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Abstract. Future metro networks will connect many multiaccess edge compu-

ting resources (MEC) working in a coordinating fashion to provide users with 

cloud computing capabilities with very low latency. That highly distributed 

computing architecture has to be connected by a network that provides high 

bandwidth and flexibility. Elastic optical networks (EONs) are currently the 

best option to perform that task. In a next step of optical network evolution, 

EONs can increase the bandwidth that they provide by using multicore fibers 

(MCF). When dynamic optical circuits are established in these networks, the 

routing, core and spectrum assignment (RCSA) problem must be solved. In this 

paper, two algorithms are presented in order to solve the RCSA problem con-

sidering continuity constraints in both the spectrum and the core (as we consid-

er a cost-effective metro network architecture based on ROADMs without line 

changes). One of these versions explores the full spectrum of all cores in order 

to grant the best solution when solving the RCSA problem. The results of a 

simulation study show that exploring all the cores when solving the RCSA 

problem can reduce the blocking ratio of those networks and, therefore, increase 

its performance at the expense of a slight increment of the computing time re-

quired to provide a solution. 
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1 Introduction 

The explosion of paradigms like the Internet of Things (IoT), Tactile Internet or In-

dustry 4.0 are inducing an evolution of communication infrastructures. The new ap-

plication and services as well as the number of connected devices impose stringent 

requirements that current networks cannot satisfy [1]. 5G is a promising technology 

for that evolution, as it supports a high number of connected devices and enables 
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show that the blocking ratio is reduced when using the joint allocation at the expense 

of slightly increasing the computing time required to find a solution. In any case, the 

computing time of both versions is low enough to use them in the described architec-

ture. This work establishes the first step for more complex studies in which networks 

with higher number of cores will also be explored. 
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