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Resumen 
 

La actividad electroencefalográfica (EEG) espontánea es aquella que se produce 
de forma natural en ausencia de estímulos específicos. El registro de la actividad EEG en 
estado de reposo (RS, resting-state) puede realizarse permitiendo la divagación mental 
(MW, mind-wandering) o bien guiando de alguna forma dicha actividad (EGRS, 
externally guided resting-state). Sin embargo, la mayoría de los estudios no distinguen 
entre ambos protocolos, lo que podría generar un sesgo que dificultaría la interpretación 
de los resultados. Por ello, en el presente trabajo se ha realizado un estudio comparativo, 
mediante el análisis de patrones de activación local, de diferentes paradigmas de registro 
de la actividad EEG espontánea. Para ello, se registró la actividad cerebral en 30 sujetos 
jóvenes cognitivamente sanos durante una fase de EGRS y otra de MW. Tras el 
preprocesado de los registros, se procedió a caracterizar la actividad cerebral mediante el 
uso de parámetros espectrales (e.g., potencias relativas, frecuencia mediana, entropía 
espectral), no lineales (e.g., complejidad de Lempel-Ziv, auto-información mutua, 
entropía aproximada) y de dinámica (parámetros de Hjorth). Nuestros resultados 
revelaron que existe un mayor número de diferencias estadísticamente significativas entre 
ambos paradigmas con los ojos abiertos que con ellos cerrados. Además, se observó una 
aceleración de la actividad cerebral (aumento de RP en altas frecuencias y disminución 
en bajas) en el EGRS en comparación con el MW. La actividad EEG en el EGRS también 
parece estar asociada a una mayor complejidad. En conclusión, los patrones de activación 
local evocados durante un paradigma EEG en estado de reposo con cierta estructura 
presentan diferencias estadísticamente significativas con uno sin estructura 
fundamentalmente en el contenido espectral, pero no cuando se analizan las propiedades 
no lineales y de dinámica de las señales. Esto podría deberse a que durante el MW la 
atención y el nivel de alerta disminuyen, mientras que el EGRS se caracteriza por una 
mayor focalización de la atención a un objetivo específico.  
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Abstract 

 
Spontaneous electroencephalographic (EEG) activity is that which occurs 

naturally in the absence of specific stimuli. The recording of resting-state EEG activity 
(RS, resting-state) can be performed either by allowing mental wandering (MW, mind-
wandering) or by guiding this activity in some way (EGRS, externally guided resting-
state). However, most studies do not distinguish between the two protocols, which could 
generate a bias that would hinder the interpretation of the results. Therefore, in the present 
work, a comparative study was carried out, by analyzing local activation patterns, of 
different paradigms for recording spontaneous EEG activity. For this purpose, brain 
activity was recorded in 30 cognitively healthy young subjects during an EGRS phase 
and a MW phase. After preprocessing the recordings, we proceeded to characterize brain 
activity using spectral (e.g., relative powers, median frequency, spectral entropy), 
nonlinear (e.g., Lempel-Ziv complexity, mutual self-information, approximate entropy) 
and dynamics (Hjorth parameters) parameters. Our results revealed that there is a greater 
number of statistically significant differences between the two paradigms with eyes open 
than with eyes closed. In addition, an acceleration of brain activity (relative power 
increase at high frequencies and decrease at low frequencies) was observed in the EGRS 
compared to the MW. EEG activity in the EGRS also appears to be associated with greater 
complexity. In conclusion, the local activation patterns evoked during a resting-state EEG 
paradigm with some structure present statistically significant differences with an 
unstructured one primarily in spectral content, but not when analyzing the nonlinear and 
dynamics properties of the signals. This could be due to the fact that during MW attention 
and alertness decrease, whereas EGRS is characterized by a greater focus of attention to 
a specific target. 
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Capítulo 1. Introducción 
 
1.1 Introducción al procesado de señales biomédicas 
 

Las señales biomédicas permiten la cuantificación de magnitudes físicas producto 
de la actividad fisiológica originada por una estructura (u organismo) biológica. Además, 
permiten conocer las dinámicas y el estado de estas. Por ello, su interpretación es de gran 
valor para la clínica e investigación. Estas señales pueden ser definidas en función del 
órgano que las origina y de su naturaleza, pudiendo ser eléctricas (e.g., 
electroencefalograma, electrocardiograma y electromiograma), acústicas (e.g., 
fonocardiograma y ecografía), magnéticas (e.g., magnetoencefalograma y 
magnetocardiograma), mecánicas (e.g., mecanomiograma y presión del flujo aéreo), 
químicas (e.g., proteínas y enzimas) u ópticas (e.g., saturación de oxígeno en sangre) 
(Cohen, 2014; Poza, 2008). 

 
Sin embargo, estas señales normalmente se encuentran contaminadas por 

artefactos procedentes de fuentes biológicas que no son de interés y por ruido provocado 
por agentes externos, lo que dificulta el análisis de las señales y puede dar lugar a 
resultados engañosos. Por lo tanto, resulta esencial mitigar la distorsión de estos artefactos 
en la señal de estudio en una etapa de preprocesado para un posterior análisis de las 
mismas (Mannan et al., 2018). Además, la inspección visual que tradicionalmente se ha 
llevado a cabo por el personal clínico resulta poco objetiva, compleja e imprecisa. Por 
ello se empezaron a crear técnicas de procesado que permitieran obtener métricas que 
caracterizaran las señales (Poza, 2008). 
 

En el presente trabajo se va a estudiar la señal biomédica obtenida a partir de la 
actividad eléctrica originada en el cerebro, denominada electroencefalograma (EEG). 
Esta señal se adquiere a través de electrodos dispuestos en el cuero cabelludo que registran 
los campos eléctricos generados por la actividad neuronal.  
 
 
1.2 Actividad cerebral: análisis espectral y no lineal 
 

La actividad eléctrica cerebral es el resultado de potenciales de acción que se 
transmiten entre las neuronas y que son causa de un intercambio iónico a través de la 
membrana celular. Estos potenciales se transmiten por el axón neuronal y normalmente 
viajan en una sola dirección. La electroencefalografía es la medida de los potenciales 
postsinápticos generados por millones de células piramidales en paralelo (Sanei & 
Chambers, 2007).  

 
Esta técnica es muy utilizada en la práctica clínica por sus grandes ventajas como 

su bajo coste, su portabilidad y su buena resolución temporal (Cohen, 2017; Mannan et 
al., 2018). Actualmente, el EEG es ampliamente utilizado en campos como la 



 

 

neurociencia, psicología, ciencia cognitiva e investigaciones psicofisiológicas (Mannan 
et al., 2018). Para la adquisición de estos registros, se emplean fundamentalmente dos 
tipos de paradigmas: el registro basal y los potenciales evocados (Event Related 
Potentials, ERP) (Bachiller, 2012). 

 
Los parámetros de activación local son empleados en las etapas de procesado de 

señales biomédicas para caracterizar la activación síncrona de poblaciones abundantes de 
neuronas. Dichas métricas se pueden agrupar en dos categorías principales: espectrales y 
no lineales. Los primeros evalúan diferentes características del contenido tiempo-
frecuencia, así como la proporción de oscilaciones en cada banda de frecuencias o la 
frecuencia dominante de la señal. De manera complementaria, los parámetros no lineales 
se centran en propiedades fundamentales de las señales neuronales, como son la 
complejidad, la variabilidad y la irregularidad (Rodríguez-González et al., 2020). 
Además, en el presente estudio también se calcularán indicadores de propiedades 
estadísticas que permitan caracterizar las señales en el dominio temporal (Hjorth, 1970). 
 
 
1.3 Resting-state vs. Externally guided resting-state 

 
El estado de reposo (Resting State, RS) se caracteriza por un estado de relajación, 

ausencia de estimulación exógena y de tareas cognitivas (Diaz et al., 2013). En este 
estado, el sujeto se encuentra consciente y preparado para responder a cualquier estímulo 
externo o requerimiento cognitivo. Se podría decir que la persona se encuentra en stand-
by. Sin embargo, el cerebro sigue produciendo patrones que son distinguibles de los 
observados durante un comportamiento dirigido a un objetivo o cuando el sujeto se queda 
dormido (Cabral et al., 2014). Por tanto, el RS se utiliza para estudiar la actividad cerebral 
espontánea, cuando el cerebro funciona sin una tarea o estímulo específico. Además, 
estudios previos han encontrado una rica complejidad de la actividad en estado de reposo, 
lo que ofrece información valiosa acerca del funcionamiento del cerebro y las alteraciones 
de la actividad cerebral en los diferentes trastornos neurológicos y psiquiátricos (Khanna 
et al., 2015). 

 
Una variante del RS es el denominado mind-wandering (MW), que ha sido 

ampliamente estudiado desde numerosas perspectivas y definido de diferentes formas 
(Diaz et al., 2013). La definición más adecuada podría ser “pensamiento no relacionado 
con la tarea”. No obstante, esta definición es muy general y se puede ver afectada por 
estímulos externos, por lo que también se define a este concepto como “un pensamiento 
independiente de estímulos” (Yi Jin et al., 2019). 

 
Al protocolo de adquisición de EEG en el que se introducen estímulos o 

instrucciones externas durante un estado de reposo se le denomina externally guided 
resting-state (EGRS). Dichas instrucciones suelen ser tareas simples y monótonas, como 
fijar la vista en un punto concreto, escuchar un tono constante o realizar una respiración 
profunda. 
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1.4 Motivación 
 

La señal EEG actualmente es, como ya se ha comentado, una herramienta de gran 
utilidad en la ayuda al diagnóstico de numerosas enfermedades neuronales. En 
investigación, al llevar a cabo un protocolo para adquirir el EEG, a menudo se opta por 
realizarlo bajo la guía de un estado de reposo controlado o permitiendo la divagación 
mental, debido a las ventajas que proporciona esta elección (Wiesman et al., 2022).  Sin 
embargo, estos diferentes paradigmas podrían dar lugar a un sesgo que dificultaría la 
extracción de resultados fiables. Por ello, el presente trabajo se centra en el estudio 
comparativo, mediante el análisis de patrones de activación local, de un paradigma EEG 
en estado de reposo (resting-state) con otro que tiene cierta estructura (externally-guided 
resting-state), y de esta manera obtener una clara diferenciación entre estos modelos o, 
por el contrario, poder unificar ambos criterios de adquisición de actividad eléctrica 
cerebral.  
 
 
1.5 Hipótesis 
 

Los registros EEG son de gran utilidad en la investigación y el diagnóstico clínico 
de numerosas enfermedades neurológicas. Sin embargo, hay incertidumbre acerca de 
cómo los protocolos de adquisición de los registros pueden afectar a dichas señales. Por 
tanto, el presente Trabajo Fin de Grado (TFG) plantea como hipótesis de trabajo que los 
patrones de activación local evocados durante un paradigma EEG en estado de 
reposo con cierta estructura no difieren significativamente de aquellos observados 
en un paradigma en estado de reposo sin estructura, lo que indicaría que el protocolo 
de adquisición no influye de manera considerable en la actividad local espontánea.  
 
 
1.6 Objetivos 
 

El objetivo principal de este TFG es caracterizar los registros EEG a través de 
un conjunto de parámetros que permitan observar si los patrones de activación local 
se ven afectados por el paradigma de adquisición de las señales. Para ello, se 
calcularán diferentes medidas espectrales, no lineales y de dinámica. Para conseguirlo, se 
plantean los siguientes objetivos específicos: 
 

i. Revisión del estado del arte sobre RS y protocolos de adquisición de EEG 
durante estado de reposo. Además, elaborar una búsqueda bibliográfica acerca 
de técnicas de procesado de las señales que se van a utilizar. 
 

ii. Diseñar un protocolo de adquisición de registros EEG que permita obtener 
mediciones precisas de la actividad eléctrica cerebral en estado de reposo 
guiado y sin guiar. 

 



 

 

iii. Crear una base de datos de estas señales suficientemente amplia y 
representativa de sujetos jóvenes. Además, recoger un conjunto de variables 
sociodemográficas que pudieran influenciar los resultados. 

 
iv. Realizar un preprocesado de las señales EEG para eliminar artefactos o 

elementos no relacionados con la actividad cerebral que pudieran dificultar el 
análisis posterior de los resultados.  

 
v. Implementar métodos de análisis espectral y no lineal aplicados a registros de 

actividad neuronal. 
 

vi. Llevar a cabo una recopilación y análisis de los resultados que permita extraer 
conclusiones acerca de los distintos patrones de activación observados en los 
diferentes paradigmas de adquisición de los registros. 

 
vii. Extraer conclusiones sólidas y útiles de los resultados obtenidos, así como 

plantear limitaciones y futuras líneas de investigación. 
 
 
1.7 Descripción del documento 
 

Este apartado describe la estructura del TFG, que consta de 6 capítulos. A 
continuación, se enumeran dichos capítulos junto con una breve explicación de lo que 
contienen cada uno de ellos. 
 

§ Capítulo 1. Introducción. Breve introducción al procesado de las señales 
biomédicas, así como descripción general de la actividad cerebral y una breve 
comparación entre los dos paradigmas bajo estudio. También incluye la 
motivación del trabajo, la hipótesis y los objetivos a alcanzar.  

 
§ Capítulo 2. Electroencefalografía. Se introduce la electroencefalografía, su 

neurofisiología y los ritmos cerebrales. Además, se aborda la técnica de 
registro de la actividad cerebral y una explicación más detallada del RS 
guiado y sin guiar. 

 
§ Capítulo 3. Materiales y métodos. Descripción detallada del diseño del 

experimento llevado a cabo. A continuación, se explica la base de datos 
empleada y las variables recogidas en los sujetos. Seguidamente, se describe 
el protocolo de adquisición de los registros EEG, que incluye la etapa de 
preprocesado de los mismos. También se relatan los métodos empleados para 
trabajar con las señales a nivel de fuente y extraer sus características 
espectrales, no lineales y de dinámica. Finalmente, se analizan los datos de 
forma exploratoria y se describen las técnicas utilizadas para realizar el 
análisis estadístico. 
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§ Capítulo 4. Resultados. Se presentarán los resultados obtenidos. Por un lado, 
se expondrán las representaciones gráficas de las distribuciones de los 
parámetros extraídos. Además, se llevará a cabo un análisis estadístico para 
comprobar si existen diferencias estadísticamente significativas entre los 
diferentes paradigmas estudiados. 

 
§ Capítulo 5. Discusión y conclusiones. Se realizará una explicación de los 

resultados obtenidos, incluyendo hipótesis respaldadas por artículos y otros 
trabajos cuyos resultados también apoyen los obtenidos en este TFG. A 
continuación, se evaluarán los objetivos alcanzados y se describirán las 
limitaciones y posibles líneas de investigación futuras. Finalmente, se 
procederá a extraer una serie de conclusiones derivadas de los resultados 
obtenidos del presente TFG. 
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Capítulo 2. Electroencefalografía 
 
2.1 Introducción a la electroencefalografía 
 

La electroencefalografía es una técnica no invasiva que registra la actividad 
eléctrica cerebral. Esta señal se adquiere a través de unos electrodos colocados en el cuero 
cabelludo del paciente, y resulta de las corrientes generadas en las neuronas piramidales 
de la corteza cerebral (Cohen, 2017). No obstante, hay otras formas de adquirir la señal 
eléctrica cerebral, como los local field potentials (LFPs) o EEG local, en la que la señal 
se registra bastante cerca de las fuentes que la generan, y el electrocorticograma (ECoG), 
en la que se disponen los electrodos directamente sobre la corteza cerebral (Buzsáki et 
al., 2012; Gutiérrez de Pablo, 2021).  

 
El EEG no se produce por la actividad de neuronas individuales, sino por las 

señales generadas por conjuntos abundantes de neuronas que se encuentran activas 
simultáneamente. Dicha señal es el resultado de la suma de potenciales postsinápticos 
excitatorios e inhibitorios procedentes de las células piramidales que se encuentran en 
posición perpendicular con respecto la superficie cerebral (Sanei and Chambers, 2007). 
Estos potenciales generan corrientes de iones, de tal manera que las neuronas actúan como 
pequeños dipolos eléctricos. La amplitud del EEG adquirido en un sujeto normal en 
reposo es del orden de 10 a 100 µV. En caso de enfermedades como la epilepsia, la 
amplitud se puede ver aumentada (Sanei and Chambers, 2007). 

 
Esta técnica tiene numerosas aplicaciones clínicas debido a ser una prueba de bajo 

coste, no invasiva, segura y capaz de medir la actividad cerebral con una elevada 
resolución temporal (del de milisegundos). Por ello, tiene un uso extendido en el 
diagnóstico clínico, concretamente en el de epilepsia y trastornos del sueño, así como en 
la evaluación de trastornos asociados a las vías de transmisión sensorial  (Michel & 
Brunet, 2019). Sin embargo, esta técnica tiene ciertas desventajas como su limitada 
capacidad para registrar actividad en estructuras cerebrales profundas o su baja resolución 
espacial (5-9cm) (Abad Martín, 2020).  

 
El EEG ha servido como herramienta fundamental en el diagnóstico de 

enfermedades cerebrales desde hace ya medio siglo. Las primeras descripciones sobre la 
actividad eléctrica del cerebro fueron enunciadas en el año 1875 por el fisiólogo inglés 
Richard Caton, quien las definía como “corrientes eléctricas en la sustancia gris”. No 
obstante, el desarrollo del EEG se le atribuye principalmente a Hans Berger, fisiólogo y 
psiquiatra que adquirió el primer registro EEG en humanos en el año 1924, descubriendo 
un ritmo específico llamado alfa (Millett, 2001). No fue hasta 1929 cuando realizó su 
primer informe de registros EEG humanos de varios minutos de duración, y desde 
entonces publicó informes relacionados con el estudio de trastornos cerebrales y 
descargas epilépticas.  
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Sin embargo, el EEG ha estado en continuo desarrollo hasta ser ahora una técnica 

indispensable que ha permitido tener grandes avances en el campo de investigación y del 
diagnóstico y pronóstico de los pacientes.  
 
 
2.2 Neurofisiología 
 

La neurona es la unidad funcional básica del sistema nervioso; el punto de unión 
entre ellas durante la transmisión del impulso nervioso recibe el nombre de sinapsis. A 
través de ella, las neuronas piramidales perpendiculares a la corteza cerebral generan 
corrientes electroquímicas que derivan en fluctuaciones de voltaje que pueden ser 
medidas por sistemas de registro del EEG (Gil-Nagel et al., 2001). 

 
Estas corrientes son el resultado de la suma de potenciales postsinápticos 

excitatorios (Excitatory Postsynaptic Potential, EPSP) e inhibitorios (Inhibitory 
Postsynaptic Potential, IPSP) generados por poblaciones de neuronas activas, que resulta 
en diferencias de potenciales eléctricos. Dichas corrientes se producen por el bombeo de 
iones positivos (Ca2+, Na+ y K+) y negativos (Cl-) a través de las membranas celulares en 
la dirección fijada por el potencial de membrana. Cuando dos potenciales de acción viajan 
a lo largo de una misma fibra nerviosa, se produce un sumatorio de EPSP que producirá 
un potencial de acción en la neurona postsináptica siempre que se alcance cierto umbral 
de potencial de membrana. Si la fibra termina en una sinapsis inhibitoria, entonces se 
producirá una hiperpolarización que terminará en un IPSP (Sanei and Chambers, 2007). 
Solamente las poblaciones abundantes de neuronas activándose de manera sincronizada 
son capaces de generar un potencial que pueda ser medido a través de los electrodos, ya 
que la señal se atenúa en su recorrido a través del cráneo. Además, el ruido se puede 
generar dentro del cerebro, por la actividad cerebral aleatoria del paciente (ruido interno), 
o fuera del cuero cabelludo (ruido externo o ruido del sistema) (Sanei and Chambers, 
2007). 
 
 
2.3 Ritmos fisiológicos de la señal EEG 
 

Muchas enfermedades neuronales se diagnostican mediante la inspección visual 
de la señal de EEG. En adultos sanos, las amplitudes y frecuencias de dicha señal se 
pueden ver alteradas de un estado cognitivo a otro. Además, las características de dichas 
ondas también se pueden ver afectadas por la edad (Sanei and Chambers, 2007). La Figura 
1 exhibe los ritmos cerebrales que se presentan en un EEG. 
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Figura 1.  Ritmos cerebrales que se presentan en un registro EEG. Imagen adaptada de (Jafari et al., 2020). 

 
Hans Berger (1873-1941) fue uno de los primeros científicos en observar los 

ritmos cerebrales que registró en forma de actividad eléctrica en el cuero cabelludo de 
participantes sanos y despiertos, e introdujo la actual nomenclatura de dichos ritmos 
mediante letras griegas. Así pues, la actividad electroencefalográfica se puede dividir en 
cinco bandas de frecuencia: delta (δ), zeta (θ), alfa (α), beta (β) y gamma (γ) (Uhlhaas et 
al., 2008).  
 

§ Ritmos delta (δ): incluye las frecuencias contenidas en el rango de 0,5-4 Hz, y se 
asocia a estados de sueño profundo y de inconsciencia. Son las oscilaciones más 
lentas pero que más amplitud presentan (100-200 µV). Los movimientos 
musculares cerca de la zona de registro pueden producir artefactos que se 
confunden con esta banda de frecuencias. No obstante, es fácil distinguirlas 
mediante los métodos de procesado adecuados (Sanei and Chambers, 2007).  

 
§ Ritmos zeta (θ): frecuencias en el rango de 4-8 Hz con una amplitud de 30-60 µV, 

aproximadamente. Estos ritmos se presentan fundamentalmente en el hipocampo, 
aunque también pueden estar presentes en zonas como las cortezas prefrontal, 
somatosensorial y visual. Esta banda de frecuencias se asocia principalmente a 
niños o adultos en situaciones de meditación. 

 
§ Ritmos alfa (α): incluyen todas aquellas oscilaciones en el rango de 8-13 Hz. Fue 

el primer ritmo descrito por Berger en 1924. Esta actividad suele presentarse en 
la corteza parieto-occipital cuando los sujetos se encuentran en estado de 
relajación y con los ojos cerrados. No obstante, abrir los ojos genera un bloqueo 
de actividad alfa que se ha asociado con un procesamiento activo de la 
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información, por lo que existe un debate sobre si esta actividad está relacionada 
con una función inhibitoria o es un pilar fundamental de la red activa (Uhlhaas et 
al., 2008) Además, el aumento de ritmos alfa se ha relacionado con trastornos 
neurológicos como la dislexia (Papagiannopoulou & Lagopoulos, 2016). 

 
§ Ritmos beta (β): frecuencias entre los 13 y los 30 Hz y con poca amplitud. Estas 

frecuencias se pueden dividir en dos nuevas bandas de frecuencia: beta 1, entre 13 
y 19 Hz, y beta 2, entre 19 y 30 Hz. Estas oscilaciones se presentan en áreas 
frontales y fronto-polares. Se ha asociado a numerosas tareas cognitivas que 
requieren concentración, así como a todo proceso relacionado con la corteza 
somato-motora, como los movimientos musculares (Uhlhaas et al., 2008).  

 
§ Ritmos gamma (γ): frecuencias superiores a los 30 Hz, aunque algunos autores 

delimitan esta banda hasta los 70 Hz. Estas oscilaciones presentan amplitudes en 
torno a los 10 y 20 µV y se han asociado a tareas cognitivas como la atención, la 
memoria y la coordinación motora (Uhlhaas et al., 2008). La presencia de estos 
ritmos en la señal de EEG es poco frecuente, pero puede ayudar a confirmar el 
diagnóstico de ciertos trastornos neuronales (Sanei and Chambers, 2007). 

 
 
2.4 Registros EEG 
 

Un registro EEG es un procedimiento de obtención de la señal generada por la 
actividad eléctrica del cerebro. Para ello, se colocan una serie de electrodos sobre el cuero 
cabelludo del paciente. Aunque la resolución espacial sea mayor cuantos más electrodos 
se empleen en el registro, esto también se verá reflejado en una mayor carga 
computacional y coste económico (Gutiérrez de Pablo, 2021). El número de canales que 
se emplea mayoritariamente es 19, pero se pueden utilizar configuraciones de 32, 64, 128 
o más (Michel & Brunet, 2019). 

 
 

En los registros EEG, la colocación de los electrodos viene indicada por un 
sistema de posicionamiento estándar. Uno de los más utilizados es el Sistema 
Internacional 10-20, propuesto por Jasper en 1928 (Müller-Putz, 2020). Este sistema 
asegura una distancia igual entre cada uno de los electrodos, los cuales se colocan en base 
a cuatro puntos de referencia anatómicos: el nasión, inión y los puntos preauriculares 
derecho e izquierdo. A partir de estos puntos, se utiliza el 10% o el 20% de la distancia 
como intervalo entre electrodos (Sanei and Chambers, 2007). A este sistema se le pueden 
añadir más electrodos con el fin de obtener una mayor resolución espacial, originando 
sistemas más detallados como el 10-10 o el 10-5 (Müller-Putz, 2020).  También se pueden 
incorporar más electrodos para medir electrooculograma (EOG), electrocardiograma 
(ECG) y electromiograma (EMG) (Sanei and Chambers, 2007). En la Figura 2 se muestra 
la posición de los electrodos en el sistema 10-5, donde solamente se etiquetan aquellos 
correspondientes al 10-20. 
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Figura 2. Representación gráfica de la colocación de los electrodos en el sistema 10-5. Los electrodos etiquetados 
corresponden al sistema 10-20 (Müller-Putz, 2020). 

 
En este sistema, la posición de los electrodos se indica con la letra de la zona 

cortical donde se sitúan (F = frontal, C = central, P = parietal, O = occipital, T = temporal, 
y Fp = frontopolar), seguida de un número y una letra (e.g., Cz).  

 
La letra “Z” corresponden a aquellos electrodos situados en la línea media sagital 

del cráneo, mientras que los números son mayores cuanto más lejos se encuentren de 
dicha línea, asignado los números impares al hemisferio izquierdo y los pares al derecho. 

 
Se utilizan dos modos de registro en la señal EEG: diferencial o bipolar, y 

referencial o monopolar. En el primero, las entradas del amplificador diferencial proceden 
de dos electrodos, mientras que en el segundo caso se utilizan electrodos de referencia. Si 
la referencia no es neutral, los registros pueden estar sujetos a distorsión topográfica. Sin 
embargo, la elección de dicha referencia no juega un rol importante en la medida (Sanei 
and Chambers, 2007). Al emplear una referencia común, el registro se denomina 
referencial, y típicamente se toma en distintas zonas del cuerpo, como los lóbulos de las 
orejas o el vértice craneal a través del electrodo Cz (Sanei and Chambers, 2007). En 
algunos casos, también se utiliza como referencia la media de todos o algunos de los 
electrodos activos (Ramos-Argüelles et al., 2009). 
 
 
2.5 Resting-state (RS) 
 

La actividad cerebral intrínseca durante el estado de reposo permite entender una 
gran cantidad de procesos neuronales subyacentes a una extensa gama de funciones 
cerebrales en salud y enfermedad, y por ello ha sido ampliamente estudiada en la última 
década (Wiesman et al., 2022). El RS permite observar las dinámicas cerebrales en 
señales de magnetoencefalografía (Magnetoencephalography, MEG) y EEG normales, 
especialmente los ritmos alfa (α), que es el rango de frecuencias con la mayor energía en 
el espectro (Mendoza-Ruiz et al., 2020). Por tanto, el estado de reposo asocia los procesos 
cognitivos o sensoriales con la dinámica cerebral en sujetos sanos, lo que permite explicar 
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el funcionamiento cerebral de ciertas patologías o actividades de no reposo (Mendoza-
Ruiz et al., 2020). Los protocolos de estado de reposo en estudios M/EEG permiten llevar 
a cabo una gran variedad de análisis de datos (Wiesman et al., 2022). Además, el uso de 
paradigmas basados en RS es ideal por su simpleza y comodidad con respecto a los 
basados en tareas específicas (Cassani et al., 2018; Lew et al., 2021). Asimismo, permite 
realizar una estandarización directa y tiene una gran sensibilidad en trastornos cerebrales 
(Diaz et al., 2013). 

 
Desde un punto de vista cognitivo, el RS se puede concebir como un estado en el 

que la atención se aleja de la tarea en cuestión, es decir, como un pensamiento 
independiente del estímulo (Diaz et al., 2013). Es un estado neutral despierto que no está 
asociado a ninguna tarea cognitiva específica y que es propenso a la divagación mental 
(Raichle & Gusnard, 2001). En los últimos años se han llevado a cabo exploraciones de 
la actividad cerebral durante el reposo que han desvelado la existencia de patrones de 
activación temporalmente correlacionados, lo que sugiere que hay cierta conectividad 
funcional entre diferentes áreas cerebrales (Cabral et al., 2014). Esto ha dado lugar al 
concepto de redes en estado de reposo (Resting-state Networks, RSN). Dichas redes han 
sido objeto de estudio utilizando diferentes técnicas de neuroimagen. Los estudios 
basados en resonancia magnética por difusión (Diffusion Tensor Magnetic Resonance 
Imaging, DT-MRI) han concluido que dichas conexiones funcionales entre distintas 
regiones cerebrales en RS pueden estar mediadas por fibras de la sustancia blanca (Cabral 
et al., 2014). 

 
Se han descrito también regiones cerebrales que presentan estas activaciones 

correlacionadas con cambios en la señal BOLD (Blood Oxygen Level Dependent), que 
fue descrita por Ogawa et al. en 1990. Dicha señal se define como una medida de la 
actividad neuronal en una zona del cerebro ante un aumento de la demanda de oxígeno 
(Armony et al., 2012; Cabral et al., 2014). Los cambios en dicha señal se han empleado 
en resonancia magnética funcional (functional Magnetic Resonance Imaging, fRMI) 
como principal técnica en estudios de actividad cerebral en reposo (Cabral et al., 2014). 
Estos estudios han confirmado el carácter de red del cerebro, y han proporcionado 
evidencia de múltiples RSN, de las cuales la red cohesiva de modo predeterminado 
(Default Mode Network, DMN) ha sido la más ampliamente conocida y estudiada 
(Damoiseaux et al., 2006). Se observó que aquellas zonas contenidas en la DMN 
presentaban una conectividad funcional mayor durante el estado de reposo que durante la 
ejecución de una tarea. Esta red incluye un grupo de áreas corticales en las zonas 
prefrontal media, cingular posterior, parietales inferiores derecha e izquierda y temporal 
media, que presentan actividad durante el estado de reposo. Por ello, la DMN también es 
conocida como la “task-negative RSN”. Aunque se haya investigado esta red 
fundamentalmente en humanos, también hay evidencia de que se presenta en diferentes 
animales como felinos, roedores y primates (Raichle, 2015; Rodríguez González, 2018). 
En la Figura 3 se muestra la comparación de las DMN en diferentes seres vivos. 
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Figura 3.  Comparación de las Default Mode Networks (DMN) en ratas, monos y humanos. Las regiones que componen 
dichas redes exhiben una actividad neuronal correlacionada durante el estado de reposo. Imagen extraída de (Cabral et 
al., 2014). 
 

Asimismo, se ha detectado evidencia de actividad espontánea coordinada en otras 
técnicas de imagen como tomografía por emisión de positrones (Positron-emission 
Tomography, PET), EEG, electrofisiología y, más recientemente, MEG (Cabral et al., 
2014). 

 
Ya en 2005, los grandes avances de los estudios fMRI en RS revelaron la 

existencia de RSN robustas caracterizadas por señales temporales particulares aplicando 
análisis de componentes independientes. Con el fin de observar si estas señales podían 
estar relacionadas con fluctuaciones de potencia del EEG en una banda de frecuencias 
concreta, se registraron señales fMRI y señales EEG de forma simultánea y se 
identificaron seis RSN robustas (Mantini et al., 2007). Tras una correlación entre la señal 
temporal asociada a cada RSN y las variaciones de potencia en los ritmos cerebrales δ, θ, 
α, β y γ en el EEG, se observó que cada red presentaba una huella electrofisiológica 
diferente, que involucraban una combinación única de ritmos cerebrales. Por ejemplo, los 
resultados de (Laufs et al., 2003) demostraron que la activación de la DMN se 
correlacionaba con la potencia en el rango beta de frecuencias del EEG (13-30 Hz). 

 
El RS es de gran interés además por ser un régimen cerebral no estacionario, es 

decir, con una dinámica que activa diferentes estados que posteriormente se desactivan. 
La forma en la que se presentan este tipo de comportamientos se puede estudiar por 
modelos computacionales que simulan las interacciones y el comportamiento de las 
unidades dinámicas, que representan conjuntos neuronales (Cabral et al., 2014). 

 
Una variante del RS es el denominado “mind-wandering” (MW) o divagación 

mental. La experiencia del MW se caracteriza por cambios en la atención que podrían 
estar asociados a una actividad cerebral diferente a un estado de concentración. Aunque 
es un fenómeno común, y a pesar de que su contribución para la investigación de la 
consciencia y el estudio de los procesos de atención es fundamental, la dinámica cerebral 
asociada a este estado no se ha estudiado directamente (Braboszcz & Delorme, 2011). 
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El MW se ha asociado a un nivel bajo de alerta y de vigilia (Oken et al., 2006). 
Un estado mental con un procesamiento de información externo y limitado, caracterizado 
por una desviación de la atención (Smallwood & Schooler, 2006). De hecho, estudios 
previos han sugerido una disminución de los recursos de atención dirigidos al 
procesamiento de estímulos (Smallwood et al., 2008). 

 
De acuerdo con los resultados de otros estudios, el MW se puede caracterizar 

como un estado de reposo de baja alerta (Braboszcz & Delorme, 2011). Dado que la 
divagación mental ocupa una cantidad significativa del pensamiento despierto, ha habido 
un aumento del interés por comprender los procesos neurofisiológicos que subyacen a 
este estado (Cnudde et al., 2023). Normalmente, el MW se estudia en laboratorios 
mientras los individuos realizan tareas que requieren un nivel de atención sostenido (Dias 
Da Silva et al., 2022). La atención sostenida se refiere a la capacidad de un individuo para 
mantener el enfoque en estímulos relevantes que se presentan de manera repetida durante 
largos periodos de tiempo (Dias Da Silva et al., 2022).  
 
 
2.6 Externally guided resting-state 
 

Se ha debatido mucho acerca de si el estado de reposo se puede considerar como 
una tarea o una condición de “no tarea”, como han propuesto algunos investigadores. 
Estudios previos (Diaz et al., 2013) han sugerido que, durante el estado de reposo, las 
personas realizan multitud de tareas cognitivas. Por ello, se ha concluido que el MW, muy 
común ante la exposición de tareas simples, puede estar relacionado con un sistema 
funcional del cerebro que varía en su actividad de persona a persona. 

 
Al igual que en el RS, también se ha investigado acerca de cómo la señal BOLD 

se relaciona con la sincronización neuronal en diferentes bandas de frecuencias durante 
la ejecución de una tarea cognitiva (Cabral et al., 2014; Scheeringa et al., 2011).  Aunque 
la fMRI haya sido ampliamente utilizada en el estudio de la actividad durante el RS, es 
importante destacar que la señal BOLD no es una medida directa de la actividad neuronal 
(Cabral et al., 2014). Los resultados mostraron que las fluctuaciones de la señal BOLD se 
correlacionaban positivamente con las fluctuaciones en la banda gamma y negativamente 
con la potencia en las bandas alfa y beta del EEG (Scheeringa et al., 2011) . El mapeo de 
dichas redes neuronales funcionales reveló sistemas corticales involucrados en procesos 
cognitivos activos, como la visión, el lenguaje, el movimiento o el procesamiento 
ejecutivo. A diferencia de la DMN, dichas redes muestran una conectividad más fuerte 
durante la ejecución de una tarea y se las conoce como task-positive RSNs. En la Figura 
4 se muestran dichas redes. 
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Figura 4.  Redes de estado de reposo presentes en sujetos sanos detectadas con fMRI. Se detectaron 10 
patrones diferentes con relevancia funcional mediante el tensor probabilistic independent componente 
analysis, que consisten en regiones que se sabe que están involucradas en la función motora, el procesamiento 
visual, el funcionamiento ejecutivo, el procesamiento auditivo, la memoria y la red de modo predeterminado, 
cada uno con cambios en la señal BOLD de hasta un 3%. Imagen extraída directamente de (Cabral et al., 
2014). 

 
 

En el presente TFG se introduce una variante del estado de reposo denominada 
“externally guided resting-state”.   Este enfoque consiste en introducir algún tipo de guía 
o estímulo externo durante la adquisición de los datos EEG. A diferencia del RS 
convencional, donde los sujetos permanecen en un estado de relajación sin estímulos 
específicos, en el RS guiado se proporciona algún tipo de instrucción para modular la 
actividad cerebral. Este enfoque puede utilizarse para investigar cómo diferentes 
estímulos o instrucciones externas afectan a la conectividad y los patrones de activación 
local evocados durante el estado de reposo. Asimismo, se puede estudiar la plasticidad y 
flexibilidad de la red cerebral en condiciones controladas a partir de la respuesta a los 
cambios en el entorno.  
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Capítulo 3. Materiales y métodos 
 
3.1 Introducción 
 

En el presente TFG se han utilizado diferentes herramientas de procesado de señal. 
Este capítulo comienza con una explicación detallada del diseño del experimento que se 
ha llevado a cabo para la obtención de los registros EEG. También se describe la base de 
datos diseñada y las variables sociodemográficas que se han tenido en cuenta. Además, 
también se describe el protocolo de adquisición de las señales, en donde se incluye una 
breve descripción del equipo utilizado. 

 
Posteriormente, se detallarán las distintas fases en las que se ha compuesto el 

preprocesado de las señales para la eliminación de artefactos y componentes no 
relacionadas con la actividad cerebral. A continuación, se procederá a explicar los 
métodos de procesado aplicados a las señales EEG. Finalmente, este capítulo concluye 
con una breve explicación de la prueba estadística empleada para extraer las diferencias 
significativas. En la Figura 5 se presenta un esquema con la metodología llevada a cabo 
en el trabajo. 
 
 
3.2 Diseño del experimento 
 

Los registros fueron llevados a cabo en el laboratorio Brain Computer Interface 
(BCI) del edificio UVaInnova, en el Campus Miguel Delibes de la Universidad de 
Valladolid. La sala donde se llevó a cabo el estudio estaba parcialmente insonorizada. Se 
dibujó una cruz en la pared para que los sujetos pudieran fijar la mirada en un punto 
concreto durante las fases del experimento con los ojos abiertos.  

 
Los registros se obtuvieron en base a un protocolo que los dividía en dos fases: 

MW y EGRS. En todos ellos se llevó a cabo esa estructura. No obstante, para que los 
resultados no se vieran influenciados por el orden de los experimentos, la mitad de los 
sujetos comenzaron con los ojos cerrados y la otra mitad con ellos abiertos. Además, se 
decidió aleatorizar el orden de las tareas del EGRS para que los pensamientos no se vieran 
condicionados entre ellos.  
 

Antes de comenzar con los registros, se reprodujo un fragmento de ruido rosa con 
el objetivo de que los sujetos se concentraran y todos ellos partieran de una misma 
situación basal. Además, el ruido rosa puede reducir el impacto de los artefactos externos 
en la señal EEG y mejorar la calidad de los datos (Suzuki et al., 1991). Una vez colocados 
los electrodos correctamente, se solicitó a los individuos que se mantuvieran relajados y 
que no realizaran movimientos bruscos.  
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Figura 5.  Diagrama de bloques de las etapas llevadas a cabo en el análisis de las señales EEG: adquisición de datos, 
preprocesado, extracción de características por análisis no lineal y espectral y análisis estadístico de los resultados. 
 

 
Como ya se ha comentado, primero se llevó a cabo una etapa de registro en la que 

los pacientes se mantuvieran relajados y tratando de no pensar en nada (mind-wandering). 
Esta parte tuvo una duración de 6 minutos, de los cuales la mitad se llevó a cabo con los 
ojos cerrados, y la otra mitad con ellos abiertos. La segunda etapa del registro consistió 
en un estado de reposo con cierta estructura (externally-guided resting-state). Durante 
esta segunda fase, se proporcionaba a los sujetos una guía externa, indicándoles las tareas 
que debían realizar en cada momento, cada una de las cuales tuvo una duración de 1 
minuto. Estas tareas incluían pensar en: (i) miembros de la familia o amigos, (ii) en 
animales, (iii) en un paisaje y finalmente, (iv) calcular mentalmente sumas de dos en dos, 
recalcando que tenía que ser de manera fluida y lenta, con el fin de que no supusiera una 
carga cognitiva importante. Al igual que con la etapa anterior, esta fase se ejecutó con los 
ojos cerrados y abiertos.  
 
 
3.3 Características de la base de datos creada 
 

En este estudio se ha analizado la actividad EEG espontánea de 30 sujetos 
cognitivamente sanos. El grupo de voluntarios está formado por 15 hombres y 15 mujeres 
con una edad de 21,3 ± 0,7 años (media ± desviación estándar (S.D.); rango: de 20 a 23 
años), todos ellos jóvenes estudiantes.  

 
Padecer alguna enfermedad neuronal, cefaleas, trastornos como la migraña o el 

consumo de medicamentos neuropsiquiátricos que pudieran afectar la actividad EEG 
fueron motivo de exclusión para participar en el trabajo como voluntario. Los 
participantes fueron adecuadamente informados acerca del experimento y dieron su 
consentimiento para la utilización de sus datos en el presente TFG, el cual fue aprobado 
por el CEIm (Comité de Ética de la Investigación con Medicamentos). 

 
Para llevar a cabo el experimento, se recogieron una serie de características 

sociodemográficas en todos los sujetos que pudieran ayudar a la interpretación de los 
resultados. Se tuvo en cuenta la edad, el sexo, consumo de medicamentos 
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neuropsiquiátricos, tabaquismo, lateralidad, calidad y horas de sueño en la última noche 
y, finalmente, la reserva cognitiva. La calidad del sueño se tuvo en cuenta debido a que 
los sujetos privados de sueño podrían pasar más tiempo divagando durante el día 
(Braboszcz & Delorme, 2011). Por otro lado, la reserva cognitiva se define como la 
capacidad del cerebro adulto para minimizar la manifestación clínica de un proceso 
neurodegenerativo (Rami et al., 2011). Este concepto ha sido estudiado en la enfermedad 
del Alzheimer a raíz de descubrir que existían personas cognitivamente sanas que 
presentaban lesiones cerebrales compatibles con la enfermedad en el estudio post mortem  
(Katzman et al., 1989; Rami et al., 2011). El Cuestionario de la Reserva Cognitiva (CRC) 
consiste en ocho ítems o secciones de preguntas relacionadas con variables que influyen 
en la reserva cognitiva, como las aficiones, años totales de escolaridad, experiencia 
laboral o actividad física frecuente (Rami et al., 2011). La media de la puntuación del 
CRC obtenida por el conjunto de sujetos fue de (11,9 ± 1,3). 
 
 
3.4 Protocolo de adquisición del EEG 
 

Las señales EEG fueron grabadas con un equipo actiCHAMP-PLUS®, de la marca 
BrainProducts, de 32 canales (C3, C4, CP1, CP2, CP5, CP6, F3, F4, F7, F8, FC1, FC2, 
FC5, FC6, Fp1, Fp2, FT9, FT10, O1, O2, P3, P4, P7, P8, T7, T8, TP10, TP9, Fz, Cz, Oz 
y Pz). Todos los electrodos se colocaron en base a las especificaciones del sistema 
internacional 10-10. La adquisición de los registros EEG fue realizada empleando una 
frecuencia de muestreo de 500 Hz. 

 
El equipo cuenta con electrodos activos, por lo que existe una etapa de pre-

amplificación, que se produce de manera externa al amplificador. Esto reduce la 
impedancia entre la fuente y los electrodos, permitiendo obtener señales con menor 
número de artefactos.  

 
La etapa de preprocesado de los registros EEG llevada a cabo en el presente 

trabajo se divide en las fases que se describen a continuación (Núñez et al., 2021):  
 

i. Recuperación del canal Cz. Dicho electrodo se emplea como referencia en el 
sistema de Brain Vision de 32 canales. Debido a ello, la diferencia de potencial 
en dicho electrodo no se registra. Para recuperar la actividad de ese canal, se 
le referencia con respecto al promedio de las diferencias de potencial del resto 
de electrodos del montaje. 
 

ii. Eliminación de la media de cada canal EEG. Esta etapa permite eliminar 
cualquier componente de corriente continua (Direct Current, DC) o 
desviación en el nivel de la señal, lo que puede ser causado por actividad 
muscular, ocular o por variación de la impedancia de los electrodos. Además, 
la eliminación de la media mejora la relación señal ruido (SNR) (Sanei & 
Chambers, 2007). 
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iii. Filtrado de las señales. Primero se aplicó un filtrado paso banda entre 0,4 y 98 
Hz mediante un filtro FIR (Finite Impulse Response) de orden 2000 con 
ventana de Hamming, para limitar el contenido espectral a la banda ancha de 
frecuencias de [0,4 98] Hz, suprimiendo la mayor parte de la potencia de ruido 
sin eliminar las zonas que poseen información importante. Posteriormente se 
eliminó el ruido a 50 Hz aplicando un filtro FIR elimina banda de ventana de 
Hamming y orden 2000 entre 49,8 y 50,2 Hz. Posterior a todo el preprocesado 
de las señales, se aplicó un filtro FIR paso banda de ventana de Hamming y 
de orden 2000, que realiza un filtrado paso banda de las señales entre 1-70 Hz 
con el fin de suprimir el ruido en frecuencias fuera de ese rango, como pueden 
ser movimientos oculares o musculares. Las respuestas al impulso de estos 
dos últimos filtros se muestran en la Figura 6. 

 

 
 

Figura 6. Respuesta al impulso del filtro FIR elimina banda comprendido entre 49,8 y 50,2 Hz en 
la imagen superior y paso banda comprendido entre 1 y 70 Hz en la imagen inferior. 
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iv. Segmentación de las señales en cada una de las fases en las que se dividían los 
registros. Para ello se emplearon los marcadores de cada fase registrados a lo 
largo de la prueba. 
 

v. Análisis de Componentes Independientes (Independent Component Analysis, 
ICA). Esta metodología descompone los datos de series temporales del EEG 
en componentes independientes, lo que puede usarse para la eliminación de 
artefactos. Cada componente se define como una combinación lineal de los 
voltajes de los electrodos en el cuero cabelludo, y se identifica asumiendo que 
la señal presenta independencia estadística de las señales y no sigue ninguna 
distribución normal o gaussiana  (Cohen, 2017). De esta manera, esta técnica 
permite separar las señales de actividad cerebral de otros tipos de actividad 
eléctrica no relacionada con el cerebro, como el ruido ambiental, la actividad 
muscular y la actividad cardiaca, que pueden interferir con la señal EEG y 
dificultar la interpretación de los datos. Para ello, los artefactos se 
identificaron de manera visual en cada componente individual y se eliminaron 
aquellas que presentaran componentes no relacionadas con la actividad 
eléctrica cerebral. Después, se reconstruían las señales EEG con dichas 
componentes suprimidas. En la Figura 7 se muestra una época de 5 segundos 
con artefactos, antes y después de aplicar ICA. 
 

 

 
Figura 7.  Época de 5 segundos, antes (arriba) y después (abajo) de aplicar ICA para la eliminación 
de artefactos oculares.  
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vi. Eliminación visual de épocas de 5 segundos que contengan artefactos. Tras un 
análisis de las épocas de cada señal, se procede a eliminar aquellas que 
incluyan artefactos como movimientos o tensiones musculares. Para ello se 
empleó la herramienta software en Matlab diseñada por Isabel Cambronell 
Santos en 2013 (Cambronell Santos, 2013). 

 
 

3.5 Método de localización de fuentes: sLORETA 
 

Las señales de electroencefalografía, como ya se ha comentado, son el resultado 
de procesos postsinápticos de las neuronas corticales. Dichos procesos generan efectos 
de conducción de volumen y dispersión de la actividad cerebral, que pueden provocar 
distorsión en las señales registradas (Pascual-Marqui, 2002). Por ello, resulta de gran 
interés emplear métodos que permitan estimar con exactitud la ubicación espacial de las 
fuentes cerebrales a partir de las señales registradas. En el presente trabajo se ha empleado 
Standardized Low-Resolution Brain Electromagnetic Tomography (sLORETA) como 
algoritmo de localización de fuentes, debido a su gran aceptación dentro de la comunidad 
científica, alta precisión y facilidad de implementación gracias al software LORETA 
(Cohen, 2014a). Dicho método se basa en la suposición de que las neuronas cercanas 
están sincronizadas y que, por tanto, la correlación entre fuentes vecinas es máxima 
(Rodríguez-González et al., 2020). Para ubicar las fuentes cerebrales se ha empleado la 
plantilla ICBM152 del Instituto Neurológico de Montreal, obtenida del promedio de 152 
imágenes de MRI. Utilizando esa plantilla como base, se construye un modelo que mapea 
15.000 fuentes en 68 regiones corticales empleando el atlas Desikan-Killiany. 
Finalmente, las señales captadas a nivel de los sensores se proyectan en 68 fuentes 
cerebrales, conocidas como regiones de interés (Region of Interest, ROI) (Desikan et al., 
2006; Lai et al., 2018).  
 
 
3.6 Métodos de procesado del EEG 
 
3.6.1 Análisis espectral 
 

Uno de los enfoques más utilizados en el estudio de las señales EEG es el análisis 
de su contenido espectral. Para ello, se han definido varias medidas basadas en la función 
de densidad espectral (PSD, Power Spectral Density) que permiten definir su contenido 
en el dominio de la frecuencia, definida como la transformada de Fourier (Fast Fourier 
Transform, FFT) de su función de autocorrelación, según el teorema de Wiener-
Khinchin-Einstein (Poza et al., 2012). Los parámetros espectrales están calculados a partir 
de la densidad espectral de potencia normalizada (PSDn). A continuación, se describen 
las medidas espectrales utilizadas en el presente TFG. 
 

i. Potencia relativa (Relative Power, RP): este parámetro indica la proporción de 
energía que se encuentra en un determinado rango de frecuencias en 
comparación con la energía total de la señal (Rodríguez-González et al., 2020). 
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La potencia relativa fue calculada a partir de las bandas de frecuencia 
específicas de la actividad cerebral: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alfa (α, 
8-13 Hz), beta1 (β1, 13-19 Hz), beta2 (β2, 19-30 Hz) y gamma (γ, 30-70 Hz) 
(Ruiz-Gómez et al., 2018):  

𝑅𝑃(𝑓1, 𝑓2) =+𝑃𝑆𝐷!(𝑓)
"#

"$

 (1) 

 
donde ƒ1 y ƒ2 representan las frecuencias de corte mínima y máxima, 
respectivamente. El empleo de este parámetro presenta dos ventajas en 
comparación a la potencia absoluta: menor variabilidad entre sujetos y mayor 
capacidad para obtener umbrales independientes del equipo de medición (Poza 
et al., 2012). 
 

 
ii. Frecuencia mediana (Median Frequency, MF): resume en un valor la 

distribución del contenido espectral de la señal EEG. La frecuencia mediana 
se define como la frecuencia que contiene el 50% de la potencia de la PSD: 
 

+𝑃𝑆𝐷!(𝑓) = 0,5 + 𝑃𝑆𝐷!(𝑓)
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 (2) 

Se calcula como el centroide espectral y generalmente se utiliza para 
identificar disminuciones en el ritmo de las oscilaciones cerebrales. Presenta 
ventajas para caracterizar cambios espectrales en comparación con la 
frecuencia media (Poza et al., 2012; Rodríguez-González et al., 2020; Ruiz-
Gómez et al., 2018). 
 

iii. Frecuencia alfa individual (Individual Alpha Frequency, IAF): muestra la 
frecuencia que contiene el pico máximo de la potencia alfa. Las oscilaciones 
alfa (α, 8-13 Hz) son dominantes en las señales EEG de adultos relajados con 
los ojos cerrados, por lo que la PSD presenta un pico alrededor de dicha banda 
de frecuencias. La estimación de la IAF en el presente trabajo se basa en el 
cálculo de la frecuencia mediana en la banda alfa extendida (4-15 Hz) (Poza 
et al., 2012): 
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Otro parámetro estrechamente relacionado con la IAF es la llamada frecuencia 
de transición (Transition Frequency, TF), definida como la frecuencia que 
marca el paso desde la sincronización de la banda zeta a la desincronización 
de la banda alfa (Poza, 2008). En este trabajo, se computa como la frecuencia 
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media desde 1 Hz a la IAF. De esta forma, obtenemos una estimación del 
mínimo en el rango delta y theta que no se ve afectado por mínimos locales y 
tiene en cuenta la contribución de la banda delta (Moretti et al., 2004; Poza, 
2007): 
 

0,5+𝑃𝑆𝐷(𝑓) = + 𝑃𝑆𝐷(𝑓)
0+
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 (4) 

 
iv. 95% Spectral Edge Frequency (SEF95): medida definida como la frecuencia 

que contiene el 95% de la potencia:  
 

0,95 + 𝑃𝑆𝐷(𝑓)
%&	()

$()

= + 𝑃𝑆𝐷(𝑓)
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Aunque también es posible calcular la SEF90 (90% Spectral Edge 
Frequency), algunos estudios han definido la primera como una medida más 
estable (Poza, 2007). 
 

v. Momentos estadísticos: la no gaussianidad de las señales EEG se puede 
verificar cuantificando o estimando algunos momentos de orden superior 
como la asimetría o la curtosis. Dichos momentos de orden superior son 
medidas estadísticas que cuantifican la complejidad de las señales EEG y 
miden la distribución individual de los elementos de la señal (Mudhiganti, 
2012). En este trabajo se llevó a cabo el cálculo de los momentos espectrales 
de primer a cuarto orden, es decir, media, varianza, skewness y curtosis. La 
skewness es una medida de la asimetría en la distribución de la energía 
espectral a lo largo de diferentes frecuencias. Cuanto menor sea dicho valor, 
más simétrica es la distribución. Por otro lado, la curtosis espectral mide como 
de “picuda” es la distribución en torno a la frecuencia dominante. Así pues, 
una curtosis baja indica una distribución más dispersa de la energía espectral 
(Sanei and Chambers, 2007). 
 

vi. Entropía espectral (Spectral Entropy, SE): es una función termodinámica que 
puede ser interpretada como un cuantificador del desorden en una señal EEG, 
basándose en su distribución a lo largo del espectro de frecuencia (Poza et al., 
2012). De esta manera, un espectro uniforme de potencia con un amplio 
contenido espectral (e.g., ruido blanco) ofrece un valor de entropía elevado, 
mientras que una señal más predecible con pocos componentes espectrales 
(e.g., suma de sinusoides) muestra un valor de entropía bajo. Para su cálculo, 
se aplica la definición de la entropía de Shannon a la función normalizada de 
la PSD:  
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𝑆𝐸 = − + 𝑃𝑆𝐷!(𝑓) · log[𝑃𝑆𝐷!(𝑓)]
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 (6) 

 
vii. Entropía de Tsallis (Tsallis Entropy, TE): medida que extiende la información 

de la entropía de Shannon, incorporando un parámetro adicional llamado 
índice entrópico (q), que indica el grado de no-extensividad. Valores bajos de 
dicho parámetro permiten analizar interacciones a gran escala, mientras que 
con valores elevado la TE se centra en los cambios abruptos (Tsallis, 1988). 
 

𝐻40(𝑋) =
1 − ∑ 𝑝(𝑥)45∈7

𝛼 − 1  
 

(7) 

 
Donde el parámetro 𝛼 es el índice entrópico. La TE deriva de la entropía de 
Shannon, calculada con logaritmos naturales, cuando 𝛼 → 1 (Tsallis, 1988). 
También se llevará a cabo el cálculo de la entropía de Escort-Tsallis (Escort-
Tsallis Entropy, ETE); es una extensión de la TE, modificada para que cumpla 
con la distribución de Escort. 
 

viii. Entropía de Rényi (Rényi Entropy, RE): medida que, al igual que la TE, 
también extiende la definición de la SE. Se definió para describir la ganancia 
de información mediante variables aleatorias incompletas (Bachiller, 2012; 
Poza, 2008). Al igual que la SE, la RE es una medida extensiva basada en la 
transformación logarítmica de una distribución de probabilidad. Todas las 
entropías espectrales están controladas por un índice entrópico q. En el presente 
TFG se empleó un valor de q igual a 2, igual en todas ellas (Rényi, 1961). 
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3.6.2 Análisis no lineal 
 

Los métodos de análisis no lineal permiten complementar la información 
proporcionada por el análisis espectral. Debido a la complejidad del cerebro como 
sistema, se pueden utilizar numerosos parámetros no lineales que muestran propiedades 
intrínsecas de las señales neuronales. Los parámetros no lineales utilizados en los 
registros EEG de este trabajo se definen a continuación. 
 

i. Complejidad de Lempel-Ziv (Lempel-Ziv Complexity, LZC): calcula la 
complejidad de secuencias finitas de símbolos, de manera que valores 
elevados de LZC se asocian a series temporales complejas. Para su cálculo, las 
señales EEG se transforman previamente en una secuencia binaria 
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comparando cada elemento con un umbral Td, el cual se calcula como la media 
de las amplitudes de las señales de cada canal, al ser esto más robusto a outliers 
(Ruiz-Gómez et al., 2018). La secuencia resultante es de la forma 𝑃 = 𝑠(1),
𝑠(2), … , 𝑠(𝑁) con 𝑠(𝑖) definido como: 
 

𝑠(𝑖) = F0, 𝑥(𝑖) < 𝑇<
1, 𝑥(𝑖) ≥ 𝑇<

 (9) 

 
La cadena P se recorre de forma secuencial de izquierda a derecha, y se 
incrementa en uno un contador de complejidad 𝑐(𝑁) cada vez que se 
encuentra una subsecuencia de caracteres consecutivos nueva durante el 
proceso.  
 

ii. Auto-Información Mutua (Auto-Mutual Information, AMI): medida basada en 
la teoría de la información mutua, que es la cantidad de información 
compartida por dos variables. De esta manera, se pueden detectar 
dependencias estadísticas no lineales entre dos series temporales (Gómez et 
al., 2007). Esta medida se ha utilizado en la clasificación de EEGs en pacientes 
con enfermedad de Alzheimer y controles (Jeong et al., 2001). 
 

iii. Dimensión fractal de Higuchi (Higuchi Fractal Dimension, HFD): parámetro 
no lineal utilizado para estimar la complejidad o autosimilitud de una señal. 
La HFD presenta numerosas ventajas en la estimación de la FD en 
comparación con otros métodos, como no depender de una secuencia binaria 
y ser menos sensible al ruido. Además, la estimación que ofrece de la FD es 
más precisa que la dada por Maragos y Sun o Katz (Katz, 1988). Asimismo, 
su carga computacional es aceptable, permitiendo su cálculo en tiempo real 
(Monge Álvarez et al., 2014). El algoritmo de computación de la HFD se 
puede encontrar en (Higuchi, 1988). Para su cálculo, se emplea el argumento 
kmáx, definido como el máximo número de sub-series compuestas a partir de la 
serie original. Para la elección de dicho parámetro, se utilizó el criterio 
propuesto por Doyle et al. (Doyle et al., 2004; Monge Álvarez et al., 2014). 
Dicho criterio propone elegir el valor de kmáx que consiga que la HFD 
permanezca estable para aumentos de este parámetro. En el presente TFG se 
empleó un valor de kmáx igual a 120. 

 
iv. Dimensión fractal de Katz (Katz Fractal Dimension, KFD): en comparación 

con otros métodos, el cálculo de la KFD es más lento, pero deriva directamente 
de la forma de onda, lo que elimina el paso de generar una secuencia binaria. 
El cálculo de la FD compara el número real de unidad que componen una 
curva con el número mínimo de unidades requeridas para reproducir un patrón 
de la misma extensión espacial. Los FD calculados de esta forma dependen de 
las unidades de medida utilizadas. Si las unidades son diferentes, también lo 
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son las FD. El enfoque de Katz resuelve este problema al definir una unidad 
general: el paso promedio o la distancia promedio entre puntos sucesivos. 

 
v. Entropía aproximada (Approximate Entropy, ApEn): pertenece a una familia 

de estadísticos que cuantifican la regularidad de las señales. Se trata de una 
medida que calcula la probabilidad logarítmica de que las series de patrones 
que estén cerca (dentro de un radio r) para m observaciones contiguas, 
permanezcan cerca (dentro del mismo radio de tolerancia r) en comparaciones 
incrementales posteriores. Normalmente, valores elevados de este parámetro 
se corresponden a señales con alto grado de aleatoriedad o irregularidad, 
mientras que valores más bajos se asocian con patrones reconocibles en los 
datos (Gómez & Hornero, 2010). 

 
 

vi. Entropía muestral (Sample Entropy, SampEn): es una medida de irregularidad 
aplicable a series temporales cortas y ruidosas. SampEn fue propuesta por 
Richman y Moorman como una alternativa para cuantificar la irregularidad y 
reducir el sesgo introducido en el algoritmo de la ApEn (Poza et al., 2012). Se 
define por tanto como el algoritmo negativo de la probabilidad condicional de 
que dos secuencias similares para m puntos sigan siendo similares en el 
siguiente punto, con una tolerancia r, excluyendo auto coincidencias (Ruiz-
Gómez et al., 2018). De esta forma, SampEn asigna un valor no negativo a una 
serie temporal, aumentando dichos valores con la irregularidad de la señal. 
Para una serie temporal de N puntos, X(n) = {x (1), x (2), …, x(N)}, de k = 1, 
…, N – m +1 vectores de longitud m formados por Xm(k) = {x (k + i), i = 0, 
…, m-1)}. La distancia entre vectores se calcula como la máxima distancia 
entre los correspondientes elementos escalares. Bi es el número de vectores 
que satisfacen la condición de que la distancia entre ellos es menor que la 
tolerancia r. El contador de vectores se calcula y normaliza de la siguiente 
forma (Ruiz-Gómez et al., 2018): 
 

𝐵= =
1

𝑁 −𝑚	 +
𝐵9

𝑁 −𝑚 − 1

:>=

9;$

 (10) 

 
El proceso se repite iterativamente para vectores de longitud m + 1, Bm + 1(r) 
se puede obtener y entonces la entropía muestral se definiría como: 
 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = −𝑙𝑛 P
𝐵=?$(𝑟)
𝐵=(𝑟) Q (11) 

 
Establecer los valores de r y m es crucial en el rendimiento de SampEn. Sin 
embargo, no existen pautas absolutas para optimizar estas variables (Escudero 
et al., 2006). Se ha demostrado que valores demasiado bajos de r pueden 
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ocasionar fallos en el cálculo, mientras que valores demasiado altos pueden 
introducir cierto sesgo (Escudero et al., 2006). Los valores de estos parámetros 
se extrajeron del estudio (Ruiz-Gómez et al., 2018). En dicho estudio, los 
parámetros m y r fueron obtenidos evaluando todas las combinaciones para m 
= 1, 2 y r ∈ (0,1·SD, 0,25·SD) (step = 0,05), donde SD representa la desviación 
estándar de las series temporales. Por último, se decidió emplear la 
combinación m = 1 y r = 0,1·SD.  
 

vii. Entropía difusa (Fuzzy Entropy, FuzzyEn): medida que se definió como 
mejora a las frecuentemente utilizadas ApEn y SampEn (Simons et al., 2018). 
Este parámetro ofrece información acerca de cómo la señal fluctúa con el 
tiempo a partir de la comparación de la serie temporal con una versión 
retrasada de la misma. Al igual que la SampEn, valores elevados se asocian 
con series temporales irregulares. Para el cálculo de la FuzzyEn se requieren 
tres parámetros: la longitud de los vectores que se van a comparar (m), el 
ancho (r) y el gradiente del límite de la función exponencial (n) (Ruiz-Gómez 
et al., 2018). Se emplearon valores de m = 1, r = 0,1·SD y n = 3, extraídos del 
estudio (Ruiz-Gómez et al., 2018), en el cual valores de n = 1, 2 y 3 fueron 
también considerados para alcanzar el valor óptimo. Esas configuraciones son 
las que mostraron los p-valores más bajos (Kruskal-Wallis Test) en dicho 
estudio. 

 
viii. Medida de la tendencia central (Central Tendency Measure, CTM): medida 

que cuantifica la variabilidad de series temporales. Para su cálculo, se utilizan 
diagramas de segundo orden y se calcula la proporción de puntos que están 
incluidos en el diagrama dentro de círculo de radio r. Para una serie temporal 
de longitud N, el diagrama de segundo orden, representando 𝑥(𝑛 + 2) −
𝑥(𝑛 + 1) frente 𝑥(𝑛 + 1) − 𝑥(𝑛), contine N - 2 puntos. De esta manera, la 
CTM de una serie temporal se puede definir como: 
 

𝐶𝑇𝑀 =
∑ 𝛿(𝑑9):>#
9;$

𝑁 − 2  (12) 

donde: 

𝛿(𝑑9) = X1, 𝑠𝑖	 YZ𝑥(𝑖 + 2) − 𝑥(𝑖 + 1)[# + Z𝑥(𝑖 + 1) − 𝑥(𝑖)[#\
$
# < 	𝑟

0, 	𝑒𝑛	𝑜𝑡𝑟𝑜𝑠	𝑐𝑎𝑠𝑜𝑠
 

 
Así pues, la CTM estará incluida en el rango [0, 1], asignando valores más 
elevados cuanto mayor sea la concentración de puntos en el centro del 
diagrama (Ruiz-Gómez et al., 2018). Establecer el valor de radio es crucial en 
el rendimiento de la CTM. El valor óptimo del radio r en la CTM se extrajo 
del estudio (Ruiz-Gómez et al., 2018), que fue obtenido evaluándolo para un 
conjunto de entrenamiento en el rango ∈ [0,01, 0,5] (step = 0,005). No se 
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incluyeron valores menores a 0,001 puesto que daban valores de CTM 
cercanos a 0 en todos los sujetos. Asimismo, tampoco se tomaron valores 
mayores que 0,5 puesto que ofrecían valores muy cercanos a la unidad. 
Finalmente, se optó por emplear un valor de r = 0,075 para el cual el valor de 
la CTM tomaba los p-valores (test de Kruskal-Wallis) más bajos entre los 
grupos. 
 
 

3.6.3 Análisis de la dinámica cerebral 
 

La extracción de los parámetros de Hjorth es un buen método de caracterización 
de la señal EEG en aplicaciones en tiempo real. Es una de las formas de indicar la 
propiedad estadística de una señal en el dominio del tiempo.  Existen tres tipos de 
parámetros de Hjorth: actividad, movilidad y complejidad (Oh et al., 2014). La actividad 
mide la varianza de la amplitud de la señal. En el dominio de la frecuencia, se relaciona 
con la superficie de su espectro de potencia y se relaciona con la frecuencia media. 

𝐴𝑐𝑡𝑖𝑣𝑖𝑑𝑎𝑑 = 𝑣𝑎𝑟(𝑦(𝑡)) (13) 

El parámetro de la movilidad se define como la raíz cuadrada de la relación entre 
la varianza de la primera derivada de la señal y la propia señal. Dicho parámetro tiene una 
proporción de desviación estándar del espectro de potencia (Oh et al., 2014). 
 

𝑀𝑜𝑣𝑖𝑙𝑖𝑑𝑎𝑑 = c
𝑣𝑎𝑟(𝑦@(𝑡))
𝑣𝑎𝑟(𝑦(𝑡))  (14) 

 
Finalmente, la complejidad indica cuanto se parece la señal a una onda sinusoidal 

pura. Dicho valor converge a 1 cuanto más se parezca a dicha señal. 
 

𝐶𝑜𝑚𝑝𝑙𝑒𝑗𝑖𝑑𝑎𝑑 =
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦@(𝑡))
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))  (15) 

Estos tres parámetros caracterizaran, de forma conjunta, los patrones EEG en 
términos de amplitud, dominio temporal y complejidad. Además, la robustez estadística 
de los parámetros les permite “sobrevivir” a una transformación de Fourier, lo que implica 
que también tienen un significado en la descripción del espectro de potencia relacionado 
con el dominio temporal (Hjorth, 1970).  

 
Ya se ha comentado que la no estacionariedad de las señales puede ser cuantificada 
midiendo algunos momentos estadísticos de las señales. Aunque, generalmente, la 
distribución multicanal del EEG se considera como una distribución gaussiana 
multivariante, las propiedades de la media y covarianza suelen cambiar de segmento a 
segmento. Es por ello que los EEG se consideran no estacionarios solo en intervalos 
cortos de tiempo, es decir, cuasi estacionarios. Dicha no estacionariedad de las señales 
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puede ser medida en términos de momentos estadísticos de orden superior, como la 
skewness o kurtosis (Sanei and Chambers, 2007). La skewness es una medida de la 
asimetría de la distribución de la señal. Si dicha distribución se concentra en mayor parte 
a la derecha del punto medio, la skewness tomará un valor negativo, y viceversa (Sanei 
and Chambers, 2007). Por otro lado, la curtosis cuantifica como de picuda o plana es una 
distribución de datos en comparación con una normal. De esta forma, los datos con alta 
curtosis tienen un pico distinto cerca de la media, disminuyen con rapidez y tienen colas 
pesadas. Por el contrario, los conjuntos de datos con bajas curtosis tienden a tener una 
parte superior plana cerca de la media (Sanei and Chambers, 2007). En el presente TFG 
se llevará a cabo el cálculo de los momentos mencionados, junto con su respectivo cálculo 
en la primera y segunda derivada. 
 
 
3.7 Análisis estadístico 
 

Tras obtener las métricas de las señales EEG para cada sujeto, se realizó el 
correspondiente análisis estadístico para evaluar si hay diferencias estadísticamente 
significativas entre el paradigma estructurado y el no estructurado. Previo al análisis 
estadístico, se emplearon violin plots para obtener una representación gráfica de la 
distribución de cada uno de los parámetros. El test estadístico empleado para analizar los 
datos fue el Wilcoxon signed-rank test o prueba de los rangos con signo de Wilcoxon. 
Este test es una prueba no paramétrica empleada para determinar si existen diferencias 
entre dos conjuntos de datos pareados o dependientes (McKnight & Najab, 2010). Si dos 
muestras proceden de la misma población, cabe esperar que las diferencias entre cada par 
de observaciones se distribuyan de forma simétrica en torno al cero. Su principal objetivo 
es, por tanto, comprobar si dos conjuntos se originan de la misma población (Mann & 
Whitney, 1947). La hipótesis nula establece que la diferencia de la mediana entre los 
valores absolutos de las diferencias pareadas positivas y negativas es nula (Harris & 
Hardin, 2013). Durante la prueba, se calculan las diferencias entre cada par de 
observaciones. Los tamaños de muestra de los grupos se combinan para calcular el 
estadístico de contraste, el cual permite calcular una probabilidad específica conocida 
como p-valor (Kumar Nayak & Gramza-Michałowska, 2022; McKnight & Najab, 2010). 
Los p-valores se emplean para llevar a cabo el contraste de hipótesis estadístico. Si dichas 
probabilidades toman un valor menor que un determinado umbral de significación 
(típicamente p < 0,05), entonces se rechaza la hipótesis nula, indicando que ambos 
conjuntos de datos presentan diferencias entre las muestras pareadas (Mann & Whitney, 
1947).  
 

En el presente TFG, la prueba del rango con signo de Wilcoxon se empleó para 
comprobar si se presentaban diferencias estadísticamente significativas entre el 
paradigma basado en RS guiado y el MW, empleando para ello los valores resultantes de 
aplicar los diferentes métodos de análisis espectral, no lineal y de dinámica aplicados a 
las señales EEG. Los resultados del test estadístico se corrigieron por medio de false 
discovery rate (FDR), cuyo objetivo es controlar la proporción de falsos positivos entre 
todas las pruebas significativas realizadas (Benjamini & Hochberg, 1995). Los resultados 
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fueron comparados habiendo establecido un umbral de significación previo (0,05). Si las 
probabilidades ofrecidas por el test eran inferiores a dicho umbral, se rechazaba la 
hipótesis nula. Los resultados de dicho análisis son extensamente estudiados y discutidos 
en las próximas secciones. 
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Capítulo 4. Resultados 
 
4.1 Introducción 
 

Una vez explicada la metodología que se han empelado en este TFG, a 
continuación, se presentan los resultados obtenidos. En primer lugar, se han extraído los 
parámetros espectrales, no lineales y de dinámica que permiten caracterizar las señales 
EEG. A partir de dichos resultados, se ha llevado a cabo un análisis de las diferencias 
estadísticamente significativas empleando las representaciones gráficas de las 
distribuciones de los datos. Además, se ha utilizado el test de los rangos con signo de 
Wilcoxon para comprobar las diferencias entre grupos. 

 
4.2 Resultados 

Los parámetros se calcularon computacionalmente como se ha descrito en el 
anterior capítulo. Se obtuvieron unas matrices de datos con las dimensiones 
correspondientes al número de sujetos y de fuentes para cada una de las métricas. 
Posteriormente se calculó el promedio de cada una de las métricas por sujeto, obteniendo 
30 valores para cada uno de los parámetros extraídos, correspondientes a los sujetos 
participantes. En primer lugar, se emplearon violin plots para observar las distribuciones 
de los datos de cada una de las métricas extraídas de las señales de forma clara y detallada. 
Los datos correspondientes a cada una de las fases del registro fueron representados por 
un color diferente. Posteriormente, se realizó el test de los rangos con signo de Wilcoxon 
entre la diferencia de los grupos del EGRS con el MW. Los p-valores resultantes se 
corrigieron por medio de FDR y pueden consultarse en las diferentes tablas a lo largo de 
este capítulo. Dichas tablas presentan la misma información que las figuras, pero desde 
un punto de vista más analítico en vez de visual. Los p-valores son el resultado de 
comparar la diferencia de cada una de las fases del EGRS menos el MW con respecto al 
cero. 

Las figuras 9 y 10 ilustran la distribución de los parámetros espectrales. A 
continuación, los resultados del análisis estadístico de dichos parámetros se recogen en 
las tablas 1 y 2, correspondientes a los estados de ojos abiertos y cerrados, 
respectivamente.  

 
En la Tabla 1, se evidencian diferencias significativas en todos los parámetros 

espectrales al comparar el estado de reposo estructurado y el no estructurado. 
Inicialmente, se analizó en contenido espectral de la actividad EEG utilizando la RP en 
las bandas de frecuencias convencionales. Dichos parámetros presentan valores elevados 
en las bandas delta y alfa en ambos paradigmas, y una disminución general en las bandas 
de frecuencias más altas (beta1, beta2 y gamma). Además, en el caso de ojos cerrados, se 
presentan diferencias significativas en las bandas beta1 y beta2 entre ambos paradigmas, 
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con un ligero aumento de estas potencias en el EGRS. Del mismo modo, los valores de 
las frecuencias espectrales (MF, SEF95, IAF y TF) son mayores en el estado de reposo 
estructurado. Destaca especialmente la MF, que presenta un valor de MF = 10,4580 ± 
0,7488 Hz en el EGRS y de MF = 9,2133 ± 0,5356 Hz en el MW. Los resultados también 
revelan diferencias significativas en la SE, parámetro espectral que cuantifica la 
irregularidad de las señales EEG. Los valores de SE en el EGRS son mayores que los 
observados en el caso del estado de MW. Finalmente, las entropías espectrales (entropía 
de Tsallis, de Escort-Tsallis y de Rényi), que representan la aleatoriedad y predictibilidad 
de las señales, presentan un incremento en los valores en el EGRS en comparación con el 
MW. 

 
En el caso de los ojos cerrados, se evidencian p-valores por debajo del umbral de 

significación en MF, SEF95, IAF, RP beta1 y beta2 (ver Tabla 2). Estos parámetros, 
excepto la SEF95, presentan valores más altos en el caso del EGRS en comparación con 
el MW. En el caso de la MF, la diferencia no es tan pronunciado como en el estado de 
ojos abiertos. En cuanto a las diferencias observadas en la SEF95, indican cambios en el 
contenido espectral a altas frecuencias al comparar ambos paradigmas (Poza, 2007). 
Además, también se presentan diferencias notables en las RPs beta1 y beta2.  En la Figura 
8 los datos muestran una ligera elevación de las RP beta1 y beta2 en el EGRS en 
comparación con el MW, lo que puede estar relacionado con un aceleramiento de la 
actividad EEG espontánea a altas frecuencias (Poza et al., 2012). Por otro lado, en el caso 
de los ojos cerrados, el mayor p-valor lo alcanza la TF, seguida de la RP en alfa, lo que 
sugiere una menor diferencia en estos parámetros entre ambos paradigmas. En resumen, 
en relación con los parámetros espectrales extraídos de las señales, se observa una menor 
diferencia entre ambos protocolos (RS guiado y MW) cuando se analizan los datos con 
los ojos cerrados en comparación con los ojos abiertos. 

 
En las tablas 4 y 5 se recogen los p-valores correspondientes a la comparación de 

los parámetros no lineales en ambos paradigmas. En el caso de los ojos abiertos, se 
presentan diferencias estadísticamente significativas (p < 0,05) en la LZC, AMI, HFD, 
KFD y ApEn. En cuanto a la LZC, muestra valores ligeramente reducidos en el MW, lo 
que indica una complejidad ligeramente mayor en las series temporales de las señales este 
protocolo. Por otro lado, la ApEn muestra un valor mayor en el paradigma estructurado, 
lo que confirma una mayor aleatoriedad o irregularidad de las señales en este protocolo, 
en concordancia con los resultados extraídos de la AMI (Gómez & Hornero, 2010). En 
cuanto a la HFD y KFD, que estima la complejidad de una señal (Gómez et al., 2009; 
Monge Álvarez et al., 2014), nuestros resultados sugieren que el estado de reposo basado 
en MW provoca una ligera reducción de la complejidad de la dinámica cerebral de los 
sujetos. Finalmente, la FuzzyEn, al derivar de la ApEn y SampEn (Simons et al., 2018), 
también muestra valores ligeramente elevados en el EGRS en comparación con el MW. 
En el caso de los ojos cerrados, no se observan diferencias significativas en ninguno de 
los parámetros no lineales evaluados. De hecho, los p-valores son considerablemente 
altos. Esto indica, de acuerdo con los resultados obtenidos de los parámetros espectrales, 
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que no hay diferencias tan claras entre los dos protocolos en lo que respecta a los ojos 
cerrados. 
 

En última instancia, tras analizar las señales EEG, se han obtenido una serie de 
parámetros que permiten caracterizar la dinámica cerebral de los sujetos en ambos 
protocolos. Los p-valores correspondientes a estos parámetros se presentan en las tablas 
6 y 7. Se han encontrado diferencias significativas con los ojos abiertos en la movilidad 
y complejidad Hjorth, en la curtosis temporal y en la primera y segunda derivada de la 
varianza de la señal. Este resultado se respalda visualmente mediante las representaciones 
de las distribuciones de los datos en las figuras 14 y 15. Al analizar los protocolos con los 
ojos abiertos, se observó una movilidad ligeramente mayor en el EGRS en comparación 
con el RS sin guiar. Este parámetro específico cuantifica los cambios o fluctuaciones en 
la amplitud de las señales a lo largo del tiempo (Hjorth, 1970), lo que indica una mayor 
variabilidad en la amplitud de las señales correspondientes al RS guiado. Además, se 
encontró una complejidad ligeramente menor en el RS guiado en comparación con el 
MW, lo que concuerda con los resultados correspondientes a KFD. La curtosis temporal 
se muestra ligeramente mayor en el EGRS, lo que refleja una distribución de amplitudes 
de las señales cerebrales más concentrada, con mayor cantidad de valores cercanos a la 
media y menos valores extremos (Sanei and Chambers, 2007). En cuanto a la primera y 
segunda derivada de la varianza de las señales, también muestran valores ligeramente 
mayores en el EGRS. 
 

Por otro lado, en el caso de ojos cerrados, no se encontraron diferencias entre 
ambos paradigmas en lo que respecta a estos últimos parámetros. Esto indica que no hay 
diferencias notables en la dinámica cerebral de los sujetos durante el RS guiado y el MW 
en este estado, de forma similar a los resultados obtenidos de los parámetros espectrales 
y no lineales evaluados.  

 
En resumen, los resultados sugieren una mayor cantidad de diferencias 

significativas entre ambos paradigmas al evaluar el contenido espectral de las señales 
EEG. Por el contrario, el análisis no lineal y de dinámica no muestran diferencias tan 
abundantes. 
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Figura 8. Representación de las métricas espectrales. Para cada distribución, hay una separación entre ojos 
cerrados y ojos abiertos. De la misma forma, cada uno de estos grupos está dividido a su vez en cinco subgrupos, 
que representan cada una de las tareas que componen el resting-state (RS) guiado y el mind-wandering (MW). 
Cada violin plot representa la RP de cada banda de frecuencia. a) RP in Delta (RP-Delta). (b) RP in Theta (RP-
Theta). (c) RP in Alpha (RP-Alpha). (d) RP in Beta1 (RP-Beta1). (e) RP in Beta2 (RP-Beta2). (f) RP in Gamma 
(RP-Gamma).  

  

a) b) 

c) d) 

e) f) 
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Figura 9. Violin plots que representan la distribución de valores para las métricas espectrales: (a) MF. (b) 
IAF. (c) TF. (d) SEF95. (e) Spectral Variance. (f) Spectral Skewness. Pueden observarse seis distribuciones para 
ojos abiertos y seis para ojos cerrados, que representan cada una de las tareas que componen el resting-state (RS) 
guiado (Animales, Familia, Sumas, Paisajes y Estructurado, que es el promedio de las cuatro tareas anteriores) y el 
mind-wandering (MW).  

  

a) b) 

c) d) 

e) f) 
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Figura 10. Representación de las métricas espectrales. Para cada distribución, hay una separación entre ojos 
cerrados y ojos abiertos. De la misma forma, cada uno de estos grupos está dividido a su vez en cinco subgrupos, 
que representan cada una de las tareas que componen el resting-state (RS) guiado y el mind-wandering (MW). 
Cada violin plot representa una característica diferente. (a) Spectral Kurtosis. (b) SE. (c) TE. (d) ETE. (e) RE. 
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Parámetros Animales Familia Sumas Paisajes Estructurado 

 

RP - Delta < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

RP - Theta < 0,001 < 0,001 < 0,001 0,120 < 0,001 

RP - Alpha 0,008 0,522 < 0,001 < 0,001 < 0,001 

RP - Beta 1 0,006 < 0,001 0,001 < 0,001 < 0,001 

RP - Beta 2 < 0,001 < 0,001 < 0,001 0,029 < 0,001 

RP - Gamma < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

MF < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

IAF 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

TF < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

SEF95 < 0,001 < 0,001 < 0,001 0,045 < 0,001 

SV < 0,001 0,001 < 0,001 0,128 < 0,001 

SS < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

SK < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

SE < 0,001 < 0,001 < 0,001 0,325 < 0,001 

TE < 0,001 0,001 < 0,001 0,303 < 0,001 

ETE < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

RE < 0,001 < 0,001 < 0,001 0,002 < 0,001 

Tabla 1. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos abiertos. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Relative Power (RP) para cada banda de 
frecuencias, Median Frequency (MF), Individual Alpha Frequency (IAF), Transition Frequency (TF), Spectral Edge 
Frequency at 95% (SEF95), Spectral Variance (SV), Spectral Skewness (SS), Spectral Kurtosis (SK), Spectral Entropy 
(SE), Tsallis Entropy (TE), Escort-Tsallis Entropy (ETE), Rényi Entropy (RE). 
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Parámetros Animales Familia Sumas Paisajes Estructurado 

 

RP – Delta 0,409 0,378 < 0,001 < 0,001 0,119 

RP – Theta 0,013 < 0,001 0,271 0,182 0,623 

RP – Alpha 0,001 0,182 0,123 0,084 0,909 

RP – Beta 1 < 0,001 0,104 < 0,001 < 0,001 < 0,001 

RP – Beta 2 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

RP – Gamma < 0,001 0,992 0,278 < 0,001 0,158 

MF < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 

IAF 0,007 < 0,001 0,003 < 0,001 < 0,001 

TF 0,009 0,631 0,001 0,169 0,918 

SEF95 0,903 < 0,001 0,145 < 0,001 0,005 

SV < 0,001 0,058 0,440 0,361 0,459 

SS < 0,001 0,814 0,641 0,887 0,378 

SK 0,002 0,992 0,903 0,909 0,601 

SE < 0,001 0,081 0,008 < 0,001 0,251 

TE < 0,001 0,060 0,399 0,378 0,387 

ETE < 0,001 0,009 0,020 0,006 0,440 

RE < 0,001 0,278 0,030 0,001 0,188 

Tabla 2. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos cerrados. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Relative Power (RP) para cada banda de 
frecuencias, Median Frequency (MF), Individual Alpha Frequency (IAF), Transition Frequency (TF), Spectral Edge 
Frequency at 95% (SEF95), Spectral Variance (SV), Spectral Skewness (SS), Spectral Kurtosis (SK), Spectral Entropy 
(SE), Tsallis Entropy (TE), Escort-Tsallis Entropy (ETE), Rényi Entropy (RE). 
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Figura 11. Representación de las métricas no lineales. Para cada distribución, hay una separación entre ojos 
cerrados y ojos abiertos. De la misma forma, cada uno de estos grupos está dividido a su vez en cinco subgrupos, 
que representan cada una de las tareas que componen el resting-state (RS) guiado y el mind-wandering (MW). 
Cada violin plot representa una característica diferente. (a) LZC. (b) AMI. (c) HFD. (d) KFD. (e) ApEn. (f) 
SampEn. (g) Fuzzy Entropy (FuzzyEn). (h) Central Tendency Measure (CTM). 

a) 
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Parámetros Animales Familia Sumas Paisajes Estructurado 

 

LZC 0,410 0,002 0,015 0,542 0,032 

AMI 0,668 < 0,001 0,008 0,230 0,008 

HFD 0,332 0,005 0,019 0,372 0,041 

KFD 0,542 0,001 0,005 0,363 0,009 

ApEn 0,668 0,004 0,027 0,614 0,041 

SampEn 0,724 0,020 0,056 0,848 0,100 

FuzzyEn 0,581 0,001 0,006 0,286 0,020 

CTM 0,816 0,035 0,081 0,947 0,132 

Tabla 3. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos abiertos. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Lempel-Ziv Complexity (LZC), Auto-Mutual 
Information (AMI), Higuchi Fractal Dimension (HFD), Katz Fractal Dimension (KFD), Approximate Entropy (ApEn), 
Sample Entropy (SampEn), Fuzzy Entropy (FuzzyEn) y Central Tendency Measure (CTM). 

 

Parámetros Animales Familia Sumas Paisajes Estructurado 

 

LZC 0,666 0,271 0,641 0,258 0,671 

AMI 0,814 0,234 0,541 0,204 0,440 

HFD 0,531 0,258 0,623 0,449 0,601 

KFD 0,738 0,339 0,714 0,204 0,671 

ApEn 0,704 0,371 0,684 0,242 0,714 

SampEn 0,692 0,421 0,590 0,271 0,724 

FuzzyEn 0,909 0,347 0,704 0,163 0,692 

CTM 0,692 0,433 0,613 0,294 0,763 

Tabla 4. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos cerrados. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Lempel-Ziv Complexity (LZC), Auto-Mutual 
Information (AMI), Higuchi Fractal Dimension (HFD), Katz Fractal Dimension (KFD), Approximate Entropy (ApEn), 
Sample Entropy (SampEn), Fuzzy Entropy (FuzzyEn) y Central Tendency Measure (CTM). 



Resultados Capítulo 4 

43 

  

  
 

 

 

 
Figura 12. Representación de las métricas de dinámica. Para cada distribución, hay una separación entre ojos 
cerrados y ojos abiertos. De la misma forma, cada uno de estos grupos está dividido a su vez en cinco subgrupos, 
que representan cada una de las tareas que componen el resting-state (RS) guiado y el mind-wandering (MW). 
Cada violín plot representa una característica diferente. (a) Movilidad Hjorth. (b) Complejidad Hjorth. (c) Actividad 
Hjorth. (d) Temporal Variance. (e) Temporal Skewness. (f) Temporal Kurtosis. 
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Figura 13.  Representación de las métricas de dinámica. Para cada distribución, hay una separación entre ojos 
cerrados y ojos abiertos. De la misma forma, cada uno de estos grupos está dividido a su vez en cinco subgrupos, 
que representan cada una de las tareas que componen el resting-state (RS) guiado y el mind-wandering (MW). 
Cada violin plot representa una característica diferente. (a) First Derivative Variance. (b) First Derivative Skewness. 
(c) First derivative Kurtosis. (d) Second Derivative Variance. (e) Second Derivative Skewness. (f) Second 
Derivative Kurtosis. 
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Parámetros Animales Familia Sumas Paisajes Estructurado 

 

M. Hjorth 0,580 0,001 0,010 0,339 0,013 

C, Hjorth 0,459 0,008 0,043 0,494 0,039 

A, Hjorth 0,145 0,142 0,100 0,903 0,055 

TV 0,145 0,142 0,100 0,903 0,055 

TS 0,387 0,874 0,933 0,097 0,631 

TK 0,131 0,123 0,022 0,127 0,020 

FDV 0,440 < 0,001 0,002 0,199 0,002 

FDS 0,623 0,874 0,975 0,724 0,775 

FDK 0,194 0,361 0,590 0,035 0,188 

SDV 0,554 < 0,001 0,002 0,182 0,009 

SDS 0,097 0,975 0,060 0,684 0,330 

SDK 0,671 0,887 0,641 0,303 0,468 

Tabla 5. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos abiertos. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Movilidad, Complejidad y Actividad de Hjorth, 
Temporal Variance (TV), Temporal Skewness (TS), Temporal Kurtosis (TK), First Derivative Variance (FDV), First 
Derivative Skewness (FDS), First derivative Kurtosis (FDK), Second Derivative Variance (SDV), Second Derivative 
Skewness (SDS) y Second Derivative Kurtosis (SDK). 
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Parámetros Animales Familia Sumas Paisajes Estructurado 

 

M. Hjorth 0,692 0,356 0,671 0,199 0,468 

C. Hjorth 0,194 0,204 0,361 0,590 0,163 

A. Hjorth 0,145 0,787 0,266 0,983 0,347 

TV 0,145 0,787 0,266 0,983 0,347 

TS 0,909 0,234 0,714 0,449 0,901 

TK 0,748 0,903 0,330 0,671 0,992 

FDV 0,656 0,234 0,748 0,285 0,356 

FDS 0,271 0,918 0,234 0,481 0,378 

FDK 0,918 0,631 0,568 0,631 0,983 

SDV 0,775 0,285 0,903 0,199 0,330 

SDS 0,361 0,278 0,074 0,204 0,131 

SDK 0,468 0,520 0,449 0,748 0,531 

Tabla 6. p-valores correspondientes a la comparación entre cada una de las fases que componen el externally guided 
resting-state (Animales, Familia, Sumas, Paisajes y promedio de los anteriores) y el mind-wandering con ojos cerrados. 
Las diferencias significativas se marcan en negrita (p < 0,05, prueba del rango con signo de Wilcoxon, corrección 
FDR). En las filas se presentan cada uno de los parámetros extraídos: Movilidad, Complejidad y Actividad de Hjorth, 
Temporal Variance (TV), Temporal Skewness (TS), Temporal Kurtosis (TK), First Derivative Variance (FDV), First 
Derivative Skewness (FDS), First derivative Kurtosis (FDK), Second Derivative Variance (SDV), Second Derivative 
Skewness (SDS) y Second Derivative Kurtosis (SDK). 
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Capítulo 5. Discusión y conclusiones 
 

En este trabajo de investigación se han extraído diversos parámetros derivados del 
EEG registrado durante los protocolos de adquisición MW y EGRS. El propósito de 
analizar dichos parámetros es determinar si se presentan variaciones significativas en las 
medidas para los diferentes paradigmas llevados a cabo durante los registros. Este 
capítulo se centra en interpretar los resultados obtenidos, buscando una explicación 
detallada y fundamentada de los hallazgos, así como extraer las conclusiones más 
relevantes. 
 
5.1 Discusión 
 

A la hora de caracterizar la actividad cerebral en ambos paradigmas, se han 
evaluado las diferencias que surgen entre diferentes parámetros espectrales. Inicialmente, 
se analizó el contenido espectral de la actividad EEG calculando la RP en las bandas de 
frecuencias convencionales. En el caso de los ojos abiertos, destaca especialmente el 
aumento de la actividad en la banda de frecuencias delta en el MW en comparación con 
el EGRS, como muestra la Figura 8. Esto puede ser debido a que el MW es un estado de 
relajación en el que la atención está menos focalizada y más dispersa en comparación con 
un EGRS, donde la atención se encuentra más dirigida a un objetivo específico. De hecho, 
se ha comprobado en estudios previos un cambio en las fluctuaciones y ritmos de 
actividad eléctrica cortical durante tareas de atención (Deco et al., 2010). El aumento 
observado en la potencia delta podría indicar además una disminución del estado de alerta 
durante el MW, lo que puede estar relacionado con la somnolencia que algunos sujetos 
experimentaron durante el registro. De hecho, el aumento espontáneo de la potencia delta 
se ha asociado con una reducción del nivel de alerta (Braboszcz & Delorme, 2011) y una 
disminución de la atención sostenida relacionada con la tarea y diversas etapas de 
transición de la vigilia al sueño (Ray & Cole, 1985). Por otro lado, se obtuvo una mayor 
potencia en la banda alfa durante el EGRS. Este fenómeno podría estar relacionado con 
la focalización de la atención hacia una tarea que requiera un incremento en la actividad 
de la memoria de trabajo, lo cual se ha demostrado que se correlaciona con un aumento 
en la potencia de las ondas alfa (Jensen et al., 2002; Ray & Cole, 1985). Esto deja abierta 
la posibilidad de que la transición de un protocolo de EGRS a otro de MW pueda implicar 
cierta carga cognitiva que puede manifestarse a través de la presencia de ritmos alfa, al 
dirigir la atención y la actividad mental hacia un estado de relajación y enfoque tranquilo. 
De hecho, Angelakis et al., (2004) sugirieron que el aumento de la frecuencia alfa podría 
representar un estado de “preparación cognitiva”. No obstante, también ha habido 
estudios que han demostrado una disminución de la potencia alfa durante la divagación 
mental (Compton et al., 2019). Finalmente, se puede comprobar una actividad gamma 
ligeramente mayor en el RS guiado que en el MW.  Aunque no está del todo claro si las 
oscilaciones gamma se ven potenciadas o suprimidas durante los estados de divagación 
mental, dicha banda de frecuencias está relacionada con una mayor atención y activación 
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neural (Dias Da Silva et al., 2022). Por lo tanto, resulta lógico esperar un incremento de 
estas ondas durante el EGRS. 

 
Como se puede observar en la Tabla 1, en el estado de ojos abiertos todos los 

parámetros espectrales muestran diferencias significativas entre ambos protocolos. 
Probablemente estas diferencias deriven de los cambios en las RPs comentadas 
anteriormente. Las frecuencias espectrales (MF, SEF95, IAF y TF) toman valores 
superiores en el EGRS en comparación con el MW, lo que sugiere una aceleración de la 
actividad cerebral durante el RS guiado (Poza et al., 2007). Esto podría deberse a una 
mayor demanda cognitiva durante el EGRS y, en consecuencia, una mayor actividad 
neural y aumento de la potencia de las frecuencias espectrales. Por otra parte, la SE, 
parámetro espectral que cuantifica la irregularidad de las señales EEG, también muestra 
diferencias significativas entre ambos protocolos, lo que sugiere una variabilidad de los 
patrones EEG diferente entre ambos paradigmas. Esto podría deberse a que, durante el 
MW, la mente tiende a divagar y a tener una mayor cantidad de pensamientos no 
relacionados, mientras que en el RS guiado la atención se encuentra más focalizada 
(Cnudde et al., 2023). Esto puede ser interpretado en términos de planitud del espectro de 
frecuencias (Poza et al., 2007), es decir, en el caso del MW se presenta un contenido 
espectral menos uniforme que en el caso del RS guiado. El resto de las entropías 
espectrales (entropía de Tsallis, de Escort-Tsallis y de Rényi) son variaciones de la SE, 
por lo que muestran resultados alineados a dicho parámetro. Estas entropías representan 
la aleatoriedad y predictibilidad de las señales, y en ellas se observa un incremento de sus 
valores en el EGRS en comparación con el MW, como muestra la Figura 10. Además, 
estas entropías capturan información derivada del componente de amplitud del espectro 
de frecuencia (Gómez & Hornero, 2010), lo que sugiere una mayor incertidumbre y 
variabilidad de los datos en las señales correspondientes al RS guiado.  

 
En el estado con los ojos cerrados se presentan menos diferencias significativas 

entre ambos protocolos en comparación con la condición de los ojos abiertos, según se 
evidencia en la Tabla 2. Este hallazgo podría deberse a la estimulación visual. Durante la 
condición de ojos abiertos, aunque la mirada se fije en un punto concreto, se reciben y 
procesan constantemente señales visuales del entorno que pueden afectar a la actividad 
cerebral y provocar cambios en los parámetros espectrales (Barry et al., 2007). Con los 
ojos cerrados, se muestran diferencias significativas en MF, IAF, y RP en beta1 y beta2. 
Estos parámetros presentan valores más altos en el caso del EGRS en comparación con 
el MW. Las diferencias en los valores de RP en las bandas beta1 y beta2 con los ojos 
cerrados puede deberse a que dichas bandas de frecuencias están asociadas con el 
pensamiento activo, la atención y el enfoque en el mundo exterior, además de ser más 
sensibles a las modificaciones en los estados cognitivos y los procesos mentales (Sanei 
and Chambers, 2007). Por lo tanto, las diferencias en las RPs de estas bandas pueden ser 
más pronunciadas y detectables en comparación con otras bandas de frecuencia, que están 
asociadas a otras funciones o procesos cognitivos. La actividad alfa es dominante durante 
un RS con ojos cerrados (Angelakis et al., 2004), por lo que su aumento general en ambos 
paradigmas probablemente sea debido a este hecho. Debido a que al reducirse la RP en 
delta y tener bastante peso por ser valores mayores que en otras bandas, la MF también 
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se verá reducida. La presencia de una IAF superior en el RS guiado puede estar 
relacionada con un mayor nivel de atención selectiva, concentración y procesamiento 
cognitivo. Esto sugiere que la banda de frecuencia alfa puede estar más fuertemente 
involucrada en la coordinación y regulación de las actividades cognitivas superiores 
durante el estado de reposo guiado (Poza et al., 2012), que en el experimento de este TFG 
correspondería a imaginar ciertas cosas de manera activa (paisajes, animales, familia y 
sumas). Estas observaciones han sido sugeridas por investigaciones previas sobre la 
enfermedad de Alzheimer, en las cuales se han encontrado valores más bajos de IAF en 
el grupo de enfermos (Poza et al., 2012; Rodríguez-González et al., 2020).  

 
El análisis no lineal ofrece diferencias significativas en la LZC, AMI, HFD, KFD, 

ApEn y SampEn entre ambos protocolos con los ojos abiertos. La LZC se ve aumentada 
en el RS guiado, como se muestra en la Figura 11. Este parámetro asocia valores elevados 
a series temporales complejas (Ruiz-Gómez et al., 2018). Esto sugiere una mayor 
complejidad en el EGRS, lo que indica que este paradigma surge en presencia de un 
patrón heterogéneo de activación neural, lo que podría deberse a una disminución de la 
sincronía cortical general, en comparación con las señales generadas durante la 
divagación mental. De manera alineada con la LZC, la KFD puede ser interpretada 
también como un cuantificador de la complejidad de una secuencia (Poza et al., 2012). 
Su valor se ve reducido en el MW, lo que podría indicar mayor complejidad y auto 
semejanza en los patrones de actividad cerebral durante el EGRS, de acuerdo con los 
resultados obtenidos de la LZC. De hecho, un estudio encontró que la complejidad era 
incluso mayor durante los periodos de estado de reposo y fijación visual que en los estados 
de tarea (Szostakiwskyj et al., 2017), lo que se permitió sugerir que el cerebro estaba en 
un estado listo y capaz de explorar de mejor forma diferentes estados cerebrales u 
opciones de respuesta (Deco et al., 2010). Es posible relacionar los hallazgos de una 
mayor KFD durante el EGRS con estudios previos que han demostrado una reducción de 
la complejidad durante el MW. Durante este estado, se ha especulado acerca de que esto 
se deba a que una red específica del cerebro domine la señal EEG. Dada su asociación 
constante con el MW, un buen candidato sería la DMN (Lu & Rodriguez-Larios, 2022). 
De forma similar a los anteriores parámetros, la HFD y SampEn muestran una reducción 
en el MW, lo que coincide con los hallazgos encontrados en otros estudios (Lu & 
Rodriguez-Larios, 2022). En base a la literatura previa, se puede especular que la mayor 
previsibilidad de las señales EEG durante el MW podría deberse a un número menor de 
generadores corticales y/o una mayor inhibición cortical general (Lu & Rodriguez-Larios, 
2022; Schaworonkow & Nikulin, 2022). En la condición de los ojos cerrados, no se 
evidencian diferencias significativas en ninguna de las características no lineales 
evaluadas, por lo que la actividad cerebral entre ambos paradigmas con los ojos cerrados 
no difiere significativamente en cuanto a patrones complejos o no lineales de las señales. 

 
En última instancia, se han obtenido un conjunto de parámetros que permiten 

caracterizar la dinámica cerebral de los sujetos en ambos protocolos. Dichos parámetros 
representan la potencia de la señal, la frecuencia media y la desviación estándar del 
espectro de potencia (Sadat Safi et al., 2021). En el caso de los ojos cerrados, no se 
presentan diferencias significativas en ninguno de los parámetros evaluados, mientras que 
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con los ojos abiertos se presentan diferencias en la movilidad y complejidad de Hjorth, 
en la curtosis temporal y en la primera y segunda derivada de la varianza de la señal, 
como se muestra en la Tabla 5. Por una parte, la movilidad de Hjorth es mayor en el 
EGRS al comparar ambos paradigmas con los ojos abiertos, como indica la Figura 12. 
Esto indica una mayor variabilidad en la amplitud de las señales durante el RS guiado. 
Sin embargo, la complejidad disminuyó en el RS guiado, lo que se ha propuesto como 
reflejo de una mayor flexibilidad para cambiar entre diferentes estados cerebrales y 
configuraciones funcionales (Misic et al., 2010). Por otra parte, la curtosis aumentó en el 
EGRS en comparación con el MW. Esto puede deberse a que, con los ojos abiertos, la 
actividad visual y la entrada sensorial adicional puede producir más variabilidad y 
cambios en la amplitud de la señal (Barry et al., 2007). La ausencia de diferencias en estos 
parámetros con los ojos cerrados puede deberse al solapamiento en los patrones de 
actividad cerebral entre ambos paradigmas. De tal manera que, aunque haya diferencias 
entre ambos protocolos, estas no sean lo suficientemente pronunciadas como para 
reflejarse en los parámetros de Hjorth. 
 
5.2 Limitaciones y líneas futuras 
 

Los resultados obtenidos en este TFG y su posterior discusión están sujetos a 
ciertas limitaciones que deben ser consideradas y que se abordan a continuación. 

 
Una limitación importante es el tamaño reducido de la población analizada. Al 

contar con solamente 30 sujetos, existe un riesgo de que los resultados no sean 
representativos de la población en general. Además, esto limita la potencia estadística de 
los resultados. Un tamaño reducido de muestras aumenta la beta (es decir, la probabilidad 
de generar un falso negativo o error de tipo II), mientras que al mismo tiempo la potencia 
de la prueba se ve reducida (es decir, 1 – beta). Dado que, en el presente trabajo, se fijó 
el umbral de significación en 0,05 (probabilidad de hacer un falso positivo o error de tipo 
I), la única forma de minimizar beta es aumentando el número de muestras (Poza et al., 
2007). Por lo tanto, es necesario tener precaución a la hora de interpretar los resultados, 
y se recomienda emplear una base de datos más grande y representativa en futuras 
investigaciones para obtener conclusiones más sólidas y generalizables. 

 
Por otra parte, en el presente trabajo se recogieron una serie de variables 

sociodemográficas que podrían afectar a los estados mentales y actividades cognitivas en 
los sujetos. No obstante, esto también se puede ver influenciado por otros factores que no 
se han tenido en cuenta, como la fatiga o los niveles de estrés de los sujetos. La falta de 
control sobre estos factores podría dificultar la atribución precisa de las diferencias 
observadas únicamente en los dos paradigmas bajo estudio. Es por ello por lo que 
resultaría interesante llevar a cabo este mismo estudio recogiendo más factores que 
pudieran afectar a los resultados. 

 
Finalmente, los resultados ilustran cómo se ven afectados los parámetros de 

activación local solo en las señales en estado de reposo de pacientes cognitivamente 
sanos; no obstante, la misma metodología podría ofrecer resultados y conclusiones 
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diferentes en otros grupos de sujetos. Dado que las señales EEG se emplean con 
frecuencia en el diagnóstico de enfermedades neurológicas, resultaría sumamente 
interesante examinar cómo se ven afectados esos parámetros en los distintos grupos de 
pacientes con demencias o enfermedades neurodegenerativas en función del paradigma. 
 
 
5.3 Cumplimiento de los objetivos del trabajo de fin de grado 
 
Para la elaboración de este TFG, se ha diseñado una base de datos compuesta por señales 
EEG de individuos jóvenes cognitivamente sanos. Se ha empleado una metodología que 
ha permitido caracterizar diferentes propiedades de las señales y observar diferencias 
significativas entre un paradigma estructurado y el MW. En el Capítulo 1 se enumeraron 
una serie de objetivos a cumplir para llevar a cabo este trabajo. A continuación, se evalúa 
el cumplimiento de estos: 
 

i. Se han leído diferentes artículos, libros y Tesis Doctorales para familiarizarse con 
la actividad cerebral en estado de reposo, la señal EEG y las diferentes técnicas 
de procesado que se han utilizado. 
 

ii. Se ha diseñado un protocolo de adquisición de los registros EEG que tuviera una 
fase de reposo estructurado y no estructurado. 

 
iii. Se ha registrado una base de datos propia de señales EEG, habiendo definido 

previamente los criterios de selección de los sujetos y obtenido el consentimiento 
informado. 
 

iv. Se ha llevado a cabo un preprocesado de las señales EEG para la eliminación de 
artefactos o factores externos que se vieran reflejados en las señales y pudieran 
alterar la extracción de resultados fiables. 
 

v. Se han empleado medidas basadas en análisis espectral, no lineal y de dinámica 
para evaluar diferentes propiedades y características de las señales que nos 
pudieran dar información acerca de la actividad neuronal en los diferentes estados 
que incluía el protocolo. 
 

vi. Se ha realizado un análisis estadístico para evaluar la existencia de diferencias 
estadísticamente significativas entre ambos paradigmas. 
 

vii. Se han analizado y comparado los resultados del TFG con los resultados de 
artículos ya publicados, cuyo objetivo guarda relación con el presente TFG. 
 

viii. Finalmente, a partir de, trabajo realizado, se han extraído una serie de 
conclusiones, limitaciones y se han planteado líneas futuras de investigación. 
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5.4 Conclusiones 
 
Los resultados obtenidos permiten concluir que los patrones de activación local 
evocados durante un paradigma EEG en estado de reposo con cierta estructura 
presentan diferencias significativas con uno sin estructura fundamentalmente en el 
contenido espectral, pero no cuando se analizan propiedades no lineales o de 
dinámica. 
 
Los resultados y discusión expuestos anteriormente permiten extraer una serie de 
conclusiones. 
 

1. Durante la condición de los ojos cerrados se han observado menos diferencias 
significativas entre ambos protocolos, lo que puede deberse a la estimulación 
visual presente durante la condición de los ojos abiertos.  
 

2. El EGRS está posiblemente relacionado con la focalización de la atención y el 
incremento de la actividad de la memoria de trabajo, reflejado en un incremento 
en la RP de la banda de frecuencias altas. Por otra parte, el aumento de la potencia 
delta durante el MW sugiere una disminución de la atención y el nivel de alerta 
en comparación con el RS guiado, en el que los pensamientos se encuentran más 
relacionados y dirigidos a un objetivo específico. 
 

3. La transición del protocolo del MW al RS guiado puede requerir cierta carga 
cognitiva que puede manifestarse a través de la presencia de ritmos alfa. 
 

4. Las observaciones de las RPs ponen de relieve la capacidad de los protocolos de 
RS guiado de mantener al sujeto en un nivel de atención mínimo.  
 

5. Las frecuencias espectrales mostraron diferencias significativas, con valores más 
altos durante el RS guiado. Esto indica una mayor aceleración de la actividad 
neuronal en este estado en comparación con el MW. 
 

6. Durante el RS guiado, se muestra una actividad neuronal caracterizada por una 
mayor incertidumbre y variabilidad de las señales.
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SEF95 95% Spectral Edge Frequency 
ApEn Approximate Entropy 
AMI Auto-Mutual Information 
BOLD Blood Oxygen Level Dependent 
BCI Brain Computer Interface 
CTM Central Tendency Measure 
CEIm Comité de Ética de la Investigación con Medicamentos 
Cross-ApEn Cross-Approximate Entropy 
CRC Cuestionario de la Reserva Cognitiva 
DMN Default Mode Network 
DT-MRI Diffusion Tensor Magnetic Resonance Imaging 
ECG Electrocardiogram 
EEG Electroencephalography 
EMG Electromyography 
EOG Electrooculography 
EPSP Excitatory Postsynaptic Potential 
EGRS Externally guided resting-state 
FDR False Discovery Rate 
FFT Fast Fourier Transform 
FIR Finite Impulse Response 
FD Fractal Dimension 
fMRI Functional Magnetic Resonance Imaging 
FuzzyEn Fuzzy entropy 
HFD Higuchi Fractal Dimension 
ICA Independent Component Analysis 
IAF Individual Alpha Frequency 
IPSP Inhibitory Postsynaptic Potential 
KFD Katz Fractal Dimension 
LZC Lempel-Ziv Complexity 
LFPs Local Field Potentials 
MRI Magnetic Resonance Imaging 
MEG Magnetoencefalography 
MF Median Frequency 
MW Mind-wandering 
PET Positron-Emission Tomography 
PSD Power Spectral Density 
ROI Region of Interest 
RP Relative Power 
RS Resting-State 
RSN Resting-State Networks 
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SampEn Sample Entropy 
SNR Signal-Noise Ratio 
SE Spectral Entropy 
SD Standard Deviation 
sLORETA Standardized Low Resolution Brain Electromagnetic Tomography 

 


