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• Efficiency analysis tree was used to evalu-
ate the energy efficiency of wastewater
treatment.

• The average energy efficiency of evalu-
ated wastewater treatment plants is
0.287.

• Energy efficiency is influenced by the age
and technology of the facility.
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Wastewater treatment plants
Wastewater treatment plants (WWTPs) are energy intensive facilities. Controlling energy use in WWTPs could bring
substantial benefits to people and environment. Understanding how energy efficient thewastewater treatment process
is and what drives efficiency would allow treating wastewater in a more sustainable way. In this study, we employed
the efficiency analysis trees approach, that combines machine learning and linear programming techniques, to esti-
mate energy efficiency of wastewater treatment process. The findings indicated that considerable energy inefficiency
amongWWTPs in Chile existed. Themean energy efficiencywas 0.287 suggesting that energy use should cut reduce by
71.3 % to treat the same volume of wastewater. This was equivalent to a reduction in energy use by 0.40 kWh/m3 on
average. Moreover, only 4 out of 203 assessed WWTPs (1.97 %) were identified as energy efficient. It was also found
that the age of treatment plant and type of secondary technology played an important role in explaining energy effi-
ciency variations among WWTPs.
1. Introduction

Evaluating the sustainability of urban water services has become a rele-
vant issue during the last twenty years (Molinos-Senante et al., 2016). Sus-
tainability is usually associated with the triple bottom line framework,
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i.e., social, economic and environmental dimensions (Marques et al.,
2015). However, after the Paris Agreement adopted at 21st Conference of
the Parties to the United Nations Framework Convention on Climate
Change (COP21), energy and greenhouse gas emissions related issues
have acquired special attention. In this context, reducing the carbon foot-
print of urban water utilities would contribute to meet the objectives of
the Paris Agreement in the medium-term.

Wastewater needs to be treated at high standards before it is discharged
back to the environment or its reuse (Feng et al., 2022). On average, high-
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nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.163539&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2023.163539
mailto:maria.molinos@uva.es
http://dx.doi.org/10.1016/j.scitotenv.2023.163539
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


A. Maziotis et al. Science of the Total Environment 885 (2023) 163539
income countries treat about 70%of thewastewater they generatewhereas
in upper-middle and lower-middle income countries this ratio drops to
38 % and 28 %, respectively (UNESCO, 2017). Untreated wastewater will
lead to a deterioration on the ecological status of water bodies such as rivers
and lakes (Miller et al., 2013; Ganguly and Dewan, 2020). Hence, in the
coming years, the number of wastewater treatment plants (WWTPs)will in-
crease to achieve the targets defined by the Sustainable Development Goals
(Goal 6) (United Nations, 2015).

An importance resource, from an economic and environmental perspec-
tive, for the operation of WWTPs is energy. Previous studies estimated that
the treatment of wastewater requires up to 4 % of electric energy in United
States and 0.70 % of electricity consumption in China (Longo et al., 2016,
2020; Niu et al., 2019). In Europe, energy use for treating wastewater
could explain for>1%of consumption (Walker et al., 2021). The energy in-
tensity of wastewater treatment process pushes up companies' production
costs. Previous studies concluded that energy costs account for >60 % of
water companies' operating expenditure (Gu et al., 2017). Moreover, en-
ergy use leads to the generation of greenhouse gas emissions (GHG)
which could have a negative impact on people and environment (Wang
et al., 2018; An et al., 2018; Cardoso et al., 2021). Thus, the transition to-
wards a sustainable and carbon efficient wastewater treatment process is
of great interest to policy makers. The above challenges and objectives
give rise to the measurement of the energy performance of WWTPs and
the need to get a better understanding on what drives energy efficiency
when treating wastewater (Venkatesh et al., 2014; Torregrossa et al.,
2018; Molinos-Senante and Maziotis, 2022).

Based on the traditional definition of efficiency, which (in an input-
oriented case) measures the ability of a decision-making unit (DMU) to pro-
duce the same level of outputs using less inputs (Coelli et al., 2005), in the
framework ofWWTPs, energy efficiency is defined as a synthetic index that
integrates the volume of wastewater treated, the amount of pollutants re-
moved and the energy required to treat wastewater (Hernández-Sancho
et al., 2011). Hence, energy efficiency is a metric for benchmarking energy
performances of WWTPs (Longo et al., 2016). This approach differs from
the energy intensity concept defined as the energy consumed per unit vol-
ume of wastewater treated (kWh/m3) which ignores the main function of
a WWTP, e.g., removing pollutants from wastewater (Castellet-Viciano
et al., 2018).

From a methodological point of view, there are two main techniques to
measure efficiency of DMUs, i.e., parametric (econometric) and non-
parametric (linear programming). Both approaches compare inputs and
outputs of DMUs and derive relative efficiency measures. Data envelop-
ment analysis (DEA), a non-parametric approach, can be used to evaluate
the energy efficiency of WWTPs (Cardoso et al., 2021) because of its ability
to integrate multiple inputs and outputs in a single composite indicator
(Guerrini et al., 2016). DEA relies on the construction of the efficient pro-
duction frontier using observed data on inputs and outputs of the units eval-
uated, i.e., efficiency is not estimated econometrically (Yadav et al., 2022).
DEA builds a piecewise and linear frontier and assumes that deviations of
DMUs from the frontier are due to inefficiency only.

Past research evaluating the energy efficiency of WWTPs is limited and
focused on the use of DEA method. Hernández-Sancho et al. (2011) and
Hernández-Chover et al. (2018) used a non-radial DEA model, to estimate
energy efficiency of a sample of Spanish WWTPs. Guerrini et al. (2017) ap-
plied a double bootstrap DEA model to assess the energy efficiency of Ital-
ian WWTPs. The objective of the paper by Molinos-Senante (2018) was to
compare the energy efficiency among wastewater treatment technologies
using a metafrontier DEA model. Longo et al. (2016) used the DEA-CCR
(Charnes, Cooper and Rhodes) and DEA-BCC (Banker, Charnes and Cooper)
models to assess the energy efficiency of WWTPs from different countries.
The same DEA models were used by Yang and Chen (2021) to estimate
the energy efficiency of ChineseWWTPs. Longo et al. (2018) proposed a ro-
bust energy efficiency DEA to estimate bias-corrected EE scores of WWTPs.

Despite the positive features of DEA to estimate energy efficiency of
WWTPs, it is a deterministic approach which means that it is sensitive to
outliers. Moreover, it suffers from overfitting suggesting that efficiency
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estimates may not be accurate (Esteve et al., 2020). This is because techni-
cal inefficiency score for each unit is estimated as the deviation of each ac-
tivity or production plan from the frontier of the production possibility set.
The WWTPs´ energy efficiency estimations by Molinos-Senante and
Maziotis (2022) might suffer from overfitting problem as well because
they used stochastic parametric envelopment of data (StoNED) method
which is a combination of DEA and stochastic frontier analysis approaches.
To deal with overfitting issues in efficiency estimation and improving the
robustness of the results, Esteve et al. (2020) developed a newly technique,
called efficiency analysis trees (EAT) which brings together machine learn-
ing and linear programming techniques. EAT overcomes the overfitting
problem by applying a pruning procedure based upon cross-validation. It
allows determining efficiency evaluation out-of-sample for the assessed
units (WWTPs) and therefore, estimating the optimal levels of energy use
forWWTPs. Esteve et al. (2020) demonstrated that the EATmethod outper-
forms against other non-parametric techniques. Therefore, it provides reli-
able efficiency scores being appropriate for benchmarking analysis and
policy decision making.

Against this background, the main objective of this study is to provide a
comprehensive assessment of the energetic performance of a sample of
WWTPs based on the EAT method. This approach allows quantifying the
optimal level of energy that could be used to treat wastewater based on dif-
ferent pollutants quality-adjusted volume thresholds. Because energy effi-
ciency is estimated at WWTP level, potential energy savings if WWTPs
were efficient are also quantified. Finally, we investigate the influence of
the age and secondary treatment technology on the energy efficiency of
WWTPs.

Our study extends the current strand of literature as follows. To the best
of our knowledge, this is the first time that an approach that combines both
machine learning and linear programming techniques is used to measure
energy performance of wastewater treatment process. The use of EAT
method to estimate energy efficiency scores of WWTPs overcomes the lim-
itations of DEA approach previously used by the literature. Moreover, for
the first time, the optimal level of energy use of WWTPs is estimated. This
information is very relevant for the water regulator and water companies
to define targets that could progressively be met. This novel piece of work
was applied to a sample of Chilean WWTPs.

2. Methodology

In this section we present the methodology used to assess the energetic
performance of several WWTPs. It is based on three stages. The first and
second stages are related to the application of the EAT method whereas
the third stage focuses on identifying factors influencing the previously es-
timated energy efficiency scores. In the first stage, the EAT approach uses
regression (decision) trees to derive the predicted value of the response var-
iable (i.e., energy use in this case study). This value is derived after separat-
ing the whole sample into several non-overlapping regions based on a set of
rules (thresholds) of the predictor variables (i.e., volume of wastewater
treated to remove several pollutants in this case study) (Rebai et al.,
2019) (see Fig. 1). The EAT approach incorporates the concept of free dis-
posability (Esteve et al., 2021) and therefore, the predicted value of the re-
sponse variable is not the average value but the optimal (ormaximum) one,
which in our study allows us to estimate the optimal use of energy by
WWTPs.

In the second stage, production frontiers and energy efficiency scores
are estimated using linear programming techniques. The estimated produc-
tion frontier takes the shape of a step function (Esteve et al., 2020) (Fig. 2).
In the third stage, bootstrap truncated regression techniques are applied to
statistically identify characteristics of the WWTPs influencing their energy
efficiency.

Let's assume that there is a vector of predictor variables defined as
x1, . . . , xm with xi ∈ Rm. This set of variables is employed to predict a vec-
tor of response variables defined as y, . . . , yn with yi ∈ Rn. The EATmethod
splits the observations into two nodes, tR and tL by selecting a predictor
variable j and a threshold sj ∈ Sj where Sj captures the set of likely



Fig. 1. Example of a regression tree.
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thresholds for the variable j to split the data into (Esteve et al., 2022). The
separation of the observations into several regions based on thresholds
from the response variables is done by minimizing the sum of the mean
squared of error. Its mathematical form is as follows:

R tLð Þ þ R tRð Þ ¼ 1
n
∑ xi ;yið Þ∈tL yi−y tLð Þð Þ2 þ 1

n
∑ xi ;yið Þ∈tR yi−y tRð Þð Þ2 ð1Þ

In Eq. (1) t is the node of the regression tree; R tLð Þ and R tRð Þ are the
mean squared error of left node and right of the tree, i.e., tL and
tR, respectively; n is the size of the sample and y tLð Þ and y tRð Þ are the pre-
dicted values of the response variable that are estimated on the left and
right node of the tree, respectively. The regression tree can be visualized
in Fig. 1.

The predicted values of the response variable in the left and right node
of the regression tree are derived from the following equations:

y tLð Þ ¼ max max yi : xi, yið Þ ∈ tLf g, y IT kjt∗!tL ,tRð Þ tLð Þ� �� � ð2aÞ

y tRð Þ ¼ max max yi : xi, yið Þ ∈ tRf g, y IT kjt∗!tL ,tRð Þ tRð Þ� �� � ð2bÞ
Fig. 2. Pareto-dominance nodes.
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where T denotes the sub-tree that is formed utilizing the EAT technique and
the number of splits is shown by k. Moreover, y IT kjt∗!tL ,tRð Þ tLð Þ� �

and
y IT kjt∗!tL ,tRð Þ tRð Þ� �

show the set of leaf nodes of the tree created after achiev-
ing the k-th split that Pareto dominates node tL and tR (Esteve et al., 2020,
2021, 2022). The concept of Pareto dominance is illustrated in the Fig. 2
where a case of two inputs, x1 and x2 is considered. In Fig. 2 node t′
Pareto-dominates node t because at′ ¼ 2, 2ð Þ < b ¼ 9, 9ð Þ where a and b
present points of nodes t′ and t, respectively. Node t′ “is preferable to”
node t because it employs less inputs than node t (Esteve et al., 2020).

As part of the second stage of the methodology applied, the production
frontier that the EAT approach estimates is presented by the following
equation:

dPTTk ¼ x, yð Þ ∈ Rmþ1
þ : y ≤ dTk xð Þ� �

(3)

where dTk xð Þ is the predictor estimator regarding the sub-tree Tk:

The energy efficiency score for each unit assessed (i.e., WWTP) is mea-
sured by solving the following linear programming:

φ xk , ykð Þ ¼ min φ
s:t:

∑t ∈ ~T∗λtatj ≤ φxjk, j ¼ 1, . . . ,m

∑t ∈ ~T∗λtdtrT∗ atð Þ≥yjk, r ¼ 1, . . . , p
∑t ∈ ~T∗λt ¼ 1

λt ∈ 0, 1f g, i ¼ 1, . . . , n

(4)

In Eq. (4) φ denotes the energy efficiency score, at , dT∗ atð Þð Þ are input-
outputs points for all t ∈ T∗ where * is the final sub-tree, and λ are intensity
variables that are used to estimate the production frontier (Esteve et al.,
2020). It is noted that the energy efficiency score can take any value be-
tween zero and one. A WWTP that has an energy efficiency score equal to
one (φ ¼ 1:0Þmeans that it is 100% energy efficient. AWWTP that obtains
an energy efficiency score less than one (φ < 1:0Þ, means that it is energy
inefficient and can reduce energy use to become more efficient. We quan-
tify the potential energy savings using the following equation:

Energys ¼ Energyc∗ 1 � φð Þ (5)

where Energys denotes the potential savings in energy use if theWWTPwas
energy efficient and; Energyc is the actual level of energy use for each
WWTP evaluated.

The third step of our analysis is to get a better insight of what could
drive energy efficiency of WWTPs. In doing so, we regress the energy effi-
ciency score of each WWTP assessed using the EAT approach (φ) against
a set of structural characteristics of the facilities. Since the energy efficiency
score takes a value between zero and one, we employ truncated regression.
In particular, we utilize bootstrap truncated regression techniques devel-
oped by Simar and Wilson (2007). The regression model takes the follow-
ing form:

φi ¼ δ0 þ δiμ′i þ εi (6)

where φi is the energy efficiency score; δ0 is the constant term; μ′i is the set
of structural characteristics of eachWWTP i assessed, and δi are parameters
that the regression model estimates. Finally, εi is the error (noise) term
which follows the standard normal distribution (Simar and Wilson, 2007).

3. Case study description

The identification of outliers and/or atypical observations becomes fun-
damental in non-parametric methods (De Witte and Marques, 2010a). A
peer index approach1 (De Witte and Marques, 2010b) was applied to the
original database, which embraces 238 WWTPs, to identify atypical
1 Other methods for identifying outliers are leverage, super-efficiency and order-m (De
Witte and Marques, 2010b).
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observations. As a result, 35WWTPswere removed from the database lead-
ing to a total of 203 WWTPs whose energy efficiency was evaluated. The
203 WWTPs operate in Chile and use five different secondary treatment
technologies: i) conventional activated sludge (CAS) (n= 79); ii) extended
aeration (EA) (n = 43); iii) aerated lagoon (AL) (n = 16); iv) trickling
filter (TF) (n = 20); and v) rotating biological contactor or biodisk (BD)
(n = 45). All WWTPs are operated by private water companies because
the Chilean water industry was almost full privatized between 1998 and
2004 (Molinos-Senante, 2018). Nevertheless, the Chilean urban water reg-
ulator, i.e., the “Superintendencia de Servicios Sanitarios” (SISS), is in
charge of monitoring the quality of the wastewater (effluent) before it is
safely charged to the environment. The data used in this study come from
the regulator and is for 2017.

Choosing the input and output variables is the most important stage in
efficiency assessment as the results are highly influenced by this choice
(De Witte and Marques, 2010b). Because we are interested in assessing
the energetics of WWTPs, the input (or response variable in this study) var-
iable was the electricity consumed by each WWTP expressed in kWh/year
(Rodríguez-García et al., 2011; Bodik and Kubaska, 2013; Longo et al.,
2016;Molinos-Senante, 2018). It involves all electricity used to treat waste-
water regardless if it is from renewable or non-renewable sources. Unfortu-
nately, this information is not publicly available and therefore, any
environmental impact analysis about electricity used by WWTPs could
not be conducted. According to Wakeel et al. (2016) and Longo et al.
(2019), the largest amount of energy consumed in WWTPs is in form of
electricity.

The main objective of the WWTPs is to remove pollutants from waste-
water to meet effluent discharge thresholds defined by the regulation
(Dong et al., 2017). Based on previous research (Hernández-Sancho et al.,
2011; Gómez et al., 2017; Hernández-Chover et al., 2018; Longo et al.,
2018; Huang et al., 2021), pollutant quality-adjusted outputs, estimated ac-
cording to Eq. (7), were used as outputs (or predictor variables in this study)
in the energy assessment of WWTPs.

Quality adjusted outputp ¼ Volumeww � Cpin � Cpef

Cpin

� �
(7)

where Volumeww presents the volume of wastewater treated measured in
cubic meters per year. Cpin is the concentration of pollutant p in the influent
and Cpef is the concentration of pollutant p in the effluent. Hence, the vol-
ume of wastewater treated by eachWWTPwas modified to consider the ef-
ficiency in removal of each pollutant p. Our case study takes into account
three pollutants: i) biochemical oxygen demand (BOD); ii) suspended solids
(SS) and iii) phosphorus (P). Therefore, we used three quality-adjusted out-
puts to assess the energetic performance of WWTPs.

Finally, to explore the impact of structural characteristics on the ener-
getic performance of WWTPs, we considered the following variables in
our analysis: i) the age of treatment facility measured in total number of
years; ii) the type of treatment technology, a categorical variable that con-
siders the available secondary treatment technologies. Table 1 reports the
descriptive statistics of the variables used in the case study.
Table 1
Descriptive statistics of the variables used to estimate energy efficiency scores of wastew

Variables Unit of measurement

Electricity consumption kWh/year
Wastewater volumes BOD removed m3/year
Wastewater volumes SS removed m3/year
Wastewater volumes P removed m3/year
Removal efficiency BOD %
Removal efficiency SS %
Removal efficiency P %
Age of facility Years
Type of treatment technology
(CAS = 1, EA = 2, AL = 3, TF = 4, BD = 5)

Categorical

Observations: 203.
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4. Results and discussion

4.1. Optimal level of energy use in wastewater treatment plants

To estimate the level of energy use in WWTPs based on pollutant
quality-adjusted volume of wastewater treated, the EAT algorithm was
solved (Fig. 3). Within the three quality-adjusted outputs based on the pol-
lutants removed from wastewater (BOD, SS and P), it is evidenced that P
quality-adjusted output determines the maximum level of energy use in
WWTPs. This is because, as it is shown in Table 1, P is the pollutant
whose removal efficiency varies more among the WWTPs evaluated. By
contrast, the standard deviation of BOD and SS quality adjusted outputs is
more boundedwhich means that the performance of theWWTPs evaluated
in the removal of these pollutants is more homogenous than for P pollutant.

Fig. 3 shows that for those WWTPs whose P quality-adjusted output is
more 2,267,961 m3/year of wastewater, the maximum energy consump-
tion is 6,711,383 kWh/year which involves that the maximum energy con-
sumption is 2.95 kWh per cubic meter of wastewater treated adjusted by P
efficiency removal. When P quality-adjusted output is between 35,624 and
2,267,961 m3/year, then the maximum level of energy use could be at
915,708 kWh/year. If the WWTP annually treats <35,624 m3 of P
quality-adjusted volume of wastewater, then energy consumption could
reach the level of 213,620 kWh/year. Overall, the results demonstrated
that wastewater treatment is energy intensive. As a result, we need to fur-
ther understand how efficient the energy performance of wastewater treat-
ment process is.

4.2. Energy efficiency assessment of wastewater treatment plants

The statistics of the energy efficiency scores estimated for the 203
WWTPs evaluated are reported in Fig. 4. It is shown that, on average the en-
ergy efficiency of WWTPs was 0.287 which means that the evaluated facil-
ities could cut down energy use by 71.3 % to treat the same level of
wastewater to remove pollutants. It reveals that the energetic performance
of wastewater treatment process is poor. This figure is lower than the aver-
age energy efficiency scores estimated by past research. For Spanish
WWTPs, Hernández-Sancho et al. (2011) and Hernández-Chover et al.
(2018) found an average energy efficiency of 0.310 and 0.460, respectively.
For Chilean WWTPs, Molinos-Senante (2018) estimated an average energy
efficiency score of 0.511. A similar average energy efficiency (0.458) was
reported by Guerrini et al. (2017) for a sample of Italian WWTPs. Finally,
Longo et al. (2018) found average energy efficiency scores between 0.12
and 0.40 for a large sample of WWTPs from different European countries.
It should be noted that these previous studies used DEA methods to esti-
mate energy efficiency scores which has some limitations, whereas our
study estimated energy efficiency scores using the EAT approach. Hence,
differences in results among studies might be due to methodological
approached used for energy efficiency estimations.

According to our estimations, only 4 out of 203 WWTPs, i.e., 1.97 % of
the sample, are energy efficient (Table 2). These four facilities are identified
as the best performers in terms of energy use. Two of them, i.e., WWTP66
ater treatment plants.

Mean Std. Dev. Minimum Maximum

337,563 855,810 443 6,711,383
667,766 1,657,445 461 13,078,100
649,010 1,620,520 445 13,182,505
472,332 1,300,256 9 11,927,636

90.58 9.66 28.86 98.93
88.33 10.81 23.5 99.80
56.63 19.62 1.16 96.06
19 6 5 40
3 2 1 5



Fig. 3. Efficiency analysis tree (EAT) for estimating use of energy inwastewater treatment plants, where: P removal denotes phosphorous (P) quality adjusted output (Eq. (7))
in m3/year; Id is the node; n(t) is the number of observations and y is the maximum energy use in kWh/year.

A. Maziotis et al. Science of the Total Environment 885 (2023) 163539
and WWTP96, were of bigger size compared to the other ones as shown by
the high levels of pollutants removed and energy use. TheseWWTPs are rel-
atively old plants with a construction age of 27 and 24 years old and use
CAS and EA technology, respectively. The other two fully energy efficient
facilities are relatively newly built with a life that does not exceed the
15 years and use TF and BD technologies to treat lower levels of wastewa-
ter. This finding evidences that WWTPs with different characteristics,
i.e., age and technology could be energy efficient.

The rest of WWTPs within the top 10 of facilities showed an energy ef-
ficiency score which ranged between 0.70 and 0.870. The type of treatment
technology used among this group of facilities varied but there is represen-
tation of all technologies considered in this study. Hence, the type of sec-
ondary treatment used to treat wastewater is not a technical limitation to
achieve relatively good energy efficiency.
Fig. 4. Statistics of the energy efficienc

5

As far as theworst performers are concerned, it is found that the average
energy efficiency score ranged between 0.020 and 0.070 (Table 2). This in-
dicates that this group of facilities needs to make considerable savings in
the energy use to catch-upwith themost energy efficient ones. Themajority
of worst performers are old WWTPs with an average construction age
of 19.6 years. This group of WWTPs is characterized by using CAS, EA
and AL technologies to treat wastewater. By contrast, none of the bottom
10 energy efficiency WWTPs uses TF and BD as secondary treatment.
More details about the impact of technology and age on the energetic per-
formance of WWTPs are reported in Section 4.3.

In order to further analyze the variability in the energetic performance
of the 203 WWTPs assessed, Fig. 5 shows the distribution of the estimated
energy efficiency scores amongWWTPs. It is shown that the majority of the
WWTPs are inefficient from an energy perspective. In particular, 99 out of
y estimations for assessed WWTPs.



Table 2
Top 10 and bottom 10 energy efficient WWTPs.

WWTP identification Energy
efficiency
score

Energy saving
potential
(kWh/year)

Actual
energy
(kWh/year)

BOD
quality-adjusted
volume

SS
quality-adjusted
volume

P
quality-adjusted
volume

Age Technology

Top 10 energy efficient units WWTP66 1.000 0 869,880 44,051 45,313 35,624 27 CAS
WWTP96 1.000 0 1,340,569 2,567,717 2,535,503 2,267,962 24 EA
WWTP158 1.000 0 1097 461 445 393 15 TF
WWTP194 1.000 0 1572 5234 5235 9 9 BD
WWTP157 0.870 923 7103 5299 5240 3874 18 TF
WWTP120 0.827 639,915 3,698,930 5,802,318 5,430,766 2,741,136 15 EA
WWTP197 0.770 2011 8744 6014 5841 5052 10 BD
WWTP111 0.710 126,692 436,869 677,122 642,038 503,489 23 EA
WWTP71 0.700 25,092 83,639 72,041 61,653 63,742 14 CAS
WWTP123 0.700 241 803 69,089 90,586 91,665 11 AL

Bottom 10 energy efficient
units

WWTP23 0.070 38,957 41,889 65,065 62,060 38,491 17 CAS
WWTP133 0.069 417,554 448,500 651,829 494,116 517,640 31 AL
WWTP13 0.064 216,439 231,238 675,648 692,818 559,040 12 CAS
WWTP119 0.061 420,877 448,218 676,596 641,377 581,390 23 EA
WWTP80 0.058 280,471 297,740 675,544 677,261 612,112 12 EA
WWTP129 0.058 584,746 620,749 1,490,316 1,538,891 618,420 22 AL
WWTP7 0.045 254,330 266,314 1,078,200 1,084,140 785,366 16 CAS
WWTP10 0.042 676,293 705,943 1,421,667 1,419,844 858,325 19 CAS
WWTP105 0.039 510,772 531,500 953,003 942,167 912,534 22 EA
WWTP102 0.020 747,810 763,071 2,486,964 2,370,157 1,822,024 22 EA

A. Maziotis et al. Science of the Total Environment 885 (2023) 163539
203WWTPs (48.8 %) were found to have an energy efficiency score which
varied between 0 and 0.20. This means that on average these facilities need
to cut down energy use by >80 %. Additionally, there were 64 facilities
(31.5 %) with an energy efficiency score which ranged between 0.21 and
0.40. Therefore, the energy saving potential among these WWTPs could
range between 60 % and 80 %. Only 40 out of 203 facilities, i.e., 19.7 %
of the sample, present an energy efficiency score larger than 0.41. Overall,
the findings demonstrate that considerable energy inefficiency exists in the
wastewater treatment process among the assessed facilities.

The estimated energy efficiency involves that the assessed WWTPs
could save energy to produce the same quality-adjusted outputs, i.e., to
treat the same volume of wastewater with the same pollutants' removal
efficiency. Based on the energy efficiency scores for the 203 WWTPs and
their current energy use, potential energy saving was estimated to be
42,465,302 kWh/year which is equivalent to an average of 0.40 kWh/m3.
Fig. 6 reveals that potential energy savings are heterogenous among the
evaluated WWTPs. The median value is 0.32 kWh/m3 whereas the 25th
and 75th percentiles are 0.19 kWh/m3 and 0.53 kWh/m3, respectively.
Fig. 5. Energy efficiency scor
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The extreme values correspond to those WWTPs with the lowest energy ef-
ficiency scores.

Controlling energy use could have positive benefits for people and envi-
ronment. First, by reducing energy use in the operation of WWTPs, water
companies could reduce operating costs which could be further passed on
to customers in terms of lower bills. The average electricity price of Chile
in 2017 was 65.05 €/MWh (CNE (Nacional Energy Commission), 2020).
Hence, based on the volume of wastewater treated by the assessed
WWTPs, they could save around 2,762,368 €/year if they were energy effi-
cient. It is equivalent to 0.026 €/m3 of wastewater treated. Second, energy
savings may lead to a considerable reduction in GHG emissions. The use of
renewable energy in treating sewage could lead to lower emissions released
in the atmosphere. Based on the electrical production mix of Chile in 2017,
the GHG emission factor was 449.73 KgCO2eq/MWh (ME (Chilean Minis-
try of Energy), 2022). If the WWTPs evaluated were energy efficient, they
could save 19,098 tons CO2eq/year. According to the World Bank (2022)
database, the average annual carbon emission per capita in Chile in 2017
was 4.7 tons of CO2eq. Hence, if theWWTPs assessed were energy efficient,
es of WWTPs evaluated.



Fig. 6. Statistics of the potential energy savings for assessed WWTPs.
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potential savings in GHG emissions would be equivalent to the annual GHG
emitted by 4063 Chilean people.

4.3. Factors influencing energy efficiency

In order to get a better understanding on what drives the energy effi-
ciency of wastewater treatment process we need to look at the results re-
ported in Table 3. The regression findings demonstrate that the age of the
WWTPs and the type of secondary treatment technology had an important
part in explaining energy efficiency variations across facilities. The age of
treatment plant had a negative sign and was statistically significant. This
means that the older the WWTP is, the lower its energy efficiency could
be. The result indicates that an increase in the age of treatment plant by
one year could lead to a reduction in its energy efficiency by 0.101% on av-
erage. This might be explained by the fact that older facilities present less
energy efficient pumps and aeration systems in the biological process. It
should be noted that aeration accounts for the largest fraction of WWTPs´
energy costs, ranging from 45 % to 75 % of total operational costs (Longo
et al., 2016). Evidence on the influence of the age of WWTPs on energy ef-
ficiency is inconclusive. On the one hand, Hernández-Sancho et al. (2011);
Molinos-Senante et al. (2014) and Guerrini et al. (2017) found that energy
efficiency of WWTPs was not affected by the age of the facilities. By con-
trast,Molinos-Senante andMaziotis (2022) concluded the opposite because
they found thatWWTPs younger than 10 years old presented the largest en-
ergy efficiency scores.

Fig. 7 shows the distribution of energy efficiency scores based on the
age of WWTPs. The results indicate that the older facilities are less energy
efficient than new ones. In particular, WWTPs that have a life of 1 to
Table 3
Factors influencing the energy efficiency of WWTPs. Estimates of bootstrap trun-
cated regression.

Variables Coeff Std. error z-stat p-value

Constant 3.310 0.121 27.355 0.000
Age of facility −0.101 0.041 −2.463 0.013
Type of technology 0.121 0.031 3.903 0.000
sigma 0.251 0.056 4.482 0.000
X2 (3) 71.54
p-value 0.000

Observations: 203.
Bold statistics are statistically significant at 5 % significance level.
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10 years showed an average energy efficiency score of 0.339. In contrast,
facilities that have a life of >10 years showed an average energy efficiency
score of 0.263. Overall, the results suggest that the recently built WWTPs
can bemore energy efficient than older ones. However, on average the eval-
uated facilities are characterized by high levels of energy inefficiency.
Hence, there is room for considerable improvement in energy performance
for newly and older built plants.

Looking at the type of secondary treatment technology, Table 3 shows
that in the regression analysis, this variable had a positive sign and was sta-
tistically significant. This means that on average the WWTPs that operated
based on EA, AL, TF, and BD technologies were found to bemore energy ef-
ficient than those facilities using CAS technology. Whereas CAS technology
has beenwidely adopted worldwide to treat domestic wastewater, it is now
being recognized as lacking economic and environmental sustainability, es-
pecially with respect to the inefficient use of energy (Sheik et al., 2014;
Garrido-Baserba et al., 2018). This conclusion was also evidenced by past
studies (Molinos-Senante, 2018; Molinos-Senante and Maziotis, 2022)
who focused on comparing the energy efficiency of WWTPs using different
secondary treatment technologies.

We next discuss the relationship between energy efficiency, energy sav-
ings potential and the type of technology used. This is shown in Table 4.
The results highlight that plants that use CAS technology are less energy ef-
ficient than the ones that use other types of treatment technologies. There
were 79 plants that use CAS technology and reported an average energy ef-
ficiency score of 0.228. This means that these facilities could becomemore
energy efficient by reducing energy use by 77.2%on average. The potential
savings in energy use could be 0.494 kWh/m3 on average. By contrast, it
was found that facilities who used EA and TF treatment technologies re-
ported higher levels of energy efficiency scores. The average energy effi-
ciency for plants that use EA and TF technologies were 0.346 and 0.364,
respectively. Although their energy performance was better than the plants
that use CAS technology, the potential savings in energy use are substantial.
It is estimated that energy potential savings could reach the level of
0.434 kWh/m3 and 0.296 kWh/m3 when facilities use EA and TF technol-
ogies, respectively. It should be noted that WWTPs using BD technology
are those with the lowest potential to save energy (0.270 kWh/m3) al-
though they are not the most energy efficient. This is because, currently,
this type of facilities is using less energy than the others based on CAS,
EA, AL and TF technologies.

Overall, the results indicate that energy performance ofWWTPs is influ-
enced by its age and the secondary treatment technology it uses. Older
facilities are less energy efficient than newly built ones. Plants that use



Fig. 7. Average energy efficiency according to groups of wastewater treatment plants by age.

Table 4
Energy efficiency scores and energy potential saving of the assessedWWTPs by type
of technology.

Technology Energy efficiency scores
(indicator)

Potential energy savings
(kWh/m3)

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

CAS 0.228 0.147 0.042 1.000 0.494 0.359 0.000 1.841
EA 0.346 0.230 0.020 1.000 0.434 0.404 0.000 2.200
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CAS technologymay require high levels of energy use and thus could be less
energy efficient than those using other types of secondary treatment
technologies.

Past research (e.g., Carvalho et al., 2012; Hernández-Chover et al.,
2018; Cardoso et al., 2021) has evaluated the presence of economies of
scale in the performance of water and wastewater utilities leading to
mixed results. To better understand the influence of the volume of waste-
water treated, i.e., economies of scale, on the energy efficiency of
WWTPs, Fig. 8 shows the estimated energy efficiency score of each facility
evaluated against its volume of wastewater treated. No direct relationship
among both variables was evidenced. The Pearson correlation coefficient
between energy efficiency score and volume of wastewater treated was
0.156 which means that both variables are not related. Moreover, Fig. 8
shows that the largest facility treating 13,596,615 m3 of wastewater per
year presents an energy efficiency score of 0.19. Hence, potential disecon-
omies of scale are identified for this (and other) evaluated WWTPs.

The 203 assessed WWTPs were categorized in three groups: i) WWTPs
treating <100,000 m3/year; ii) WWTPs treating between 100,000
and 500,000 m3/year and; iii) WWTPs treating >500,000 m3/year
(Hernández-Sancho et al., 2011).2 The average energy efficiency for
each group of facilities was 0.312, 0.259 and 0.303, respectively. A
Kruskal-Wallis test was conducted to verify whether the differences be-
tween energy efficiency scores are statistically significant (Hernández-
Chover et al., 2018). The p-value was larger than 0.05 which means that
differences in average energy efficiency among groups of WWTPs are not
statistically significant.

5. Conclusions

The removal of pollutants from wastewater to avoid environmental
damage is an energy intensive process. Control of energy use could have a
positive influence for people and environment. Understanding the optimal
use of energy during the operation of WWTPs and what drives energy
requirements is of great interest to policy makers and water companies´
managers. A relevant tool of energy use improvements in WWTPs is
benchmarking its energy efficiency. In doing so, reliable and robust meth-
odological approaches should be used. Hence, in this study, for the first
time, the efficiency analysis tree (EAT) method was employed to compre-
hensively evaluate the energy efficiency of a sample of WWTPs. EAT brings
2 WWTPswere categorized based on alternative volume ofwastewater treatedwithoutfind-
ing p-values lower than 0.05 in any case.

8

togethermachine learning and linear programming techniques overcoming
the limitations of DEA method, which is the most common method used in
the literature to assess energy efficiency of WWTPs.

The main findings of this study are as follows. First, it is found that the
efficiency in the removal of P significantly influences the use of energy by
WWTPs. Second, only 4 out of 203 assessed WWTPs (1.97 %) were energy
efficient whereas the other facilities present room to save energy. The aver-
age energy efficiency was 0.287 meaning that on average WWTPs should
cut down energy use by 71.3 % to treat the same volume of wastewater.
This is equivalent to a reduction in energy use by 0.40 kWh/m3. Third, it
has been demonstrated that the age of the facility and the secondary treat-
ment technology used to treat wastewater significantly influence on the en-
ergy efficiency of the WWTPs. Facilities using CAS were identified as the
less energy efficient evidencing the lack of economic and environmental
sustainability of this technology.

This research provides scientific guidance for benchmarking the energy
efficiency of WWTPs and therefore, for the efficient operation of the waste-
water treatment industry that can benefit people and the environment. This
study evidences the poor energy efficiency of the WWTPs assessed and
therefore, reveals the need to develop policies and implement actions by
water regulators and water companies to improve the energy efficiency of
WWTPs. In particular, WWTPs could reduce energy consumption and
increase energy efficiency by adopting several measures such as:
i) optimization of processes by installing smart meters and developing con-
trol systems for the optimal operation of pumps and aeration systems and;
ii) recovery of the energy from wastewater such as heat or electricity
from sewage sludge. This energy could contribute to the reduction in the
overall energy requirements of the facility. Given the economic and
AL 0.278 0.180 0.058 0.700 0.465 0.277 0.002 0.790
TF 0.364 0.240 0.100 1.000 0.296 0.204 0.000 0.663
BD 0.302 0.203 0.100 1.000 0.270 0.200 0.000 1.060



Fig. 8. Energy efficiency score of each WWTP and volume of wastewater treated.
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environmental relevance of the use of energy issues, enhancing the energy
efficiency of WWTPs should be a priority for regulators. In this context,
water regulators should define obligatory actions for water companies to
reduce their carbon footprint such as periodically conducting energetic au-
dits, treating sewage sludge through anaerobic digestion to produce biogas
when the WWTP is larger than a predefined size, economically incentivize
the use of renewable energy, etc. Moreover, water companies should also
be transparent regarding the energy used for treating wastewater through
the use of carbon footprint labels which could be shared with customers
via water bills and in the webpage of the water regulator.

Although this study provided a novel methodological approach to
benchmark the energetic performance ofWWTPs, it is not exempt of limita-
tions with respect to exogenous variables which might influence estimated
energy efficiency scores. Firstly, the variable age considered in this study
corresponds to the year in which eachWWTP started to operate. Therefore,
it does not consider potential upgrades made to them since this year. Sec-
ond, the response variable “electricity used” integrates all electricity used
in the WWTP. Therefore, it embraces electricity used to treat wastewater
and sewage sludge. Because different technologies could be used in
WWTPs to treat sewage sludge, achieving different treated sewage in
terms of quality might also influence energy efficiency of WWTPs. Finally,
there are other potential exogenous variables such as load factor, dilution
factor and wastewater temperature that might influence energy efficiency
of WWTPs. Due to the lack of public available information, these variables
were not included in the energy efficiency assessment conducted in this
study. In other words, the main limitation of this study is related to the
lack of available data. Additional information on exogenous variables
influencing energy efficiency of WWTPs must be considered to get a better
understanding on the energetic performance of WWTPs and support indi-
vidual WWTP energy efficiency optimization.
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