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Abstract

Obstructive sleep apnea (OSA) is a high prevalent respiratory disorder in the
pediatric population (1%-5%). Untreated pediatric OSA is associated with signif-
icant adverse consequences affecting metabolic, cardiovascular, neurocognitive,
and behavioral systems, thus resulting in a decline of overall health and quality
of life. Consequently, it is of paramount importance to accelerate the diagnosis
and treatment in these children.

Overnight polysomnography (PSG) is the gold standard to diagnose OSA in
children. This test requires an overnight stay of pediatric subjects in a special-
ized sleep laboratory, as well as the recording of up to 32 biomedical signals.
These recordings are used to quantify respiratory events in order to obtain the
apnea-hyponea index (AHI), which is used to establish pediatric OSA severity.
Nonetheless, PSG is technically complex, time-consuming, costly, highly intru-
sive for the children, and relatively unavailable, thus delaying the access for both
the diagnosis and treatment. Consequently, simplified diagnostic techniques be-
come necessary.

In an effort to overcome these drawbacks and increase the accessibility of pe-
diatric OSA diagnosis, many simplified alternative procedures have been devel-
oped. Among these, a common approach is the analysis of the blood oxygen
saturation (SpO2) signal from overnight oximetry due to its easy acquisition and
interpretation, as well as its suitability for children. Many studies have demon-
strated the utility of the automated analysis of SpO2 recordings to help in adult
OSA diagnosis. Conversely, the preceding studies focused on pediatric patients
reported lower accuracies than those reached in the case of adults, suggesting the
need to seek novel signal processing algorithms that provide additional informa-
tion from the SpO2 signal for the particularities of childhood OSA.

In the present Doctoral Thesis, we hypothesize that the application of novel
feature extraction and deep-learning algorithms could increase the diagnostic
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II Abstract

ability of the oximetry signal in the context of pediatric OSA. Consequently, the
general objective of this Doctoral Thesis is to design, develop, and assess novel
clinical decision-support models in the context of childhood OSA based on the
automated analysis of the SpO2 signal.

To achieve this goal, 3196 SpO2 recordings from three different databases
of children were involved: (i) the Childhood Adenotonsillectomy Trial (CHAT)
database, (ii) the University of Chicago (UofC) database, and (iii) the Burgos
University Hospital (BUH) database. These recordings were automatically ana-
lyzed using feature-engineering and deep-learning methodologies. On one hand,
feature-engineering methodologies were conducted in three phases. First, a set of
OSA-related features were extracted from the SpO2 signal using different analyt-
ical approaches: statistical parameters, conventional oximetric indices, frequency
domain methods, and nonlinear analysis. Particularly, we have evaluated the
usefulness of bispectrum, wavelet, and detrended fluctuation analysis (DFA) to
provide additional and complementary information to conventional approaches
linked to pediatric OSA and its severity. As a second step, the fast correlation-
based filter algorithm was applied to select optimum subsets of features that pro-
vide relevant and non-redundant information related to pediatric OSA and its
severity. Finally, pattern recognition algorithms were applied to these optimum
subsets of features in order to estimate pediatric OSA and its severity. To this ef-
fect, different approaches were explored: binary (OSA negative vs. OSA positive)
and multi-class (OSA severity degrees) classification and regression (estimation
of the AHI). On the other hand, a deep-learning methodology based on convolu-
tional neural networks (CNN) was employed to automatically estimate pediatric
OSA severity from raw oximetry data.

A high performance was obtained with both the proposed feature-
engineering and deep-learning approaches. Thus, in the case of feature-
engineering, our results showed that the application of bispectrum, wavelet, and
DFA allowed to obtain features that provide relevant and complimentary infor-
mation to conventional methods regarding OSA-related changes in the oximetry
signal. Specifically, a multiclass multi-layer perceptron (MLP) neural network
was fed with an optimum subset composed of the mean amplitude of the bispec-
trum, the mean of the bispectrum invariant, variables from the power spectral
density (PSD), the 3% oxygen desaturation index (ODI3), and anthropometric
variables. This MLP model reached 81.3% and 85.3% accuracy (Acc) in the AHI
cutoffs of ≥5 (moderate OSA) and ≥10 (severe OSA) events per hour (e/h), re-
spectively, outperforming a MLP model trained without bispectral features. In
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addition, a binary support vector machines (SVM) model was trained with an op-
timum subset composed of the skewness and energy of the wavelet coefficients
in the 9th detail level and the wavelet entropy, together with ODI3, statistical
moments in the time domain and PSD-derived parameters. This optimum SVM
model showed a high capability as a screening tool to detect moderate-to-severe
pediatric OSA (AHI ≥ 5 e/h), with 84.0% Acc and a positive likelihood ratio of
14.6, which are higher than the obtained with every single feature. Finally, a re-
gression MLP model trained with a subset of features composed of the ODI3 and
the slope in the first scaling region of the DFA obtained 82.7%, 81.9%,and 91.1%
Acc for the AHI cutoffs of 1 e/h, 5 e/h, and 10 e/h, respectively. This regression
MLP model outperformed the conventional ODI3, commonly used in clinical set-
tings.

On the other hand, it was found that deep-learning approaches can auto-
matically learn additional information from the oximetry signal linked to apneic
events. A CNN-based deep-learning architecture trained to estimate the AHI
from raw SpO2 segments reached 0.515, 0.422, and 0.423 Cohen’s kappa in three
independent datasets (CHAT, UofC, and BUH). In addition, the proposed CNN-
based model reached high accuracies for the AHI severity cutoffs of 1 e/h (77.6%,
80.1%, and 79.2%), 5 e/h (97.4%, 83.9%, and 83.5%), and 10 e/h (97.8%, 92.3%, and
91.3%) in the CHAT, UofC, and BUH datasets. This CNN-based model achieved
a higher overall performance than feature-engineering approaches. The applica-
tion of this deep-learning model as a screening protocol would avoid the need for
73.7% (CHAT), 50.0% (UofC), and 45.9% (BUH) of full PSGs in pediatric subjects.

Our proposed methodologies also achieved a higher overall performance
than state-of-the-art studies, especially for moderate-to-severely affected pedi-
atric subjects. Therefore, the results obtained in this Doctoral Thesis suggest
that bispectrum, wavelet, and DFA are able to further characterize changes in
the SpO2 signal caused by apneic events in pediatric subjects. Furthermore, it
is also concluded that deep-learning algorithms can learn complex features from
oximetry dynamics that allow to enhance the diagnostic capability of nocturnal
oximetry in the context of childhood OSA. We feel that these studies could con-
tribute to the use of clinical screening tools to diagnose pediatric OSA based on
the automated analysis of the oximetry signal, aiming at providing an early and
timely diagnosis and treatment of the affected children.
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Chapter 1

Introduction

The present Doctoral Thesis aims to design, develop, and assess new automated
algorithms to improve the diagnosis ability of the oximetry signal in the con-
text of pediatric obstructive sleep apnea (OSA). During the study, several feature-
engineering methodologies, as well as deep-learning approaches, have been eval-
uated. This investigation has led to four scientific articles that have been accepted
or published in journals indexed in the Journal Citation Reports (JCR) from the
Web of Science™. Specifically, three articles have been published in 2018. Addi-
tionally, a fourth article will be published in August 2021. This scientific produc-
tion has led to write this study as a compendium of publications.

The thematic consistency of the articles included in this Doctoral Thesis is
explained in Section 1.1. The general context of biomedical signal processing
and deep learning is concisely described in Section 1.2. Section 1.3 provides a
description of pediatric OSA, including its risks and adverse consequences. Sec-
tion 1.4 focuses on the gold standard for pediatric OSA diagnosis, polysomnog-
raphy (PSG), and its limitations. Finally, Section 1.5 is devoted to explain oxime-
try as an alternative to PSG for the diagnosis of pediatric OSA and Section 1.6
provides a description of state-of-the-art studies focused on the analysis of the
oximetry signal as a simplified tool in the diagnosis of pediatric OSA.
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1.1 Compendium of publications: thematic consis-

tency

Pediatric OSA is a high prevalent disease (1%-5%) (Marcus et al., 2012). It is as-
sociated with many negative effects on the overall health and life quality of the
affected children when it is untreated, including cardiometabolic malfunction-
ing and neurobehavioral abnormalities (Capdevila et al., 2008). Overnight PSG
is the gold standard for pediatric OSA diagnosis (Marcus et al., 2012). Despite
its effectiveness, PSG is costly, complex, highly intrusive, and lacks availability
(Katz et al., 2012; Tan et al., 2015). This has prompted the search for simplified
screening tests (Kaditis et al., 2016b; Marcus et al., 2012). One of these alternative
tests is overnight oximetry, which measures the blood oxygen saturation (SpO2)
signal with a pulse-oximeter, typically placed onto the end of a finger, thus being
especially suitable for children (del Campo et al., 2018). A wide range of inves-
tigations have shown the utility of the automated analysis of the SpO2 signal as
a clinically beneficial tool for the screening of OSA in adult patients (del Campo
et al., 2018). Nonetheless, state-of-the-art studies focused on the automated anal-
ysis of the oximetry signal in the context of pediatric OSA followed a similar
signal-processing methodology (del Campo et al., 2018), but achieving a inferior
diagnostic performance than in the case of adult patients (del Campo et al., 2018).

In this context, the present Doctoral Thesis focuses on applying novel signal
processing algorithms in order to enhance the diagnostic ability of the oxime-
try signal in the framework of pediatric OSA. All the papers that comprise the
compendium of publications share this common thread. Figure 1.1 shows the
thematic consistency and the main contributions of the papers included in this
Thesis.

Earlier studies focused on the automated diagnosis of childhood OSA from
the oximetry signal employed a three-stage feature-engineering methodology
(del Campo et al., 2018). First, statistical analysis, conventional indices, frequency
domain and nonlinear analysis methods were used to extract features from the
SpO2 signal. Then, feature selection methods were applied to obtain optimum
subsets of relevant and non-redundant features. Finally, pattern recognition al-
gorithms were trained with the optimum subsets of features to detect pediatric
OSA and its severity. Nonetheless, a previous study using a very large multicen-
ter database of 4191 PSG sleep studies showed significant redundancy between
the information extracted by conventional feature extraction methods and the
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Figure 1.1. Main contributions of the papers included in the compendium of publications,
arranged along the automated signal processing methodologies developed. CMPB: Com-
puter Methods and Programs in Biomedicine, IEEE JBHI: IEEE Journal of Biomedical and
Health Informatics, PM: Physiological Measurement.
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3% oxygen desaturation index (ODI3), an oximetric variable commonly used for
abbreviated screening purposes (Hornero et al., 2017). In this respect, the first
three papers in chronological order (Vaquerizo-Villar et al., 2018a,b,c) were fo-
cused on the application of novel feature extraction algorithms to provide ad-
ditional information from the oximetry signal. Given that the information ex-
tracted by conventional spectral analysis techniques is highly redundant, the first
two papers (Vaquerizo-Villar et al., 2018b,c) were aimed at assessing the useful-
ness of two frequency domain techniques, bispectrum (Vaquerizo-Villar et al.,
2018b) and wavelet analysis (Vaquerizo-Villar et al., 2018c), to provide discrim-
inative frequency domain features from the oximetry signal. In the third paper
(Vaquerizo-Villar et al., 2018a), we investigated if detrended fluctuation analysis
(DFA), a nonlinear analysis method in the time domain, can extract complimen-
tary information from the oximetry signal linked to apneic events. As we will see,
these feature extraction methods, novel in the context of pediatric OSA, have been
found to provide complimentary information to improve the diagnosis ability of
the SpO2 signal.

In contrast to the first three papers, which followed a feature-engineering
methodology, the last paper of the Doctoral Thesis employed a deep-learning
methodology to analyze the oximetry signal. Deep-learning approaches have
emerged in the last years as a suitable tool to learn complex features from raw
data using architectures with multiple layers of representation (LeCun et al.,
2015). These algorithms have outperformed traditional feature-engineering ap-
proaches in many fields, including image recognition, natural language process-
ing, and time series analysis (LeCun et al., 2015). Accordingly, in the last paper
(Vaquerizo-Villar et al., 2021) we investigated the ability of convolutional neu-
ral networks (CNN), the most widely-used deep-learning technique, to automat-
ically extract all the relevant information from the oximetry signal. The pro-
posed CNN architecture was validated in a multicenter database of 3196 SpO2

recordings, showing a high diagnostic ability, which outperformed conventional
feature-engineering approaches.

The papers that compose the compendium of publications of the present Doc-
toral Thesis are included in the Appendix A. Titles, authors, and abstracts of each
one, as well as the indexed journals in which they were accepted and published
are shown below:
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Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syn-
drome using oximetry recordings (Vaquerizo-Villar et al., 2018b).

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gon-
zalo C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del
Campo, David Gozal, and Roberto Hornero. Computer Methods and Programs
in Biomedicine, vol. 156, p. 141-149, 2018. Impact factor in 2018: 3.424, Q1 in
“COMPUTER SCIENCE, THEORY & METHODS” (JCR-WOS).

Abstract: Background and objective: The aim of this study was to assess the util-
ity of bispectrum-based oximetry approaches as a complementary tool to tradi-
tional techniques in the screening of pediatric sleep apnea- hypopnea syndrome
(SAHS). Methods: 298 blood oxygen saturation (SpO2) signals from children
ranging 0–13 years of age were recorded during overnight polysomnography
(PSG). These recordings were divided into three severity groups according to the
PSG-derived apnea hypopnea index (AHI): AHI < 5 events per hour (e/h), 5
≤AHI < 10 e/h, AHI ≥10 e/h. For each pediatric subject, anthropometric vari-
ables, 3% oxygen desaturation index (ODI3) and spectral features from power
spectral density (PSD) and bispectrum were obtained. Then, the fast correlation-
based filter (FCBF) was applied to select a subset of relevant features that may
be complementary, excluding those that are redundant. The selected features fed
a multiclass multi-layer perceptron (MLP) neural network to build a model to
estimate the SAHS severity degrees. Results: An optimum subset with features
from all the proposed methodological approaches was obtained: variables from
bispectrum, as well as PSD, ODI3, Age, and Sex. In the 3-class classification task,
the MLP model trained with these features achieved an accuracy of 76.0% and a
Cohen’s kappa of 0.56 in an independent test set. Additionally, high accuracies
were reached using the AHI cutoffs for diagnosis of moderate (AHI = 5 e/h) and
severe (AHI = 10 e/h) SAHS: 81.3% and 85.3%, respectively. These results out-
performed the diagnostic ability of a MLP model built without using bispectral
features. Conclusions: Our results suggest that bispectrum provides additional
information to anthropometric variables, ODI3 and PSD regarding characteriza-
tion of changes in the SpO2 signal caused by respiratory events. Thus, oxime-
try bispectrum can be a useful tool to provide complementary information for
screening of moderate-to-severe pediatric SAHS.
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Wavelet analysis of oximetry recordings to assist in the automated detection
of moderate-to-severe pediatric sleep apnea-hypopnea syndrome (Vaquerizo-
Villar et al., 2018c).

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del Campo,
David Gozal, and Roberto Hornero. PLOS One, vol. 13 (12), p.e0208502, 2018.
Impact factor in 2018: 2.776, Q2 in “MULTIDISCIPLINARY SCIENCES” (JCR-
WOS).

Abstract: Background: The gold standard for pediatric sleep apnea hypopnea
syndrome (SAHS) is overnight polysomnography, which has several limitations.
Thus, simplified diagnosis techniques become necessary. Objective: The aim of
this study is twofold: (i) to analyze the blood oxygen saturation (SpO2) signal
from nocturnal oximetry by means of features from the wavelet transform in or-
der to characterize pediatric SAHS; (ii) to evaluate the usefulness of the extracted
features to assist in the detection of pediatric SAHS. Methods: 981 SpO2 signals
from children ranging 2–13 years of age were used. Discrete wavelet transform
(DWT) was employed due to its suitability to deal with non-stationary signals
as well as the ability to analyze the SAHS-related low frequency components of
the SpO2 signal with high resolution. In addition, 3% oxygen desaturation index
(ODI3), statistical moments and power spectral density (PSD) features were com-
puted. Fast correlation-based filter was applied to select a feature subset. This
subset fed three classifiers (logistic regression, support vector machines (SVM),
and multilayer perceptron) trained to determine the presence of moderate-to-
severe pediatric SAHS (apnea-hypopnea index cutoff ≥ 5 events per hour). Re-
sults: The wavelet entropy and features computed in the D9 detail level of the
DWT reached significant differences associated with the presence of SAHS. All
the proposed classifiers fed with a selected feature subset composed of ODI3,
statistical moments, PSD, and DWT features outperformed every single feature.
SVM reached the highest performance. It achieved 84.0% accuracy (71.9% sen-
sitivity, 91.1% specificity), outperforming state-of-the-art studies in the detection
of moderate-to-severe SAHS using the SpO2 signal alone. Conclusion: Wavelet
analysis could be a reliable tool to analyze the oximetry signal in order to assist in
the automated detection of moderate-to-severe pediatric SAHS. Hence, pediatric
subjects suffering from moderate-to-severe SAHS could benefit from an accurate
simplified screening test only using the SpO2 signal.
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Detrended fluctuation analysis of the oximetry signal to assist in paediatric
sleep apnoea–hypopnoea syndrome diagnosis (Vaquerizo-Villar et al., 2018a).

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del Campo,
David Gozal, and Roberto Hornero. Physiological Measurement, vol. 39 (11), p.
114006, 2018. Impact factor in 2018: 2.246, Q3 in “ENGINEERING, BIOMEDICAL”
(JCR-WOS).

Abstract: Objective: To evaluate whether detrended fluctuation analysis (DFA)
provides information that improves the diagnostic ability of the oximetry signal
in the diagnosis of paediatric sleep apnoea–hypopnoea syndrome (SAHS). Ap-
proach: A database composed of 981 blood oxygen saturation (SpO2) recordings
in children was used to extract DFA-derived features in order to quantify the
scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desat-
uration index (ODI3) was also computed for each subject. Fast correlation-based
filter (FCBF) was then applied to select an optimum subset of relevant and non-
redundant features. This subset fed a multi-layer perceptron (MLP) neural net-
work to estimate the apnoea–hypopnoea index (AHI). Main results: ODI3 and
four features from the DFA reached significant differences associated with the
severity of SAHS. An optimum subset composed of the slope in the first scaling
region of the DFA profile and the ODI3 was selected using FCBF applied to the
training set (60% of samples). The MLP model trained with this feature subset
showed good agreement with the actual AHI, reaching an intra-class correlation
coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated
AHI showed high diagnostic ability, reaching an accuracy of 82.7%, 81.9%, and
91.1% using three common AHI cut-offs of 1, 5, and 10 events per hour (e/h), re-
spectively. These results outperformed the overall performance of ODI3. Signif-
icance: DFA may serve as a reliable tool to improve the diagnostic performance
of oximetry recordings in the evaluation of paediatric patients with symptoms
suggestive of SAHS.
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A convolutional neural network architecture to enhance oximetry ability to
diagnose pediatric obstructive sleep apnea (Vaquerizo-Villar et al., 2021).

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gon-
zalo C. Gutiérrez-Tobal, Verónica Barroso-Garía, Eduardo Santamaría-Vázquez,
Félix del Campo, David Gozal, and Roberto Hornero. IEEE Journal of Biomedical
and Health Informatics, vol. 25 (8), p. 2906-2916, 2021. Impact factor in 2020 (last
year available): 5.772, D1 in “MATHEMATICAL & COMPUTATIONAL BIOLOGY”
(JCR-WOS).

Abstract: This study aims at assessing the usefulness of deep learning to enhance
the diagnostic ability of oximetry in the context of automated detection of pe-
diatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation
(SpO2) signals from children were used for this purpose. A convolutional neural
network (CNN) architecture was trained using 20-min SpO2 segments from the
training set (859 subjects) to estimate the number of apneic events. CNN hyper-
parameters were tuned using Bayesian optimization in the validation set (1402
subjects). This model was applied to three test sets composed of 312, 392, and
231 subjects from three independent databases, in which the apnea-hypopnea in-
dex (AHI) estimated for each subject (AHICNN) was obtained by aggregating the
output of the CNN for each 20-min SpO2 segment. AHICNN outperformed the
3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI
estimated by a conventional feature-engineering approach based on multi-layer
perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen’s
kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and
0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306).
In addition, our proposal outperformed state-of-the-art studies, particularly for
the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information
automatically learned from the SpO2 signal by deep-learning techniques helps to
enhance the diagnostic ability of oximetry in the context of pediatric OSA.
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1.2 The biomedical signal processing framework:

feature-engineering and deep learning

Biomedical signals convey information on the functioning of the human body
(Bronzino, 2000). The study of these signals allows to analyze the properties
of the underlying biological systems (Bronzino, 2000), which makes possible to
identify several pathological conditions (Sörnmo and Laguna, 2005). Nonethe-
less, the physiological information contained in these signals cannot be typically
extracted in a visual way (Sörnmo and Laguna, 2005). In this respect, biomed-
ical signal processing provides methods that help to understand and character-
ize the hidden information from these signals that can not be obtained through
visual assessment (Sörnmo and Laguna, 2005). It also allows to develop auto-
mated systems for the diagnosis, treatment, and/or monitoring of a wide range
of pathologies (Sörnmo and Laguna, 2005).

In this type of systems (e.g., the screening of pediatric OSA), the automated
analysis of biomedical signals has been traditionally performed following a
feature-engineering methodology (Najarian and Splinter, 2012), which consists
of three main stages. In the first stage, known as feature extraction, the hidden
characteristic information (features) about the biomedical signals is obtained (Kr-
ishnan and Athavale, 2018; Najarian and Splinter, 2012). To extract these features,
different algorithms based on mathematical methods are used such as statisti-
cal, morphological, frequency domain, time-frequency, or nonlinear analysis (Kr-
ishnan and Athavale, 2018; Najarian and Splinter, 2012; Rangayyan, 2015). The
second stage is the use of automatic feature selection methods to find the rele-
vant and non-redundant information among that extracted in the previous step
(Rangayyan, 2015). Finally, in the third stage, the selected information is used to
train pattern recognition algorithms in order to obtain predicted models aimed at
providing a diagnostic decision (Najarian and Splinter, 2012; Rangayyan, 2015).
The range of patter-recognition methods include from weak classifiers like logis-
tic regression (LR) and Fisher linear discriminant analysis (LDA) to more com-
plex algorithms such as support vector machines (SVM), Bayesian classifiers, and
multi-layer perceptron (MLP) neural networks (Najarian and Splinter, 2012; Ran-
gayyan, 2015).

Deep learning has emerged in recent year as a novel methodological approach
aimed at changing the paradigm of data processing (LeCun et al., 2015). Conven-
tional feature-engineering approaches have two main disadvantages: (i) a hu-
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man expert must determine which relevant features obtain from the input data,
and (ii) these methods provide a low level of abstraction that limits their capabil-
ity to learn complex features from the data. These issues may result in missing
important information from the data. In contrast to conventional approaches, a
deep-learning model automatically discovers the intricate information in the data
(LeCun et al., 2015). In this regard, deep-learning methods automatically learn
complex patterns and extract features from raw data by the use of various pro-
cessing layers with multiple levels of representation (LeCun et al., 2015). Starting
from the representation at the lowest level, the raw input data, simple non-linear
modules transform them into representations at a higher abstract level (LeCun
et al., 2015). With an architecture composed of enough transformations, deep-
learning algorithms can learn very complex features from the data. As afore-
mentioned, these algorithms have improved predictive performances in a broad
range of traditionally challenging domains, such as image, genomics, and signal
processing (LeCun et al., 2015). Specifically, in the biomedical signal processing
field, these algorithms have beaten conventional methods in many relevant do-
mains, including sleep stage scoring (Faust et al., 2019), congestive heart failure
diagnosis (Jahmunah et al., 2019), epileptic seizure detection (Roy et al., 2019),
and brain-machine interfaces (Roy et al., 2019).

This Doctoral Thesis is aimed at enhancing the diagnosis ability of the oxime-
try signal in the context of childhood OSA. For this purpose, novel feature-
engineering and deep-learning methodologies have been developed and as-
sessed.

1.3 Pediatric Obstructive Sleep Apnea (OSA)

Although originally described for adults, OSA has been recognized in recent
years as a high prevalent condition among children (1.2% - 5.7%) (Marcus et al.,
2012), with etiological, diagnostical, and therapeutical considerations that are dif-
ferent for the pediatric population (Capdevila et al., 2008; Marcus et al., 2012).
According to the American Academy of Pediatrics (AAP), childhood OSA is a
respiratory disorder marked by repetitive episodes of complete absence (apnea)
and/or considerable reduction (hypopnea) of airflow during sleep (Marcus et al.,
2012). It is associated with the presence of nocturnal symptoms that cause dis-
turbed sleep. Thus, apneic (apneas and hypopneas) events derive in inadequate
gas exchange, leading to hypercapnia and hypoxia states, which induce oxygen
desaturations, arousals, and sleep fragmentation. Gasping and snoring also occur
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frequently (Loughlin et al., 1996).
As a consequence of these symptoms, OSA have many negative effects that re-

duce health and quality of life of the children (Capdevila et al., 2008; Marcus et al.,
2012). In this respect, children suffering from OSA are at an increased risk for de-
veloping cardiovascular morbidities, such as systemic hypertension, changes in
blood pressure regulation, and altered left ventricular geometry (Capdevila et al.,
2008). OSA during childhood may also lead to neurobehavioral abnormalities,
such as cognitive deficits, reduced academic achievements, hyperactivity, aggres-
sive behavior, and excessive daytime sleepiness (Hunter et al., 2016). Moreover,
it is also related to the metabolic syndrome, which includes hypertension, insulin
resistance, dyslipidemia, and obesity (Capdevila et al., 2008). Finally, somatic
growth impairment has been related to pediatric OSA as well (Alonso-Álvarez
et al., 2011).

Despite its high prevalence, pediatric OSA is an underdiagnosed condition
(Kheirandish-Gozal, 2010). Estimations indicate that approximately 90% of the
affected children have not been diagnosed yet (Kheirandish-Gozal, 2010). Treat-
ment interventions for pediatric OSA have led to a reduction in neurocognitive,
cardiometabolic, and growth stunting risks (Tan et al., 2017). Nonetheless, the
low percentage of diagnosis, together with the high prevalence, result in a high
number of children being exposed to its adverse consequences.

1.4 Pediatric OSA diagnosis: Polysomnography

(PSG)

OSA is diagnosed by means of the overnight PSG test, which acts as "gold
standard" (Marcus et al., 2012). During PSG, multiple neurophysiological and
cardiorespiratory signals from patients are monitored and recorded: electroen-
cephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), electro-
cardiogram (ECG), oronasal airflow (AF), abdominal and chest wall movements
respiratory effort, SpO2, and photoplethysmography (PPG), among others (Tan
et al., 2014). Thus, patients need to stay a complete night in a sleep laboratory,
where skilled staff care for them as well as monitor the course of the test. After
the PSG, the sleep recordings need an offline inspection to annotate apneas and
hypopneas in order to compute the apnea-hypopnea index (AHI), which is the
clinical variable employed to establish a diagnosis (Tan et al., 2014).

Despite the well-known effectiveness of PSG, it presents several limitations.
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PSG is a complex test due to the necessity to record a high number of signals,
which requires that patients spend at least one night in a sleep laboratory (Tan
et al., 2015). In addition, trained personnel is needed to be responsible for the
children and a proper development of the test, resulting in high hospital expenses
(Tan et al., 2015). Similarly, apneic events are manually scored by trained special-
ists, which is labor intensive and may result in subjective diagnoses (Tan et al.,
2015). Finally, the nature of the PSG requires to perform the test out of the sleep
environment of the patients and with the use of multiple sensors placed on their
bodies, which results highly uncomfortable and intrusive for children (Katz et al.,
2012). This may derive in obtaining sleep recordings which are not representa-
tive of natural sleep, thus resulting in the need to repeat the diagnostic test (Katz
et al., 2012).

Due to the complexity, cost, and time needed to analyze the sleep signals,
available resources are not enough to cope with the high demand of OSA diagno-
sis (Tan et al., 2015). This results in long waiting lists, thus hindering the diagno-
sis and treatment of the affected children (Nixon et al., 2004). These drawbacks,
together with the high prevalence rate of pediatric OSA, have led the scientific
community to explore the use of simplified screening tests (Kaditis et al., 2016b;
Marcus et al., 2012). In this sense, the guidelines of the AAP recommend con-
ducting alternative tests to address PSG unavailability, while still requiring more
conclusive evidences about the efficacy of these tests (Marcus et al., 2012).

1.5 Alternatives to PSG

In order to address the above-mentioned limitations, the use of portable moni-
toring equipment has been suggested as the main alternative to PSG in the diag-
nosis of pediatric OSA (Kaditis et al., 2016b; Marcus et al., 2012). According to
the Portable Monitoring Task Force of the American Academy of Sleep Medicine
(AASM), the equipment used in sleep studies can be classified into four types,
depending on the number and type of the recorded signals (Standards of Practice
Committee of the American Sleep Disorders Association, 1994):

I. Type I: Standard PSG. This first type consists of the conventional PSG
equipment, which requires the supervision of trained personnel in the hos-
pital facilities. These devices are considered the gold standard to which the
remaining types must be compared.

II. Type II: Comprehensive portable PSG. These devices record a minimum
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of seven channels, including EOG, chin EMG, EEG, airflow, ECG or heart
rate (HR), respiratory effort, and SpO2. These studies do not require the
presence of trained personnel. These devices allow to identify sleep stages
and calculate the AHI.

III. Type III: Modified portable sleep apnea testing. These studies, also called
respiratory polygraphy (RP) studies, include the recording of ventilation (a
minimum of two respiratory movement signals or one respiratory move-
ment signal and airflow), ECG or HR, and SpO2.

IV. Type IV: Continuous single-bioparameter or dual-bioparameter record-
ing. These devices only record one or two physiological signals, being
oximetry traditionally one of these measurements. In addition, all the
equipment that does not meet Type III criteria is included in this group.

1.5.1 Overnight oximetry

In recent years, there has been an increased interest in overnight oximetry as the
main alternative to PSG in the context of pediatric OSA diagnosis due to its sim-
plicity, reliability, and suitability for children (del Campo et al., 2018). Overnight
oximetry records the SpO2 signal in a non-invasive way with a pulse oximeter,
usually located on the finger, toe or earlobe of the patient (Netzer et al., 2001).

SpO2 expresses the amount of oxygen combined with the hemoglobin with re-
spect to the total hemoglobin in the blood, the oxyhemoglobin (O2Hb), which is
responsible for transporting the blood oxygen to the tissues. The operating prin-
ciple of the SpO2 sensors is based on the optical properties of the hemoglobin
(Chan et al., 2013). O2Hb absorbs more infrared light, acquiring a red hue. On
the contrary, deoxyhemoglobin (HHb) absorbs a higher amount of red light, thus
having a more bluish hue. Pulse oximeters exploit this difference in the light
absorption of O2Hb and HHb to obtain SpO2. To achieve this, pulse oximeters
contain two light-emitting diodes on one side of the finger that transmit at red
(around 660 nm) and near infrared wavelengths (around 940 nm). On the oppo-
site side of the finger, a photodiode is placed to measure the amount of red and
infrared light absorbed by the tissues, which allows to determine SpO2 (Chan
et al., 2013).

Due to these easy acquisition of the SpO2 signal, commercial pulse oximetry
devices have been developed, which facilitate to perform the test in an unsuper-
vised way at children’s home (Garde et al., 2014a; Nixon et al., 2004). Apneic
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events from OSA induce recurrent decreases in the SpO2 (Berry et al., 2012), also
called oxygen desaturations, so that this signal contains important OSA-related
information. Figure 1.2 shows the SpO2 signal corresponding to (a) a no OSA pe-
diatric subject (AHI < 1 events per hour), (b) doubtful no OSA pediatric subject
(AHI < 1 events per hour), (c) a mild OSA pediatric subject (1 ≤ AHI < 5 events
per hour), (d) a doubtful mild OSA pediatric subject (1 ≤ AHI < 5 events per
hour), (e) a moderate OSA pediatric subject (5 ≤ AHI < 10 events per hour), (f)
a doubtful moderate OSA pediatric subject (5 ≤ AHI < 10 events per hour), (g)
a severe OSA pediatric subject (AHI ≥ 10 events per hour), and (h) a doubtful
severe OSA pediatric subject (AHI ≥ 10 events per hour). It can be observed that
there are more oxygen desaturations as the severity of OSA increases. However,
it is difficult to visually discriminate the SpO2 signal from doubtful subjects.

1.6 State-of-the-art: Automated analysis of the

oximetry signal to diagnose pediatric OSA

The usefulness of SpO2 recordings from nocturnal oximetry to help in the screen-
ing of pediatric OSA has been widely assessed, especially in the last years (del
Campo et al., 2018). The analysis of this signal has been addressed by using con-
ventional oximetric indices, as well as automated signal processing methodolo-
gies.

1.6.1 Conventional oximetric indices

Previous studies predominantly used conventional oximetric indices for this task
(Brouillette et al., 2000; Chang et al., 2013; Kirk et al., 2003; Ma et al., 2018; Nixon
et al., 2004; Tsai et al., 2013; Van Eyck et al., 2015; Velasco et al., 2013; Villa et al.,
2015). In this respect, researchers mainly assessed the screening ability of oxy-
gen desaturation index (ODI), which accounts for the number of drops of the
SpO2 signal larger than a defined threshold (Kirk et al., 2003; Ma et al., 2018; Tsai
et al., 2013). Kirk et al. (2003) assessed, in a population of 58 pediatric subjects,
the agreement between the AHI from PSG and the ODI3 from the SpO2 signal
simultaneously recorded with a portable monitoring device (SnoreSat, SagaTech
Electronics, Calgary, AB, Canada). Similarly, Tsai et al. (2013) evaluated the yield
of several cut-offs for the 4% ODI (ODI4) to establish pediatric OSA severity in
a database of 146 pediatric PSGs. Recently, Ma et al. (2018) studied the clinical
applicability of a pulse oximetry watch (POW) for pediatric OSA diagnosis. To
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Figure 1.2. Examples of SpO2 corresponding to: (a) a no OSA subject, (b) doubtful no OSA
subject, (c) a mild OSA subject, (d) a doubtful mild OSA subject, (e) a moderate OSA sub-
ject, (f) a doubtful moderate OSA subject, (g) a severe OSA subject, (h) a doubtful severe
OSA subject. In doubtful subjects, it is difficult to visually discriminate the OSA severity
group from the overnight SpO2 profile, leading to the need of non-subjective automated
analyses.

this effect, they measured the concordance between the AHI from PSG and the
ODI4 derived from the SpO2 signal simultaneously recorded with the POW in 32
children.

Likewise, the number and depth of clusters of desaturations in the SpO2

recordings have been quantified by means of a visual inspection in order to de-
velop OSA screening protocols (Brouillette et al., 2000; Nixon et al., 2004; Van
Eyck et al., 2015; Velasco et al., 2013). A cluster of desaturations was defined by
Brouillette et al. (2000) as 5 or more oxygen desaturations of at least 4% occurring
in a 10-30 minute window. Based on the number of clusters of desaturations and
the number of drops of the SpO2 signal below 90%, Brouillette et al. (2000) de-
fined a positive, negative, or inconclusive score for pediatric OSA and compared
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it with the standard diagnosis from PSG in a dataset of 349 children. Similarly,
Nixon et al. (2004) developed a severity score for pediatric OSA, named McGill
oximetry score (MOS), which is also based on the number of clusters of desatura-
tions and the number of drops of the oximetry signal below a defined threshold.
Furthermore, Velasco et al. (2013) assessed the diagnostic ability of a positive OSA
score defined as 2 or more clusters of desaturations, one of them with an oxygen
drop below 90%, in a sample of 167 children with adenotonsillar hypertrophy. Fi-
nally, Van Eyck et al. (2015) assessed the diagnostic ability of the methodologies
proposed by Brouillette et al. (2000) and Velasco et al. (2013), as well as the ODI3,
in a population of 130 obese patients.

These oximetric indices have also been combined with common symptoms
(Chang et al., 2013) and clinical history (Villa et al., 2015) in order to enhance
their diagnostic ability. Chang et al. (2013) used common symptoms (witnessed
apneas, mouth breathing, and restless sleep) and the ODI3 to evaluate both a
LR classifier and a discriminative score to diagnose pediatric OSA in a sample
of 141 children. Conversely, Villa et al. (2015) combined the MOS and a sleep
clinical record that includes physical examination and children’s history to detect
pediatric OSA in a database of 236 pediatric subjects.

Differing from these studies, the research conducted in the present Doctoral
Thesis has included the use of automated signal processing algorithms to further
characterize the oximetry recordings.

1.6.2 Automated signal processing methods

Recent works have focused on enhancing the diagnostic capability of the oxime-
try signal by means of the application of automated signal processing algorithms
(Álvarez et al., 2017; Álvarez et al., 2018; Crespo et al., 2017, 2018; Garde et al.,
2014a; Hornero et al., 2017; Xu et al., 2019). As mentioned in Section 1.1, these
studies typically follow a three-stage feature-engineering methodology: (i), fea-
ture extraction; (ii) feature selection; and (iii) pattern recognition.

Importantly, in the feature extraction stage, the majority of studies (Álvarez
et al., 2017; Crespo et al., 2018; Garde et al., 2014a; Hornero et al., 2017; Xu et al.,
2019) employed signal processing techniques that had already shown its use-
fulness to characterize the changes in oximetry dynamics associated to apneic
events in adult patients both in the time and frequency domains (del Campo et al.,
2018). In the time domain, SpO2 recordings were characterized using statistical
moments, oximetric indices, and several non-linear measures: approximate en-
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tropy (Pincus, 1991), sample entropy (Richman and Moorman, 2000), Lempel-Ziv
complexity (Lempel and Ziv, 1976), and central tendency measure (Cohen and
Hudson, 2000). Conversely, the power spectral density (PSD) (Welch, 1967) was
used to characterize the oximetry signal in the frequency domain (Álvarez et al.,
2017; Crespo et al., 2018; Garde et al., 2014a; Hornero et al., 2017; Xu et al., 2019).

First, Garde et al. (2014a) developed and validated the Phone Oximeter, a
portable monitoring device consisting of a pulse oximetry sensor connected to a
mobile phone, as a diagnostic tool for childhood OSA. To this effect, they assessed
a LDA model fed with statistical parameters, classical indices, nonlinear features,
and PSD-derived features from 146 SpO2 recordings of pediatric patients. Simi-
larly, Álvarez et al. (2017) evaluated at-home unsupervised oximetry in pediatric
OSA using a LR model trained with statistical moments, PSD-derived parame-
ters, nonlinear features, and classical indices from 50 patients that underwent RP.
A thorough comparative analysis of statistical binary classifiers for the diagno-
sis of childhood OSA was performed by Crespo et al. (2018). Specifically, they
assessed LDA, LR, and quadratic discriminant analysis (QDA) pattern recogni-
tion models trained with statistical moments, PSD variables, nonlinear features,
and the ODI3 extracted from a database of 176 children (Crespo et al., 2018). The
usefulness of automated processing of oximetric recordings as a screening tool
for pediatric OSA was also examined in a multicenter international study de-
veloped by Hornero et al. (2017), which involved 4191 pediatric subjects from
13 sleep centers. Particularly, Hornero et al. (2017) assessed a MLP neural net-
work trained to estimate the AHI with the ODI3 and the third-order moment of
the PSD. This MLP model was further validated in 432 children along with a re-
mote cloud system (Xu et al., 2019). Nonetheless, Hornero et al. (2017) reported
a high redundancy in the information extracted from the oximetry recordings.
As mentioned in section 1.1, these studies used the same methods employed in
adult OSA patients, but reaching a lower performance (Álvarez et al., 2017; Cre-
spo et al., 2018; Garde et al., 2014a; Hornero et al., 2017; Xu et al., 2019). This
highlights the need for novel signal processing methods able to provide specific
features for the particularities of pediatric OSA.

In order to address this issue, two recent studies conducted by Crespo et al.
(2017) and Álvarez et al. (2018) applied two novel nonlinear analysis methods in
the context of pediatric OSA, multiscale entropy (Costa et al., 2005) and symbolic
dynamics (Daw et al., 2003), respectively. Crespo et al. (2017) investigated the
ability of multiscale entropy (MSE) to further characterize the dynamics of unat-
tended oximetry using the database employed in Álvarez et al. (2017). For this
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purpose, a LR model was trained to automatically detect childhood OSA with
conventional oximetric indices and nonlinear MSE-derived parameters (Crespo
et al., 2017). Additionally, Álvarez et al. (2018) evaluated the usefulness of sym-
bolic dynamics to increase the diagnostic capability of portable oximetry record-
ings from the Phone Oximeter. Specifically, a LR model was designed using con-
ventional oximetric indices, anthropometric variable, statistical parameters, and
nonlinear features from symbolic dynamics (Álvarez et al., 2018). In this Doctoral
Thesis, we have assessed the usefulness of DFA (Peng et al., 1994), a time domain
nonlinear analysis method, and wavelet (Rioul and Vetterli, 1991) and bispectral
analysis (Chua et al., 2010), two frequency domain techniques, to provide com-
plimentary features that help to further characterize apneic events from pediatric
OSA (Vaquerizo-Villar et al., 2018a,b,c).

As aforementioned, there has been a breakthrough in the last years in the
data science field thanks to the emergence of deep learning approaches (LeCun
et al., 2015). Due to its multilayer architecture with multiple levels of representa-
tion, deep-learning methods are suitable to learn very complex patterns from the
raw data, which has led them to outperform conventional approaches in many
fields (LeCun et al., 2015). In this respect, previous studies have applied deep-
learning methods to analyze polysomnographical signals in adult OSA patients
(Faust et al., 2019; Mostafa et al., 2019). These works have focused on the detec-
tion of sleep stages (Faust et al., 2019), apneic events (Mostafa et al., 2019), and/or
direct AHI estimation (Mostafa et al., 2019). To our knowledge, Vaquerizo-Villar
et al. (2021), the last article of the present Doctoral Thesis, is the first study that
applies deep learning techniques in the context of childhood OSA. In Vaquerizo-
Villar et al. (2021), a CNN-based deep-learning architecture was fed with raw
SpO2 data (Vaquerizo-Villar et al., 2021), which has outperformed conventional
approaches in the framework of pediatric OSA.

In this chapter, we have introduced the topic of this Doctoral Thesis. In the
next Chapter (see Section 2), the hypotheses and objectives of this research will
be stated.



Chapter 2

Hypotheses and objectives

The automated analysis of the oximetry signal has become as the main alternative
to PSG in the screening of pediatric OSA. Accordingly, the present Doctoral The-
sis focuses on the use of novel signal processing algorithms, intended to increase
the diagnosis ability of the SpO2 signal from overnight oximetry. Therefore, Sec-
tion 2.1 describes the different hypothesis that have been formulated throughout
the present Doctoral Thesis, as well as the global hypothesis that raised from these
statements. Similarly, the main objective of this Thesis is stated in Section 2.2, as
well as the specific objectives that have been accomplished to achieve it.

2.1 Hypotheses

Simplification of OSA diagnosis has become a main research topic in past years
(Bertoni and Isaiah, 2019; Kaditis et al., 2016b; Marcus et al., 2012). As previously
explained, the SpO2 signal allows to detect oxygen desaturations associated to
apneic events (Berry et al., 2012), which has led to its use in the screening of
pediatric OSA (del Campo et al., 2018). Thus, at the beginning of this Doctoral
Thesis, the following hypothesis was formulated: the oximetry signal on its own
may contain enough information for the screening of pediatric OSA. Nonetheless, this
statement does not completely describe the starting point of the different investi-
gations conducted in this study.

As stated in Subsection 1.6, a recent study reported a high redundancy in the
conventional features extracted from the oximetry signal (Hornero et al., 2017),
suggesting the need to apply novel signal processing algorithms. Thereby, it
has been hypothesized that novel feature extraction methods could further charac-
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terize OSA-related changes in the oximetry signal. Similarly, we wonder whether
the features extracted by these methods provide complimentary information to improve
the diagnostic capability of the oximetry signal in the context of pediatric OSA. Feature
selection and pattern recognition algorithms have been used for this purpose.

In spite of the usefulness of conventional feature-engineering approaches,
they are limited to learn all the relevant information from the data because of:
(i) the domain expert that designs the feature extractor decides which features
are relevant a priori; and (ii) their reduced level of abstraction. Owing to their
great capability to automatically learn very complex features from raw data, it
has been hypothesized that deep-learning algorithms could extract all the OSA-related
information from the SpO2 signal, thus enhancing its diagnostic ability.

These statements are the main hypotheses that form the core of the current
Doctoral Thesis, which can be joint into the following global hypothesis:

“The application of novel feature extraction and deep-learning algorithms
allows to capture hidden patterns of desaturations linked to apneic events,
enhancing the diagnostic ability of the single-channel oximetry in the con-
text of pediatric OSA.”

2.2 Objectives

The main goal of the present Doctoral Thesis is to design, develop, and evaluate
novel clinical decision-support models in the context of pediatric OSA based on
the automated analysis of the oximetry signal. To reach this general goal, the
following specific objectives arise:

I. To further characterize changes in the oximetry signal caused by apneic
events linked to pediatric OSA both in the time and frequency domains.

II. To identify novel features from the oximetry signal able to provide relevant
and complimentary information to conventional oximetry variables.

III. To design and optimize high-performance pattern recognition models
aimed at the automated detection of pediatric OSA and its severity using
optimum subsets of features from the SpO2 signal.

IV. To explore and develop novel deep-learning based architectures capable
to automatically learn all the OSA-related information from raw oximetry
data.



Chapter 3

Subjects and signals under
study

During this research, three different databases of pediatric subjects were an-
alyzed: (i) the Childhood Adenotonsillectomy Trial (CHAT) database, (ii) the
University of Chicago (UofC) database, and (iii) the Burgos University Hospi-
tal (BUH) database. All of them contained SpO2 recordings of children ranging
from 0 to 18 years of age. These pediatric subjects were referred to nocturnal PSG
showing clinical suspicion from OSA due to one or several of the following cri-
teria: snoring, apneas, arousals, excessive daytime sleepiness, restless sleep, hy-
peractivity, tonsillar hypertrophy, increase in neck circumference, developmen-
tal disorder depression and low self-esteem, enuresis, obesity, attention deficit,
behavioral problems, and cephaleas. The CHAT dataset, a public multicenter
dataset, was integrated by 1638 sleep studies. The UofC dataset consisted of 980
children and the BUH dataset was composed of 578 pediatric subjects.

SpO2 recordings were acquired from pediatric subjects during their standard
diagnostic PSG test using sampling frequencies ranging from 1 to 512 Hz. Fol-
lowing the rules of the AASM (Berry et al., 2012; Iber et al., 2007), all the sleep
recordings were manually inspected by trained staff to quantify sleep and an-
notate apneas and hypopneas. These annotations were used to obtain the AHI,
which is used to establish a diagnosis (Marcus et al., 2012). Common AHI cut-
offs used to establish pediatric OSA severity are 1, 5, and 10 e/h (Alonso-Álvarez
et al., 2011; Church, 2012; Tan et al., 2014). In this respect, AHI = 5 e/h is com-
monly employed as a cutoff to recommend surgical treatment (Tan et al., 2014),
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as children with an AHI ≥ 5 e/h are at a higher risk of developing comorbidi-
ties (Church, 2012; Hunter et al., 2016; Kaditis et al., 2016a). Accordingly, under
a binary classification approach, pediatric subjects were distinguished into nega-
tive OSA (AHI < 5 e/h) and positive OSA (AHI ≥ 5 e/h). In addition, children
can also be classified into four pediatric OSA severity degrees: no OSA (AHI <
1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10 e/h), and
severe OSA (AHI ≥ 10 e/h). Details of each database, such as number of sub-
jects, sex (male percentage), age, body mass index (BMI), and number of patients
of each OSA severity group are provided in Tables 3.1, 3.2, 3.3, and 3.4.

3.1 Childhood Adenotonsillectomy Trial (CHAT)

database

CHAT database is composed of 1639 sleep studies from children ranging 5 to
10 years old with clinical suspicion of OSA. Sleep studies were obtained in 6
pediatric sleep centers of the United States of America (Children’s Hospital of
Pennsylvania, Philadelphia, PA; Cincinnati Children’s Medical Center, Cincin-
nati, OH; Rainbow Babies and Children’s Hospital, Cleveland, OH; Boston Chil-
dren’s Hospital, Boston, MA; Cardinal Glennon Children’s Hospital, St. Louis,
MI; Montefiore Medical Center, Bronx, NY) of which 1638 contained SpO2 record-
ing (Marcus et al., 2013; Redline et al., 2011). This database is divided into three
groups:

• Baseline, composed of 453 SpO2 recordings from children that met the crite-
ria defined in Marcus et al. (2013) and Redline et al. (2011) to be randomized
to early adenotonsillectomy or a strategy of watchful waiting.

• Follow-up, composed of SpO2 recordings from 406 pediatric subjects of the
baseline group performed after a 7-month observation period.

• Nonrandomized, composed of 779 SpO2 recordings from children who did
not met the criteria defined in Marcus et al. (2013) and Redline et al. (2011)
to be included in the follow-up study.

Overnight PSG was performed following a strict standardized procedure (Red-
line et al., 2011), which includes the acquisition of SpO2 recordings with a Nonin
8000J or comparable sensor at sampling rates ranging from 1 to 512 Hz. The clin-
ical trail identifier of the CHAT database is available in NCT00560859 and its full

https://clinicaltrials.gov/ct2/show/study/NCT00560859
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protocol is provided in the supplementary material of Marcus et al. (2013). This
database was used in Vaquerizo-Villar et al. (2021). Table 3.1 shows the sociode-
mographic and clinical data from this database.

3.2 University of Chicago (UofC) database

UofC database is composed of 981 SpO2 recordings from children aged 0 to 13
years of age. All children were referred to the pediatric sleep unit at the Uni-
versity of Chicago Medicine Comer Children’s Hospital (Chicago, IL, USA) due
to clinical suspicion of OSA. The legal guardians of all the children signed the
informed consent and the Ethics Committee of the Comer Children’s Hospital
approved the protocols (#11-0268-AM017, #09-115-B-AM031, and #IRB14-1241).
Overnight PSGs were performed using a digital polysomnography system (Poly-
smith; Nihon Kohden America Inc., CA, USA), which includes an internal pulse
oximetry sensor. In this way, SpO2 recordings were obtained from PSG at sam-
pling rates of 25 Hz, 200 Hz, or 500 Hz.

This dataset was used in all the studies of this Doctoral Thesis (Vaquerizo-
Villar et al., 2018a,b,c, 2021). In the first manuscript of this doctoral thesis
(Vaquerizo-Villar et al., 2018b), a subset of the whole UofC database composed
of 298 SpO2 recordings, those sampled at 25 Hz, was analyzed. In Vaquerizo-
Villar et al. (2018c) and Vaquerizo-Villar et al. (2018a), the complete database,
981 subjects, was employed. Finally, one subject was removed from the com-
plete dataset for the last manuscript of this Thesis, as the total sleep time was
less than 3 hours after signal preprocessing, thus analyzing 980 SpO2 recordings
in Vaquerizo-Villar et al. (2021). Table 3.2 and Table 3.3 show the clinical and

Table 3.1. Clinical and sociodemographic data of the CHAT database.

All no OSA mild OSA moderate OSA severe OSA

SpO2 recordings (%) 1638 637 609 205 187
(100%) (38.9%) (37.2%) (12.5%) (11.4%)

Age (years) 7 7 7 7 7
[6, 8] [6, 8] [6, 8] [6, 8] [6, 8]

Males (%) 602 297 287 101 92
(47.4%) (46.6%) (47.1%) (49.3%) (49.2%)

BMI (kg/m2) 17.3 17.0 17.4 18.6 18.9
[15.8, 21.7] [15.5, 19.6] [15.6, 21.7] [15.4, 23.3] [16.0, 24.3]

AHI (e/h) 1.6 0.4 2.2 7.1 17.9
[0.6, 4.7] [0.2, 0.7] [1.5, 3.2] [5.9, 8.4] [12.8, 26.9]

Data are presented as median [interquartile range], n, or n (%). OSA = Obstructive sleep apnea.
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sociodemographic data from the complete dataset (981 subjects) and the initial
dataset of 298 SpO2 recordings used in Vaquerizo-Villar et al. (2018b), respec-
tively.

3.3 Burgos University Hospital (BUH) database

The BUH database included 578 children ranging 0 to 18 years of age who were
referred to the pediatric sleep laboratory at Burgos University Hospital with
high suspicion from OSA. All legal guardians of the pediatric subjects involved
gave their informed consent and the Ethics Committee of the BUH approved the
protocol. Children’s sleep was monitored using the Deltamed Coherence 3NT
Polysomnograph, version 3.0 system (Diagniscan S.A.U., Group Werfen, Paris,
France), which includes a Nellcor Puritan Bennett, NPB-290 pulse oximeter. In

Table 3.2. Clinical and sociodemographic data of the complete UofC database (981 sub-
jects).

All no OSA mild OSA moderate OSA severe OSA

SpO2 recordings (%) 981 175 401 176 229
(100%) (17.8%) (40.9%) (17.9%) (23.4%)

Age (years) 6 7 6 5 4
[3, 9] [4, 10] [4, 9] [2, 8] [2, 8]

Males (%) 602 109 247 107 139
(61.4%) (62.3%) (61.6%) (60.8%) (60.7%)

BMI (kg/m2) 17.9 17.7 17.7 18.6 18.3
[15.8, 21.9] [15.5, 20.9] [15.9, 21.2] [16.2, 24.0] [16.0, 23.2]

AHI (e/h) 3.8 0.5 2.5 6.8 19.1
[1.5, 9.3] [0.1, 0.8] [1.7, 3.5] [5.8, 8.3] [13.9, 31.1]

Data are presented as median [interquartile range], n, or n (%). OSA = Obstructive sleep apnea.

Table 3.3. Clinical and sociodemographic data of the initial version of the UofC database
(298 subjects).

All negative OSA moderate OSA severe OSA

SpO2 recordings (%) 298 164 56 78
(100%) (55.0%) (18.8%) (26.2%)

Age (years) 6 7 5 6
[4, 9] [5, 10] [3, 8] [3, 9]

Males (%) 166 91 32 43
(55.7%) (55.5%) (57.1%) (55.1%)

BMI (kg/m2) 18.4 18.2 18.1 19.1
[16.3, 23.0] [16.3, 22.3] [16.3, 22.6] [16.5, 25.7]

AHI (e/h) 4.2 1.9 7.0 17.7
[1.8, 10.4] [1.0, 3.5] [5.9, 8.5] [11.7, 27.3]

Data are presented as median [interquartile range], n, or n (%). OSA = Obstructive sleep apnea.
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this way, SpO2 recordings were obtained during nocturnal PSG at a sampling
rate of 200 Hz. This database was used in Vaquerizo-Villar et al. (2021). Table 3.4
shows the sociodemographic and clinical data from this sample.

Table 3.4. Clinical and sociodemographic data of the BUH database.

All no OSA mild OSA moderate OSA severe OSA

SpO2 recordings (%) 578 205 220 65 88
(100%) (35.5%) (38.1%) (11.3%) (15.2%)

Age (years) 5 6 5 5 4
[4, 7] [4, 8] [3, 6] [3, 6] [3, 5]

Males (%) 356 127 129 38 62
(61.6%) (62.0%) (58.7%) (58.5%) (70.5%)

BMI (kg/m2) 16.0 16.1 16.0 15.4 16.1
[14.6, 18.2] [14.5, 18.8] [14.7, 17.7] [14.6,18.1] [14.7,17.3]

AHI (e/h) 1.8 0.4 2.1 6.9 24.3
[0.6, 5.3] [0.0, 0.6] [1.5,3.4] [5.8, 8.1] [14.8, 34.9]

Data are presented as median [interquartile range], n, or n (%). OSA = Obstructive sleep apnea.
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Methods

This chapter describes the general signal processing methodology that has been
conducted through the compendium of publications (see Figure 4.1). It starts
with a signal pre-processing stage (Section 4.1), which adapts the oximetry data
to the requirements of the different signal processing algorithms. Following the
feature-engineering branch (Section 4.2), Sections 4.2.1 and 4.2.2 describe the sig-
nal processing methods applied to extract features from the SpO2 recordings in
the time and frequency domains and to select optimum subsets of optimum OSA-
related features, respectively. Afterward, Section 4.2.3 is devoted to describe the
pattern recognition algorithms employed to establish pediatric OSA and its sever-
ity. As the last stage of the feature-engineering methodology, pattern recognition
algorithms are fed with the optimum features obtained in the feature selection
stage. In the deep-learning branch (Section 4.3), CNNs are trained using raw
oximetry signal to estimate the AHI and thereby the severity of pediatric OSA.
Finally, Section 4.4 describes the statistical analysis techniques employed in this
research.

4.1 Pre-processing

As seen in Sections 3.1 3.1 3.1, SpO2 recordings were acquired during PSG us-
ing different pulse oximetry sensors and recording systems. Heterogeneity in the
devices could lead to slight differences in the overnight oximetric profile able to
influence the diagnostic ability of the signal. Additionally, the SpO2 signal con-
tains artifacts caused by loss of contact of the pulse oximeter probe due to subject
movements. Therefore, a signal pre-processing step was included to standardize
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Figure 4.1. Scheme of the general signal processing methodology conducted in the study.

the signals obtained from the different recording devices, as well as to remove
motion artifacts. Signal pre-processing was different for the two main method-
ological approaches conducted in this research: (i) feature-engineering and (ii)
deep-learning approaches.

Following a feature-engineering methodology, artifacts were first discarded
from SpO2 recordings by removing samples with SpO2 values below 50% as well
as sudden changes with a slope ≥4% per second (Magalang et al., 2003). As the
sampling frequency among the different recording devices ranged from 1 to 512
Hz, oximetry signals were re-sampled to a common sample rate of: (i) 25 Hz in
Vaquerizo-Villar et al. (2018b) and Vaquerizo-Villar et al. (2018c), as advocated
by the AASM (Berry et al., 2012); and (ii) 1 Hz for the multiscale analysis of the
oximetry signal proposed in Vaquerizo-Villar et al. (2018a), which has been con-
sidered more appropriate for multiscale analysis approaches in previous studies
(Crespo et al., 2017; Hua and Yu, 2017). Finally, the resolution of the SpO2 record-
ings was set to two decimal points (resolution of 0.01%) in order to homogenize
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the resolution of signals from different recording devices (Garde et al., 2014b).
In the deep-learning branch, the pre-processing stage was simpler, as deep-

learning approaches are able to automatically process raw data (Mostafa et al.,
2019). In this respect, SpO2 signal pre-processing consisted on: (i) down-
sampling of the SpO2 recordings to 1 Hz in order to homogenize the frequency
(Mostafa et al., 2017); and (ii) segmentation of the SpO2 recordings into 20-min
segments (1200 samples) prior to train the CNN-based deep-learning architec-
ture (Vaquerizo-Villar et al., 2021).

4.2 Feature engineering

Feature engineering is the conventional methodology employed to analyze
biomedical signals. This methodology consists of the three following stages: (i)
feature extraction; (ii) feature selection; and (iii) pattern recognition.

4.2.1 Feature extraction

As aforementioned, SpO2 signals were characterized both in time and frequency
domains. In this respect, different signal processing methods were applied to
obtain OSA-related features from the oximetry signal (Vaquerizo-Villar et al.,
2018a,b,c, 2021).

4.2.1.1 Conventional measures in the time domain

In this research, conventional features were obtained from the oximetry signal
using different time-domain analysis methods: oxygen desaturation index, sta-
tistical moments, and nonlinear parameteres (Vaquerizo-Villar et al., 2018a,b,c,
2021). A description of these methods is found below.

Oxygen desaturation index. As mentioned in Section 1.5.1, oxygen desatura-
tions are related to apneic episodes (Berry et al., 2012). In this research, the num-
ber of oxygen desaturations of at least 3% (ODI3) from prior SpO2 baseline was
computed (Taha et al., 1997).

Statistical moments. Common first-to-fourth order statistical moments (M1t −
M4t) were calculated to characterize the SpO2 signal amplitude distribution. Ac-
cordingly, mean (M1t), variance (M2t), skewness (M3t), and kurtosis (M4t) allow
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to measure the central tendency, dispersion, asymmetry, and peakedness of the
data, respectively.

Nonlinear parameters. In recent years, nonlinear methods derived from the
chaos theory have shown its usefulness to extract additional information of
oximetry dynamics in both adults and pediatric OSA patients (Álvarez et al.,
2017; Alvarez et al., 2013; Crespo et al., 2018; Garde et al., 2014a; Hornero et al.,
2017). In this respect, the following common nonlinear features have been ob-
tained from each SpO2 recording:

• Central tendency measure (CTM). Using second-order differences plots
(Cohen et al., 1996), CTM allows to quantify the variability of the oxime-
try signal associated to apneic events.

• Lempel-Ziv complexity (LZC). LZC measures changes in the complexity of
the oximetry signal related to pediatric OSA severity by transforming the
SpO2 recordings into a two-symbol sequence and quantifying the number
of different substrings in this transformed sequence (Lempel and Ziv, 1976).

• Sample entropy (SampEn). SampEn allows to quantify the irregularity of
the oximetry signal by the evaluation of both prevailing and secondary pat-
terns in the the SpO2 recordings (Richman and Moorman, 2000).

4.2.1.2 Novel oximetric indices in the time domain: detrended fluctuation
analysis

DFA is an important tool to analyze the correlation properties of a non-stationary
time series (i.e., the oximetry signal) through its multiscale analysis (Peng et al.,
1994). In this respect, DFA allows to detect changes in the correlation properties
of a signal along temporal scales caused by random spikes and/or segments with
a distinct local behavior (Chen et al., 2002; Hua and Yu, 2017). In Vaquerizo-Villar
et al. (2018a), we propose DFA as a novel nonlinear analysis method to analyze
the irregular fluctations and random spikes of the SpO2 signal related to apneic
events. Given a time series x(t), the DFA procedure comprises the following four
steps (Peng et al., 1994):

1) Integration of the input signal. x(t) is integrated using the following ex-
pression:

y(i) =
i

∑
j=1

[x(j)− xmean], i = 1, ..., N, (4.1)
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where xmean and N are the mean and length of the whole time series, re-
spectively.

2) Window-segmentation. y(i) is divided into B non-overlapping time win-
dows of equal size. The length of each window (i.e., the scale) ranges from
k = 3 to k = 1080, being the maximum scale (1080) one-tenth of the min-
imum signal length (10800 samples= 3 hours with a sampling of 1 Hz),
which ensures that the recording contains an adequate number of sleep cy-
cles (Davis et al., 2004; Kapur et al., 2017).

3) Obtaining of the local trend. A straight line least-squares fit is applied to
y(i) in order to obtain the local trend yb for each window (b = 1, ..., B).

4) Obtaining of the fluctuation function. The fluctuation function, F(k), is ob-
tained for each scale using the following expression:

F(k) =

√√√√ 1
B
·

B

∑
b=1

F2
b (k), (4.2)

where F2
b (k) is the variance of the fluctuation function in each window, de-

fined as follows:

F2
b (k) =

1
k

bk

∑
j=(b−1)k+1

[(y(j)− yb(j))2]. (4.3)

Steps 2-4 are iterated until F(k) is obtained for each scale (k) of the DFA pro-
file. Figure 4.2 represents, in a logarithmic-scale plot, the evolution of the DFA
profile of a subject along scales: log10F(k) versus log10(k). It can be observed
that there are two different scaling regions according to the linear relationship
between log10F(k) and log10(k). In Vaquerizo-Villar et al. (2018a), region 1 was
obtained in the range of scales 0.48 ≤ log10(k) ≤ 1.3 (3 ≤ k ≤ 20), whereas region
2 was obtained in the range 1.60 ≤ log10(k) ≤ 3.03 (40 ≤ k ≤ 1080). In order
to quantify the differences in the DFA plot associated to pediatric OSA and its
severity, the following features were extracted, as shown in Figure 4.2 (Hua and
Yu, 2017; Penzel et al., 2003; Vaquerizo-Villar et al., 2018a):

• Scaling exponents (slopes) in the straight line that fits both regions of the
DFA plot (slope1 and slope2), which are intended to characterize the scaling
behavior of the SpO2 signal in each region.
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Figure 4.2. Example of the DFA profile of the SpO2 recording of a subject. This figure has
been derived from Vaquerizo-Villar et al. (2018c)

• Ratio between slope1 and slope2 (slope12), which characterizes the distinct
scaling behavior observed in both regions.

• Coordinates of the intersection between the straight lines adjusted in re-
gions 1 and 2 of the DFA plot (k12 and F(k12)), which characterize the
crossover point of the DFA profile (Vaquerizo-Villar et al., 2018a).

• Value of the fluctuation function (F(kx)) in the scale kx = 21, which has the
highest correlation with the AHI. F(kx) quantifies the fluctuations of the
SpO2 recording associated to apneic events.

4.2.1.3 Conventional frequency domain analysis: power spectral density

Frequency domain analysis allows to measure the recurrence and duration of ap-
neic events from OSA in children (del Campo et al., 2018). In this respect, PSD is
the most used frequency domain technique to analyze the spectral components of
the oximetric dynamics in the framework of pediatric OSA (Álvarez et al., 2017;
Crespo et al., 2018; del Campo et al., 2018; Garde et al., 2014a; Hornero et al., 2017).
PSD was computed using the Welch’s approach (Welch, 1967) to look for differ-
ences in the oximetric recordings related to apneic events due to OSA. In order
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to characterize the effects of OSA in the PSDs of the SpO2 recordings, Vaquerizo-
Villar et al. (2018b) and Hornero et al. (2017) determined two frequency bands of
interest (BI): 0.018-0.050 Hz (BI1) and 0.021-0.044 Hz (BI2), respectively. In these
bands, the highest statistically significant differences were obtained in the PSD
amplitude among OSA severity groups. Once spectral bands were established,
the following features were computed from the PSDs of each SpO2 recording
(Vaquerizo-Villar et al., 2018a,b,c, 2021):

• First-to-fourth order statistical moments, extracted from the full PSD
(M1PSD −M4PSD) and the two bands of interest: BI1 (M1BI1 −M4BI1) and
BI2 (M1BI2 −M4BI2). These parameters measure the central tendency, dis-
persion, asymmetry and peakedness of the PSD in each region, respectively.

• Relative power (RPBI1), defined as the power ratio between BI1 and the
whole PSD. RPPSDBI1 is intended to reflect the effects in the band of interest
caused by a higher occurrence of apneic events at these frequencies.

• Maximum amplitude (MAPSD) and minimum amplitude (mAPSD) of the
PSD in the full spectrum (MAPSD and mAPSD), BI1 (MABI1 and MABI1),
and BI2 (MABI2 and MABI2). These features allow to quantify the highest
and the lowest values of the PSD in these regions related to the occurrence
of apneic events.

• Spectral entropy of the full PSD (SEPSD) and BI1 (SEBI1), which are irregu-
larity parameters that measure the flatness of the PSD and its band of inter-
est, respectively (Poza et al., 2007).

• Mobility of the PSD in the band BI1 (MbBI1), defined as the squared root
of the ratio between the variance and the power of the PSD in this band.
MbBI1 quantifies the concentration of the signal power (Blanco-Velasco
et al., 2010).

• Median frequency of the full PSD (MFPSD), defined as the spectral compo-
nent that separates the PSD into two regions, each of them with 50% of the
total power. MFPSD characterizes the distribution of the PSD content (Poza
et al., 2007).

• Wootter’s distance of the full PSD (WDPSD), which is a disequilibrium pa-
rameter that measures the distance between the probability density func-
tion of the PSD and an uniform distribution (Martin et al., 2003).
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4.2.1.4 Novel frequency domain features from the oximetry signal: bispec-
trum

Bispectrum can be described as the spectral representation of the third-order cu-
mulant (skewness) of a time series (Chua et al., 2010). In contrast to conventional
PSD, bispectrum preserves both amplitude and phase information of the spectral
components of a signal. This allows bispectrum to detect phase relationships and
deviations from linearity and gaussianity in a signal (Chua et al., 2010), such as
those produced in physiological signals by respiratory events (Atri and Mohebbi,
2015; Tagluk and Sezgin, 2011). For these reasons, bispectral analysis is employed
for the first time in Vaquerizo-Villar et al. (2018b) to characterize changes pro-
duced in the oximetry signal by respiratory events.

Given a deterministic and zero-mean time series x(t), bispectrum can be non-
parametrically estimated as follows:

B( f1, f2) = X( f1) · X( f2) · X( f1 + f2), f1, f2 = 0, ..., N, (4.4)

where X( f ) is the discrete Fourier transform of x(t) and f1 and f2 are the frequen-
cies of the two axes of the bispectrum. According to its symmetry conditions, bis-
pectrum was computed in the non-redundant region (Ω), which satisfies f1 ≥ 0,
f2 ≥ f1, and f1 + f2 ≤ fs/2, being fs the sample rate of x(t).

Once the bispectrum was computed in this region, the following parameters
were computed:

• Mean amplitude of the bispectrum (M1BISP) (Chua et al., 2008), which al-
lows to detect deviations of gaussianity in a signal (Ning and Bronzino,
1990):

M1BISP =
1
L ∑

f 1, f 2∈Ω
|B( f1, f2)|, (4.5)

where L is the number of points of the bispectrum in Ω.

• Sum of logarithmic amplitudes of the bispectrum (H1BISP), sum of logarith-
mic amplitudes of diagonal elements of the bispectrum (H2BISP), and spec-
tral moment of first order of diagonal elements of the bispectrum (H3BISP)
(Zhou et al., 2008), which are related to the moments of the bispectrum.
H1BISP, H2BISP, and H3BISP quantify the non-linearity of a signal and are
calculated based on the bispectral amplitudes contained in Ω and its main
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diagonal (Chua et al., 2010; Zhou et al., 2008):

H1BISP = ∑
f1, f2∈Ω

log(|B( f1, f2)|), (4.6)

H2BISP = ∑
fk∈Ωdiagonal

log(|B( fk, fk)|), (4.7)

H3BISP = ∑
fk∈Ωdiagonal

k · log(|B( fk, fk)|), (4.8)

where Ωdiagonal is the main diagonal of the bispectrum.

• Bispectral amplitude entropies of first (BE1BISP) and second order
(BE2BISP), which quantify the irregularity of the bispectral amplitude of
a signal (Chua et al., 2008):

BE1BISP = − ∑
j∈Ω

pj · log(pj), (4.9)

where
pj =

|B( f1, f2)|
∑

f 1, f 2∈Ω
|B( f1, f2)|

. (4.10)

BE2BISP = − ∑
j∈Ω

qj · log(qj), (4.11)

where

qj =
|B( f1, f2)|2

∑
f 1, f 2∈Ω

|B( f1, f2)|2
. (4.12)

• Phase entropy (PEBISP), which measures irregularity in the bispectral phase
(Chua et al., 2008):

PEBISP = −∑
n

p(Ψn) · log(p(Ψn)), n = 0, 1, ..., N − 1, (4.13)

where N is the number of bins of the histogram and p(Ψn) is the distribu-
tion of the phase angles (Chua et al., 2010; Doane, 1976):

p(Ψn) =
1
L ∑

f 1, f 2∈Ω
Ind(φ(B( f1, f2)) ∈ Ψn)|, (4.14)

where φ is the phase angle of the bispectrum and Ind(·) is an indicator
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function, whose value is 1 if φ is within the range of the bin Ψn, being Ψn

the range of histogram bins (Chua et al., 2010):

Ψn = {φ| − π +
2πn

N
≤ φ < −π +

2π(n + 1)
N

}. (4.15)

• Mean (meanPaBISP) and variance (varPaBISP) of the bispectral invariant
(P(a)), which detect third-order time correlations or phase coupling be-
tween spectral components of a chaotic process (Chua et al., 2008). P(a)
is defined as the phase of the integrated bispectrum along the straight line
passing through the origin with slope a (Chua et al., 2008):

P(a) = arctan(
Ii(a)
Ir(a)

), (4.16)

where Ir(a) and Ii(a) are the real and imaginary components of the inte-
grated bispectrum (I(a)) (Chua et al., 2008):

I(a) =
∫ 1/1+a

f1=0+
B( f1, a f1)d f1 = Ir(a) + j · Ii(a), 0 ≤ a ≤ 1. (4.17)

4.2.1.5 Novel frequency domain features from the oximetry signal: wavelet
transform

Wavelet transform (WT) is a suitable method to analyze the spectral content of
non-stationary signals (Rioul and Vetterli, 1991). In contrast to the fixed analy-
sis window used by conventional frequency domain analysis techniques, which
are based on the Short Time Fourier Transform (STFT), WT employs long win-
dows at low frequencies and short windows at high frequencies. These mul-
tiscale analysis approach provide high frequency resolution at low frequencies
and high temporal resolution at high frequencies, whereas the single scale anal-
ysis of STFT-based techniques is limited by its fixed time-frequency resolution
(Rioul and Vetterli, 1991). Due to this multiresolution property, WT is applied in
Vaquerizo-Villar et al. (2018c) as a novel technique especially designed to accu-
rately detect SpO2 desaturations elicited by apneic events, which have very low
frequency components due to the slow variation nature of the oximetry signal.

WT decomposes a signal x(t) onto a set of basis functions, known as wavelets
(Rioul and Vetterli, 1991). Wavelets are obtained by means of the scaling and time
translation of a basic wavelet prototype, the mother wavelet (Rioul and Vetterli,
1991). According to the scale and translation values, there are two main types of
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WT (Rioul and Vetterli, 1991): (i) continuous wavelet transform (CWT), where
these time-scale parameters are continue; and (ii) discrete wavelet transform
(DWT), where wavelets are computed only for power of 2 scales. In Vaquerizo-
Villar et al. (2018c), DWT was chosen to analyze SpO2 recordings, as it is less
complex and computationally less expensive than CWT (Rioul and Vetterli, 1991).

Figure 4.3 shows the computation process of DWT. Given a SpO2 recording
x[n] with length N, DWT decomposes it using a filter-bank tree with L = log2(N)

steps (Rioul and Vetterli, 1991), as shown in Figure 4.3a. Each step consists of
a half-band high-pass filter g[n], the mother wavelet, and a half-band low-pass
filter h[n], the mirror version of g[n], each of them followed by a subsampling op-
eration with a factor two (dyadic sampling). Thereby, in the first step (i = 1), the
SpO2 signal x[n] is decomposed into an approximation A1 (low-pass) and a detail
D1 (high-pass) signal. Next, the approximation signal A1 is further decomposed,
thus generating another approximation signal A2 and another detail D2 signal.
This decomposition iterates on the approximation signal until the maximum level
of decomposition i = L. The frequency resolution of the approximation Ai and
detail signals Di is increased at each iteration by a factor two, while reducing their
time resolution due to the dyadic sampling. At each step i = 1, 2, ..., L, Ai and Di

are obtained as follows:

Ai[k] = ∑
n

Ai−1[n] · h[2k− n], (4.18)

Di[k] = ∑
n

Ai−1[n] · g[2k− n], (4.19)

where Ai−1 is the approximation signal in the step i− 1, being A0 the time series
x[n].

In Vaquerizo-Villar et al. (2018c), DWT was applied to N = 213 (5.5 min) sam-
ple segments of the SpO2 signal. Haar was chosen as the mother wavelet due
to: (i) its stepped shape, which allows to detect oxygen desaturations elicited by
apneic episodes; (ii) its smoothing property, which does not cause edge effects in
the SpO2 signal waveform.

Figure 4.3b shows an example of DWT decomposition of a SpO2 segment,
x[n], using the Haar wavelet. It can be seen that detail coefficients from each de-
composition level (Di) provide information about a specific frequency range. Our
DWT analysis mainly focused on D9 (0.0244-0.0488 Hz), which is comprised in
the frequency range of interest BI1 (0.018-0.050 Hz) related to the changes caused
by pediatric OSA in nocturnal oximetry (Vaquerizo-Villar et al., 2018c). As it can
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Figure 4.3. DWT computation. (a) Decomposition process of a signal using DWT. (b)
Original SpO2 signal, detail signals at each decomposition level and approximation signal
at the maximum level of the decomposition. This figure has been taken from Vaquerizo-
Villar et al. (2018c)

be seen in Figure 4.3B, D9 coefficients show decreased and increased values asso-
ciated to oxygen desaturations. The presence of both negative and positive values
may hinder the information contained in the DWT coefficients, such as the mean
or skewness. Thereby, the following DWT-derived features were extracted from
the Di coefficients in absolute value (Vaquerizo-Villar et al., 2018c):

• First-to-fourth order statistical moments of the D9 coefficients (M1D9 −
M4D9 ), which are the mean (M1D9 ), variance (M2D9 ), skewness (M3D9 ), and
kurtosis (M4D9 ). They measure the central tendency, dispersion, asymme-
try and peakedness of the data, respectively.

• Maximum amplitude of the D9 coefficients (MAD9 ), which allows to quan-
tify the maximum amplitude reached in this frequency range.

• Energy of the D9 coefficients (EnD9 ), which allows to quantify the averaged



4.2. Feature engineering 39

quadratic amplitude of the detail signal D9. It is calculated using the fol-
lowing expression:

EnD9 = ∑
k
|D9[k]|2. (4.20)

• Wavelet entropy (WE), which quantifies the energy distribution changes
elicited in the detail levels of the oximetry signal by apneic events (Rosso
et al., 2001):

WE = −
L

∑
i=1

pilog(pi), (4.21)

where pi is the normalized wavelet energy at the detail level i:

pi =
EnDi

L

L

∑
i=1

EnDi . (4.22)

4.2.2 Feature selection

Once features are extracted, the information contained in a SpO2 recording is
synthesized in a wide set or variables. Nonetheless, there may be some fea-
tures that provide irrelevant and/or redundant information that may cause over-
fitting in the pattern recognition stage (Guyon, 2003). Therefore, a feature se-
lection stage was included to prevent from this undesired effect. Specifically,
the fast correlation-based filter (FCBF) algorithm (Yu and Liu, 2004) was used
in Vaquerizo-Villar et al. (2018b), Vaquerizo-Villar et al. (2018c), and Vaquerizo-
Villar et al. (2018a) to obtain an optimum subset of OSA-related features (Yu and
Liu, 2004).

4.2.2.1 Fast Correlation-Based Filter (FCBF)

FCBF is an automated feature selection algorithm that has been widely used in
the pediatric OSA context (Barroso-García et al., 2020, 2021; Hornero et al., 2017;
Jiménez-García et al., 2020; Vaquerizo-Villar et al., 2018a,b,c). FCBF follows a two-
stage procedure to evaluate the relevance and redundancy of the variables under
study. Given a feature vector xi and a dependent variable y, FCBF first calculates
the symmetrical uncertainty (SU) between each single feature xi and y in order to
evaluate its relevancy (Yu and Liu, 2004):

SU(xi, y) = 2 · ( IG(xi|y)
H(xi) + H(y)

), i = 1, 2, ..., N, (4.23)
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where IG(xi|y) = H(xi) − H(xi|y), H refers to the well-know Shannon’s en-
tropy, N is the number of input variables (Yu and Liu, 2004), and y is a context-
dependent characteristic. Particularly, in the framework of pediatric OSA, y is
a vector composed of the AHI values for each pediatric subject. SU can take
values in the range 0 − 1. SU = 0 indicates that the two variables are totally
independent, whereas SU = 1 indicates that it is completely possible to forecast
one feature from the other. Therefore, features having a higher value of SU are
more relevant, as they share more information with the dependent variable (Yu
and Liu, 2004).

Once SU is obtained for all the input variables, features are sorted from the
most relevant (highest SU) to the least relevant one (lowest SU). Based on this
ranking, the second step consists on the computation of SU between each pair
of features (SU(xi, xj)), j = 1, 2, .., N, j 6= i to assess its redundancy, beginning
from the most relevant ones (Yu and Liu, 2004). If SU(xi, xj) ≥ SU(xi, y), being xi

more relevant than xj, xj is removed from the selection process due to redundancy
with xi. Accordingly, an optimum subset of features is obtained with those not
discarded during the redundancy analysis.

In the present Doctoral Thesis, the FCBF algorithm was applied in the three
studies that followed a feature-engineering methodology (Vaquerizo-Villar et al.,
2018a,b,c). In these papers, FCBF was applied to 1000 bootstrap-derived samples
from the corresponding training set, as it contributes to select a more stable subset
of features (Witten et al., 2011). Then, the features selected at least 500 times (50%
of the iterations) constituted the optimum subset.

4.2.3 Pattern recognition

Pattern recognition consists on the application of automated algorithms to iden-
tify the underlying behavior in the data (Bishop, 2006). Taking as input data the
optimum subset of features from each subject obtained with FCBF, three pattern
recognition algorithms have been applied in the present Doctoral Thesis to auto-
matically detect pediatric OSA and its severity: (i) LR; (ii) SVM; and (iii) MLP.

4.2.3.1 Logistic regression (LR)

LR is a common method for two-class (binary) classification. It is a supervised
algorithm which assigns an input feature vector xi (with i = 1, 2, S, being S the
number of instances) into one out of two mutually exclusive groups (Cj = 1, 2)
(Hosmer and Lemeshow, 2004). In this Thesis, LR was used to estimate the pos-
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terior probability of a given instance xi (subject) belonging to the negative OSA
(C1) and positive OSA (C2) groups (Vaquerizo-Villar et al., 2018c). This was car-
ried out through the logistic function (Hosmer and Lemeshow, 2004):

p(Cj|xi) =
exp(β0 + xiβ)

1 + exp(β0 + xiβ)
, (4.24)

where β0 and β = β1, β2, ..., βN are the coefficients of the LR model, and N is
the number of input features that compose each vector xi. β0 and β coefficients
are optimized using the maximum likelihood estimator (Hosmer and Lemeshow,
2004).

4.2.3.2 Support vector machines (SVM)

SVM is a supervised algorithm for binary classification that finds a separating
hyperplane with a decision boundary that maximizes the distance between in-
stances belonging to different classes. The hyperplane is expressed as follows
(Bishop, 2006):

y(x, w) = wT · φ(x) + w0, (4.25)

where x ∈ RN is the input feature vector, N is the number of features, φ(x) ∈ RD

is the feature vector in the high-dimensional transformed space (D > N), and
w denotes the weight vector, which is optimized in order to obtain a maximal
margin hyperplane (Bishop, 2006). This optimization can be formulated using
Lagrange multipliers:

y(x, w) = − ∑
j∈V

ηjtjK(xj, x) + w0, (4.26)

where V is a subset of indices 1, ..., S corresponding to the Lagrange multipliers
ηj related to the supported vectors, S is the number of examples in the training
group, K(·, ·) is the Kernel function, and tj are the output labels. The Lagrange
multipliers (η1, ...,ηS) are subjected to the following constraints:

S

∑
j=1

ηjtj = 0 (4.27)

and
0 ≤ ηj ≤ C, (4.28)
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where C is the regularization parameter, which controls the balance between
maximizing the margin of separation between classes and minimizing the classi-
fication error.

In Vaquerizo-Villar et al. (2018c), SVM was applied using a linear kernel to as-
sign every input feature vector to the groups negative OSA (tj = −1) and positive
OSA (tj = 1), whereas the optimum value for the regularization parameter C was
obtained using a 10-fold cross validation procedure during the training stage.

4.2.3.3 Multilayer perceptron neural network (MLP)

Artificial neural networks (ANN) arised from the need to model information pro-
cessing in biological systems using mathematical representations (Bishop, 2006).
MLP is the ANN-based pattern recognition algorithm most widely used in the pe-
diatric OSA context (Gutiérrez-Tobal et al., 2021). MLP is a feed-forward neural
network with an architecture consisting on several fully-connected layers (input,
hidden, and output layers) composed of basic mathematical units that imitate bi-
ological neurons, called perceptrons (Bishop, 2006). These units are described by
a differentiable activation function g(·) that performs a nonlinear transformation
of the data, as well as by adaptive weights w that connect each unit with every
neuron from the subsequent layer. In this Thesis, a configuration with a single
hidden layer was used. Given an input feature vector xi, i = 1, ..., N, being N the
number of features, the values of the output units yk of the MLP architecture are
computed as follows:

yk = go{
NH

∑
j=1

wjkgh{
N

∑
i=1

wijxi + bj}+ bk}, k = 1, ..., K, (4.29)

where go(·) and gh(·) are the activation functions for units in the output and hid-
den layer, respectively, wjk is the weight connecting the neuron j of the hidden
layer with the output unit yk, wij is the weight connecting the input feature i with
the hidden neuron j, bk and bj are the biases of the output and hidden layers, re-
spectively, K is the number of output units, and NH is the number of neurons in
the hidden layer. In this Thesis, MLP was used in Vaquerizo-Villar et al. (2018b)
for multiclass classification (negative OSA, moderate OSA, and severe OSA), in
Vaquerizo-Villar et al. (2018c) for binary classification (negative OSA and posi-
tive OSA), and in Vaquerizo-Villar et al. (2018a) for regression (AHI estimation).
Accordingly, the number of output units K was different in each article: K = 3 for
three-class classification (Vaquerizo-Villar et al., 2018b), K = 2 for binary classifi-
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cation (Vaquerizo-Villar et al., 2018c), and K = 1 for AHI estimation (Vaquerizo-
Villar et al., 2018a).

Network weights were adjusted during training using the scale conjugate gra-
dient algorithm with weigh-decay regularization, which allows to minimize the
loss function and achieve a good generalization ability (Bishop, 2006). During
the training process, two hyperparameters were optimized through 10-fold cross
validation: the regularization parameter (α) and NH .

4.3 Deep learning

Conventional feature-engineering approaches have two main limitations (Good-
fellow et al., 2016): (i) a substantial knowledge in the specific field is required
to determine, a priori, a set of relevant features that must be obtained from the
input data; and (ii) these methods are limited by their low level of abstraction,
which limits their capability to find relevant features in the raw data. These lim-
itations may lead to the omission of specific features from the oximetry signal
linked to the physiological perturbations of pediatric OSA. These shortcomings
can be minimized by means of the application of deep-learning algorithms. As
aforementioned, deep-learning methods have beaten conventional approaches in
many fields (LeCun et al., 2015), including the OSA context (Faust et al., 2019;
Mostafa et al., 2019), primarily due to their capability to automatically discover
intricate patterns from the raw data using ANNs with a high number of hidden
layers (Faust et al., 2019). In this research, we have evaluated a new deep-learning
model based on CNNs (Vaquerizo-Villar et al., 2021), the most widely-used deep-
learning architecture in the OSA context (Faust et al., 2019; Mostafa et al., 2019).
Despite the fact that CNNs were originally inspired to process image data, these
architectures have proven to be the most appropriate for time series classification
in many domains (Ismail Fawaz et al., 2019), including biomedical signal anal-
ysis (Ebrahimi et al., 2020; Faust et al., 2018; Murat et al., 2020; Roy et al., 2019).
CNNs have a multi-layer architecture whose main properties are: shared weights,
sparse connections, and pooling operations (Goodfellow et al., 2016). The first
layers of the CNN architecture identify local motifs, whereas the deeper layers
detect long-term patterns occurring in different parts of the array (Ebrahimi et al.,
2020). Accordingly, a CNN architecture is applied in Vaquerizo-Villar et al. (2021)
to identify oxygen desaturations (simple patterns) and clusters of desaturations
(complex patterns) linked to pediatric OSA and its severity occurring in different
time locations of the SpO2 recording.
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4.3.1 Proposed convolutional neural network (CNN) model

Figure 4.4 depicts a visual overview of the CNN-based deep-learning model,
which consists of three stages: (i) signal segmentation; (ii) CNN architecture; and
(iii) AHI estimation.

4.3.1.1 Signal segmentation

SpO2 recordings were first decimated to a common sample frequency of 1 Hz. As
shown in Figure 4.4a, SpO2 signals were divided into 20-min non-overlapping
segments (1200 samples). This segment size was chosen as it allows to detect
clusters of desaturations linked to apneic events from pediatric OSA, whose du-
ration is of at least 10-min (Brouillette et al., 2000). Then, each 20-min SpO2 seg-
ment used to train the CNN architecture was labelled with the respiratory event
annotations scored by the technicians. In this respect, only the CHAT dataset was
used for training purposes, as the UofC and BUH databases do not contain files
with annotations of time location of apnea and hypopnea events. Accordingly,
the output label for each 20-min segment of the CHAT dataset was obtained as
the total number of apneic events (apnea plus hypopnea) associated to 3% oxy-
gen desaturations occurring in this time window, according to the annotations
provided by sleep technicians (Marcus et al., 2013).

Figure 4.4. Overview of the proposed CNN-based deep-learning methodology. (a) Signal
segmentation, (b) CNN architecture, and (c) AHI estimation. This figure has been taken
from Vaquerizo-Villar et al. (2021)
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4.3.1.2 CNN architecture

Figure 4.4b shows the architecture of the proposed CNN. The input section of the
CNN consists of the 20-min SpO2 segments. Each segment is processed using λC

convolutional blocks, each one (i = 1, ..., λC) consisting of:

I. 1-D convolution. This layer extracts feature maps from the input ai[n] using
MC convolutional filters, so-called kernels (Goodfellow et al., 2016):

xl
i [n] =

LC

∑
k=1

wl
k ∗ ai[n− k + 1] + bl

k, (4.30)

where xl
i is the lth feature map (l = 1, ..., MC) in the ith convolutional block,

LC is the filter (kernel) size, wl
k and bl

k are the kernel weights and biases,
respectively, and a0[n] is the input 20-min SpO2 segment.

II. Batch normalization (BN). BN is used to normalize the amplitude of each
feature map xl

i obtained after the 1-D convolution (Goodfellow et al., 2016).

III. Rectified Linear Unit (ReLU). ReLU is the most common activation function
for CNNs. It performs a thresholding operation in order to decide which
normalized feature maps are relevant (Goodfellow et al., 2016):

f (x) = max(0, x). (4.31)

IV. Pooling. After the activation function, a max-pooling operation with a pool
factor K = 2, the standard choice for CNNs, is applied to reduce dimen-
sionality, while retaining the most significant features (Goodfellow et al.,
2016).

V. Dropout. As a final step in each convolutional block, dropout operation
was included to minimize overfitting. It randomly remove connections be-
tween network elements with a probability pdrop during the training process
(Goodfellow et al., 2016).

Following the last convolutional block (i = λC), a flattening layer is applied to
convert the 2-D feature maps into 1-D data (Goodfellow et al., 2016). Finally,
a linear activation unit estimates the number of apneic episodes associated to
desaturations, ym

CNN , which is the output of the network.
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4.3.1.3 AHI estimation

Once the output ym
CNN of the CNN is obtained for each segment m = 1, 2, .., N, the

AHI of each pediatric subject can be computed. First, the mean value of all the
outputs of the CNN of each patient is obtained using the following expression:

yavg
CNN =

∑N
m=1 ym

CNN
N

, (4.32)

where N is the number of segments in the SpO2 signal, which is different for each
patient. Then, the final AHI of the patient is calculated using a linear regression
model, as depicted in Figure 4.4c:

AHI = (β · yavg
CNN) + ε, (4.33)

where ε and β are the disturbance and interception terms of a linear regression
model, which was adjusted during the optimization stage. This procedure allows
to counteract the underestimation of the AHI due to (Deviaene et al., 2018): (i) not
all apneic events result in an oxygen desaturation, so that the CNN can not detect
them; (ii) AHI estimation is performed using the total recording time, as the total
sleep time is unknown using only the oximetry signal.

4.3.2 CNN training and optimization process

The network training was performed using the following configuration: He-
normal method for weights initialization (He et al., 2015); adaptive moment esti-
mation (Adam) algorithm with an initial learning rate of 0.001 for the optimiza-
tion of weights and biases (Kingma and Ba, 2014); Huber loss with a tunable
hyperparameter δ as the loss function to minimize during training (Huber, 1964);
batch size of 100 with a data shuffling strategy to accelerate the convergence of
Adam method (Goodfellow et al., 2016); and 500 epochs. To speed up training
and obtain a final stable set of network weights, the learning rate was decreased
by a factor of 2 when the loss in the validation set did not improve for 10 consecu-
tive epochs, and early stopping was applied after 30 epochs of non-improvement,
restoring the weights that minimized the validation loss (Goodfellow et al., 2016).

The hyperparameter optimization plays an essential role in the design of a
suitable deep-learning model (Goodfellow et al., 2016). In this research, the fol-
lowing hyperparameters of the deep-learning model were optimized: the num-
ber of CNN blocks (λC), the number of filters (MC) and the filter size (LC) in each
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1-D convolution, the dropout probability (pdrop), and the delta parameter of the
Huber loss function (δ). In order to reach an optimal solution, these hyperpa-
rameters were automatically optimized using Bayesian optimization with tree-
structured Parzen estimator (BO-TPE) (Bergstra et al., 2011). BO-TPE is consid-
ered a suitable strategy for optimization purposes, since it forms a probabilistic
model that tries to approximate the objective function iteratively, based on past
evaluation results (Snoek et al., 2012).

4.4 Statistical analysis

The following techniques have been employed to interpret and evaluate the re-
sults obtained with the signal processing methods developed in this Doctoral
Thesis: (i) statistical hypothesis tests; (ii) diagnosis performance metrics; (iii) mea-
sures of agreement; and (iv) validation strategies.

4.4.1 Statistical hypothesis tests

Hypothesis tests are methods of statistical inference that assess whether it is pos-
sible to infer properties of a population from the results observed in a given data
sample (Jobson, 2012). In this research, statistical hypothesis testing was first
employed to evaluate the normality (Lilliefors test) and homocedasticity (Len-
eve test) of the demographic variables and the features extracted from the SpO2

recordings. As not all the demographic and oximetric variables passed normal-
ity and homocedasticity tests, non-parametric tests were applied to search for
statistical significant differences among the different groups under study (nega-
tive OSA/positive OSA, OSA-severity degrees, and validation groups) (Jobson,
2012). The Mann-Whitney U test was used to evaluate statistically significant
differences between two groups (negative OSA/positive OSA and two valida-
tion groups), whereas the Kruskal-Wallis test was employed for comparisons in
those cases with more than two groups (OSA-severity degrees and three valida-
tion groups). Depending on the number of subjects, two different p-values were
used in this Thesis to search for statistically significant differences. In Vaquerizo-
Villar et al. (2018b), where the sample size was 298 pediatric subjects, a p-value
< 0.05 was employed to evaluate statistical differences. Conversely, a p-value
< 0.01 was employed in the remaining studies (Vaquerizo-Villar et al., 2018a,c,
2021), where a larger sample size was used. In the case of multiple comparisons,
the Bonferroni correction was used.
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4.4.2 Diagnostic performance metrics

The usefulness of a diagnostic test can be expressed by the use of different statisti-
cal measures. The definition of these statistics is based on the number of subjects
correctly and wrongly classified. In the problem of statistical classification, these
measures are derived from the confusion matrix, which compares the class pre-
dicted by our test with the actual class obtained with the reference test. When
the confusion matrix is intended to discern between two population groups (i.e,
negative OSA and positive OSA), a binary confusion matrix is obtained, whose
main elements are:

• True positives (TP). Number of subjects with the disease (positive subjects,
according to the gold standard) that have been rightly classified by the test
under study.

• False negatives (FN). Number of positive subjects (according to the gold
standard) that have been wrongly classified as healthy or negative by the
test under study.

• True negatives (TN). Number of negative subjects (according to the gold
standard) that have been correctly classified by the test under study.

• False positives (FP). Number of negative subjects (according to the gold
standard) that have been wrongly classified as positive by the test under
study.

Based on the aforementioned elements (Flemons and Littner, 2003), the fol-
lowing statistics have been calculated in this Doctoral Thesis (Vaquerizo-Villar
et al., 2018a,b,c, 2021):

• Sensitivity (Se). Proportion of positive subjects correctly classified:

Se =
TP

TP + FN
· 100 (4.34)

• Specificity (Sp). Proportion of negative subjects correctly classified:

Sp =
TN

TN + FP
· 100 (4.35)

• Accuracy (Acc). Proportion of subjects correctly classified. This definition
can also be extended for confusion matrices with more than two groups. In
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the case of binary classification, it is obtained as follows:

Acc =
TP + TN

TP + TN + FP + FN
· 100 (4.36)

• Positive predictive value (PPV). Proportion of subjects rightly classified
among all the subjects that the test under study has assigned to the positive
class:

PPV =
TP

TP + FP
· 100 (4.37)

• Negative predictive value (NPV). Proportion of subjects rightly classified
among all the subjects that the test under study has assigned to the negative
class:

NPV =
TN

TN + FN
· 100 (4.38)

• Positive likelihood ratio (LR+). Proportion of positive subjects rightly clas-
sified with respect to the proportion of negative subjects wrongly classified:

LR+ =
Se

1− Sp
(4.39)

LR+ varies between 1 and +∞, being desired values close to +∞.

• Negative likelihood ratio (LR−). Proportion of positive subjects wrongly
classified with respect to the proportion of negative subjects right classified:

LR− =
1− Se

Sp
(4.40)

LR− varies between 0 and 1, being desired values close to 0.

• Area under the Receiver-Operating Characteristics (ROC) curve. The ROC
curve is commonly employed to compare the yield of different diagnostic
tests. A ROC plot represents the Se vs. 1 − Sp curve, where Se and Sp
are obtained varying the decision threshold of the test under study (Zweig
and Campbell, 1993). Once the plot has been constructed, the area under
the ROC curve (AUC) can be explained as a method to assess the overall
performance of a test (Zweig and Campbell, 1993). The values of AUC are
constrained to the interval between 0.5 and 1, as values below 0.5 indicate
that the positiveness of the test must be changed. In this respect, a high
discriminative performance is obtained when the AUC value is close to 1.
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4.4.3 Measures of agreement

The agreement between the gold standard and the simplified diagnostic alterna-
tives under study was assessed by means of the following measures:

• Cohen’s kappa (kappa). kappa measures the agreement between observed
and predicted classes, i.e., when considering binary or multiclass classifica-
tion, without considering the agreement that may occurs by chance (Cohen,
1960). It is computed as:

kappa =
po − pe

1− pe
(4.41)

where po is the observed agreement between predicted and observed
classes and pe is the probability of agreement by chance. kappa varies from
-1 (total disagreement) to 1 (perfect agreement), with kappa=0 indicating
that the agreement is due completely to chance (Cohen, 1960). kappa was
used to assess the overall agreement of our signal processing algorithms to
establish pediatric OSA and its severity in Vaquerizo-Villar et al. (2018b),
Vaquerizo-Villar et al. (2018a), and Vaquerizo-Villar et al. (2021).

• Root mean square error (RMSE). RMSE is an estimate of concordance be-
tween predicted and observed continuous variables, thus being useful to
assess the performance of regression methods. In this Thesis, RMSE was
used to measure the agreement between the AHI predicted by our signal
processing algorithms (AHIpred) and the actual AHI from PSG (AHIPSG)
(Vaquerizo-Villar et al., 2021). Given AHIpred and AHIPSG, RMSE is calcu-
lated as:

RMSE =

√
∑N

n=1(AHIpred(n)− AHIPSG(n))2

N
(4.42)

where N is the number of instances (subjects).

• Intra-class correlation coefficient (ICC). ICC is another index commonly
used to evaluate the performance of a regression algorithm. In contrast to
conventional correlation coefficients, ICC considers systematic error when
assessing agreement. Depending on its specific purpose and the statistical
model assumed, there exist several definitions of ICC (Chen and Barnhart,
2008). In this research (Vaquerizo-Villar et al., 2018a, 2021), the purpose is
to measure agreement between AHIpred and AHIPSG, without making any
ANOVA assumptions or using replicated measurements. For this case, the
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following definition is recommended (Chen and Barnhart, 2008):

ICC =
MSS −MSE

MSS − (NO − 1) ·MSE + NO · (MST −MSE)/N
(4.43)

where NO is the number of observers, N is the number of subjects consid-
ered, MSS is the subjects mean square, MSE is the error mean square, and
MST is the observers mean square. The values of ICC ranges from 0 (no
agreement) to 1 (total agreement) (Weir, 2005).

4.4.4 Validation strategies

Several validation methodologies have been applied with the aim to maximize
the generalization of the results obtained during the compendium of publica-
tions. For the purpose of minimizing potential overfitting, a dataset must be
divided in as many subsets as the number of degrees of freedom (number of op-
timization steps) needed to be fitted for a specific problem (Witten et al., 2011). In
this respect, a hold-out strategy (training-test, training-validation-test, etc.) was
employed in all the articles of this compendium to properly validate their results
(Vaquerizo-Villar et al., 2018a,b,c, 2021). When the sample size was not large
enough to handle all the optimizations required, two additional validation tech-
niques were used: stratified K-fold cross-validation and bootstrapping.

Hold-out validation The natural way to correctly validate the results of a given
model is to use a different set to optimize each stage of the proposed methodology
(Witten et al., 2011). In the most simple case, a training group is employed to
fit the model parameters and an independent test group, also called hold-out
set, is used to estimate its performance (Bishop, 2006; Witten et al., 2011). As
previously mentioned, the dataset should be divided into more than two sets
when model fitting requires more than one optimization step (Witten et al., 2011).
In this respect, a common strategy consists of using three subsets: training, used
to adjust model parameters; validation, used to adjust model hyperparameters;
and test, used for independent diagnostic performance assessment. When it is
not possible to use a different set to optimize each stage because of the available
amount of data, hold-out must be combined with additional validation strategies,
such as K-fold cross-validation and bootstrapping. In this research, hold-out was
used with two subsets in Vaquerizo-Villar et al. (2018c) and Vaquerizo-Villar et al.
(2018a), and with three subsets in Vaquerizo-Villar et al. (2018b) and Vaquerizo-



52 Chapter 4. Methods

Villar et al. (2021).

Stratified K-fold cross-validation Stratified K-fold cross-validation is another
common validation approach. This technique randomly divides the data into K
folds, keeping the proportion of instances pertaining to the groups under study.
Then, K-1 folds are employed for model fitting (training), whereas the remain-
ing fold is used for model evaluation (test). This procedure is repeated K times,
so that each subset was considered once as the test group (Steyerberg and Ver-
gouwe, 2014). Once the model has been tested using all the instances, diagnos-
tic ability statistics can be averaged across the different folds. This may lead
to more generalizable models, at the cost of increasing the computational cost
(Witten et al., 2011). This validation approach was used for hyperparameters
optimization in Vaquerizo-Villar et al. (2018b), Vaquerizo-Villar et al. (2018c),
and Vaquerizo-Villar et al. (2018a), and for diagnostic performance assessment
in Vaquerizo-Villar et al. (2018c).

Bootstrapping A bootstrap procedure can also be used for validation purposes
when the data set is small (Witten et al., 2011). As stated in Section 4.2.2, FCBF
was applied along with a bootstrap procedure to find a more generalizable opti-
mum set of features (Guyon, 2003). Given a feature set x of S instances (subjects),
x = x1, x2, ..., xS, xb(b = 1, 2, ..., B) new sets (bootstrap replicates) of size S are
built by resampling with replacement from the initial set, following a uniform
distribution. In this Doctoral Thesis (Vaquerizo-Villar et al., 2018a,b,c), the FCBF
algorithm was applied to each of these B = 1000 bootstrap samples, obtaining
optimum subsets composed of those features selected in more than 500 replicates
(see section 4.2.2).



Chapter 5

Results

This chapter presents the main outcomes obtained in this Doctoral Thesis. These
results are organized according to the statements that compose the global hy-
pothesis of Section 2.1, thus having almost a directly connection with the papers
included in the compendium of publications (see Appendix A).

5.1 Application of novel feature-extraction algo-

rithms

As explained in Section 1.1, three novel feature-extraction algorithms were ap-
plied in this research to obtain features able to provide additional information
from the oximetry signal linked to apneic events due to pediatric OSA: bispec-
trum, wavelet analysis, and DFA.

5.1.1 Bispectral analysis

The complementarity of bispectrum to conventional approaches in the screen-
ing of childhood OSA using SpO2 recordings was evaluated in Vaquerizo-Villar
et al. (2018b). For this purpose, up to 22 features were obtained from a database
of 298 pediatric patients (i.e., the initial version of the UofC database): ODI3,
3 anthropometric variables, 9 features from the PSD, and 9 bispectral parame-
ters. Then, the FCBF algorithm was applied to select an optimum subset of OSA-
related features. Finally, a MLP neural network was trained with the selected
variables to detect pediatric OSA severity degrees. According to this feature-
engineering methodology, the database was split into three sets: (i) feature opti-

53
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mization set (74 subjects, 25%), employed to optimize the feature extraction and
selection stages; (ii) training set (149 subjects, 50%), employed to optimize the
hyperparameters of the MLP classifier as well as to train the MLP model; (iii)
test set (75 subjects, 25%), used to examine the diagnostic ability of the proposed
methodology in an independent set.

Figure 5.1 shows the averaged amplitude in absolute value of the bispectrum
in the feature optimization set for the following OSA severity groups: negative
OSA (AHI <5 e/h), moderate OSA (5 ≤ AHI < 10 e/h), and severe OSA (AHI ≥
10 e/h). As shown, a higher bispectral amplitude is appreciated in the frequency
range 0-0.03 Hz as the OSA severity increases. Table 5.1 shows the median and
interquartile range of the extracted features in the feature optimization set for
negative OSA, moderate OSA, and severe OSA groups, along with their corre-
sponding p-values, obtained by means of the Kruskal-Wallis test. ODI3, 6 out of 9
PSD-derived parameters (M1BI1, M2BI1, MABI1, mABI1, SEBI1, and MbBI1), and
4 out of 9 bispectrum-derived features (M1BISP, H1BISP, H2BISP, and H3BISP)
showed statistically significant differences (p-value < 0.05 after Bonferroni cor-
rection). Specifically, higher values were obtained in these variables as pediatric
OSA severity increased.

As the goal is to assess the complementarity of bispectrum with respect to
conventional approaches, two different feature sets were composed:

• setnobis: composed of all but bispectrum features (ODI3, anthropometric
variables, and PSD-derived features).

• setbis: consisting of all the extracted features.

FCBF was applied to these two feature sets (setnobis and setbis) in the fea-

Figure 5.1. Averaged amplitude in absolute value of the bispectrum for the three OSA
severity groups. (a) negative OSA, (b) moderate OSA, and (c) severe OSA. This figure has
been taken from Vaquerizo-Villar et al. (2018b).
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Table 5.1. Feature values for the OSA severity groups (median [interquartile range]) in the
feature optimization set. This table has been derived from Vaquerizo-Villar et al. (2018b)

Features negative OSA moderate OSA severe OSA p-value*

Age 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] 0.24
Sex - - - 0.52
BMI (101) 1.82 [1.68,2.26] 1.9 [1.62,2.30] 1.77 [1.54,2.23] 0.76
ODI3 2.08 [0.77,3.93] 5.82 [3.79,9.28] 8.72 [7.23,19.65] <0.05
M1BI1 2.95 [1.93,4.23] 5.67 [5.10,8.58] 14.73 [7.51,28.45] <0.05
M2BI1 (101) 0.18 [0.05,0.32] 1.11 [0.56,1.54] 4.07 [1.34,14.39] <0.05
M3BI1 0.48 [0.29,0.75] 0.68 [0.33,1.04] 0.54 [0.32,0.83] 0.54
M4BI1 2.10 [1.79,2.73] 2.33 [1.87,3.06] 2.20 [1.60,2.70] 0.65
RPBI1 0.31 [0.25,0.35] 0.24 [0.21,0.34] 0.34 [0.30,0.39] 0.05
MABI1 0.60 [0.33,0.87] 1.27 [1.00,1.54] 2.92 [1.68,4.59] <0.05
mABI1 1.21 [0.84,2.12] 2.30 [1.91,2.88] 3.46 [2.56,8.59] <0.05
SEBI1 4.33 [4.26,4.37] 4.30 [4.24,4.32] 4.20 [4.12,4.30] <0.05
MbBI1 0.17 [0.11,0.20] 0.28 [0.23,0.32] 0.42 [0.25,0.56] <0.05
M1BISP (10-1) 0.05 [0.02,0.21] 0.23 [0.09,0.63] 0.49 [0.17,1.22] <0.05
H1BISP (108) -5.78 [-5.90,-5.57] -5.59 [-5.73,-5.45] -5.40 [-5.58,-5.28] <0.05
H2BISP (105) -1.38 [-1.41,-1.33] -1.32 [-1.36,-1.29] -1.28 [-1.32, -1.25] <0.05
H3BISP (108) -2.96 [-3.02,-2.86] -2.87 [-2.93,-2.79] -2.77 [-2.86,-2.71] <0.05
BE1BISP 8.51 [7.88,9.43] 8.17 [7.71,8.71] 8.60 [8.11,8.79] 0.34
BE2BISP 6.08 [4.88,6.62] 5.26 [4.43,5.58] 6.70 [5.68,7.07] 0.13
PEBISP 2.14 [2.08,2.15] 2.12 [2.05,2.14] 2.11 [2.08,2.13] 0.64
meanPaBISP (10-2) -1.60 [-3.19,0.81] 0.89 [-0.47,2.21] 0.92 [-1.96,3.20] 0.29
varPaBISP 0.38 [0.26,0.43] 0.34 [0.22,0.37] 0.33 [0.22,0.44] 0.87

*p-values obtained from the Kruskal-Wallis test after Bonferroni correction, OSA = obstructive sleep
apnea.

ture optimization set, obtaining two optimum feature subsets (subsetnobis and
subsetbis), each one composed of those features selected in at least 50% of the
1000 bootstrap replicates (500 times) :

• subsetnobis was composed of ODI3, the three anthropometric features (Age,
Sex, and BMI), and five features from the PSD (M1BI1, M2BI1, MABI1,
RPBI1, and MbBI1).

• subsetbis was composed of ODI3, two anthropometric features (Age, and
Sex), five PSD-derived features (M1BI1, M2BI1, MABI1, RPBI1, and MbBI1),
and two bispectral features (M1BISP, and meanPaBISP).

Taking as input these optimum subsets of features (subsetnobis and subsetbis),
two MLP networks were trained and optimized using the training set (MLPnobis

and MLPbis). Network hyperparameters, the regularization parameter (α) and
the number of hidden units (NH), were varied from α = 0 up to α = 5 (step of 1)
and from NH = 2 up to NH = 50 (step of 1), respectively. The maximum value of
kappa, obtained using ten-fold cross-validation, determined the optimum values
of α and NH in each case. Thereby, α = 1 and NH = 3 were chosen for MLPnobis
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and α = 2 and NH = 4 were chosen for MLPbis, as the pairs that reached the
highest kappa. Then, MLPnobis and MLPbis, configured with the optimized hy-
perparameters, were fitted using the entire training set.

Figure 5.2 displays the confusion matrices of MLPnobis and MLPbis, evalu-
ated in the test set. These matrices show the OSA severity group predicted by
both MLPnobis and MLPbis versus the actual OSA severity group from PSG. Us-
ing MLPnobis, 69.3% of the test patients (52/75) were correctly assigned to their
actual group of OSA severity (sum of the main diagonal elements of the confu-
sion matrix). Conversely, MLPbis correctly assigned 76.0% (57/75) of the children
to their OSA severity group. Table 5.2 shows diagnostic ability statistics of these
models for the AHI severity cutoffs of 5 and 10 e/h. Notice that MLPbis outper-
formed MLPnobis in terms of Se, Sp, PPV, NPV, LR+, LR-, Acc, and kappa for both
cutoffs.

5.1.2 Wavelet analysis

In Vaquerizo-Villar et al. (2018c), the utility of wavelet analysis to provide dis-
criminative features from overnight oximetry associated to pediatric OSA was
examined. To this effect, seven DWT-derived features were extracted for each
oximetry signal of a database of 981 children with suspected OSA (i.e the com-
plete UofC database). In order to assess complimentarity with conventional ap-

Figure 5.2. Confusion matrices of MLPnobis and MLPbis in the test set. 1: negative OSA,
2: moderate OSA; 3: severe OSA. This figure has been derived from Vaquerizo-Villar et al.
(2018b).
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Table 5.2. Diagnostic ability of the MLPnobis and MLPbis models in the test set for the AHI
cutoffs=5 e/h and 10 e/h. This table has been derived from Vaquerizo-Villar et al. (2018b).

AHI cutoff Se Sp PPV NPV LR+ LR- Acc kappa

MLPnobis 5 e/h 61.8 90.2 84.0 74.0 6.33 0.42 77.3 0.45
10 e/h 45.0 94.5 75.0 82.5 8.25 0.58 81.3

MLPbis 5 e/h 61.8 97.6 95.5 75.5 25.32 0.39 81.3 0.56
10 e/h 60.0 94.5 80.0 86.7 11.00 0.42 85.3

AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive
value (%), NPV = negative predictive value (%), LR+ = positive likelihood ratio, LR- = negative like-
lihood ratio, Acc = accuracy (%), kappa=Cohen’s kappa index.

proaches, ODI3, statistical moments in the time domain, and PSD features were
also extracted to obtain a wide initial feature set. FCBF was then employed to
select an optimum feature subset. Finally, LR, SVM, and MLP binary classifiers
were fitted with the optimum feature subset to detect moderate-to-severe pedi-
atric OSA (AHI ≥ 5 e/h). In order to assure a proper validation of the proposed
methodology, the database was divided into two sets: optimization set (589 sub-
jects, 60%) and cross-validation set (392 subjects, 40%). The optimization group
was used to: (i) perform descriptive analysis of the DWT-derived parameters; (ii)
obtain an optimum subset of features with FCBF; (iii) optimize the hyperparame-
ters of the SVM and MLP classifiers. Conversely, the cross-validation group was
employed to assess the diagnostic performances of the extracted features and the
LR, SVM, and MLP classifiers using stratified 5-fold cross-validation.

Figure 5.3 shows the histogram of the D9 coefficients for the negative OSA
(AHI < 5 e/h) and positive OSA (AHI ≥ 5 e/h) groups in the optimization set.
According to this figure, D9 coefficients are more concentrated near zero in the
negative OSA group, whereas in the positive OSA group the coefficients are more
disperse. Table 5.3 shows the median and interquartile range of the DWT-derived
features in the optimization set for negative OSA and positive OSA groups, along
with their corresponding p-values, computed according to the Mann-Whitney U
test. Noteworthy is the fact that all DWT-derived features showed statistically
significant differences (p-value < 0.01). The values of M1D9 , M2D9 , MaxD9 , EnD9 ,
and WE were significantly higher in the positive OSA group, whereas M3D9 and
M4D9 showed higher values in the negative OSA group.

Taking as input all the extracted features (ODI3, statistical moments, PSD, and
DWT features), FCBF was applied to 1000 bootstrap replicates derived from the
optimization set. In this way, ODI3, one statistical moment (M2t), three features
from PSD (M2BI1, M3BI1, and MaxBI1), and three DWT-derived features (M3D9 ,
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Figure 5.3. Histogram of the D9 coefficients for each group in the optimization set. This
figure has been derived from Vaquerizo-Villar et al. (2018c).

Table 5.3. DWT-derived feature values for each group (median [interquartile range]) in
the optimization set. This table has been derived from Vaquerizo-Villar et al. (2018c).

Features negative OSA positive OSA p-value

M1D9 3.04 [2.26, 3.92] 5.36 [3.77, 7.70] <0.01
M2D9 3.78 [3.23, 4.63] 5.73 [4.30, 7.57] <0.01
M3D9 1.31 [1.20, 1.44] 1.19 [1.06, 1.32] <0.01
M4D9 (102) 3.58 [1.03, 7.69] 0.06 [0.04, 2.69] <0.01
MaxD9 (101) 1.23 [1.04, 1.55] 1.96 [1.42, 2.62] <0.01
EnD9 (103) 0.54 [0.37, 0.89] 1.54 [0.78, 2.96] <0.01
WE (10-4) 1.83 [1.18, 2.86] 4.27 [2.52, 9.41] <0.01

OSA = obstructive sleep apnea.

EnD9 , and WE), which were selected more than 500 times, formed the optimum
feature subset. LR, SVM, and MLP binary classifiers were configured using this
feature subset. Regarding SVM, we conducted trials varying the regularization
parameter (C) from C = 10−5 to C = 105 (step of 1 in base-10 logarithmic scale),
obtaining C = 103 as the optimum value for which the accuracy was higher in
the optimization set. With respect to MLP, the values of α and NH were from 0
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up to 10 (step of 1) and from 2 up to 50 (step of 1), respectively, obtaining α = 1
and NH = 5 as the optimum NH − α pair that maximized the accuracy in the
optimization set.

Table 5.4 displays the diagnostic ability of all the extracted features in the
cross-validation set. Notice that 5 out of 7 DWT-derived features reached accura-
cies near 80%, being MaxD9 the DWT-derived feature that achieved the highest
performance (81.7±5.6% Acc, with 75.4±7.1% Se and 85.4±6.8% Sp). In this re-
spect, MaxD9 showed a similar Acc to ODI3 (81.9±7.2% Acc, with 78.1±7.3% Se
and 84.2±8.1% Sp) and outperformed the remaining features. Table 5.5 shows
the diagnostic performance metrics of LR, SVM, and MLP models, evaluated in
the cross-validation set. Notice that these classifiers showed a high diagnostic
ability for the diagnosis of moderate-to-severe OSA (AHI ≥ 5 e/h), outperform-
ing all the extracted features individually. Specifically, the SVM binary classifier
reached the highest diagnostic performance (84.0±5.2% Acc, with 71.9±4.4% Se
and 91.1±7.2% Sp).

Table 5.4. Diagnostic ability of all the extracted features in the cross-validation set. This
table has been derived from Vaquerizo-Villar et al. (2018c).

Feature Se Sp PPV NPV LR+ LR- Acc

ODI3 78.1±7.3 84.2±8.1 75.2±10.2 86.5±5.0 6.1±2.9 0.27±0.11 81.9±7.2
M1T 62.3±6.8 65.0±2.6 51.4±2.1 74.6±3.6 1.8±0.2 0.58±0.10 64.0±2.3
M2T 72.6±13.6 67.1±6.6 56.7±2.8 81.2±6.6 2.2±0.3 0.40±0.17 69.2±3.1
M3T 65.0±8.5 61.4±6.8 50.1±2.8 74.9±2.8 1.7±0.2 0.57±0.09 62.7±2.7
M4T 60.9±15.6 49.9±8.4 41.6±5.0 69.0±7.5 1.2±0.3 0.78±0.26 54.0±5.2
M1BI1 75.3±7.9 82.5±7.4 73.0±8.5 85.1±3.5 5.3±3.1 0.30±0.08 79.9±3.8
M2BI1 69.8±7.3 83.4±5.2 71.8±6.2 82.5±3.0 4.5±1.4 0.36±0.08 78.3±3.2
M3BI1 47.2±11.7 58.1±11.9 40.4±4.1 65.0±2.8 1.2±0.2 0.91±0.12 54.1±4.5
M4BI1 63.6±8.3 47.1±6.2 41.7±4.2 68.7±6.1 1.2±0.2 0.79±0.23 53.3±5.0
MaxBI1 78.1±8.8 75.2±9.9 66.2±6.9 85.6±3.6 3.5±1.1 0.29±0.09 76.3±4.3
SEBI1 48.6±14.4 61.8±11.8 43.0±4.8 67.3±3.3 1.3±0.3 0.82±0.12 56.9±4.2
M1D9 73.4±9.1 82.6±7.8 72.2±10.2 84.0±5.1 5.2±2.7 0.32±0.12 79.1±6.2
M2D9 74.7±6.1 81.7±6.5 71.5±6.9 84.6±3.0 4.6±1.7 0.31±0.07 79.1±3.3
M3D9 58.3±9.2 63.4±6.5 48.7±3.1 72.1±3.3 1.6±0.2 0.66±0.10 61.5±3.2
M4D9 71.2±6.7 64.6±5.7 54.6±3.3 79.2±4.0 2.0±0.3 0.45±0.10 67.1±3.5
MaxD9 75.4±7.1 85.4±6.8 76.0±9.0 85.4±4.3 6.2±2.8 0.29±0.10 81.7±5.6
EnD9 78.8±4.4 81.7±5.2 72.2±5.5 86.7±2.4 4.6±1.4 0.26±0.05 80.6±3.4
WE 76.0±8.2 78.4±5.6 68.0±3.8 84.9±3.5 3.6±0.7 0.30±0.09 77.6±2.5

Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive value (%), NPV = negative pre-
dictive value (%), LR+ = positive likelihood ratio, LR- = negative likelihood ratio, Acc = accuracy
(%).
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Table 5.5. Diagnostic ability of the LR, SVM, and MLP classifiers in the cross-validation
set. This table has been derived from Vaquerizo-Villar et al. (2018c).

Feature Se Sp PPV NPV LR+ LR- Acc

LR 72.6±4.7 90.2±6.2 82.3±8.8 84.7±2.8 9.8±5.5 0.31±0.06 83.7±4.9
SVM 71.9±4.4 91.1±7.2 83.8±10.8 84.5±2.6 14.6±12.9 0.31±0.06 84.0±5.2
MLP 73.3±6.6 89.0±6.9 80.7±9.2 84.9±3.3 9.0±5.8 0.30±0.08 83.2±5.2

Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive value (%), NPV = negative pre-
dictive value (%), LR+ = positive likelihood ratio, LR- = negative likelihood ratio, Acc = accuracy
(%).

5.1.3 Detrended fluctuation analysis

The usefulness of DFA-derived features to supply further information from the
oximetry signal linked to pediatric OSA was explored in Vaquerizo-Villar et al.
(2018a), employing a conventional three-stage feature-engineering methodology.
ODI3 and six DFA-derived parameters were first extracted from the SpO2 record-
ing of 981 children (i.e., the complete UofC database). A reduced subset of rele-
vant and non-redundant features was then obtained using the FCBF algorithm.
Finally, a MLP regression neural network was trained and optimized using this
feature subset to estimate the AHI and hence pediatric OSA severity degrees. Ac-
cording to this feature-engineering methodology, the database was split into two
sets: (i) training set (589 subjects, 60%), employed for optimization purposes; and
(ii) test set (392 subjects, 40%), used to evaluate the diagnostic performance of the
developed approach.

Figure 5.4 displays the averaged DFA profile in the training set for the four
OSA severity groups: no OSA (AHI <1 e/h), mild OSA (1 ≤ AHI < 5 e/h), mod-
erate OSA (5 ≤ AHI < 10 e/h), and severe OSA (AHI ≥ 10 e/h). In this figure,
higher fluctuations are observed as the OSA severity increases. In addition, the
two scaling regions (region 1 and region 2) are observed for the four OSA sever-
ity groups, as mentioned in Section 4.2.1.2. Table 5.6 shows the median and in-
terquartile range values by OSA severity group of each extracted feature, as well
as the p-value, obtained by means of the Kruskal-Wallis test. ODI3, and 4 out of 6
DFA-derived parameters (slope1, slope12, F(k12), and F(kx)) showed statistically
significant differences (p-value < 0.01 after Bonferroni correction). Specifically,
these features experienced an increasing trend as OSA severity increases.

FCBF was applied to 1000 bootstrap replicates obtained from all the extracted
features (ODI3 and DFA-derived parameters) in the training group. The opti-
mum subset was composed of ODI3 and slope1, as these features were selected
more than 500 times. Using this feature subset, the MLP network was trained and
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Figure 5.4. Averaged DFA profile by OSA severity group in the training dataset. This
figure has been derived from Vaquerizo-Villar et al. (2018a).

Table 5.6. Feature values for the OSA severity groups (median [interquartile range]) in the
training set. This table has been derived from Vaquerizo-Villar et al. (2018a).

Features no OSA mild OSA moderate OSA severe OSA p-value*

ODI3 1.04 [0.52,2.47] 2.03 [0.93,3.89] 3.69 [1.94,7.23] 12.35 [6.65,24.49] <0.01
slope1 1.63 [1.58,1.68] 1.64 [1.58,1.70] 1.67 [1.60,1.71] 1.74 [1.66,1.79] <0.01
slope1 0.96 [0.90,1.05] 0.95 [0.87,1.03] 0.92 [0.85,1.02] 0.94 [0.88,1.01] 0.18
slope12 1.66 [1.53,1.82] 1.69 [1.55,1.87] 1.77 [1.60,1.94] 1.82 [1.68,1.95] <0.01
k12 1.33 [1.23,1.42] 1.36 [1.26,1.44] 1.38 [1.29,1.45] 1.34 [1.23,1.42] 0.04
F(k12) 0.01 [-0.18,0.18] 0.12 [-0.12,0.26] 0.22 [0.04,0.38] 0.42 [0.16,0.61] <0.01
F(kx) -0.05 [-0.13,0.04] 0.02 [-0.07,0.11] 0.10 [0.00,0.20] 0.31 [0.18,0.52] <0.01

*p-values obtained from the Kruskal-Wallis test after Bonferroni correction, OSA = obstructive sleep
apnea.

optimized. Network hyper-parameters, α and NH , were varied from α = 0 up to
α = 10 (step of 1) and from NH = 2 up to NH = 30 (step of 1), obtaining α = 1
and NH = 5 as the optimum NH − α pair that maximized kappa in the training
set.

Figure 5.5 displays the Bland-Altman graphs of ODI3 and the AHI estimated
by the MLP network (AHIMLP-DFA) compared to AHIPSG. ICC is also shown.
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The confidence interval was slightly lower in ODI3 than in AHIMLP-DFA plot (23.3
versus 24.3). However, AHIMLP-DFA reached a lower absolute mean error than
ODI3 (0.75 vs -1.65), as well as a higher ICC (0.891 versus 0.866). Figure 5.6
shows the confusion matrices of ODI3 and AHIMLP-DFA in the test group. Using
ODI3, 55.4% of the children (217/392) were rightly asigned to their correspond-
ing OSA severity group. By contrast, 60.0% of subjects (235/392) were rightly
assigned by AHIMLP-DFA. Table 5.7 shows diagnostic performance metrics of
ODI3 and AHIMLP-DFA for the AHI-based cutoffs of 1, 5, and 10 e/h. Notice that
AHIMLP-DFA outperformed ODI3 in terms of kappa, Acc for the severity cutoffs
of 1 and 10 e/h, and AUC for the three cutoffs. In order to provide a more com-
prehensive comparison between ODI3 and AHIMLP-DFA, ICC, kappa, overall Acc
(four classes), and AUC values were obtained from 1000 bootstrap replicates and
the p-value between ODI3 and AHIMLP-DFA was calculated for each of these per-
formance metrics by means of the Mann–Whitney U test. In this way, statistically
significant higher values (p-value < 0.01) were obtained using AHIMLP-DFA in the
case of ICC, kappa, overall Acc, and AUC for the AHI-based cutoffs of 5 e/h and
10 e/h.

5.2 Application of deep-learning techniques

The previously mentioned results (see Sections 5.1.1, 5.1.2, and 5.1.3) were ob-
tained following a feature-engineering methodology. As stated in Section 4.3, this
approach may lead to the omission of OSA-related information from the oximetry
signal. In Vaquerizo-Villar et al. (2021), we evaluate a novel methodology based
on deep learning to automatically find the relevant information of the oximetry
signal linked to pediatric OSA. This methodology consisted of two steps. First,

Table 5.7. Diagnostic ability of ODI3 and AHIMLP-DFA in the test set for the AHI cutoffs=
1 e/h, 5 e/h, and 10 e/h. This table has been derived from Vaquerizo-Villar et al. (2018a).

AHI cutoff Se Sp PPV NPV LR+ LR- Acc AUC kappa

ODI3 1 e/h 83.5 50.6 87.4 42.9 1.7 0.33 77.0 0.811 0.355
5 e/h 65.1 93.1 84.8 81.8 9.4 0.37 82.7 0.883
10 e/h 65.1 96.1 81.8 91.1 16.7 0.36 89.5 0.921

AHIMLP-DFA 1 e/h 97.1 23.3 83.9 66.7 1.3 0.12 82.7 0.813 0.412
5 e/h 78.8 83.7 74.2 86.9 4.8 0.25 81.9 0.888
10 e/h 77.1 94.8 80.0 93.9 14.9 0.24 91.1 0.930

AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive
value (%), NPV = negative predictive value (%), LR+ = positive likelihood ratio, LR- = negative like-
lihood ratio, Acc = accuracy (%), AUC = area under the ROC curve, kappa=Cohen’s kappa index.
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Figure 5.5. Bland-Altman plots comparing (a) ODI3 and (b) AHIMLP-DFA with AHIPSG in
the test set. This figure has been derived from Vaquerizo-Villar et al. (2018a).

Figure 5.6. Confusion matrices of ODI3 and AHIMLP-DFA in the test set. 1: no OSA; 2: mild
OSA; 3: moderate OSA; 4: severe OSA. This figure has been derived from Vaquerizo-Villar
et al. (2018a).
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a CNN architecture was trained to estimate the number of apneic events in each
20-min non-overlapping SpO2 segment. Then, the outputs of the CNN for each
segment are aggregated to estimate the AHI for each subject using a database
of 3196 SpO2 recordings of children from three independent datasets: the CHAT
dataset (see Section 3.1), the UofC dataset (see Section 3.2), and the BUH dataset
(see Section 3.3).

In order to assure a proper generalization of the proposed approach, the
whole population under study was divided into three sets: (i) training set, used to
train the CNN architecture; (ii) validation set, used for hyperparameter optimiza-
tion; (iii) test set, used to assess the diagnostic performance of the deep-learning
model. The training group was composed of 859 SpO2 recordings from the CHAT
dataset, as the UofC and BUH databases do not contain respiratory events anno-
tations, which are needed in the CNN architecture to compose the output labels
of each 20-min non-overlapping segment from the training set (see Section 4.3.1).
The remaining subjects from the CHAT dataset, as well as the subjects of the
UofC and BUH sets, were randomly divided into a validation set (1402 subjects,
60%) and a test set (40%), composed of 312 children from the CHAT dataset, 392
children from the UofC dataset, and 231 children from the BUH dataset.

Figure 5.7 shows the results of the BO-TPE algorithm for the hyper-
parameters of the CNN architecture: the number of filters (MC) and the filter
size (LC) in each 1-D convolution, the number of CNN blocks (λC), the delta pa-
rameter of the Huber loss function (δ), and the dropout probability (pdrop). For
each hyperparameter, the values of kappa are displayed in a boxplot. It can be
observed that there is not a high confidence (interquartile range) of kappa on the
values of the hyperparameter. Slightly higher overall kappa values are achieved
with an increasing tendency of MC and a decreasing trend of δ, as well as when
λC = 6 and LC = 5, whereas the value of pdrop had little effect on kappa. In this
way, MC = 64, LC = 5, λC = 6, δ = 1.5, and pdrop = 0.1 were obtained as the
optimum values that maximized kappa in the validation set.

Figure 5.8 shows the scatter plots of the AHI estimated by the CNN model
(AHICNN) compared to AHIPSG in the CHAT, UofC, and BUH test sets. ICC
and RMSE between AHICNN and AHIPSG are also shown. It can be observed
that points of the scatter plot are more concentrated near the diagonal line in the
CHAT test set, which results in a higher agreement (ICC=0.960 and RMSE=2.89)
than in the UofC (ICC=0.917 and RMSE=5.45) and BUH test sets (ICC=0.583 and
RMSE=10.44). Figure 5.9 displays the error distribution plots of AHICNN in the
three test sets. A low mean error was obtained in the three test datasets. However,
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Figure 5.7. Results of the hyperparameter optimization in the validation set. This figure
has been taken from Vaquerizo-Villar et al. (2021).

Figure 5.8. Scatter plot comparing AHICNN with AHIPSG in the CHAT, UofC, and BUH
test databases. This figure has been taken from Vaquerizo-Villar et al. (2021).

95% confidence interval of AHICNN was lower in the CHAT test set (12.80 e/h)
than in the UofC (21.69 e/h) and BUH (28.84 e/h) test sets. In this respect, some
outliers were observed in the UofC and BUH sets, as indicated by the maximum
error.

Figure 5.10 shows the confusion matrices that face the pediatric OSA sever-
ity degrees established by the AHIPSG and the corresponding assignation using
AHICNN in the three test sets. Notice that a higher four-class overall accuracy
was reached by AHICNN in the CHAT test set (72.8%, 227/312), than in the UofC
(60.2%, 236/392) and BUH test sets (61.0%, 141/231), as anticipated by the scatter
and error distribution plots. Table 5.8 shows the diagnostic performance statis-
tics of AHICNN for each AHI threshold that establishes the pediatric OSA severity
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Figure 5.9. Error distribution plot of AHICNN in the CHAT, UofC, and BUH test databases.
This figure has been taken from Vaquerizo-Villar et al. (2021).

Figure 5.10. Confusion matrices of AHICNN in the CHAT, UofC, and BUH test datasets. 1:
no OSA; 2: mild OSA; 3: moderate OSA; 4: severe OSA. This figure has been taken from
Vaquerizo-Villar et al. (2021).

degrees (1 e/h, 5 e/h, and 10 e/h), which are derived from the confusion matrix.
The value of kappa was remarkably higher in the CHAT test set (0.515) than in
the UofC (0.422) and BUH test sets (0.423). A higher diagnostic ability is also
observed in the CHAT test set for the AHI-based cutoffs of 5 and 10 e/h.

In order to provide a thorough comparison between our proposal and conven-
tional approaches, we have compared the results of AHICNN with ODI3, a clinical
parameter, as well as the AHI obtained with a classical feature-engineering ap-
proach based on MLP (AHIMLP) (Vaquerizo-Villar et al., 2021). Table 5.9 shows
the comparison of the performance of AHICNN with ODI3 and AHIMLP in the
three test sets. Notice that AHICNN outperformed ODI3 and AHIMLP in terms of
overall accuracy, kappa, RMSE, and ICC in the three test sets.
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Table 5.8. Diagnostic ability of AHICNN for the AHI cutoffs=1 e/h, 5 e/h, and 10 e/h in the
CHAT, UofC, and BUH test databases. This table has been derived from Vaquerizo-Villar
et al. (2021).

Test set AHI cutoff Se Sp PPV NPV LR+ LR- Acc kappa

CHAT 1 e/h 71.2 81.8 72.4 81.0 3.92 0.35 77.6 0.515
5 e/h 83.7 100 100 97.0 N.D. 0.16 97.4

10 e/h 83.9 99.3 92.9 98.2 117.84 0.16 97.8

UofC 1 e/h 90.8 36.4 85.4 49.1 1.43 0.25 80.1 0.421
5 e/h 76.0 88.6 79.8 86.2 6.68 0.27 83.9

10 e/h 79.5 95.8 83.5 94.6 18.90 0.21 92.3

BUH 1 e/h 88.8 53.2 83.8 63.5 1.90 0.21 79.2 0.423
5 e/h 61.1 93.7 81.5 84.2 9.72 0.42 83.5

10 e/h 65.0 96.9 81.3 93.0 20.69 0.36 91.3
AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive
value (%), NPV = negative predictive value (%), LR+ = positive likelihood ratio, LR- = negative like-
lihood ratio, Acc = accuracy (%), kappa = Cohen’s kappa index, N.D. = not defined

Table 5.9. Diagnostic performance of AHICNN vs. ODI3 and AHIMLP in the CHAT, UofC,
and BUH test databases. This table has been derived from Vaquerizo-Villar et al. (2021).

Test set Method ICC RMSE 4-class kappa 4-class Acc

AHICNN 0.960 2.89 0.515 72.8
CHAT ODI3 0.871 4.63 0.417 65.1

AHIMLP 0.832 5.51 0.377 63.3

AHICNN 0.917 5.45 0.422 60.2
UofC ODI3 0.861 6.21 0.372 56.6

AHIMLP 0.890 6.02 0.381 56.9

AHICNN 0.583 10.44 0.423 61.0
BUH ODI3 0.520 10.64 0.369 57.6

AHIMLP 0.500 11.05 0.306 52.4
ICC = intra-class correlation coefficient, RMSE = root mean squared error, kappa = Cohen’s kappa
index, Acc = accuracy (%)

In this chapter, the most relevant results obtained during this Doctoral Thesis
have been presented. In the next Chapter (see Section 6), these results will be
discussed, as well as compared with state-of-the-art studies.





Chapter 6

Discussion

This Doctoral Thesis addresses the simplification of pediatric OSA diagnosis. For
this purpose, novel signal processing algorithms have been applied to improve
the diagnostic ability of the oximetry signal. In this regard, feature-engineering
and deep-learning methodologies have been approached. On the one hand, we
have gone further in SpO2 characterization in the time and frequency domain
using bispectrum, wavelet, and DFA, obtaining new features that provide ad-
ditional information from the oximetry signal related to pediatric OSA and its
severity. On the other hand, a deep-learning model based on CNNs was able to
automatically learn discriminative features from raw SpO2 data linked to apneic
events, outperforming conventional approaches. In this chapter, the main out-
comes obtained during this Thesis are discussed. Moreover, a comparison of the
proposed methodologies in terms of diagnostic performance is provided, as well
as a comparison with state-of-the-art works. Finally, the main limitations of this
Thesis are stated.

6.1 Novel features to provide relevant and comple-

mentary information from oximetry recordings

As aforementioned, bispectrum (Vaquerizo-Villar et al., 2018b), wavelet analysis
(Vaquerizo-Villar et al., 2018c), and DFA (Vaquerizo-Villar et al., 2018a) were ap-
plied to identify features able to provide additional information regarding OSA-
related changes in the oximetry dynamics.

69
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6.1.1 Bispectral analysis

Spectral analysis has been widely used to analyze SpO2 in both adult and pedi-
atric OSA contexts (Álvarez et al., 2017; Alvarez et al., 2013; Crespo et al., 2018;
Garde et al., 2014a; Hornero et al., 2017), as it reflects the changes in the SpO2

spectrum elicited by the recurrence of respiratory events while sleeping. This
analysis has been commonly accomplished using PSD (Álvarez et al., 2017; Cre-
spo et al., 2018; Garde et al., 2014a; Hornero et al., 2017). However, PSD cannot
characterize changes of linearity and gaussianity in a signal, as the phase relation-
ship among spectral components is lost (Chua et al., 2010). In contrast, bispectral
analysis preserves both amplitude and phase information of the Fourier trans-
form, which enables the detection of phase relationships and deviations from
gaussianity and linearity of a signal (Chua et al., 2010), such as those that may be
elicited in SpO2 recordings by physiological perturbations of OSA.

In the present Doctoral Thesis, bispectrum has been applied as a complemen-
tary tool to conventional spectral analysis (Vaquerizo-Villar et al., 2018b). To our
knowledge, this is the first time that bispectral analysis is used in the frame-
work of pediatric OSA. A MLP model fed with a feature subset composed of
bispectrum-derived parameters, together with anthropometric variables, ODI3,
and PSD-derived parameters (MLPbis) reached a high diagnostic performance,
with a 3-class Acc of 76%, a kappa value of 0.56, and 81.3% Acc and 85.3% Acc
for the AHI cutoffs of 5 e/h and 10 e/h, respectively. These results outperformed
a MLP neural network trained without information from bispectrum (MLPnobis).
It is worthy to note that MLPbis reached a PPV of 95.5% for 5 e/h and a NPV of
86.7% for 10 e/h. As stated in Section 3, these cutoffs are commonly use in the
clinical practice to detect moderate (5 ≤ AHI < 10 e/h) and severe OSA (AHI ≥
10 e/h). In this respect, adenotonsillectomy treatment is recommended in chil-
dren with an AHI ≥ 5 e/h, as they have an increased chance of suffering adverse
health consequences and comorbidities (Church, 2012; Hunter et al., 2016; Kaditis
et al., 2016a). Furthermore, children with an AHI ≥ 10 e/h can present persistent
risk factors and residual OSA after treatment (Alonso-Álvarez et al., 2011).

It is also important to highlight that two bispectral-derived features, M1BISP

and meanPaBISP, were involved in the optimum subset. M1BISP contains informa-
tion about changes in the amplitude of the bispectrum related to deviations of
gaussianity in the SpO2 signal, whereas meanPaBISP measures changes in the bis-
pectral phase associated to a phase coupling between spectral components of the
SpO2 signal related to pediatric OSA severity. Furthermore, bispectral moments
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(H1BISP, H2BISP, and H3BISP), which measure nonlinear relationships between
the frequency components of the oximetry signal, showed significantly higher
values as the severity of OSA increased.

These findings agree with previous works that also examined the usefulness
of bispectrum to characterize OSA-related changes in adults (Atri and Mohebbi,
2015; Tagluk and Sezgin, 2011) and children (Barroso-García et al., 2021). Tagluk
and Sezgin (2011) reported changes in the quadratic phase coupling of the EEG
signal, whereas Atri and Mohebbi (2015) reported changes in the non-Gaussian
and nonlinear dynamical information of heart rate variability and ECG-derived
respiratory signals during apneic episodes by means of bispectrum. Finally, in a
recent work developed by Barroso-García et al. (2021), it was found that bispec-
trum provides information regarding changes in the gaussianity, linearity, and
regularity of the AF signal elicited by apneic events. In the present research, it
has been demonstrated that bispectral analysis can identify phase relationships
and deviations from linearity and gaussianity of the SpO2 signal that provide
additional and complementary information to conventional approaches in the
automated detection of childhood OSA. This study was the starting point for the
second study of the Doctoral Thesis, in which we apply the wavelet transform to
further characterize the SpO2 signal in the frequency domain.

6.1.2 Wavelet analysis

PSD and bispectrum are frequency domain analysis techniques based on the
STFT (Chua et al., 2010). STFT uses a fixed length window to analyze each
segment of the signal, assumming that it is stationary (Rioul and Vetterli, 1991).
Nonetheless, non-stationary changes occur in the oximetry signal during sleep,
mainly due to apneic events (Berry et al., 2012). This limitation is overcome by
the WT, which does not make assumptions about the stationarity of the signal
(Rioul and Vetterli, 1991). Wavelet analysis provides an optimal time-frequency
resolution (high frequency resolution at low frequencies and high temporal res-
olution at high frequencies) (Rioul and Vetterli, 1991), which is useful to analyze
OSA-related information at the low frequency components of the SpO2 record-
ings.

In this research, wavelet analysis has been employed to further characterize
the oximetry dynamics related to the presence of moderate-to-severe pediatric
OSA (Vaquerizo-Villar et al., 2018c). Previous studies have shown the useful-
ness of the WT to characterize the changes in physiological signals related to ap-
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neic episodes in adult patients (Fontenla-Romero et al., 2005; Khandoker et al.,
2008; Lee et al., 2004; Lin et al., 2006; Mendez et al., 2010; Tagluk and Sezgin,
2011), though it had not been previously applied in the screening of childhood
OSA. Our results revealed that all the DWT-derived features, WE and features
computed from the coefficients in D9 (M1D9 , M2D9 , M3D9 , M4D9 , MaxD9 , and
EnD9 ), showed statistically significant differences between negative OSA (AHI
< 5 e/h) and positive OSA (AHI ≥ 5 e/h) groups. Furthermore, these features
reached a overall higher performance than statistical moments in the time do-
main and PSD-derived parameters, thus suggesting that DWT is a suitable tool
to identify OSA-related changes occurring in the oximetry signal. Finally, MLP,
LR, and SVM binary classifiers fed with an optimum subset composed of fea-
tures from these complementary approaches (DWT, statistical moments, ODI3,
and PSD) reached a high diagnostic performance, improving the diagnostic abil-
ity of all the extracted features. Noteworthy, the SVM model reached the highest
Acc (84.0%), Sp (91.1%), PPV (83.8%), and LR+ (14.6%) among the individual fea-
tures and binary classification algorithms. A high LR+ (LR>10) is considered to
present solid evidence to determine the presence of a disease, which indicates that
this model is especially useful as a screening method to confirm the presence of
moderate-to-severe pediatric OSA (AHI ≥ 5 e/h). Accordingly, our DWT-based
SVM model could be used to automatically detect moderate-to-severe pediatric
OSA at patient’s home, thus reducing associated healthcare costs and intrusive-
ness of overnight PSG.

Importantly, three DWT-derived parameters, M3D9 , EnD9 , and WE, were au-
tomatically selected with FCBF. As shown, M3D9 was significantly lower in the
positive-OSA group, which indicates that apneas and hypopneas modify the fre-
quency distribution of SpO2 signal and increase its frequency components in
the D9 band (0.0244–0.0488 Hz), thus resulting in values less proximal to zero.
Regarding EnD9 , it was higher in the positive-OSA group, which agrees with
a higher occurrence of respiratory events that increase the amplitude of the D9

coefficients. These changes of the SpO2 signal in the D9 band are linked to the re-
currence and duration of the oxygen desaturation associated to apneic episodes.
In addition, WE revealed a higher irregularity in the positive-OSA group, which
indicates that pediatric OSA disturbs the energy distribution of the DWT decom-
position of the SpO2 signal. According to our results, the information about the
occurrence of apneic events provided by DWT through the amplitude (EnD9 ) and
the concentration of the D9 coefficients near zero (M3D9 ), and the irregularity of
the energy distribution (WE) of the SpO2 is complementary (non-redundant) to
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the information provided by conventional approaches. Hence, this study con-
firms that, the great resolution provided by DWT in the low frequency range,
as well as its suitability to analyze non-stationary signals, make DWT an appro-
priate tool to further characterize the changes occurring in the oximetry signal
associated with pediatric OSA. These findings, together with those obtained in
the Section 6.1.1, led us to the third study of this Thesis, in which we apply the
detrended fluctuation analysis method to gain insight into the nonlinear and non-
stationary properties of the oximetry signal in the time domain.

6.1.3 Detrended fluctuation analysis

As aforementioned, biomedical signals typically present non-stationarities and
non-linearities, since biological systems have an stochastic behavior. In this re-
spect, nonlinear methods derived from the chaos theory have proved high capa-
bility to characterize changes in SpO2 dynamics related to physiological pertur-
bations of OSA, both in adult and in pediatric patients (del Campo et al., 2018).
Nonetheless, Hornero et al. (2017) and Garde et al. (2014a) reported that conven-
tional nonlinear metrics (SampEn, CTM, and LZC) were redundant with regard
to common statistical moments, conventional oximetric indices, and frequency
domain features. In order to provide further insights into its nonlinear proper-
ties, we have applied DFA to characterize changes in the scaling behavior (i.e.,
irregular fluctuations and random spikes) of the oximetry signal related to pe-
diatric OSA and its severity (Vaquerizo-Villar et al., 2018a). Previous studies
have assessed the capability of DFA to characterize OSA in adults (Hua and Yu,
2017; Kaimakamis et al., 2016; Lee et al., 2002; Penzel et al., 2003) and children
(Dehkordi et al., 2016). Nonetheless, no studies have applied DFA to analyze
SpO2 recordings in the context of childhood OSA.

Our results revealed that the scaling behavior of the SpO2 recordings is af-
fected by pediatric OSA. This agrees with Dehkordi et al. (2016) and Penzel et al.
(2003), who also obtained two scaling regions with different correlation proper-
ties in adult OSA patients, one region for short-time scales related to respiratory
events and another region for long-time scales associated to the effects of circa-
dian rhythm and sleep stages. As shown, slope1 and slope12 showed significantly
higher values as the AHI increased. This can be explained by the higher occur-
rence of respiratory events that changes the oximetry dynamics in the short-time
scales. In addition, F(k12) and F(kx) showed significantly higher values as the
OSA severity increased. This fact is consistent with the higher fluctuations ob-



74 Chapter 6. Discussion

served in the DFA profile as AHI increased, which indicates that apneic events
cause irregular fluctuations in the oximetry signal, as also reported by Hua and
Yu (2017).

The information provided by DFA was also complimentary to ODI3. Specifi-
cally, FCBF automatically selected slope1, together with ODI3. As shown, a MLP
neural network trained to estimate the AHI using this optimum subset reached
an ICC of 0.891, a 4-class Acc of 60%, a kappa value of 0.41, and 82.7%, 81.9%, and
91.1% Acc for the AHI cutoffs of 1 e/h, 5 e/h, and 10 e/h, respectively. This MLP
model showed an overall higher diagnostic performance than the conventional
ODI3. These results suggest that the changes in the scaling behavior of the DFA
profile quantified by slope1 provide relevant and additional information that con-
tributes to improve the diagnostic ability of the SpO2 signal in the framework of
pediatric OSA.

6.2 A deep-learning based methodology to automat-

ically extract the relevant information from raw

oximetry recordings

The feature-engineering approach has shown its usefulness to characterize pe-
diatric OSA and its severity (Vaquerizo-Villar et al., 2018a,b,c). It has been
demonstrated that the application of novel signal processing algorithms from
different analytical approaches provide relevant features that parameterize OSA-
related oximetric changes. Furthermore, this feature-engineering approach has
allowed us to identify which features provide additional information to classical
methods regarding oximetric changes related to childhood OSA and its sever-
ity (Vaquerizo-Villar et al., 2018a,b,c). Nonetheless, the feature-engineering ap-
proach is limited to the existing human knowledge, which may lead to the omis-
sion of relevant information concerning pediatric OSA that is still undiscovered
(Dehlink and Tan, 2016).

The aforementioned limitation of the feature-engineering methodology is
overcome by the deep-learning approach, which are based on an automatic iden-
tification of the important information that is not controlled by human experts
(LeCun et al., 2015). In Vaquerizo-Villar et al. (2021), we have proven that a CNN-
based deep-learning method can automatically learn discriminative information
from the raw oximetry data linked to apneic events. These findings are consis-
tent with recent studies that also demonstrated the utility of deep-learning ap-
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proaches to automatically identify OSA-related changes in physiological signals
from adult subjects (Biswal et al., 2018; Choi et al., 2018; Nikkonen et al., 2019;
Van Steenkiste et al., 2018). These studies analyzed raw signals from PSG using
deep-learning models based on recurrent neural networks (RNN) (Biswal et al.,
2018; Van Steenkiste et al., 2018), MLP (Nikkonen et al., 2019), and CNN (Choi
et al., 2018). In this regard, CNN has a lower computational cost than RNN and
MLP, which makes it more suitable for screening purposes using wearable and
portable pulse oximetry devices.

Table 6.1 shows a summary of the comparison of the estimated AHI from the
proposed CNN architecture (AHICNN) with ODI3, a clinical approach, as well
as the AHI estimated by a classical feature-engineering approach (AHIMLP). As
expected, AHICNN outperformed ODI3 and AHIMLP, showing a high diagnostic
ability in a large sample of 3196 SpO2 signals from three independent datasets.
Specifically, AHICNN reached a high agreement in the CHAT (ICC=0.960), UofC
(ICC=0.917), and BUH (ICC=0.583) test sets. In addition, high 4-class accuracies
(72.8%, 60.2%, and 61.0%), high kappa values (0.515, 0.422, and 0.423), and high
accuracies for the AHI severity cutoffs of 1 e/h (77.6%, 80.1%, and 79.2%), 5 e/h
(97.4%, 83.9%, and 83.5%), and 10 e/h (97.8%, 92.3%, and 91.3%) were obtained
in the CHAT, UofC, and BUH test sets, respectively.

Figure 6.1 displays a possible screening protocol that shows the clinical appli-
cability of AHICNN. This screening protocol, which is derived from the confusion
matrices of AHICNN (see Figure 5.10), would act as follows: (i) If AHICNN<1 e/h
(no OSA), clinicians could discard OSA as 96.2% (BUH), 98.2% (UofC), and 100%
(CHAT) of these subjects will have an AHICNN < 5 e/h. These patients might
be eventually referred to PSG on the persistence of symptoms (Alonso-Álvarez

Table 6.1. Summary of the comparison of AHICNN with ODI3 and AHIMLP in the CHAT,
UofC, and BUH test databases.

Test set Method kappa

AHICNN 0.515
CHAT ODI3 0.417

AHIMLP 0.377

AHICNN 0.422
UofC ODI3 0.372

AHIMLP 0.381

AHICNN 0.423
BUH ODI3 0.369

AHIMLP 0.306
kappa = Cohen’s kappa index.
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et al., 2011); (ii) If 1 ≤ AHICNN < 5 e/h, the clinicians could suggest to conduct
overnight PSG as doubts exist about the true diagnosis of these subjects; (iii) If
5 ≤ AHICNN < 10 e/h, the clinicians could consider treatment as 86.4% (BUH),
96.7% (UofC), and 100% (CHAT) of these children are at least mild OSA (AHICNN

≥ 1 e/h) and they were referred to the sleep laboratory showing symptoms; (iv)
If AHICNN ≥ 10 e/h, the clinicians could suggest treatment, as most probably
(90.6% in BUH, 96.2% in UofC, and 100% in CHAT) these children are at least
moderate OSA (AHICNN ≥ 5 e/h), and also consider a follow-up of these chil-
dren, as they are prone to present persistent risk factors and residual OSA after
being treated. The implementation of this screening protocol in a pediatric sleep
unit could lead to a 45.9% (BUH), 50.0% (UofC), and 73.7% (CHAT) reduction in
full PSGs, thus reducing health costs and waiting lists. In addition, these chil-
dren would benefit from a more comfortable diagnostic test that could be easily
performed at home.

Despite the fact that the CNN model outperformed conventional methods in
the three datasets, it is noteworthy that our proposal reached a higher perfor-
mance in the CHAT dataset than in the UofC and BUH datasets. This is consis-
tent with the fact that the weights of the CNN model were obtained using only
the CHAT dataset. As there is a large variability in the annotation of cardiorespi-
ratory events and sleep stages among different sleep technologists (Collop, 2002),
this variance may influence the external assessment of our proposed CNN model
in two external datasets. Nonetheless, we tried to reduce this variability by using
a validation group formed by children from the CHAT, UofC, and BUH datasets.
There are also differences in the following clinical characteristics that could help
to explain the varying diagnostic performance among datasets:

• AHI distribution. The median [interquartile range] of the AHI values vary
among datasets: 0.8 [0.4-1.7] in the CHAT test set, 3.3 [1.4-7.8] in the UofC
test set, and 2.3 [0.9-6.4] in the BUH test set.

• Age. There are also differences in the age range among datasets: 5-10 in the
CHAT dataset, 0-13 in the UofC dataset, and 0-18 in the BUH dataset.

• Sampling rate. The sampling rate of the SpO2 recordings were: 1, 2, 10, 12,
16, 200, 256, and 512 Hz in the CHAT dataset, 25, 200, and 500 Hz in the
UofC dataset, and 200 Hz in the BUH dataset.

• Population group. CHAT and UofC datasets are composed of pediatric sub-
jects from the United States of America (USA), whereas BUH dataset is com-
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Figure 6.1. Screening protocol of the proposed CNN-based deep-learning model

posed of children from Spain. In this respect, obesity prevalence and race
are different in these countries, as well as the health system, which is mainly
public in Spain and mostly private in the USA. This influences the socioe-
conomic condition of the subjects under study, thus having a substantial
consequence on the health status.

These findings are consistent with previous works (Alvarez et al., 2013; Biswal
et al., 2018; Nikkonen et al., 2019), which also reported a varying performance
among sleep databases with different clinical features.

To sum up, it was found that deep-learning allows to automatically iden-
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tify discriminative information from oximetry dynamics associated to apneic
episodes. In addition, the proposed CNN-based deep-learning model showed
a high diagnostic ability, outperforming a classical clinical parameter, ODI3, as
well as a conventional feature-engineering approach based on MLP (AHIMLP).
The applicability of our results was also highlighted by the validation of our pro-
posal in 3196 SpO2 recordings from three different datasets, as well as by the
design of a screening protocol. These findings suggest that the use of automated
methodologies based on deep learning contributes to further improving the di-
agnostic ability of overnight oximetry in the screening of childhood OSA.

6.3 Comparison of performance: feature-

engineering, deep-learning, and state-of-the-art

In order to further discuss the most relevant findings of this Thesis, we have com-
pared the diagnostic performance obtained with the different feature-engineering
and deep-learning methodologies proposed in the papers included in the com-
pendium of publications (Section 6.3.1). In addition, we have compared these
results with those achieved in the state-of-the-art, considering the methodologi-
cal differences among studies that limit generalization. (Section 6.3.2).

6.3.1 Comparison between feature-engineering and deep-
learning approaches

Table 6.2 displays the overall diagnostic performance of the automated feature-
engineering and deep-learning models obtained in the compendium of publica-
tions. Notice that a high performance was achieved in all the publications, with
accuracies ranging between 77.6%-82.7% Acc for an AHI cutoff of 1 e/h, 81.3%-
97.4% Acc using an AHI cutoff of 5 e/h, and 85.3%-97.8% using an AHI cutoff of
10 e/h. It can also be observed that, in Vaquerizo-Villar et al. (2018b), the perfor-
mance was lower than in the remaining studies. Nonetheless, an initial version
of the UofC database (298 children) was used in this study, so that a thorough
comparison of the results cannot be performed. Conversely, the test set of the
UofC dataset employed in Vaquerizo-Villar et al. (2018c), Vaquerizo-Villar et al.
(2018a), and Vaquerizo-Villar et al. (2021) was composed of the same subjects (392
pediatric patients). This enables a direct comparison of their results.

Regarding this comparison, it is important to note that a high diagnostic
performance was obtained in Vaquerizo-Villar et al. (2021) in the UofC dataset.
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Table 6.2. Summary of the diagnostic performance of the methods developed during the
compendium of publications

Study Dataset N
(Total/test)

AHI Methods
(Feature/classification)

Se Sp Acc kappa ICC

Vaquerizo-
Villar
et al.

(2018b)

UofC 298/75 5
10

Bispectrum, PSD
features, ODI3, and

anthropometric
variables / Multiclass

MLP

61.8
60.0

97.6
94.5

81.3
85.3

0.56 -

Vaquerizo-
Villar
et al.

(2018c)

UofC 981/392 5 ODI3, statistical
moments, PSD, and

DWT features / Binary
SVM

71.9 91.1 84.0 - -

Vaquerizo-
Villar
et al.

(2018a)

UofC 981/392 1
5
10

DFA and ODI3 /
Regression MLP

97.1
78.8
77.1

23.3
83.7
94.8

82.7
81.9
91.1

0.41 0.891

Vaquerizo-
Villar
et al.

(2021)

UofC 3196/392 1
5
10

CNN architecture 90.8
76.0
79.5

36.4
88.1
95.8

80.1
83.9
92.3

0.42 0.917

Vaquerizo-
Villar
et al.

(2021)

CHAT 3196/312 1
5
10

CNN architecture 71.2
83.7
83.9

81.8
100
99.3

77.6
97.4
97.8

0.52 0.960

Vaquerizo-
Villar
et al.

(2021)

BUH 3196/231 1
5
10

CNN architecture 88.8
61.1
65.0

53.2
93.7
96.9

79.2
83.5
91.3

0.42 0.583

N = Number of subjects, AHI = apnea-hypopnea index, ICC = intra-class correlation coefficient, kappa
= Cohen’s kappa index, Se = sensitivity (%), Sp = specificity (%), Acc = accuracy (%).

The proposed CNN-based deep-learning model outperformed the DFA-based
feature-engineering approach designed in Vaquerizo-Villar et al. (2018a), achiev-
ing a slightly higher 4-class kappa and ICC, as well as higher accuracies for the
AHI cutoffs of 5 and 10 e/h than Vaquerizo-Villar et al. (2018a). This supe-
rior performance is even more noteworthy considering that the optimum CNN
model obtained in Vaquerizo-Villar et al. (2021) was trained using only the CHAT
dataset, whereas the DFA-based MLP model in Vaquerizo-Villar et al. (2018a) was
trained and optimized in the UofC dataset. This highlights the generalization
ability of the proposed deep-learning model. Additionally, a similar performance
was obtained in Vaquerizo-Villar et al. (2021) and Vaquerizo-Villar et al. (2018c)
for the AHI cutoff of 5 e/h. Apart from the aforementioned differences in the
training set, in Vaquerizo-Villar et al. (2018c) we only focused on binary classi-
fication for the AHI cutoff of 5 e/h, whereas in Vaquerizo-Villar et al. (2021) we
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assessed an AHI estimation model, thus emphasizing the reliability of the deep-
learning solution.

Despite the fact that a comprehensive comparison with the remaining studies
is not possible, in Vaquerizo-Villar et al. (2021) we also achieved a high perfor-
mance in the CHAT and BUH datasets, specially in the CHAT dataset, where
outstanding values of kappa (0.52), ICC (0.960), and accuracies (higher than 95%)
for the AHI cutoffs of 5 and 10 e/h were obtained. This reinforces the suitability
of deep-learning approaches to identify OSA-related hidden patterns from the
oximetry signal in a pediatric OSA context. In addition, our CNN-based model
is fed with raw data, thus not requiring human-driven knowledge regarding the
SpO2 information needed. Nonetheless, the interpretation and explanation of the
features learned by the CNN is more difficult.

6.3.2 Comparison with state-of-the-art studies

Tables 6.3 and 6.4 show the details of state-of-the-art studies aimed at simplifying
childhood OSA diagnosis by the use of the oximetry signal. Table 6.3 summarizes
the results reported in previous studies based on conventional oximetric indices,
whereas Table 6.4 displays results achieved by recent studies using automated
signal processing approaches.

As shown in Table 6.3, the diagnostic ability of ODI and clusters of desatu-
rations has been widely assessed (Brouillette et al., 2000; Chang et al., 2013; Kirk
et al., 2003; Ma et al., 2018; Nixon et al., 2004; Tsai et al., 2013; Van Eyck et al., 2015;
Velasco et al., 2013; Villa et al., 2015), including in some cases common symptoms
(Chang et al., 2013) and clinical history (Villa et al., 2015). Regarding their diag-
nostic performance, these studies achieved accuracies ranging 62%-93% using the
AHI threshold of 1 e/h (Brouillette et al., 2000; Ma et al., 2018; Tsai et al., 2013; Ve-
lasco et al., 2013; Villa et al., 2015), 64%-85% for an AHI threshold of 5 e/h (Chang
et al., 2013; Kirk et al., 2003; Ma et al., 2018; Tsai et al., 2013; Villa et al., 2015), and
75%-87% using the AHI threshold of 10 e/h (Ma et al., 2018; Tsai et al., 2013). In
this respect, it is important to highlight that Ma et al. (2018) obtained a substan-
tially lower performance than the reported by Tsai et al. (2013) using the ODI4.
In addition, Van Eyck et al. (2015) obtained a different diagnostic performance
than Velasco et al. (2013) and Brouillette et al. (2000) prospectively validating the
methods proposed in their studies. Apart from the different databases used in
these works, this varying diagnostic performance could be accounted for by the
fact that these works did not employ any validation strategy to further evaluate
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Table 6.3. Summary of state-of-the-art studies based on conventional oximetric indices

Study N
(Total/test)

AHI Methods
(Feature/classification)

Validation Se Sp Acc

Kirk et al.
(2003)

58/58 5 ODI3 / Thresholding Direct
validation**

66.7 60.0 64.0

Tsai et al.
(2013)

148/148 1
5
10

ODI4 / Thresholding No 77.7
83.8
89.1

88.9
86.5
86.0

79.0
85.1
87.1*

Brouillette
et al. (2000)

349/349 1 Clusters of
desaturations /
Thresholding

Direct
validation**

42.9 97.8 64.7

Velasco
et al. (2013)

167/167 1 Clusters of
desaturations /
Thresholding

Direct
validation**

86.6 98.9 93.4*

Van Eyck
et al. (2015)

130/130 2 Brouillette et al. (2000)
criteria and Velasco
et al. (2013) criteria

Direct
validation**

58
66

88
69

78
68

Chang et al.
(2013)

141/141 5 ODI3 and sympthoms
/ Binary LR

Direct
validation**

60.0 86.0 71.6

Villa et al.
(2015)

268/268 1
5

Clusters of
desaturations and
clinical history /

Thresholding

Direct
validation**

91.6
40.6*

40.6
97.9*

85.8
69.4*

Ma et al.
(2018)

32/32 1
5
10

ODI4 / Thresholding No 59.3
70.6
64.3

80.0
66.7
83.3

62.5
68.8
75.0*

* Computed from reported data, ** Direct validation of a scoring criteria against AHI from PSG, N =
Number of subjects, AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), Acc =
accuracy (%).

their methodological approaches.
In this research, we have compared the diagnostic performance of the devel-

oped signal processing methodologies with a classical oximetric index, ODI3, ob-
taining higher diagnostic capability in three independent and large cohorts of
pediatric OSA patients. Furthermore, hold-out, bootstrapping, and K-fold cross
validation strategies were used in the methodology of all the studies carried out
in the Doctoral Thesis (Vaquerizo-Villar et al., 2018a,b,c, 2021), which, together
with the large sample size, contribute to a higher generalization ability of our
results.

In recent years, automated feature-engineering approaches have been used to
enhance the diagnostic ability of the oximetry signal (Álvarez et al., 2017; Álvarez
et al., 2018; Crespo et al., 2017, 2018; Garde et al., 2014a; Hornero et al., 2017; Xu
et al., 2019). These studies have employed signal processing and pattern recogni-
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Table 6.4. Summary of state-of-the-art studies based on automated signal processing ap-
proaches

Study N
(Total/test)

AHI Methods
(Feature/classification)

Validation Se Sp Acc

Garde et al.
(2014a)

146/146 5 Classical indices,
statistical moments,
PSD, and nonlinear

features / Binary LDA

Four-fold
cross

validation

80.0 83.9 78.5

Álvarez
et al. (2017)

50/50 1
3
5

Classical indices,
statistical moments,
PSD, and nonlinear
features /Binary LR

Bootstrapping 89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

Crespo
et al. (2017)

146/146 3 Classical indices and
nonlinear features /

Binary LR

Bootstrapping 84.5 83.0 83.5

Hornero
et al. (2017)

4191/3602 1
5
10

ODI3, statistical
moments, PSD, and
nonlinear features /

Regression MLP

Training-
Test

84.0
68.2
68.7

53.2
87.2
94.1

75.2
81.7
90.2

Crespo
et al. (2018)

176/176 1
3
5

Classical indices,
statistical moments,
PSD, and nonlinear

features /LR

Bootstrapping 93.9
74.6
70.0

37.8
81.7
91.4

84.3
77.7
82.7

Xu et al.
(2019)

432/432 1
5
10

ODI3, statistical
moments, PSD, and
nonlinear features /

Regression MLP

Training-
Test

95.3
77.8
73.5

19.1
80.5
92.7

79.6
79.4
88.2

Álvarez
et al. (2018)

142/142 5 Classical indices,
statistical moments,
PSD, nonlinear, and

anthropometric
features / Binary LR

Bootstrapping 73.5 89.5 83.3

N = Number of subjects, AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), Acc
= accuracy (%).

tion algorithms, also applying validation strategies to ensure the generalization
of their results.

For an AHI cutoff of 1 e/h, the Acc obtained in these works ranged between
75.2% and 85.5% (Álvarez et al., 2017; Crespo et al., 2018; Hornero et al., 2017;
Xu et al., 2019). In this research, accuracies were included in this range (77.6%
- 82.7%) (Vaquerizo-Villar et al., 2018a, 2021). Additionally, the studies showing
higher Acc applied binary classifiers and used small databases (50 subjects in Ál-
varez et al. (2017) and 176 subjects in Crespo et al. (2018)), whereas in Vaquerizo-
Villar et al. (2018a) and Vaquerizo-Villar et al. (2021) we estimated the AHI of
each patient using larger cohorts (see Table 6.2).
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In the case of an AHI= 5 e/h, the diagnostic accuracy ranged 78.5%-83.3%
(Álvarez et al., 2017; Álvarez et al., 2018; Crespo et al., 2018; Garde et al., 2014a;
Hornero et al., 2017; Xu et al., 2019). It is remarkable that our deep-learning model
in Vaquerizo-Villar et al. (2021) reported higher accuracies in the UofC (83.9%),
CHAT (97.4%), and BUH (83.5%) databases. Similarly, our feature-engineering
model in Vaquerizo-Villar et al. (2018c) also obtained a higher Acc (84.0%) in
the UofC database, whereas the accuracies reported by our feature-engineering
models in Vaquerizo-Villar et al. (2018b) and Vaquerizo-Villar et al. (2018c) were
within this range (81.3% and 81.9%, respectively).

Finally, in the case of an AHI threshold of 10 e/h, Hornero et al. (2017) and
Xu et al. (2019) reported 90.2% and 88.2% Acc, respectively. Vaquerizo-Villar
et al. (2018b) achieved a lower accuracy for this cutoff (85.3%). However, our
CNN-approach in Vaquerizo-Villar et al. (2021) reported higher accuracies in the
UofC (92.3%), CHAT (97.8%), and BUH (91.3%) datasets, whereas our feature-
engineering proposal in Vaquerizo-Villar et al. (2018a) obtained 91.1% Acc in the
UofC database.

Importantly, our feature-engineering and deep-learning approaches showed
a high overall diagnostic ability in comparison with state-of-the-art studies, spe-
cially for the AHI cutoffs of 5 e/h and 10 e/h. The high diagnostic perfor-
mance obtained with the proposed novel feature-engineering methodologies is
consistent with the additional OSA-related information that these methods allow
to quantify. Furthermore, the overall superior performance of our CNN-based
methodology reinforces the ability of deep-learning approaches to learn complex
features from oximetry dynamics related to apneic episodes in childhood OSA.

6.4 Limitations of the study

The present Doctoral Thesis has shown the utility of novel feature-engineering
and deep-learning approaches applied to the oximetry signal for diagnosing pe-
diatric OSA and its severity. However, several limitations need to be considered.

One of the main limitations is that our proposals have not been assessed
by population subgroups (i.e., age ranges, sex, and/or BMI groups among oth-
ers), which hinders to discover in which OSA subgroups our oximetry-based ap-
proaches could be more appropriate, as well as to discern new phenotypes within
pediatric OSA able to explain differences in the pathophysiology and severity of
the disease.

Despite using three datasets involving a large number of pediatric patients,
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the sample size is not big enough to optimize and validate each methodology
with subgroups of patients according to their clinical and physiological variables,
which has resulted in a varying performance obtained with the CHAT, UofC,
and BUH databases. Despite this sample size limitation, we used appropriate
validation methodologies, so that optimization and validation groups from each
database have similar clinical and sociodemographic characteristics.

Likewise, different recording devices and specific protocols were used for
oximetry data collection in the three databases, which may influence the per-
formance of the proposed methodologies. This is also a common problem in
real-life clinical settings, as there exist multiple and pulse oximetry devices and
polysomnography systems, event in the same sleep center. Notwithstanding, our
proposals included a pre-processing stage to standardize the oximetry signals
obtained from the different acquisition devices.

Another limitation relates to the use of the SpO2 signal alone to automatically
detect pediatric OSA. This limits the diagnostic ability of our proposed method-
ologies, since some apneic events are not linked to changes in oximetry dynamics
(Berry et al., 2012; Marcus et al., 2012). In addition, the total recording time was
employed as a substitute for the total sleep time to estimate the AHI, as it is not
possible to determine sleep stages from the oximetry signal alone. Nevertheless,
our investigation has shown that a thorough analysis of the oximetry signal can
reach a remarkable diagnostic performance.

Regarding the deep-learning methodology, we only used CNNs, which were
originally designed for image analysis. Nonetheless, Ismail Fawaz et al. (2019)
reported that deep-learning architectures based on CNN are the most suitable for
time series classification. Additionally, the CNN-based architecture was trained
using only the CHAT dataset, as the UofC and BUH datasets do not contain an-
notations of the time location of apneic events, which may have contributed to
a reduced performance in these datasets. However, our results showed that this
methodology outperformed conventional methods in the three datasets. In spite
of outperforming feature-engineering approaches, our CNN-based model also
suffered from a lack of interpretation, which hinders to discover new knowledge
regarding childhood OSA. Nonetheless, this ’black box’ perception also exists in
conventional pattern recognition algorithms.

Another limitation concerns to the use of the AHI as the reference measure for
predicting the adverse outcomes of pediatric OSA. In this regard, recent investi-
gations reported that novel measures of hypoxia obtained from the SpO2 signal
are better correlated with mortality, cardiovascular diseases, or cancer incidence
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than conventional respiratory indices (i.e., AHI or ODI) in adult OSA patients.
Particularly, the nocturnal hypoxemia (Oldenburg et al., 2016), the hypoxic load
(Linz et al., 2018), the desaturation severity parameter (Kainulainen et al., 2020,
2019), and the hypoxic burden (Azarbarzin et al., 2019) have been proposed. As
these measures have been found to further explain OSA consequences in adults,
they could be also useful in the context of pediatric OSA.

The last limitation refers to the place where oximetry signals of the pediatric
databases were obtained: supervised hospital facilities. In this respect, it would
be interesting to further validate the methodologies proposed during the present
Doctoral Thesis in a database of SpO2 recordings acquired at children’s home.





Chapter 7

Conclusions

All the scientific articles included in the compendium of publications share a com-
mon thread: the application of novel signal processing algorithms to improve the
diagnostic capability of the oximetry signal in the simplification of pediatric OSA
diagnosis. Feature-engineering and deep-learning methodologies were devel-
oped for this purpose. Among the feature-engineering approaches, it has been
proposed three novel feature extraction algorithms (bispectrum, wavelet, and
DFA) to provide additional OSA-related features from the SpO2 signal in both the
time and frequency domains. Additionally, a CNN-based deep-learning model
was used to automatically extract all the relevant information from raw SpO2

data linked to apneic events. Our results showed that the developed method-
ologies contribute to increase the diagnostic ability of overnight oximetry in the
screening of childhood OSA.

In this chapter, the original contributions of this Doctoral Thesis are stated in
section 7.1. Then, the conclusions drawn from this Doctoral Thesis are indicated
in section 7.2. Finally, future research lines are listed in section 7.3.

7.1 Contributions

The major contributions provided by the compendium of publications of this
Thesis are listed below:

1) Novel automated feature-enginering and deep-learning models for the
analysis of the SpO2 signal, which have outperformed conventional ap-
proaches, thus enhancing the diagnostic capability of nocturnal oximetry
in the framework of pediatric OSA (Vaquerizo-Villar et al., 2018a,b,c, 2021).

87
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2) New oximetric indices through the application of bispectral, wavelet, and
DFA, which have provided relevant and complimentary information on the
changes in the oximetry dynamics associated to pediatric OSA and its sever-
ity. Although these methods had shown its usefulness to analyze physio-
logical signals in adult OSA patients, to the extent of our knowledge, this is
the first time that these techniques are been applied in the context of child-
hood OSA (Vaquerizo-Villar et al., 2018a,b,c).

3) Optimum subsets obtained with the FCBF method, composed of conven-
tional oximetry variables, as well as the new oximetric features derived
from bispectral, wavelet, and DFA (Vaquerizo-Villar et al., 2018a,b,c). This
highlights the relevancy and non-redundancy of the novel feature extrac-
tion methods (bispectral, wavelet, and DFA).

4) High performance pattern recognition models focused on binary classifi-
cation (Vaquerizo-Villar et al., 2018c), multiclass classification (Vaquerizo-
Villar et al., 2018b), and regression (Vaquerizo-Villar et al., 2018a). These
models were fed with the optimum subsets of OSA-related features and
outperformed conventional approaches, as well as state-of-the-art ap-
proaches (Vaquerizo-Villar et al., 2018a,b,c).

5) Novel deep-learning model based on CNNs to automatically extract all the
relevant information from the SpO2 signal related to apneic events. This
model was validated in a large sample of 3196 SpO2 recordings from three
independent datasets, showing a high diagnostic ability comparing with
conventional feature-engineering methodologies and state-of-the-art stud-
ies. We believe that this is the first time that deep-learning algorithms are
applied in the context of pediatric OSA diagnosis (Vaquerizo-Villar et al.,
2021).

6) Efficient screening protocols combining abbreviated test (oximetry) and ar-
tificial intelligence (pattern recognition and deep learning) able to minimize
the number of PSGs. It was shown that these protocols would contribute
to reduce the medical costs and waiting lists associated with the diagno-
sis of childhood OSA, as well as to reduce the children’s discomfort during
overnight PSG (Vaquerizo-Villar et al., 2018c, 2021).
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7.2 Main conclusions

The analysis and discussion of the results obtained in the publications compos-
ing the compendium (see chapter 5 and chapter 6) lead to draw the principal
conclusions of the present Doctoral Thesis, which are listed next:

1) The proposed feature-engineering and deep-learning models outperform
conventional features from the oximetry signal, as well as state-of-the-art
approaches. Thus, the application of novel signal processing techniques
allows to increase the diagnostic ability of the SpO2 signal from nocturnal
oximetry in the context of childhood OSA.

2) Bispectrum can be used as a complementary tool to classical approaches in
the characterization of OSA-related changes in children using SpO2 record-
ings. Particularly, the changes in the bispectral amplitude associated to de-
viations of gaussianity in the oximetry signal (M1BISP) and the changes in
the bispectral phase associated to a phase coupling between spectral com-
ponents of the oximetry (meanPaBISP) provide additional information to
anthropometric parameters, ODI3, and PSD variables in the framework of
childhood OSA.

3) The DWT is a suitable tool to analyze the non-stationary properties, as well
as the low frequency components occurring in the SpO2 signal owing to
pediatric OSA. Specifically, it was found that the concentration of the D9

coefficients (0.0244-0.0488 Hz) near zero (M3D9 ), the energy of the D9 co-
efficients (EnD9 ), and the changes of the energy distribution (WE) in the
DWT profile of the oximetry signal provide complimentary information to
conventional approaches.

4) DFA is an appropriate tool to identify changes in the scaling behavior of
the oximetry recordings related to pediatric OSA severity. Our findings
suggest that the slope of the short-time scales of the DFA profile (slope1)
contains further information that contributes to further characterize OSA-
related changes of the oximetry signal in children.

5) From all the pattern recognition models, the SVM model fed with ODI3,
statistical moments in the time domain, PSD and DWT-derived features has
provided solid evidence to detect moderate-to-severe pediatric OSA (AHI
≥ 5 e/h), with an Acc of 84.0% and a LR+ of 14.6. This model can be used
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as a clinically valuable screening method for moderate-to-severe pediatric
OSA patients.

6) The CNN-based deep-learning model achieves a higher overall diagnos-
tic performance than feature-engineering approaches in the framework
of childhood OSA. Particularly, this model reached accuracies above 80%
(97.4%, 83.9%, and 83.5%) for diagnosing moderate-to-severe-OSA and
greater than 90% (97.8%, 92.3%, and 91.3%) for the detection of severe pa-
tients in the CHAT, UofC and BUH test sets, which also outperformed state-
of-the-art studies. This is consistent with the improved predictive perfor-
mance shown in recent years by deep-learning algorithms in a wide range
of domains. Our findings suggest that deep learning could change the
paradigm of biomedical data processing in the context of pediatric OSA.

7) Deep-learning techniques show a high generalization ability, with a vary-
ing diagnostic performance that can be explained by differences in sam-
pling rate, AHI distribution, age range, and patient characteristics among
sleep datasets. Hence, clinical and sociodemographic parameters should be
considered when validating our proposal in the clinical practice.

8) The diagnostic protocol derived from our deep-learning model highlights
the clinical applicability of overnight oximetry for the screening of child-
hood OSA. Particularly, the proposed screening tool would avoid the need
for 45%-70% (73.7%, 50.0%, and 45.9%) of complete PSGs in the CHAT,
UofC, and BUH datasets. In this way, children would benefit from a more
accessible and less intrusive diagnostic test based on the automated analy-
sis of single-channel oximetry.

7.3 Future research lines

Several questions that arise from this investigation may be addressed in future
work to complement our findings, and investigate other issues beyond the scope
of this Doctoral Thesis. Next, the most interesting future research lines are listed:

1) The evaluation of our automated signal processing methodologies in sub-
groups of children showing different clinical characteristics would help to
characterize the physiological patterns shared by the OSA pediatric popu-
lation, as well as to identify those phenotypes within pediatric OSA where
oximetry-based approaches achieve a higher performance.
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2) The field of deep learning is living breakthrough advances thanks to the
development of novel deep neural architectures, such as attention or in-
ception networks. In this respect, the application of more advanced deep-
learning architectures is another interesting future line of investigation that
may contribute to improve the diagnostic performance of oximetry-based
approaches.

3) The general performance of the oximetry signal may also be increased by
using pretrained deep-learning networks designed for time series classifi-
cation, similar to the pretrained deep-learning architectures existing in the
field of image processing.

4) Another interesting future research could be the application of eXplainable
Artificial Intelligence techniques to detect new patterns/attributes inherent
to the oximetry signal linked with the severity of pediatric OSA.

5) The evaluation of the proposed methodologies in different types of pulse
oximeters and recording systems would help to know if the diagnostic per-
formance is affected by the technical features of the recording equipment,
as well as to improve the pre-processing stage

6) The acquisition of the PPG signal with the pulse oximetry sensor would
also be interesting, since the PPG signal contains information of the changes
in the autonomic nervous system and respiratory activity related to sleep
stages and apneic events. In this way, the PPG signal may help to improve
the diagnostic ability of our proposal.

7) One natural way to continue our research would be to validate the pro-
posed methodology in oximetry recordings acquired with portable devices
at children’s home, as the final goal is to perform at-home screening tests
for pediatric OSA based on nocturnal oximetry.

8) Another future objective would be to assess the correlation of novel hypoxic
measures with cardiovascular, metabolic, behavioral, and neurocognitive
variables in pediatric OSA patients, as well as to propose new estimates of
the level of hypoxia.
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Abstract

Background and objective: The aim of this study was to assess the utility of bispectrum-based oximetry approaches as
a complementary tool to traditional techniques in the screening of pediatric sleep apnea- hypopnea syndrome (SAHS).
Methods: 298 blood oxygen saturation (SpO2) signals from children ranging 0–13 years of age were recorded during
overnight polysomnography (PSG). These recordings were divided into three severity groups according to the PSG-
derived apnea hypopnea index (AHI): AHI < 5 events per hour (e/h), 5 ≤AHI < 10 e/h, AHI ≥10 e/h. For each pediatric
subject, anthropometric variables, 3% oxygen desaturation index (ODI3) and spectral features frompower spectral den-
sity (PSD) and bispectrum were obtained. Then, the fast correlation-based filter (FCBF) was applied to select a subset
of relevant features that may be complementary, excluding those that are redundant. The selected features fed amulti-
class multi-layer perceptron (MLP) neural network to build a model to estimate the SAHS severity degrees. Results: An
optimum subset with features from all the proposed methodological approaches was obtained: variables from bispec-
trum, as well as PSD, ODI3, Age, and Sex. In the 3-class classification task, the MLP model trained with these features
achieved an accuracy of 76.0% and a Cohen’s kappa of 0.56 in an independent test set. Additionally, high accuracies
were reached using the AHI cutoffs for diagnosis of moderate (AHI = 5 e/h) and severe (AHI = 10 e/h) SAHS: 81.3%
and 85.3%, respectively. These results outperformed the diagnostic ability of a MLP model built without using bis-
pectral features. Conclusions: Our results suggest that bispectrum provides additional information to anthropometric
variables, ODI3 and PSD regarding characterization of changes in the SpO2 signal caused by respiratory events. Thus,
oximetry bispectrum can be a useful tool to provide complementary information for screening of moderate-to-severe
pediatric SAHS.

Keywords: Sleep apnea-hypopea syndrome (SAHS), children, oximetry, bispectrum, feature selection, feature
classification.

1. Introduction

Childhood sleep apnea-hypopnea syndrome (SAHS) is a
breathing disorder characterized by recurrent episodes of
complete cessation (apnea) and/or significant reduction
(hypopnea) of airflow during sleep due to the presence
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of increased upper airway collapsibility (Marcus et al.,
2012). According to the American Academy of Pediatrics
(AAP), SAHS has a prevalence in the range of 1% to 5%
and itmay imposemany adverse effects on the health and
development of infants and young children, such as neu-
rocognitive deficits, cardiometabolic dysfunction, and so-
matic growth stunting (Marcus et al., 2012).
The gold standard test for pediatric SAHS diagnosis is

overnight polysomnography (PSG). PSG requires the pa-
tient to spend the night in a specialized sleep laboratory
while recording a wide range of biomedical signals (Kadi-
tis et al., 2016; Alonso-Álvarez et al., 2011). Thus, PSG is
costly and complex due to the necessary expensive equip-
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ment and intensive labor of medical personnel. It is also
especially intrusive for children, due to the use of multi-
ple sensors, and shows limited availability in most places
around the world (Nixon et al., 2004; Katz et al., 2012).
These drawbacks, together with the relatively high

prevalence of the disease, have led the scientific com-
munity to explore the use of simplified screening tests
(Nixon et al., 2004). The guidelines of the AAP recom-
mend performing alternative tests when PSG is not avail-
able while requiring more conclusive evidences about the
efficacy of these tests (Marcus et al., 2012). Thus, a com-
monly used approach has been the assessment of a re-
duced set of cardiorespiratory recordings. Cardiorespira-
tory signals contain essential information about the al-
terations produced by apneic events in the electrocar-
diogram (ECG) (Shouldice et al., 2004), pulse rate vari-
ability (PRV) (Garde et al., 2014; Dehkordi et al., 2016),
airflow (AF) (Gutiérrez-Tobal et al., 2015), photopletys-
mography (Gil et al., 2010), oximetry (Garde et al., 2014;
Gutiérrez-Tobal et al., 2015; Kirk et al., 2003; Tsai et al.,
2013; Brouillette et al., 2000; Velasco et al., 2013; Van
Eyck et al., 2015; Chang et al., 2013; Villa et al., 2015; Co-
hen and De Chazal, 2015; Álvarez et al., 2017), and acous-
tic pulmonary sounds (Palaniappan et al., 2016, 2017).
Among these approaches, nocturnal oximetry is the al-
ternative most frequently advocated. In the nocturnal
oximetry, pulse rate and blood oxygen saturation (SpO2)
signals are recordedwith a pulse oximeter probe, typically
placed on the earlobe, finger, or toe (Netzer et al., 2001).
Moreover, SpO2 signals can be recorded in an unsuper-
visedway at the patient’s home due to the development of
commercial portable pulse oximeters (Nixon et al., 2004;
Garde et al., 2014). Previous studies have shown the util-
ity of the SpO2 signal to assist in the SAHS diagnosis in
both adults (Marcos et al., 2008; Alvarez et al., 2013) and
children (Garde et al., 2014; Gutiérrez-Tobal et al., 2015;
Kirk et al., 2003; Tsai et al., 2013; Brouillette et al., 2000;
Velasco et al., 2013; Van Eyck et al., 2015; Chang et al.,
2013; Villa et al., 2015; Cohen and De Chazal, 2015; Ál-
varez et al., 2017). In this study, we aim at gaining further
insights into the diagnostic ability of the SpO2 signal in
the screening of pediatric SAHS.
Different techniques have been reported to automati-

cally analyze biomedical signals in the context of SAHS.
Several studies have assessed the performance of fre-
quency domain features, which reflects the duration and
periodicity of respiratory events in children (Shouldice
et al., 2004; Garde et al., 2014; Dehkordi et al., 2016;
Gutiérrez-Tobal et al., 2015; Gil et al., 2010; Cohen and
De Chazal, 2015; Álvarez et al., 2017; Palaniappan et al.,
2016, 2017). Power Spectral Density (PSD) is the most
common spectral analysis technique in these studies
(Shouldice et al., 2004; Garde et al., 2014; Dehkordi et al.,
2016; Gutiérrez-Tobal et al., 2015; Cohen and De Chazal,
2015; Álvarez et al., 2017; Palaniappan et al., 2016, 2017).
However, the information present in the PSD cannot char-
acterize phase relationships and deviations from gaus-

sianity in a signal (Chua et al., 2010). By contrast,
bispectrum is a frequency domain technique defined as
the spectral representation of the third order statistic
that contains information about the phase of the Fourier
transform of a time series. It can detect deviations from
linearity, stationarity, and gaussianity in the signal, such
as those produced in physiological recordings by respira-
tory events (Chua et al., 2010).
Based on the aforementioned considerations, we hy-

pothesized that bispectrum analytic could provide addi-
tional information about respiratory events, thus being
a complementary tool to 3% oxygen desaturation index
(ODI3), anthropometric variables, and PSD parameters.
Therefore, the aim of this study was to evaluate the com-
plementarity of bispectrum to traditional approaches in
the screening of pediatric SAHS using SpO2 recordings.
We conducted our study in three phases: feature ex-

traction, feature selection, and feature classification.
First, anthropometric variables, ODI3 (Taha et al., 1997),
and spectral features from PSD and bispectrum were ob-
tained. Then, the fast correlation-based filter (FCBF)
method (Yu and Liu, 2004) was applied to select a smaller
subset of relevant and non-redundant features. Finally,
a multi-layer perceptron (MLP) neural network (Marcos
et al., 2008) was applied to this optimum subset formulti-
class (3-class) classification in order to estimate the SAHS
severity degrees according to the apnea-hypopnea index
(AHI) from standard PSG.

2. Subjects and signals under study

The dataset was composed of 298 children (166 boys
and 132 girls) ranging 0–13 years of age. All children
were consecutively and prospectively referred to the Pe-
diatric Sleep Unit at the University of Chicago Medicine
Comer Children’s Hospital (Chicago, IL, USA) due to clin-
ical symptoms and physical examination findings leading
to the clinical suspicion of SAHS. In all participants, an
informed consent was obtained as a prerequisite to be in-
cluded in the study. The Ethical Committee of the Univer-
sity of Chicago Medicine Comer Children’s Hospital ap-
proved the protocol.
Sleep was monitored using a digital polysomnogra-

phy system (Polysmith’ Nihon Kohden America Inc., CA,
USA). SpO2 recordings were acquired during overnight
PSG at a sampling rate of 25 Hz. They were exported
and processed offline. Artifacts were discarded from oxi-
metric recordings by removing SpO2 values below 50%
and sudden changes between consecutive SpO2 sampling
intervals≥4%/s (Magalang et al., 2003).
Sleep and cardiorespiratory events were scored and

quantified by specialized technologists who were un-
aware of the study purpose, and AHI was estimated ac-
cording to the American Academy of Sleep Medicine
guidelines. In this regard, there is no consensus about
the AHI cutoff used to determine SAHS in infants (Mar-
cus et al., 2012; Kaditis et al., 2016; Alonso-Álvarez
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et al., 2011; Church, 2012; Tan et al., 2014). However,
a wide range of studies typically classify children show-
ing 5≤AHI<10 e/h as moderate SAHS and children with
AHI≥10 e/h as severe SAHS (Kaditis et al., 2016; Alonso-
Álvarez et al., 2011; Church, 2012; Tan et al., 2014).
Hence, we have classified the subjects under study into
the three groups defined by these commonly used thresh-
olds (AHI<5 e/h, 5≤AHI<10 e/h, and AHI≥10 e/h).
The dataset was randomly divided into three sets: fea-

ture optimization set (25%), training set (50%), and test
set (25%). The first set (feature optimization set) was em-
ployed to optimize the feature extraction stage and ob-
tain an optimum subset of features with FCBF. A boot-
strap procedure was applied to select the optimum fea-
tures in order to select a generalizer optimum subset
of features (Guyon and Elisseeff, 2003). The second set
(training set) was used to select the optimal design pa-
rameters of the MLP classifier as well as train the MLP
model. Ten-fold cross validation was used to emulate a
different datasetwhen optimizing theMLPdesign param-
eters (Witten et al., 2011) . Finally, the third set (test set)
was employed to assess the diagnostic performance of our
proposal in an independent dataset (unknown data). Ta-
ble 1 shows clinical and demographic data of the popula-
tion under study. No statistically significant differences
(p-value<.05) were found in the Age and Body Mass In-
dex (BMI) between the three groups.

3. Methodology

3.1. Feature extraction

Four clinical and signal processing approacheswere ap-
plied to each subject: anthropometric, ODI3, and PSD
and bispectrum, which lead to an initial feature set com-
posed of 22 features.

3.1.1. Anthropometric variables
Age, sex and BMI were acquired for each child since the

prevalence of childhood SAHS has been associated with
these factors in previous studies (Marcus et al., 2012).

3.1.2. Oxygen desaturation index
In order to obtain information about the number of

desaturations produced by respiratory events, ODI3 was
computed for each SpO2 recording (Kaditis et al., 2016).
The definition of a desaturation event employed for com-
putingODI3is based in the study developed by Taha et al.
(1997). In this study, a desaturation event occurs when
SpO2 value decreases at least by 3% with respect to the
preceding baseline levels, at a rate between 0.1% and
4%/second, and the SpO2 value subsequently returns to
the baseline level or increases by at least 3% with respect
to the preceding minimum value. The total duration of
the event must be between 10 and 60 s.

3.1.3. Power spectral density (PSD)
PSD was estimated for each SpO2 recording to explore

differences in the spectral information of SpO2 signals as-
sociated to the duration and recurrence of apneic events.
Welch’smethodwas used to estimate PSDs (Welch, 1967),
using a Hamming window of 5 min (7500 samples) with
50% overlap and a discrete Fourier transform (DFT) of 214
points.
According to previous research in the context of child-

hood SAHS diagnosis (Gutiérrez-Tobal et al., 2015), a
frequency band of interest was determined as the fre-
quency region of the PSD where there were statisti-
cally significant differences (p-value under .05) between
severity groups (AHI<5 e/h, 5≤AHI<10 e/h, and AHI≥10
e/h) in the feature optimization set. p-value was com-
puted between the PSD amplitudes for each pair of sever-
ity groups at each frequency using the non-parametric
Mann-Whitney U test. Accordingly, our band of interest
was 0.018–0.050 Hz. In this band, higher PSD amplitude
is obtained as the severity of SAHS increases.
The following parameters of the PSD were computed in

the band of interest:

• First-to-fourth order statistical moments (M1f −
M4f ) of the PSD amplitudes. The mean (M1f ), vari-
ance (M2f ), skewness (M3f ) and kurtosis (M4f )
quantify the central tendency, dispersion, asymme-
try and peakedness of the power spectrum, respec-
tively.

• Relative power (PR). PR is defined as the ratio be-
tween the power (area enclosed under the PSD) in the
band of interest and the total signal power.

• Maximum amplitude (MA) and minimum amplitude
(mA) of the PSD.

• Spectral entropy (SE). SE is a irregularity measure
which quantifies the flatness of the PSD (Poza et al.,
2007).

• Mobility of the PSD (Mb). It is a Hjorth descrip-
tor, which measures the concentration of the signal
power. It is defined as the squared root of the ra-
tio between the variance (M2f ) and the signal power
(Blanco-Velasco et al., 2010).

3.2. Bispectrum

High order spectra (HOS) are representations in the
frequency domain of high order cumulants of a random
process (Chua et al., 2010). PSD is the Fourier trans-
formof the second-order cumulant, while bispectrumand
trispectrum are the spectral representations of the third-
and fourth-order cumulant, respectively (Chua et al.,
2010). Bispectrum can be described as a spectral decom-
position of the skewness of a signal over frequency. In
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Table 1: Clinical and demographic data of the population under study.

Characteristics All AHI < 5 5 ≤ AHI < 10 AHI ≥ 10

All subjects
Subjects(n) 298 164 56 78
Age(years) 6.0 [4.0, 9.0] 7.0 [5.0, 10.0] 5.0 [3.0, 8.0] 5.5 [3.0, 9.0]
Males (%) 55.7% 55.5% 57.1% 55.1%
BMI(Kg/m2) 18.4 [16.3, 23.0] 18.2 [16.2, 22.3] 18.1 [16.3, 22.6] 19.1 [16.5, 25.7]
Time (h) 7.8 [7.3, 8.4] 7.9 [7.3, 8.4] 7.9 [7.3, 8.4] 7.7 [7.3, 8.3]
AHI (e/h) - 1.9 [1.0, 3.5] 7.0 [5.9, 8.5] 17.7 [11.7, 27.3]

Feature optimization set (25%)
Subjects(n) 74 41 14 19
Age(years) 6.0 [3.0, 10.0] 7.0 [4.8, 11.0] 4.0 [2.0, 8.0] 6.0 [3.0, 9.0]
Males (%) 58.1% 52.6% 71.4% 56.1%
BMI(Kg/m2) 18.2 [16.3, 22.5] 18.2 [16.8, 22.6] 19.0 [16.2, 23.0] 17.7 [15.4, 22.3]
Time (h) 8.0 [7.5, 8.3] 8.0 [7.5, 8.3] 7.9 [7.6, 8.7] 7.7 [7.2, 8.2]
AHI (e/h) - 1.7 [1.0, 3.4] 6.9 [5.9, 8.1] 17.9 [11.5, 26.4]

Training set (50%)
Subjects(n) 149 82 28 39
Age(years) 7.0 [4.0, 9.3] 7.0 [5.0, 10.0] 6.0 [3.0, 8.0] 5.0 [3.0, 9.8]
Males (%) 51.7% 46.2% 46.4% 56.1%
BMI(Kg/m2) 18.5 [16.4, 23.2] 18.5 [16.3, 21.7] 17.5 [16.1, 21.1] 20.1 [17.2, 27.8]
Time (h) 7.7 [7.2, 8.4] 7.8 [7.2, 8.4] 7.9 [7.3, 8.4] 7.7 [7.3, 8.4]
AHI (e/h) - 2.0 [1.0, 3.6] 7.0 [5.9, 8.5] 18.2 [12.0, 27.3]

Test set (25%)
Subjects(n) 75 41 14 20
Age(years) 6.0 [4.0, 8.0] 7.0 [5.0, 8.5] 5.0 [4.0, 6.0] 5.5 [3.0, 8.5]
Males (%) 61.3% 75.0% 64.3% 53.7%
BMI(Kg/m2) 18.1 [16.0, 23.6] 18.0 [15.6, 23.7] 18.5 [16.7, 23.6] 18.5 [16.2, 24.4]
Time (h) 7.8 [7.3, 8.4] 7.8 [7.2, 8.3] 7.9 [7.3, 8.4] 7.9 [7.3, 8.4]
AHI (e/h) - 1.8 [0.9, 3.2] 7.0 [5.9, 8.7] 17.0 [11.8, 30.2]

Data are presented as median [interquartile range], n or n(%), BMI= Body Mass Index, AHI= Apnea Hypopnea Index.

contrast to conventional PSD, bispectrum contains addi-
tional information about the phase relationships and de-
viations from gaussianity, linearity, and stationarity of a
signal (Chua et al., 2010).
Let be x(n) a deterministic and zero-mean signal, the

bispectrum is expressed in terms of the Fourier transform
of the signalX(f) (Chua et al., 2010):

B(f1, f2) = {
∞∑

m=−∞
x(m) · e−j(f1m)}·

{
∞∑

k=−∞
x(k) · e−j(f2k)}·

{
∞∑

n=−∞
x(n) · e+j(f1+f2)n}

= X(f1) ·X(f2) ·X(f1 + f2),

(1)

where f1 and f2 are the frequency indices. Due to the
symmetry conditions of the bispectrum, it is sufficient
to evaluate the bispectrum in the triangular region Ω)
that satisfies f2 ≥ 0, f2 ≥ f1 , f1 + f2 < fs/2 where
fs is the sampling frequency of the signal (Chua et al.,
2010). In this study, bispectrum was estimated with a
non-parametric approach using a Hamming window of 5
min with 50% overlap and a DFT of 214 points. Figure 1
shows the averaged magnitude of the bispectrum for the

three severity groups. Notice that higher amplitude in the
bispectrum is observed at frequencies below 0.03 Hz, as
the SAHS severity increases.
The following bispectral features were extracted in the

regionΩ to quantify the differences in the bispectrum be-
tween groups (Zhou et al., 2008; Chua et al., 2008):

• Mean amplitude of the bispectrum (MB1). This
parameter is intended to differentiate between sig-
nals with similar PSD but different bispectrum (Chua
et al., 2008):

MB1 =
1

L

∑

f1,f2∈Ω

|B(f1, f2)| (2)

where L is the number of points in the region Ω.

• Sum of logarithmic amplitudes of the bispectrum
(H1), sum of logarithmic amplitudes of elements in
the diagonal of the bispectrum (H2), and first-order
spectralmoment of amplitudes of elements in the di-
agonal of the bispectrum (H3) (Zhou et al., 2008).
These parameters are related to the moments of the
bispectrum (Zhou et al., 2008):

H1 =
∑

f1,f2∈Ω

log(|B(f1, f2)|), (3)

A.1. Vaquerizo-Villar et al. (2018a) 97



Figure 1: Averaged magnitude of the bispectrum for the three SAHS severity groups: (a) AHI<5 e/h, (b) 5 ≤ AHI < 10 e/h, and (c)
AHI≥10 e/h in the feature optimization set.

H2 =
∑

fk∈Ωdiagonal

log(|B(fk, fk)|), (4)

H3 =
∑

fk∈Ωdiagonal

k · log(|B(fk, fk)|), (5)

where Ωdiagonal is the diagonal of the bispectrum.

• Normalized bispectral entropy (BE1) and and nor-
malized bispectral squared entropy (BE2), which
quantify regularity in the amplitude of the bispec-
trum (Chua et al., 2008):

BE1 = −
∑

j∈Ω

pj · log(pj) (6)

where
pj =

|B(f1, f2)|∑
f1,f2∈Ω

|B(f1, f2)| (7)

BE2 = −
∑

j∈Ω

qj · log(qj) (8)

where

qj =
|B(f1, f2)|2∑

f1,f2∈Ω

|B(f1, f2)|2 (9)

• Phase entropy (PE), which measures irregularity in
the phase of the bispectrum (Chua et al., 2008):

PE = −
∑

n

p(Ψn) · log(p(Ψn)), (10)

where N is the number of bins of the histogram and
p(Ψn) is the distribution of the phase angles (Chua
et al., 2010; Doane, 1976):

p(Ψn) =
1

L

∑

f1,f2∈Ω

Ind(φ(B(f1, f2)) ∈ Ψn)|2 (11)

Ψn = {φ| − π +
2π

n
≤ φ < −π +

2π(n+ 1)

N
},

n = 0, 1, ..., N − 1
(12)

where φ is the phase angle of the bispectrum, Ind(·)
is the indicator function, whose value is 1 if φ is
within the range of histogram bins Ψn, and N is the
number of bins of the histogram, being calculated ac-
cording to Doane’s rule (Doane, 1976):

• Mean (meanPa) and variance (varPa) of the bis-
pectral invariant (P (a)). These features identify a
chaotic process with third-order time correlations or
phase coupling between spectral components (Chua
et al., 2008). P (a) is the phase of the integrated
bispectrum along a radial with slope a (Chua et al.,
2008):

P (a) = arctan(
Ii(a)

Ir(a)
) (13)

where Ir(a) and Ii(a) are the real and imaginary part
of I(a):

I(a) =

∫ 1/1+a

f1=0+

B(f1, af1)df1 = Ir(a) + j · Ii(a), (14)

for 0 ≤ a ≤ 1.

3.3. Feature selection: fast correlation-based filter (FCBF)

After the feature extraction stage, FCBF is applied to
select a subset of relevant and non-redundant features
(Yu and Liu, 2004) . FCBF has previously shown its utility
in the context of adult SAHS diagnosis (Gutiérrez-Tobal
et al., 2013). It is based on symmetrical uncertainty (SU),
which is a normalization of the information gain (IG) be-
tween two variables (Yu and Liu, 2004). First, features are
ranked from the most relevant ones (highest SU with the
AHI). Then, the features considered redundant with re-
spect to features that are more relevant were discarded.
Thus, an optimumsubsetwith themost relevant andnon-
redundant features is obtained (Yu and Liu, 2004).
In order to compose an optimum feature subset inde-

pendent of a particular dataset, 1000 bootstrap replicates
were built from our feature optimization set so that the
FCBF method was applied to each bootstrapping subset
(Guyon and Elisseeff, 2003; Efron and Tibshirani, 1994).
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Anoptimumsubset composed of the variables that appear
at least in 500 runs was selected.

3.4. Feature classification: multi-layer perceptron (MLP)
neural network

Artificial neural network are mathematical models in-
spired in the human brain (Bishop et al., 1995). MLP is
probably the most widely used neural network and it has
already proven its usefulness in the context of adult SAHS
diagnosis with SpO2 recordings (Marcos et al., 2008).
Its architecture consists on several interconnected lay-
ers (input, hidden, and output layers) composed of sim-
ple units called perceptrons. Each unit is characterized by
an activation function and adaptive weights representing
connections with units from the subsequent layer.
Since our problem is a 3-class classification task, the

output layer has three output neurons, each one rep-
resenting the posterior probability of belonging to each
group. In addition, a configuration with a single hidden
layer has been implemented, which may provide univer-
sal approximation to any function (Bishop et al., 1995).
Weights of the network are randomly initialized. Then,
they are optimized using the scaled conjugate gradient
with weight decay regularization. It is used to minimize
the cross-entropy error function and achieve good gener-
alization, as recommended for classification tasks (Bishop
et al., 1995).
The Netlab toolbox was used to implement our MLP

classifier (Nabney, 2002). A very complex MLP model
leads to overfitting, whereas a very simple model leads
to underfitting. Thus, the design parameters of the MLP
(the number of units in the hidden layer (NH ) and the
regularization parameter (α) were optimized by means of
10-fold cross-validation using the training set. Then, the
MLPmodel was built using thewhole training set with the
optimum design parameters.

3.5. Statistical Analysis

The Mann Whitney U test and the Kruskal Wallis test
were used to assess statistical differences (p-value<.05)
between groups. The Bonferroni correction was applied
to deal with multiple comparisons. Diagnostic ability of
theMLPnetworkwas assessed bymeans of sensitivity (Se,
percentage of SAHS positive patients correctly classified),
specificity (Sp, percentage of SAHS negative children cor-
rectly classified), positive predictive value (PPV, propor-
tion of subjects classified as positive that are true posi-
tives), negative predictive value (NPV, proportion of sub-
jects classified as negative that are true negatives), pos-
itive likelihood ratio (LR + , likelihood ratio for subjects
classified as positive), negative likelihood ratio (LR-, like-
lihood ratio for subjects classified as negative), accuracy
(Acc, percentage of subjects correctly classified), and Co-
hen’s kappa index (kappa) (Cohen, 1960).

4. Results

4.1. Feature optimization and selection
A total of 22 features were obtained for each subject:

3 anthropometric variables, ODI3 , 9 parameters from
PSD, and 9 bispectral features. Table 2 displays the val-
ues of these features for each SAHS severity group in the
feature optimization set (median [interquartile range]),
along with their corresponding p-values. ODI3 , 6 out
of 9 features from PSD (M1f , M2f , MA, mA, SE, and
Mb) and 4 out of 9 features from bispectrum (MB1, H1,
H2, andH3) showed statistical significant differences (p-
value< .05). These features showed higher values as the
severity of SAHS increased.
In order to assess the complementarity of bispectrum

with respect to the other methodological approaches,
two different feature sets were composed. The first one
(setnobis) consisting of all but bispectrum features and the
second one (setbis) consisting of all extracted features.
FCBFwas applied to each bootstrap replication generated
with these feature sets (setnobis and setbis) using only the
feature optimization group. In both cases, an optimum
subset composed of the features selected at least 500
times was obtained. The optimum subset derived when
applying FCBF to setnobis (subsetnobis) was composed of 3
anthropometric features (Age, Sex, and BMI), ODI3, and
5 features from the PSD (M1f ,M2f ,MA, PRf , andMb).
Regarding the optimum subset obtained when applying
FCBF to setbis (subsetbis), it was composed of 2 anthro-
pometric features (Age and Sex), ODI3, 5 features from
the PSD (M1f ,M2f ,MA, PRf , andMb), and 2 bispectral
features (MB1 and meanPa). Notice that two bispectral
features were selected: one amplitude bispectral feature
(MB1) and one phase bispectral feature (meanPa).

4.2. Model optimization and training
Two MLP networks fed with these optimum subsets

of features obtained with FCBF (MLPnobis: subsetnobis;
MLPbis: subsetbis) were designed and trained using the
training set. NH was varied from 2 up to 50, while α
was varied from 0 up to 5. Kappa was obtained through
ten-fold cross validation for each NH-α pair, and the op-
timum values for NH and α were obtained as those for
which kappa was higher. Due to the dependence of the
network to the initial randomvalues of theweights, kappa
was computed and averaged for a total of 10 runs for each
NH-α pair. Finally, user-dependent network parameters
NH = 3 and α = 1 were chosen using subsetnobis and
NH = 4 and α = 2 were chosen using subsetbis, since
those pairs reached the highest kappa. The entire train-
ing set was used to train the corresponding MLP models
in both cases (MLPnobis and MLPbis ).

4.3. Diagnostic performance assessment
Table 3 shows the confusion matrices of the MLP mod-

els (MLPnobis and MLPbis) in the test group. These ma-
trices show the class estimated by our MLP classifiers for
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Table 2: Feature values for the SAHS severity groups (median [interquartile range]) in the feature optimization set.

Features AHI < 5 5 ≤ AHI < 10 AHI ≥ 10 p-value*

Age 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] .24
Sex - - - .52
BMI(101) 1.82 [1.68,2.26] 1.90 [1.62,2.30] 1.77 [1.54,2.23] .76
ODI3 2.08 [0.77,3.93] 5.82 [3.79,9.28] 8.72 [7.23,19.65] < .05
M1f 2.95 [1.93,4.23] 5.67 [5.10,8.58] 14.73 [7.51,28.45] < .05
M2f (101) 0.18 [0.05,0.32] 1.11 [0.56,1.54] 4.07 [1.34,14.39] < .05
M3f 0.48 [0.29,0.75] 0.68 [0.33,1.04] 0.54 [0.32,0.83] .54
M4f 2.10 [1.79,2.73] 2.33 [1.87,3.06] 2.20 [1.60,2.70] .65
PR 0.31 [0.25,0.35] 0.24 [0.21,0.34] 0.34 [0.30,0.39] .05
MA 0.60 [0.33,0.87] 1.27 [1.00,1.54] 2.92 [1.68,4.59] < .05
mA 1.21 [0.84,2.12] 2.30 [1.91,2.88] 3.46 [2.56,8.59] < .05
SE 4.33 [4.26,4.37] 4.30 [4.24,4.32] 4.20 [4.12,4.30] < .05
Mb 0.17 [0.11,0.20] 0.28 [0.23,0.32] 0.42 [0.25,0.56] < .05
MB1 (10-1) 0.05 [0.02,0.21] 0.23 [0.09,0.63] 0.49 [0.17,1.22] < .05
H1 (108) -5.78 [-5.90,-5.57] -5.59 [-5.73,-5.45] -5.40 [-5.58,-5.28] < .05

H2 (105) -1.38 [-1.41,-1.33] -1.32 [-1.36,-1.29] -1.28 [-1.32, -1.25] < .05
H3 (108) -2.96 [-3.02,-2.86] -2.87 [-2.93,-2.79] -2.77 [-2.86,-2.71] < .05
BE1 8.51 [7.88,9.43] 8.17 [7.71,8.71] 8.60 [8.11,8.79] .34
BE2 6.08 [4.88,6.62] 5.26 [4.43,5.58] 6.70 [5.68,7.07] .13
PE 2.14 [2.08,2.15] 2.12 [2.05,2.14] 2.11 [2.08,2.13] .64
meanPa (10-2) -1.60 [-3.19,0.81] 0.89 [-0.47,2.21] 0.92 [-1.96,3.20] .29
varPa 0.38 [0.26,0.43] 0.34 [0.22,0.37] 0.33 [0.22,0.44] .87

*p-values obtained after Bonferroni correction.

each subject versus the actual SAHS severity group of the
subjects in the test set. The overall accuracies (sum of the
main diagonal elements) of these models in the test set
were 69.3% (MLPnobis) and 76.0% (MLPbis), whereas the 3-
class kappa values were 0.45 (MLPnobis) and 0.56 (MLPbis).
Table 4 shows the diagnostic ability of these models for
AHI cutoffs = 5 and 10 e/h.
Notice that the results obtained with the model MLPbis

outperformed MLPnobis in terms of Se, Sp, PPV, NPV, LR+,
LR-, Acc, and kappa for both cutoffs.

5. Discussion

This study assessed the usefulness of bispectrum to
provide additional information from SpO2 recordings in
the screening of pediatric SAHS. The results obtained
with our proposed approach suggest that the information
provided by bispectrum is relevant and complementary.
Our findings showed that significantly higher values

in 4 out of 9 features from bispectrum (MB1, H1, H2,
and H3) are present in the subjects with the most se-
vere degrees of SAHS. The statistical differences between
groups of these bispectral features are consistent with
the higher values of the bispectrum observed in Figure 1.
MLPbis, which was fed with optimum features from all
signal processing approaches, outperformed the neural
networkwithout information frombispectrum (MLPnobis).
Regarding the optimum feature subset, FCBF automati-
cally selected Age, Sex (anthropometric); ODI3 (oximet-
ric index); M1f , M2f , MA, PR , Mb (PSD); MB1 and
meanPa (bispectrum). Moreover, the results obtained
in this stage suggest that information from bispectrum-
based variables is complementary to that obtained from

conventional approaches.
In the test set, the proposed 3-class neural network

(MLPbis) achieved an overall Acc of 76%, as well as kappa
= 0.56, with 81.3% Acc and 85.3% Acc for the common
cutoffs AHI = 5 e/h and AHI = 10 e/h, respectively. It
is remarkable to say that, with our MLP model (MLPbis),
a high positive predictive value (95.5%) is obtained for
an AHI cutoff of 5 e/h, whereas a high negative predic-
tive value (86.7%) is obtained for an AHI cutoff of 10 e/h.
These cutoffs (5 and 10 e/h) were not arbitrary selected.
They are commonly employed in clinical settings to de-
fine the boundary for moderate (5≤AHI<10 e/h) and se-
vere (AHI≥10 e/h) SAHS (Kaditis et al., 2016; Alonso-
Álvarez et al., 2011; Church, 2012; Tan et al., 2014). For
patients with an AHI≥5 e/h, treatment with adenotonsil-
lectomy is recommended (Kaditis et al., 2016). Further-
more, children with an AHI≥10 e/h have an increased
risk for cardiac strain and overnight observation is rec-
ommended after treatment. In this sense, continuous
positive airway pressure (CPAP) is recommended in these
cases when other treatment strategies such as surgery
have failed (Kaditis et al., 2016).
To the best of our knowledge, this is the first study

in the context of pediatric SAHS using bispectrum. Two
parameters from bispectrum, MB1 and meanPa, were
involved in the optimum feature subset obtained with
FCBF. These features contain information about the am-
plitude (MB1) and the phase (meanPa) of the bispec-
trum. Thus, the changes in the amplitude and phase of
the bispectrum of oximetric recordings detected byMB1
and meanPa can provide additional information about
oximetry recordings to assist in pediatric SAHS screen-
ing.
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Table 3: Confusion matrices of the MLP models in the test set. Regarding the model MLPnobis average Acc = 69.3% and kappa = 0.45,
whereas for model MLPbis average Acc = 76.0% and kappa = 0.56.

Estimated

MLPnobis MLPbis
AHI < 5 5 ≤ AHI < 10 AHI ≥ 10 AHI < 5 5 ≤ AHI < 10 AHI ≥ 10

AHI < 5 37 3 1 40 0 1
Actual 5 ≤ AHI < 10 6 6 2 7 5 2

AHI ≥ 10 7 4 9 6 2 12

Table 4: Diagnostic ability of the MLPmodels in the test set for
AHI cutoffs = 5 e/h and 10 e/h.

AHI cutoff = 5 e/h

Features Se Sp PPV NPV LR+ LR- Acc

MLPnobis 61.8 90.2 84.0 74.0 6.33 0.42 77.3
MLPbis 61.8 97.6 95.5 75.5 25.32 0.39 81.3

AHI cutoff = 10 e/h

Features Se Sp PPV NPV LR+ LR- Acc

MLPnobis 45.0 94.5 75.0 82.5 8.25 0.58 81.3
MLPbis 60.0 94.5 80.0 86.7 11.00 0.42 85.3

Table 5 shows the performance of previous research fo-
cused on the use of SpO2 recordings in the screening of
pediatric SAHS (Garde et al., 2014; Gutiérrez-Tobal et al.,
2015; Kirk et al., 2003; Tsai et al., 2013; Brouillette et al.,
2000; Velasco et al., 2013; Van Eyck et al., 2015; Chang
et al., 2013; Villa et al., 2015; Cohen and De Chazal, 2015;
Álvarez et al., 2017). ODI has been used for this task (Kirk
et al., 2003; Tsai et al., 2013) . Kirk et al. (2003) reached
67% Se, 60% Sp, and 64% Acc (AHI≥5) using ODI3 . Tsai
et al. (2013) reported 79.0% Acc for AHI≥1 (77.7% Se and
88.9% Sp), 85.1% Acc for AHI≥5 (83.8% Se and 86.5% Sp),
and 87.1% Acc for AHI≥10 (89.1% Se and 86.0% Sp) us-
ing 4% ODI (ODI4) in a multiclass task. Nevertheless, in
this study, ODI4 cutoff values for each severity groupwere
optimized and validated using the same population (Tsai
et al., 2013) .
Clusters of desaturations have been also assessed

(Brouillette et al., 2000; Velasco et al., 2013; Van Eyck
et al., 2015). Brouillette et al. (2000) achieved 42.9%
Se, 97.8% Sp, and 64.8% Acc (AHI≥1), whereas Velasco
et al. (2013) reached 86.6% Se, 98.9% Sp, and 93.4% Acc
(AHI≥1). However, the latter study only included patients
with adenotonsillar hypertrophy, which limits its gener-
alization (Velasco et al., 2013) . Moreover, Van Eyck et al.
(2015) achievedmoderate Acc results when validating the
methodologies proposed by Brouillette et al. (2000) (58%
Se, 88% Sp, and 78% Acc) and Velasco et al. (2013) (57%
Se, 73.0% Sp, and 68% Acc) in a sample of obese patients
using AHI≥2 e/h as cutoff. Van Eyck et al. (2015) also as-
sessedODI3 reaching lowdiagnostic ability (66%Se, 69%
Sp, and 68% Acc). However, these studies only assess the
presence of SAHS in children without taking into account
of its severity.

Common symptoms and clinical history have been also
involved in pediatric SAHS screening tools (Chang et al.,
2013; Villa et al., 2015). Chang et al. (2013) used ODI3
and common symptoms to assess both a discriminative
score and a logistic regression (LR) classifier Chang et al.
(2013). The LR model achieved 76.6% Acc, whereas the
discriminative score reached 60% Se, 86% Sp, and 72%
Acc (AHI≥5). Recently, Villa et al. (2015) developed a
multiclass algorithm using both clinical history and the
McGill oximetry score, which was defined by Nixon et al.
(2004). This paper reported 57.4% Acc in the multi-
class classification task (AHI<1 e/h, 1≤AHI<5 e/h, and
AHI≥5 e/h). From their confusionmatrix, diagnostic per-
formance metrics were computed: 85.8% Acc for AHI≥1
(91.6% Se and 40.6% Sp), 69.4% Acc for AHI≥5 (40.6% Se
and 97.9% Sp), and overall kappa = 0.30.
Previous studies assessed the joint use of parameters

from SpO2 and other cardiorespiratory signals (Garde
et al., 2014; Gutiérrez-Tobal et al., 2015; Cohen and
De Chazal, 2015). Cohen and De Chazal (2015) applied
linear discriminant analysis (LDA) to automatic features
computed from SpO2 and ECG recordings. This model
achieved 58.1% Se, 67.0% Sp, and 66.7% Acc (AHI≥5).
Gutiérrez-Tobal et al. (2015) assessed a LR model built
with ODI3 from SpO2 and PSD features from AF, achiev-
ing average 85.9% Se, 87.4% Sp, and 86.3% Acc (AHI≥3)
using a bootstrap validation approach. Garde et al. (2014)
built a LDA model using features from PRV and SpO2
recordings. This model was validated using 4-fold cross
validation and achieved 88.4% Se, 83.6% Sp, and 85.0%
Acc (AHI≥5). In contrast to these studies, our methods
reached high diagnostic ability by the exclusive use of
single-channel SpO2 as the only signal involved.
Finally, Álvarez et al. (2017) assessed oximetry-based

LR models for different AHI cutoffs (1, 3, and 5 e/h),
reaching 85.5% Acc (89.6% Se and 71.5% Sp), 83.4% Acc
(82.9% Se and 84.4% Sp), and 82.8% Acc (82.2% Se and
83.6% Sp), respectively. They used bootstrapping to vali-
date results from a small sample size (50 children). While
they focused on low severity AHI cutoffs, our current pro-
posedmethodology reached high diagnostic performance
in the detection of moderate-to-severe pediatric SAHS
(AHI≥5, 10 e/h) in an independent test set from a large
database (298 children).
Although we present compelling evidence on the use-

fulness of our method, some limitations have to be taken
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Table 5: Summary of previous relevant published studies in the context of automated analysis of SpO2 recordings to assist in the
diagnosis of pediatric SAHS.

Study Subjects(n) Signal AHI (e/h) Methods Validation Se Sp Acc

Kirk et al. (2003) 58 SpO2 5 ODI3 Direct valida-
tion**

67 60 64*

Tsai et al. (2013) 148 SpO2 1
5
10

ODI4 No 77.7
83.8
89.1

88.9
86.5
86.0

79.0
85.1
87.1*

Brouillette et al. (2000) 349 SpO2 1 Clusters of desaturations Direct valida-
tion**

42.9 97.8 64.7*

Velasco et al. (2013) 167 SpO2 1 Clusters of desaturations Direct valida-
tion**

86.6 98.9 93.4*

Van Eyck et al. (2015) 130 SpO2 2 ODI3, Brouillette et al. (2000),
and Velasco et al. (2013)

Train-test for
ODI3

57
58
66

73
88
69

68
78
68*

Chang et al. (2013) 141 SpO2 5 ODI3 and sympthoms Direct valida-
tion**

60 86 72*

Villa et al. (2015) 268 SpO2 1
5

McGill oximetric score and clin-
ical history

Direct valida-
tion**

91.6
40.6*

40.6
97.9*

85.8
69.4*

Cohen and De Chazal
(2015)

288 ECG
and
SpO2

Event de-
tection

Statistical parameters, classical
indices, and PSD

Loocv 58.1 67.0 66.7

Gutiérrez-Tobal et al.
(2015)

50 AF and
SpO2

3 PSD (AF) and ODI3 (SpO2) Bootstrap 0.632 85.9 87.4 86.3

Garde et al. (2014) 146 PRV
and
SpO2

5 Statistical parameters, nonlin-
ear features, classical indices,
and PSD

Four-fold cross
validation

88.4 83.6 85.0

Álvarez et al. (2017) 50 SpO2 1
3
5

Statistical parameters, nonlin-
ear features, classical indices,
and PSD

Bootstrap 0.632 89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

Our proposal 298 SpO2 5
10

Bispectrum, PSD, ODI3, anthro-
pometric variables

Feature
optimization-
training-test

61.8
60.0

97.6
94.5

81.3
85.3

*Computed from reported data, ** Direct validation of a scoring criteria against AHI from PSG, loocv= leave-one-out cross validation.

into account. First, there were less subjects showing an
AHI in the ranges 5≤AHI<10 and AHI≥10 e/h in the co-
hort. This is one possible reason for the slight tendency of
theMLP classifier to underestimate for lower SAHS sever-
ity groups. A larger sample size, balancing the propor-
tion of subjects among classes, would likelyminimize this
effect. Another limitation concerns the only detection
of moderate (5≤AHI<10 e/h) to severe (AHI≥10 e/h) pa-
tients, while avoiding the evaluation of the presence of
SAHS in subjects with AHI< 5 e/h. However, while mod-
erate to severe subjects are treated regardless the pres-
ence of co-morbidities, this group only requires treat-
ment if neurocognitive or developmental deficits are con-
currently present, and this latter feature cannot be eval-
uated by the AHI or any other PSG-derived variable (Tan
et al., 2017). Furthermore, since our methodology aims
at simplifying the detection of pediatric SAHS, it would
be also useful to validate this proposal using oximetry
recordings obtained in unsupervised children at home.
Finally, the only use of MLP for classification is another
limitation of our study. In this sense, the application of

more advanced machine learning algorithms for classifi-
cation, such as ensemble learning classifiers, could be po-
tentially useful to enhance our methodology.
In summary, a high diagnostic performance was

achieved with a multiclass MLP model built with bis-
pectral features, together with anthropometric variables,
ODI3, and PSD parameters, in an independent set using
a large database of oximetry recordings. Thus, bispec-
trum contains additional and complementary informa-
tion to the other methodological approaches when aim-
ing to further characterize desaturation events in the con-
text of SAHS screening in children. Furthermore, this
model outperformed previous results obtained by state-
of-the-art studies. Therefore, bispectrum could be po-
tentially used as a complementary tool in the analysis of
oximetry recordings to help in the screening ofmoderate-
to-severe childhood SAHS.
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Abstract

Background: The gold standard for pediatric sleep apnea hypopnea syndrome (SAHS) is overnight polysomnography,
which has several limitations. Thus, simplified diagnosis techniques become necessary. Objective: The aim of this
study is twofold: (i) to analyze the blood oxygen saturation (SpO2) signal from nocturnal oximetry by means of features
from the wavelet transform in order to characterize pediatric SAHS; (ii) to evaluate the usefulness of the extracted
features to assist in the detection of pediatric SAHS. Methods: 981 SpO2 signals from children ranging 2–13 years of
agewere used. Discretewavelet transform (DWT)was employed due to its suitability to deal with non-stationary signals
as well as the ability to analyze the SAHS-related low frequency components of the SpO2 signal with high resolution.
In addition, 3% oxygen desaturation index (ODI3), statistical moments and power spectral density (PSD) features were
computed. Fast correlation-based filter was applied to select a feature subset. This subset fed three classifiers (logistic
regression, support vectormachines (SVM), andmultilayer perceptron) trained to determine the presence ofmoderate-
to-severe pediatric SAHS (apnea-hypopnea index cutoff≥ 5 events per hour). Results: Thewavelet entropy and features
computed in the D9 detail level of the DWT reached significant differences associated with the presence of SAHS.
All the proposed classifiers fed with a selected feature subset composed of ODI3, statistical moments, PSD, and DWT
features outperformed every single feature. SVM reached the highest performance. It achieved 84.0% accuracy (71.9%
sensitivity, 91.1% specificity), outperforming state-of-the-art studies in the detection of moderate-to-severe SAHS
using the SpO2 signal alone. Conclusion: Wavelet analysis could be a reliable tool to analyze the oximetry signal in
order to assist in the automated detection of moderate-to-severe pediatric SAHS. Hence, pediatric subjects suffering
from moderate-to-severe SAHS could benefit from an accurate simplified screening test only using the SpO2 signal.

1. Introduction

The American Academy of Pediatrics (AAP) defines
pediatric sleep apnea-hypopnea syndrome (SAHS) as a
breathing disorder characterized by recurrent episodes of
complete cessation (apnea) and/or significant reduction
(hypopnea) of airflow during sleep (Marcus et al., 2012).
SAHS is a highly prevalent condition among children (in
the range of 1% to 5%) thatmay lead tomany adverse con-
sequences on the overall health and quality of life, such as
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cognitive deficits, behavioral abnormalities, sleepiness,
systemic inflammation, and cardiac and metabolic de-
rangements (Marcus et al., 2012).
The gold standard technique for pediatric SAHS diag-

nosis is overnight polysomnography (PSG). It involves
recording a wide range of biomedical signals in a spe-
cialized sleep laboratory (Kaditis et al., 2016a; Alonso-
Álvarez et al., 2011). These recordings are used to score
apneas and hypopneas in order to compute the apnea-
hypopnea index (AHI), defined as the number of apneas
and hypopneas per hour (e/h) of sleep. AHI is the clin-
ical variable used to establish SAHS. The diagnosis of
moderate-to-severe pediatric SAHS is confirmed when
they present an AHI≥5 e/h, irrespective of other co-
morbidities (Marcus et al., 2012). These children are at
increased risk of suffering from themajor negative conse-
quences of the disease (Kaditis et al., 2016a; Hunter et al.,
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2016; Church, 2012). Thus, to expedite the diagnosis and
treatment is essential in these patients. In this sense, sur-
gical treatment with adenotonsillectomy is consistently
recommended for children suffering from SAHS with an
AHI≥5 e/h (Tan et al., 2014). This treatment leads to
an improvement in the condition in the majority of pedi-
atric patients who suffer from moderate-to-severe child-
hood SAHS (Marcus et al., 2012). However, in spite of the
PSG serving as the current recommended diagnostic gold
standard, it is costly and complex due to the necessary
equipment and trained staff, as well as highly intrusive
due to the use of multiple sensors. In addition, it is a
time-demanding method that shows limited availability
and absent scalability, thereby delaying the diagnosis and
treatment of SAHSpatients (Nixon et al., 2004; Katz et al.,
2012).
These drawbacks have led to extensive exploration of

the use of simplified diagnostic techniques (Brockmann
et al., 2013; Kaditis et al., 2016b). One common approach
is the analysis of a reduced set of cardiorespiratory signals
involved in PSG. In this regard, overnight oximetry is a
common alternative due to its reliability, simplicity, and
suitability for children (Nixon et al., 2004; Garde et al.,
2014a). Nocturnal oximetry records the blood oxygen sat-
uration (SpO2) signal, which provides a numerical mea-
sure of the oxygen content in hemoglobin (Berry et al.,
2012). Apneic events result in decreases in blood oxygen
levels and such events are termed oxyhemoglobin desat-
urations (Berry et al., 2012). Hence, the SpO2 signal con-
tains useful information to detect pediatric SAHS. Previ-
ous studies have shown the usefulness of automated anal-
ysis of the SpO2 signal from nocturnal oximetry to assist
in the screening of moderate-to-severe pediatric SAHS
(Kirk et al., 2003; Tsai et al., 2013; Chang et al., 2013;
Villa et al., 2015; Álvarez et al., 2017; Vaquerizo-Villar
et al., 2018; Hornero et al., 2017). However, the results
obtained in these studies indicate that an accurate diag-
nosis of pediatric SAHS is difficult, and in fact, substan-
tially more difficult than in adults, particularly because
the frequency of apneic events and reductions in SpO2 is
markedly lower in children. Thus, further scientific ev-
idence is still necessary before the diagnostic ability of
the SpO2 signal can be widely implemented as a prag-
matic tool to assist in an automated detection of child-
hood SAHS.
Different signal processing techniques have already

been applied to characterize the changes produced in
the SpO2 signal as elicited by apneic events. Conven-
tional oximetry indices, statistical measures, nonlinear
parameters, and spectral analysis from the SpO2 record-
ings have all been evaluated (Kirk et al., 2003; Tsai et al.,
2013; Chang et al., 2013; Villa et al., 2015; Álvarez et al.,
2017; Vaquerizo-Villar et al., 2018; Hornero et al., 2017).
Among these approaches, the use of spectral analysis is
a common choice due to the recurrence of apneic events.
In this sense, previous studies have assessed features ex-
tracted from the power spectral density (PSD) and bispec-

trum (Álvarez et al., 2017; Vaquerizo-Villar et al., 2018;
Hornero et al., 2017). However, these methods are based
on the Short-Time Fourier Transform (STFT), thus hav-
ing a fixed time-frequency resolution (Rioul and Vet-
terli, 1991). In contrast, wavelet transform (WT) offers
high frequency resolution at low frequencies as well as
high time resolution at high frequencies (Rioul and Vet-
terli, 1991; Daubechies, 1990). This property makes WT
a potentially more suitable technique to accurately de-
tect low frequency components, such as those associ-
ated with the duration of SpO2 desaturations. Addition-
ally, WT is also suitable to analyze non-stationarities like
those occurring in the SpO2 signal by apnea-hypopnea
events. In this sense, wavelet analysis has proven its use-
fulness to detect changes produced in biomedical signals
by apneic events among adult SAHS patients (Fontenla-
Romero et al., 2005; Tagluk and Sezgin, 2011; Khandoker
et al., 2008; Lin et al., 2006;Mendez et al., 2010; Lee et al.,
2004). Nevertheless, only two single preliminary stud-
ies by our group evaluated the usefulness of the wavelet
analysis in the detection of pediatric SAHSusing the SpO2
signal (Sedano et al., 2017; Vaquerizo-Villar et al., 2017).
Therefore, additional research is clearly needed to further
corroborate previous findings in a small cohort and to as-
sess the usefulness of wavelet analysis of SpO2 in the di-
agnosis of pediatric SAHS. Thus, we propose to develop a
more exhaustive wavelet analysis with a larger database
of 981 overnight SpO2 recordings.
We hypothesized that the multiresolution analysis af-

forded by the WT could provide a set of useful features
to precisely characterize changes occurring in the SpO2
signal associated with pediatric SAHS. Consequently, the
aim of this study was twofold: (i) to analyze oximetry
dynamics by means of WT-derived features in order to
characterize differences associated with the presence of
SAHS; and (ii) to assess the usefulness of these features to
assist in an automated detection of moderate-to-severe
pediatric SAHS.

2. Subjects and signals under study

The database is composed of 981 pediatric subjects (602
males and 379 females) ranging from 2 to 10 years of
age. All children were referred to the Pediatric Sleep Unit
at the University of Chicago Medicine-Comer Children’s
Hospital (Chicago, IL, USA) in the context of clinical sus-
picion of SAHS. All legal caretakers of the children gave
their informed consent as a prerequisite to be part of the
study and the Ethics Committee of the hospital approved
the protocols (#11-0268-AM017, #09-115-B-AM031, and
#IRB14-1241).
Children’s sleep was monitored using a digital

polysomnography system (Nihon Kohden America
Inc., CA, USA). SpO2 recordings were acquired during
overnight polysomnography at sampling rates of 25,
200, or 500 Hz. In a preprocessing stage, artifacts were
removed by discarding those SpO2 values below 50% and
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Table 1: Demographic and clinical characteristics of the patient
groups under study.

All Optimization
set

Cross-
validation
set

Subjects (n) 981 589 392
Age (years) 6 [3, 9] 6 [3, 8] 6 [3, 9]
Males (n) 602 (61.4%) 347 (58.9%) 255 (65.1%)
BMI (Kg/m2) 17.9

[15.8, 21.9]
17.6
[15.9, 22.0]

18.1
[15.8, 21.7]

AHI (e/h) 3.8 [1.5, 9.3] 4.1 [1.7, 9.9] 3.3 [1.4, 7.8]
Group AHI<5 e/h (n) 576 (58.7%) 330 (56.0%) 246 (62.8%)
Group AHI<5 e/h (n) 405 (41.3%) 259 (44.0%) 146 (37.2%)

Data are presented as median [interquartile range], n or n(%), BMI=
Body Mass Index, AHI= Apnea Hypopnea Index.

those intervals with a slope higher than 4%/s (Magalang
et al., 2003). Then, SpO2 recordings were resampled to a
common rate of 25 Hz, as recommended by the American
Academy of Sleep Medicine (AASM) (Berry et al., 2012),
and were rounded to the second decimal place in order
to have the same resolution (Garde et al., 2014b). The
guidelines of the AASM were used by a certified pediatric
sleep specialist to quantify sleep and cardiorespiratory
events. The AHI was subsequently derived in order
to diagnose pediatric SAHS. An AHI of 5 e/h was the
threshold used to establish moderate-to-severe SAHS
because of the enhanced risk of morbidity and thus the
importance of an early detection and treatment in these
cases. According to this AHI-based cutoff, 405 children
were in the group AHI≥5 e/h, whereas 576 children were
in the group AHI<5 e/h.
The dataset was randomly divided into an optimization

set (60%) and a cross-validation set (40%) (Hornero et al.,
2017). Table 1 shows demographic and clinical data of the
population under study (median [interquartile range] or n
(%)). No statistically significant differences (p-value<.01)
emerged in either age or body mass index (BMI) between
optimization and cross-validation groups.

3. Methods

Our methodology is divided into three steps: feature
extraction, selection, and classification. In the first step,
the wavelet transform was applied to analyze each SpO2
signal. A set of features was computed using the discrete
wavelet transform (DWT) to characterize the changes
produced in SpO2 recordings due to SAHS. In addition, 3%
oxygen desaturation index (ODI3), statistical moments
in the time domain and PSD features, which are com-
mon features from the SpO2 signal (Álvarez et al., 2017;
Hornero et al., 2017), were obtained to compose a wide
initial feature set with relevant as well as complemen-
tary information. In the second step, a feature subset
was selected using the fast correlation-based filter (FCBF)
method (Yu and Liu, 2004). Finally, binary logistic regres-
sion (LR) (Hosmer and Lemeshow, 2004), support vector

machines (SVM) (Bishop, 2006) and multi-layer percep-
tron (MLP) neural network (Bishop et al., 1995) classifiers
were trained using this selected feature subset in order to
detect moderate-to-severe pediatric SAHS.
Figure 1 shows the validation approach employed in

eachmethodological step. The first set (optimization set)
was employed to perform descriptive analysis of the ex-
tracted features, select a subset of features with FCBF,
and select the optimal design parameters of the SVM
and MLP classifiers. Bootstrapping has been employed
in the feature selection stage, in order to avoid overfit-
ting (Witten et al., 2011) In the same way, 10-fold strati-
fied cross validation has been applied to optimize the de-
sign parameters of SVM and MLP. The second set (cross-
validation set) was used to evaluate the diagnostic per-
formance of the single features and classifiers. Stratified
K-fold cross validation (K = 5) was applied for this pur-
pose (Steyerberg and Vergouwe, 2014).

3.1. Feature extraction
3.1.1. Discrete Wavelet Transform
WT can be seen as the decomposition of a signal x(t)

onto a set of basis functions, called wavelets (Rioul and
Vetterli, 1991). Wavelets are obtained by time transla-
tions and scaling of a unique function called the mother
wavelet. WT can be seen as an extension of the Fourier
transform where, instead of analyzing a single scale, a
multiscale analysis is performed. This multiscale prop-
erty of the WT allows decomposing a signal into a set of
scales, where each scale analyzes a different frequency
range of the signal. WT can be continuous (Continuous
Wavelet Transform, CWT) or discrete (DWT), depending
on the scale and translation values (Rioul and Vetterli,
1991). CWT computes WT for each scale, whereas DWT
only computesWT for dyadic (power of 2) scales, thus pre-
senting lower complexity and higher computational effi-
ciency than CWT (Cvetkovic et al., 2008). Consequently,
DWT was chosen in this study. In addition, it has previ-
ously shown its usefulness to detect different frequency
components in physiological signals associated to SAHS
events in adult patients (Fontenla-Romero et al., 2005;
Tagluk and Sezgin, 2011; Khandoker et al., 2008; Lin et al.,
2006; Mendez et al., 2010; Lee et al., 2004).
Figure 2 shows howDWT is computed. In Figure 2A, the

decomposition process of a SpO2 signal x[n] using DWT,
the so-called subband coding scheme, is illustrated. It is a
filter-bank tree where each stage consists of a high pass-
filter g[n] (the mother wavelet) and a low pass filter h[n]
(the mirror version of the mother wavelet), followed by
a subsampling process of factor two (Rioul and Vetterli,
1991). The relationship between these two filters is as fol-
lows (Rioul and Vetterli, 1991):

g[L− 1− n] = (−1)n · h[n], (1)

where L, an even number, is the length of the filter. First,
x[n] is decomposed in an approximation signal (lowpass
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Figure 1: Validation approach employed in each methodological step of the study.

version), A1, and a detail signal (highpass version), D1.
Then,A1 is further decomposed into another approxima-
tion signal, A2, and another detail signal, D2. Each iter-
ation increases the frequency resolution of the approxi-
mation and the detail version by two, as well as decreases
the number of samples of both approximation and detail
signals. This process continues until the maximum de-
tail level of the signal, N = log2(M) is reached, being
M the length of x[n] (Rosso et al., 2001). At each level
(i = 1, 2, . . . , N ), the approximation signal, Ai, and the
detail signal,Di, can be computed as follows:

Di[k] =
∑

n

Ai−1[n] · g[2k − n], (2)

Ai[k] =
∑

n

Ai−1[n] · h[2k − n], (3)

where Ai−1 is the approximation signal in the level i −
1. In the level 1, A0 is the original signal x[n]. Figure 2B
shows an example of SpO2 signal, x[n], the detail signalDi

obtained at each level i of the DWT decomposition, and
the approximation signal AN obtained at the level N of
the DWT decomposition.
DWT was applied to the upper power of 2 for 5 minute

segments (M = 213 samples (5.5 minutes)) and, con-
sequently, N = 13 (Tagluk and Sezgin, 2011). In this

study, the Haar wavelet was chosen as mother wavelet.
The reason is twofold (Lee et al., 2004): (i) its suitabil-
ity for picking up abrupt changes, which is appropriate to
detect the changes produced in the SpO2 values due to ap-
neic events; and (ii) its smoothing feature, which does not
distort the original form of the SpO2 signal. At each level
of the decomposition, detail coefficients contain informa-
tion about a different frequency band, as stated in Fig-
ure 2B. We focused on the detail coefficients of the level
9 (D9, i.e., 0.0244–0.0488 Hz), since it is the level which
is contained in the band of interest previously related to
the recurrence of apneic events (Vaquerizo-Villar et al.,
2018). SpO2 signal presents both drops and rises associ-
ated to apneic events, which result in decreased and in-
creased values inD9 coefficients, respectively. The infor-
mation contained in the D9 coefficients may be canceled
due to the presence of both positive and negative values,
such as mean or skewness. To avoid this, the absolute
values of the DWT coefficients were used. The following
seven features were extracted from the DWT coefficients:

• Statistical moments of the D9 coefficients (Mean
(M1D9

), variance (M2D9
), skewness (M3D9

) and kur-
tosis (M4D9

)). M1D9
–M4D9

measure the central
tendency, dispersion, asymmetry and peakedness of
the data, respectively.
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Figure 2: DWT computation.(A) Decomposition process of a signal using DWT. (B) Original SpO2 signal, detail signals at each
decomposition level and approximation signal at the maximum level of the decomposition.

• Maximum amplitude of theD9 coefficients (MaxD9).
It quantifies the highest amplitude in this frequency
band.

• Energy of theD9 coefficients (EnD9
). Itmeasures the

averaged quadratic amplitude of the signal in D9. It
is computed as follows:

EnD9 =
∑

k

|D9[k]|2 (4)

• Wavelet Entropy (WE), which measures the irreg-
ularity introduced in the DWT. It was extracted in
order to obtain information about the changes pro-
duced in the energy distribution of the different de-
tail levels of the DWT of the SpO2 signal by apneic

events (Rosso et al., 2001). It is computed as follows:

WE = −
N∑

i=1

pilog(pi), (5)

where pi is the relative wavelet energy at the detail
levelDi:

pi =
EnDi∑N
i=1EnDi

(6)

where EnDi is the wavelet energy at the detail level
Di:

EnDi
=

∑

k

|Di[k]|2 (7)

3.1.2. Conventional features from the SpO2 signal
In order to enhance the diagnostic ability of our pro-

posal, the following features, that are common parame-
ters of the oximetry signal (Álvarez et al., 2017; Hornero
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et al., 2017), were computed:

• ODI3. It was estimated as the number of desatura-
tions of at least 3% from preceding baseline per hour
of recording (Taha et al., 1997). This parameter has
shown its usefulness in clinical studies, even though
it underestimates AHI (Kirk et al., 2003; Tsai et al.,
2013; Chang et al., 2013).

• Statistical moments. First-to-fourth order statisti-
cal moments were computed from the SpO2 signal in
the time domain (M1T -M4T ): mean (M1T ), vari-
ance (M3T ), skewness (M3T ), and kurtosis (M3T )
(Álvarez et al., 2017; Hornero et al., 2017). These
features measure the central tendency, dispersion,
asymmetry, and peakedness of the data, respectively.

• PSD features. PSD was estimated using the Welch’s
method (213-sample Hamming window, 50% overlap
and 214-points DFT) (Welch, 1967). The following
features were obtained: first-to-fourth order statisti-
cal moments (M1PSD- M1PSD) and maximum am-
plitude (MaxPSD) from the band of interest deter-
mined in (Vaquerizo-Villar et al., 2018) (0.018–0.050
Hz) and spectral entropy (SEPSD) in the full spec-
trum. These features provide information about the
recurrence and duration of apneic events.

3.2. Feature selection: fast correlation-based filter (FCBF)
The FCBF method was applied to select a subset of rel-

evant and non-redundant features (Yu and Liu, 2004).
FCBF is a feature selection algorithm that has previously
shown its usefulness in the context of pediatric SAHS
(Vaquerizo-Villar et al., 2018; Hornero et al., 2017). First,
FCBF computes the symmetrical uncertainty (SU ) be-
tween each feature (xi) and the AHI (y). SU is a nor-
malization of the information gain between two variables.
SU is computed as follows (Yu and Liu, 2004):

SU(xi, y) = 2 · ( IG(xi|y)

H(xi) +H(y)
), i = 1, 2, ..., N, (8)

where IG(xi|y) = H(xi)¯H(xi|y), N is the total num-
ber of features extracted and H refers to Shannon’s en-
tropy [32]. According to their SU value (between 0 and 1),
features are ranked from the most relevant (highest SU
with the AHI) to the least relevant one (lowest SU with
the AHI). Then, a redundancy analysis is performed. SU
between each pair of features (xj , xi) is computed. Fea-
tures xj sharing more information with a more relevant
one than with the AHI (SU(xj |xi) ≥ SU(xj |y)) were dis-
carded. Finally, an optimum subset composed of the fea-
tures not discarded in this process is obtained.
A bootstrap approachwas employed in order to obtain a

subset of features independent of a particular dataset. In
this regard, FCBFwas applied to 1000 bootstrap replicates
built with a sample with replacement procedure from the
optimization set (Efron and Tibshirani, 1994; Guyon and

Elisseeff, 2003). Those variables that were selected with
FCBF more than 500 times (50% of runs) formed the fea-
ture subset (Vaquerizo-Villar et al., 2018; Hornero et al.,
2017).

3.3. Feature classification
In this study, we employed LR, SVM, and MLP, which

are well-known algorithms in the context of binary clas-
sification. Particularly, these algorithms were applied to
assign each subject to the groups AHI<5 e/h and AHI≥5
e/h (Hosmer and Lemeshow, 2004; Bishop, 2006; Bishop
et al., 1995).

3.3.1. Logistic regression
LR is a standard machine learning approach for binary

classification. Given a set of input features, LR estimates
the posterior probability of a given instance (subject) be-
longing to one of two mutually exclusive groups (AHI<5
e/h and AHI≥5 e/h) by the use of the logistic function
(Hosmer and Lemeshow, 2004):

p(Cl|xk) =
1

1 + exp−(β0 + β1 · x1,k + ...+ βN · xN,k)
,

(9)
where Cl represents the two groups (AHI<5 e/h and
AHI≥5 e/h), β = β0, β1, . . . , βN are the coefficients of the
model for each input feature, xk = x1,k, . . . , xN,k, is the
input pattern for the instance k, and N is the number of
features. A Bernoulli distribution is used to model the
probability density function and β coefficients are opti-
mized using the maximum likelihood ratio (Hosmer and
Lemeshow, 2004).

3.3.2. Support vector machines
A SVM is a binary classifier that searches for the best

hyperplane that separates instances from the classes un-
der study (Bishop, 2006). The hyperplane has the follow-
ing expression (Bishop, 2006):

y(x,w) = wT · φ(x) + w0 (10)

where x ∈ RN is the input pattern of dimensionN (num-
ber of features), φ(x) ∈ RP transforms the data into a
high-dimensional space P > N , and w is the weight vec-
tor. The weight vector w is optimized in order to max-
imize the margin of separation between the two groups
(Bishop, 2006). A regularization parameterC was applied
to control the trade-off between maximizing the margin
of separation between groups and obtaining a good gen-
eralization ability in an independent set (Bishop, 2006).
The optimization problem of SVM is formulated using La-
grange multipliers:

y(x,w) = −
∑

i∈S
ηitiK(xi, x) + w0, (11)

where S is a subset of indices {1, ..., L} corresponding to
the non-zero Lagrange multipliers (support vectors) ηi,
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L is the number of observations in the training set, ti
are the output labels (±1 for the AHI<5 and AHI≥5 e/h
groups), and K(·, ·) is the Kernel function in the trans-
formed space. In this study, a linear kernel was used,
which has previously shown its usefulness in the context
of adult SAHS (Alvarez et al., 2013). The value of C was
optimized by means of 10-fold cross-validation using the
optimization set.

3.3.3. Multi-layer perceptron neural network
AMLP is an artificial neural network arranged in several

fully connected layers: input, hidden, and output layers
(Bishop et al., 1995). These layers are composed of com-
puting units called perceptrons or neurons. Each neu-
ron consists of an activation function gk(·) and adaptive
weights wkj that interconnect the neuron with neurons
from the subsequent layer (Bishop et al., 1995). The in-
put layer was composed of one neuron for each input fea-
ture. Additionally, a configuration with one single hidden
layer with a hyperbolic tangent activation function was
applied since it provides a fast convergence for the train-
ing algorithm (Bishop et al., 1995). This configuration can
provide universal approximation to any continuous func-
tion with the only condition that there are enough hid-
den units (Bishop et al., 1995; Hornik, 1991) Finally, two
neurons composed the output layer, since our problem
is a binary classification task. A logistic sigmoid activa-
tion function has been used in the output layer, because
it allows the output neurons to be interpreted probabilis-
tically (Bishop et al., 1995):

yk = gk{
NH∑

j=1

wkjg
j{

N∑

i=1

wjixi + bj}+ bk}, (12)

where yk are the outputs neurons, wkj are the weights
connecting the hidden layer to the output layer, wji are
the weights connecting the input layer to the hidden
layer, bj and bk are the bias associated to the hidden and
the output units, respectively, xi is the feature i, gk(·)
and gj(·) are the activation functions of the output and
hidden layer, respectively, NH is the number of neurons
in the hidden layer, and N is the number of input fea-
tures (Bishop et al., 1995). Random initializationwas per-
formed for the weights of the network. Then, the scaled
conjugate gradient algorithm with weight-decay regular-
ization was used to optimize the weights (Bishop et al.,
1995). NH and the regularization parameter (α) were op-
timized by means of 10-fold cross-validation using the
optimization set.

3.4. Statistical Analysis

The software tools Matlab version R2017a was used
for performing signal processing and statistical anal-
yses. Normality and homoscedasticity tests showed
that extracted parameters were not normality distributed

and had different variances. Consequently, the Mann-
WhitneyU test was applied to search for statistical signif-
icant differences in the extracted features (p-value<0.01)
between groups. Diagnostic performance was assessed
by means of sensitivity (Se, percentage of patients with
an AHI≥5 e/h correctly classified), specificity (Sp, per-
centage of children with an AHI<5 e/h correctly classi-
fied), positive predictive value (PPV, proportion of sub-
jects classified as positive that are true positives), neg-
ative predictive value (NPV, proportion of subjects clas-
sified as negative that are true negatives), positive like-
lihood ratio (LR+, likelihood ratio for subjects classified
as positive), negative likelihood ratio (LR-, likelihood ra-
tio for subjects classified as negative), and accuracy (Acc,
percentage of subjects correctly classified).
K-fold stratified cross validation (K = 5) was applied

to assess the performance of the extracted features and
the binary classifiers (Steyerberg and Vergouwe, 2014).
The cross-validation set was randomly divided into K
subsets, preserving the proportion of subjects belong-
ing to the groups AHI<5 e/h and AHI≥5 e/h. K-1 folds
formed the training folds (80% of the cross-validation
set), whereas the remaining one formed the test fold (20%
of the cross-validation set). Accordingly, Receiver Oper-
ating Characteristics (ROC) curves were used to obtain
optimum classification cut-off points for the single fea-
tures using the K-1 training folds. Similarly, the classi-
fication algorithms were trained using the training folds.
Then, the diagnostic performance of the single features
and the LR, SVM, and MLP classifiers was measured us-
ing the test fold. This process was repeated K times, so
each fold was considered once as the test fold. Finally, all
the metrics are averaged across theK = 5 iterations.

4. Results

4.1. Feature separability

A total of seven DWT-derived features were obtained
for each SpO2 recording (S1 Table). Figure 3 shows
the histogram of the D9 coefficients in the optimization
set for the groups AHI<5 e/h and AHI≥5 e/h. It can
be observed that D9 coefficients are more concentrated
near zero in the AHI<5 e/h group, whereas in the group
AHI≥5 e/h these coefficients are more disperse. Table 2
shows the median and interquartile range of all these ex-
tracted features in the optimization set for both groups.
All features showed significant statistical differences (p-
value<0.01) between groups. M1D9

, M2D9
, MaxD9

,
EnD9 , and WE showed higher values in the AHI≥5 e/h
group, whereas M3D9 and M4D9 showed higher values
in the AHI<5 e/h group. ODI3, statistical moments and
PSD features were also computed for each SpO2 recording
(S1 Table). ODI3, 3 out of 4 statistical moments (M1T ,
M2T , andM3T ) and 3 out of 6 spectral features (M1PSD,
M2PSD, and MaxPSD) also showed significant statisti-
cal differences (p-value<0.01), which agrees with previ-
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Figure 3: Histogram of the D9 coefficients for each group in the
optimization set.

Table 2: DWT-derived features for each group in the optimiza-
tion set.

Features AHI < 5 AHI ≥ 5 p-value

M1D9 3.04 [2.26, 3.92] 5.36 [3.77, 7.70] p < .01
M2D9 3.78 [3.23, 4.63] 5.73 [4.30, 7.57] p < .01
M3D9 1.31 [1.20, 1.44] 1.19 [1.06, 1.32] p < .01
M4D9 (102) 3.58 [1.03, 7.69] 0.06 [0.04, 2.69] p < .01
MaxD9 (101) 1.23 [1.04, 1.55] 1.96 [1.42, 2.62] p < .01
EnD9 (103) 0.54 [0.37, 0.89] 1.54 [0.78, 2.96] p < .01
WE (10-4) 1.83 [1.18, 2.86] 4.27 [2.52, 9.41] p < .01

ous studies (Álvarez et al., 2017; Vaquerizo-Villar et al.,
2018).

4.2. Optimum feature subset

FCBF was applied to each bootstrap replicate from the
optimization set, each one composed of all the extracted
features (ODI3, statistical moments, PSD, and DWT fea-
tures). ODI3, 1 statistical moment (M2T ), 3 features
from PSD (M2PSD, M3PSD, andMaxPSD), and 3 DWT-
derived features (M3D9

, EnD9
and WE) were selected

more than 50% of times (500) (S2 Table). Thus, these fea-
tures formed the selected feature subset (Vaquerizo-Villar
et al., 2018; Hornero et al., 2017). Notice that features
fromall the differentmethodological approacheswere se-
lected.

4.3. Classification models optimization

LR, SVM, and MLP classifiers were designed using the
selected feature subset obtained with FCBF (ODI3,M2T ,
M2PSD,M3PSD,MaxPSD,M3D9 , EnD9 andWE). Op-
timum values for the design parameters of the SVM (reg-
ularization parameter: C) and MLP classifiers (number of
neurons in the hidden layer: NH ; regularization param-
eter: α) were obtained as those for which the Acc of the

classifiers was the highest in the optimization set. Con-
cerning SVM, the following values of C were assessed:
10−5, 10−4, 10−3, . . . , 104, 105. The optimum value of the
input parameter C was 103, which maximizes Acc. Re-
garding MLP, NH was varied from 2 up to 50 and α was
varied from 0 up to 10. Since the network depends on
the initial random values of the weights, the accuracy was
computed and averaged for a total of 10 runs for each
pair NH-α. Finally, user-dependent network parameters
NH=5 and α=1 were chosen since this pair reached the
highest accuracy.

4.4. Diagnostic performance
The value of all the extracted features (ODI3, statis-

tical moments, PSD, and DWT features) and the classi-
fication score of the LR, SVM, and MLP classifiers were
obtained for each subject in the cross-validation set (S3
Table). Table 3 shows the diagnostic ability of each sin-
gle feature in the cross-validation set obtained using op-
timum cut-off point obtained from the ROC curve. Most
of the DWT-derived features (5 out of 7) showed accu-
racies near 80%. In this regard, MaxD9 achieved the
highest performance (81.7±5.6% Acc, with 75.4±7.1% Se
and 85.4±6.8% Sp), outperforming statistical moments
and PSD features. Only ODI3 achieved slightly higher
Acc thanMaxD9

, reaching 81.9±7.2% Acc (78.1±7.3% Se
and 84.2±8.1% Sp). Table 4 shows the diagnostic per-
formance of LR, SVM, and MLP classifiers, which were
trained using the selected feature subset (ODI3, M2T ,
M2PSD, M3PSD, MaxPSD, M3D9

, EnD9
and WE) ob-

tained with FCBF, in the cross validation set. These clas-
sifiers showed high diagnostic performance, outperform-
ing all the extracted features in terms of Sp, PPV, LR+, and
Acc. SVM achieved the highest accuracy (84.0±5.2% Acc,
with 71.9±4.4% Se and 91.1±7.2% Sp) for the cutoff of 5
e/h.

5. Discussion

In the present study, we examined the usefulness
of wavelet analysis to identify features that character-
ize oximetry dynamics in order to expedite detection
of moderate-to-severe pediatric SAHS. WE and fea-
tures from the coefficients in D9 (M1D9

-M4D9
, MaxD9

,
and EnD9) were obtained from the DWT of each SpO2
recording. D9 (0.0244–0.0488 Hz) was chosen accord-
ing to a previous study in the context of pediatric SAHS
(Vaquerizo-Villar et al., 2018), and is related to the du-
ration and frequency of the SpO2 desaturations associ-
ated with apneic events (Taha et al., 1997). Statisti-
cally significant differences (p-value<0.01) emerged in all
DWT-derived features between the groups AHI<5 e/h and
AHI≥5 e/h in the optimization set (Table 2). The higher
values showed byM1D9

,MaxD9
, andEnD9

in the AHI≥5
e/h group agree with a higher amplitude of the histogram
for high values of theD9 coefficients in this group. In ad-
dition, the SpO2 drops and rises caused by apneic events
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Table 3: Diagnostic ability of the proposed features (ODI3, statistical moments, PSD, and DWT) in the cross-validation set.

Feature Se Sp PPV NPV LR+ LR- Acc

ODI3 78.1±7.3 84.2±8.1 75.2±10.2 86.5±5.0 6.1±2.9 0.27±0.11 81.9±7.2
M1T 62.3±6.8 65.0±2.6 51.4±2.1 74.6±3.6 1.8±0.2 0.58±0.10 64.0±2.3
M2T 72.6±13.6 67.1±6.6 56.7±2.8 81.2±6.6 2.2±0.3 0.40±0.17 69.2±3.1
M3T 65.0±8.5 61.4±6.8 50.1±2.8 74.9±2.8 1.7±0.2 0.57±0.09 62.7±2.7
M4T 60.9±15.6 49.9±8.4 41.6±5.0 69.0±7.5 1.2±0.3 0.78±0.26 54.0±5.2
M1PSD 75.3±7.9 82.5±7.4 73.0±8.5 85.1±3.5 5.3±3.1 0.30±0.08 79.9±3.8
M2PSD 69.8±7.3 83.4±5.2 71.8±6.2 82.5±3.0 4.5±1.4 0.36±0.08 78.3±3.2
M3PSD 47.2±11.7 58.1±11.9 40.4±4.1 65.0±2.8 1.2±0.2 0.91±0.12 54.1±4.5
M4PSD 63.6±8.3 47.1±6.2 41.7±4.2 68.7±6.1 1.2±0.2 0.79±0.23 53.3±5.0
MaxPSD 78.1±8.8 75.2±9.9 66.2±6.9 85.6±3.6 3.5±1.1 0.29±0.09 76.3±4.3
SEPSD 48.6±14.4 61.8±11.8 43.0±4.8 67.3±3.3 1.3±0.3 0.82±0.12 56.9±4.2
M1D9 73.4±9.1 82.6±7.8 72.2±10.2 84.0±5.1 5.2±2.7 0.32±0.12 79.1±6.2
M2D9 74.7±6.1 81.7±6.5 71.5±6.9 84.6±3.0 4.6±1.7 0.31±0.07 79.1±3.3
M3D9 58.3±9.2 63.4±6.5 48.7±3.1 72.1±3.3 1.6±0.2 0.66±0.10 61.5±3.2
M4D9 71.2±6.7 64.6±5.7 54.6±3.3 79.2±4.0 2.0±0.3 0.45±0.10 67.1±3.5
MaxD9 75.4±7.1 85.4±6.8 76.0±9.0 85.4±4.3 6.2±2.8 0.29±0.10 81.7±5.6
EnD9 78.8±4.4 81.7±5.2 72.2±5.5 86.7±2.4 4.6±1.4 0.26±0.05 80.6±3.4
WE 76.0±8.2 78.4±5.6 68.0±3.8 84.9±3.5 3.6±0.7 0.30±0.09 77.6±2.5

Table 4: Diagnostic ability of the LR, SVM, and MLP models in the cross-validation set.

Feature Se Sp PPV NPV LR+ LR- Acc

LR 72.6±4.7 90.2±6.2 82.3±8.8 84.7±2.8 9.8±5.5 0.31±0.06 83.7±4.9
SVM 71.9±4.4 91.1±7.2 83.8±10.8 84.5±2.6 14.6±12.9 0.31±0.06 84.0±5.2
MLP 73.3±6.6 89.0±6.9 80.7±9.2 84.9±3.3 9.0±5.8 0.30±0.08 83.2±5.2

are reflected in a higher dispersion in the histogram ofD9

coefficients, as reported by the higher values of M2D9 in
the AHI≥5 e/h group. In contrast, the lower values that
M3D9

andM4D9
as reflected in theAHI≥5 e/h group indi-

cate that the variations produced in the SpO2 signal due to
apneic events result in values less proximal to zero in the
histogramof theD9 coefficients. Finally, the higher irreg-
ularity reported by WE in the SAHS positive group sug-
gests that apnea-hypopnea events alter the energy distri-
bution of the whole DWT profile of the SpO2 signal.
Regarding the diagnostic performance of the proposed

features, ODI3 and MaxD9
reached similar Acc in the

cross-validation set, higher than the remaining features.
In addition, higher accuracies were generally obtained
with the DWT-derived features with respect to statistical
moments and features from PSD. This suggests that DWT
is a useful approach to analyze the changes produced in
the SpO2 signal associated to SAHS. In the feature selec-
tion stage, a feature subset composed of ODI3 (conven-
tional oximetric index); M2T (time); M2PSD, M3PSD,
andMaxPSD (PSD), andM3D9

, EnD9
y WE (DWT) was

obtained with FCBF. LR, SVM, andMLPmodels built with
this subset obtained high diagnostic performance for the
detection of moderate-to-severe SAHS (AHI≥5 e/h), im-
proving the diagnostic ability of the single features (Ta-
ble 3) in terms of Sp, PPV, LR+, and Acc. It is worthy
to note that the SVM model achieved the highest aver-
age Acc (84.0%), Sp (91.1%), PPV (83.8%), and LR+ (14.6)
among the single features and binary classifiers. In addi-
tion, SVM reached similar NPV and LR- to LR, MLP,ODI3

and the remaining features. A high LR+ is especially im-
portant for screening tests (Álvarez et al., 2017; Deeks
and Altman, 2004). In this sense, a LR+ greater than 10
is considered to provide strong evidence to confirm diag-
noses (Deeks and Altman, 2004). Thus, our method is es-
pecially useful to confirm the presence of pediatric SAHS.
Three DWT features were involved in the feature sub-

set obtained with FCBF:M3D9
, EnD9

andWE. As afore-
mentioned, these features provide information about the
concentration of the D9 coefficients near zero (M3D9

),
the amplitude of the D9 coefficients (EnD9

), and the ir-
regularity of the distribution of the whole DWT profile of
the SpO2 signal (WE). According to our results, M3D9 ,
EnD9

and WE provide both relevant and complemen-
tary (non-redundant) information on the changes occur-
ring in the SpO2 signal due to SAHS. This is consistent
with the different properties of the SpO2 signal these
DWT-derived features quantify. The fact that a high per-
formance was reached with the three classification algo-
rithms reinforces the notion that DWT is a useful method
to analyze the SpO2 signal in the context of pediatric
SAHS.
To the best of our knowledge, this is the first study as-

sessing wavelet analysis of SpO2 recordings in the con-
text of pediatric SAHS. Our results suggest that DWT is
an appropriate tool to analyze the low frequency compo-
nents of the SpO2 signals related to the duration of the
desaturations caused by apnea-hypopnea events since it
provides high resolution at low frequencies of the power
spectrum (Rioul and Vetterli, 1991; Daubechies, 1990).
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This assumption is further supported by previous stud-
ies, whereby DWT was also applied to quantify the fre-
quency components of different biomedical signals asso-
ciated to respiratory events in the context of adult SAHS
(Khandoker et al., 2008; Tagluk and Sezgin, 2011). Addi-
tionally, the favorable performance of our approach may
be due to the suitability of the WT to analyze non sta-
tionary properties of a signal (Rioul and Vetterli, 1991;
Daubechies, 1990), which is appropriate to events such
as the non-stationary changes of the SpO2 signal asso-
ciated with apneic events. The high resolution afforded
by WT at low frequencies, as well as its suitability to
analyze non-stationary signals clearly support the con-
tention that DWT is more appropriate than conventional
spectral analysis techniques to analyze the SpO2 signal
(Rioul and Vetterli, 1991; Daubechies, 1990).
Table 5 shows the performance of previous studies fo-

cused on the automated analysis of SpO2 as an alternative
to PSG in the screening of moderate-to-severe pediatric
SAHS (Kirk et al., 2003; Tsai et al., 2013; Chang et al.,
2013; Villa et al., 2015; Álvarez et al., 2017; Vaquerizo-
Villar et al., 2018; Hornero et al., 2017). Oxygen desatu-
ration index and clusters of desaturations have been em-
ployed for this task (Kirk et al., 2003; Tsai et al., 2013;
Chang et al., 2013; Villa et al., 2015). Kirk et al. (2003)
applied ODI3, reaching 67.0% Se, 60.0% Sp, and 64.0%
Acc. Tsai et al. (2013) obtained 83.8% Se, 86.5% Sp, and
85.1% Acc using 4% ODI (ODI4). However, ODI4 cut-
off values were optimized and validated using the same
population, such that no true post-hoc verification was
achieved. Chang et al. (2013) combined ODI3 with com-
mon symptoms to assess a discriminative score, reaching
60% Se, 86% Sp, and 72% Acc. Villa et al. (2015) reported
69.4% Acc (40.6% Se and 97.9% Sp) combining clusters
of desaturations and clinical history in a discriminative
score. Our approach achieved a high the diagnostic per-
formance while also strengthening its validity since the
methods were derived using not only a much larger sam-
ple size, but also applying a cross validation approach to
validate the results.
In order to increase the diagnostic ability of the SpO2

signal, conventional oximetric indices have been com-
bined with features from other signal processing ap-
proaches in studies developed by our group (Álvarez et al.,
2017; Vaquerizo-Villar et al., 2018; Hornero et al., 2017).
Álvarez et al. (2017) assessed LR models fed with con-
ventional oximetric indices, statistical parameters, PSD,
and nonlinear features. These models were validated us-
ing a bootstrap procedure, reaching 82.8% Acc (82.2% Se
and 83.6% Sp). Vaquerizo-Villar et al. (2018) assessed the
usefulness of oximetry bispectrum. A multiclass multi-
layer perceptron (MLP) model fed with ODI3, anthropo-
metrical variables, PSD, and bispectral features reached
61.8% Se, 97.6% Sp, and 81.3% Acc in an independent test
set, outperforming a MLP classifier built without bispec-
tral features. Finally, Hornero et al. (2017) analyzed 4,191
SpO2 recordings obtained from 13 sleep laboratories in a

multicenter international study. A MLP regression model
with ODI3 and the skewness of the PSD reached 68.2%
Se, 87.2% Sp, and 81.7% Acc. In contrast with the find-
ings of these studies, our current results achieved im-
proved diagnostic ability for the screening of moderate-
to-severe SAHS with the use of DWT-derived features.
This suggests that wavelet analysis could enhance the de-
tection of this clinically important and vulnerable group
of SAHS severity from single-channel oximetry record-
ings. In these patients, it is essential to early detect this
condition, since they are more likely to suffer from mor-
bidities such as decreases in cognitive performance (Ka-
ditis et al., 2016a; Hunter et al., 2016), as well as an in-
creased C-reactive protein level due to systemic inflam-
mation (Church, 2012). Moreover, an AHI≥5 e/h is also
associated with increased systemic blood pressure mea-
surements and an increased risk for cardiac strain (Kaditis
et al., 2016a). All these important negative consequences
highlight the necessity of an early detection of moderate-
to-severe pediatric SAHS (Kaditis et al., 2016a).
Notwithstanding the highly promising results of our

current approach, several limitations must be consid-
ered. First, the exclusive use of the SpO2 signal to de-
tect SAHSmay restrict the spectrum of physiological per-
turbations being detected by the oximetry signal, such
as electroencephalographic arousals or reductions in air-
flow and increased intrathoracic pressure swings (Mar-
cus et al., 2012). In this regard, the combination of SpO2
with other physiological signals from PSG could poten-
tially enhance the performance of our proposed method
but at the cost of adding significant complexity to the
test. In addition, future research efforts may prospec-
tively focus on identifying a specific mother wavelet for
this task. However, our proposed approach achieved high
performance with the Haar’s mother wavelet. Of note,
the lack of universally accepted AHI severity cutoffs is an-
other limitation that affects our study. Nevertheless, we
have assessed the diagnostic ability of our proposal us-
ing an AHI cutoff of 5 e/h, a widely used criterion in the
clinical decision making leading to the recommendation
of surgical treatment (Kaditis et al., 2016a,b). Finally, it
would be an interesting future goal to further validate our
methodology in a larger sample of unattended oximetry
recordings obtained at patients’ homes.

6. Conclusions

The application of WT has enabled the identification
of features with the ability to characterize the effects of
SAHS in the overnight oximetry profile of children. Fea-
tures computed in the D9 detail level of the DWT as well
asWE reached significant differences associatedwith the
presence of SAHS. DWT has been found to provide com-
plementary information to conventional approaches. Ad-
ditionally, high diagnostic performance was reached us-
ing different reference binary classifiers, which empha-
sizes the usefulness of the DWT to provide discriminant

114 Appendix A. Papers included in this Doctoral Thesis



Table 5: Summary of the state-of-the-art studies in the context of detection of moderate-to-severe pediatric SAHS using SpO2
recordings.

Study Subjects(n) Methods Validation Se Sp Acc

Kirk et al. (2003) 58 ODI3 Direct validation** 67 60 64*

Tsai et al. (2013) 148 ODI4 No 83.8 86.5 85.1*

Chang et al. (2013) 141 ODI3 and sympthoms Direct validation** 60 86 72*

Villa et al. (2015) 268 Clusters of desaturations and clinical
history

Direct validation** 40.6* 97.9* 69.4*

Álvarez et al. (2017) 50 Statisticalmoments, spectral, nonlinear
features, and classical indices

Bootstrap 0.632 82.2 83.6 82.8

Vaquerizo-Villar et al. (2018) 298 Bispectrum, PSD, ODI3, anthropomet-
ric variables

Feature optimization-
training-test

61.8 97.6 81.3

Hornero et al. (2017) 4191 Statistical moments, PSD, nonlinear
features, and ODI3

Training-test 68.2 87.2 81.7

Our proposal 981 ODI3, Statistical moments, PSD, and
DWT features

Optimization- cross vali-
dation

71.9 91.1 84.0

*Computed from reported data, ** Direct validation of a scoring criteria against AHI from PSG.

information from oximetry signals. These results suggest
that wavelet analysis could be useful to further character-
ize the oximetry signal and improve the diagnostic perfor-
mance and implementation of abbreviated screening test
for pediatric SAHS.
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Abstract

Objective: To evaluate whether detrended fluctuation analysis (DFA) provides information that improves the diagnostic
ability of the oximetry signal in the diagnosis of paediatric sleep apnoea–hypopnoea syndrome (SAHS). Approach: A
database composed of 981 blood oxygen saturation (SpO2) recordings in children was used to extract DFA-derived fea-
tures in order to quantify the scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desaturation
index (ODI3) was also computed for each subject. Fast correlation-based filter (FCBF) was then applied to select an op-
timum subset of relevant and non-redundant features. This subset fed a multi-layer perceptron (MLP) neural network
to estimate the apnoea–hypopnoea index (AHI). Main results: ODI3 and four features from the DFA reached signifi-
cant differences associated with the severity of SAHS. An optimum subset composed of the slope in the first scaling
region of the DFA profile and the ODI3 was selected using FCBF applied to the training set (60% of samples). The MLP
model trained with this feature subset showed good agreement with the actual AHI, reaching an intra-class correlation
coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high diagnostic ability,
reaching an accuracy of 82.7%, 81.9%, and 91.1% using three common AHI cut-offs of 1, 5, and 10 events per hour (e/h),
respectively. These results outperformed the overall performance of ODI3. Significance: DFAmay serve as a reliable tool
to improve the diagnostic performance of oximetry recordings in the evaluation of paediatric patients with symptoms
suggestive of SAHS.

Keywords: blood oxygen saturation (SpO2), detrended fluctuation analysis (DFA), feature selection,
apnoea–hypopnoea index (AHI) estimation, paediatric sleep apnoea–hypopnoea syndrome (SAHS)

1. Introduction

Childhood sleep apnoea–hypopnoea syndrome (SAHS)
is a breathing disorder whereby paediatric subjects man-
ifest recurrent episodes of either complete cessation (ap-
noea) or significant reductions (hypopnoea) of airflow
while sleeping (Marcus et al., 2012). Paediatric SAHS has
become amajor health problem due to its high prevalence
and negative effects. SAHS has an estimated prevalence
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in the range of 1%–5% in the general paediatric popula-
tion (Marcus et al., 2012). In addition, cognitive deficits,
behavioural abnormalities, daytime sleepiness, cardiac
andmetabolic derangements, and systemic inflammation
are all morbid consequences that adversely affect the op-
timal development of children affected by SAHS (Marcus
et al., 2012).
Based on the aforementioned considerations, an early

diagnosis of paediatric SAHS is vital. The gold stan-
dard diagnostic approach to childhood SAHS is overnight
polysomnography (PSG) (Marcus et al., 2012). It requires
patients to spend the night in a specialised sleep labora-
tory while being recorded for a wide range of biomedical
signals, including electrocardiogram, electroencephalo-
gram, electrooculogram, submental and leg electromyo-
gram, oronasal airflow, and blood oxygen saturation
(SpO2) by pulse oximetry (Kaditis et al., 2016; Alonso-
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Álvarez et al., 2011). However, PSG is a complex text
which is also quite costly due to the necessary equipment
and specialized medical personnel that is required to su-
pervise the PSG and to score the recordings. PSG is also
intrusive, especially for children, due to the use of mul-
tiple sensors. Additionally, PSG shows limited availabil-
ity in many, if not most, places around the world, which
results in long waiting lists, thus delaying the diagnosis
and treatment of the affected children (Nixon et al., 2004;
Katz et al., 2012).
Considering the inherent disadvantages and limita-

tions of PSG, along with the need for an early and timely
diagnosis of SAHS, the search for simplified alternative
techniques has emerged in recent years. In this regard,
one common approach consists of the automated analy-
sis of a reduced subset of cardiorespiratory signals that
is normally included in the overnight PSG. One of these
alternatives is nocturnal pulse oximetry (NPO), which
records the blood oxygen saturation signal (SpO2) with a
pulse oximeter probe, usually placed on a finger (Netzer
et al., 2001). NPO can be readily performed without the
need for professional supervision in the patient’s home
and is widely available, as reflected by the large num-
ber of commercially available portable pulse oximeters
(Nixon et al., 2004; Garde et al., 2014). Thus, NPO is a
technically simple test for children, and the SpO2 signal
from NPO provides moment-to-moment oxygen content
in haemoglobin (McClatchey, 2002), a signal that con-
tains essential information about the apnoeic events from
SAHS, since these events induce recurrent decreases in
blood oxygen levels, otherwise termed oxygen desatura-
tions (Berry et al., 2012).
Previous studies have examined the SpO2 signal as a

potential alternative to PSG in the screening of paediatric
SAHS. These studies employed different signal process-
ing techniques (Kirk et al., 2003; Tsai et al., 2013; Garde
et al., 2014; Van Eyck et al., 2015; Álvarez et al., 2017;
Crespo et al., 2017; Hornero et al., 2017; Vaquerizo-Villar
et al., 2018), and more specifically, conventional oxime-
try indices, common statistics, frequency domain analy-
sis techniques, and nonlinear methods. Among these ap-
proaches, nonlinear parameters proved useful to charac-
terise the oxygen desaturations caused by apnoeic events
in adults and children. However, a recent study using
a very large database of 4191 paediatric subject record-
ings showed that traditional nonlinear metrics (central
tendency measure, Lempel–Ziv complexity and sample
entropy) were redundant with respect to the 3% oxy-
gen desaturation index (ODI3) (Hornero et al., 2017),
an oximetry index commonly used in the clinical prac-
tice for simplified screening purposes. Therefore, ad-
ditional research is needed to find alternative and bet-
ter performant nonlinear methods that may provide fur-
ther insights into the properties of the oximetry signal
and allow for the extraction of additional information to
that provided by ODI3. In this regard, detrended fluc-
tuation analysis (DFA) is a nonlinear analysis technique

widely used to detect the correlation properties of a non-
stationary signal (Peng et al., 1994, 1995). DFA computes
the logarithm of the fluctuation function of a time series
versus the logarithmof a window time length (scale). DFA
provides a quantitative parameter, the scaling exponent
(α), which measures the linear relationship between the
fluctuation function and the scale (Peng et al., 1995). The
variation of α value for different ranges of scales (differ-
ent window time lengths) identifies regions with different
correlations (Peng et al., 1995). In this sense, the scal-
ing behaviour of a signal is given by the different regions
observed in the DFA profile and the value of α in these
regions (Peng et al., 1995). Thus, DFA is a useful tool to
analyse signals with segments that modify its scaling be-
haviour, such as random spikes or segments which have a
different local behaviour (Chen et al., 2002; Hua and Yu,
2017). Apnoeic events produce random spikes and/or ir-
regular fluctuations in the SpO2 signal. Hence, DFA could
be useful to analyse the oximetry signal in the context of
SAHS.
Previous work has suggested the ability of DFA to anal-

yse the correlation properties of physiological signals
in the context of both adult and paediatric SAHS (Lee
et al., 2002; Penzel et al., 2003; Dehkordi et al., 2016;
Kaimakamis et al., 2016; Hua and Yu, 2017). Hua and Yu
(2017) applied DFA to SpO2 signals in the context of diag-
nosing adult SAHS. However, no studies have focused on
applying DFA to SpO2 recordings in the context of paedi-
atric SAHS. SpO2 signal properties in children differ from
those of adults. Furthermore, the frequency of events that
are required to define abnormality or severity markedly
differ between adults and children. In addition, scoring
rules for apnoeas and hypopnoeas are also more restric-
tive in the case of paediatric SAHS (Berry et al., 2012).
Thus, the diagnosis of SAHS in children is vastly more
challenging than in adults.
Thus, we hypothesised that DFA could extract addi-

tional information from the oximetry signal, which could
be associated with the presence and severity of SAHS in
children and could therefore assist in the diagnostic ac-
curacy of overnight oximetry. Accordingly, the aim of this
study was to assess the usefulness of DFA-derived fea-
tures obtained from the oximetry signal to simplify the
diagnosis of paediatric SAHS.

2. Methods

2.1. Subjects and signals under study

The dataset included 981 children (602 boys and 379
girls) ranging from 2–13 years of age. All children were
consecutively and prospectively referred to the Pediatric
Sleep Unit at the University of Chicago Medicine Comer
Children’s Hospital (Chicago, IL, USA) due to clinical sus-
picion of SAHS. Their legal caretakers gave their informed
consent as a prerequisite to participate in the study. The
Ethical Committee of the University of Chicago Medicine
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approved the research protocols (#11-0268-AM017, #09-
115-B-AM031, and #IRB14-1241).
A digital polysomnography system (Polysmith; Nihon

Kohden America Inc., CA, USA) was used to monitor the
childrens’ sleep. SpO2 recordings were obtained during
overnight PSG at sampling rates of 25 Hz, 200 Hz, or
500 Hz. They were exported and processed offline. Arte-
facts were rejected from oximetric recordings by remov-
ing those SpO2 values below 50% and sudden changes
between consecutive SpO2 samples faster than 4%/sec-
ond (Magalang et al., 2003). Then, a non-overlapping
averaging-window of 1s was applied (effective sampling
rate = 1 Hz) to speed up the signal processing stage,
which has been found to be appropriate to perform amul-
tiscale analysis of the oximetry signal (Crespo et al., 2017;
Hua and Yu, 2017). This window size is lower than 3s,
which is the maximum averaging-time recommended by
the American Academy of Sleep Medicine (AASM) (Berry
et al., 2012). The resolution of the SpO2 signals was set to
two decimal points to ensure the resolution was the same
(Hornero et al., 2017).
Sleep and cardiorespiratory events were scored and

quantified by specialised technologists and further con-
firmed by paediatric sleep medicine specialists who were
unaware of the study purpose. The AHI was estimated
according to the AASM guidelines (Berry et al., 2012).
In this sense, there is no consensus regarding the AHI
cut-off used to determine SAHS and its severity (Alonso-
Álvarez et al., 2011; Church, 2012; Marcus et al., 2012;
Tan et al., 2014). However, a wide range of studies typ-
ically classify children into four SAHS severity degrees:
no-SAHS (AHI<1 e/h), mild SAHS (1≤AHI<5 e/h), mod-
erate SAHS (5≤AHI<10 e/h), and severe SAHS (AHI≥10
e/h) (Alonso-Álvarez et al., 2011; Church, 2012; Tan et al.,
2014; Hornero et al., 2017). Thus, the AHI cut-offs of 1,
5, and 10 e/h were adopted in this study.
The dataset was randomly divided into a training set

(60%) and a test set (40%). Table 1 shows the clinical
and demographic data of the population under study. No
statistically significant differences (p-value<0.01) were
found in either age or body mass index.

2.2. Automated signal processing
Our approach consisted of three sequential stages.

First, features derived from DFA and ODI3 were ob-
tained from the SpO2 recording of each subject. Then,
a smaller subset of relevant and non-redundant features
was selected using the fast correlation-based filter (FCBF)
method (Yu and Liu, 2004). Finally, a multi-layer percep-
tron (MLP) neural network (Bishop et al., 1995) was ap-
plied to this optimum subset in order to estimate the AHI
of each patient.

2.2.1. Detrended fluctuation analysis
DFA performs a multiscale analysis of a time series to

study its correlation properties (Peng et al., 1994). The
DFA profile shows changes in the correlation properties

for different ranges of scales, termed ’crossovers’, which
may be caused by different non-stationarities in the sig-
nal such as (Chen et al., 2002): (i) segments removed from
the signal; (ii) random spikes with variable amplitude;
(iii) segments with different local behaviour. Segments of
the SpO2 signal associated with apnoeic events typically
have different statistical properties, presenting fluctua-
tions and spikes (Crespo et al., 2017; Hua and Yu, 2017).
Thus, these properties of the SpO2 signalmay be reflected
in the DFA profile.
Given a signal x(t), the DFAmethod consists of the fol-

lowing steps (Peng et al., 1994):

1. The time series x(t) is integrated:

y(i) =
i∑

j=1

x(j)− xavg, i = 1, ..., N, (1)

wherexavg is the average of thewhole signalx(t), and
N is the length of the SpO2 signal.

2. The integrated signal y(i) is divided into B non-
overlapping windows of equal size. In the case of
SpO2 recordings, the minimum length of the signal
is 3 h (10800 samples) to ensure there were enough
sleep cycles (Berry et al., 2012). Thus, the length of
eachwindow (i.e. the scale), k, is between 3 and 1080,
since the maximum box size in DFA must be one-
tenth of the signal length (Chen et al., 2002).

3. For each window b(b = 1, . . . , B), the local trend was
obtained as a straight line, yb, estimated by applying
a least squares fitting to y(i).

4. The variance of the fluctuation in each window,
F 2
b (k), is defined as follows:

F 2
b (k) =

1

k

bk∑

j=(b−1)k+1

(y(j)− yb(j))2 (2)

5. The fluctuation function, F (k), is obtained as the
square root of the average of F 2

b (k) over all windows:

F (k) =

√√√√ 1

B
·

B∑

b=1

F 2
b (k), (3)

Steps 2-5 are iterated until the highest scale is used.
A double logarithmic plot was used to analyse the evo-

lution of the DFA plot along scales: log(F (k)) versus
log(k) (Penzel et al., 2003; Dehkordi et al., 2016; Hua and
Yu, 2017). Figure 1 shows the averaged DFA plot for the
four SAHS severity groups (AHI<1 e/h, 1≤AHI<5 e/h, 5≤
AHI <10 e/h, and AHI≤10 e/h) in the training set. It
can be shown that higher fluctuations are observed as
the SAHS severity increases. Additionally, two scaling re-
gions can be observed in the DFA plot:
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Table 1: Clinical and demographic data of the population under study.

Characteristics All AHI < 1 1 ≤ AHI < 5 5 ≤ AHI < 10 AHI ≥ 10

All subjects
Subjects (n) 981 175 401 176 229
Age(years) 6 [3, 9] 7 [4, 10] 6 [4, 9] 5 [2, 8] 4 [2, 8]
Males (%) 602 (61.4%) 109 (62.3%) 247 (61.6%) 107 (60.8%) 139 (60.7%)
BMI(Kg/m2) 17.9[15.8, 21.9] 17.7 [15.5, 20.9] 17.7 [15.9, 21.2] 18.6 [16.2, 24.0] 18.3 [16.0, 23.2]
AHI (e/h) 3.8 [1.5, 9.3] 0.5 [0.1, 0.8] 2.5 [1.7, 3.5] 6.8 [5.8, 8.3] 19.1 [13.9, 31.1]

Training set 60 (%)
Subjects (n) 589 98 232 113 146
Age(years) 6 [3, 8] 6 [4, 8] 7 [4, 9] 5 [2, 8] 5 [3, 8]
Males (%) 348 (59.1%) 61 (62.2%) 140 (60.3%) 72 (63.7%) 75 (51.4%)
BMI(Kg/m2) 17.6 [15.9, 22.0] 17.0 [15.4, 19.9] 17.5 [15.9, 21.6] 18.6 [16.2, 23.7] 18.1 [15.9, 23.6]
AHI (e/h) 4.1 [1.7, 9.9] 0.4 [0.0, 0.8] 2.5 [1.8,3.6] 6.9 [5.8, 8.5] 18.9 [13.8, 33.5]

Test set 60 (%)
Subjects (n) 392 77 169 63 83
Age(years) 6 [3, 9] 8 [5, 10] 5 [2, 9] 6 [4, 9] 4 [2, 8]
Males (%) 254 (64.8%) 48 (62.3%) 107 (63.3%) 35 (55.6%) 64 (77.1%)
BMI(Kg/m2) 18.1 [15.8, 21.7] 18.0 [15.6, 21.7] 18.0 [15.8, 20.7] 18.9 [15.7, 26.3] 18.3 [16.0, 22.1]
AHI (e/h) 3.3 [1.4, 7.8] 0.5 [0.3, 0.8] 2.5 [1.7,3.4] 6.8 [5.8, 7.8] 19.2 [15.1, 28.2]

Data are presented as median [interquartile range], n or n(%), BMI= Body Mass Index, AHI= Apnea Hypopnea Index.

Figure 1: Averaged DFA profile for the four SAHS severity
groups: (a) AHI<1 e/h, (b) 1≤AHI<5 e/h, (c) 5≤ AHI <10 e/h,
and (d) AHI≤10 e/h in the training set.

• Region 1 for scales in the range 0.48 ≤ log(k) ≤ 1.3
(3 ≤ k ≤ 20).

• Region 2 for scales in the range 1.60 ≤ log(k) ≤ 3.03
(40 ≤ k ≤ 1080).

A crossover is produced in the space between these two
regions of the DFA profile. Robust linear regression (Hua
and Yu, 2017) was applied to estimate the line that fits
both regions for each SpO2 recording.
Figure 2 shows the lines fitted in both regions in an il-

lustrative example of a patient from the training set. We
characterised the DFA plot by extracting the following
features, as can be seen in Figure 2 (Penzel et al., 2003;
Hua and Yu, 2017):

Figure 2: Illustrative example of the DFA plot of the SpO2 signal
of a patient from the training set.

• Slopes (scaling exponents) in the line that fits the
DFA profile in both regions (slope1 and slope2), as
well as their ratio (slope1/2). These parameters mea-
sure the scaling behaviour of the oximetry signal
in each region (slope1 and slope2) and the relative
differences in this behaviour between both regions
(slope1/2).

• Coordinates (k12 and F (k12)) of the intersection
formed by the lines fitted in regions 1 and 2.
These parameters are intended to characterise the
crossover point of the DFA plot.

• Fluctuation function in the scale with a maximum
correlation with the severity of SAHS (F (kx))). This
parameter was extracted to quantify the fluctuations
of the oximetry signal. In order to obtain the opti-
mum value of kx, Spearman’s correlation was com-
puted for each scale between F (k)) and the AHI.
Kx = 21 was therefore obtained as the scale with a
maximum Spearman’s correlation with the AHI.
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It is expected that these parameters allow for the quan-
tification of the differences in the scaling behaviour and
the fluctuations of the SpO2 signal are associatedwith the
severity of SAHS, as shown in Figure 1.

2.2.2. Oxygen desaturation index
ODI3 was computed as the number of oxygen desatu-

rations from the preceding baseline greater than or equal
to 3% per hour of recording (Taha et al., 1997). This clini-
cal parameter has commonly been used in the SAHS con-
text (Kirk et al., 2003; Chang et al., 2013; Tsai et al., 2013).
Higher values of ODI3 are expected in patients with a
higher severity of SAHS, since oxygen desaturations are
associated with apnoea or hypopnoea events (Berry et al.,
2012).

2.3. Feature selection: FCBF

FCBF was applied to evaluate the relevance of the ex-
tracted features and their redundancy within them (Yu
and Liu, 2004). FCBF has proven its utility in the con-
text of paediatric SAHS diagnosis to obtain subsets of rel-
evant and non-redundant features (Hornero et al., 2017;
Vaquerizo-Villar et al., 2018). First, FCBF computes the
symmetrical uncertainty (SU ) between each feature xi
and the dependent variable y in order to assess its rele-
vancy (Yu and Liu, 2004):

SU(xi, y) = 2 · ( IG(xi|y)

H(xi) +H(y)
), i = 1, 2, ..., N, (4)

where IG(xi|y) = H(xi)¯H(xi|y), N is the total num-
ber of features extracted (N = 7), y is the AHI value of
each subject, and H refers to Shannon’s entropy (Yu and
Liu, 2004). SU values vary between 0 and 1. SU = 1
means that one variable is completely predictable from
the other, whereas SU = 0 indicates that the two vari-
ables are independent.
According to their SU value, features are ranked from

the most relevant (highest SU with the AHI) to the least
relevant one (lowest SU with the AHI). Different SU-
based thresholds can be used to discard non-relevant fea-
tures. Nevertheless, the number of features comprising
our original feature set is not high. Therefore, as pro-
posed by Yu and Liu (2004), no relevance threshold was
applied to discard non-relevant features in order to max-
imize the relevancy of information derived from oxime-
try (Gutiérrez-Tobal et al., 2018; Hornero et al., 2017).
In this regard, a feature that is useless by itself still may
provide useful information when being selected with oth-
ers (Guyon and Elisseeff, 2003). A redundancy analy-
sis of each feature is then performed. The SU value be-
tween each pair of features (xi, xj) is computed, begin-
ning with the most relevant one (Yu and Liu 2004). When
SU(xi|xj) ≥ SU(xj |y), the feature xj is considered re-
dundant with respect to the feature xi and discarded. In
this way, an optimum subset composed of the most rele-

vant and non-redundant features is obtained (Yu and Liu,
2004).
A bootstrapmethodology was used in order to compose

a stable optimum feature subset independent of a particu-
lar dataset. FCBFwas applied to 1000 bootstrap replicates
built from our training data (Efron and Tibshirani, 1994;
Guyon and Elisseeff, 2003). Those variables which were
selected for at least half of the runs (500) formed the opti-
mum subset (Vaquerizo-Villar et al., 2018; Hornero et al.,
2017).

2.4. AHI estimation: MLP neural network

MLPwas applied to estimate theAHI of the subjects un-
der study using the optimum feature subset obtainedwith
FCBF. MLP is one of the most widely used artificial neu-
ral networks (ANNs). This ANNhas already demonstrated
its usefulness in the screening of paediatric SAHS diagno-
sis using SpO2 recordings (Hornero et al., 2017). MLP is
arranged in several interconnected layers (input, hidden
layers, and output) composed of simple units called per-
ceptrons or neurons (Bishop et al., 1995). Each neuron
consists of an activation function gi and adaptive weights
wjk representing connections with neurons from the fol-
lowing layer. In our case, the output layer has one neu-
ron y, which represents the estimatedAHI. Additionally, a
single hidden layer configurationwas implemented, since
it is able to provide universal approximation to any func-
tion (Bishop et al., 1995). Thus, the output unit in our
MLP architecture is calculated as follows:

yk = gl{
NH∑

j=1

wjkgt{
d∑

i=1

wijxi + bj}+ bk}, (5)

where gl and gt are the activation functions of the output
and hidden layer, respectively, wjk are the weights con-
necting the hidden layer to the output layer, wij are the
weights connecting the input layer to the hidden layer,
xi is the input feature i, bj and bk are the biases associ-
ated with the hidden and the output units respectively,
NH is the number of units in the hidden layer, and d is the
number of input features (Bishop et al., 1995). Weights of
the network were randomly initialised. Then, the scaled
conjugate gradient with weight-decay regularisation was
applied to optimise these weights. This optimisation al-
gorithm minimises the cross-entropy error function and
achieves good generalisation, as recommended for pat-
tern recognition tasks (Bishop et al., 1995).
Our MLP network was implemented using the Netlab

toolbox (Nabney, 2002). The design parameters of the
MLP network (the regularisation parameter (α) and NH )
were optimised by means of 10-fold cross-validation us-
ing the training set. This optimisation allows us to con-
trol the complexity of the MLP network, thus minimis-
ing under-fitting and overfitting. Once these parameters
were optimised, theMLPmodel was built using the whole
training dataset.
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2.5. Statistical Analysis
Matlab R2016a (TheMathWorks Inc., Natick, MA, USA)

was used to implement automated signal processing al-
gorithms, as well as to perform statistical analyses. The
Kruskal–Wallis test was used to assess the statistical dif-
ferences (p-value<0.01) between groups, since the ex-
tracted features did not pass the Lilliefors normality test.
The Bonferroni correction was applied to deal with mul-
tiple comparisons. Both agreement between estimated
AHI (AHIMLP) and actual AHI (AHIPSG), as well as agree-
ment between ODI3 and AHIPSG were assessed by means
of Bland–Altman plots and the intra-class correlation co-
efficient (ICC). Cohen’s kappa index (kappa) was used to
measure the agreement between AHIMLP and AHIPSG, the
agreement between ODI3 and AHIPSG to estimate the
severity of SAHS (Cohen, 1960). The diagnostic ability
of ODI3 and AHIMLP was assessed in terms of sensitivity
(Se, percentage of SAHS positive patients correctly clas-
sified), specificity (Sp, percentage of SAHS negative chil-
dren correctly classified), positive predictive value (PPV,
proportion of subjects classified as positive that are true
positives), negative predictive value (NPV, proportion of
subjects classified as negative that are true negatives),
positive likelihood ratio (LR+, likelihood ratio for subjects
classified as positive), negative likelihood ratio (LR-, like-
lihood ratio for subjects classified as negative), accuracy
(Acc, percentage of subjects correctly classified), and area
under the ROC curve (AUC). A bootstrapping approach
was employed in order to compare the ICC, kappa, over-
all Acc (four classes), and AUC values between ODI3 and
AHIMLP. The number of bootstrap replicates built from
the test data was set to 1000, since it ensures a proper es-
timation of the 95% confidence interval (Efron and Tib-
shirani, 1994). ICC, kappa, overall Acc, and AUC values
were obtained for ODI3 and AHIMLP from each of these
replicates. Then, the p-value between ODI3 and AHIMLP
was computed for each of these metrics according to the
Mann–Whitney U test.

3. Results

3.1. Training set
3.1.1. Features separability
A total of seven features were obtained for each sub-

ject: ODI3, and six DFA-derived features. Table 2 shows
the median and interquartile range of these features in
the training set for each SAHS severity group, along with
their corresponding p-values. ODI3 and four out of six
DFA-derived features (slope1, slope1/2, F (k12), andF (kx))
showed statistically significant differences (p-value<0.01
after Bonferroni correction).

3.1.2. Optimum feature subset
Figure 3 displays the histogram with the number of

times that each feature was selected over the 1000
bootstrap replicates. ODI3 was selected all the time,

Figure 3: Histogram with the number of times each feature is
selected over the 1000 bootstrap iterations.

which agrees with previous studies (Hornero et al 2017,
Vaquerizo-Villar et al 2018). Additionally, slope1 was se-
lected more than half the time (535). Thus, ODI3 and
slope1 were chosen as the optimum subset.

3.1.3. MLP model optimisation and training
The MLP network was designed and trained using this

optimum feature subset (ODI3 and slope1). In order to
find the optimum values, NH and α were varied from
NH=2 up to NH=30 and α=0 up to α=10, respectively.
For eachNH-α pair, kappa was obtained through ten-fold
cross validation. Since the network is sensitive to the ini-
tial random values of the weights, kappa was computed
on the cross validation set and averaged for a total of ten
runs for each NH-α pair. Figure 4 shows the kappa value
obtained for eachNH-α pair. According to this figure, the
optimum values NH=5 and α=6 were obtained as those
for which kappa was higher. Finally, the optimum fea-
ture subset (ODI3 and slope1) from the entire training set
was used to train the MLP model (AHIMLP) with these op-
timum user-dependent network parameters.

3.2. Test set
Figures 5(a) and (b) show the Bland–Altman plots of

ODI3 and AHIMLP compared with AHIPSG, respectively,
in the test set. ICC between ODI3 and AHIMLP with
AHIPSG is also shown. AHIMLP reached a lower mean
difference (bias) with AHIPSG than ODI3 (0.75 versus
- 1.65), whereas ODI3 achieved a slightly lower confi-
dence interval than AHIMLP (23.2 versus 24.3). Notice
thatODI3 underestimates AHI, whereas AHIMLP corrects
this behaviour by showing a slight overestimation. In
addition, AHIMLP achieved better agreement with AHIPSG
(ICC=0.891) than ODI3 (ICC=0.866). Regarding the di-
agnostic performance, table 3 shows the confusionmatri-
ces of ODI3 and AHIMLP in the test group. These matri-
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Table 2: Feature values for the SAHS severity groups (median [interquartile range]) in the training set.

Features AHI < 1 1 ≤ AHI < 5 5 ≤ AHI < 10 AHI ≥ 10 p-value*

ODI3 1.04 [0.52,2.47] 2.03 [0.93,3.89] 3.69 [1.94,7.23] 12.35 [6.65,24.49] < .01
slope1 1.63 [1.58,1.68] 1.64 [1.58,1.70] 1.67 [1.60,1.71] 1.74 [1.66,1.79] < .01
slope1 0.96 [0.90,1.05] 0.95 [0.87,1.03] 0.92 [0.85,1.02] 0.94 [0.88,1.01] .18
slope1/2 1.66 [1.53,1.82] 1.69 [1.55,1.87] 1.77 [1.60,1.94] 1.82 [1.68,1.95] < .01
k12 1.33 [1.23,1.42] 1.36 [1.26,1.44] 1.38 [1.29,1.45] 1.34 [1.23,1.42] .04
F(k12) 0.01 [-0.18,0.18] 0.12 [-0.12,0.26] 0.22 [0.04,0.38] 0.42 [0.16,0.61] < .01
F(kx) -0.05 [-0.13,0.04] 0.02 [-0.07,0.11] 0.10 [0.00,0.20] 0.31 [0.18,0.52] < .01

*p-values obtained after Bonferroni correction.

Figure 4: Averaged kappa for eachNH-α pair.

ces show the class predicted by both original ODI3 and
AHIMLP for each subject versus the actual SAHS sever-
ity group, according to AHIPSG. Using ODI3, 55.4% of
the subjects (217/392) were correctly assigned to their
actual group of SAHS severity (sum of the main diago-
nal elements of the matrix). Conversely, AHIMLP rightly
assigned 60.0% (235/392) of the subjects to their SAHS
severity group. Kappa values were 0.355 (ODI3) and
0.412 (AHIMLP). Table 4 shows the diagnostic ability of
bothODI3 andAHIMLP for the AHIPSG-based cut-offs of 1,
5, and 10 e/h. AHIMLP outperformed singleODI3 in terms
of ICC, overall Acc and kappa. Additionally, our AHIMLP
reached higher Acc for the single AHI cut-offs of 1 and
10 e/h. With respect to the comparison of the results of
ODI3 and AHIMLP, statistically significant higher values
(p-value<0.01) were obtained using AHIMLP in the case of
ICC, kappa, and overall Acc. In addition, statistically sig-
nificant differences were found for the AHI cut-offs of 5
and 10 e/h between AUC of ODI3 and AHIMLP.

4. Discussion

This study evaluated the usefulness of DFA to provide
additional information from oximetry dynamics in order
to assist with the screening of children at risk for pae-
diatric SAHS. To our knowledge, the application of DFA

to SpO2 recordings is novel in the context of paediatric
SAHS. Our proposed approach shows a high diagnostic
ability which outperforms the conventional oximetric in-
dex ODI3.
ODI3 and four out of six features from DFA (slope1,

slope1/2, F (k12), and F (kx)) reached significantly higher
values that were associated with increased severity of
SAHS. The statistical differences shown by these DFA-
derived parameters indicate that the scaling behaviour of
the DFA profile of the SpO2 signal is affected in the pres-
ence of SAHS, as illustrated by Figure 1. This change in
the correlation properties of the SpO2 signal along time
scales may be caused by the presence of spikes or seg-
ments with different statistical properties (Chen et al.,
2002; Hua and Yu, 2017). Figure 1 shows two regions with
different scaling exponents (correlation)—one region for
short-time scales (region 1) and another region for long-
time scales (region 2). Two scaling regions were also ob-
tained in the studies developed by Dehkordi et al. (2016)
and Penzel et al. (2003). Dehkordi et al. (2016) and Penzel
et al. (2003) applied DFA to analyse the scaling behaviour
of the pulse rate variability (PRV) and heart rate variabil-
ity (HRV) signals in the context of SAHS, respectively. Ac-
cording to these studies (Dehkordi et al., 2016; Penzel
et al., 2003), the time scales of these regions may be re-
lated to the duration of apnoeic events. In these studies,
short-time scales relate to the effects of respiration on the
heart rate, whereas long time scales relate to the effects
of sleep stages and circadian rhythm (Penzel et al., 2003).
According to the physiological interpretation of both

regions in the DFA profile, the higher values shown by
slope1 and slope1/2 that are associated with the sever-
ity of SAHS may be related to the variations in the SpO2
signals caused by respiratory events (Hua and Yu, 2017;
Peng et al., 1995; Penzel et al., 2003) which directly af-
fect the oximetry dynamics. On the contrary, slope2 did
not show statistically significant differences. According
to Penzel et al. (2003), slope2 is related to the effects
of slower brain functions on the HRV signal. Neverthe-
less, slower brain functions may not be related to the ef-
fects of SAHS in the oximetry signal. That is one possi-
ble reason why the value of slope2 does not increase with
the severity of SAHS. Figure 1 also shows higher values
of F (k) in the SpO2 signal as the severity of SAHS in-
creases. These differences may be due to the fluctuations
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Figure 5: Bland–Altman plots comparing (a) ODI3 with AHIPSG and (b) AHIMLP with AHIPSG.

Table 3: Confusion matrices of ODI3 and AHIMLP in the test set. Regarding ODI3 average Acc = 55.4% and kappa = 0.355, whereas
for AHIMLP average Acc = 60.0% and kappa = 0.412.

ODI3 AHIMLP
AHI < 1 1 ≤ AHI < 5 5 ≤ AHI < 10 AHI ≥ 10 AHI < 1 1 ≤ AHI < 5 5 ≤ AHI < 10 AHI ≥ 10

AHIPSG

AHI < 1 39 36 1 1 18 55 3 1
1 ≤ AHI < 5 47 107 12 3 8 125 33 3
5 ≤ AHI < 10 5 33 17 8 1 22 28 12
AHI ≥ 10 0 13 16 54 0 8 11 64

produced in the SpO2 signal by apnoeic events (Hua and
Yu, 2017). These fluctuations are reflected in the signifi-
cantly higher values of F (k12) and F (kx) associated with
a higher SAHS severity. Finally, it can be seen in figure 1
that the crossover point between the two regions of the
DFA profile occurs at similar time scales for the different
SAHS severity groups. The scale value k of the crossover
point is related to the duration of apnoeic events (Pen-
zel et al., 2003), which does not depend on the severity of
SAHS. This may be the reason why k12 did not show sta-
tistically significant differences.

Regarding the results of the feature selection stage, fig-
ure 3 shows that onlyODI3 and slope1were selectedmore
than 500 times after the bootstrapping approach. The re-
maining features showed high redundancy. ODI3 and
slope1 come from different methodological approaches.
Therefore, this suggests that information from DFA is
complementary to that obtained from the conventional
ODI3. As aforementioned, an MLP neural network fed
with this optimum subset outperformed the ODI3 (Ta-
bles 3 and 4). A better agreement with the AHIPSG was
achieved with our AHIMLP, as well as a higher diagnostic
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Table 4: Diagnostic ability of ODI3 and AHIMLP in the test set
for AHI cut-offs = 1, 5, and 10 e/h.

AHI cutoff = 1 e/h

Method Se Sp PPV NPV LR+ LR- Acc AUC

ODI3 83.5 50.6 87.4 42.9 1.7 0.33 77.0 0.811
AHIMLP 97.1 23.3 83.9 66.7 1.3 0.12 82.7 0.813

AHI cutoff = 5 e/h

Method Se Sp PPV NPV LR+ LR- Acc AUC

ODI3 65.1 93.1 84.8 81.8 9.4 0.37 82.7 0.883
AHIMLP 78.8 83.7 74.2 86.9 4.8 0.25 81.9 0.888

AHI cutoff = 10 e/h

Method Se Sp PPV NPV LR+ LR- Acc AUC

ODI3 65.1 96.1 81.8 91.1 16.7 0.36 89.5 0.921
AHIMLP 77.1 94.8 80.0 93.9 14.9 0.24 91.1 0.930

ability to predict SAHS severity. This highlights the use-
fulness of FCBF, the feature selection method employed
in our proposal. According to our results, slope1, which
was involved in the optimum subset, quantifies changes
in the scaling behaviour of the DFA profile that provides
additional information regarding oximetry dynamics able
to enhance its diagnostic ability.
Previous studies also evaluated the usefulness of DFA

to characterise SAHS in both adults (Lee et al., 2002; Pen-
zel et al., 2003; Kaimakamis et al., 2016; Hua and Yu,
2017) and children (Dehkordi et al., 2016)). Penzel et al.
(2003) and Dehkordi et al. (2016) extracted the slopes in
the scaling regions of the DFA profile from the HRV and
PRV signals in order to discriminate sleep stages and de-
tect the presence of SAHS in adults and paediatric pa-
tients, respectively. Their findings indicate that the scal-
ing analysis provided by DFA is suitable to quantify the
changes of the cardiac signals during sleep stages, as well
as the properties of these signals associated with apnoeic
events. These results agree with Lee et al. (2002), who
also reported that the scaling exponents of the DFA of the
electroencephalogram signal are useful to discriminate
between sleep stages in adult patients. Kaimakamis et al.
(2016) reported a 0.77 correlation coefficient in predict-
ing AHI with a linear regression model fed with DFA and
other nonlinear methods applied to airflow and thoracic
signals from adult patients. Finally, Hua and Yu (2017)
evaluated the diagnostic ability of the slopes of four dif-
ferent scaling regions and the coordinates and angles of
the intersections of these regions in the DFA plot of the
SpO2 signal in the context of adult SAHS. A high diagnos-
tic performance was achieved with these features, with
an accuracy of 90.8%, 80.1%, and 87.4% for the common
adult SAHS cut-offs of 5, 15, and 30 e/h, respectively. Im-
portantly, our research is not limited to the analysis of
individual features from DFA, and it assesses the capabil-
ity of DFA to provide additional and relevant information
complementary to conventional approaches (i.e. ODI3)
to simplify the diagnosis of paediatric SAHS.

Table 5 summarises the performance of previous stud-
ies focused on the analysis of SpO2 as a simplified tech-
nique in the screening of paediatric SAHS (Kirk et al.,
2003; Tsai et al., 2013; Garde et al., 2014; Van Eyck et al.,
2015; Álvarez et al., 2017; Crespo et al., 2017; Hornero
et al., 2017; Vaquerizo-Villar et al., 2018). Some of them
have applied the ODI and clusters of desaturations (Kirk
et al., 2003; Tsai et al., 2013; Van Eyck et al., 2015). How-
ever, only Tsai et al. (2013) reached accuracies higher than
80%. Notwithstanding, further validation was felt to be
still necessary in order to independently assess the pro-
posed ODI-based cut-offs.
Recent studies have focused on the application of au-

tomated signal processing approaches to enhance the di-
agnostic ability of the SpO2 signal (Garde et al., 2014; Ál-
varez et al., 2017; Crespo et al., 2017; Hornero et al., 2017;
Vaquerizo-Villar et al., 2018). From these studies, only
Hornero et al. (2017) assessed an AHI estimation model.
Hornero et al. (2017) built an MLP regression model with
ODI3 and the skewness of the PSD extracted from 4191
SpO2 recordings from 13 sleep laboratories worldwide.
Our study outperformed the state-of-the-art approaches
except the performance reported by the study of Álvarez
et al. (2017), which achieved higher accuracies for the AHI
cut-offs of 1 and 5 e/h. However, the database used by Ál-
varez et al. (2017) had only 50 subjects. As a consequence,
their results are less generalizable, and they performed
binary classification instead of estimating theAHI of each
patient.
In spite of the promising results of our proposed ap-

proach, several limitations must be taken into account.
First, the number of subjects belonging to the no-SAHS
(AHI<1 e/h) group is low when compared to the other
severity groups. This issue likely contributes to the
slight trend of the MLP model to overestimate the AHI
of the subjects belonging to this group, thus resulting
in a low specificity for an AHI-threshold of 1 e/h. How-
ever, this is likely the situation in clinical settings when
only symptomatic children would be referred for evalu-
ation. Nonetheless, a more balanced proportion of sub-
jects among SAHS severity groups would likely minimise
this effect. Another limitation concerns the use of the
SpO2 signal alone to detect SAHS, since some physiolog-
ical perturbations of SAHS may not be detected by the
oximetry signal, such as airflow reductions, electroen-
cephalographic arousals, or increased intrathoracic pres-
sure swings (Marcus et al., 2012). The use of SpO2 to-
gether with other biomedical signals could detect these
perturbations and, consequently, enhance the detection
of SAHS. However, this would increase the complexity of
the screening method. Additionally, the application of
more advancedmachine learning algorithms could be po-
tentially useful to improve the diagnostic ability of our
proposal. It would also be appropriate to evaluate our
methodology in a database of oximetry recordings ob-
tainedwith the patients being evaluated at home. Finally,
the implementation of our proposal in a portable oxime-

126 Appendix A. Papers included in this Doctoral Thesis



Table 5: Summary of state-of-the-art in the context of the analysis of SpO2 to assist in the diagnosis of paediatric SAHS.

Study Subjects
(n)

AHI
cut-off

Methods Validation Se
(%)

Sp
(%)

Acc
(%)

Kirk et al. (2003) 58 5 ODI3 Direct validation** 67 60 64*

Tsai et al. (2013) 148 1
5
10

ODI4 No 77.7
83.8
89.1

88.9
86.5
86.0

79.0
85.1
87.1*

Garde et al. (2014) 146 5 Statistical, nonlinear features, clas-
sical indices, and PSD

Four-fold cross vali-
dation

80.0 83.9 78.5

Van Eyck et al. (2015) 130 2 ODI3 and clusters of desaturations Train-test for ODI3 57
58
66

73
88
69

68
78
68*

Álvarez et al. (2017) 50 1
3
5

Statistical parameters, nonlinear
features, classical indices, and PSD

Bootstrap 0.632 89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

Crespo et al. (2017) 50 3 Multiscale entropy and classical in-
dices

Bootstrap 0.632 84.5 83.0 83.5

Hornero et al. (2017) 4191 1
5
10

Statistical, nonlinear features, PSD,
and ODI3

Training-test 84.0
68.2
68.7

53.2
87.2
94.1

75.2
81.7
90.2

Vaquerizo-Villar et al. (2018) 298 5
10

Bispectrum, PSD, ODI3, anthropo-
metric variables

Feature optimization-
training-test

61.8
60.0

97.6
94.5

81.3
85.3

Our proposal 981 1
5
10

DFA and ODI3 Training-test 97.1
78.8
77.1

23.3
83.7
94.8

82.7
81.9
91.1

*Computed from reported data, ** Direct validation of a scoring criteria against AHI from PSG, loocv= leave-one-out cross validation.

ter could facilitate its use in ambulatory settings.

5. Conclusion

In summary, we investigated the usefulness of DFA to
obtain additional information fromSpO2 recordings in or-
der to simplify the detection of paediatric SAHS. Four fea-
tures extracted from DFA showed significant differences
between the SAHS severity groups. An optimum subset
composed of ODI3 and slope1 was obtained with FCBF,
which suggests that these features are complementary
and non-overlapping. An MLP model fed with this op-
timum subset achieved a good agreement with the AHI
from PSG, obtaining 0.891 ICC and 0.412 kappa, as well as
high diagnostic ability. This MLP model achieved better
agreement (ICC and kappa) than ODI3, as well as higher
accuracies for the cut-offs of 1 and 10 e/h. Our method-
ology achieved a high diagnostic performance in compar-
ison with state-of-the-art techniques. This suggests that
the changes in the scaling behaviour of the DFA profile
quantified by slope1 can provide additional information
to enhance the diagnostic ability of the oximetry signal
in the context of paediatric SAHS.
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Abstract

This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the con-
text of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO2)
signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using
20-min SpO2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparam-
eters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test
sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index
(AHI) estimated for each subject (AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2
segment. AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI esti-
mated by a conventional feature-engineering approach based on multi-layer perceptron (AHIMLP). Specifically, AHICNN
reached higher four-class Cohen’s kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and
0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed
state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the informa-
tion automatically learned from the SpO2 signal by deep-learning techniques helps to enhance the diagnostic ability
of oximetry in the context of pediatric OSA.

Keywords: Oximetry, deep learning, convolutional neural networks (CNN), apnea–hypopnea index (AHI), pediatric
obstructive sleep apnea (OSA).

1. Introduction

Obstructive sleep apnea (OSA) is a highly prevalent
condition among the pediatric population (1%-5%) (Mar-
cus et al., 2012). Pediatric OSA is characterized by re-
current respiratory pauses (apneas) and airflow reduc-
tions (hypopneas), which leads to oxygen desaturations
and arousals that cause restless sleep (Marcus et al.,
2012; Berry et al., 2012). Untreated OSA is associated to
metabolic and cardiovascular malfunctioning, as well as
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neurobehavioral abnormalities that diminish children’s
health and quality of life (Marcus et al., 2012; Alonso-
Álvarez et al., 2011).
The gold standard diagnosis test is polysomnography

(PSG) (Marcus et al., 2012). PSG requires children to
spend the night in a specialized sleep unit while be-
ing recorded up to 32 biomedical signals (Alonso-Álvarez
et al., 2011; Kaditis et al., 2016). These recordings are
used to score apneas and hypopneas in order to obtain
the apnea-hypopnea index (AHI), which is the clinical
variable used to diagnose OSA (Berry et al., 2012). De-
spite its effectiveness, several limitations of PSG have
been pointed out (Katz et al., 2012; Kheirandish-Gozal,
2010), including its complexity, cost, high intrusiveness,
and limited availability. This results in a delay in the di-
agnosis and treatment of OSA of the affected children
(Nixon et al., 2004).
In order to overcome these limitations, the scientific
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community has explored the use of simplified tests that
increase the accessibility and effectiveness of pediatric
OSA diagnosis. In this respect, the blood oxygen satu-
ration signal (SpO2) from nocturnal oximetry has been
frequently proposed as a clinically valuable tool for the
screening of OSA in children due to its simplicity, relia-
bility and suitability (del Campo et al., 2018; Netzer et al.,
2001). The SpO2 signal measures the oxygen content in
the hemoglobin of the blood (McClatchey, 2002), thus
containing information of the oxygen desaturations as-
sociated to apneic events from OSA (Berry et al., 2012).
Promising results have been obtained in previous stud-

ies from the automated analysis of the SpO2 signal fol-
lowing a feature-engineering methodology (Tsai et al.,
2013; Villa et al., 2015; Álvarez et al., 2017; Hornero et al.,
2017; Vaquerizo-Villar et al., 2018b; Crespo et al., 2018;
Vaquerizo-Villar et al., 2018a; Xu et al., 2019). First,
a set of hand-crafted features from oximetry was ob-
tained using different signal processing algorithms: con-
ventional oximetric indices, statistical parameters, non-
linear methods, and frequency domain techniques (Tsai
et al., 2013; Villa et al., 2015; Álvarez et al., 2017; Hornero
et al., 2017; Vaquerizo-Villar et al., 2018b; Crespo et al.,
2018; Vaquerizo-Villar et al., 2018a; Xu et al., 2019).
Then, thresholding rules (Tsai et al., 2013; Villa et al.,
2015) and machine-learning algorithms (Álvarez et al.,
2017; Hornero et al., 2017; Vaquerizo-Villar et al., 2018b;
Crespo et al., 2018; Vaquerizo-Villar et al., 2018a; Xu
et al., 2019) were used with these features to determine
the presence and severity of pediatric OSA. Nonetheless,
these conventional feature-engineering approaches re-
quire considerable knowledge in order to identify, a priori,
a set of relevant features to extract from the data (Good-
fellow et al., 2016). In addition, the level of abstraction
that classical methods provide is low, which limits their
ability to identify complex patterns in the data (Goodfel-
low et al., 2016). This may result in missing relevant in-
formation from the SpO2 signals linked to apneic events.
These issues can be solved by using deep-learning al-

gorithms, which automatically learn complex patterns
for detection or classification tasks from raw data us-
ing architectures with multiple levels of representation
(Goodfellow et al., 2016). These algorithms have beaten
conventional approaches in many fields, such as image
recognition, language processing, and time series anal-
ysis (Goodfellow et al., 2016). In the OSA context, recent
studies have focused on the application of deep-learning
techniques to detect sleep stages (Faust et al., 2019), ap-
neic events (Mostafa et al., 2019), and/or estimate AHI in
adult OSA patients (Mostafa et al., 2019). Their findings
suggest that deep-learning algorithms are appropriate to
analyze different physiological signals from PSG, such
as electrocardiogram, electroencephalogram, airflow, or
oximetry (Faust et al., 2019; Mostafa et al., 2019).
Specifically, the majority of these studies employed

deep-learning architectures based on convolutional neu-
ral networks (CNN) (Mostafa et al., 2019), which are the

most widely-used deep-learning algorithm (Goodfellow
et al., 2016). Despite being originally inspired for image
analysis, CNNs have proven its suitability for time series
classification in a big variety of domains (Ismail Fawaz
et al., 2019), including biomedical signal analysis (Faust
et al., 2018; Roy et al., 2019; Ebrahimi et al., 2020; Murat
et al., 2020). CNN have a multi-layer architecture, with
shared weights, sparse connections, and pooling opera-
tions, which allows them to identify both short- and long-
term patterns occurring in different parts of the time se-
ries (Ebrahimi et al., 2020), while reducing the computa-
tional cost of other deep-learning algorithms (Goodfel-
low et al., 2016). This CNN property may be useful to
identify desaturations in the SpO2 signal associated to ap-
neic events that may occur at different times. In addition,
CNNs provide higher levels of representation that allow
to learn more complex features (Goodfellow et al., 2016),
which may be useful to detect complex patterns in long
segments of the SpO2 signal, such as clusters of desatu-
rations (Brouillette et al., 2000).
The novelty of this research is the use of a new deep-

learning model based on CNN that allows to accurately
diagnose pediatric OSA with a high generalization abil-
ity from the raw oximetry signal. We hypothesize that
deep-learning approaches could help to automatically ex-
tract the relevant information of the oximetry signal in
the context of pediatric OSAdiagnosis. Consequently, the
main goal of this study is to evaluate the usefulness of
deep-learning to estimate the AHI from ovenight oxime-
try in children with suspected OSA. To achieve this goal, a
CNN architecture is trained to estimate the number of ap-
neic events from 20-min SpO2 segments, which is a novel
approach in the context of pediatric OSA. The output of
the CNN for each segment is then aggregated to estimate
the AHI in pediatric OSA patients using a large cohort of
3196 SpO2 recordings from three different datasets.
One related conference paper developed by our own

group has already been published showing preliminary
results (Vaquerizo-Villar et al., 2019). Despite the fact
that our previous work also applied CNNs to analyze SpO2
recordings, there are some essential differences with this
research. Ourmain contribution is that our deep-learning
based methodology allows to diagnose pediatric OSA us-
ing the oximetry signal. In this sense, our previous
work showed promising results in detecting apneic events
(event-based approach) from the oximetry signal using a
CNN (Vaquerizo-Villar et al., 2019). In the current study,
we have investigated whether those indications may be
extended to obtain a new deep-learning model based on
CNN that allows to directly estimate the AHI, thus being
able to conduct a complete automatic diagnosis (subject-
based), including the assessment of the pediatric OSA
severity degrees. Instead of training a CNN to detect in-
dividual apneic events (binary output), in this research
we have trained a CNN to regress the number of apneic
events in SpO2 segments (continuous output), which al-
lows to accurately analyze SpO2 segments with several
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apneic events. A two-step aggregation procedure (aver-
aging plus linear regression) has been also included to ac-
curately estimate the AHI of each subject from the out-
puts of the CNN. We have also incorporated novel ele-
ments to improve the training and optimization process
of the deep-learning model (Huber loss, batch shuffling,
learning rate scheduler, early stopping, and Bayesian op-
timization). Additionally, in the present study, we have
designed and prospectively assessed a new model us-
ing three independent datasets, leading to a sample size
seven times larger than in our preliminary work (3196 vs.
453). This contributes to increase the generalization abil-
ity of our current proposal. Finally, another contribution
of ourwork is that we have performed a thorough compar-
ison with two conventional approaches to properly assess
the validity of our proposal. Particularly, we have com-
pared the results of the proposed approach with the 3%
oxygen desaturation index (ODI3), a conventional clin-
ical approach commonly used for comparison purposes
(Tsai et al., 2013; Álvarez et al., 2017; Hornero et al.,
2017; Vaquerizo-Villar et al., 2018b; Crespo et al., 2018;
Vaquerizo-Villar et al., 2018a; Xu et al., 2019), as well as
with the AHI estimated by a classical feature-engineering
approach.

2. Subjects and signals under study

A total of 3196 sleep studies of children ranging from 0
to 18 years of age composed the population under study.
Three large datasets were used: (i) the Childhood Ade-
notonsillectomy Trial (CHAT) dataset, a public multicen-
ter database composed of 1638 sleep studies (clinical trial
identifier: NCT00560859) (Marcus et al., 2013; Redline
et al., 2011); (ii) the University of Chicago (UofC) dataset,
a private database composed of 980 pediatric subjects;
and (iii) the Burgos University Hospital (BUH) dataset, a
private database composed of 578 subjects. All subjects
from the three datasets were referred to overnight PSG
due to clinical suspicion ofOSA. An informed consentwas
obtained from all legal caretakers of the children and the
Ethics Committee of the different sleep centers involved
in the study approved the protocols.
SpO2 recordings were acquired during PSG using sam-

pling rates ranging from 1 to 512 Hz. The guidelines of
the AASM were used to quantify sleep and score apneas
and hypopneas by pediatric sleep specialists from the dif-
ferent centers (Berry et al., 2012; Iber et al., 2007). The
AHI, obtained as the number of apneas and hypopneas
per hour of sleep, was used to diagnose pediatric OSA
(Berry et al., 2012). Commonclinically usedAHI cutoffs of
1, 5, and 10 events per hour (e/h)were used in this study to
classify children into four OSA severity degrees: no-OSA
(AHI<1 e/h), mild OSA (1≤AHI<5 e/h), moderate OSA
(5≤AHI<10 e/h), and severe OSA (AHI≥10 e/h) (Alonso-
Álvarez et al., 2011; Church, 2012; Tan et al., 2014).
Data was divided into three sets: training set, em-

ployed to train the deep-learning algorithms; validation

set, used for hyperparameters optimization; and test set,
employed to evaluate the diagnostic performance of the
deep-learning methods. Only the CHAT database con-
tains annotations of time location of apnea and hypop-
nea events, which are needed in the deep-learningmodels
as the output labels for training. Accordingly, the train-
ing set was composed of 859 SpO2 recordings from the
baseline (453 subjects) and follow-up groups (406 sub-
jects) of the CHAT database (Redline et al., 2011). The
subjects from the remaining group of the CHAT dataset,
non-randomized (779 subjects), as well as the subjects of
the UofC and BUH sets, were randomly divided into a val-
idation set (60%) and a test set (40%), being 60%-40% a
common proportion used in previous studies for valida-
tion and test purposes (Hornero et al., 2017; Vaquerizo-
Villar et al., 2018a).
In this way, the validation set was composed of 1402

SpO2 recordings from the CHAT (467, 60% of the 779 sub-
jects from the nonrandomized group), UofC (588, 60% of
the 980 subjects), and BUH (347, 60% of the 578 subjects)
databases, whereas the test set was composed of 312 sub-
jects from the CHAT dataset (40% of the nonrandomized
group), 392 subjects from theUofC dataset (40%), and 231
subjects from the BUH dataset (40%). Table 1 shows clin-
ical and demographic data from the subjects under study.

3. Methodology

3.1. Proposed CNN model

The proposed solution, depicted in Figure 1, consists of
three steps: (1) signals segmentation; (2) CNN architec-
ture; and (3) AHI estimation.

3.1.1. Signals segmentation
First, SpO2 recordings were down-sampled to a sam-

ple rate of 1 Hz in order to homogenize the frequency.
SpO2 signals from each subject were then divided into
20-min segments (1200 samples), as shown in Figure 1
(a). This segment size (20-min) allows to detect clusters
of desaturations, which have a minimum duration of 10-
min (Brouillette et al., 2000). Finally, each 20-min SpO2
segment in the training set is labelled with the annota-
tions provided by sleep technicians (Redline et al., 2011).
The output label for each segment was obtained as the
number of apnea and hypopnea events associated to 3%
oxygen desaturations occurring in these 20 minutes, ac-
cording to the annotation event files of the CHAT dataset
(Redline et al., 2011).

3.1.2. CNN architecture
CNN are the most popular deep-learning technique to

process multidimensional arrays, such as 1D signals or
2D images. In this study, CNN were used to process raw
oximetry data. Figure 1 (b) shows the architecture of the
proposed CNN. The input of the CNN architecture is the
20-min SpO2 segment. The CNN architecture processes
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Table 1: Demographic and clinical data from children under study.

All Training set Validation set CHAT Test set UofC Test set BUH Test set

SpO2 recordings (n) 3196 859 1402 312 392 231
Age (years) 6 [5, 8] 7 [6, 8] 6 [4, 8] 7 [6, 8] 6 [3, 9] 5 [4, 7]
Males (%) 1735 (54.6%) 417 (48.5%) 740 (52.8%) 143 (45.8%) 254 (64.8%) 160 (69.3%)
BMI (Kg/m2) 17.2

[15.4, 21.1]
17.3
[15.5, 22.3]

16.9
[15.2, 20.7]

17.1
[15.4, 19.9]

18.1
[15.8, 21.7]

16.0
[14.7, 18.0]

AHI (e/h) 2.1
[0.7, 6.3]

3.1
[1.4, 6.9]

1.7
[0.6, 5.9]

0.8
[0.4, 1.7]

3.3
[1.4, 7.8]

2.3
[0.9, 6.4]

AHI < 1 (%) 1015 (31.8%) 173 (20.1%) 516 (36.8%) 187 (59.9%) 77 (19.6%) 62 (26.8%)
1 ≤ AHI < 5 (%) 1230 (38.5%) 395 (46.0%) 493 (35.2%) 76 (24.4%) 169 (43.1%) 97 (42.0%)
5 ≤ AHI < 10 (%) 447 (14.0%) 170 (19.8%) 164 (11.7%) 18 (7.8%) 63 (16.1%) 32 (13.9%)
AHI ≥ 10 (%) 504 (15.8%) 121 (14.1%) 229 (16.3%) 31 (9.9%) 83 (21.2%) 40 (17.3%)

Data are presented as median [interquartile range], n or n(%), BMI= Body Mass Index, AHI= Apnea Hypopnea Index.

Figure 1: Overview of the proposed methodology. (a) Signals segmentation, (b) CNN architecture, and (c) AHI estimation.

the input by the use of λC stacked convolutional blocks,
each one composed of: convolutional layer, batch nor-
malization, activation, pooling, and dropout (Goodfellow
et al., 2016).
The convolutional layer extracts feature maps from

the input data a[n] using convolutional filters (kernels)
(Goodfellow et al., 2016):

xli[n] =

LC∑

k=1

wl
k ∗ ai[n− k + 1] + blk, (1)

where xli is the lth feature map (l = 1, . . . ,MC , being
MC the number of filters) in the convolutional block i =
1, . . . , λC , wl

k and b
l
k are the weights and biases of each

convolutional kernel in the convolutional block i, and LC

is the kernel size.
After the convolution, batch normalization is applied

to normalize the feature maps (Goodfellow et al., 2016).
Then, a non-linear function is used to decide which fea-
ture maps are activated, depending on a rule or a thresh-
old (Goodfellow et al., 2016). In this study, a rectified

linear unit (ReLU) activation function, which is the stan-
dard choice for deep-learning (Goodfellow et al., 2016),
was used:

f(x) = max(0, x) (2)

The output of the ReLU is fed into a max-pooling layer,
which applies a maximum operation with a pool factor
K=2, which is a widely used value, in order to reduce di-
mensionality as well as computational cost (Goodfellow
et al., 2016). Finally, dropout operation was included in
the training phase in order to avoid overfitting (Goodfel-
low et al., 2016). Dropout randomly removes some units
with a probability pdrop at each batch of a training epoch
(Goodfellow et al., 2016).
After λC convolutional blocks, a flattening layer is

used to transform the 2-D feature maps into a 1-D series
(Goodfellow et al., 2016). Then, a linear activation unit is
used to obtain the output of the network, ymCNN which ac-
counts for the apneic events associated to desaturations
for the corresponding input 20-min SpO2 segment.
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3.1.3. AHI estimation
Based on the output ymCNN of the CNN for each 20-min

SpO2 segmentm = 1, 2, 3, . . . , N, the AHI of each patient
can be estimated. First, the average of the output of the
CNN obtained for each SpO2 segment is computed:

yavgCNN =

∑N
m=1 y

m
CNN

N
(3)

where N is the number of 20-min SpO2 segments of the
oximetry signal. This step is necessary as the number of
20-min SpO2 segments is different for each patient. Then,
the AHI is obtained using the following expression, as
shown in Figure 1 (c):

AHI = (β · yavgCNN ) + ε (4)

where β and ε are the intercept and disturbance term of a
linear regression model, which was fitted using the vali-
dation set. This linear regression corrects the trend of the
CNN to underestimate the AHI, which is caused by (Devi-
aene et al., 2018): (i) the AHI estimated by the CNN is ob-
tained using the total recording time, while the AHI from
PSG uses total sleep time; (ii) there are apneic events that
are not associated to oxygen desaturations, so they can-
not be detected by the CNN.

3.2. CNN training and optimization process

The training data were fed into the CNN in batches of
100 during 500 epochs. He-normal method was used to
initialize the weights and biases of each layer (He et al.,
2015). Then, the adaptive moment estimation (Adam) al-
gorithm was used with an initial learning rate of 0.001
to update the weights and biases in each training batch
(Kingma and Ba, 2014). Huber loss (Huber, 1964) was the
function used to minimize Adam algorithm in the valida-
tion set. This loss function has a tunable hyperparameter,
delta (δ), that allows to control the importance of outliers
(Huber, 1964):

L(ym, ymCNN ) =
{

1
2 · (ym − ymCNN )2, |ym − ymCNN | ≥ δ
ym · (|ym − ymCNN | − 1

2 · δ), otherwise ,
(5)

where ym is the target variable and ymCNN is the out-
put of the CNN for a segment m. At each training
epoch, training data were shuffled in order to improve the
convergence of the optimization algorithm (Goodfellow
et al., 2016), so the batches were different. In addition,
the learning rate was decreased by a factor of 2 after 10
epochs of non-improvement in the loss function value of
the validation set, which helps to obtain a converged sta-
ble set of final weights (Goodfellow et al., 2016). Finally,
early stopping (Goodfellow et al., 2016) was applied to
stop training after 30 epochs of non-improvement in or-
der to reduce the training time, restoringweights to those
that achieved the best performance in the validation set.

The hyperparameters of the CNN architecture to op-
timize were the number of filters in each convolutional
layer (MC), the kernel size of each convolutional layer
(LC), the number of CNN blocks (λC), the dropout proba-
bility (pdrop), and the delta parameter of the Huber loss
(δ). Bayesian optimization with tree-structured Parzen
estimator (BO-TPE) (Bergstra et al., 2011) implemented
in Hyperopt library (Bergstra et al., 2015) was used to ob-
tain the optimum values of these hyperparameters. BO-
TPE is considered more efficient than grid search or ran-
dom search for hyperparameters optimization, since it
uses past evaluation results to form a probabilistic model
that attempts to optimize the objective function in an it-
erative way (Snoek et al., 2012).
Keras framework with Tensorflow backend was used to

implement the CNN-based architecture (Chollet, 2015).
CNNs were trained on a NVIDIA GeForce RTX 2080 GPU
in a Windows 10 environment.

3.3. Comparison with conventional approaches

The following conventionalmethods have been applied
in order to compare the diagnostic performance of the
proposed deep-learning model:

1) Clinical approach: ODI3. ODI3 was estimated as the
number of desaturations of at least 3% per hour of
recording (Taha et al., 1997). This parameter has
shown its usefulness in the clinical OSA context, and
is usually employed for comparison purposes (Tsai
et al., 2013; Álvarez et al., 2017; Hornero et al., 2017;
Vaquerizo-Villar et al., 2018b; Crespo et al., 2018;
Vaquerizo-Villar et al., 2018a; Xu et al., 2019).

2) Classical feature-engineering approach: multilayer
perceptron (MLP) neural network trained using fea-
tures extracted from the 20-min SpO2 segments.
This approach is divided into the following common
four steps: (i) signal preprocessing, where artifacts
were removed from SpO2 recordings following the
methodology employed in previous studies (Hornero
et al., 2017; Vaquerizo-Villar et al., 2018b,a); (ii) fea-
ture extraction, where up to 23 features were ex-
tracted from each 20-min SpO2 segment, the same
features as in the previous study by Hornero et al.
(2017); (iii) segment-based AHI estimation; where a
MLP model was trained with the set of 23 SpO2 fea-
tures to estimate the number of apneic events asso-
ciated to desaturations in each segment; (iv) subject-
based AHI estimation, where the AHI of each subject
is obtained from the output of the MLP for each 20-
min SpO2 segment using the procedure described in
Section 3.1.3.

3.4. Statistical Analysis

The agreement between the estimated AHI by the
CNN architecture (AHICNN) and the actual AHI from PSG
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(AHIPSG) was assessed bymeans of scatter and error distri-
bution plots, as well as the intra-class correlation coeffi-
cient (ICC) and root mean square error (RMSE). The over-
all agreement of AHICNN to estimate the severity of OSA
was assessed by means of the confusion matrices, as well
as Cohen’s kappa index (kappa) and 4-class accuracy. ICC,
RMSE, kappa, and 4-class accuracy were also obtained for
ODI3 and the AHI estimated by the MLP (AHIMLP). Ad-
ditionally, the diagnostic ability of AHICNN was assessed
for each of the AHI cutoffs that define the OSA severity
degrees (1, 5, and 10 e/h) by means of sensitivity (Se, per-
centage of OSA positive patients rightly classified), speci-
ficity (Sp, percentage of OSA negative children rightly
classified), positive predictive value (PPV, proportion of
positive test results that are true positives), negative pre-
dictive value (NPV, proportion of negative test results
that are true negatives), positive likelihood ratio (LR+,
Se/(1-Sp)), negative likelihood ratio (LR-, (1-Se)/Sp), and
accuracy (Acc, percentage of subjects correctly classified).

4. Results

4.1. Training and validation sets
Training and validation sets were used to optimize the

CNN architecture. BO-TPE was used to find the optimum
values of the hyperparameters of the CNN architecture:
MC , LC , λC , pdrop, and δ. The search space of the BO-TPE
is shown in Table 2. The training set was used to train the
CNN models at each iteration of the BO-TPE procedure,
whereas kappa was obtained in the validation set as the
objective function to optimize. The training of most of
the CNNs was finished by early stopping criterion after
80-120 epochs, thus contributing to reduce the training
time. The results of the BO-TPE algorithm are shown in
Figure 2. For each hyperparameter, the values of kappa in
the validation set are given. These values are represented
in a boxplot. It can be seen that there is not a high depen-
dence of kappa on the hyperparameter values. Slightly
higher overall kappa values are obtained when λC = 6
and LC = 5, as well as with increasing values ofMC and
decreasing values of δ, whereas pdrop had little effect on
the value of kappa. Finally, MC = 64, LC = 5, λC = 6,
pdrop = 0.1, and δ = 1.5 were obtained as the optimum
values for the hyperparameters, since this combination
reached the highest kappa, as shown in Table 2.

4.2. Test set
4.2.1. Diagnostic performance of the CNN model
Figure 3 shows the scatter plots of AHICNN compared

to AHIPSG in the CHAT, UofC and BUH test sets, respec-
tively. ICC and RMSE are also shown. Points of the scat-
ter plot of AHICNN in the CHAT test set are more concen-
tratednear the diagonal line, which is reflected in a higher
agreement (ICC=0.960 and RMSE=2.89) than in the UofC
(ICC=0.917 and RMSE=5.45) and BUH test sets (ICC=0.583
and RMSE=10.44). Figure 4 shows the error distribution

Table 2: Search space of BO-TPE for the CNN hyperparameters.

Hyperparameter Search space Optimum value

MC 8, 16, 32, 64 64
LC 3, 5, 7 5
λC 4, 5, 6, 7, 8 6
pdrop 0:0.25:0.3 0.1
δ 0.5:0.5:6 1.5
BO-TPE= Bayesian optimization with tree-structured Parzen estimator;
CNN = Convolutional neural network;MC = number of filters;LC = ker-
nel size; λC = number of convolutional blocks; pdrop = dropout proba-
bility; δ =delta value of the Huber loss

plots of AHICNN in the three test sets. Mean error was low
in the three test sets. Nonetheless, 95% confidence in-
tervals of AHICNN were higher in the UofC (21.69 e/h) and
BUH (28.84 e/h) test sets than in the CHAT test set (12.80
e/h). In addition, there are some outliers in AHICNN that
can be observed in the UofC and BUH sets, as reported by
the maximum error.
Figure 5 shows the confusion matrices of AHICNN, eval-

uated in the three test sets. AHICNN rightly assigned
72.8% (227/312), 60.2% (236/392), and 61.0% (141/231) of
subjects in the three test sets to their actual OSA sever-
ity group. Table 3 shows diagnostic ability statistics of
AHICNN for the AHI severity cutoffs of 1, 5, and 10 e/h,
which are derived from the confusion matrix. Notice
that AHICNN reached a higher kappa in the CHAT test set
(0.515) than in the UofC (0.422) and BUH test sets (0.423).
Higher performance metrics were obtained in the CHAT
test set for the three AHI cutoffs, especially for the AHI
cutoffs of 5 and 10 e/h.

4.2.2. Comparison with conventional approaches
Table 4 shows the comparison of AHICNN with ODI3

and AHIMLP in the three test sets. It can be seen that
AHICNN showed a higher diagnostic capability than ODI3
and AHIMLP in the CHAT, UofC, and BUH test sets, as de-
rived from the values of ICC, RMSE, kappa, and 4-class
accuracy.
Table 5 summarizes the comparison of the performance

of our proposal with state-of-the-art studies aimed at
simplifying the detection of pediatric OSA and its severity
using the SpO2 signal (Tsai et al., 2013; Villa et al., 2015;
Álvarez et al., 2017; Hornero et al., 2017; Vaquerizo-Villar
et al., 2018b; Crespo et al., 2018; Vaquerizo-Villar et al.,
2018a; Xu et al., 2019). Notice that none of the studies
that employed a validation approach reported a higher
accuracy for the AHI cutoffs of 5 e/h and 10 e/h than the
proposed CNN-based architecture in the CHAT, UofC, and
BUH datasets.

5. Discussion

In the present study, we assessed the potential useful-
ness of a new CNN architecture to enhance the diagnos-
tic ability of the oximetry signal in the context of pedi-
atric OSA. A CNN-based deep-learning model was built

A.4. Vaquerizo-Villar et al. (2021) 135



Figure 2: Results of the BO-TPE for every hyperparameter in the validation set.

Figure 3: Scatter plots comparing AHICNN with AHIPSG in the CHAT, UofC, and BUH test databases.

Table 3: Diagnostic ability of AHICNN for the AHI cutoffs=1 e/h, 5 e/h, and 10 e/h in the CHAT, UofC, and BUH test databases.

Estimated AHI CHAT test set UofC test set BUH test set
AHI=1 e/h AHI=5 e/h AHI=10 e/h AHI=1 e/h AHI=5 e/h AHI=10 e/h AHI=1 e/h AHI=5 e/h AHI=10 e/h

Se (%) 71.2 83.7 83.9 90.8 76.0 79.5 88.8 61.1 65.0
Sp (%) 81.8 100 99.3 36.4 88.6 95.8 53.2 93.7 96.9
PPV (%) 72.4 100 92.9 85.4 79.8 83.5 83.8 81.5 81.3
NPV (%) 81.0 97.0 98.2 49.1 86.2 94.6 63.5 84.2 93.0
LR+ 3.92 N.D 117.84 1.43 6.68 18.90 1.90 9.72 20.69
LR- 0.35 0.16 0.16 0.25 0.27 0.21 0.21 0.42 0.36

Acc (%) 77.6 97.4 97.8 80.1 83.9 92.3 79.2 83.5 91.3
kappa 0.515 0.422 0.423

CNN = Convolutional neural network, AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive value (%), NPV
= negative predictive value (%), LR+=positive likelihood ratio, LR-=negative likelihood ratio, Acc=accuracy (%), kappa=Cohen’s kappa index, N.D =
not defined, CHAT = Childhood Adenotonsillectomy Trial, UofC = University of Chicago, BUH = Burgos University Hospital. .
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Figure 4: Error distribution of AHICNN in the CHAT, UofC, and BUH test databases.

Figure 5: Confusionmatrices of AHICNN in the CHAT, UofC, and BUH test databases. 1: No-OSA (AHI<1 e/h); 2: Mild OSA (1≤AHI<5
e/h); 3: Moderate OSA (5≤AHI<10 e/h); 4: Severe OSA (AHI≥10 e/h).

and trained to estimate pediatric OSA severity using raw
SpO2 data. Thismodel was validated in a database of 3196
SpO2 recordings from three different datasets. The pro-
posed CNN model showed a high diagnostic ability, im-
proving the diagnostic performance of ODI3 and AHIMLP.

5.1. CNN architecture

To the best of our knowledge, this is the first study that
provides a deep-learning model able to automatically de-
tect pediatric OSA and its severity from the oximetry sig-
nal. Our results showed that that the proposed CNN-
based architecture is able to discern patterns linked with
apneic events present in the oximetry signal of children
with OSA. Recent studies have also shown the useful-
ness of deep-learning to analyze different physiological

signals from PSG in adult OSA patients [21]. In this re-
gard, the studies developed by Biswal et al. (2018), Choi
et al. (2018), Van Steenkiste et al. (2018), and Nikkonen
et al. (2019) reached accuracies in the range 57%-91% to
classify subjects into the four adult OSA severity degrees
(AHI<5, 5≤AHI<15, 15≤AHI<30, and AHI≥30 e/h). De-
spite some of these studies reported higher accuracies,
they focus on adult patients, whereas our study applies
a CNN to the context of pediatric OSA. In this respect,
scoring rules for apnea and hypopnea events are more re-
strictive in children than in adults (Iber et al., 2007). In
addition, AHI cutoffs for mild, moderate and severe OSA
are lower in children (1, 5, and 10 e/h in contrast to 5, 15,
and 30 e/h), which changes the diagnosis and treatment
of these patients (Alonso-Álvarez et al., 2011; Church,
2012; Epstein et al., 2009). Due to these remarkable dif-
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Table 4: Diagnostic performance of AHICNN vs. ODI3 and
AHIMLP in the CHAT, UofC, and BUH test databases.

Test
set

Method ICC RMSE 4-class kappa 4-class Acc

AHICNN 0.960 2.89 0.515 72.8
CHAT ODI3 0.871 4.63 0.417 65.1

AHIMLP 0.832 5.51 0.377 63.3

AHICNN 0.917 5.45 0.422 60.2
UofC ODI3 0.861 6.21 0.372 56.6

AHIMLP 0.890 6.02 0.381 56.9

AHICNN 0.583 10.44 0.423 61.0
BUH ODI3 0.520 10.64 0.369 57.6

AHIMLP 0.500 11.05 0.306 52.4
AHICNN = apnea-hypopnea index (AHI) estimated by our convolutional
neural network architecture, ODI3 = 3% oxygen desaturation index,
AHIMLP = AHI estimated by the multi-layer perceptron neural network
trained with features from the blood oxygen saturation (SpO2) signal,
ICC = intra-class correlation coefficient, RMSE = root mean squared
error, kappa = Cohen’s kappa index, CHAT = Childhood Adenotonsil-
lectomy Trial, UofC = University of Chicago, BUH = Burgos University
Hospital.

ferences, automated diagnosis of OSA is more challeng-
ing in children and thus higher performances are com-
monly reached in adult patients.
These aforementioned studies in the context of adult

OSA applied different deep-learning architectures to raw
PSG signals: recurrent neural networks (RNN) (Biswal
et al., 2018; Van Steenkiste et al., 2018), multi-layer per-
ceptron (MLP) (Nikkonen et al., 2019), and CNN (Choi
et al., 2018). From these architectures, CNN hold ad-
vantage over RNN and MLP in terms of computational
cost, since they do not include recurrent and/or fully-
connected layers. This facilitates the integration of the
proposed architecture in wearable and portable devices.
In order to corroborate the suitability of CNNs for our
problem, we also applied the RNN architecture proposed
by Van Steenkiste et al. (2018). This RNN architecture
did not obtain a better performance than our CNN model
(AHICNN outperformed the RNN architecture in terms of
ICC: 0.960 vs 921, 0.917 vs 0.812, and 0.583 vs 0.480
in the CHAT, UofC, and BUH test sets), while having a
higher computational cost. This agrees with a recent re-
view of deep learning for time series classification (TSC),
where CNN-based architectures achieved the highest per-
formance for TSC in an experiment wheremore than 8000
deep-learning models were trained and assessed on 97
different time series datasets (Ismail Fawaz et al., 2019).
With respect to the hyperparameters of the CNN ar-

chitecture, Figure 2 shows the low dependence of kappa
from the validation set on the optimum hyperparame-
ter values, which highlights the reliability of the pro-
posed solution to automatically learn OSA-related fea-
tures from the oximetry signal. We also assessed the ef-
fect of varying the segment size and the overlap between
segments. Different values of the segment size (5 min,
10 min, 30 min, and 60 min), and overlap (50%, and 90%)

were tested. Regarding segment size, none of the tested
values achieved higher kappa in the validation set than
the segment size of our optimum CNN model (20 min),
which is appropriate to detect clusters of desaturations
(Brouillette et al., 2000). Changing the overlap between
segments did not result in a better performancewhile sig-
nificantly increased training and validation process.

5.2. Diagnostic performance
As aforementioned, the AHI estimated by our pro-

posed optimumCNNarchitecture (AHICNN) outperformed
a conventional clinical index ODI3 as well as a classi-
cal feature-engineering approach (AHIMLP) in the three
test sets. Our AHICNN achieved a higher overall agree-
ment with AHIPSG, as well as a higher diagnostic capabil-
ity to predict pediatric OSA severity. In contrast to tra-
ditional clinical (ODI3) and feature-engineering (AHIMLP)
approaches, AHICNN automatically learns features from
the SpO2 recordings associated to apneic events through
amulti-layer architecture that provides a high level of ab-
straction. According to our results, CNNs can detect ad-
ditional information on the OSA-related changes occur-
ring in the SpO2 signal that helps to enhance its diagnos-
tic ability.
Looking at the confusion matrices of Fig. 5, it can be

seen that 95.2% (BUH), 96.1% (UofC), and 100% (CHAT)
of class 1 (no-OSA) patients have an estimated AHICNN<5
e/h (class 1 or class 2). In addition, 94.4% (BUH), 97.8%
(UofC), and 100% (CHAT) of subjects with an AHICNN≥5
e/h actually show anAHIPSG≥1 e/h, whereas 90.6% (BUH),
96.2% (UofC), and 100% (CHAT) predicted as severe OSA
(AHICNN ≥10 e/h) are at least moderate OSA patients.
Hence, a possible screening protocol can be derived to
show the clinical usefulness of our proposal as follows:
i) if AHICNN <1 e/h, discard the presence of OSA because
most of these patients (96.2% in BUH, 98.2% in UofC, and
100% in CHAT) will have an AHIPSG<5 e/h. If symptoms
persist, these children may be eventually referred to PSG,
as recommended by Alonso-Álvarez et al. (2011); ii) if
1≤AHICNN<5 e/h, suggest PSG, since doubts arise about
the actual diagnosis of the patients; iii) if 5≤AHICNN<10
e/h, consider treatment, since most probably (86.4% in
BUH, 96.7% in UofC, and 100% in CHAT) these subjects
have at least a mild degree of OSA; iv) if AHICNN≥10 e/h,
suggest treatment, since most of these children (90.6% in
BUH, 96.2% in UofC, and 100% in CHAT) have an AHIPSG
≥5 e/h, and also consider a further observation of these
patients, since they are prone to have residual OSA after
PSG (Marcus et al., 2012). This screening protocol would
avoid the need for 45.9% (BUH), 50.0% (UofC), and 73.7%
(CHAT) of complete PSGs, thus contributing to a reduc-
tion in the waiting lists andmedical costs associated with
the diagnosis of OSA, as well as to provide amore suitable
diagnostic procedure for children.
Comparing the results of the proposed approach in the

three test sets, it is important to highlight the high diag-
nostic performance obtained by AHICNN in CHAT, where
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Table 5: Summary of state-of-the-art studies in the context of pediatric OSA detection using SpO2 recordings

Study N (Total/test) AHI (e/h) Methods (Feature/classification) Validation Se Sp Acc

Tsai et al. (2013) 148/148 1
5
10

ODI4 / Thresholding No 77.7
83.8
89.1

88.9
86.5
86.0

79.0
85.1
87.1

Villa et al. (2015) 268/268 1
5

Clusters of desaturations and clinical
history / Thresholding

Direct valida-
tion*

91.6
40.6

40.6
97.9

85.8
69.4

Álvarez et al. (2017) 50/50 1
3
5

Classical indices, statistical moments,
PSD, and nonlinear features /Binary LR

Bootstrapping 89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

Hornero et al. (2017) 4191/3602 1
5
10

ODI3, statistical moments, PSD, and
nonlinear features / Regression MLP

Training-test 84.0
68.2
68.7

53.2
87.2
94.1

75.2
81.7
90.2

Vaquerizo-Villar et al.
(2018b)

298/75 5
10

Bispectrum, spectral features, ODI3,
and anthropometric variables / Multi-
class MLP

Feature
optimization-
training-test

61.8
60.0

97.6
94.5

81.3
85.3

Crespo et al. (2018) 176/176 1
3
5

Classical indices, statistical moments,
PSD, and nonlinear features /LDA, QDA,
and LR

Bootstrapping 93.9
74.6
70.0

37.8
81.7
91.4

84.3
77.7
82.7

Vaquerizo-Villar et al.
(2018a)

981/392 1
5
10

DFA and ODI3 / Regression MLP Training-test 97.1
78.8
77.1

23.3
83.7
94.8

82.7
81.9
91.1

Xu et al. (2019) 432/432 1
5
10

ODI3, statistical moments, PSD, and
nonlinear features / Regression MLP

Training-test 95.3
77.8
73.5

19.1
80.5
92.7

79.6
79.4
88.2

Our proposal: CHAT set 3196/312 1
5
10

CNN architecture Training-
validation-test

71.2
83.7
83.9

81.8
100
99.3

77.6
97.4
97.8

Our proposal: UofC set 3196/392 1
5
10

CNN architecture Training-
validation-test

90.8
76.0

36.4
88.1
95.8

80.1
83.9
92.3

Our proposal: BUH set 3196/231 1
5
10

CNN architecture Training-
validation-test

88.8
61.1
65.0

53.2
93.7
96.9

79.2
83.5
91.3

* Direct validation of a scoring criteria against AHI from PSG, N= Number of subjects, CNN = Convolutional Neural Networks, AHI= apnea-hypopnea
index, Se = sensitivity (%), Sp = specificity (%), Acc = accuracy (%) PSD= power spectral density, ODI3= 3% oxygen desaturation index, ODI4= 4% oxy-
gen desaturation index, LR = Logistic Regression, MLP = Multi-layer perceptron, LDA = Linear Discriminant analysis, QDA = Quadratic discriminant
analysis, CHAT = Childhood Adenotonsillectomy Trial, UofC = University of Chicago, BUH = Burgos University Hospital.

there is a higher increase in the performance of AHICNN
with respect to ODI3 and AHIMLP in terms of overall ac-
curacy, kappa, RMSE, and ICC. The proposed CNN model
also performed well in the UofC and BUH datasets. De-
spite not being as remarkable as in the CHAT dataset,
AHICNN also outperformed ODI3 and AHIMLP in most of
the performance metrics. As it can be seen in the scat-
ter plots (Figure 3), error distribution plots (Figure 4),
and confusion matrices (Figure 5), AHICNN performed
better in the CHAT dataset than in the UofC and BUH
datasets. However, the results are still remarkable con-
sidering that the optimum CNNmodel was trained in the
CHATdataset. In this sense, Collop (2002) state that there
is a high variability in the scoring of polysomnographies
among different sleep technologists, which may affect
the external assessment of our proposed deep-learning
methodology in two independent databases. In the cur-
rent work, we tried to minimize this variability by us-
ing a validation set composed of subjects from the three

datasets to optimize the hyperparameters of the CNN ar-
chitecture.
The varying diagnostic performance could also be due

to some differences in the clinical characteristics among
datasets. As observed in the scatter plots (Figure 3), AHI
from PSG has a different distribution in each dataset.
The mean values of AHI are 4.2 e/h, 9.3 e/h, and 5.9 e/h
in the CHAT, UofC and BUH test sets. In addition, in-
terquartile range are also different: 0.4-1.7 in the CHAT
dataset, 1.5-9.3 in the UofC dataset, and 0.6-5.3 in the
BUH dataset. The age of children is also different in each
dataset. CHAT is composed of children ranging 5 to 10
years of age, whereas UofC dataset is composed of chil-
dren from 0 to 13 years of age and children in the BUH
dataset range from 0 up to 18 years of age. Sampling
rate values of SpO2 recordings also vary among datasets:
(i) 1, 2, 10, 12, 16, 200, 256, and 512 Hz in the CHAT
dataset; (ii) 25, 200, and 500 Hz in the UofC dataset;
(iii) 200 Hz in the BUH dataset. Finally, the population
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groups of CHAT and UofC datasets are children from the
United States of America (USA), whereas BUH dataset is
composed of Spanish patients. In this respect, there are
differences in race and obesity prevalence between these
countries. Health system is also different: mostly public
in Spain vs. private in USA. This influences the socioe-
conomic level of the patients, thus having a considerable
impact on the health condition. Consequently, these dif-
ferences in sampling rate values, age range, AHI distri-
bution, and patient characteristics among countries may
have resulted in a lower diagnostic performance in the
UofC and BUH datasets. This agrees with previous stud-
ies that also reported differences in the diagnostic perfor-
mance among sleep datasets with different clinical char-
acteristics (Biswal et al., 2018; Nikkonen et al., 2019; Al-
varez et al., 2013).

5.3. Comparison with state-of-the-art studies
Table 5 shows the details of previous studies focused

on the analysis of the SpO2 signal in the automated de-
tection of pediatric OSA and its severity (Tsai et al., 2013;
Villa et al., 2015; Álvarez et al., 2017; Hornero et al.,
2017; Vaquerizo-Villar et al., 2018b; Crespo et al., 2018;
Vaquerizo-Villar et al., 2018a; Xu et al., 2019). The first
studies focused on the use of conventional oximetric in-
dices (Tsai et al., 2013; Villa et al., 2015). Nonetheless,
these studies did not employ a hold-out approach to fur-
ther assess their methodological approaches.
Recent studies focused on the use of automated sig-

nal processing and machine learning methods to en-
hance the diagnostic ability of the oximetry signal (Ál-
varez et al., 2017; Hornero et al., 2017; Vaquerizo-Villar
et al., 2018b; Crespo et al., 2018; Vaquerizo-Villar et al.,
2018a; Xu et al., 2019). These studies followed a three-
stage feature-engineering methodology to detect pedi-
atric OSA and its severity (Álvarez et al., 2017; Hornero
et al., 2017; Vaquerizo-Villar et al., 2018b; Crespo et al.,
2018; Vaquerizo-Villar et al., 2018a; Xu et al., 2019). The
diagnostic accuracies reported in these studies ranged be-
tween 75.2% and 85.5% Acc for an AHI cutoff of 1 e/h,
79.4%-82.8% Acc using an AHI cutoff of 5 e/h, and 85.3%-
91.1% using an AHI cutoff of 10 e/h. From these studies,
onlyHornero et al. (2017), Xu et al. (2019), andVaquerizo-
Villar et al. (2018a) evaluated the diagnostic performance
of an AHI estimation model for the common AHI cutoffs
of 1, 5, and 10 e/h. As aforementioned, our optimum
CNN model showed a higher diagnostic performance in
the CHAT, UofC, and BUH datasets than state-of-the-art
studies for the AHI cutoffs of 5 and 10 e/h. In addi-
tion, a higher Sp for the AHI cutoff of 1 e/h was obtained
in the CHAT, UofC, and BUH datasets than the reported
by Xu et al. (2019) and Vaquerizo-Villar et al. (2018a),
which is useful to discard the presence of OSA in pedi-
atric patients. Beyond the superior performance of our
CNN model, it uses raw data, i.e., does not require nei-
ther prior pre-processing nor human-driven assumptions
regarding the SpO2 information needed.

5.4. Limitations

In spite of the promising results of our proposal, some
limitations should be considered. First, the CNN model
training procedures were conducted using only the CHAT
database, since the other two datasets do not contain
the annotation files with the time locations of apneic
events. This, together with the differences in sampling
rate values, age range, AHI distribution, and patient
characteristics among countries, may have resulted in
a lower diagnostic performance in the UofC and BUH
datasets. Nonetheless, our proposed approach showed a
higher diagnostic ability than a conventional clinical in-
dex, ODI3, as well as a classical feature-engineering ap-
proach, AHIMLP, in all the datasets. Another limitation
is that different optimization runs could result in differ-
ent values of the hyperparameters, as shown in Figure 2.
However, preliminary analysis on our data showed that
kappa values in the validation set were similar among dif-
ferent runs, whichhighlights the reliability of ourCNNar-
chitecture. Regarding the explanation of the features ex-
tracted by theCNN, a new limitation arises. In this regard,
the application of methods for explainable deep-learning
models would help to further understand the perturba-
tions in oximetry dynamics caused by apneic events, as
well as the influence of the different elements of the CNN
architecture. Future researchmay also focus on the use of
pretrained deep-learning architectures especially suited
for the time series classification field, which might in-
crease the diagnostic performance of traditional architec-
tures based onCNNandRNN, analogous to the pretrained
deep-learning networks existing in the image processing
field (Canziani et al., 2016). Another limitation is that we
used the AHI without including central sleep apnea (CSA)
events, as originally conducted in the study that designed
the CHAT database (Marcus et al., 2013). In this respect,
our proposal could also be used to estimate other phys-
iological parameters, such as the apnea index, obstruc-
tive apnea index, central apnea index, and/or ODI. Addi-
tionally, the use of SpO2 together with other physiologi-
cal signals from PSG may help to improve the diagnostic
ability of our proposal at the cost of higher complexity in
the test, since some physiological perturbation of apneic
events may not be detected by the oximetry signal alone
(Marcus et al., 2012). Finally, another future goal would
be further validation of our proposed methodology in a
database of oximetry signals recorded at home.

6. Conclusions

In summary, we investigated the ability of a novel
deep-learning model based on CNN to automatically de-
tect pediatric OSA and its severity from the raw oxime-
try signal. Our results suggest that deep learning is
an appropriate tool to automatically learn discriminative
features from oximetry dynamics associated to apneic
events. The proposed CNN architecture reached a high
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diagnostic performance, outperforming the ODI3, a clin-
ical approach, as well as the AHIMLP from a conventional
feature-engineering approach. In addition, we achieved
higher performance than the reported by previous stud-
ies, particularly for moderate-to-severely affected chil-
dren. The extensive validation of our proposal in three
independent datasets as well as the design of a screening
protocol highlight the applicability of our results. There-
fore, we conclude that deep-learning techniques could be
potentially used to enhance the diagnostic ability of the
oximetry signal in the context of pediatric OSA.
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Palma de Mallorca (Spain), May 31 - June 3, 2018.

14. Daniel Álvarez, Ainara Garde, Andrea Crespo, Fernando Vaquerizo-Villar,
Gonzalo C. Gutiérrez-Tobal, Ana Cerezo-Hernández, J. Mark Ansermino,
Guy A. Dumont, Roberto Hornero, Félix del Campo, “Utilidad de la
dinámica simbólica para el análisis del registro portátil de oximetría me-
diante un smartphone en la ayuda al diagnóstico de la apnea del sueño
infantil”, XXVI Reunión Anual de la Sociedad Española del Sueño (SES 2018),
Barcelona (Spain), April 26 - April 28, 2018.

15. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Verónica Barroso-García, Fer-
nando Vaquerizo-Villar, Adrían Martín-Montero, Andrea Crespo, Félix del
Campo, Roberto Hornero, “Aplicación de la entropía espectral a la señal de
variabilidad de pulso para incrementar el potencial de la oximetría en el
diagnóstico de la apnea del sueño a domicilio”, XXVI Reunión Anual de la
Sociedad Española del Sueño (SES 2018), Barcelona (Spain), April 26 - April
28, 2018.

16. Fernando Vaquerizo-Villar, Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal,
Leila Kheirandish-Gozal, Verónica Barroso-García, Andrea Crespo, Félix
del Campo, David Gozal, Roberto Hornero, “Utilidad de los patrones bi-
narios locales aplicados a la señal de oximetría en la ayuda al diagnóstico
del síndrome de la apnea-hipopnea del sueño en niños”, XXVI Reunión An-
ual de la Sociedad Española del Sueño (SES 2018), Barcelona (Spain), April 26 -
April 28, 2018.

17. Verónica Barroso-García, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-
Gozal, Daniel Álvarez, Fernando Vaquerizo-Villar, Roberto Romero-Oraá,
Andrea Crespo, Félix del Campo, David Gozal, Roberto Hornero, “Análisis
de diferencias de segundo orden aplicado a la señal de flujo aéreo mono-
canal para la ayuda al diagnóstico del síndrome de la apnea-hipopnea
del sueño en niños”, XXXV Congreso Anual de la Sociedad Española de Inge-
niería Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 481-484, Bilbao
(Spain), November 29 - December 1, 2017.

18. Fernando Vaquerizo-Villar, Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal,
Leila Kheirandish-Gozal, Verónica Barroso-García, Roberto Romero-Oraá,
Andrea Crespo, Félix del Campo, David Gozal, Roberto Hornero, “Análi-
sis de fluctuaciones sin tendencias (DFA) en los registros de oximetría



B.1. Publications 155

para la ayuda en el diagnóstico del síndrome de la apnea-hipopnea del
sueño infantil”, XXXV Congreso Anual de la Sociedad Española de Ingeniería
Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 209-212, Bilbao
(Spain), November 29 - December 1, 2017.

19. Daniel Álvarez, Fernando Vaquerizo-Villar, Andrea Crespo, Gonzalo C.
Gutiérrez-Tobal, Verónica Barroso-García, Ana Cerezo-Hernández, Graciela
López-Muñiz, Leila Kheirandish-Gozal, David Gozal, Roberto Hornero,
Félix del Campo, “Transformada wavelet de la señal de oximetría nocturna
y variables antropométricas en la ayuda al diagnóstico automático de la ap-
nea del sueño infantil”, XXV Reunión Anual de la Sociedad Española del Sueño
(SES 2017), Santander (Spain), April 20 - April 22, 2017.

20. Gonzalo C. Gutiérrez-Tobal, Julio de Frutos, Daniel Álvarez, Fernando
Vaquerizo-Villar, Verónica Barroso-García, Andrea Crespo, Félix del
Campo, Roberto Hornero, “Estimación de la severidad de la apnea del
sueño mediante redes neuronales bayesianas entrenadas con información
espectral del flujo aéreo de sonda de presión y termistor”,XXV Reunión An-
ual de la Sociedad Española del Sueño (SES 2017), Santander (Spain), April 20 -
April 22, 2017.

21. Verónica Barroso-García, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-
Gozal, Daniel Álvarez, Fernando Vaquerizo-Villar, Andrea Crespo, Félix
del Campo, David Gozal, Roberto Hornero, “Análisis espectral de la señal
de flujo aéreo como ayuda al diagnóstico del síndrome de apnea-hipopnea
del sueño en niños”, XXXIV Congreso Anual de la Sociedad Española de Inge-
niería Biomédica (CASEIB 2016), ISBN: 978-84-9048-531-6, pp. 228-231, Va-
lencia (Spain), November 23 - November 25, 2016.

22. Fernando Vaquerizo-Villar, Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal,
Verónica Barroso-García, Leila Kheirandish-Gozal, Andrea Crespo, Félix
del Campo, David Gozal, Roberto Hornero, “Análisis de la señal de
oximetría mediante la densidad espectral de potencia y bispectrum en la
ayuda al diagnóstico de la apnea infantil”, XXXIV Congreso Anual de la
Sociedad Española de Ingeniería Biomédica (CASEIB 2016), ISBN: 978-84-9048-
531-6, pp. 202-205, Valencia (Spain), November 23 - November 25, 2016.

23. Andrea Crespo, Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal, Fernando
Vaquerizo-Villar, Leila Kheirandish-Gozal, Roberto Hornero, David Gozal,
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Félix del Campo, “Análisis automático mediante regresión logística de la
señal de oximetría nocturna en niños con sospecha del síndrome de apnea-
hipopnea del sueño”, XXIV Reunión Anual de la Sociedad Española del Sueño
(SES 2016), Valladolid (Spain), March 31 - April 2, 2016.

24. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Andrea Crespo, Fer-
nando Vaquerizo-Villar, Verónica Barroso-García, Leila Kheirandish-
Gozal, David Gozal, Félix del Campo, Roberto Hornero, “Modelos de
máquinas de vector soporte aplicados sobre la oximetría nocturna para
la detección automática de niños con síndrome de la apnea-hipopnea del
sueño severo”, XXIV Reunión Anual de la Sociedad Española del Sueño (SES
2016), Valladolid (Spain), March 31 - April 2, 2016.

B.2 International internship

Three-month research internship at the Charité UniversitätsMedizin Berlin, Ger-
many.

i. Purpose of the internship
The main purpose of the research stay was to deepen into the application of
deep-learning techniques to physiological signals in the pediatric OSA con-
text. To achieve that objective, the developed specific objectives were pro-
posed: (1) obtaining of a database of pediatric OSA patients with annota-
tions of the time location of sleep stages and apneis events; (2) a state-of-the-
art revision of deep-learning algorithms; (3) application of a CNN architec-
ture to detect apneic events from oximetry; (4) application of a CNN archi-
tecture to the oximetry signal to estimate the AHI in pediatric OSA patients;
(5) application of a CNN architecture to PPG signals to detect sleep stages;
(6) statistical analysis of the results; and (7) presentation and publication
of the main findings in conferences and JCR journals, respectively. Apart
from the main internship activity, the collaboration between members from
the Charité UniversitätsMedizin Berlin, the University of Valladolid, and the
Cardiovascular Physics research group from the Humboldt University has
been promoted with the joint involvement in different investigations. This
ongoing collaboration has hitherto led to the publication of 2 JCR article
and 1 international conference paper by members from these institutions.

ii. Quality indicators of the institutions
With more than 300 years of history, Charité UniversitätsMedizin Berlin is
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a multicenter hospital complex, international reference, where 3700 scien-
tists perform their research activity. Among its former members, there have
been 11 researchers who have obtained a Nobel prize. This stay was held
at the International Center of Sleep Medicine (ICSM) of the Charité Univer-
sitätsMedizin Berlin, an expert research center on the area of signal process-
ing in the context of sleep disorders. During the stay, there has also been
collaboration with the Cardiovascular Physics research group in the Hum-
boldt University, Berlin. In this respect, Charité UniversitätsMedizin Berlin
and Humboldt University of Berlin were placed between positions 51 and
75 in the Ranking of Shangai in 2020. The scientific chair of the ICSM,
Professor Thomas Penzel, who was also the supervisor of the internship,
is currently the principal investigator of the international research project
entitled “Discovery of fundamental mechanisms of sleep for breakthrough
technologies of neurorehabilitation medicine”. He has also participated in
important European Union (EU) funded projects ENN, ANNDEE, SIESTA,
in the FP6 projects BIOSIM, SENSATION, ENN-ICS and DAPHNET and
the FP7 project HIVE. His extensive curriculum also includes more than
250 JCR articles, book chapters, and books in the field of sleep medicine,
reaching a Hirsch index of 51. He has also received important recognition:
the “Bial Award” for clinical medicine in Portugal, 2001; the “Bill Gruen
Award” for Innovations in Sleep Research by the Sleep Research Society in
2008; the “Innovations in Biomedical technology Award” by the German
Ministry for Education and Research, 2008; the “Somnus Award” for excel-
lent service in sleep medicine by Schlafmagazin in Germany, 2012; and the
“Distinguished development Award” by the Chinese sleep research society
in 2014. To date, he has also supervised more than 19 Doctoral Thesis.

B.3 Grants

07/2019: ‘Ayudas por la Asistencia a Cursos, Congresos y Jornadas Rele-
vantes para el Desarrollo de Tesis Doctorales’ grant (Berlin, Germany,
25/07/2019-27/07/2019), funded by the Universidad de Valladolid.

06/2019: ‘Ayudas a la movilidad para estancias breves y traslados temporales’
grant (Berlin, Germany, 01/05/2019-31/05/2019), funded by the Min-
isterio de Educación y Formación Profesional from the Spanish Govern-
ment.
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02/2019: Erasmus + scholarship to perform a three month internship (Berlin,
Germany, 01/05/2019-31/05/2019), funded by the Universidad de Val-
ladolid with funds from the EU.

04/2018: Erasmus + scholarship to assist to a two weeks English course
(Portsmouth, United Kingdom, 01/04/2018-15/04/2018), funded by
the Universidad de Valladolid with funds from the EU.

09/2017: ‘Ayuda para contratos predoctorales para la Formación de Profeso-
rado Universitario (FPU)’ grant (FPU16/02938), funded by the Minis-
terio de Educación, Cultura y Deporte from the Spanish Government.

07/2017: ‘Ayuda para financiar la contratación predoctoral de personal inves-
tigador’ grant , funded by the Consejería de Educación de la Junta de
Castilla y León from Spain and the European Social Fund.

04/2017: Erasmus + scholarship to assist to a two weeks English course (Bristol,
United Kingdom, 08/04/2017-22/04/2017), funded by the Universidad
de Valladolid with funds from the EU.

11/2014: Grant for the colaboration in research tasks in the Department of Sig-
nal Theory and Communications from the University of Valladolid
(Bristol, United Kingdom, 19/11/2014-31/07/2015), funded by the
Consejo Social de la Universidad de Valladolid.

B.4 Awards and honors

09/2019: SOCALPAR DUE 2019 Award, for the project entitled “Diseño y val-
idación de nuevos modelos de oximetría basados en arquitecturas de
deep learning para la clasificación automática de eventos respiratorios
en pacientes con sospecha de síndrome de apnea-hipopnea del sueño”,
conducted by Félix del Campo-Matías, Julio F. De Frutos-Arribas,
Tomás Ruíz-Albi, C. Ainhoa Arroyo-Domingo, Ana Cerezo-Hernández,
Daniel Álvarez González, Fernando Moreno-Torrero, Roberto Hornero-
Sánchez, Gonzalo C. Gutiérrez-Tobal, and Fernando Vaquerizo-Villar.

06/2018: “Selección Plata” Award in the Respiratory Sleep Disorders field at
the SEPAR 2018, for the conference paper entitled “Caracterización del
registro portátil de oximetría nocturna mediante técnicas de dinámica
simbólica en niños con sospecha de apnea del sueño”, conducted
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by Daniel Álvarez-González, Ainara Garde-Martínez, Andrea Crespo-
Sedano, Fernando Vaquerizo-Villar, Ana Cerezo-Hernández, J. Mark
Ansermino, Guy A Dumont, Roberto Hornero Sánchez, and Félix del
Campo-Matías.

04/2017: Prize for the “Taller de preparación de propuestas INNOvadoras
para participar en el proyecto europeo INNOLABS”, for the project
entitled “Diagnóstico y estimación de la severidad del Síndrome
de Apnea-Hipopnea del Sueño mediante procesado automático de
señales oximétricas”, conducted by Verónica Barroso-García, Fernando
Vaquerizo-Villar, Gonzalo C. Gutiérrez-Tobal, and Roberto Hornero.

04/2017: Award for the second best conference paper in the “XXV Reunión
anual de la Sociedad Española del Sueño ”, for the conference pa-
per entitled “Transformada wavelet de la señal de oximetría noc-
turna y variables antropométricas en la ayuda al diagnóstico de la
apnea del sueño infantil”, conducted by Daniel Álvarez-González,
Fernando Vaquerizo-Villar, Andrea Crespo, Gonzalo C. Gutiérrez-
Tobal, Verónica Barroso-García, Ana Cerezo, Graciela López, Leila
Kheirandish-Gozal, David Gozal, Roberto Hornero, and Félix del
Campo.

05/2016: SOCALPAR 2016 Award, for the project entitled “Utilidad de una
red neuronal basada en características demográficas y de oximetría
nocturna como método ayuda al diagnóstico del síndrome de apnea-
hipopnea obstructiva del sueño en niños”, conducted by Félix del
Campo, Daniel Álvarez, Andrea Crespo, Tania Álvaro, Gonzalo C.
Gutiérrez-Tobal, Ainhoa Arroyo, Julio De Frutos, Tomás Ruíz, Verónica
Barroso, Fernando Vaquerizo-Villar, David Gozal, and Roberto
Hornero.

12/2014: Prize for Special Achievement in the Bacheloor Degree in Specific
Telecomunications Engineering, due to the obtaining of the highest
marks of his class.





Apéndice C

Resumen en castellano

C.1 Introducción

La apnea obstructiva del sueño (AOS) es un trastorno respiratorio de elevada
prevalencia (1 % - 5 %) en la población infantil (Marcus et al., 2012). La AOS in-
fantil se caracteriza por la recurrencia de episodios de ausencia total (apneas) o
parcial (hipopneas) de respiración durante el sueño de los niños, que derivan en
una arquitectura del sueño fragmentada y no reparadora (Marcus et al., 2012). En
caso de no ser tratada, la AOS infantil puede tener importantes consecuencias ad-
versas que afecten a los sistemas cardiovascular, neurocognitivo, metabólico y al
comportamiento, resultando por tanto en una disminución de la salud y calidad
de vida de los niños afectados (Capdevila et al., 2008).

La prueba de referencia para el diagnóstico de la AOS en niños es la polisom-
nografía (PSG) nocturna (Marcus et al., 2012), que requiere la presencia de los
niños durante una noche completa en una unidad del sueño pediátrica, donde se
monitorizan hasta 32 señales biomédicas. Estas señales son posteriormente anali-
zadas por especialistas del sueño para obtener el índice de apnea-hipopnea (IAH)
por hora de sueño, que es la variable polisomnográfica utilizada para el diagnós-
tico de la AOS (Tan et al., 2014). A pesar de su efectividad, la PSG es una prueba
compleja, debido a la necesidad de registrar múltiples señales biomédicas (Tan
et al., 2015). Además, los niños tienen que dormir fuera del entorno habitual con
múltiples sensores colocados por el cuerpo, lo cual es especialmente incómodo e
intrusivo (Katz et al., 2012). Finalmente, esta prueba presenta disponibilidad li-
mitada, lo cual retrasa el acceso al diagnóstico y tratamiento de los pacientes (Tan
et al., 2015).
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Como consecuencia de estas limitaciones, en los últimos años se han desarro-
llado pruebas diagnósticas más sencillas como alternativa a la PSG (Kaditis et al.,
2016b; Marcus et al., 2012). En este contexto, un enfoque habitual consiste en el
análisis automático de la señal de saturación de oxígeno en sangre (SpO2) proce-
dente de la oximetría nocturna, debido a su fiabilidad, sencillez e idoneidad para
los niños (del Campo et al., 2018). La señal de SpO2 proporciona una medida in-
directa de la cantidad de oxígeno en la sangre, conteniendo por tanto información
sobre las desaturaciones de oxígeno asociadas a los eventos de apnea e hipopnea
propios de la AOS infantil (Berry et al., 2012).

Múltiples estudios han demostrado la utilidad del análisis automático de la
señal de SpO2 en la ayuda al diagnóstico de la AOS en adultos (del Campo et al.,
2018). En el contexto de la AOS infantil, los estudios precedentes han analiza-
do la señal de SpO2 mediante una metodología de feature engineering similar a la
empleada en adultos, basada en la extracción de características, selección de va-
riables y reconocimiento de patrones (del Campo et al., 2018). Sin embargo, estos
estudios obtuvieron un rendimiento diagnostico menor al obtenido en la pobla-
ción adulta (del Campo et al., 2018). Además, se observó una alta redundancia en
las características extraídas de la señal de oximetría (Hornero et al., 2017), desta-
cando la necesidad de buscar nuevos algoritmos de procesado de señal que pro-
porcionen información adicional sobre la señal de SpO2 para las particularidades
de la AOS infantil.

En esta Tesis Doctoral, se presenta un compendio formado por cuatro artícu-
los publicados en revistas científicas indexadas en el Journal Citation Reports (JCR)
entre los años 2018 y 2021. Las tres primeras publicaciones se centran en la aplica-
ción de tres métodos de extracción de características novedosos en el contexto de
la AOS infantil, que permitan obtener información adicional de la señal de oxi-
metría. En la primera publicación, se aplicó el bispectrum (Vaquerizo-Villar et al.,
2018b), un método de análisis en el dominio de la frecuencia que, a diferencia del
análisis espectral convencional, permite identificar relaciones de fase y desviacio-
nes de la linealidad y gaussianidad de la señal de oximetría (Chua et al., 2010).
Siguiendo la caracterización de la señal de oximetría en el dominio de la frecuen-
cia, en la segunda publicación se ha utilizado la transformada wavelet (Vaquerizo-
Villar et al., 2018c), que proporciona una resolución óptima tiempo-frecuencia y
además es adecuada para analizar las propiedades no estacionarias de la señal
de SpO2 asociadas a los eventos apneicos (Rioul and Vetterli, 1991). El tercer ar-
tículo (Vaquerizo-Villar et al., 2018a) se ha centrado en mejorar la caracterización
de las propiedades no lineales y no estacionarias de la señal de SpO2 median-
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te el análisis de fluctuaciones sin tendencias (detrended fluctuation analysis, DFA)
(Vaquerizo-Villar et al., 2018a), un método de análisis no lineal que permite detec-
tar cambios en las propiedades de correlación de la señal de SpO2 a lo largo de las
escalas temporales (Chen et al., 2002; Hua and Yu, 2017). Finalmente, en la cuar-
ta publicación de la Tesis Doctoral (Vaquerizo-Villar et al., 2021) se emplea una
metodología de deep learning que, a diferencia de la metolodología de feature engi-
neering utilizada en las tres primeras publicaciones, permite identificar de manera
automática nuevas características que no son conocidas a priori por los expertos
diseñadores del estudio (LeCun et al., 2015). Específicamente, en Vaquerizo-Villar
et al. (2021) se evalúa la utilidad de una red neuronal convolucional (convolutio-
nal neural networks, CNN), una técnica de deep learning, para extraer de manera
automática toda la información relevante de la señal de SpO2 asociada a eventos
apneicos.

C.2 Hipótesis y objetivos

La señal de SpO2 permite detectar las desaturaciones de oxígeno asociadas a
eventos apneicos, lo que, junto con la facilidad de adquisición de esta señal, ha
llevado a su uso como herramienta de simplificación de diagnóstico de la AOS
infantil (del Campo et al., 2018). En este sentido, la primera de las hipótesis en
las que se sustenta la investigación desarrollada es que la señal de oximetría por si
misma contiene información suficiente para la simplificación del diagnóstico de la AOS
infantil. Sin embargo, estudios previos han encontrado una gran redundancia en
las características convencionales que se suelen extraer de la señal de SpO2 (del
Campo et al., 2018; Hornero et al., 2017). Por lo tanto, se hipotetiza que métodos
novedosos de extracción de características podrían mejorar la caracterización de los cam-
bios producidos en la señal de SpO2 relacionados con los recurrentes eventos de apnea e
hipopnea típicos de la AOS infantil. A pesar de su utilidad, los métodos de feature en-
gineering tienen una capacidad limitada a la hora de obtener toda la información
de los datos debido a dos grandes limitaciones (LeCun et al., 2015): (i) requieren
un gran conocimiento del campo bajo estudio para diseñar el proceso de extrac-
ción de características; (ii) tienen un nivel de abstracción bajo que no les permite
detectar patrones de alta complejidad en los datos. En este sentido, los algoritmos
de deep learning son capaces de aprender patrones complejos de manera automá-
tica a partir de la señal en crudo, por lo que se hipotetiza que los algoritmos de deep
learning podrían extraer de la señal de SpO2 toda la información relacionada con la AOS
infantil. En base a estas suposiciones, se fundamenta la hipótesis global de esta Te-
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sis Doctoral: "La aplicación de técnicas novedosas de extracción de características y de
deep learning permite encontrar patrones ocultos en las desaturaciones asociados a even-
tos apneicos,mejorando así la capacidad diagnóstica de la señal de SpO2 en el contexto de
la AOS infantil.”.

Definidas las hipótesis, el objetivo general de la Tesis es diseñar, desarrollar
y evaluar nuevos modelos automáticos de ayuda a la toma de decisiones clínicas en el
contexto de la AOS infantil basados en el procesado avanzado de la señal de oximetría
nocturna. Para llevar a cabo este objetivo, se proponen los siguientes objetivos
específicos:

I. Mejorar la caracterización de los cambios en la señal de SpO2, tanto en el
dominio del tiempo como en el dominio de la frecuencia, relacionados con
los eventos apneicos típicos de la AOS infantil.

II. Encontrar nuevas características de la señal de oximetría capaces de pro-
porcionar información información relevante y complementaria a los pará-
metros convencionales.

III. Diseñar y optimizar modelos de reconocimiento de patrones de alto ren-
dimiento que abordan la detección automática de la AOS infantil y su se-
veridad a partir de subconjuntos óptimos de características de la señal de
SpO2.

IV. Investigar y desarrollar arquitecturas novedosas de deep learning capaces de
aprender de manera automática toda la información relevante de la señal
de oximetría en el contexto de la AOS infantil.

C.3 Sujetos y señales

Durante la Tesis Doctoral se han analizado tres bases de datos diferentes: (i) la
base de datos pública Childhood Adenotonsillectomy Trial (CHAT), compuesta por
1638 estudios del sueño; (ii) la base de datos procedente de la Universidad de
Chicago (University of Chicago, UofC), compuesta por 981 sujetos pediátricos; y
(iii) la base de datos del Hospital Universitario de Burgos (Burgos University Hos-
pital, BUH), compuesta por 578 sujetos. Todas ellas contienen registros de SpO2

de sujetos pediátricos de 0 a 18 años de edad que fueron derivados a la PSG noc-
turna por sospecha de AOS.

Los registros de SpO2 fueron adquiridos durante la PSG utilizando frecuen-
cias de muestreo de 1 a 512 Hz. Se siguieron las normas de la Academia Ame-



C.4. Métodos 165

ricana de Medicina del Sueño (AASM) (Berry et al., 2012; Iber et al., 2007) para
obtener el IAH de cada PSG nocturna, que determina el número de eventos de
apnea e hipopnea por hora de sueño (e/h). En base al IAH, se han utilizado los
puntos de corte habituales (1 e/h, 5 e/h y 10 e/h) para determinar los grupos de
severidad manejados en la práctica clínica: no AOS (IAH < 1 e/h), AOS leve (1
≤ IAH < 5 e/h), AOS moderado (5 ≤ IAH < 10 e/h) y AOS severo (IAH ≥ 10
e/h) (Alonso-Álvarez et al., 2011; Church, 2012; Tan et al., 2014). Además, el um-
bral de 5 e/h, utilizado habitualmente para recomendar el tratamiento quirúrgico
en aquellos niños con un mayor riesgo de desarrollar comorbilidades (Tan et al.,
2014), ha sido empleado para establecer la presencia o ausencia de la AOS infantil
desde un enfoque binario: AOS negativo (AHI < 5 e/h) y AOS positivo (AHI ≥
5 e/h). Las siguientes tablas incluyen las principales variables clínicas y sociode-
mográficas, incluyendo edad, porcentaje de sujetos masculinos, e índice de masa
corporal (IMC) de las tres bases de datos: CHAT (Tabla C.1), UofC (Tabla C.2) y
BUH (Tabla C.3).

C.4 Métodos

Las señales de SpO2 se analizaron utilizando metodologías de feature engineering
(Vaquerizo-Villar et al., 2018a,b,c) y deep learning (Vaquerizo-Villar et al., 2021).
En ambas metodologías, se comenzó con una etapa de preprocesado de señal,
que se encargó de adaptar la señal de oximetría a los requisitos de los diferentes
algoritmos de procesado.

Tras el preprocesado, la metodología de feature engineering se desarrolló en

Tabla C.1. Datos clínicos y sociodemográficos de la base de datos CHAT.

Todos no AOS AOS leve AOS mo-
derado

AOS seve-
ro

Registros de SpO2 ( %) 1638 637 609 205 187
(100 %) (38.9 %) (37.2 %) (12.5 %) (11.4 %)

Edad (años) 7 7 7 7 7
[6, 8] [6, 8] [6, 8] [6, 8] [6, 8]

Hombres ( %) 602 297 287 101 92
(47.4 %) (46.6 %) (47.1 %) (49.3 %) (49.2 %)

IMC (kg/m2) 17.3 17.0 17.4 18.6 18.9
[15.8, 21.7] [15.5, 19.6] [15.6, 21.7] [15.4, 23.3] [16.0, 24.3]

IAH (e/h) 1.6 0.4 2.2 7.1 17.9
[0.6, 4.7] [0.2, 0.7] [1.5, 3.2] [5.9, 8.4] [12.8, 26.9]

Los datos se presentan como mediana [rango intercuartil], n o n ( %). AOS = apnea obstructiva del
sueño.
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Tabla C.2. Datos clínicos y sociodemográficos de la base de datos UofC.

Todos no AOS AOS leve AOS mo-
derado

AOS seve-
ro

Registros de SpO2 ( %) 981 175 401 176 229
(100 %) (17.8 %) (40.9 %) (17.9 %) (23.4 %)

Edad (años) 6 7 6 5 4
[3, 9] [4, 10] [4, 9] [2, 8] [2, 8]

Hombres ( %) 602 109 247 107 139
(61.4 %) (62.3 %) (61.6 %) (60.8 %) (60.7 %)

IMC (kg/m2) 17.9 17.7 17.7 18.6 18.3
[15.8, 21.9] [15.5, 20.9] [15.9, 21.2] [16.2, 24.0] [16.0, 23.2]

IAH (e/h) 3.8 0.5 2.5 6.8 19.1
[1.5, 9.3] [0.1, 0.8] [1.7, 3.5] [5.8, 8.3] [13.9, 31.1]

Los datos se presentan como mediana [rango intercuartil], n o n ( %). AOS = apnea obstructiva del
sueño.

Tabla C.3. Datos clínicos y sociodemográficos de la base de datos BUH.

Todos no AOS AOS leve AOS moderado AOS severo

Registros de SpO2 ( %) 578 205 220 65 88
(100 %) (35.5 %) (38.1 %) (11.3 %) (15.2 %)

Edad (años) 5 6 5 5 4
[4, 7] [4, 8] [3, 6] [3, 6] [3, 5]

Hombres ( %) 356 127 129 38 62
(61.6 %) (62.0 %) (58.7 %) (58.5 %) (70.5 %)

IMC (kg/m2) 16.0 16.1 16.0 15.4 16.1
[14.6, 18.2] [14.5, 18.8] [14.7, 17.7] [14.6,18.1] [14.7,17.3]

IAH (e/h) 1.8 0.4 2.1 6.9 24.3
[0.6, 5.3] [0.0, 0.6] [1.5,3.4] [5.8, 8.1] [14.8, 34.9]

Los datos se presentan como mediana [rango intercuartil], n o n ( %). AOS = apnea obstructiva del
sueño.

tres etapas fundamentales (Vaquerizo-Villar et al., 2018a,b,c): (1) extracción de ca-
racterísticas, (2) selección de características y (3) reconocimiento de patrones. En
primer lugar, se llevó a cabo una fase de extracción de características para obtener
un conjunto de parámetros que reflejen la información contenida en las señales
de SpO2 sobre los eventos apneicos de la AOS. Para ello, se emplearon méto-
dos de distinta naturaleza: parámetros estadísticos, índices de oximetría clásicos,
análisis en el dominio de la frecuencia y análisis no lineal. Como se ha comen-
tado anteriormente, en esta Tesis Doctoral se ha evaluado de manera particular
la utilidad de tres métodos novedosos para proporcionar información adicional
y complementaria a los métodos tradicionales relacionada con la AOS infantil y
su severidad: (i) el bispectrum (Vaquerizo-Villar et al., 2018b), técnica de análisis
en el dominio de la frecuencia que permite detectar relaciones de fase y desvia-
ciones de la linealidad y la gaussianidad en la señal de SpO2 (Chua et al., 2010);
(ii) la transformada wavelet (Vaquerizo-Villar et al., 2018c), que permite analizar
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la señal de SpO2 con una gran resolución espectral a frecuencias bajas y una al-
ta resolución temporal en el rango de altas frecuencias (Rioul and Vetterli, 1991);
(iii) el DFA (Vaquerizo-Villar et al., 2018a), método no lineal que permite detec-
tar cambios en las propiedades de correlación de la señal de SpO2 relacionados
con la escala temporal causados por spikes aleatorios y/o segmentos con distinto
comportamiento local (Chen et al., 2002; Hua and Yu, 2017).

Tras la extracción de características, se llevó a cabo una etapa de selección de
variables para obtener subconjuntos óptimos de características relacionadas con
la AOS infantil (Vaquerizo-Villar et al., 2018a,b,c). Para ello, se ha empleado el
algoritmo fast correlation-based filter (FCBF), que permite obtener un subconjun-
to de características relevantes y no redundantes. A partir de estos subconjuntos
óptimos, en la etapa de reconocimiento de patrones se aplicaron algoritmos de
machine learning para obtener un diagnóstico automático acerca de la presencia
y severidad de la AOS infantil. Concretamente, se han aplicado tres métodos di-
ferentes (Vaquerizo-Villar et al., 2018a,b,c): regresión logística (logistic regression,
LR), máquinas vector soporte (support vector machines, SVM), y red neuronal per-
ceptrón multicapa (multiLayer perceptron, MLP).

Al contrario que los enfoques de feature engineering, que requieren determinar
las características a extraer de los datos, los métodos de deep learning son capaces
de aprender de manera automática las particularidades inherentes de los mismos
mediante el uso de arquitecturas multicapa con múltiples niveles de representa-
ción (LeCun et al., 2015). En esta Tesis Doctoral se ha aplicado una arquitectura de
deep learning basada en CNNs (Vaquerizo-Villar et al., 2021). Las CNNs tienen una
arquitectura multicapa, con pesos compartidos, conexiones dispersas y operacio-
nes de reducción de dimensionalidad (pooling), que permite identificar, a partir
de la señal en crudo, características complejas presentes en distintas partes de la
señal (LeCun et al., 2015). Concretamente, se ha utilizado una arquitectura CNN
formada por una serie de bloques convolucionales, cada uno de ellos compuesto
por: (i) una capa convolucional; (ii) normalización (batch normalization); (iii) fun-
ción de activación; (iv) pooling; y (v) regularización (dropout). Esta arquitectura se
ha entrenado para estimar el número de eventos apneicos en cada segmento de
20 minutos de la señal de SpO2. A partir de la salida de la CNN para segmento,
el IAH de cada sujeto se ha calculado mediante un procedimiento de agregación
basado en regresión lineal, obteniendo así el diagnóstico automático de la AOS
infantil y su severidad (Vaquerizo-Villar et al., 2021).

Finalmente, se han empleado las siguientes técnicas de análisis estadístico pa-
ra interpretar y evaluar los resultados obtenidos con las metodologías de proce-
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sado de señal desarrolladas en esta Tesis Doctoral: (i) test de hipótesis estadística;
(ii) métricas de rendimiento diagnóstico; (iii) medidas de concordancia; y (iv) es-
trategias de validación.

C.5 Resultados y discusión

La tabla C.4 muestra el rendimiento diagnóstico global obtenido con las meto-
dologías de feature engineering (Vaquerizo-Villar et al., 2018a,b,c) y deep learning
(Vaquerizo-Villar et al., 2021) desarrolladas en el compendio de publicaciones. Se
puede observar cómo se ha alcanzado un alto rendimiento diagnóstico con los
distintos enfoques metodológicos, con precisiones en un rango de 77.6 %-82.7 %,
81.3 %-97.4 % y 85.3 %-97.8 % para los umbrales del IAH de 1, 5 y 10 e/h, respec-
tivamente.

Con respecto a las metodologías de feature engineering, se ha mejorado la ca-
racterización de los cambios inducidos por la AOS infantil en la señal de SpO2 en
el dominio del tiempo y en el dominio de la frecuencia utilizando el bispectrum,
la transformada wavelet y el DFA (Vaquerizo-Villar et al., 2018a,b,c). El bispectrum
ha permitido detectar relaciones de fase y desviaciones de la linealidad y la gaus-
sianidad de la señal de SpO2 que proporcionan información adicional y comple-
mentaria a los enfoques convencionales (Vaquerizo-Villar et al., 2018b). Concre-
tamente, el modelo MLP entrenado en Vaquerizo-Villar et al. (2018b) diseñado
con un subconjunto óptimo que incluía variables extraídas del bispectrum ha su-
perado la capacidad diagnóstica de un modelo MLP entrenado sin características
del bispectrum. Además, la gran resolución proporcionada por la transformada
wavelet discreta (discrete wavelet transform, DWT) a bajas frecuencias, así como su
adecuación para señales no estacionarias, ha demostrado ser útil para analizar los
cambios producidos en la señal de SpO2 por los eventos apneicos. En concreto,
el modelo SVM obtenido en Vaquerizo-Villar et al. (2018c) ha demostrado ser útil
como herramienta de screening para confirmar la presencia de AOS moderado-a-
severo en niños. Finalmente, la aplicación del DFA ha permitido detectar cambios
en las propiedades de la señal de SpO2 a lo largo de las escalas temporales rela-
cionadas con el grado de severidad de la AOS infantil. El modelo de regresión
MLP obtenido en Vaquerizo-Villar et al. (2018a) ha permitido superar la preci-
sión de los índices de oximetría clásicos, mejorando la capacidad diagnóstica de
la oximetría en el contexto de la AOS infantil.

Por otro lado, la metodología de deep learning propuesta ha demostrado ser
una herramienta útil para aprender de manera automática características de la



C.5. Resultados y discusión 169

Tabla C.4. Resumen del rendimiento diagnóstico de los métodos desarrollados en el com-
pendio de publicaciones.

Estudio Base
de
da-
tos

N
(Total/test)

IAH Métodos
(Características/

Clasificación)

S E P kappa CCI

(Vaquerizo-
Villar
et al.,

2018b)

UofC 298/75 5
10

Bispectrum,
características de la

PSD, ODI3 y variables
antropométricas /

MLP multiclase

61.8
60.0

97.6
94.5

81.3
85.3

0.56 -

(Vaquerizo-
Villar
et al.,
2018c)

UofC 981/392 5 Transformada wavelet,
ODI3, momentos

estadísticos y
características de la
PSD/ SVM binario

71.9 91.1 84.0 - -

(Vaquerizo-
Villar
et al.,

2018b)

UofC 981/392 1
5
10

DFA y ODI3 / MLP de
regresión

97.1
78.8
77.1

23.3
83.7
94.8

82.7
81.9
91.1

0.41 0.891

(Vaquerizo-
Villar
et al.,
2021)

UofC 3196/392 1
5
10

Arquitectura CNN 90.8
76.0

36.4
88.1
95.8

80.1
83.9
92.3

0.42 0.917

(Vaquerizo-
Villar
et al.,
2021)

CHAT 3196/312 1
5
10

Arquitectura CNN 71.2
83.7
83.9

81.8
100
99.3

77.6
97.4
97.8

0.52 0.960

(Vaquerizo-
Villar
et al.,
2021)

BUH 3196/231 1
5
10

Arquitectura CNN 88.8
61.1
65.0

53.2
93.7
96.9

79.2
83.5
91.3

0.42 0.583

N = número de sujetos, IAH= índice de apnea-hypopnea, S = sensibilidad ( %), Sp = especificidad
( %), P = precisión ( %), kappa=kappa de Cohen, CCI = coeficiente de correlación intra-clase, ODI3=
índice de desaturación de oxígeno del 3 %, PSD = densidad espectral de potencia, DFA = análisis de
fluctuaciones sin tendencias, MLP = perceptrón multicapa, SVM = máquina vector soporte, CNN =
red neuronal convolucional, UofC = Universidad de Chicago, CHAT = Childhood Adenotonsillectomy
Trial, BUH = Hospital universitario de Burgos.

señal de oximetría asociadas a los eventos apneicos (Vaquerizo-Villar et al., 2021).
La arquitectura de deep learning basada en CNN ha obtenido un alto rendimien-
to diagnóstico en tres bases independientes (UofC, CHAT, y BUH), superando al
índice de desaturación de oxígeno del 3 % (ODI3) y a un modelo MLP de feature
engineering. Además, la aplicación de este modelo de deep learning en un protoco-
lo clínico de screening permite reducir la necesidad de realizar la PSG completa
en el 45.9 % (BUH), 50.0 % (UofC) y 73.7 % (CHAT) de los sujetos pediátricos,
contribuyendo así a la reducción de listas de espera y costes médicos asociados al
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diagnóstico de la AOS en niños. No obstante, se observó un rendimiento diagnós-
tico inferior en las bases de datos UofC y BUH que en la base de datos de CHAT,
lo cual puede deberse a diferencias en la distribución del IAH, la edad de los suje-
tos, la frecuencia de muestreo de los registros de SpO2 y los grupos de población
de las distintas bases de datos (Vaquerizo-Villar et al., 2021). Esto concuerda con
estudios previos que también obtuvieron diferencias en el rendimiento diagnós-
tico entre bases de datos de sueño con distintas características clínicas (Alvarez
et al., 2013; Biswal et al., 2018; Nikkonen et al., 2019).

Al comparar los resultados obtenidos en los distintos artículos de esta Te-
sis, se observa como el conjunto de test de la base de datos UofC empleado en
Vaquerizo-Villar et al. (2018c), Vaquerizo-Villar et al. (2018a) y Vaquerizo-Villar
et al. (2021) está compuesto por los mismos sujetos. En este sentido, destaca el
mayor rendimiento diagnóstico global obtenido con la metodología de deep lear-
ning en comparación con las metodologías de feature engineering utilizadas en
Vaquerizo-Villar et al. (2018c) y Vaquerizo-Villar et al. (2018a). Esto resalta la ca-
pacidad de generalización de los métodos de deep learning y su idoneidad para
identificar de manera automática los cambios relacionados con la AOS infantil
en la señal de SpO2. Sin embargo, como limitación cabe destacar que es más di-
fícil explicar e interpretar las características extraídas por la arquitectura de deep
learning.

En la tabla C.5 se muestran de forma resumida los resultados obtenidos en
estudios previos centrados en la simplificación del diagnóstico de la AOS infan-
til mediante el análisis automático de la señal de oximetría basado en técnicas
de procesado de señal (Álvarez et al., 2017; Álvarez et al., 2018; Crespo et al.,
2017, 2018; Garde et al., 2014a; Hornero et al., 2017; Xu et al., 2019). Como pue-
de observarse, las metodologías propuestas de feature engineering y deep learning
alcanzaron un elevado rendimiento diagnóstico en comparación con los estudios
del estado del arte, especialmente para los puntos de corte del IAH de 5 y 10 e/h.
Esto sugiere que los métodos novedosos de procesado de señal desarrollados en
esta Tesis Doctoral permiten extraer información adicional acerca de los cambios
en la señal de SpO2 asociados a la AOS infantil.
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Tabla C.5. Resumen del estado del arte de los estudios basados en enfoques de procesado
automático de la señal de oximetría.

Estudio N
(Total/test)

IAH Métodos
(Características/

Clasificación)

S E P

(Garde et al.,
2014a)

146/146 5 Índices de oximetría,
momentos estadísticos y

características de la PSD y
no lineales/ LDA binario

80.0 83.9 78.5

(Álvarez et al.,
2017)

50/50 1
3
5

Índices de oximetría,
momentos estadísticos y

características de la PSD y
no lineales /LR binario

89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

(Crespo et al.,
2017)

146/146 3 Índices de oximetría y
características no lineales /

LR binario

84.5 83.0 83.5

(Hornero et al.,
2017)

4191/3602 1
5
10

ODI3, momentos
estadísticos y características

de la PSD y no lineales /
MLP de regresión

84.0
68.2
68.7

53.2
87.2
94.1

75.2
81.7
90.2

(Crespo et al.,
2018)

176/176 1
3
5

Índices de oximetría,
momentos estadísticos y

características de la PSD y
no lineales /LR

93.9
74.6
70.0

37.8
81.7
91.4

84.3
77.7
82.7

(Xu et al.,
2019)

432/432 1
5
10

ODI3, momentos
estadísticos y características

de la PSD y no lineales /
MLP de regresión

95.3
77.8
73.5

19.1
80.5
92.7

79.6
79.4
88.2

(Álvarez et al.,
2018)

142/142 5 Índices de oximetría,
características de la PSD,
parámetros no lineales y

variables antropométricas /
LR binario

73.5 89.5 83.3

LDA = análisis discriminante lineal, LR = regresión logística, MLP= perceptrón multicapa, IAH= índi-
ce de apnea-hypopnea, S = sensibilidad ( %), Sp = especificidad ( %), P = precisión ( %), ODI3= índice
de desaturación de oxígeno del 3 %, PSD = densidad espectral de potencia.

C.6 Conclusiones

A raíz del análisis de los resultados obtenidos en esta Tesis Doctoral se han obte-
nido las siguientes conclusiones:

1) Los modelos propuestos de feature engineering y deep learning han superado
la capacidad diagnóstica de las características comúnmente extraídas de la
señal de oximetría, así como a los resultados obtenidos en estudios previos.
Por tanto, el uso de nuevas técnicas de procesado automático es útil para
incrementar la capacidad diagnostica de la señal de SpO2.
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2) El bispectrum puede ser empleado como herramienta complementaria a los
métodos tradicionales a la hora de caracterizar los cambios producidos en la
señal de SpO2 relacionados con la AOS infantil. Concretamente, los cambios
en la amplitud del bispectrum relacionados con desviaciones de la gaussiani-
dad y los cambios en la fase del bispectrum relacionados con el acoplamiento
en fase entre componentes espectrales de la señal de oximetría, proporcio-
nan información adicional a las variables antropométricas, al ODI3 y a las
características extraídas de la densidad espectral de potencia.

3) La transformada wavelet es una herramienta adecuada para analizar las pro-
piedades no estacionarias, así como las componentes de baja frecuencia, de
la señal de SpO2 relacionadas con la AOS infantil. Específicamente, la con-
centración en torno a cero de los coeficientes de la DWT en la banda 0.0244-
0.0488 Hz, la energía de los coeficientes de la DWT en la banda 0.0244-0.0488
Hz y los cambios en la distribución de energía de la DWT de la señal de oxi-
metría, proporcionan información complementaría a los métodos conven-
cionales.

4) El DFA es una herramienta apropiada para caracterizar los cambios pro-
ducidos en las propiedades de la señal de oximetría lo largo de las escalas
temporales relacionadas con la AOS infantil y su severidad. Los resultados
obtenidos sugieren que la pendiente en las primeras escalas temporales del
perfil del DFA contiene información adicional que permite mejorar la carac-
terización de los cambios inducidos en la señal de SpO2 por los episodios
apneicos típicos de la AOS infantil.

5) De todos los métodos de reconocimiento de patrones, el modelo SVM di-
señado con el ODI3, momentos estadísticos y características extraídas de la
densidad espectral de potencia y la transformada wavelet, ha proporcionado
evidencias sólidas para establecer la presencia de AOS moderado-a-severo
(AHI ≥ 5 e/h) en sujetos pediátricos, logrando una precisión del 84.0 % y
una razón de verosimilitud positiva de 14.6. Este modelo podría ser utiliza-
do como herramienta de screening para niños con AOS moderado-a-severo.

6) El modelo de deep learning basado en CNN alcanzó un rendimiento diag-
nóstico superior al obtenido con los enfoques de feature engineering en el
contexto de la AOS infantil. Concretamente, este modelo alcanzó precisio-
nes por encima del 80 % para el diagnóstico de AOS moderado-a-severo
(97.4 %, 83.9 % y 83.5 %) y superiores al 90 % (97.8 %, 92.3 % y 91.3 %) para
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la detección de AOS severo en los conjuntos de test de CHAT, UofC y BUH,
respectivamente. Esto concuerda con la mayor capacidad predictiva mos-
trada en los últimos años por los algoritmos de deep learning en numerosos
ámbitos. Nuestros hallazgos sugieren que la metodología de deep learning
podría cambiar el paradigma de procesado de datos biomédicos en relación
con la AOS infantil.

7) El modelo de deep learning mostró una gran capacidad de generalización,
aunque el rendimiento diagnóstico difirió entre las bases de datos, lo cual
puede estar influenciado por diferencias en la frecuencia de muestreo, ran-
gos de edad, distribución del IAH y grupos de población de las tres bases de
datos. Por tanto, los parámetros clínicos y sociodemográficos deberían ser
considerados a la hora de validar nuestra propuesta en la práctica clínica.

8) Los protocolos diagnósticos derivados de nuestra propuesta ponen de ma-
nifiesto la aplicabilidad clínica de la señal de oximetría en el screening de la
AOS infantil. En concreto, el protocolo de screening propuesto contribuiría
a reducir el número de PSGs en un 45 %-70 % (73.7 %, 50.0 %, y 45.9 %) de
los sujetos pediátricos en las bases de datos de CHAT, UofC y BUH. De este
modo, los niños afectados se beneficiarían de un test diagnóstico más acce-
sible y de menor intrusividad basado en el análisis automático de la señal
de SpO2.
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Pediatric obstructive sleep apnea (OSA) is a high prevalent disease 
(1%-5%). It is associated with many negative effects on the overall 
health and life quality of the affected children when it is untreated, 
including cardiometabolic malfunctioning and neurobehavioral 
abnormalities. Overnight polysomnography (PSG) is the gold standard 
for pediatric OSA diagnosis. Despite its effectiveness, PSG is costly, 
complex, highly intrusive, and lacks availability. This has prompted the 
search for simplified screening tests. One of these alternatives 
tests is the automated analysis of the blood oxygen saturation signal from 
overnight oximetry due to its easy acquisition and 
interpretation, as well as its suitability for children. In this context, the 
present Doctoral Thesis focuses on applying novel signal processing 
algorithms in order to enhance the diagnostic ability of the oximetry signal 
in the framework of pediatric OSA. Particularly, three novel feature 
extraction algorithms (bispectrum, wavelet, and detrended 
fluctuation analysis), as well as a novel deep-learning architecture 
based on convolutional neural networks are proposed. In view of the 
results, we feel that this compendium of publications could contribute to 
the use of clinical screening tools to diagnose pediatric OSA based on the 
automated analysis of the oximetry signal, aiming at providing an early 
and timely diagnosis and treatment of the affected children.
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