Sabes donde vive la señora Luna? (Hello uncle Pau! Do
you know where Mrs Luna lives? ) recorded by all the
speakers was selected. This sentence was selected because
of its prosodic richness (combining an affirmative and an
interrogative sentence), because it was used in another of
our studies (González-Ferreras et al., 2017) and because it
was the most recorded sentence. To obtain a phonetic seg-
mentation of the recordings, the BAS web services (Schiel,
1999; Kisler et al., 2017) were used. This tool returns the
time intervals of each phoneme using the audio file and
the transcription as inputs. Manual revision of the seg-
mentation was necessary to correct transcription errors.
The sentence was recorded by 22 TD speakers and by 16
speakers with DS. However, each speaker did not have the
same number of recordings. In total, there were 62 record-
ings.

Once the segmentation was corrected, a prosody trans-
fer algorithm implemented in Praat (Boersma, 2006) was
executed. This algorithm transfers, phoneme by phoneme,
the pitch, energy and duration from one audio to another.
Therefore, the new audio file contains the original utter-
ance but with the prosody transferred from another utter-
ance. The algorithm was executed combining the audios
of each speaker with the audios of the rest of the speakers,
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Figure 2: Experimental procedure followed to perform the perceptual test. The utterances used in the test were: TDutt+TDpro (utterance of
a TD person with prosody transferred from an utterance of another TD person), DSutt+TDpro (utterance of a person with DS with prosody
transferred from an utterance of a TD person), TDutt+DSpro (utterance of a TD person with prosody transferred from an utterance of a
person with DS) and DSutt+DSpro (utterance of a person with DS with prosody transferred from an utterance of another person with DS).

so, in total, 3525 audio files were generated (not all the
speakers had the same number of recordings). As a re-
sult, there are four types of audio files, as shown in Figure
2. Five audio files of each type were selected randomly for
the perception test, so the test included twenty audio files,
balanced in terms of gender.

The perception test was performed using a web appli-
cation. First, personal information of the evaluator was
collected. Then, the twenty audio files selected in the pre-
vious phase were shown randomly. The evaluators have to
answer the following question for each utterance: keeping
in mind the way of speaking, do you think that the person
who is speaking has intellectual disabilities? Ignore the au-
dio distortion produced by the non natural voice synthesis.
The possible answers to the question were in a 5-point
Likert scale: 1 means “no way” and 5 means “very sure”.
Thirty evaluators judged each utterance using this scale.
People without any specific background on speech thera-
pies were selected for this test, as we were interested in the
perception of normal people concerning the importance of
prosody in the identification of speech from people with
intellectual disability.

4. Results

4.1. Characterization results

Table 5 shows the features with statistically significant
differences (Mann-Whitney test with p-value ¡ 0.01) re-
lated to frequency, energy and temporal domains, sorted
by mean differences. In the case of frequency, 9 of 12 fea-
tures present significant differences. The first rows (from
F0 stddevRisingSlope to jitter mean) refer to the temporal
evolution of the F0 contour. In all cases, figures present
a higher value for speakers with Down syndrome, both
when the stddev value is analyzed or the Risingslope and

jitter (jitter value is lower because it focuses on the pe-
riods, which are the inverse of the F0 values). The last
rows refer to mean values, coefficient of variation, ranges
and percentiles of the F0 contour (from F0 pctlrange to
F0 percetile80). Speakers with Down syndrome exhibit
higher values than the speakers of the control group in all
the cases, with a lower coefficient of variation in the Down
syndrome group. These results seem to indicate that the
participants with Down syndrome use higher F0 values
with more temporal changes in the F0 contours.

There are 9 of 14 energy features that present statis-
tically significant differences (Mann-Whitney test with p-
value ¡ 0.01), as shown in Table 5. The first four rows
(from loudness percentil20 to loudness pctlrange) refer to
mean, range and percentile values. Values are higher for
speakers with Down syndrome in all the cases. The last
columns refer to the temporal variation of the energy val-
ues. In this case, Down syndrome speakers exhibit lower
values. These results seem to indicate that participants
with Down syndrome speak louder with less variation in
the energy.

With respect to the temporal features displayed in Ta-
ble 5, 9 of 10 features presented statistically significant dif-
ferences (Mann-Whitney test with p-value ¡ 0.01). Speak-
ers with Down syndrome use more pauses and they are
longer (higher silencePercentage, silencePerSecond and si-
lenceMean). The length of the voiced segment is longer,
indicating that participants with Down syndrome speak
more slowly.

As for spectral features (Table 6), 34 of 56 features
showed statistically significant differences (Mann-Whitney
test with p-value ¡ 0.01). Results show that the LTAS
could be a useful instrument to detect differences, as clear
differences appear when the features related with slope,
Hammarberg and alpha index are taken into account. For-
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Control Down Down syndrome
Variable Control (CI 95%) syndrome (CI 95%)
F0 domain
F0 stddevRisingSlope 166.17±231.44 (137.35,195.01) 220.85±273.67 (192.08,249.62)
jitter stddevNorm 1.15±0.39 (1.11,1.21) 1.46±0.47 (1.42,1.52)
jitter mean 0.04±0.02 (0.045,0.050) 0.03±0.01 (0.035,0.039)
F0 pctlrange 4.63±1.9 (4.4,4.88) 3.91±2.88 (3.61,4.22)
F0 percentile20 26.89±4.49 (26.33,27.45) 30.32±4.63 (29.84,30.81)
F0 percentile50 29.18±4.22 (28.66,29.71) 32.33±4.28 (31.89,32.79)
F0 mean 29.3±4.11 (28.79,29.82) 32.38±4.14 (31.95,32.82)
F0 stddevNorm 0.13±0.07 (0.129,0.147) 0.12±0.07 (0.116,0.132)
F0 percentile80 31.52±4.34 (30.99,32.07) 34.24±4.67 (33.75,34.73)
Energy domain
loudness percentile20 0.95±0.38 (0.91,1.01) 1.77±1.03 (1.66,1.88)
loudness percentile50 1.93±0.73 (1.84,2.02) 3.29±2.22 (3.06,3.53)
loudness mean 2.09±0.78 (1.99,2.19) 3.37±1.99 (3.17,3.58)
loudness percentile80 3.15±1.24 (3,3.31) 4.9±2.94 (4.6,5.22)
loudness pctlrange 2.19±0.96 (2.08,2.32) 3.13±2.06 (2.92,3.35)
loudness stddevRisingSlope 15.3±7.18 (14.41,16.2) 19.63±14.24 (18.14,21.13)
loudness stddevNorm 0.57±0.07 (0.57,0.58) 0.49±0.07 (0.48,0.5)
shimmer mean 1.55±0.38 (1.51,1.61) 1.36±0.37 (1.32,1.4)
shimmer stddevNorm 0.86±0.14 (0.84,0.88) 0.78±0.16 (0.77,0.8)
Temporal domain
silencePercentage 0.1±0.11 (0.09,0.12) 0.22±0.19 (0.2,0.24)
silencesMean 0.16±0.2 (0.14,0.19) 0.31±0.3 (0.28,0.35)
StddevVoicedSegmentLengthSec 0.15±0.08 (0.14,0.16) 0.25±0.2 (0.23,0.27)
MeanVoicedSegmentLengthSec 0.26±0.15 (0.25,0.29) 0.44±0.39 (0.41,0.49)
silencesPerSecond 0.39±0.38 (0.35,0.44) 0.57±0.4 (0.53,0.62)
VoicedSegmentsPerSec 3.42±1.06 (3.29,3.55) 2.47±1.04 (2.37,2.59)
loudnessPeaksPerSec 5.76±1 (5.64,5.89) 4.39±0.94 (4.29,4.49)
MeanUnvoicedSegmentLength 0.05±0.02 (0.05,0.06) 0.06±0.03 (0.06,0.07)
soundingPercentage 0.89±0.11 (0.88,0.91) 0.77±0.19 (0.76,0.8)

Table 5: List of frequency, energy and temporal features with higher statistically significant differences (Mann-Whitney test with p-value <
0.01), sorted by mean differences. The meaning of the features in column Variable can be seen in Appendix A. The units are reported in
(Eyben et al., 2016).
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Control Down Down syndrome
Variable Control (CI 95%) syndrome (CI 95%)
LTAS related features
slopeV0500 mean 0±0.03 (0,0.01) 0.05±0.03 (0.056,0.063)
slopeUV0500 mean -0.06±0.04 (-0.07,-0.06) 0.05±0.03 (0.02,0.03)
slopeV0500 stddevNorm -1.12±13.82 (-2.85,0.6) 0.69±2.64 (0.41,0.97)
alphaRatioUV mean -12.06±11.37 (-13.48,-10.65) 1.07±6.37 (0.41,1.75)
hammarbergIndexUV mean 20.79±13.51 (19.11,22.48) 5.4±7.24 (4.64,6.16)
alphaRatioV mean -11.79±5.52 (-12.49,-11.11) -8.46±5.55 (-9.05,-7.88)
hammarbergIndexV mean 20.8±7.06 (19.93,21.69) 16.35±7.14 (15.61,17.11)
hammarbergIndexV stddevNorm 0.48±0.67 (0.4,0.57) 0.57±1.01 (0.47,0.68)
slopeV5001500 mean -0.02±0 (-0.03,-0.02) -0.02±0 (-0.021,-0.020)
spectralFlux mean 1.96±1.09 (1.83,2.1) 2.94±2.32 (2.7,3.19)
spectralFluxUV mean 1.4±1.35 (1.23,1.57) 2.1±2.11 (1.88,2.32)
spectralFluxV mean 2.11±1.12 (1.98,2.26) 3.13±2.53 (2.87,3.4)
spectralFlux stddevNorm 0.72±0.19 (0.7,0.75) 0.67±0.12 (0.66,0.69)
MFCC related features
mfcc3 stddevNorm 0.25±24.92 (-2.85,3.36) -54.35±1039.94 (-163.68,54.98)
mfcc2V mean 1.49±7.41 (0.58,2.42) -2.45±6.88 (-3.17,-1.73)
mfcc4 stddevNorm 1.54±44.52 (-4.01,7.09) -2±19.36 (-4.04,0.03)
mfcc2 stddevNorm 1.97±26.17 (-1.29,5.23) -1.16±27.11 (-4.01,1.69)
mfcc2 mean 4.05±7.08 (3.18,4.94) -2.32±6.45 (-3,-1.64)
mfcc4V stddevNorm -1.23±9.51 (-2.42,-0.05) -0.45±4.73 (-0.96,0.04)
mfcc4 mean -11.17±7.74 (-12.14,-10.21) -17.34±9.91 (-18.39,-16.3)
mfcc3V stddevNorm -0.78±71.43 (-9.68,8.11) -0.28±21.18 (-2.51,1.94)
mfcc4V mean -14.75±8.58 (-15.82,-13.68) -18.3±10.83 (-19.44,-17.17)
mfcc1V mean 26.42±7.31 (25.51,27.34) 20.93±9.61 (19.93,21.95)
mfcc1 mean 22.52±7.73 (21.56,23.49) 18.16±9.95 (17.11,19.21)
Formants related features
F3amplitudeLogRelF0 stddevNorm -1.18±0.25 (-1.22,-1.16) -1.36±0.41 (-1.41,-1.32)
F2amplitudeLogRelF0 mean -49.47±17.65 (-51.68,-47.28) -42.63±20.55 (-44.79,-40.47)
F2amplitudeLogRelF0 stddevNorm -1.35±0.26 (-1.39,-1.32) -1.54±0.61 (-1.61,-1.48)
F1bandwidth stddevNorm 0.2±0.08 (0.19,0.21) 0.23±0.09 (0.22,0.24)
F1frequency stddevNorm 0.35±0.09 (0.34,0.37) 0.4±0.09 (0.39,0.41)
F3frequency stddevNorm 0.09±0.02 (0.095,0.102) 0.1±0.02 (0.1,0.11)
F3frequency mean 2665.98±145.97 (2647.81,2684.17) 2643.51±203.27 (2622.15,2664.89)
F3amplitudeLogRelF0 mean -53.64±17.44 (-55.82,-51.47) -45.02±19.5 (-47.08,-42.98)
Harmonic differences features
logRelF0H1A3 stddevNorm 1.6±16.02 (-0.39,3.6) 0.18±7.44 (-0.6,0.97)
logRelF0H1A3 mean 18.91±6.26 (18.13,19.69) 15.86±7.09 (15.12,16.61)

Table 6: List of spectral features with higher statistically significant differences (Mann-Whitney test with p-value < 0.01), sorted by mean
differences. The meaning of the features in column Variable can be seen in Appendix A. The units are reported in (Eyben et al., 2016).
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mant 1 and Formant 3 (to a lower degree) also allow dif-
ferences to be identified. As expected, MFCC values (the
four analyzed) permit both groups to be separated. With
respect to the variables related with the harmonic differ-
ences, only two variables appear in the list:
logRelF0H1A3 stddevNorm and logRelF0H1A3 mean.

4.2. Classification results

Table 7 shows the classification results in the task of
identifying the group of the speaker (TD or SD) of each
utterance. The classifiers explained in section 3.3 and the
selected features presented in the previous section were
used. Only the features with significant differences be-
tween TD and DS groups are used. DT shows the lower
classification results in all feature groups. MLP shows a
better performance using frequency (UAR 0.64), tempo-
ral (UAR 0.78), frequency+energy+temporal (UAR 0.91)
and all (UAR 0.95) feature groups. SVM works better
with energy features (UAR 0.78). The results using spec-
tral features are the same in MLP and SVM classifiers
(UAR 0.87).

In addition, the best classification results are obtained
using all features, independently of which classifier is used.
Frequency features show the worst performance when they
are used alone. Energy and temporal features have similar
results, with only 9 features per group.

When frequency, energy and temporal features are used
together, the performance is noticeably better than using
each group separately. Finally, spectral features show a
slightly worse performance than all and frequency+energy
+temporal features.

4.3. Perception test results

Table 8 shows the results of the perception test and Fig-
ure 3 visually presents the differences between the groups.
When the prosody of TD speakers was transferred to ut-
terances of TD speakers, 84% of the answers identified the
audios as TD speakers (answer 1 of row TDutt+TDpro).
In this case, the doubts in the identification of the audio
files as TD or DS represent only 2% of the answers (an-
swer 3 of row TDutt+TDpro). On the other hand, when
the prosody of DS speakers was transferred to utterances
of DS speakers, 73% of the answers identified the audios
as DS speakers (answers 4 and 5 of row DSutt+DSpro).
In this case, the doubts in the identification of the audio
files as TD or DS represent 18% of the answers (answer 3
of row DSutt+DSpro), and the identifications as TD are
only 8% (answers 1 and 2 of row DSutt+DSpro).

The answers given about the audio files that combined
utterances of one group with prosody of the other group
present much more variability. However, prosody had more
influence in the identification process than the original ut-
terance. When the prosody of TD speakers was transferred
to utterances of speakers with DS, 58% of the answers iden-
tified the audios as TD speakers (answers 1 and 2) versus
only 20% of DS identifications (answers 4 and 5). On the

other hand, 51% of the answers identified the audios as
speakers with DS (answers 4 and 5) when the prosody of
speakers with DS was transferred to an utterance of TD
speakers, versus only 26% of TD identifications (4 and 5
answers). In both cases, the number of answers 3 is rele-
vant (22% and 23% of answers 3, respectively).

Moreover, two statistical tests were used to compare
the answers obtained. The results of the Kruskal-Wallis
non-parametric test showed significant differences (with a
p-value < 0.001) between the answers given to the four
groups (TDutt+TDpro, DSutt+TDpro, TDutt+DSpro and
DSutt+DSpro). Furthermore, the Mann-Whitney non-
parametric test was used to compare each group with the
others, in groups of two. All the comparisons showed sig-
nificant differences (p-value < 0.001).

5. Discussion

5.1. Characterization of the speech of people with Down
syndrome

Fundamental frequency is significantly higher in speak-
ers with Down syndrome. The same results were found by
Albertini et al. (2010), Rochet-Capellan and Dohen (2015)
and Lee et al. (2009). In addition, the F0 range is lower in
speakers with Down syndrome, which can be explained by
a less melodious intonation. Continuing with frequency,
jitter is significantly lower in the DS group, as found by
Lee et al. (2009) and by Seifpanahi et al. (2011).

Concerning temporal features, on the one hand, the
number of continuous voiced regions per second is lower
in the speakers with Down syndrome, which means that
the oral production of speakers with Down syndrome was
slower than that of control speakers. Reading difficulties
that some people with Down syndrome present can have
influenced these results. On the other hand, Van Borsel
and Vandermeulen (2008) found disfluencies in Down syn-
drome speaking, such as cluttering and stuttering. These
disfluencies can produce the insertion of more silences and
the presence of more temporal variety in the speech of
people with Down syndrome, as found in this study.

In terms of energy, loudness features were found to be
significantly higher in the speakers with Down syndrome
and its range was higher. This result contradicts that re-
ported by Albertini et al. (2010), which showed lower en-
ergy values in speakers with Down syndrome. Another
study focused on vowels (Saz et al., 2009) found an in-
crease in the energy of unstressed vowels in Down syn-
drome speakers. Energy is always a difficult variable in
the analysis of prosody, as its values are very dependent
on the recording conditions: the dynamic range of the mi-
crophone and the distance between the speaker and the
microphone. On the other hand, some of the participants
have slight hearing problems, which may be another pos-
sible explanation for the higher energy values.

Our corpus also permitted the detection of differences
related with the spectral features. Table 6 highlights the
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SVM MLP DT
Set # C. Rate UAR C. Rate UAR C. Rate UAR
Frequency 9 62.67 0.61 64.33 0.64 60.17 0.60
Energy 9 79.33 0.78 76 0.76 72.5 0.71
Temporal 9 76.83 0.76 77.83 0.78 74.33 0.75
Frequency+Energy+Temporal 27 90 0.9 91.83 0.91 82 0.82
Spectral 34 87.33 0.87 87.33 0.87 84.33 0.84
All 61 94.17 0.94 95.17 0.95 86.5 0.87

Table 7: Classification results for identifying the group of the speaker. Classification rate (c. rate) and UAR using different feature sets
and different classifiers are reported. The features used are those with significant differences between TD and DS groups. The classifiers are
decision tree (DT), support vector machine (SVM) and multilayer perceptron (MLP). # is the number of input features in each set.

Type 1 2 3 4 5 NR Total
TDutt+TDpro 124 15 3 1 4 3 150
DSutt+TDpro 42 42 31 18 11 6 150
TDutt+DSpro 17 21 34 43 31 4 150
DSutt+DSpro 1 11 26 49 56 7 150

Table 8: Number of responses of the perception tests for each type
of audio file. A response of 1 means “no way” and 5 means “very
sure” in the identification of the audio file as a speaker with Down
syndrome. NR means no response. TDutt+TDpro means utter-
ance of a TD person with prosody transferred from an utterance
of another TD person; DSutt+TDpro means utterance of a person
with DS with prosody transferred from an utterance of a TD person;
TDutt+DSpro means utterance of a TD person with prosody trans-
ferred from an utterance of a person with DS; and DSutt+DSpro
means utterance of a person with DS with prosody transferred from
an utterance of another person with DS.

Figure 3: Results of the perception tests for each type of audio file.
TDutt+TDpro means utterance of a TD person with prosody trans-
ferred from an utterance of another TD person; DSutt+TDpro means
utterance of a person with DS with prosody transferred from an ut-
terance of a TD person; TDutt+DSpro means utterance of a TD
person with prosody transferred from an utterance of a person with
DS; and DSutt+DSpro means utterance of a person with DS with
prosody transferred from an utterance of another person with DS.

fact that LTAS has been proposed in Gauffin and Sund-
berg (1977) for the identification of breathy and hypoki-
netic voice. The relative amplitude of the first harmonic
was also related with breathy voices by Hillenbrand and
Houde (1996). The speech of people with DS is described
as breathy by Wold DC (1979) and dysphonic by Moran
(1986). MFCC features are commonly used in speaker
recognition applications (Martinez et al., 2012), as they
are representative of the vocal tract shape (Dusan and
Deng, 1998). The relative importance of the MFCC fea-
tures on the characterization of the speech of people with
DS (as shown in Table 6) could thus be justified by the
special anatomy of the tongue, palate, jaw, etc. of this
type of speaker (Rodger, 2009). MFCC has also been used
to identify nasality by Yuan and Liberman (2011) which
is another aspect that has been related with the speech
of people with DS in many works (Kent and Vorperian,
2013). The relative position of the formants has been as-
sociated with the degree of nasality in many works (House
and Stevens, 1956; Huffman, 1989) which was also high-
lighted in our results table.

Finally, people with DS present hypotonia of muscles
and difficulties in motor control, which affect the move-
ment of the lips, tongue and jaw, with the consequent
impact on spectral features already mentioned. The lack
of muscular strength could also be another reason justify-
ing the slower speech. As hypotonia could also affect the
diaphragm, the energy values should have been lower. We
hypothesize that the reason why higher values of energy
were obtained could be due to the extra effort made by
students to correctly complete the activities.

5.2. Relative impact of prosody

The experimental results obtained show that the fea-
tures concerning the frequency, energy and temporal do-
mains have the same or a greater impact than the spectral
domain features to identify the speech of people with Down
syndrome:

• There are a high number of features out of the spec-
tral domain that present significant differences be-
tween speakers with Down syndrome and speakers
without intellectual disabilities.
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• Spectral features achieve high classification rates (up
to 87%), but classification rates of frequency, energy
and temporal features together are higher than spec-
tral features (up to 91.83%).

• Utterances of control speakers with transferred fre-
quency, energy and phoneme duration from speakers
with Down syndrome are mostly perceived as anoma-
lous voice. In the same way, utterances of speakers
with Down syndrome with transferred frequency, en-
ergy and phoneme duration from control speakers are
mostly perceived as typical speech.

To the best of our knowledge, there are few studies
that assess, in an experimental way, the relative weight of
prosody in the perception of speech of people with Down
syndrome as a non typical voice. The differences between
speakers with Down syndrome and control speakers in the
spectral domain can be derived from physiological pecu-
liarities in their phonological system. Some could be cor-
rected by surgery, but others are impossible to be cor-
rected. However, frequency, energy and temporal charac-
teristics can be trained using speech therapy techniques
focusing on breathing and repetition of activities. The re-
sults obtained in this paper show the potential benefits of
prosody training.

The distance between the prosodic features of speakers
with Down syndrome and those of control speakers can be
used to devise a quality metric to be included in computer
assisted pronunciation training applications. Our future
work on the implementation of an automatic evaluation
module of voice quality is expected to benefit from the
results of this paper. This module is to be included in
our speech training tools (González-Ferreras et al., 2017),
so spectral features will be useful to identify a recording
as a non typical speech, while prosody analysis will be
necessary for the evaluation of the players’ improvement
over the different game sessions.

5.3. Limitations

The corpus size in speech analysis studies is very im-
portant to achieve representative results. The recording
of a corpus of speech of people with Down syndrome is
always challenging because of the special characteristics of
these speakers (attention deficit and problems with short
term memory, among others). Our video game has allowed
the recording of a speech corpus whose size is bigger than
other speech corpora used in other studies (see Table 2).
Although the corpus size could be larger, the statistical
tests carried out guarantee that the corpus has the nec-
essary size to obtain significant results. In addition, new
recordings are currently being obtained due to the use of
the video game in a school of special education.

The heterogeneity of the population with Down syn-
drome can have an influence on the correct generalization
of the results. However, the methodology presented in this

paper can be applied to individuals with the aim of iden-
tifying the concrete features that they are using wrongly.
Moreover, the relative impact of these features in the iden-
tification of their speech as pathological can be analyzed.

6. Conclusions

The speech characterization experiment presented in
this article has allowed us to find significant differences
between the speech of individuals with Down syndrome
and those of the control group that affect the use of a
set of acoustic variables related to frequency, energy, tem-
poral and spectral domains. The use of these variables
in an experiment of automatic identification allows very
high classification rates (above 95%) to be obtained. If
these variables are used independently, the classification
rates decrease, the highest being those obtained using the
spectral features. However, the importance of the rest of
the variables becomes clear, because when only the vari-
ables related to frequency, energy and temporal domains
are used, the classification rate can be higher than that
obtained using the spectral features.

A perception experiment, based on prosody transfer,
allowed us to verify the high relative importance of the
prosodic variables of frequency, energy and temporal do-
mains regarding the perception of atypical speech. An ad-
equate control of these variables in utterances of speakers
with Down syndrome allows us to change the perception of
them, even though the voice quality is not modified. Be-
sides, transferring the prosody from speakers with Down
syndrome to speakers of the control group means the ut-
terances will be perceived, to a large degree, as if they
were from speakers with Down syndrome. This result en-
courages the use of methodologies for training prosody as
a means for improving the overall quality of the oral pro-
duction of Down syndrome speakers.
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González-Ferreras C, Escudero-Mancebo D, Corrales-Astorgano M,
Aguilar-Cuevas L, Flores-Lucas V. Engaging adolescents with
Down syndrome in an educational video game. International Jour-
nal of Human–Computer Interaction 2017;:1–20.

Guimaraes CV, Donnelly LF, Shott SR, Amin RS, Kalra M. Rel-
ative rather than absolute macroglossia in patients with Down
syndrome: implications for treatment of obstructive sleep apnea.
Pediatric radiology 2008;38(10):1062.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH. The weka data mining software: an update. ACM SIGKDD
explorations newsletter 2009;11(1):10–8.

Hillenbrand J, Houde RA. Acoustic correlates of breathy vocal qual-
ity: dysphonic voices and continuous speech. Journal of Speech,
Language, and Hearing Research 1996;39(2):311–21.

House AS, Stevens KN. Analog studies of the nasalization of vowels.
Journal of Speech and Hearing Disorders 1956;21(2):218–32.

Huffman MK. Implementation of nasal: timing and articulatory
landmarks. Ph.D. thesis; University of California, Los Angeles;
1989.

Kent RD, Vorperian HK. Speech impairment in Down syndrome:
a review. Journal of Speech, Language, and Hearing Research
2013;56(1):178–210.

Kisler T, Reichel U, Schiel F. Multilingual processing of speech via
web services. Computer Speech & Language 2017;45:326–47.

Lee MT, Thorpe J, Verhoeven J. Intonation and phonation in young
adults with Down syndrome. Journal of Voice 2009;23(1):82–7.

Leino T. Long-term average spectrum in screening of voice quality
in speech: untrained male university students. Journal of Voice
2009;23(6):671–6.

Leshin L. Plastic surgery in children with down syndrome. Down
syndrome: Health issues: News and information for parents and
professionals 2000;.

Luo D, Luo R, Wang L. Prosody analysis of L2 English for natu-
ralness evaluation through speech modification. In: Proc. Inter-
speech. 2017. p. 1775–8.

Markaki M, Stylianou Y. Modulation spectral features for objective
voice quality assessment. In: Communications, Control and Sig-
nal Processing (ISCCSP), 2010 4th International Symposium on.
IEEE; 2010. p. 1–4.

Markaki M, Stylianou Y. Voice pathology detection and discrimina-
tion based on modulation spectral features. IEEE Transactions
on Audio, Speech, and Language Processing 2011;19(7):1938–48.

Martin GE, Klusek J, Estigarribia B, Roberts JE. Language charac-
teristics of individuals with Down syndrome. Topics in Language
Disorders 2009;29(2):112.

Martinez J, Perez H, Escamilla E, Suzuki MM. Speaker recognition
using Mel frequency Cepstral Coefficients (MFCC) and Vector
quantization (VQ) techniques. In: Electrical Communications and
Computers (CONIELECOMP). IEEE; 2012. p. 248–51.

Mart́ınez MH, Duran XP, Navarro JN. Attention deficit disorder
with or without hyperactivity or impulsivity in children with
Down’s syndrome. International Medical Review on Down Syn-
drome 2011;15(2):18–22.

Moran MJ. Identification of Down’s syndrome adults from pro-
longed vowel samples. Journal of communication disorders
1986;19(5):387–94.

Moran MJ, Gilbert HR. Selected acoustic characteristics and lis-
tener judgments of the voice of Down syndrome adults. American
journal of mental deficiency 1982;.

Moura CP, Cunha LM, Vilarinho H, Cunha MJ, Freitas D, Palha
M, Pueschel SM, Pais-Clemente M. Voice parameters in children
with Down syndrome. Journal of Voice 2008;22(1):34–42.

Pentz Jr AL. Formant amplitude of children with Down syndrome.
American journal of mental deficiency 1987;92(2):230–3.

Rochet-Capellan A, Dohen M. Acoustic characterisation of vowel
production by young adults with Down syndrome. In: 18th Inter-
national Congress of Phonetic Sciences (ICPhS 2015). 2015. .

Rodger R. Voice quality of children and young people with Down’s
Syndrome and its impact on listener judgement. Ph.D. thesis;
Queen Margaret University; 2009.
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Appendix A. Description of the features

The tables included in this appendix describe the fea-
tures used in each of the domains. Frequency features
are presented in Table A.9. Energy features are described
in Table A.10. Temporal features are explained in Table
A.11. Spectral features are presented in Tables A.12 and
A.13.
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Feature Description
F0 stddevRisingSlope
(F0semitoneFrom27.5Hz sma3nz stddevRisingSlope)

Standard deviation of the slope of rising signal parts of F0

jitter stddevNorm
(jitterLocal sma3nz stddevNorm)

Coefficient of variation of the deviations in individual
consecutive F0 period lengths

jitter mean
(jitterLocal sma3nz amean)

Mean of the deviations in individual consecutive F0
period lengths

F0 pctlrange
(F0semitoneFrom27.5Hz sma3nz pctlrange0-2)

Range of 20-th to 80-th of logarithmic F0 on a semitone
frequency scale, starting at 27.5 Hz

F0 percentile20
(F0semitoneFrom27.5Hz sma3nz percentile20.0)

Percentile 20-th of logarithmic F0 on a semitone frequency
scale, starting at 27.5 Hz

F0 percentile50
(F0semitoneFrom27.5Hz sma3nz percentile50.0)

Percentile 50-th of logarithmic F0 on a semitone frequency
scale, starting at 27.5 Hz

F0 mean
(F0semitoneFrom27.5Hz sma3nz amean)

Mean of logarithmic F0 on a semitone frequency scale,
starting at 27.5 Hz

F0 stddevNorm
(F0semitoneFrom27.5Hz sma3nz stddevNorm)

Coefficient of variation of logarithmic F0 on a semitone frequency scale,
starting at 27.5 Hz

F0 percentile80
(F0semitoneFrom27.5Hz sma3nz percentile80.0)

Percentile 80-th of logarithmic F0 on a semitone frequency
scale, starting at 27.5 Hz

Table A.9: Frequency features explained. All functionals are applied to voiced regions only. Text in brackets shows the original name of the
eGeMAPS features

Feature Description
loudness percentile20
(loudness sma3 percentile20.0)

Percentile 20-th of estimate of perceived signal intensity from an auditory
spectrum

loudness percentile50
(loudness sma3 percentile50.0)

Percentile 50-th of estimate of perceived signal intensity from an auditory
spectrum

loudness mean
(loudness sma3 amean)

Mean of estimate of perceived signal intensity from an auditory
spectrum

loudness percentile80
(loudness sma3 percentile80.0)

Percentile 80-th of estimate of perceived signal intensity from an auditory
spectrum

loudness pctlrange02
(loudness sma3 pctlrange0-2)

Range of 20-th to 80-th of estimate of perceived signal
intensity from an auditory spectrum

loudness stddevRisingSlope
(loudness sma3 stddevRisingSlope)

Standard deviation of the slope of rising signal parts of loudness

loudness stddevNorm
(loudness sma3 stddevNorm)

Coefficient of variation of estimate of perceived signal intensity from an auditory
spectrum

shimmer mean
(shimmerLocaldB sma3nz amean)

Mean of difference of the peak amplitudes of consecutive F0
periods

shimmer stddevNorm
(shimmerLocaldB sma3nz stddevNorm)

Coefficient of variation of difference of the peak amplitudes of
consecutive F0 periods

Table A.10: Energy features explained. All functionals are applied to voiced and unvoiced regions together. Text in brackets shows the
original name of the eGeMAPS features

Feature Description
silencePercentage Duration percentage of unvoiced regions
silencesMean Mean of unvoiced regions
StddevVoicedSegmentLengthSec Standard deviation of continuously voiced regions
MeanUnvoicedSegmentLength Mean of unvoiced regions
silencesPerSecond The number of silences per second
VoicedSegmentsPerSec The number of continuous voiced regions per second
loudnessPeaksPerSec The number of the loudness peaks per second
MeanVoicedSegmentLengthSec Mean of continuously voiced regions
soundingPercentage Duration percentage of voiced regions

Table A.11: Temporal features explained
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Feature Description
mfcc3 stddevNorm
(mfcc3 sma3 stddevNorm)

Coefficient of variation of Mel-Frequency Cepstral Coefficient 3

slopeV0500 mean
(slopeV0-500 sma3nz amean)

Mean of linear regression slope of the logarithmic power spectrum
within 0-500 Hz band in voiced regions

mfcc2V mean
(mfcc2V sma3nz amean)

Mean of Mel-Frequency Cepstral Coefficient 2 in voiced regions

mfcc4 stddevNorm
(mfcc4 sma3 stddevNorm)

Coefficient of variation of Mel-Frequency Cepstral Coefficient 4

slopeUV0500 mean
(slopeUV0-500 sma3nz amean)

Mean of linear regression slope of the logarithmic power spectrum
within 0-500 Hz band in unvoiced regions

slopeV0500 stddevNorm
(slopeV0-500 sma3nz stddevNorm)

Coefficient of variation of linear regression slope of the logarithmic
power spectrum within 0-500 Hz band in voiced regions

mfcc2 stddevNorm
(mfcc2 sma3 stddevNorm)

Coefficient of variation of Mel-Frequency Cepstral Coefficient 2

mfcc2 mean
(mfcc2 sma3 amean)

Mean of Mel-Frequency Cepstral Coefficient 2

alphaRatioUV mean
(alphaRatioUV sma3nz amean)

Mean of the ratio of the summed energy from 50-1000 Hz and
1-5 kHz in unvoiced regions

logRelF0H1A3 stddevNorm
(logRelF0-H1-A3 sma3nz stddevNorm)

Coefficient of variation of the ratio of energy of the first F0
harmonic (H1) to the energy of the highest harmonic in the third
formant range (A3) in voiced regions

hammarbergIndexUV mean
(hammarbergIndexUV sma3nz amean)

Mean of the ratio of the strongest energy peak in the 0-2 kHz
region to the strongest peak in the 2-5 kHz region in unvoiced
regions

mfcc3V stddevNorm
(mfcc3V sma3nz stddevNorm)

Coefficient of variation of Mel-Frequency Cepstral Coefficient 3
in voiced regions

mfcc4V stddevNorm
(mfcc4V sma3nz stddevNorm)

Coefficient of variation of Mel-Frequency Cepstral Coefficient 4
in voiced regions

mfcc4 mean
(mfcc4 sma3 amean)

Mean of Mel-Frequency Cepstral Coefficient 4

spectralFlux mean
(spectralFlux sma3nz amean)

Mean of the difference of the spectra of two
consecutive frames

spectralFluxUV mean
(spectralFluxUV sma3nz amean)

Mean of the difference of the spectra of two
consecutive frames in unvoiced regions

spectralFluxV mean
(spectralFluxV sma3nz amean)

Mean of the difference of the spectra of two
consecutive frames in voiced regions

Table A.12: Spectral features explained (part1). If nothing is said, the features are applied to voiced and unvoiced regions together. Text in
brackets shows the original name of the eGeMAPS features
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Feature Description
alphaRatioV mean
(alphaRatioV sma3nz amean)

Mean of the ratio of the summed energy from 50-1000 Hz and
1-5 kHz in voiced regions

mfcc4V mean
(mfcc4V sma3nz amean)

Mean of Mel-Frequency Cepstral Coefficient 4 in voiced regions

hammarbergIndexV mean
(hammarbergIndexV sma3nz amean)

Mean of the ratio of the strongest energy peak in the 0-2 kHz
region to the strongest peak in the 2-5 kHz region in voiced
regions

mfcc1V mean
(mfcc1V sma3nz amean)

Mean of Mel-Frequency Cepstral Coefficient 1 in voiced regions

hammarbergIndexV stddevNorm
(hammarbergIndexV sma3nz stddevNorm)

Coefficient of variation of the ratio of the strongest energy
peak in the 0-2 kHz region to the strongest peak in the
2-5 kHz region in voiced regions

mfcc1 mean
(mfcc1 sma3 amean)

Mean of Mel-Frequency Cepstral Coefficient 1

logRelF0H1A3 mean
(logRelF0-H1-A3 sma3nz amean)

Mean of the ratio of energy of the first F0 harmonic (H1) to the
energy of the highest harmonic in the third formant range (A3)
in voiced regions

F3amplitudeLogRelF0 mean
(F3amplitudeLogRelF0 sma3nz amean)

Mean of the ratio of the energy of the spectral harmonic peak
at the third formant´s centre frequency to the energy of the spectral
peak at F0 in voiced regions

F3amplitudeLogRelF0 stddevNorm
(F3amplitudeLogRelF0 sma3nz stddevNorm)

Coefficient of variation of the ratio of the energy of the spectral
harmonic peak at the third formant´s centre frequency to the
energy of the spectral peak at F0 in voiced regions

slopeV5001500 mean
(slopeV500-1500 sma3nz amean)

Mean of linear regression slope of the logarithmic power spectrum
within 500-1500 Hz band in voiced regions

F2amplitudeLogRelF0 mean
(F2amplitudeLogRelF0 sma3nz amean)

Mean of the ratio of the energy of the spectral harmonic peak
at the second formant´s centre frequency to the energy of the spectral
peak at F0 in voiced regions

F2amplitudeLogRelF0 stddevNorm
(F2amplitudeLogRelF0 sma3nz stddevNorm)

Coefficient of variation of the ratio of the energy of the spectral
harmonic peak at the second formant´s centre frequency to the
energy of the spectral peak at F0 in voiced regions

F1bandwidth stddevNorm
(F1bandwidth sma3nz stddevNorm)

Coefficient of variation of the bandwidth of first formant in
voiced regions

F1frequency stddevNorm
(F1frequency sma3nz stddevNorm)

Coefficient of variation of the centre frequency of first formant
in voiced regions

F3frequency stddevNorm
(F3frequency sma3nz stddevNorm)

Coefficient of variation of the centre frequency of third formant
in voiced regions

spectralFlux stddevNorm
(spectralFlux sma3 stddevNorm)

Coefficient of variation of the difference of the spectra of two
consecutive frames

F3frequency mean
(F3frequency sma3nz amean)

Mean of the centre frequency of third formant in voiced regions

Table A.13: Spectral features explained (part2). If nothing is said, the features are applied to voiced and unvoiced regions together. Text in
brackets shows the original name of the eGeMAPS features
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