Artificial Intelligence in Medicine. Volume 107, 2020, 101924. https://doi.org/10.1016/j.artmed.2020.101924
© 2020 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Detection of early stages of Alzheimer’s disease
based on MEG activity with a randomized
convolutional neural network

Manuel Lopez-Martin, Angel Nevado, Belen Carro

Abstract— The early detection of Alzheimer’s disease can potentially make eventual treatments more effective. This work
presents a deep learning model to detect early symptoms of Alzheimer’s disease using synchronization measures obtained
with magnetoencephalography. The proposed model is a novel deep learning architecture based on an ensemble of
randomized blocks formed by a sequence of 2D-convolutional, batch-normalization and pooling layers. An important
challenge is to avoid overfitting, as the number of features is very high (25755) compared to the number of samples (132
patients). To address this issue the model uses an ensemble of identical sub-models all sharing weights, with a final stage
that performs an average across sub-models. To facilitate the exploration of the feature space, each sub-model receives a
random permutation of features. The features correspond to magnetic signals reflecting neural activity and are arranged
in a matrix structure interpreted as a 2D image that is processed by 2D convolutional networks.

The proposed detection model is a binary classifier (disease/non-disease), which compared to other deep learning
architectures and classic machine learning classifiers, such as random forest and support vector machine, obtains the best
classification performance results with an average Fl-score of 0.92. To perform the comparison a strict validation
procedure is proposed, and a thorough study of results is provided.

Index Terms— Alzheimer’s disease detection; deep learning; convolutional neural network; ensemble model; magnetoencephalography

* Correspondence: mlopezm@acm.org; Tel.: +34-983-423-980, Fax: +34-983-423-667
The authors declare that there is no conflict of interest regarding the publication of this paper

1. INTRODUCTION

The early detection of Alzheimer's disease (AD) is a critical medical and social challenge. There have been many approaches to
this challenge using machine learning (ML) [1], including current advancements with deep learning [2]. In this paper we present a
novel deep learning model for early detection of AD using magnetoencephalography (MEG) signals obtained from patients with
Mild Cognitive Impairment (MCI). MCI [3] is a stage between the expected cognitive decline of healthy aging and dementia.
Patients with MCI are at an increased risk of developing Alzheimer’s Disease [4].

Magnetoencephalography (MEG) has been shown to have good sensitivity to detect AD in its early stages [5]. Previous work
has applied Machine Learning (ML) to MEG data for this purpose [1,6,7]. ML models have also been applied to detect AD using
other neuroimaging signals such as functional magnetic resonance imaging (fMRI) [8,9], magnetic resonance imaging (MRI) [2]
and electroencephalography (EEG) [10,11,12]. Similarly, neuroimaging data have been analyzed with machine learning
techniques to investigate a large variety of brain conditions and processes including rapid eye movement disorders [11], speech
tasks classification [13], Parkinson’s disease [14], epilepsy [15], spinal cord injury [15], scene representations [16] and ocular and
cardiac artifacts detection [17]. The ML models that have been employed in this context are: (1) classic models - Random Forest,
Bayesian Network, Decision trees, K-Nearest Neighbors, Logistic Regression, Support Vector Machines and Linear discriminant

M. Lopez and B. Carro are with the Dpto. TSyCelT, ETSIT, Universidad de Valladolid, Paseo de Belén 15, Valladolid 47011, Spain; (mlopezm@acm.org).
A. Nevado is with the Laboratory for Cognitive and Computational Neuroscience, Center for Biomedical Technology, Campus Montegancedo, Pozuelo de
Alarcén, Madrid 28223, Spain and the Experimental Psychology Department of the Complutense University of Madrid.

https://doi.org/10.1016/j.artmed.2020.101924
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
mailto:mlopezm@acm.org
mailto:mlopezm@acm.org

analysis - [6,7], (2) deep learning models - Convolutional neural networks (CNN) [2,9,11,14,15], Recurrent neural networks (RNN)
[10] and custom architectures [8,13,17,18] - (3) Bayesian ML models [12].

In this work we propose a novel architecture for the detection of Mild Cognitive Impairment (MCI). The architecture is based
on an ensemble of randomized learning blocks, each consisting of a sequence of 2D-convolutional layers [19], batch-normalization
layers [20] and max-pooling layers [21]. Batch-normalization layers facilitate convergence during training and provide a
regularization effect that helps prevent overfitting. Max-pooling layers reduce the number of parameters (weights) of the network,
which reduces the possibility of overfitting. A randomization is applied to the input of the different blocks, allowing for maximum
exploration of the interaction between features, which is important considering the local-based nature of the convolutional
networks. A weight sharing strategy between blocks is used to keep the complexity of the final model low, given the small number
of training samples. To compare the detection performance of the proposed model we compare it with several classic ML models:
Logistic Regression (LR), Naive Bayes (NB), Gradient Boosting Machine (GBM), Random Forest (RF), Gaussian Process
Classifier (GP Classifier) and Support Vector Machine (SVM) as well as more advanced deep learning models based on
convolutional neural networks (CNN) [19] to classify individuals as healthy aging subjects or MCI patients.

The features used to train the different models are based on a measure of statistical dependence, mutual information, between
the MEG signals of pairs of sensors, with a total of 102 sensors and 5151 pairs of sensors per subject. After post-processing the
signals, we obtain five final features for each pair of sensors. The total number of individuals for the experiment is 132 (59% with
MCI), and the total number of features, after post-processing of the MEG signals, is 25755 per individual.

The high ratio of number of features, 25755, to number of samples, 132, is associated with a high risk of overfitting. We have,
therefore, taken special care to guarantee the generalization of results. Deep learning (DL) models are known to need large datasets
with a large number of samples. We have circumvented this by using Deep Learning architectures, based on Convolutional Neural
Networks, with a very limited number of parameters by carefully selecting the filter shapes, max-pooling layers and employing
weight-sharing for the more complex architectures.

An exhaustive comparison of the results is provided for all models. Special care has been taken in the selection of classification
performance metrics and the test strategy, which is based on a nested cross-validation approach. Considering the small number of
samples, it is especially important to guarantee the distribution of the performance metrics. For this reason, the mean, standard
deviation, maximum and minimum values and the 25%, 50% (median) and 75% quartiles are provided for all performance metrics
and all models. The selected classification performance metrics are accuracy, F1-score, precision and recall. These four metrics
provide a comprehensive description of the different aspects and objectives of a classifier. We need to mention the importance of
the recall metric for this particular classification problem, since it is essential to avoid false negatives (subjects for which MClI is
not detected).

To apply a 2D convolutional network to a one-dimensional vector of features it is necessary to reshape the features into a matrix
structure (pseudo-image) with an arbitrary allocation of features to positions within the new matrix. This approach of transforming
one-dimensional features into a two-dimensional structure, to be used by a 2D-CNN, has already been applied in other areas with
excellent results [22,23]. In this work, we extend this approach by creating an ensemble of CNN models, each with different inputs
formed by matrices created by randomly permuting the original features (from the one-dimensional vector of features) to different
positions within each matrix. The output of each CNN model is averaged forming the output of the ensemble. The ensemble has
an additional regularization effect that is very helpful in addressing this classification problem.

To understand why the randomized 2D-CNN model yields good results we have to take into that we are dealing with high-
dimensional noisy signals of which only a small number of samples are available. This creates a scenario prone to overfitting. The
use of stochastic methods to combat overfitting, as considered in many previous works [24,25,26], was the basis to apply
randomization to the input part of the network [26] instead of the intermediate [25] or final [24] parts. In addition, the fact that
CNN models exploit spatial local correlations was a motivation to introduce the random permutation of features, with the goal of
increasing the exploration of combination of variables that were not close to each other in their original locations.

The contributions of this work are:

- Tointroduce a novel deep learning architecture based on Convolutional Neural Networks for the diagnosis of MCI, a prior
stage of Alzheimer’s disease.

- To compare the proposed model with other CNN architectures and classic ML models to detect MCI using a large collection
of features obtained from MEG signals

- To handle noisy and scarce training data with a 2D-CNN ensemble model that averages a collection of sub-models based
on the stochastic permutation of the input.

- To build a model with excellent classification results in a challenging scenario (scarce samples with a large feature’s
dimensionality).

The paper is organized as follows: Section 2 summarizes previous works. Section 3 describes the dataset and models employed.
Section 4 details the results and section 5 presents the conclusions.

2. RELATED WORKS

The approach adopted in this work, which consists in the transformation of MEG signals into images to subsequently apply
CNN models (which are especially suitable to handle images) has already been explored in other works investigating brain function.
In [15] a CNN to classify patients with epilepsy and spinal cord injury was proposed. They calculated relative power spectra from
MEG signals. The activity was presented in a channel vs. time matrix and treated as an image by a CNN network. A similar
approach was adopted in [13], this time using the raw data from time-series recordings, with a previous feature extraction based
on Independent Component Analysis (ICA). The objective of this last work was to predict the age of children based on various
speech tasks. This approach is different from using anatomical brain images - to identify brain conditions, such as using MRI
images [2]. The identification of a data matrix as an image to allow the subsequent application of a CNN has also been explored
in other fields, such as network intrusion detection and multimedia quality of experience prediction [22,23], providing, in both
cases, an excellent improvement in classification results.

The approach taken in [27] employs a CNN architecture that is used as a feature extraction tool in conjunction with FreeSurfer
[27]. The work proposes an MCI detector using magnetic resonance imaging (MRI) data. Features extracted from MRI are further
processed with PCA (dimensionality reduction) and Lasso (feature selection). The final processed features are used by an Extreme
Learning Machine for MCI classification.

Randomization of the input features has also been applied to AD detection in an ensemble configuration of neural networks
(NN), with the NNs trained with randomly selected samples and features obtained after calculating the Pearson correlation
coefficient between the fMRI time-series of pairs of voxels [8]. The randomization of the input features or the intermediate network
representations has also been applied in other areas. In [28] an image classifier with a low computational infrastructure was
proposed. This classifier employed group convolutions followed by a random combination of intermediate outputs. A different
image classifier was presented in [29], where a CNN network was replaced by a series of linear classifiers that were fed by small
portions of the image with a final aggregation (averaging) per class. In this case, there was no randomization of the input. Instead,
input segregation was employed, followed by separate classifiers with a final aggregation of results. Still in the field of image
classification, [30] proposed a simple architecture based on the application of several fixed random perturbations to the original
image with a final linear combination of the perturbed intermediate images after a rectified linear unit (ReLU) activation function.
Surprisingly, the resulting architecture produces similar classification results to a CNN network. In [31], an input shifting is
performed within the CNN kernels rather than the inputs. The work in [32] points out the effect of the locality property for images
and how when this property is lost (by randomly mixing pixels) the usual performance of classic CNN is greatly affected, while
other CNN architectures (such as dilated convolutions) can provide much better results by integrating non-adjacent pixels into the
same receptive field, which is also the purpose, by other means, of randomizing the input positions. Applying a series of dilated
convolutions with different dilation rates provides an effect similar to input randomization, in a more deterministic way and also
requiring a deeper network.

The work presented here differs from the works mentioned above in that it also employs randomization of the input, but as a
means to create an extended dataset by permuting the inputs of the original dataset (treated as a pseudo-image), producing several
shuffled pseudo-images that are handled by separate networks with a final aggregated result. This ensemble-like architecture
produces better results than individual CNN networks, and is more robust against overfitting, which is a real problem considering
the small number of samples and the large number of features in this type of AD detection tasks.

3 METHODS DESCRIPTION

In this Section we provide details of the dataset used to carry on the experiments, the architecture proposed to detect Mild
Cognitive Impairment and the validation/test strategy applied. The employed dataset and the proposed model are presented on
sections 3.1 and 3.2 respectively. The validation/test strategy is provided in section 3.3.

3.1 Selected dataset

Data was acquired in the Centre for Biomedical Technology, (Madrid, Spain). Resting-state data was collected from 78 Mild
Cognitive Impairment (MCI) patients and 54 healthy aging participants. The demographic data is provided in Table 1.

Healthy Aging 69.95+4.40 [61-80] 29.33+0.79 [27-30] 72.73
Participants
MCI Patients 74.02+6.40 [58-87] 27.61+2.17 [22-30] 51.16

Table I. Mean + standard deviation and range (between brackets) of the age and Mini Mental State Exam (MMSE) for the two diagnostic
groups, and proportion of males and females.

MCI patients fulfilled the following criteria [33]: (i) memory complaint, corroborated by an informant, (ii) objective memory
impairment for age, (iii) relatively preserved general cognition for age, (iv) essentially intact activities of daily living, and (v) not
meeting the criteria for dementia. Exclusion criteria were having a neurological disease, a psychiatric disorder, or any severe
illness. The ethics committee at the MEG center approved the study and all participants gave written informed consent.

Participants sat in a 306-channel Elekta MEG system (Elekta Oy, Helsinki, Finland) during 4 minutes with eyes closed. The
sampling rate was 1000 Hz. A temporal signal space separation algorithm (tSSS) was applied to reduce environmental and
biological noise components [34]. MEG data preprocessing was performed with FieldTrip [35]. Recordings were band-pass filtered
between 2 and 45 Hz. From the available sensors, the analysis focused on the 102 magnetometers. The time-series were
subsequently segmented into 2 second epochs. Ocular, muscular and jump artifacts were automatically detected with Fieldtrip and
the corresponding segments discarded from the analysis.

The statistical dependencies between the signal time-series x(t) from sensor i and y(t) from sensor j were measured with
mutual information:

Pxy)(xY)
I06GY) = Byer Tuex Py (o y)log (ZXLZ) - (1)

Where p(X,Y) is the joint probability of x(t) and y(t), were value pairs were obtained from the same time instant ¢, and p,, and
py are the marginal probabilities of x(t) and y(t). Prior to the calculation of the probability distributions the time series were
discretized into 15 bins to yield the value ranges X and Y. Subsequently, a normalized mutual information value was obtained:

1(X;Y)

horm (K1) = e (2)

where H(X; X) and H(Y;Y) are the entropies of X and Y respectively

H(Z;Z) = = Y,ez12(D)0log(pz(2)) (3)

A value of normalized mutual information was obtained for each participant, pair of sensors and epoch. Next, five summary
values were derived by collapsing values across epochs: mean, median, standard deviation, mean absolute deviation and range
(maximum-minimum).

The total number of features (25755) corresponds to the number of ways to select 2 sensors out of 102 sensors multiplied by the 5
different summary statistics of the mutual entropy per pair of MEG signals (with one MEG signal per sensor). Feature values are
continuous in the range [0-1]. Fig. 1 shows a diagram of the process followed to obtain the features for each patient.

Considering the small number of samples and the large number of features it was necessary to perform feature selection with
the aim to achieve an ideal ratio of number of samples to number of features of 10. To obtain the final set of features we applied
three features selection techniques to the dataset: (1) Random Forest variable importance [36], (2) selection based on iterative
feature elimination after comparing with random features created by shuffling the original features (Boruta) [37] and (3) recursive
feature elimination (RFE) (caret) [36]. All these methods provide a ranking of features from highest to lowest importance. The

features resulting from the intersection of the feature sets provided by these three selection techniques were arranged into two final
set of features: one set with 870 features and other with 20 features (the best ranked features in the intersection set). These feature
sets 1 and 2 (FS1 and FS2) corresponding to the previously defined 20 and 870 features, respectively, were then used by the
different algorithms presented in this work. Which feature set was used in each algorithm is specified in section 4 (Results).

The aforementioned scheme for performing feature selection attempts to avoid the selection bias problem[38].This problem
happens when performing feature selection with a reduced number of samples and a large number of features. This problem is due
to random correlations between the features and the outcomes, even for unimportant features. The intersection between the best
sets of three different selection techniques is intended to avoid this problem. In addition, two of the R packages used for feature
selection: caret and Boruta [36,37], both take into account the selection bias problem. In caret [36], the feature selection method
incorporates the resampling solution proposed in [38] using cross validation within each iteration of the feature selection process.
Boruta [37] implements a sophisticated selection technique based on comparing each feature with a synthetic shadow feature made
by shuffling the values of the original feature.

The number of 20 features in FS1, was selected after some ad hoc tests, as a good compromise between a reduced number of
features and the classification performance obtained. Similarly, a number of 870 was chosen for FS2 as it can be factored into two
similar numbers, namely 29 and 30, allowing the construction of a squared-shaped matrix as input for the 2D-CNN models.

Features for patient k
Features formed by all signal pairs N

of the patient’s sensors \

Patient k

> Signall

—— *"Signalm — " — [
—
. Features for
H R > all patients
Sensor i -
1 - =
= - Slgnal i " —
—>MI mean (i,j) —*|— Ml
SLgnalj _— —*MImedian (i,j) "~ |
v

—> MIstd (i,j) —~

Sensor j ' g —> MImad (i,j) —*

& " Mirange (i,j) —~

Features (I, m)

ures (i, f)

J
110 Expected
Class value for . 110 Outcomgs for
patient k Lt all patients
—|1/0
0 — healthy
1 - McCI

Fig. 1. Diagram of the generation of features associated with a generic patient (patient k). Each pair of patient sensors produces five features.
The diagram shows two of these pairs. The sensor layout on the left was created with Fieldtrip [35]

3.2 Model description

The objective is to explore and compare several CNN architectures to detect Mild Cognitive Impairment using a large collection
of features obtained from MEG signals while patients are at rest. We investigated the following CNN architectures:

- 1-D CNN: Aclassic 1-D CNN [39] applied to the one-dimensional vector of features derived from the MEG signals.

- 1-D CNN + Gaussian Process Classifier: Similar to the previous architecture with a final layer formed by a Gaussian Process
Classifier [40].

- 2-D CNN: Aclassic 2-D CNN [19] applied to synthetic images formed by an arbitrary arrangement of the features obtained
from the MEG signals.

- Randomized 2-D model: This is the novel architecture proposed for this work achieving the best classification results. It
consists on an ensemble of 2D-CNN networks with a permutation of the input values for each network.

The dataset used to train the models was FS2 with 870 features for the 2-D CNNs and FS1 with 20 features for de 1D models.
Considering the small number of samples and the large number of features, the application of a CNN poses difficulties since they

typically require many samples. The number of parameters (weights) of a CNN is usually large, which implies that many samples
are necessary to tune the parameters and avoid overfitting. Therefore, special care has been taken to create CNN architectures with
a small number of weights and to ensure the generalization of the results to the greatest extent possible.

Starting with the 1-D CNN [39] architecture, Fig. 2 presents the 1-D CNN model. It is a simple model with just one 1-D CNN
layer (5 filters, kernel size of 5 and stride of 5) followed by two fully connected layers (FCL) with 5 and 2 nodes respectively.
Between the CNN and FCL layers it is necessary to perform a vector flattening of the output tensor of the CNN layer, generating
a vector of 20 elements that is the input to the FCL layers. The activation function of the layers is ReLU with a final softmax
activation for the last layer and cross entropy as the loss function. The last layer has a dropout [24] with a drop rate of 0.5. The
total number of trainable weights is 147 with a batch size of 10 and 80 epochs of training with an early stopping of 30 epochs. The
1-D CNN model shown in Fig. 2 is the 1-D CNN maodel that presents the best results after testing several variants that included
additional 1-D CNN layers, batch-normalization and max-pooling layers. The 1-D CNN model has 147 trainable parameters
(weights).

The training samples used for the 1-D CNN models are vectors of 20 features obtained after a feature selection process (section
3.1) from the 25755 original features. This model is applied to a 1-D vector of features. The reason for using the FS1 dataset (20
features) is due to the best results obtained compared to the FS2 dataset (870 features) when we apply the 1D-CNN model.

Ao
Features o 7 or Softmax
& s g § | binary
Sample_1]] I .l w 3 @ © output
- - £ N I O 2 Mci
Sample_2 2 @ ~ |2 o
ample._ | Y | 5 > > 9.;.—....% -> g > -
© = = c
Sample 3 [T1--4 g al H |§ g healthy
....... o 2 > >
Sample N [[]--4 E N E

Flattening the output matrix
in a one-dimensional array

Fig. 2. 1-D CNN model

The model in Fig. 3 is similar to the model in Fig. 2 with the addition of a gaussian process classifier (GPC) [40] to the output
of the last layer of the 1-D CNN model. A GPC is a non-parametric bayesian model, well known for its suitability to classify with
a small number of features. Nevertheless, this model did not produce better results than the simpler 1-D CNN model. To train the
1-D CNN+GPC model, we used a two-step process, with a previous training phase of the 1-D CNN model and a subsequent and
independent training phase of the GPC model, using as inputs the outputs from the last layer of the already trained 1-D CNN
model. The two-phase training could be one of the reasons for the lower performance of this model compared to the 1-D CNN
model, since we did not perform an end-to-end training of the complete model. The kernel used for the GPC was an RBF kernel.
The 1-D CNN+GPC model has 140 trainable parameters (weights).

/Uo
Features o T O
) 7 8 &
= Q T g
Sample_1 l 1 l. . .I S o | - =
(<] = 5} o]
Sample_2 [T J--4 = 8 i = 8
_: = @
Sempl3 [T E*/*s’T"é*%
ample_. .= c D — Q [s]
Q = o 5]
....... o 2 > >
[a] S S
sample N [T 1T -4 i It T
Flattening the output matrix
in a one-dimensional array
Binary
Sas output
@ 0= mMci
8 88 | —
SE0 healthy

Fig. 3. 1-D CNN + GPC model

The model in Fig. 4 corresponds to a 2-D CNN [19]. In this case the 1-D feature vector of 870 features (section 3.1) was reshaped
into a matrix structure (pseudo-image) of dimension 30 x 29. The arrangement of the features in a pseudo-image allows to apply a
2-D CNN as shown in Fig. 4. Several architectures were tested. The architecture presented in Fig. 4 is the one that provides the
best results for this type of models, after testing several variants that included additional 2-D CNN layers, batch-normalization and
max-pooling layers. This architecture is formed by three 2-D CNN layers with intermixed batch-normalization [20] and max-
pooling [21] layers. The last model components are 2 FCL (Fig. 4) with 5 and 2 nodes respectively. The configuration of the three
2D-CNN layers is, in order, as follows: first (2 filters, kernel size of 3 and stride of 2), second (3 filters, kernel size of 3 and stride
of 1) and third (4 filters, kernel size of 2 and stride of 1). Between the CNN and FCL layers it is necessary to perform a vector
flattening of the output tensor of the last CNN layer, generating a vector of 16 elements, which is the input to the FCL layers. The
2 max-pooling layers have a pool size of 2. The activation function of the layers is ReLU with a final softmax activation for the
last layer and cross entropy as the loss function. The last layer has a dropout [24] with a drop rate of 0.5. The total number of
trainable weights is 236, with a batch size of 10 and 80 epochs of training, with an early stopping of 30 epochs. The 2-D CNN
model has 236 trainable parameters (weights) and 10 non-trainable parameters, associated to batch-normalization layers.

870 features

a0
]) o
> = > c > = o
T] o S &)] [@ | Softmax
Sample_1 I 1 I I o n B2 m o o = o &g E‘ T binary
5 sl & & B B B B & = =] o
= = ® = outpu
a2 (I (2] 2 B R B R R B EENBEE
8 "N NN RN NHENNEEN R
> w f
sample 3 [| Bk x -> -»> % -»> E -»> % -> é -> E -> % -> 8 -’5 >— > § -> § > -
....... © < "% © % = F .—| = >
= E @ Q @ o > =
™ o™
sample N [T 2e+30-870 == &4 & 4 B = B = n

Flattened one-dimensional
array

Fig. 4. 2-D CNN model

The last model is presented in Fig. 5. This is the model that showed the best classification results (section 4). This model is
formed by a set of k sub-models, each identical to the model presented in Fig. 4. The input to each of the k sub-models is formed
by the same pseudo-image matrix structure used for the model in Fig. 4, with a previous additional random permutation of the
columns (features). The permutation of the columns is applied independently for each of the k inputs of the model. Therefore, the
process followed to create the k inputs involves performing k random permutations of all the columns of the original dataset,
producing k column-permuted datasets. The random permutations, once defined, are maintained throughout the training and
prediction phases i.e. the position for each feature in each of the k inputs is different and established randomly, but once they are
established, their position is maintained, otherwise training and prediction would be completely stochastic and impossible. These
datasets are the source for generating k pseudo-images for the k sub-models. Considering the large number of weights of the final
model, due to the repetition of sub-models, we have implemented a weight sharing among all sub-models, keeping the total number

of trainable weights at 236, which is important to reduce overfitting. To incorporate the outputs of all the models, we used an
element-wise average operation between the k flattened output vectors produced by the k sub-models. The resulting vector is used
as input for the last FCL layers. After testing several values of k, we chose a value of 10, which provides sufficient input
randomization while keeping the computational cost under reasonable limits. The randomized 2-D CNN model has 236 trainable
parameters and 10 non-trainable parameters (for batchnormalization layers). This is the same number of parameters (weights) as
the 2-D CNN model. This is a desired result since we achieve a much versatile architecture with the same model complexity thanks
to the weight sharing and the final average function.

It is important to note that our initial dataset consists of 25755 features that correspond to the number of ways to select 2 sensors
out of 102 sensors multiplied by the 5 different summary statistics per MEG signal pair. Therefore, the location of these features
in the dataset does not follow a clear order (under a distance-metric), nor does it represent an easy association with the location of
the sensors (Fig. 1). Additionally, the difficulty in creating location-aware features increases with the pre-processing (feature
selection) applied to the dataset (Section 3.1). In summary, we have a large number of features with a non-informative position.
CNN models exploit the correlation between adjacent features using a location-based metric. Its application to image datasets is
fully justified, as smooth changes in pixel properties in local proximity are intrinsic features of images. However, its application
to other datasets where the position of the features is purely random creates a problem since the importance of locality is not
satisfied. However, even in these cases, CNN has proven to be incredibly useful [22,23].

To overcome the problem of random positioned features for datasets where the location of the features does not provide any
information, the solution has been to add successive convolutional layers, so that the deeper layers can integrate more distant
features regardless of their spatial (not meaningful) location. In our case, the addition of a large number of convolutional layers is
not feasible since we are facing a problem that is extremely prone to overfitting. That is the reason for proposing an alternative
solution where, instead of a single input, we create k copies of the input, each of them formed with the same features but with their
positions permuted. The permutation performed for each input is set randomly. It is important to note that the randomization of the
features location is applied independently for each of the k inputs of the model, and that the random permutation of the features,
once defined, is maintained throughout the training and prediction phases i.e. the position for each feature in each of the k inputs
is different and randomly established, but once they are established their position is maintained, otherwise training and prediction
would be completely stochastic and impossible.

In summary, creating k independent inputs with their features in permuted positions is one way to provide a CNN different
feature layouts, not making it necessary to include a large number of layers, and bringing together in the same receptive field two
features that could be highly correlated with widely separated initial locations. An additional option to deal with non-image data
using a CNN is to perform a mapping between the original (hon-image) to an image-like data by transferring similarity between
the original features (in the non-image data) to location distance between these features in the transformed data, as proposed in
[41]. This is an interesting alternative, but with clear challenges, the first and most important being the necessary a-priori definition
of similarity, location distance and feature co-location in the new dataset. In summary, with this approach there is a need to
manually define an appropriate feature representation (feature engineering problem), which is precisely the main problem solved
by a CNN i.e. automatic extraction of feature representation. Avoiding this contradiction was the main reason for not following
this alternative in this work.

The creation of k randomly permuted copies of the input comes along with two additional elements:
e A final averaging layer, that serves two purposes: 1) an additional ensemble property to prevent overfitting, and, 2) a
way to obtain stable results considering the initial random allocation of features position.
e Weights shared among all sub-models, which reduces the amount of weights, decreasing the possibility of overfitting
and creating a smoothing effect on the training level by imposing an average on gradient updates for all k inputs.

Flattened
one-dimensional
array

29*30=870

lll -

Average

Softmax
binary
= = = output
870 features . Shared weights :
: ; H H > -> ->
semie 1 [T ' agEle
0 O C
->
sansie 3 [ket
....... - T =T EE Tz >
sampie N [0

|
-> > =

-»> > 2>
-> e _,
]

Fig. 5. Randomized 2-D CNN model (proposed model)

We implemented all the neural network models in python using Tensorflow/Keras. For all the classic ML models we used the
scikit-learn python package [42]. To perform feature selection, we used the R packages: caret [36] and Boruta [37].

3.3 Validation & Test strategy

The test strategy followed is a two-stage nested cross-validation (CV) approach. This approach provides a more complete
analysis, as a distribution of values under various configurations of sets of samples used for training and testing is obtained. The
test strategy is presented graphically in Fig. 6. The inner-CV cycle is used to decide when to stop training, Meanwhile, the outer-
CV cycle is used to randomize the training samples employed in the inner-CV. This allows having independent and randomly
chosen test samples to produce the final test results. To increase the number of final results, the entire test architecture presented
in Fig. 6 is repeated n times. Table Il presents the specific values for the number of repetitions of the entire process (first numeric
column), and the number of outer and inner iterations of the hierarchical CV strategy for each of the models. The total number of
final test results obtained for each model is the product of the number of repetitions (Table I1: first numeric column) and the number
of outer iterations (Table 11: second numeric column). The total number of test results corresponds to the “count” value in Fig. 7-
8, which may be different for each model. These test results are those used to obtain the statistics per model presented in Fig. 7-8
(mean, standard deviation, quartiles...). Considering the large number of validation cycles and iterations and their impact on
computing time, we chose to obtain more test results for the models with the best performance. This is why the number of results
for the 2D-CNN and randomized 2D-CNN is 24 and 40, respectively. This number is 16 for the other models (Table Il). The
number of epochs and batch sizes used to train the models are also shown in Table I1.

10

The test-set is variable and the metrics are calculated repeatedly for each
test-set. In this way we gain in security that the results are generalizable
because we will not have a single result and we will be able to see their
variability, average, etc.

The validation-set and the test-set are chosen cyclically
-—
Test-set i! ;! / between two sets of k folds nested one inside the other.

i! ;! } Validation-set
On the samples not chosen

for the test-set, the training
and the validation of results
are carried out using cross-
Training B L validation.

samples t Training-set

Vi

Fig. 6. Test strategy details. Several test sets are considered to obtain a distribution of classification performance metrics from which
statistics such as the mean and standard deviation can be obtained.

Repetitions Outer Inner Epochs Batch

iterations iterations size

Randomized 2D-CNN 5 8 20 30 10
2D-CNN 3 8 50 80 10
1D-CNN 2 8 50 80 10
1D-CNN+GPC 2 8 50 80 10
Multilayer Perceptron 5 8 20 30 10
Extreme Learning Machine 5 8 20 30 10
Classic ML models 2 8 NA NA NA

Table 11. Parameters used to implement the test strategy for the different models

4. RESULTS

In this section we present the classification performance results obtained with all the proposed models. The focus of this work
was to investigate the suitability of employing several CNN architectures for the early detection of Alzheimer’s disease, with an
emphasis on proposing novel models that can be trained in the context of a small number of high-dimensional noisy signals. Here
we show that our proposed model (randomized 2D-CNN) provides the best classification results. Special care was taken to the
test strategy, to guarantee confidence in the results.

The results presented in this section come from applying the dataset described in Section 3.1 to various types of models:1)
classic ML models: LR, NB, GBM, RF, GP Classifier and SVM with radial basis functions (RBF); 2) CNN architectures: 1D-
CNN, 1D-CNN plus GPC, 2D-CNN and Randomized 2-D CNN models, and; 3) other neural network architectures: Multilayer
Perceptron (MLP) and Extreme Learning Machine (ELM)[43].

An exhaustive comparison of the results is provided for all models (Fig. 7-8) with carefully selected classification metrics.
Considering the small number of samples, it is especially important to provide the distribution of the performance metrics. For this
reason, the mean, standard deviation, maximum and minimum values and the 25%, 50% (median) and 75% quartiles are provided
for all performance metrics and all models. The selected classification performance metrics were: accuracy, F1-score, precision
and recall. These four metrics provide a good overview of the different aspects and objectives of a classifier.

To define these metrics, and using the usual terminology, we consider the presence of MCI as a ‘positive’ result and the healthy
state a ‘negative’ result. With these definitions, a true positive (TP) is a prediction that the patient suffers from MCI when that is
actually the case. A true negative (TN) is defined as predicting that an actual healthy participant does not suffer from MCI. A false
positive (FP) occurs when an actual healthy participant is classified as suffering from MCI. Finally, a false negative (FN) is defined
as the instance when an actual patient is classified as not suffering from the condition. With these definitions, the metrics are

11

expressed as:

#TP+#TN
Accuracy = ———— (4)
HTP+#TN+#FP+#FN
P #TP
Precision = 5
H#TP+#FP
#TP
Recall = (6)
H#TP+#FN

F1 — score =2 X Preci.silon X Recall (7)
Precision + Recall
Where a ‘#’ sign before a symbol denotes the total number of occurrences in that category. E.g., #TN is the total number of

true negatives.

All the results presented are based on the dataset described in section 3.1, where the feature set FS2 (870 features) was used for
the 2D-CNN and Randomized 2D-CNN models, and the feature set FS1(20 features) was used for all the other models.

Fig. 7-8 provide separate results for all models with one table per model. There are four scores: accuracy, F1, precision and
recall, and their associated statistics: mean, standard deviation, minimum and maximum values, three quantiles and the number of
results used to perform the statistics (first row named “count”). A box-plot for each particular set of results is also provided below
each model. The total number of test results corresponds to the “count” value in Fig. 7-8, which may be different for each model.

The recall metric is particularly important since it reflects the number of false positives, actual patients who have not been
diagnosed, which is a number one would like to keep as low as possible. The precision metric provides an indication of the number
of false positives, which should also be kept low, as diagnosing a healthy participant with the condition also has costs. This is the
reason why the F1-score, which is the geometric mean of precision and recall, has been adopted as our main indicator for the
prediction quality of the classifier. Fig. 7 shows that our proposed model (randomized 2D-CNN) provides the best values for the
F1-score. It is superior with respect to all other metrics as well, except for the 1D-CNN model, that provides a better average result
for the recall metric, but a worse median result for this metric compared to the randomized 2D-CNN model.

The reason for choosing the other 3 deep learning models (2D-CNN, 1D-CNN and 1D-CNN+GPC) has been to compare the
proposed model with other simpler ones, which were also based on a convolutional neural network architecture. In our case, and
given the longitudinal character of the original features, it was natural to use a 1D-CNN as one of the alternatives. A 2D-CNN
model was also a clear candidate since our proposed model is based on it. Finally, the reason for adding a Gaussian Process
Classifier (GPC) to the 2D-CNN was to investigate whether incorporating a non-parametric bayesian model could improve the
results considering its excellent performance on problems with a limited number of samples. The other two neural network
architectures (MLP and ELM) were chosen, since MLP is the basis for all neural network models and ELM was used for similar
detection of MCl in previous works [27]. Finally, the classic ML models (LR, NB, GBM, RF, GP Classifier and SVM) were chosen
to compare the results with well-known methods.

The classic ML classifiers (Fig. 8) are setup with a minimum hyper-parameters tuning from their default values in scikit-learn
[42]. The Multilayer Perceptron (MLP) is formed by two hidden layers of 15 and 2 neurons with ReLU and softmax as activation
functions for the middle and last layers and cross entropy as the loss function. The Extreme Learning Machine consists of a single
hidden layer of 20 neurons with random initialization and sigmoid activations. The weights of the hidden layer are set as non-
trainable, and the layer operates as a random projection. The end layer has a softmax activation with a cross entropy loss. The
entire model is trained end-to-end like a normal neural network. The end layer functions similarly to a logistic regression and its
weights are trained as proposed in [43], but without requiring additional least squares optimization.

Randomized 2D-CNN

F1

2D-CNN

F1

precision

1D-CNN

accuracy precision accuracy F1 accuracy precision recall
count 40.000000 40.000000 40.000000 40.000000 count 24.000000 24.000000 24.000000 24.000000 count 18.000000 16.000000 16.000000 16.000000
mean 0916706 0912549 0964010 0892222 mean 0.852749 0.824183 0.844123 0.878852 mean 0824981 0762500 0.744812 0.924722
std 0110015 0.102004 0073919 0.154170 std 0.114433 0.126892 0.127577 0.149176 std 0051699 0.081357 0.081744 0.066280
min 0461538 0588235 0666667 0.300000 min 0444444 0411765 0.500000 0.400000 min 0750000 0.647052 0.625000 0.777778
25% 0.875000 0.866667 0977273 0.800000 25% 0.822193 0.800000 0.794444 0.888867 25% 0779264 0.696078 0.685897 0.900000
§0% 0947368 0941176 1.000000 0.950000 50% 0884782 0.845098 0.823233 0.800000 50% 0.820858 0.784708 0.750000 0.900000
76% 1.000000 1.000000 1.000000 1.000000 75% 0.90%091 0.882353 0.925000 1.000000 75% 0.860248 0.823529 0.776923 1.000000
max 1.000000 1.000000 1.000000 1.000000 max 1.000000 1.000000 1.000000 1.000000 max 0.947368 0.933333 0.900000 1.000000
10 — 10 - - 100
' = - 0 - T
° — 090
08 I 5 o8 a
&5 08s
° o ° o7 s 73 080
06 ° o
06 075
0s °
X ° a8 > 070
“ ° 065
03 ° 04 & °
1 ‘accurscy arecision ecall fl accuracy precision recall A accuracy precision recall
1D-CNN+GPC MLP ELM
F1 accuracy precision recall F1 accuracy precision recall F1 accuracy precision recall
count 15000000 16.000000 16.000000 18000000 count 40000000 40 000000 40000000 40 000000 count 40000000 40.000000 40.000000 40.000000
mesy 0791921 0739951 0759293 0.890278 mean 0774145 0729608 0761943 0.803333 mean 0783544 0735668 0762028 0.820000
Std 0082855 0105487 0098033 0418212 std 0100809 0106671 0099923 0150155 std 0.083612 0.094071 0.093690 0.125738
min 0888887 0588235 0.800000 0800000 min 0400000 0400000 0500000 0333333 min 0588235 0533333 0625000 0.500000
25% 0727273 0.881785 0685897 0777778 25% 0736842 0696078 0724026 0.700000 25% 0734450 0661765 0692308 0.794444
50% 0777778 0.719608 0.750000 0.844444 50% 0.800000 0.749020 0759615 0.844444 50% 0780193 0705882 0.738636 0.800000
76% 0.835859 0.790196 0,839286 0.900000 75% 0835526 0.800000 0818182 0.900000 75% 0857143 0805852 (0818182 0.900000
max 0.952381 0941176 0.909091 1.000000 max 0909091 0882353 1.000000 1.000000 max 0952381 0941176 1.000000 1.000000
10 10 o 0 T
T 09 T 08 T
09
08 - T 1
+—] 08
. o7
06 o7 1
° —_
o7 T s L 06 o
04 o L3 -]
08 . ° 0s o
F1 accuracy precision recall F1 accuracy precision recall F1 accuracy precision recall

Fig. 7. Results obtained for all models based on neural networks

12

Log Regression

Naive Bayes

GBM

F1 accuracy precision recall F1 accuracy precision recall F1 accuracy precision recall
count 16.000000 16.000000 16.000000 16.000000 count 16.000000 18.000000 16.000000 18.000000 count 1£.000000 185000000 16.000000 1£.000000
mean 0.768535 0.715931 0736480 0812500 mean 0782454 0745243 0792237 0.750558 mean 0.76237€ 0.714461 0.751090 0.780556

std 0104191 0120726 0.087717 0.145034 std 0.100238 0.113833 0.108988 0.12521€ std 0092048 0100324 0.0844068 0.118481
min 0.825000 0588235 0615385 (,555558 min 0631579 0588235 0.886887 0.600000 min 06821579 0.588235 0.815385 0.800000
25% 0698913 0635294 0688687 0.700000 25% 0721925 0.861765 0.718531 0.688667 25% 0.€398913 0835284 0651867 0631687
50% 0743421 0676471 0720779 0.800000 50% 0756952 0.705882 0.763885 0.800000 50% 0749373 0.705882 0.730000 0.788889
75% 0.831028 0779412 0777778 0.925000 75% 0.853801 0834314 0.865079 0.500000 75% 0818182 0784708 0.777778 0.800000
max 0952331 0.541176 0509091 1.000000 max 0947368 0941176 1.000000 1.000000 max 0.947388 0.941176 1.000000 1.000000
10 10 10 ° 4
09 09 ! [T . 09 |
el 08 +———1 i o8 [~ T =
07 : \: lffﬁ
J_ o7 i i o7 | -
06 -4 . | — J_
06 = 06 == -
F Scqurecy precision recall F1 accuracy precisicn recall Fl accuracy precision recall
Random Forest SVM-RBF GP Classifier
F1 accuracy precision recall F1 accuracy precision recall F1 accuracy precision recall
count 16.000000 16.000000 16.000000 16.000000 count 16.000000 16.000000 16.000000 16.000000 count 16.000000 16.000000 16.000000 16.000000
mean 0.795607 0.753676 0.775789 0.320833 mean 0555558 0541178 0441176 0.750000 mean 0762936 0704412 0724693 0818750
std 0086580 0098506 0077855 0.115247 std 0.331268 0084181 0.263087 0.447214 std 0.080601 0.095565 0.072151 0.140880
min 0.831579 0588235 0.6688867 0.600000 min 0.000000 0.400000 0.000000 0.000000 min 0608696 0.470588 0.538462 0.666667
25% 0.727632 08681765 0.700000 0.758333 25% 0.555866 0.841176 0441176 0.750000 25% 0704412 0.661765 0.692308 0.700000
50% 0.809091 0784708 0.775000 0.800000 50% 0.740741 0.58823%5 0.588225 1.000000 50% 0759725 0705882 0.714286 0.800000
75% 0.853301 0834314 0.821970 0.900000 75% 0.740741 0.588235 0.588235 1.000000 75% 0833333 0764706 0.777778 0.925000
max 0.509091 0882352 0.900000 1.000000 max 0.740741 0.582235 0.588225 1.000000 max 0900000 0866657 0.818182 1.000000
10 - 10 10 —]—
.. 08 09
a9 I I r —_—
T T | OO L y
TR T il
- 04 % 07
07 t T a5 06 J—
- -]
06 =5 1 00 o o o 0)
F1 accuracy precision recall 3 accuracy precision recall Y accuracy precision -

Fig. 8. Results obtained for all models based on classic ML models

13

Considering the interest of the results from the 2D-CNN randomized model, Fig. 9 provides a detailed set of histograms for the
four statistics of results for this model (Fig. 9, upper part). Together with the histograms, Fig. 9 also offers an approximation to the
probability density function for these four statistics (Fig. 9, bottom). It is interesting to appreciate that no more than 4 values (10%

of the total values) are below 0.8 for any statistic, that is, 90% of the values obtained for any statistic are larger than 0.8, with most
of them being much closer to 1.

14

F1 accuracy

14 14

12 12

10 0

@

e N & o

05 06 07 08 09 10 06 07 08 09 10
precision recall
30 200
175
b3
15.0
0
125
15 10.0
75
10
50
5
25 I |
1] | ||i 00 L1 [] I” |
065 070 075 080 085 090 095 100 03 04 05 06 07 08 09 10
— F1
8
accuracy
- precision

— recall

00 02 04 06 08 10 12 14
Fig. 9. Histograms (upper charts) and probability density function approximation (lower chart) for the results of the Randomized 2D-CNN
model.

Given the small number of samples available for training, we additionally explored whether increasing the number of samples
by data augmentation would be of benefit. Fig. 10 provides the results obtained by several models after a 3-fold increase in the
number of samples. New samples were created by adding Gaussian noise with small variance to the original features. We can
observe from the results in Fig. 10 that there is no improvement for any of the algorithms. We have not considered the use of
methods such as the Synthetic Minority Over-sampling Technique (SMOTE) and its variants [44] since these methods designed
for unbalanced datasets, which is not the case here. Additionally, the behavior of these methods when applied to high-dimensional
data (large number of features) [45], which corresponds to the present situation, has not been fully investigated.

15

GBM + Random Forest + Log Regression +
Data Augmentation Data Augmentation Data Augmentation

~ count 16.000000 1€.000000 1€.000000 1€.000000
count 18000000 16.000000 16.000000 1€.000000 CTD Sllnly) S=ili) ER Il ol
- -agegn 0.7 - mean 0753872 0708578 0732680 0.800000
mean D.7EO51T 0707588 0734315 0.800000 mean 0778573 0.730882 0.755435 0.810764 S ——————
_ _ " std 111078 124 15875
std 0088422 0096516 0074519 0136143 std 0084567 0098308 0.075308 0122936 0025000 0588235 0615385 055mmse
N P - min X 3 4 5
min 0.625000 0525412 0583333 0555556 min 0831679 0529412 0583322 0.800000)
25% 0704412 0881765 0.700000 0.700000 25% 0.666667 0.600000 0.668687 0.650000
. 5
26% 0.712121 0.647059 0.692208 0.700000 o) s0% 0723638 0647088 0720779 0.800000
s0% 0748372 0705882 0720778 0.800000 50% 0.800000 0.784708 0.750000 0.800000
et 8= et - 75% 0.821028 0779412 07712688 0.925000
_ 75% 0.833333 0.784706 0.800000 0.500000
75% 0.821970 0.764708 0.777778 0.900000 max 0952381 0941176 0509091 1.000000
max 0503081 0882353 0.500000 1.000000
max 0500000 0882353 0500000 1.000000

10 1 10 - 101 T
09 —_ —— e 09 == —1= T 094 1
o1 - i | . I 02 | —
o7 - ‘ l — 1 07 T . ‘ | ol | ||
06 { = 4 06 1 i 4 — el T 1
[31 .x:u;u precision recall F1 -‘C\':l:l? precision recall F1 accuracy precision recall

Fig. 10. Results obtained using data augmentation

Furthermore, we built ensembles of models based on various combinations of models: (1) NB, GBM and RF, and (2) NB, GBM,
RF and GPC; using a majority voting strategy to select the final label. This ensemble approach did not provide any improvement
compared to the best individual model used to conform the ensemble.

Figs. 11 and 12 summarize all the results presented previously. Fig. 11 provides the average (mean) values for all metric scores
and all models. The figure is color-coded column-wise, with a color palette from green to red, where the greenest color is for best
results and the reddest for worst results. Given the importance of the F1-score, the bars in Fig. 12 show the corresponding average
F1 value for all models. Looking at Figs. 11 and 12, it can be seen how the Randomized 2D-CNN model is the one that provides
the best classification results.

Average value

Class Model F1 Accuracy Precision Recall
Randomized 2D-CNN 0.9167 0.9125 0.9640 0.8922
Deep Learning 2D-CNN 0.8527 0.8242 0.8441 0.8768
1D-CNN 0.8250 0.7625 0.7448 0.9347
1D-CNN+GPC 0.7919 0.7399 0.7593 0.8403
0.7741 0.7296 0.7619 0.8033
Other NN models MLP
ELM 0.7835 0.7356 0.7629 0.8200
Logistic Regression 0.7685 0.7159 0.7365 0.8125
Naive Bayes 0.7824 0.7453 0.7933 0.7805
Classic ML GBM 0.7624 0.7145 0.7511 0.7805
Random Forest 0.7956 0.7537 0.7758 0.8208
SVM-RBF 0.5555 0.5412 0.4412 0.7500
. GBM + Data Augmentation 0.7605 0.7076 0.7343 0.8000
Classic ML + Data
. Random Forest + Data Augmentation 0.7786 0.7309 0.7554 0.8108
Augmentation — - -
Logistic Regression+ Data Augmentation 0.7599 0.7086 0.7327 0.8000

Fig. 11. Average values of all performance metrics for all models evaluated

16

0.9167

0.8527
0.8250
0.7919 0.7956
R 0.783544 0.7824 07756
0.7685
I I 0.7624 0.7605 I 0.7599
MLP ELM RF LR

Logistic Naive Bayes GBM Random GBM
Regression Forest +Data + Data + Data
Augmentation Augmentation Augmentation

Randomized 2D-CNN 1D-CNN 1D-CNN+GPC

2D-CNN

Deep Learning Other NN models Classic ML Classic ML + Data Augmentation

mFl

Fig. 12. Detailed diagram of the average values of F1-scores for all models evaluated

To ensure that the good results obtained by the Randomized 2D-CNN model are significantly better than those obtained by other
models from a statistical point of view, Fig.13 presents the application of the Wilcoxon one-sided unpaired rank-sum test for the
comparison of performance metrics between the best model (Randomized 2D-CNN) and the next two best (2D-CNN and 1D-
CNN). The Wilcoxon test is a nonparametric test that checks whether two groups of values show differences in their population
mean ranks. It does not assume any a-priori probability distribution of the values. The Wilcoxon test was applied to compare the
results of the best model with each of the other two models separately. Fig.13 presents these two separate tests with two independent
blocks of results (left and right parts of Fig.13), each providing the p-value resulting from the test and the test results that allow (or
not) to reject the null hypothesis that is associated with a non-significant difference in the results. The test used was one-sided to
specifically check if one of the groups has higher ranked mean that the other. The values in Fig.13 are adjusted for multiple
comparisons correction (Bonferroni)[46]. The significance level used was 1%. From Fig.13 we can conclude that the results
achieved by the best model are significantly better than the others in three of the four metrics. Only the recall metric presents a
non-significant result at a level of significance of 1%, even when the best model has the highest median value for recall (Fig. 7);
the greater variance of the recall results (Fig. 9) could be an explanation for this result.

Wilcoxon rank-sum test for difference of results between models:

Randomized 2D-CNN v.s. 2D-CNN Randomized 2D-CNN v.s. 1D-CNN
Significant Significant
Metric p-value results? p-value results?
F1 1.655E-03 Yes 2.730E-05 Yes
Accuracy 7.280E-04 Yes 2.774E-06 Yes
Precision 7.157E-06 Yes 2.636E-09 Yes
Recall 2.338E-01 No 6.220E-01 No

Fig.13. Wilcoxon rank-sum test. This test checks if the results for the best model (Randomized 2D-CNN) are statistically significantly better
compared to each of the next two best models: 2D-CNN (left sub-table) and 1D-CNN (right sub-table)

5. CONCLUSION

This work presents a novel deep learning architecture based on CNN networks for the detection of Mild Cognitive Impairment.
The proposed model applies stochastic permutation of the training data (synchronization measures extracted from MEG signals of
the patients during rest) employing an ensemble of identical learning blocks formed by a combination of CNN, batch-normalization
and max-pooling layers. The outputs from the ensemble are aggregated (averaged) and constitute the prediction output of the
classifier. We show that the combination of (1) CNN networks, (2) the averaging capabilities of the ensemble structure and (3)
the exploration of new feature interactions (provided by their random permutation), creates a final architecture that offers excellent
classification results for a challenging scenario characterized by sample scarcity and a high-dimensional feature space.

We provide empirical results that show that the proposed model offers significantly better classification metrics than alternative

17

models based on 2D-CNN and 1D-CNN networks and classic machine learning models (logistic regression, random forest, GBM
...). To make the comparison, we apply a hierarchical cross-validation strategy that produces several measurements (based on
different test-sets) of the classification metrics, whose statistics reinforce confidence in the generalization of the outcomes. A
complete and detailed analysis of the results is provided.

The dataset used was real MEG data obtained at the Centre for Biomedical Technology, (Madrid, Spain) from 78 Mild Cognitive
Impairment (MCI) patients and 54 healthy aging participants. The signals post-processing and data preparation necessary to train
the algorithms is presented in detail.

This work shows that it is possible to apply CNN models to scenarios that are highly prone to overfitting with an appropriate
architecture based on (1) reducing the number of parameters as much as possible, (2) using an ensemble of similar structures that
share their weights, (3) averaging the results of the ensemble and (4) the permutation of entries to create new input data randomly
altered and with different co-location of features. Given the good prediction results of the proposed model, this approach could be
the basis for practical applications in the early detection of Alzheimer’s disease based on MEG activity.

In the present work, the features that were used as input to the classifier were measures of synchronization between MEG channel
signals. There are other types of variables such as demographic variables like age and sex, and neuropsychological variables like
the MMSE scores that can also contribute to diagnosing patients. It is therefore very likely that including some of these variables
as input to the classifier would improve the classification performance. This is a possible avenue for future work. On the other
hand, while classification was the focus of this work, the fact that brain activity can serve as a basis for diagnosis indicates that the
two diagnostic groups show different brain activity profiles, which is of interest from a fundamental point of view. In that context,
to the extent that the two groups differ in demographic or neuropsychological values, the identified difference in brain activity
profiles may partially reflect differences in these other variables rather than differences in diagnosis. There were some differences
in the age distribution, as well as in the proportion of females and males, between patients and controls. These between-group age
differences are also likely to be found in a clinical setting. On the other hand, MMSE scores probably require a somewhat different
consideration in the present discussion. While the relationship between MMSE scores and diagnosis is not one to one, it is
significant [33]. It would therefore not be possible, and probably not desirable, to define groups matched for MMSE score.
Nevertheless, at a fundamental level, it could be interesting to investigate in future works to what extent between-group differences
in brain activity are more closely related to MMSE scores or diagnosis. Future work could also investigate to what extent the
methods described here are robust when data from different scanners is used for diagnosis; future research could also focus on the
combination of deep learning models and stochastic methods.

This work is also a proof of concept to assess the suitability of randomized input 2D-CNN models to make predictions on noisy
and small datasets with a large number of features. And, it opens up interesting research opportunities for other areas with similar
problems e.g. network intrusion detection... This allows us to validate the algorithms and methods developed from previous
research activities on network traffic analysis and prediction, extending the scope of our research to other fields such as
neuroscience.

ACKNOWLEDGEMENTS
The collection of the data employed in the analysis was partially funded with grant PS12015-68793-C3-1-R from the Spanish
Ministry for Science, Innovation and Universities.
The preparation of the article and the study of algorithms were partially funded with grant RT12018-098958-B-100 from
Proyectos de I+D+i «Retos investigacion», Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, Plan Estatal de
Investigacién Cientifica, Técnica y de Innovacion 2017-2020. Spanish Ministry for Science, Innovation and Universities.

REFERENCES

[1] Khan A. and Usman M., "Early diagnosis of Alzheimer's disease using machine learning techniques: A review paper,” 2015
7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K),
Lisbon, 2015, pp. 380-387. https://doi.org/10.5220/0005615203800387

[2] Ullah H.M.T. et al. "Alzheimer's Disease and Dementia Detection from 3D Brain MRI Data Using Deep Convolutional
Neural Networks," 2018 3rd International Conference for Convergence in Technology (I12CT), Pune, 2018, pp. 1-3.
https://doi.org/10.1109/12CT.2018.8529808

[3] Petersen R.C. “Mild cognitive impairment”. New England Journal of Medicine, 2011, 364(23), 2227-2234.
https://doi.org/10.1056/NEJMcp0910237

https://doi.org/10.1109/I2CT.2018.8529808
https://doi.org/10.1056/NEJMcp0910237

18

[4] Robertson K. et al. “Using Varying Diagnostic Criteria to Examine Mild Cognitive Impairment Prevalence and Predict
Dementia Incidence in a Community-Based Sample”. Journal of Alzheimer’s Disease. 2019;68(4):1439-1451.
https://doi.org/10.3233/JAD-180746

[5] Lépez-Sanz D., Serrano N. and Maesta F. “The Role of Magnetoencephalography in the Early Stages of Alzheimer's
Disease”. Frontiers in Neuroscience. 2018;12:572. https://doi.org/10.3389/fnins.2018.00572

[6] Mandal P.K. et al. “A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in
Healthy Aging and Alzheimer's Disease (AD).” Frontiers in computational neuroscience. Vol. 12 60. 2018,
https://doi.org/10.3389/fncom.2018.00060

[7] Maestu F. et al. “A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using
Magnetoencephalography-derived ~ functional Connectivity”. 2015.. Neuroimage Clinical. 9, 103-109.
https://doi.org/10.1016/j.nicl.2015.07.011

[8] Bi XA. et al. “Analysis of Alzheimer's Disease Based on the Random Neural Network Cluster in fMRI”. Frontiers in
Neuroinformatics. 2018 Sep 7;12:60. https://doi.org/10.3389/fninf.2018.00060

[9] Meszlenyi R., Buza K..and Vidnyanszky Z. “Resting state fMRI functional connectivity-based classification using a
convolutional neural network architecture®. arXiv:1707.06682 [stat.ML]. 2017.

[10] Ruffini G. et al. “EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients”. Artificial Neural
Networks and Machine Learning — ICANN 2016. Lecture Notes in Computer Science, vol 9886. Springer.
https://doi.org/10.1007/978-3-319-44778-0_36

[11] Ruffini G. et al. “Deep learning using EEG spectrograms for prognosis in idiopathic rapid eye movement behavior disorder
(RBD)”. bioRxiv 240267; 2018. https://doi.org/10.1101/240267

[12] Wu W., Nagarajan S. and Chen Z. "Bayesian Machine Learning: EEGVMEG signal processing measurements,” in IEEE
Signal Processing Magazine, vol. 33, no. 1, pp. 14-36, 2016. https://doi.org/10.1109/MSP.2015.2481559

[13] Kostas D. Pang E.W and Rudzicz F. “Machine learning for MEG during speech tasks”. Nature. Scientific Reports 9. 1609
(2019) https://doi.org/10.1038/s41598-019-38612-9

[14] Martinez-Murcia F.J. et al. “A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease”.
Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science, vol
10337. Springer. 2017.

[15] Aoe J. et al. “Automatic diagnosis of neurological diseases using MEG signals with a deep neural network”. 2019. Nature.
Scientific Reports. 9, 5057 (2019). https://doi.org/10.1038/s41598-019-41500-x

[16] Cichy R.M. et al. “Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep
neural networks”, Neurolmage, Vol 153, 2017, pp. 346-358, https://doi.org/10.1016/j.neuroimage.2016.03.063

[17] Hasasneh A. et al. “Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data”.
2018. Hindawi. Journal of Engineering Vol 2018, Article ID 1350692. https://doi.org/10.1155/2018/1350692

[18] Zubarev 1. et al. “Adaptive neural network classifier for decoding MEG signals”. Neurolmage, Vol 197, 2019, pp. 425-
434, https://doi.org/10.1016/j.neuroimage.2019.04.068

[19] Rawat W. and Wang Z., “Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review”
Neural Computation, vol. 29, no. 9, 2017, pp. 2352-449. https://doi.org/10.1162/neco_a_ 00990

[20] Ioffe S. and Szegedy C.”Batch normalization: Accelerating deep network training by reducing internal covariate shift".
2015. arXiv:1502.03167 [cs.LG]

[21] Lee Ch.-Y., Gallagher P.W., and Tu Z. “Generalizing pooling functions in convolutional neural networks: Mixed, Gated,
and Tree'. 2015. arXiv:1509.08985 [stat. ML]

[22] Lopez-Martin M. et al., “Network traffic classifier with convolutional and recurrent neural networks for Internet of Things”,
IEEE Access, vol. 5, pp. 18042-18050, 2017. https://doi.org/10.1109/ACCESS.2017.2747560

[23] Lopez-Martin M. et al., "Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow
Packets," in IEEE Communications Magazine, vol. 56, no. 9, pp. 110-117, Sept. 2018.
https://doi.org/10.1109/MCOM.2018.1701156

[24] Srivastava N. et al. “Dropout: a simple way to prevent neural networks from overfitting”. The Journal of Machine Learning
Research. 15, 1, pp.1929-1958. 2014. http://jmlr.org/papers/v15/srivastavalda.html

[25] An G., "The Effects of Adding Noise During Backpropagation Training on a Generalization Performance," in Neural
Computation, vol. 8, no. 3, pp. 643-674, 1996. https://doi.org/10.1162/nec0.1996.8.3.643

[26] Bishop C.M., “Training with Noise is Equivalent to Tikhonov Regularization”. Neural Computation. 1995 7:1, 108-116.
https://doi.org/10.1162/neco.1995.7.1.108

[27] Weiming L. et al. “Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction
From Mild Cognitive Impairment”. Frontiers in Neuroscience. Vol 12, 2018. https://doi.org/10.3389/fnins.2018.00777

[28] Zhang X. et al. “ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices”. 2017.
arXiv:1707.01083 [cs.CV]

[29] Brendel W. and Bethge M. “Approximating CNNs with Bag-of-local-Features models works surprisingly well on

https://doi.org/10.3233/JAD-180746
https://doi.org/10.3389/fnins.2018.00572
https://doi.org/10.3389/fncom.2018.00060
https://doi.org/10.3389/fninf.2018.00060
https://arxiv.org/search/stat?searchtype=author&query=Meszl%C3%A9nyi%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Buza%2C+K
https://arxiv.org/search/stat?searchtype=author&query=Vidny%C3%A1nszky%2C+Z
https://arxiv.org/abs/1707.06682
https://doi.org/10.1007/978-3-319-44778-0_36
https://doi.org/10.1101/240267
https://doi.org/10.1109/MSP.2015.2481559
https://doi.org/10.1038/s41598-019-38612-9
https://doi.org/10.1038/s41598-019-41500-x
https://doi.org/10.1016/j.neuroimage.2016.03.063
https://doi.org/10.1155/2018/1350692
https://doi.org/10.1016/j.neuroimage.2019.04.068
https://doi.org/10.1162/neco_a_00990
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1109/MCOM.2018.1701156
http://jmlr.org/papers/v15/srivastava14a.html
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.3389/fnins.2018.00777
https://arxiv.org/abs/1707.01083

19

ImageNet”. 2019. arXiv:1904.00760 [cs.CV]

[30] Juefei-Xu F., Boddeti V.N and Savvides M. “Perturbative Neural Networks”. 2018. arXiv:1806.01817 [cs.CV]

[31] Zhao G. et al. “Random Shifting for CNN: a Solution to Reduce Information Loss in Down-Sampling Layers”. Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17). 2017. pp 3476-3482.
https://doi.org/10.24963/ijcai.2017/486

[32] Ivan C. “Convolutional Neural Networks on Randomized Data”. 2019. arXiv:1907.10935 [cs.CV]

[33] Petersen R.C. “Mild cognitive impairment as a diagnostic entity”. J Intern Med. 2004 Sep;256(3):183-94. Review.
https://doi.org/10.1111/j.1365-2796.2004.01388.x

[34] Taulu S and Simola J. “Spatiotemporal signal space separation method for rejecting nearby interference in MEG
measurements”. Phys Med Biol. 2006 Apr 7;51(7):1759-68. https://doi.org/10.1088/0031-9155/51/7/008

[35] Oostenveld R, Fries P, Maris E and Schoffelen JM. “FieldTrip: Open source software for advanced analysis of MEG, EEG,
and invasive electrophysiological data”. Comput Intell Neurosci. 2011;2011:156869. https://doi.org/10.1155/2011/156869

[36] Kuhn M. “caret: Classification and Regression Training”. R package. 2019. https://cran.r-
project.org/web/packages/caret/caret.pdf

[37] Kursa M.B. “Boruta: Wrapper Algorithm for All Relevant Feature Selection. R package. 2018. https://cran.r-
project.org/web/packages/Boruta/Boruta.pdf

[38] Ambroise, C. and McLachlan, G.J. “Selection bias in gene extraction on the basis of microarray gene-expression data”.
Proceedings of the National Academy of Sciences, 2002, 99 (10) 6562-6566. https://doi.org/10.1073/pnas.102102699

[39] Kiranyaz S. et al. “1D Convolutional Neural Networks and Applications — A Survey”. 2019. arXiv:1905.03554 [eess.SP]

[40] Williams C.K.I. and Barber D., “Bayesian Classification with Gaussian Processes” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 12, 1998, pp. 1342-51. https://doi.org/10.1109/34.735807

[41] Sharma, A. et al. “Deeplnsight: A methodology to transform a non-image data to an image for convolution neural network
architecture”. Sci Rep 9, 11399 (2019). https://doi.org/10.1038/s41598-019-47765-6

[42] Pedregosa F. et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825-
2830, 2011.

[43] Huang, G.B., Zhu, Q.Y. and Siew, Ch. K., “Extreme learning machine: theory and applications". Neurocomputing. 70 (1):
489-501. 2006. https://doi.org/10.1016/j.neucom.2005.12.126.

[44] Batista G.E.A.P.A, Prati R.C., and Monard M.C. “A study of the behavior of several methods for balancing machine
learning training data”. ACM SIGKDD Explorations Newsletter. 6(1):20—29. 2004. https://doi.org/10.1145/1007730.1007735

[45] Blagus R. and Lusa L. “SMOTE for high-dimensional class-imbalanced data”. BMC Bioinformatics. 14-106. 2013.
https://doi.org/10.1186/1471-2105-14-106

[46] Chen, SY etal. “A general introduction to adjustment for multiple comparisons.” Journal of thoracic disease vol. 9,6 (2017):
1725-1729. https://doi.org/10.21037/jtd.2017.05.34

https://arxiv.org/search/cs?searchtype=author&query=Juefei-Xu%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Boddeti%2C+V+N
https://arxiv.org/search/cs?searchtype=author&query=Savvides%2C+M
https://doi.org/10.24963/ijcai.2017/486
https://arxiv.org/abs/1907.10935
https://doi.org/10.1111/j.1365-2796.2004.01388.x
https://doi.org/10.1155/2011/156869
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
https://doi.org/10.1073/pnas.102102699
https://doi.org/10.1109/34.735807
https://doi.org/10.1038/s41598-019-47765-6
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.21037/jtd.2017.05.34

