
Journal of Network and Computer Applications 216 (2023) 103669

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review

A comprehensive survey on reinforcement-learning-based computation
offloading techniques in Edge Computing Systems
Diego Hortelano a,b,∗, Ignacio de Miguel a, Ramón J. Durán Barroso a, Juan Carlos Aguado a,
Noemí Merayo a, Lidia Ruiz a, Adrian Asensio c, Xavi Masip-Bruin c, Patricia Fernández a,
Rubén M. Lorenzo a, Evaristo J. Abril a

a Universidad de Valladolid, Valladolid, Spain
b Universidad Rey Juan Carlos, Móstoles, Spain
c Universidad Politècnica de Catalunya, Barcelona, Spain

A R T I C L E I N F O

Keywords:
Computation offloading
Edge computing
MEC
Multi-Access Edge Computing
Reinforcement Learning
Deep Reinforcement Learning

A B S T R A C T

In recent years, the number of embedded computing devices connected to the Internet has exponentially
increased. At the same time, new applications are becoming more complex and computationally demanding,
which can be a problem for devices, especially when they are battery powered. In this context, the concepts
of computation offloading and edge computing, which allow applications to be fully or partially offloaded
and executed on servers close to the devices in the network, have arisen and received increasing attention.
Then, the design of algorithms to make the decision of which applications or tasks should be offloaded,
and where to execute them, is crucial. One of the options that has been gaining momentum lately is the
use of Reinforcement Learning (RL) and, in particular, Deep Reinforcement Learning (DRL), which enables
learning optimal or near-optimal offloading policies adapted to each particular scenario. Although the use
of RL techniques to solve the computation offloading problem in edge systems has been covered by some
surveys, it has been done in a limited way. For example, some surveys have analysed the use of RL to solve
various networking problems, with computation offloading being one of them, but not the primary focus.
Other surveys, on the other hand, have reviewed techniques to solve the computation offloading problem,
being RL just one of the approaches considered. To the best of our knowledge, this is the first survey that
specifically focuses on the use of RL and DRL techniques for computation offloading in edge computing system.
We present a comprehensive and detailed survey, where we analyse and classify the research papers in terms of
use cases, network and edge computing architectures, objectives, RL algorithms, decision-making approaches,
and time-varying characteristics considered in the analysed scenarios. In particular, we include a series of
tables to help researchers identify relevant papers based on specific features, and analyse which scenarios and
techniques are most frequently considered in the literature. Finally, this survey identifies a number of research
challenges, future directions and areas for further study.
1. Introduction

In recent years, the trend of embedding computing capabilities
into everyday objects, known as pervasive computing, is significantly
increasing. Thus, the number of devices with limited computing re-
sources such as Internet of Things (IoT) devices, mobile devices, vehi-
cles or Unmanned Aerial Vehicles (UAVs), among others, which require
executing applications to process data is growing. Moreover, these
applications are becoming more and more computationally demanding,
complicating their local execution (Yan et al., 2020).

In order to solve the processing limitation of these devices, the
concept of computation offloading emerged. This allows applications

∗ Corresponding author at: Universidad Rey Juan Carlos, Móstoles, Spain.
E-mail addresses: diego.hortelano@tel.uva.es, diego.hortelano@urjc.es (D. Hortelano).

to be offloaded to data centres with higher computational capacities
in order to be executed in them, greatly reducing execution time. This
concept was originally linked to Cloud Computing, which is defined
by the National Institute of Standards and Technology (NIST) as a
model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (Mell and
Grance, 2011). These resources are provided by remote data centre
resources over the Internet (Vahid Dastjerdi et al., 2016). However,
the distance at which these data centres are located increases the
delay in communications, causing the offloading time of applications to
vailable online 8 May 2023
084-8045/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.jnca.2023.103669
Received 21 October 2022; Received in revised form 27 February 2023; Accepted 4
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2023

https://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:diego.hortelano@tel.uva.es
mailto:diego.hortelano@urjc.es
https://doi.org/10.1016/j.jnca.2023.103669
https://doi.org/10.1016/j.jnca.2023.103669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2023.103669&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
become longer, which may not be possible or reasonable for real-time
applications or those with strong latency requirements. Recently, the
emergence of concepts such as Mobile Cloud Computing (MCC), Edge
Computing, Fog Computing and Multi-Access Edge Computing (MEC)
has provided a way to deal with the latency problems associated with
Cloud Computing. Although the objective of these paradigms is similar:
to enable the offloading of applications for their execution in proximate
computational resources rather than in remote data centres, in order
to reduce application latency and network traffic, they are not entirely
equivalent, and there are some differences, as mentioned in Yousefpour
et al. (2019) and Ferrer et al. (2019).

The concept of MCC first appeared in 2009 (Satyanarayanan et al.,
2009), being the precursor of related paradigms such as Fog and Edge
Computing. MCC comes from the combination of Cloud Computing
with Mobile Computing (which refers to computing performed on
mobile or portable devices) (Yousefpour et al., 2019), and is defined
in Dinh et al. (2013) as an infrastructure where data storage and
processing occurs in the cloud, outside of mobile devices, providing
mobile users with access to applications and services over the Internet.
The main motivation for this paradigm was to increase the computing
resources accessible to mobile devices. There is a variation of MCC,
known as Mobile Ad hoc Cloud Computing (MACC), which also makes
use of the resources available on other mobile devices for the execution
of offloaded tasks (Ferrer et al., 2019).

Although the current concept of Edge Computing is largely based
on MCC, its origins can be found in the Content Distributed Networks
(CDN) created in the late 1990s to serve web and video content from
servers placed close to users (Dilley et al., 2002), which later evolved
into edge servers running applications, being the first commercial Edge
Computing service (Davis et al., 2004; Nygren et al., 2010). Thus, Edge
Computing enables the storage and processing of data generated by
devices (mainly IoT devices) in small data centres located close to these
devices, at the edge of the network (Yousefpour et al., 2019; Shi et al.,
2016). Note that the edge of the network is not located at the devices,
but as close as one hop away from them (or, at most, one hop away
from the local network) (Yousefpour et al., 2019). This approach from
resources to data sources has a clear objective: to reduce the distance
that data travels, thus reducing processing latency and network traffic.

Fog Computing was first defined in 2012 by Bonomi et al. (2012),
choosing the term fog because fog is a cloud closer to the ground.
OpenFog Consortium (OpenFog Consortium, 2022a) defines Fog as a
horizontal, system-level architecture that distributes computing, stor-
age, control and networking functions closer to the users along a cloud-
to-thing continuum. Furthermore, with this definition, the OpenFog
Consortium emphasises the difference between fog and edge, restricting
the last one to computing at the edge of the network. Thus, Fog
Computing can be considered as a bridge between the cloud and end
devices that allows computing, storage, networking, decision-making
and data management to take place not only in the cloud, but also along
the path between devices and the cloud, prioritising proximity to de-
vices (Yousefpour et al., 2019). Additionally, researchers have proposed
multiple definitions for this term (Bonomi et al., 2012; Alhaddadin
et al., 2014; Vaquero and Rodero-Merino, 2014). The Fog Computing
platform permits to reduce the load of traditional Cloud Computing
data centres, supporting geographically distributed, latency-sensitive
and Quality of Service (QoS)-aware applications (Mukherjee et al.,
2018) and providing better and faster applications (Naha et al., 2018).

Another concept related to the Edge Computing paradigm is MEC,
which is being developed by an Industry Specification Group (ISG)
of the European Telecommunications Standards Institute (ETSI) (Hu
et al., 2015), with the aim of creating a standard that integrates Edge
Computing (providing Cloud Computing functionality) into the mobile
network architecture. Behind these standardisation efforts are large
mobile operators such as DOCOMO, Vodafone or TELECOM Italia, and
manufacturers such as IBM, Nokia, Huawei or Intel (Mach and Becvar,
2

2017). Due to its focus on mobile networks, MEC initially stood for
Mobile Edge Computing. However, in September 2017, ETSI increased
the scope of MEC to also consider the edge of non-mobile networks.
Thus, it changed the term ‘‘Mobile’’ to ‘‘Multi-Access’’. In this way,
the original acronym, MEC, was retained, but renamed to Multi-access
Edge Computing (Anon, 2017). Similar to how MCC can be seen as the
extension of Mobile Computing through Cloud Computing, MEC can
be seen as the extension of Mobile Computing through Edge Comput-
ing (Yousefpour et al., 2019). ETSI defined MEC as a platform that
provides Cloud Computing capabilities in the Radio Access Network
(RAN) in 4G and 5G, close to the users (Giust et al., 2018). MEC pro-
poses the location of compute and storage resources at the base stations
of cellular networks (Beck et al., 2014), allowing RAN operators to add
Edge Computing functionality to existing base station. Moreover, MEC
supports two or three layers of hierarchical application development
allowing the use of small-scale and cloud data centres (Klas, 2015).

As discussed above, MCC, Edge Computing, Fog Computing and
MEC are different concepts, although they all have a similar objective:
to reduce the execution latency of offloaded tasks. Therefore, although
the OpenFog Consortium and ETSI have clarified the differences be-
tween the different terms, it is common for authors to interchange these
terms, as mentioned in Ferrer et al. (2019) and as we have confirmed
personally during the conduct of this survey. Furthermore, technology
providers have adopted the term Edge Computing in the discussion
on what term to use (Ferrer et al., 2019). Therefore, like them, in
this survey we will use the term Edge Computing to refer to all those
architectures and environments proposed by researchers that provide
execution resources and are placed between the source of the data
and the cloud infrastructure. However, as this is a literature review,
we will use whatever term the author refers to, including MCC, Edge
Computing, Fog Computing or MEC.

In this context, algorithms that decide where to execute each of
the applications of the devices (either in the cloud, in edge computing
nodes or in the device itself) should be designed. Thus, a number
of techniques have been proposed and used to solve the computa-
tion offloading problem in these environments. These methods include
algorithms based on nonlinear programming (Chen and Hao, 2018),
mixed integer programming (Alameddine et al., 2019), the interior
point method (Vu et al., 2018), the branch and bound method (Vu
et al., 2018), greedy heuristics (Sun and Nakhai, 2020), heuristic algo-
rithms (Yang et al., 2018) and machine learning techniques (Shakarami
et al., 2020b).

Within machine learning techniques, the use of Reinforcement
Learning (RL) has recently received a great deal of attention from the
research community. RL is a branch of machine learning that allows
learning how to act based on the interaction with the environment,
and taking into account that the actions performed not only have
immediate outcomes and impact on the environment but also for the
future. For that reason, RL is a very suitable technique for learning
control policies in complex and dynamic environments like those of
edge computing systems. Edge computing systems usually involve a
large (and variable) number of end devices and network nodes, which
communicate over wireless and wired communication links. Applica-
tions or tasks with different processing and latency requirements are
dynamically generated, so the total load faced by the network fluctuates
over time. In addition, the network must efficiently cope with the
mobility of devices (and even servers in some cases). Therefore, the
complexity and dynamism of these scenarios make managing resources,
and deciding which tasks to offloaded and where, not straightforward.
Moreover, in these cases, real-time decisions need to be made, and
incorrect decisions can lead to a degradation of the efficiency of the
system. Although in simple, low-dynamic scenarios a solution can be
found using traditional algorithms, they usually do not allow efficient
resolution in complex environments with high dynamism and variabil-
ity. In contrast, RL algorithms have the potential to adapt to these
dynamic scenarios thanks to the interaction with the environment, and

improve their policies based on past experience and the cumulative



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
rewards received from past actions. To do this, RL agents must explore,
i.e., try new actions in order to make a better selection of actions
in the future, but also exploit what they have already learnt so far,
so there is a trade-off between these exploration and exploitation
activities. Thus, RL algorithms are complex in themselves. They require
extensive training through interaction with an environment and, since
many wrong decisions will be made at the beginning of such training,
a simulated offline environment is usually employed, at least in the
initial phases of the method. Moreover, an RL algorithm must be able
to generalise, i.e., to provide appropriate decisions even when facing
situations different from those it has previously encountered, and for
that reason, RL is usually combined with deep learning techniques.
In summary, since RL algorithms can learn optimal or near-optimal
policies to make computing offloading decisions, a multitude of RL and
Deep Reinforcement Learning (DRL)-based solutions have appeared in
recent years.

The use of RL for computation offloading have been addressed by
previous surveys in a limited manner. Some have focused on the use of
RL techniques to solve various networking problems and include only
a few papers on computation offloading, while others have taken the
opposite approach and focused on techniques specifically proposed for
computation offloading, with only limited coverage of RL techniques.
The most relevant survey related to the problem addressed in this paper
concentrates on the use of machine learning techniques (including
RL, supervised learning, and unsupervised learning) in computation
offloading problems, but it only includes articles published up until the
beginning of 2020. This situation is discussed in detail in Section 4.
Despite the growing momentum around the use of RL techniques to
address computation offloading in edge systems (as evidenced by the
number of articles included in this survey), to the best of our knowl-
edge, there is currently no survey specifically focused on this issue. Our
aim with this survey is to assist researchers by providing a comprehen-
sive and detailed analysis of current solutions, complemented by a set
of tables that facilitate the identification of the most relevant papers
based on the scenarios of interest for each researcher. In addition, we
provide future research directions and areas for further study.

1.1. Main contributions

In this paper, we present a comprehensive survey of the application
of RL techniques to the problem of computation offloading in edge
computing systems. There are several previous surveys on RL applied
to computational offloading; however, they only review papers up to
the beginning of 2020, as we will discuss in Section 4. This paper aims
to fill that gap by reviewing most recent papers. The survey reviews
and classifies the solutions in terms of different use cases, network
and edge computing architectures, RL algorithms used, objectives and
performance metrics, decision-making approaches (either centralised
or distributed), number of applications and partitioning considerations,
time-varying conditions in the scenarios, and type of evaluation of the
proposals. Thus, the main contributions of this paper are:

• To review current research papers proposing RL-based solutions
for computation offloading in edge computing systems.

• To explore in depth RL-based solutions for computation offload-
ing, as well as the scenarios considered by the authors.

• To provide a systematic review of current solutions, classifying
them according to different aspects, in order to organise a large
number of papers into a knowledge structure. In particular, the
paper provides a set of tables (Tables 3 to 8), which summarise
the main features of the reviewed papers.

• To determine which network architectures, RL algorithms,
decision-making approaches and metrics are more frequently
employed in the literature.

• To expose the research challenges and problems to be solved in
3

future research, as well as the areas that need more basic research.
Table 1
List of acronyms.

Acronym Description

A2C Synchronous Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
AC Actor-Critic
AP Access Point
BS Base Station
DAG Directed Acyclic Graph
DDQN Double Deep Q Network
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network
DQN Deep Q Network
DRL Deep Reinforcement Learning
ETSI European Telecommunications Standards Institute
IoT Internet of Things
IoV Internet of Vehicles
KNN K-Nearest Neighbour
MAB Multi Armed Bandit
MACC Mobile Ad hoc Cloud Computing
MC Monte Carlo
MCC Mobile Cloud Computing
MDP Markov Decision Process
MEC Multi-Access Edge Computing
ML Machine Learning
NOMA Non-Orthogonal Multiple Access
PPO Proximal Policy Optimisation
PG Policy Gradient
QL Q-Learning
QoS Quality of Service
RL Reinforcement Learning
RQ Research Question
RSU Roadside Unit
SAC Soft Actor Critic
SARSA State-Action-Reward-State-Action
SDN Software-Defined Networking
TD Temporal Difference
TD3 Twin Delayed DDPG
UAV Unmanned Aerial Vehicle
VR Virtual Reality

Moreover, in the next section (Section 2) we describe a set of
research questions addressed in this work. The answer to those research
questions is another contribution of this survey.

1.2. Organisation of the survey

The rest of this article is organised as follows. First of all, Section 2
describes the research questions that we address in this survey, and
the methodology that we have used in the search for articles to re-
view. Then, Section 3 provides a summary of key concepts necessary
to understand the rest of the paper and the taxonomy employed to
classify the articles, including a short introduction to topics like rein-
forcement learning, networking environments typically considered in
edge computing systems, and common objectives when approaching
offloading tasks. Next, Section 4 presents related surveys. To the best
of our knowledge, the latest published survey focusing on RL solutions
for computation offloading in edge computing systems only includes
articles published up to early 2020. Therefore, Section 5 reviews and
classifies recent research in the area, including articles published be-
tween 2020 and 2021. Finally, Section 6 provides an analysis and
discussion of the reviewed articles, including research challenges and
future directions, and Section 7 presents the conclusions of this survey.
The list of the most common acronyms used in this article is presented
in Table 1.

2. Research questions and methodology

This section first presents the research questions addressed in this
work. Then, it describes the review protocol followed for the inclusion
of articles in this survey.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

F
l

c
w
t
t

3

a
n
t
B
c

2.1. Research questions

This survey explores current articles that address the problem of
computation offloading in edge computing systems, identifying the
main aspects that the authors are taking into account when modelling
the environment, as well as the RL-based solutions being used. In order
to carry out a comprehensive study of these articles and to present open
issues, the following Research Questions (RQs) have been considered:

• RQ1 (use cases): In which use cases, related to computation
offloading and edge computing, are RL approaches used?

• RQ2 (network and edge computing architectures): Which net-
work and edge computing architecture is considered? Are there
multiple end devices and edge servers? Is a cloud layer also
considered?

• RQ3 (algorithms): Which type of RL-based algorithms are usu-
ally employed for computation offloading?

• RQ4 (objectives): What are the metrics typically optimised when
solving computation offloading by means of RL techniques?

• RQ5 (centralised vs. distributed): Are centralised or distributed
approaches generally used for decision-making?

• RQ6 (number of applications and partitioning): Do authors
consider that end devices which offload their applications to
an edge computing system run a single application or multiple
applications? Are these applications to be fully executed on the
same platform or can they be split? If they are divided into
smaller tasks, is the data dependency among the tasks of the same
application taken into account?

• RQ7 (time-varying aspects): What characteristics of the en-
vironment are considered to be time-varying in the modelled
scenarios?

• RQ8 (evaluation): How did the authors evaluate and verify their
proposals? Did they conduct experiments using simulations or
were they conducted in testbeds or real environments?

• RQ9 (future directions): What are the future directions of re-
search in this field and what areas remain to be addressed?

2.2. Review protocol

As previously mentioned, we have explored articles in which the
authors apply RL to solve the computation offloading problem in edge
computing systems. First, we have searched for related surveys in the
topic (which are discussed in Section 4), and then, we have conducted
a systematic search to retrieve recent articles in this area (which
are discussed in Section 5). These papers have been obtained from
the Scopus database (Elsevier, 2022b), in which the following article
selection criteria were followed:

• Articles published in 2020 and 2021.
• Articles which include the following terms in their title, abstract

or keywords: (‘‘computation offloading’’) AND (‘‘reinforcement
learning’’) AND ((‘‘mec’’) OR (‘‘edge’’)).

The search was conducted in January 1st, 2022, resulting in a total
of 81 results for the year 2020 and 74 for the year 2021. For the year
2020, there were a total of 7 articles not included because they were not
really related to the scope of this survey, while for the year 2021 there
were 8 excluded articles. Thus, the total number of included articles
was 140.

3. Background and categories for the classification of the litera-
ture

This section presents the summarised background necessary to un-
derstand the rest of the article, as well as the taxonomy and different
categories used to classify the literature. It has been is divided into
several subsections, which are related to the main research questions
previously enumerated.
4

a

3.1. Use cases (RQ1)

Computation offloading in edge computing systems has been anal-
ysed in different use cases or scenarios, like IoT networks, vehicular
networks, UAVs, virtual reality or robotics, as well as in generic studies,
due to the different objectives and characteristics of the diverse use
cases, as detailed in Section 5. Precisely, the type of case study will
be the first element that we will use to classify the different works
on the area. Thus, a different table has been created for each case
study (Tables 3 to 8), which summarise the main features of the papers
associated with each of those case studies.

3.2. Network and edge computing architecture (RQ2)

The generic network architecture considered in edge computing sys-
tems usually has at least two layers: the end-device layer and the edge
layer. Nevertheless, a third layer, the cloud layer, is also sometimes
considered. Moreover, within each of those layers, different studies
make different assumptions:

• End-device layer : This layer is usually composed by devices with
low computational capacity and limited power, like IoT devices or
mobile devices. These devices are responsible for collecting data,
processing it and performing actions. However, data size and
processing requirements are continuously increasing. Although
some papers consider just one device, most of the studies assume
scenarios with multiple devices within this layer.

• Edge layer : The edge layer consists of a set of servers or data
centres with high computing capacities where end devices can
offload computation tasks, but they are located close to the end
devices in order to reduce latency. This layer not only includes
the servers or processing units, but also the Base Stations (BSs)
or Access Points (APs) that allow end devices to use the com-
puting resources. In fact, these BSs or APs can either contain the
computing resources themselves or only give access to a server(s)
providing the computing resources. Moreover, in some cases, a
hierarchical set of computing resources is also considered: a first
level of edge computing resources located at the BSs or APs, and
a second level in a nearby data centre.

• Cloud layer : This layer consists of data centres characterised by
much higher computational and storage capabilities. However,
these powerful resources are located at a greater distance from
the end user, which implies higher latencies. Therefore, this layer
is an ideal choice for running computationally intensive tasks that
do not have strict requirements for low latency. Nevertheless, not
all the studies on edge computing systems consider this layer.

An example of a three-layer edge network architecture is shown in
ig. 1, which includes two levels of computing resources in the edge
ayer.

Tables 3 to 8 in Section 5 show, in their Network Architecture
olumn, the network structure assumed in the reviewed articles, stating
hether its end-device layer is single-device or multi-device; whether

he edge layer has one or several BSs and edge servers; and whether
he cloud layer is present or not.

.3. RL algorithms (RQ3)

In order to make computation offloading decisions in the network
rchitectures previously described, different RL and mainly DRL tech-
iques have been proposed. This subsection gives a brief overview of
hese techniques. This summary has been written using Sutton and
arto (2018) and Dong et al. (2020) as main sources, which can be
onsulted for a more in-depth explanation.

RL is a subset of machine learning whose algorithms are char-

cterised by learning through interaction with an environment. In a



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

n
a

i

T
s
a
s
f
m

t
a
p
i
o

c
D
p
o
t
o

f
f
M
a
v
e
t
c
o
i
p

b
e
e
t
o
S
t
d
t
t
p
w
e

i
o
w
h
R
b
s
b
F
c
n
o
D
D

i
t
p
T
m
p
g
C
D

r
a

a
c

3

p
o
o
b
c
g

d
g
t
s
a

a
t
a
t
m

Fig. 1. Example of a three-layer edge network architecture.

utshell, RL algorithms divide the world into an environment and an
gent. The agent observes the state of the environment and interacts

with it by executing specific actions which are decided following a pol-
cy, 𝜋. Then, the agent receives a certain reward from the environment,
and the environment typically evolves to a different state. By means
of these interactions, the agent can learn to make better decisions
(i.e., to improve the policy) by trying to obtain better rewards from
the environment, with the goal of maximising the cumulative reward,
which is know as the return.

Value functions are typically employed when solving RL problems.
he state-value function, 𝑣𝜋 (𝑠), is the expected return when the agent
tarts from state 𝑠, and then acts following policy 𝜋. Similarly, the
ction-value function 𝑞𝜋 (𝑠, 𝑎) is the expected return when the agent
tarts from state 𝑠, takes action 𝑎, and then follows policy 𝜋. RL aims to
ind the optimal policy, i.e., the policy which maximises the previously
entioned value functions.

In some cases, a model of the environment is available, which means
hat the agent can predict how the environment will respond to its
ctions (i.e., which immediate reward it will receive, and what are the
ossible next states and with which probabilities). Then, based on that
nformation, planning techniques can be exploited in order to learn the
ptimal (or near-optimal) policy.

However, in many cases such a model is not known. In those
ases, model-free RL techniques like Monte Carlo (MC) or Temporal
ifference (TD) are used. The key idea is to start with an arbitrary
olicy, evaluate the value function, and then improve the policy based
n the outcome of the value function evaluation (but leaving room for
he exploration of other alternatives), and iterate through this process
f evaluation and policy improvement.

MC and TD methods learn from experience, i.e., they learn the value
unction from samples of sequences of states, actions, and rewards
rom real or simulated interactions with the environment. However,
C techniques assume that the experience is divided into episodes,

nd that all episodes eventually terminate. Then, they estimate the
alue function by averaging the returns obtained in those complete
pisodes. While in many cases this is a valid approach, the communica-
ion networks where computation offloading takes place are operating
ontinuously, so the episodic assumption is not met. Although one
ption is to artificially split the experience of continuous operation
nto episodes (for instance, after a certain number of steps), another
ossibility is the use of TD methods. They also learn from experience,
5

ut they are able to learn in each step (without waiting for a final
vent) thanks to the use of bootstrapping. This technique consists in
stimating the value function of a state–action by taking into account
he immediate reward and also the estimates of the value function of
ther states–actions. Two well known examples of TD techniques are
arsa and Q-learning (QL). Sarsa is an on-policy method, which means
hat it evaluates and improves the very same policy that is used to make
ecisions. In contrast, Q-learning is an off-policy method. That means
hat it evaluates an improves a policy which is different from that used
o make decisions. In particular, Q-learning enables learning an optimal
olicy (where no random actions are made for exploration purposes)
hile following a policy which eventually makes random actions for
xploration purposes.

RL techniques, like Sarsa and Q-learning, have been classically
mplemented as tabular methods, where tables store the value function
f each state or state–action. However, that approach does not scale
ell. For instance, in edge and networking environments, due to the
igh number of potential states, tabular approaches are not feasible.
ather than using tables, the key idea is to estimate value functions
y means of function approximation techniques, i.e., by means of
upervised learning. In this way, the value function is approximated
y a parameterised function with depends on a number of weights.
or instance, the value function can be approximated by a linear
ombination of features (which determine the state of the system), or by
eural or Deep Neural Network (DNN). In particular, the combination
f deep learning methods with Q-learning leads to DRL techniques like
eep Q Network (DQN), Double Deep Q Network (DDQN) or Dueling
QN.

The methods that we have discussed so far to learn the optimal pol-
cy were based on first estimating the value function. Another strategy
hat is also frequently used consists in directly learning a parameterised
olicy, so that it can select actions without consulting a value function.
hese are the Policy Gradient (PG) methods. When policy gradient
ethods are used, a value function may still be used to learn the policy
arameters, but is not required for action selection. Examples of policy
radient methods are Actor-Critic (AC), Synchronous Advantage Actor-
ritic (A2C), Asynchronous Advantage Actor-Critic (A3C) and Deep
eterministic Policy Gradient (DDPG).

Fig. 2 shows a taxonomy of the main RL algorithms. Interested
eaders may consult (Sutton and Barto, 2018; Dong et al., 2020; Zhang
nd Yu, 2020) for further details on these algorithms.

Tables 3 to 8 in Section 5 show, in their Algorithm column, the RL
lgorithms used by the authors of all the reviewed articles to solve the
omputation offloading problem in their proposed scenarios.

.4. Objectives and performance metrics (RQ4)

Deciding on which node to execute or offload a computing ap-
lication is an optimisation problem; thus, an objective to maximise
r minimise should be defined to drive these decisions. Once the
bjective has been defined, the rewards of the RL algorithm should
e set consistently with that objective, so that the maximisation of the
umulative reward (as described in Section 3.3) should, ideally, lead to
etting the optimal value of the objective function or metric.

One of the most commonly used metrics is the latency or execution
elay of applications, being the objective to minimise it. This delay is
iven by the execution time of the application and the transmission
ime if the application is offloaded. Closely related to latency minimi-
ation is the objective of maximising QoS, although this can also include
pplication prioritisation and application execution guarantees.

One of the problems of considering the minimisation of latency or
pplication delay as the objective is that this goal could be obtained at
he expense of the execution of other applications. For this reason, some
uthors choose to provide a negative reward in case the required la-
ency is not fulfilled, while some other authors establish the objective of
aximising the computation rate or the number of completed applications.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

a
o
t
a
n

e
s

o
t
n
t
o
s
m

t
a
t
t

Fig. 2. Taxonomy of the main RL algorithms.
Source: Reprinted by permission from Springer Nature: Zhang and Yu (2020), https://link.springer.com/chapter/10.1007/978-981-15-4095-
0_3Taxonomy of Reinforcement Learning Algorithms in Dong, H., Ding, Z., Zhang, S. (eds), https://link.springer.com/book/10.1007/978-981-
15-4095-0Deep Reinforcement Learning, Springer, Singapore, pp. 125–133. This Licensed Material is not part of the governing Open Access
license but has been reproduced with permission from SNCSC.
Due to the limited resources typically available in end devices,
nother of the most frequently proposed objectives is the minimisation
f the energy consumption of the edge computing system. For that aim,
he studies typically take into account the energy needed to execute the
pplication, as well as to offload the application and transmit the data
ecessary for its execution.

Another goal set by many authors is to maximise the security of the
dge computing system. These articles are largely related to blockchain
ystems.

In other papers, the authors establish objectives that refer to the use
f the devices and the network of the edge computing system. Thus,
here are works whose solutions are focused on maximising the use of
etwork or edge resources, or maximising the number of devices that use
he edge computing system by offloading their applications. Other related
bjectives are the minimisation of the economic cost of the system (by
etting a price per usage time of the network and edge nodes), and the
aximisation of load balancing in the servers.

Finally, other authors establish specific objectives for their solu-
ions, such as maximising the accuracy of the predictions made by the
gent. Another example is the objective of maximising the reputation of
he selected servers, as they established a reputation system for each of
he servers based on the number of tasks executed and discarded.

Tables 3 to 8 again summarise, in their Objective column, the specific
objectives that are considered in all the papers reviewed in detail in
Section 5 of this survey.

3.5. Centralised and distributed decision-making approaches (RQ5)

Depending on where the agents of the RL algorithms are hosted, we
have differentiated three approaches that can be found in the literature:
centralised, distributed on edge nodes, and distributed on the end
devices. These approaches are represented in Fig. 3 and are explained
6

below.
In the centralised approach, the system has a single agent, hosted
on an edge or cloud server, or on the network controller. This agent
is responsible for making offloading decisions for all the end devices
on the network. Moreover, this type of agent is characterised by its
complete knowledge of the system, including the state of the network,
the availability of resources at both servers and end devices, and the
set of applications to be executed.

In the distributed on edge servers approach, there are multiple agents
hosted on edge servers, which are in charge of making offloading
decisions for the end devices connected to them. These agents have a
limited view of the network, knowing only the resources and applica-
tions of the devices connected to the node where the agent is hosted,
as well as, occasionally, the resources available on nearby servers. In
this approach, collaboration between servers can be considered, where
a given server can forward offloaded applications for execution to a
nearby server in case of insufficient resources.

Finally, in the distributed on end-devices approach, each device has its
own agent, which is responsible for determining whether the applica-
tions are executed locally or are offloaded. These agents have limited
information from the network, knowing only the state of the device
resources and communication channels used by the device. However,
one of the main challenges of this approach is that the agents are unable
to know the decisions made by the agents of other devices and this
could congest the communication channels and resources of the edge
nodes.

Tables 3 to 8 in Section 5 show, in their Approach column, the
scenario assumed in each reviewed paper for the placement of the RL
agent.

3.6. Number of applications and partitioning (RQ6)

Regarding the applications to be executed, two factors have been
taken into account: the number of applications per device, and whether

the applications can be partitioned or not.

https://link.springer.com/chapter/10.1007/978-981-15-4095-0_3
https://link.springer.com/chapter/10.1007/978-981-15-4095-0_3
https://link.springer.com/book/10.1007/978-981-15-4095-0
https://link.springer.com/book/10.1007/978-981-15-4095-0


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Fig. 3. Different decision-making approaches found in the literature: centralised RL agent (left); RL agent distributed on edge devices (centre); and RL agent distributed on end
devices (right).
Regarding the number of applications per device, the literature con-
tains studies where a single application per device is considered, while
others consider multiple applications per device. Obviously, the latter
is a more pragmatic assumption, although it increases the complexity
of the system. When multiple applications are assumed, some papers
consider that all those applications are simultaneously running on
the device from the beginning, while other papers consider a varying
number of applications in different time slots.

Regarding the partitioning of the applications, two schemes are con-
sidered: coarse-grained and fine-grained. The coarse-grained scheme,
also known as the binary scheme, means that the application cannot
be split. Therefore, it must be entirely executed on the same device
(either it is locally executed or offloaded as a whole to another device).
In contrast, the fine grained scheme considers that applications can be
split. The simplest case of this scheme consists in dividing the execution
of the application among several devices ignoring data dependencies,
usually representing the division as a percentage of the total load of
the application. Other authors consider the partitioning of applications
into different tasks, with data dependencies between them (usually
considering the application as a Directed Acyclic Graph (DAG), where
the nodes represent the tasks composing the application and the links
represent the relationships between them), which increases the diffi-
culty of making offloading decisions. Fig. 4 shows these different types
of partitioning.

Tables 3 to 8 in Section 5 present, in their App column, how appli-
cations are handled in the reviewed articles from two points of view.
First of all, it is indicated if each end device has a single application
to offload or if multiple applications are considered. Secondly, it is
indicated if each of these applications can be split into smaller tasks
or not, and in the former case, whether inter-task data dependencies
are taken into account or not. In these tables, those papers that assume
that applications can be split are identified by either a symbol if
data dependencies are considered or a ∼ symbol if data dependencies
are ignored.
7

Fig. 4. Differences between coarse-grained and fine-grained tasks, with no
dependencies and with dependencies.

3.7. Time-varying aspects (RQ7)

Scenarios analysed in the literature include several time-varying
characteristics, namely, communication, energy, application arrival,
user movement, server location and server cache.

Probably the aspect most widely considered by the authors as time-
varying is related to communications. Usually, and due to the type of
devices, the end devices of an edge computing system use wireless
connections. While these connections have great advantages, they can
experience variations in their transmission rate caused by interference,
noise or other factors. These variations are considered by most of the
papers as they have a significant impact on the offloading decision.

The second aspect considered is the variation of the energy level
of the end devices with time. For instance, the energy level decreases
due to normal operation of the device but may also increase if there
is an energy harvesting process. This variation of the energy level is
also considered as a parameter to make offloading decisions by many
studies, and is particularly important for mobile or IoT devices.

The third aspect taken into account in many papers is the application
arrival at the end devices. When using RL algorithms, it is common to
find articles where they discretise time, dividing it into epochs, slots or



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

m
m

c
w
a
t
o

p
c
s

4

u
o
g

a
s
a
o
R
f
c
i
t
(
t

p
i
e
a
m

f
a
t
m
o
r
a
d
l
L
u
I
d
t
o

(
v
m
i
m

e
s
i
H
D
b
l
t
a
m
s
o

t
c
A
a
r
t
a
o
t
2
a
e
t
t
d
c
n
f
a
o
s
t
i
a
(
a
d
c
s
B
D
a
1

v
d
(
i
f
r
f
o
k
a
I
m

steps. In these cases, the authors usually consider the stochastic arrival
of applications, which occurs at the beginning of each time step.

Another aspect considered in this survey is the device movement. The
computing capabilities of edge systems together with the use of wireless
networks make these environments very suitable for mobile devices,
vehicles or UAVs, among others. The movement of a user/client device
can affect communications by varying the distance between the device
and the BS or AP, may require migrations or handovers of offloaded
applications.

Movement is also important for servers in vehicular or UAV net-
works. On these cases, certain vehicles or UAVs can play the role of
edge servers, enabling the offloading of applications from other devices.
Given the importance of the position of a server when it moves, server
obility is an aspect that is also considered in the offloading decision
aking process in many papers, and thus is also analysed in this review.

The last aspect considered is the edge server cache. Some studies
onsider a cache memory that can store certain applications or services,
hich can vary over time according to their use. The offloading of
pplications that are already in the server cache is faster, so the decision
o offload a particular application at a given time may vary depending
n whether it is in the cache.

Tables 3 to 8 in Section 5, in their Time-varying Aspects column,
rovide a summary of whether the articles reviewed in this survey
onsidered the temporal variation of each of the aspects detailed in this
ection.

. Related surveys

This section presents review articles and surveys related to the
se of RL-based algorithms to address the problem of computation
ffloading in edge systems. Moreover, their strong and weak points are
iven.

Probably the most similar research to the work presented in this
rticle is Shakarami et al. (2020b). In that survey, the authors explore
olutions to the computation offloading problem in MEC systems from
machine learning perspective. They included the three main fields

f machine learning: supervised learning, unsupervised learning and
L. The main strength of the survey is that it compares different

eatures of each of the mechanisms reviewed: performance metrics,
ase studies, techniques used, and evaluation tools. However, it only
ncludes articles published up to the beginning of 2020. Only 6% of
he articles of the survey are from that year, while most of the articles
77%) were published in 2018 and 2019. In addition, the environment
hat was considered in each article is not detailed in the survey.

In the same year, Shakarami et al. also presented a survey of articles
ublished between 2016 and 2019 related to computation offloading
n MEC environments, from a stochastic perspective, in Shakarami
t al. (2020a). This survey focuses on Markov-based stochastic models
nd analyses a total of 61 articles, although only 23 of them use RL
echanisms.

Like the previous one, several surveys related to computation of-
loading have been published (Xu et al., 2018; Cao et al., 2019; Masdari
nd Khezri, 2020; Islam et al., 2021; Saeik et al., 2021). However,
hey include proposals with different solutions to this problem, with a
inority of proposals based on RL. Xu et al. (2018) presented a survey

f opportunistic offloading. The concept of opportunistic offloading
efers to both offloading traffic transmitted over a cellular network to
n opportunistic network, and offloading computing tasks to nearby
evices with idle resources over an opportunistic network. Despite the
arge number of articles reviewed, only two of them use RL techniques.
ater, Cao et al. carried out a brief state-of-the-art survey related to the
se of artificial intelligence for offloading in MEC (Cao et al., 2019).
n this survey they included supervised and unsupervised learning,
eep learning, reinforcement learning, and deep reinforcement learning
echniques. The main negative point of this review is the low number
f articles related to RL, since it only includes 3. Masdari and Khezri
8

o

2020) reviewed articles focusing on offloading schemes using Marko-
ian models. Although in this case the authors provide details of the
odel used and the objective to be achieved, only 13% of the articles

n the survey solve the problem by using RL or DRL techniques or
echanisms based on them.

Recently, and in line with the approach described above, Islam
t al. also conducted a generic survey on task offloading in MEC
ystems (Islam et al., 2021). In this case they divided the articles
nto the algorithms used to solve the offloading issue, namely: Greedy
euristic, Integer Programming, Machine Learning, Branch and Bound,
ynamic Programming and Convex Optimisation. Given the large num-
er of different algorithms analysed, only 4 articles related to machine
earning are included, three of them using DRL techniques. Also within
his approach is the survey published by Saeik et al. (2021). It reviews
rticles focused on task offloading in edge and cloud computing using
athematical, artificial intelligence and control theory solutions. De-

pite the comprehensiveness of the survey, it is a very generic one, and
nly includes 5 articles related to RL.

From another perspective, there are surveys or literature reviews
hat have focused on the use of RL in communications, such as the
ases in Zamzam et al. (2019), Qian et al. (2019), Luong et al. (2019).
mong these surveys, Zamzam et al. (2019) stands out, where the
uthors reviewed articles that use machine learning techniques for
esource management and computation offloading in MEC. After in-
roducing MEC and its main challenges (cost, energy consumption
nd latency), this survey presents 13 articles related to computation
ffloading and resource allocation which use RL techniques. However,
his brief survey, which collects articles published between 2017 and
019, does not refer to the environment considered by the different
rticles, focusing instead on the provided solution. In the surveys (Qian
t al., 2019; Luong et al., 2019) computation offloading is just one of
he multiple use cases exposed, and the number of articles referring
o it is limited. Qian et al. (2019) reviewed articles related to RL in
ifferent fields of communication networks: MEC (including network
atching and task offloading), Software-Defined Networking (SDN),
etwork virtualisation and network slicing. This survey is remarkable
or the number of covered areas. However, as a weak point, this is

very generic survey, and only includes 4 articles within the area
f computation offloading, published between 2016 and 2018. At the
ame time, Luong et al. carried out a literature review on DRL applica-
ions in communications and networking in Luong et al. (2019). After
ntroducing RL and DRL, the authors classify the applications of the
rticles into four different fields: (1) network access and rate control;
2) caching and offloading; (3) security and connectivity preservation;
nd (4) miscellaneous issues. Regarding offloading, the articles are
ivided into different types of offloading models, namely: offloading
ellular traffic to Wireless Local Area Network (WLAN), offloading to a
ingle MEC-enabled BS, offloading to a shared MEC server via multiple
Ss, and offloading to multiple MEC-enabled BSs and mobile cloudlets.
espite the comprehensiveness of this survey, which includes different
reas within communications and networking where RL is applied, only
1.5% of the articles address the issue of computation offloading.

Other surveys collect articles that use RL in specific network en-
ironments, where computation offloading is again only one of the
ifferent use cases discussed. One of these examples is Mekrache et al.
2021), where the authors reviewed articles that use DRL techniques
n vehicular networks, both from a vehicular resource management and
rom a vehicular infrastructure management perspective. The vehicular
esource management includes a section on computation and data of-
loading. However, it only includes 8 articles related to the application
f RL techniques to computation offloading. Another example of this
ind of survey is Chen et al. (2021a), where the authors conducted
n extensive survey on the use of RL techniques, in this case in the
oT domain. Despite its exhaustiveness and the fact that it includes a
ultitude of fields that can be considered as part of IoT, the number
f articles in each of these fields is limited. For example, this survey



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

g

d

Table 2
Summary of related surveys. No. articles refers only to the number of articles related to the use of RL/DRL for computation offloading in edge computing systems.

Survey Brief description No. articles Weaknesses

Shakarami et al. (2020b) Machine learning solutions to the problem of computation offloading in
MEC, a large part of them based on RL.

41 It only includes articles from 2018 until the
very beginning of 2020, with almost 150
articles published afterwards on this topic.

Shakarami et al. (2020a) Computation offloading in MEC systems. 23

Surveys compiling articles proposing different
solutions to the problem of computation offloadin
in edge computing, although only a few of these
solutions are based on RL.

Xu et al. (2018) Opportunistic Offloading. 2
Cao et al. (2019) Artificial Intelligence for offloading in MEC systems. 3
Masdari and Khezri (2020) Computation Offloading using Markovian models. 6
Islam et al. (2021) Computation Offloading in MEC systems. 3
Saeik et al. (2021) Computation Offloading in Cloud and Edge Computing. 5
Jiang et al. (2019) Computation Offloading in edge computing systems. 5
Lin et al. (2020) Computation Offloading in Edge Computing 6
Wang et al. (2020h) Architectures and computation offloading techniques for edge

computing.
0

Mach and Becvar (2017) Architectures and computation offloading techniques in MEC systems. 0
Mustafa et al. (2021) Architectures and computation offloading techniques in MEC systems. 0

Zamzam et al. (2019) Use of Machine Learning for Computation offloading, including RL
solutions.

13

Surveys with articles using RL to solve different
network problems, including computation
offloading. However, the number of solution base
on RL is limited.

Qian et al. (2019) Use of RL for different network issues: MEC, SDN, Virtualization and
Network slicing.

4

Luong et al. (2019) Use of RL in multiple areas: network access and rate control; caching
and offloading; security and connectivity preservation; and
miscellaneous issues.

15

Mekrache et al. (2021) Use of RL in vehicular networks to address different issues from two
perspectives: vehicle resource management and vehicular infrastructure
management.

8

Chen et al. (2021a) Applying RL to the IoT domain. 6
Chen et al. (2015) The article includes, in addition to its proposal, a brief survey on

communications.
2

Nomikos et al. (2021) Use of RL for caching in edge and MEC systems. 5
Althamary et al. (2019) Study of RL techniques in vehicular networks. 2
only includes 6 articles in the area of computation offloading. Chen
et al. (2015) also included, along with their proposal, a brief review
of the literature. In this review they classify the papers according
to communications (through small cells, through WiFi networks and
through opportunistic communications). However, given the briefness
of the section dedicated to the literature review, only a couple of
articles use RL techniques to solve the offloading problem.

In addition to all the surveys and literature reviews presented in this
section so far, other surveys have also been published that marginally
include some articles that use RL techniques to solve the computation
offloading issue. An example of such surveys is Nomikos et al. (2021),
where the authors focused on articles using RL for caching in edge and
MEC systems. Another example is Althamary et al. (2019), where the
authors reviewed articles that use RL methods in vehicular networks.
However, the number of articles included within that study related to
the field of computation offloading is only two. In contrast, Jiang et al.
(2019) focused their survey on computation offloading in edge com-
puting. Although this survey does not provide a section for RL-related
articles, 5 of the surveyed articles use RL or RL-based techniques. Sim-
ilarly, Lin et al. (2020) conducted a survey on computation offloading
for edge computing. They divided the surveyed articles according to
the method used to solve the computation offloading problem. Among
the different sections they include machine learning and RL, but only
6 articles related to RL were considered. Finally, other surveys, such
as Mach and Becvar (2017), Wang et al. (2020h) and Mustafa et al.
(2021), analyse architectures and offloading computation techniques
in MEC, but do not include RL approaches.

Table 2 summarises the surveys related to our work, including a
brief description of the survey, the number of articles from each of them
with RL-based solutions to deal with the management of computation
offloading and the main weakness.

Finally, we also present a summary of the need for this survey on the
use of RL mechanisms for computation offloading in edge computing
systems, based on the weaknesses found in the surveys and reviews
included in this section.
9

• The closest surveys to our focus, review articles published up to
2019 (and early 2020), leaving a large number of recent articles
excluded from the study.

• Some surveys present RL-based solutions for the computation
offloading issue within a more general context. This means that,
despite the large number of articles they reviewed, the number of
articles included that use RL mechanisms is limited.

• Some surveys focus on RL mechanisms, but applied to a broad
target (such as communication and networking in general), re-
sulting in a limited number of articles applying RL to computation
offloading.

• The number of articles reviewed in some surveys is not represen-
tative given the number of publications in the field.

• Some surveys do not detail the methodology followed in the
literature search.

5. Recent advances on reinforcement learning for computation
offloading

This section reviews and classifies recent work on RL for computa-
tion offloading. The papers have been selected for inclusion following
the steps described in Section 2.

Due to the large number of articles to be reviewed, it has been found
convenient to divide them for a better analysis, in order to find possible
trends or preferences when considering environments and proposing
solutions. At this point, it has been considered appropriate to divide
them according to their case studies, as usually the objectives and
metrics tend to differ between case studies, but remain similar within
each case study. Thus, the different case studies we have encountered
are as follows:

• IoT networks: this type of networks usually consists of multiple
end devices with low power consumption, so reducing energy
consumption is often one of the main objectives of the articles
in this case study.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Table 3
Summary of literature related to the IoT case study (LAT: Minimise Application Latency; EN: Minimise Energy Consumption; CT: Maximise Completed Tasks; CR: Maximise
Computation Rate). Regarding App. partitioning: ∼, allowed, but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ap
pl

ic
at

io
n

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Xu et al. (2020) QL LAT, EN
Cui et al. (2020) QL LAT, EN
Liu et al. (2020d) QL LAT, EN
Liu et al. (2020e) DQN LAT, EN
Gong et al. (2020) DQN LAT, EN
Khan et al. (2020) DQN EN

Huang et al. (2020a) DRL-based CR
Qian et al. (2021) DRL-based EN ∼
Long et al. (2020) A3C LAT, EN
Shu et al. (2021) A3C EN, CT
Li et al. (2021c) AC LAT, EN

Zhang et al. (2020b) AC LAT, EN ∼
Zhang et al. (2020d) AC, DDPG LAT, EN ∼
Zhang et al. (2020c) AC, DDPG LAT, EN ∼
Deng et al. (2021) QL, DDPG LAT ∼
Li et al. (2020d) DDPG LAT, CT ∼
Liu et al. (2020a) DDPG LAT
Ale et al. (2021a) Dirichlet DDPG LAT, EN ∼
Lu et al. (2020) Double-Dueling DPG CT, EN ∼
• Vehicular networks: these case studies are often characterised by
the movement of their end devices. This results in a great number
of articles considering device movement as a time-varying aspect
and, associated with this, the communication between devices.

• Use of UAVs: as in the previous case, this type of network is
largely related to the movement of devices. However, in this
case, UAVs are often used as mobile BSs or APs and to provide
computational resources to nearby devices. Therefore, it is usual
that in papers whose proposal is related to UAVs the authors
consider the location of the edge servers to be time-varying.

• Specific use cases: this case study covers articles which used
edge networks for a very specific application, not commonly
considered, such as virtual reality or robotics.

• Generic studies: this case study includes generic studies, where
the authors consider generic networks with devices described as
mobile devices or user devices, for example.

All these articles have been classified according to different criteria
presented in Section 2, and that classification is shown in the following
subsections in a set of accompanying tables

5.1. IoT

This subsection presents articles related to case studies of networks
with edge computing systems where the end devices are related to the
IoT field. A summary with the main features of those works is shown
in Table 3.

One of the most commonly used approaches in the analysed articles
to solve the problem of computation offloading in IoT systems is Q-
learning (from now on, QL). For example, Xu et al. (2020) proposed
a mechanism based on RL, the Lyapunov optimisation theory and
the Lagrange theorem to solve the communication and computational
resource allocation problem in a cloud–edge-terminal network, in order
to optimise the utilisation of edge resources and terminal energy.
Another example can be found in Cui et al. (2020), where the authors
studied the computation offloading problem in a dynamic multi-user
environment, where wireless channels could experience interference
10
when used by multiple devices. To solve this problem, the authors first
proposed a multi-user computation offloading method based on evolu-
tionary game theory. However, due to the dynamic nature of devices
and communication channels in practical environments, the devices
had problems understanding the strategies of others, so the authors
then proposed an evolutionary game algorithm based on QL. The main
limitation of this paper is that, although the authors considered time-
varying communications, there were no other dynamic aspects, and the
scenario was very simple, with a single BS and an edge server. Liu
et al. (2020d) also proposed a QL based solution to the computation
offloading problem, but from a selfish approach. They also considered
a system with a single edge server connected to a BS and multiple IoT
devices, each with a learning agent that observed its local environment
and took decisions on whether to offload or not. The main problem in
this situation was the possibility of other users offloading their tasks
at the same time, coupling the gateway. Simulations showed that the
proposed algorithm solved the problem in a more energy-efficient way
than a centralised approach.

Most of the articles reviewed apply DRL techniques. Among the
value-based DRL techniques, DQN is particularly relevant. This tech-
nique was used by Liu et al. (2020e). In this case, their approach
included two steps: firstly, devices were centrally clustered according
to the priority to offload their tasks; secondly, a distributed DQN-
based computation offloading algorithm optimally selected the tasks
to be offloaded by each device. This is not the only solution to the
problem of computation offloading in IoT scenarios that is based on
DQN, finding several examples among the reviewed articles. For in-
stance, Gong et al. (2020) introduced the MEC service to an IoT system
to leverage computation offloading and resource allocation in different
applications executed by IoT devices. In this paper, they proposed a
decision-making algorithm based on DQN to optimise task offloading
and resource allocation. Another example of the use of DQN can be
found in Khan et al. (2020), where the authors focused on Machine
Type Communication Devices (MTCDs), proposing a MEC system with a
edge server and a cloud server. Due to the lack of computational power,
MTCDs sent their tasks to the edge server, which could send them to
the cloud for execution in case its processing units were overloaded.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Other articles do not refer to the use of DQN algorithms as such, but
propose the use of DQN-based algorithms or their proposals are similar
to the behaviour of the DQN algorithm. Huang et al. (2020a) proposed a
DRL-based Online Offloading (DROO) framework that takes offloading
and resource allocation decisions optimally in a MEC system whose
wireless communications vary over time. This framework implemented
a DNN as a scalable solution suitable especially for large networks.
In addition, to further reduce complexity, the authors proposed an
adaptive procedure that adjusts the parameters of the algorithm on the
fly. However, the authors consider a relatively simple scenario (they
consider multiple end devices with only one BS equipped with an edge
server) and no dynamism. Moreover, although the authors state that
their algorithm converges quickly and gives a solution in a shorter time
than other methods, their article does not present a comparison with
other algorithms. There are other examples of DRL with DNN-based
solutions, such as Qian et al. (2021), who considered a time-varying
channel Non-Orthogonal Multiple Access (NOMA) assisted multi-server
MEC scenario with a single IoT device with multiple tasks. In this
scenario, the authors proposed a distributed DNN-based algorithm to
solve the optimisation problem of the computation offloading, NOMA
transmission and computation resource allocation with the objective of
minimising the energy consumption of the IoT device. The proposed al-
gorithm decomposed the problem so that it could be solved distributed
among the IoT device and the edge-computing servers.

Another approach of RL techniques is the use of gradient-based
methods, where AC and its variants stand out. Among the articles
reviewed we find Long et al. (2020), where the authors proposed an
offloading scheme for an IoT-edge-Cloud network. Due to the low cost
and low power consumption requirements of IoT devices, they are
usually not equipped with communication modules to offload tasks to
MEC or cloud servers. Therefore, the authors proposed to use vehicles
in a smart city as network nodes to which IoT devices could offload
their applications. The vehicles could then execute these applications
or offload them to the MEC or cloud servers. In any case, the results
obtained from the execution of these applications were collected by the
Cloud server to make scientific decisions. Once a vehicle received the
task, the A3C algorithm, an AC variant, was used to choose where it
was executed, taking into account the delay of the tasks and the energy
consumption. Another article that also uses the A3C algorithm is Shu
et al. (2021), where the authors proposed a solution for computation
offloading in a cloud–edge-terminal system. However, unlike other
articles, the A3C algorithm proposed by the authors did not take the
offloading decision directly, but selected the algorithm to be used to
make the decision, choosing between a greedy algorithm and Particle
Swarm Optimisation (PSO). This allows for better results compared to
using either algorithm separately, without the computational overhead
of a DRL algorithm making the final offloading decision. There are
also multiple solutions based on the AC algorithm itself, such as Li
et al. (2021c), who considered a NOMA MEC system with multiple IoT
devices, in which the IoT devices could cooperate with each other using
short range communications to assist them offloading computation to
the edge servers. Here, authors proposed a hierarchical multiagent DRL
framework where the agents, based on AC algorithm, were within a
league to explore the environment in a collaborative way. Moreover,
authors trained the intelligent agent using expert strategies in order to
accelerate convergence.

Other authors using AC-based methods were Zhang et al. who
published three papers related to the topic of this survey (Zhang et al.,
2020b,d,c). Although the study case in the two first articles is not an
IoT environment, we found it convenient to include it here due to
the consideration of energy harvesting of the devices, as well as the
similarity with their third article, which extends the work started in
the first two articles. In Zhang et al. (2020b), the authors considered
a MEC system with multiple mobile devices with energy harvesting
and a MEC server. In this environment, the devices decided how much
11

of the tasks they offloaded and the portion of their computational
capacity (which was energy dependent) they used for local executions.
To reduce the execution time and energy consumption, the authors
proposed a DRL algorithm based on AC, with a centralised policy
for learning that could then be executed on each device. Afterwards,
Zhang et al. also proposed a multi-server environment with one user
in Zhang et al. (2020d), where variable computing tasks and changing
computation capacity of servers made the problem of computation
offloading challenging. In this scenario, the authors proposed the use
of a continuous–discrete hybrid decision based AC algorithm. Finally,
the authors extended this work in Zhang et al. (2020c), where they
focused on the study of a multi-device multi-server MEC system for IoT
devices with energy harvesting. In this article, they also considered a
dynamic system, where the energy of the devices and the computing
capabilities of the servers varied due to possible requests from other
devices. To address this problem, the authors proposed two DRL-based
algorithms: (1) hybrid-decision-based AC learning and (2) multi-agent
DDPG for dynamic computation offloading. The first algorithm selected
the server for offloading in a centralised manner, while the second
adopted the framework from the centralised training to a decentralised
execution. Another article that proposes two different solutions, one
of them being DDPG is Deng et al. (2021). In this paper, the authors
studied the problem of partial computation offloading in Industrial
Internet of Things (IIoT) MEC systems, where IIoT can be defined as
the extension of IoT to the industrial sector, and which is considered
one of the pillars of Industry 4.0. Here, the authors considered a multi-
user scenario with a single MEC server, where they proposed the use of
two different algorithms: QL and DDPG. In this case the algorithms also
had to decide which part of the applications was executed locally and
which part was offloaded to the MEC server, extending the actions to
the continuous action domain. Therefore, the algorithm with the best
solution was DDPG, despite its slower convergence speed.

The DDPG algorithm used in the last articles combines ideas from
the AC algorithm and the DQN algorithm discussed above, and has
also been used in several papers in this study case. One of these
papers is Li et al. (2020d), where the authors studied the computation
offloading problem in a scenario with three network layers: IoT devices,
including static and mobile devices, heterogeneous edge servers, and
cloud servers. In this scenario, the authors proposed a distributed
algorithm based on DDPG with the objective of minimising application
latency and maximising task completion. Liu et al. (2020a) also used
a DDPG-based computation offloading method to minimise latency in
a Wireless Power Transfer (WPT) network with a MEC server and
several IoT devices. These IoT devices were charged by the MEC server,
using that energy either to process the data locally or to send it to
the MEC server. Ale et al. (2021a) considered a MEC system with
multiple users and multiple edge servers. In this scenario, the authors
also proposed an algorithm based on DDPG, called Dirichlet Deep
Deterministic Policy Gradient, since it adopts the Dirichlet distribution.
This algorithm was responsible not only for taking offloading decisions,
but also for determining the partitioning of the applications into sub-
tasks and their distribution on the edge servers for their execution,
which could be parallel. Another example is Lu et al. (2020), where
the authors investigated the computation offloading problem in order
to improve Quality of Experience (QoE) in an edge IoT network. To
improve QoE, the authors aim to reduce the latency of applications
and increase their execution rate, while reducing energy consumption.
To achieve this, they proposed a Double-Dueling-Deterministic Policy
Gradients algorithm based on DDPG, which improved instability and
the slow convergence of the DDPG algorithm. However, as in the
previous article, only the arrival of applications is considered to be time
variant.

According to Table 3, this type of use case does not reveal a clear
use of one type of algorithm, finding solutions based on a wide range
of RL algorithms. The minimisation of energy consumption figures
prominently in the objectives considered by the authors, due to the type

of systems proposed, where it is of great importance. Another important



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Table 4
Summary of literature related to the Vehicle Case Study (COST: Minimise Economic Cost; LAT: Minimise Application Latency; EN: Minimise Energy Consumption; TR: Maximise
Transmission Reliability; SEC: Maximise System Security; NET: Minimise the use of network resources; ER: Minimise the use of Edge Resources (computation, communication
and/or storage); CT: Maximise Completed Tasks; BA: Load Balancing; DEV: Maximise the number of devices which uses edge resources). Regarding App. partitioning: ∼, allowed,
but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ta
sk

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Li and Xu (2021) QL COST
Cui et al. (2021) QL LAT, TR ∼

Tang et al. (2020) DQN LAT, EN
Chen et al. (2021f) DQN LAT ∼
Wu and Yan (2021) DQN LAT, EN
Zheng et al. (2021) DDQN, Dueling DQN LAT, EN, SEC
Luo et al. (2020) DQN EN, COST
Liu et al. (2020b) DQN LAT

Khayyat et al. (2020) DQN LAT, EN
Wang et al. (2020b) DDQN LAT, EN
Zhang et al. (2020e) DQN NET
Zhan et al. (2020b) PPO LAT, EN
Liu et al. (2020f) PG LAT
Liu et al. (2021d) PG LAT, EN
Zhu et al. (2021) AC LAT
Xu et al. (2021) AC SEC ∼

Wang et al. (2020d) A3C LAT ∼
Ke et al. (2020) DDPG LAT, EN, ER
Li et al. (2020b) DDPG LAT, CT ∼

Geng et al. (2021) DDPG LAT, EN, BA ∼
Zhang et al. (2020a) DDPG DEV
Huang et al. (2020b) DDPG EN

Shi et al. (2020) DDPG EN, ER, NET
point to note is that a large number of articles have a centralised
approach, where a single agent is responsible for making decisions
for multiple nodes. In addition, except for specific cases, these articles
consider networks with multiple end devices with multiple tasks.

5.2. Vehicular networks

This subsection includes articles related to the case study of vehicu-
lar networks in edge computing systems. Table 4 classifies the articles
related to this type of networks.

Starting with a classical RL algorithm, Li and Xu (2021) proposed
a QL algorithm to address the problem of computation offloading and
resource allocation in a network with vehicles, Roadside Units (RSUs)
equipped with MEC servers and Cloud servers, in order to minimise
the cost (taking into account the cost of computational resources and
communication resources). Another example is Cui et al. (2021), in
which the authors considered a scenario with multiple vehicles, RSUs
with MEC servers and a cloud server, where vehicles produced appli-
cations that could be executed locally or offloaded to other vehicles,
or to the MEC or Cloud servers. In addition, the authors considered
application partitioning, but only in the same layer. For this, they
proposed a system with three algorithms. First, a K-Nearest Neighbour
(KNN) algorithm chose in which layer a vehicle application should be
executed. In case of selecting the offloading to another vehicle, another
non-RL based algorithm was used to select the vehicle taking into
account parameters such as the distance or the speed of the vehicles.
Finally, in case of selecting to offload the application to the MEC layer,
a QL algorithm was used to select the server or servers where to offload
the application. The main negative point of this article is that the
authors did not consider the movement of vehicles as a time-varying
12

aspect, despite the fact that it was a vehicular network.
In computation offloading in vehicular networks, DQN approaches
are among the most widely used. An example of this is Tang et al.
(2020), where the authors considered a vehicular network consisting
of a vehicle with several applications, which have to be executed in
sequential order, and multiple vehicles that could be used to offload the
tasks. In order to minimise delay and energy consumption, the authors
proposed a DQN-based algorithm. Chen et al. (2021f) also proposed
a distributed offloading computation strategy for IoV based on DQN.
In addition, the authors considered a scenario where there are no (or
insufficient) MEC servers as such. As a solution, they proposed to use
the unused resources of vehicles to execute tasks of the requesting
vehicles, with communication being performed directly between the
different vehicles.

However, it is unusual to find networks where the edge servers are
only the vehicles themselves, but are usually located in the RSUs or
APs. For example, Wu and Yan (2021) considered a MEC system with
multiple RSUs with computing resources (edge servers) and a cloud
server, where multiple moving vehicles could offload their applica-
tions for execution. In addition, due to the movement of vehicles, the
authors addressed application migration. In this scenario, the authors
proposed a DQN-based algorithm to reduce latency and energy con-
sumption. Zheng et al. (2021) investigated the computation offloading
and the access control problem. In this case, the authors also considered
a scenario with multiple vehicles that could offload their tasks to a edge
or Cloud server. Moreover, to improve the security of the system, the
authors proposed the use of blockchain and smart contracts for access
control. Then, the authors proposed a computation offloading scheme
based on DDQN and Dueling DQN for optimal offloading and resource
and bandwidth allocation decisions. Another example is Luo et al.
(2020), where the authors studied the computation offloading problem
in a vehicular network with multiple moving vehicles and RSUs. In the
considered scenario, data could be processed locally, offloaded to RSUs,



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
migrated to collaborative vehicles or cached in queues. As a solution,
they proposed a DQN-based algorithm to optimise data scheduling. Liu
et al. (2020b) also considered a scenario in which a vehicle drove
through a route on which there were multiple edge servers. In order
to select the best server on which to offload its tasks, they proposed
the use of two algorithms: a first offline algorithm to select the best
candidates before starting the drive and a second online DQN-based
algorithm to select the optimal server from the candidate set based on
the network conditions.

Furthermore, Khayyat et al. (2020) considered a scenario with a
vehicular network with multiple edge servers and a cloud server, in
which they studied the problem of computation offloading and resource
allocation. To obtain a near-optimal solution, the authors proposed a
DQN algorithm that used multiple deep neural networks in parallel.
Another example is Wang et al. (2020b), where the authors presented
a MEC system for vehicular networks, in which they contemplated
several MEC servers and a Cloud server. Among the considerations
taken by the authors, the use of cache in the MEC servers that certain
tasks may require for their execution stood out, making a migration
necessary in case the MEC server selected to execute the task did not
have the corresponding cache. In this system, the authors proposed
a DDQN algorithm. Other authors also considered the possibility of
mobile servers, such as Zhang et al. (2020e), who focused on vehicular
networks and the problem of frequent handovers in such networks due
to movement. To deal with this problem, the authors designed a novel
follow-up computation offloading paradigm, where moving servers can
provide extra computing resources. They proposed the use of a DQN as
a computation offloading strategy to improve the QoS.

Regarding the use of gradient-based RL methods, we find different
proposals, such as Proximal Policy Optimisation (PPO) (Zhan et al.,
2020b), PG (Liu et al., 2020f, 2021d), AC (Zhu et al., 2021; Xu et al.,
2021) or A3C (Wang et al., 2020d). Zhan et al. (2020b) considered
a dynamic wireless environment with stochastic task generation. In
this scenario with moving vehicles, the authors proposed a PPO-based
algorithm to make the decision of when and where to offload in order
to minimise latency and energy consumption. However, although the
authors described a scenario with a network architecture with multiple
devices in all layers, the action space of the RL algorithm was more
limited, taking into account only the device that generates the task, a
BS and a MEC server. On the other hand, Liu et al. (2020f) proposed an
offloading scheme based on PG to minimise the latency of applications
in the field of Internet of Vehicles (IoV). In particular, the authors
considered a multi-vehicle environment with multiple edge servers. An
interesting aspect of this paper is the division of the applications into
tasks with dependencies represented as DAGs. However, as a draw-
back, the authors only compare their proposal with non-RL algorithms.
The authors continued their work in Liu et al. (2021d), where they
considered a vehicular network in a MEC environment, with multiple
vehicles and multiple MEC servers connected to different RSUs, as
well as a central MEC server. In addition, the authors also considered
the division of applications into tasks with dependencies, represented
by a DAG, using a PG-based algorithm for computation offloading.
However, in this case the algorithm had a distributed approach, with
an agent in each vehicle, which made decisions based on the tasks of
the vehicle, the known state of the network and the past decisions of
other vehicles. Moreover, this time the authors compared their proposal
with two RL algorithms (AC and DQN), as well as with other offloading
schemes showing the higher convergence and better performance of
their proposal. Despite being a vehicular network, in neither of the two
articles did the authors refer to the movement of vehicles.

Concerning proposals based on the AC and A3C algorithms, Zhu
et al. (2021) proposed a multi-agent deep reinforcement computation
offloading (MDRCO) scheme. The authors considered a vehicular edge
network with a data centre, MEC servers, and vehicles. The data
centre was responsible for the training model, while each vehicle
13

contained an agent which selected a MEC server to offload tasks. The
multiagent DRL algorithm proposed by the authors trained the actor
network and critic network in a centralised way, making real-time task
offloading decisions in a distributed way. Xu et al. (2021) focused
on a secure computation offloading scheme for vehicular networks
based on blockchain. For that, the authors proposed a scenario with
multiple vehicles (being some of them resource requesters and the
others resource providers), multiple RSUs with computing resources
and a BS with computing resources and connected with the remote
computing centre. In this scenario, authors considered some mali-
cious vehicles (both resource requesters and resource providers). The
proposed scheme comprised the blockchain based trust management
and an AC algorithm based smart contract, providing a secure and
intelligent computation offloading scheme. This algorithm had a cen-
tralised training and a decentralised execution in order to guarantee
its convergence and security. Wang et al. (2020d) investigated the
use of partial computation offloading in vehicular networks. In this
type of networks, they proposed two scenarios, one single-vehicle and
one multi-vehicle, where vehicles could partially offload their tasks for
execution on MEC servers using the A3C algorithm.

Another of the most commonly used solutions in the articles was
DDPG, which is proposed in Ke et al. (2020), Li et al. (2020b), Geng
et al. (2021), Zhang et al. (2020a), Huang et al. (2020b), Shi et al.
(2020). Ke et al. (2020) proposed an adaptive computation offloading
method based on DRL that dealt with the offloading computation
problem for MEC in vehicular networks. This algorithm was based
on DDPG, and took into account multiple stochastic tasks, the variety
of wireless channels and bandwidth, although the authors did not
consider the movement of the vehicles as a dynamic aspect, and a single
MEC server was considered. Other authors instead considered multiple
edge servers, such as Li et al. (2020b), who developed a collaborative
edge computing framework to reduce the latency and improve service
reliability for vehicular networks. For this purpose, they proposed
firstly a task partition and scheduling algorithm to decide the load
location and execution order of tasks, and secondly a DDPG algorithm
to determine the task offloading, computing and result delivery policy
for vehicles. Geng et al. (2021) also considered a vehicular MEC net-
work with multiple servers. This MEC environment included multiple
vehicles connected to a BS. The authors proposed the use of a DDPG-
based algorithm for computation offloading to minimise the latency
and energy consumed in the execution of the applications, as well as
load balancing between local and server execution. The authors gave
this algorithm a distributed approach, as in their articles (Liu et al.,
2020f, 2021d), with an agent in each vehicle making decisions based
on the applications of the vehicle and the state of the network. Another
example is Zhang et al. (2020a), who developed a social-aware edge
computing and caching mechanism by exploiting the relation between
vehicles and RSUs. Using DDPG, authors proposed optimal content
processing and caching schemes in order to maximise the dispatch
utility in vehicular networks. Huang et al. (2020b) also considered a
scenario with multiple RSUs equipped with computing resources and
different vehicles. In this scenario, the authors proposed a computation
offloading and resource allocation algorithm based on a multi-agent
DDPG, which considered the speed of the vehicles. Finally, some papers
proposed a multi-tier network, including edge and cloud servers. One
of these articles is Shi et al. (2020), where the authors proposed a
mobility-aware computation offloading method in a MEC system with
a vehicular network. This MEC system included two processing levels,
which allowed MEC servers to send their raw tasks to the core network
for execution. In order to learn the optimal offloading policy, the
authors proposed the use of a DDPG-based algorithm.

In vehicular networks, the number of variables and their dimen-
sionality is greater than in other environments where the devices are
static or have limited movement. As Table 4 shows, despite the different
options, DRL-based solutions predominate. In this case, one of the most
considered objectives is the minimisation of application latency, due

to the multitude of real-time and minimum latency applications that



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

a
a

g
c
s
c
a
d
c
t
o

5

i
s
d
t

a
Q
e
d
t
c
a
o
t
l
t
o
c
t
c

Table 5
Summary of literature related to the UAV Case Study (LAT: Minimise Application Latency; EN: Minimise Energy Consumption; ER: Minimise the use of Edge Resources (computation,
communication and/or storage); PA: Prediction Accuracy; NET: Minimise the use of network resources; CR: Maximise Computation Rate; CT: Maximise Completed Tasks; SEC:
Maximise System Security; QoS: Maximise user QoS). Regarding App. partitioning: ∼, allowed, but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ta
sk

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Kim et al. (2020) QL LAT, EN
Wang et al. (2020f) QL LAT, ER
Wang et al. (2020e) QL LAT, EN

Shi et al. (2021) DQN EN
Qu et al. (2021) QL PA, LAT, EN ∼
Liu et al. (2020c) DQN NET, CR

Sha and Zhao (2021) DQN LAT, EN
Ren et al. (2021) DQN, DDPG LAT

Zhang et al. (2021e) DQN EN, CT ∼
Wang et al. (2020c) DDQN LAT, EN, NET

Ke et al. (2021a) DQN LAT, EN
Zhu et al. (2020) A2C LAT

Wang et al. (2021) DDPG LAT ∼
Wei et al. (2021) DDPG LAT, EN
Dai et al. (2021) DDPG EN

Seid et al. (2021b) DDPG LAT, EN
Seid et al. (2021a) DDPG LAT, EN ∼
Li et al. (2021b) SAC LAT, EN, CT ∼

Mohammed et al. (2020) DRL-based SEC, QoS
U
a
t
e
w
o
r
c
u
a

f
o
w
p
f
w
u
a
i
t
c
m
H
v
p
a
d
u
a
o
H
t
o

re related to this particular networks, such as autonomous driving or
ccident avoidance applications.

There is also a larger number of papers where the proposed al-
orithm has a centralised approach, where a single agent takes the
omputation offloading (and resource allocation, if applicable) deci-
ions. In these scenarios, where users move around the network (and
an even move in and out of the network), it is more difficult for
gents to learn if they only have local information from the end
evices, so it is common to see centralised approaches or, in some
ases, distributed approaches with centralised training. Of course, these
ypes of environments are notable for the movement of their vehicles
r end-devices, being very specific cases those that do not consider this.

.3. UAVs

This subsection includes articles related to the use case of networks
ncluding UAVs as end devices or, more commonly, as mobile edge
ervers which enables the execution of applications offloaded from end-
evices, increasing the adaptability of the network. Articles related to
he use of UAVs are classified in Table 5.

QL-based solutions are notable in this case study, where we find
rticles such as Kim et al. (2020), where the authors proposed a
L-based method for computation offloading in a UAV-assisted MEC
nvironment, enabling UAVs to execute tasks offloaded from other
evices within their coverage range. In this environment, the authors
ook into account the position and distance of the devices when cal-
ulating power consumption and execution delay. Wang et al. (2020f)
lso proposed the use of UAVs to provide offloading computation
pportunities to mobile users in a MEC system, with UAVs playing
he role of edge servers using a QL algorithm. Due to the hardware
imitations of UAVs, the objective is to minimise the latency of execu-
ion of user device tasks while minimising the resource consumption
f UAVs. Wang et al. (2020e) extended their system to include the
loud platform and detailed in depth their proposal. Then, some of
hese authors, in Shi et al. (2021), also addressed the problem of
omputation offloading in scenarios with multiple devices, multiple
14

d

AVs and a cloud layer. In this case, they focused on IIoT scenarios,
nd proposed a DQN-based algorithm where the neural network was
rained with prioritised samples in experience replay. In turn, Qu
t al. (2021) focused on a multi-drone-edge video analytic network, in
hich drones could offload their tasks to other drones or to an edge
r cloud server if they had low battery or required more computing
esources. In this environment, the authors proposed a framework,
alled DroneCOCoNet, for computation offloading and network control
sing two different approaches, a heuristic algorithm and a QL-based
lgorithm.

There are also articles that proposed solutions based on DRL. We
irst describe articles that use DQN algorithms, or algorithms based
n them, to solve the problem of computation offloading in networks
ith UAVs. Thus, Liu et al. (2020c) focused on the use of UAVs to
rovide computing services in remote areas. To solve this problem, they
irst proposed a cooperative MEC system that operates through UAVs,
hich help other UAVs to execute the tasks offloaded by the devices
sing computation services if necessary. Then, the authors proposed
cooperative computation offloading scheme based on DQN taking

nto account the randomness of the tasks required by the devices and
he situation of the communication channels from two approaches:
entralised and distributed. Sha and Zhao (2021) also considered a
ulti-user MEC system with multiple MEC servers located in UAVs.
owever, the authors considered neither the mobility of the end de-
ices nor the mobility of the UAVs. In this scenario, the authors also
roposed a DQN algorithm to take computation offloading and resource
llocation decisions, in this case to minimise application processing
elay and energy consumption. Ren et al. (2021) investigated a multi-
ser UAV-assisted MEC network, but in this case the authors focused on
large-scale multi-UAV network. In order to minimise the task delay

f all mobile devices, the authors proposed a hierarchical RL called
T3O. This approach decomposed the problem into two sub-problems:

he optimisation of the trajectory of the UAVs and the offloading
ptimisation. Since the vehicle locations were continuous, the module
eveloped to optimise the trajectories was based on DDPG, while the



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Table 6
Summary of literature related to the specific use cases (LAT: Minimise Application Latency; EN: Minimise Energy Consumption; QoS: Maximise user QoS). Regarding App.
partitioning: ∼, allowed, but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ta
sk

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Shahidinejad et al. (2021) QL LAT, EN
Du et al. (2020) A3C EN, QoS
Lin et al. (2021) AC EN

Xiao et al. (2021) AC LAT, EN
Yuan et al. (2020) A3C LAT, EN, QoS

Wang and Guo (2021) DQN LAT, EN
module to optimise the offloading was based on DQN, as the offloading
variables were discrete.

In turn, Zhang et al. (2021e) studied UAV-assisted MEC networks
with multiple users and a single UAV which carried a MEC server. In
this scenario, authors proposed a DQN-based algorithm to maximise
the number of tasks and minimise the energy consumption of the
whole system. This algorithm controlled the proportion of offloaded
tasks and the UAV trajectory. Wang et al. (2020c) also proposed a
computation offloading scheme for an UAV-assisted MEC system. In
this environment, wireless devices could offload their tasks to the MEC
server for execution, with the addition that they could use UAVs as MEC
servers with lower power to offload computation tasks, leveraging their
variable location. In this UAV-assisted system, the authors proposed a
DDQN-based algorithm for computation offloading. The authors con-
tinued this research line in Ke et al. (2021a), proposing in this case
a distributed DQN-based algorithm, where each end device hosted an
agent.

There are other articles in this case study that employ gradient-
based RL algorithms, such as the A2C algorithm proposed by Zhu et al.
(2020), who considered a UAV-enable MEC scenario that provided
the shortest response time. For this, the proposed scenario included a
cluster of UAVs acting as edge servers, executing the applications from
different devices assigned by a BS. Another example of articles that
use algorithms based on policy gradient is Wang et al. (2021), where
the authors studied the problem of computation offloading in a UAV-
assisted MEC system. In this system, a single moving UAV provided
execution resources to multiple user devices. To minimise application
latency of these devices, the authors optimised user scheduling, task
offloading ratio, UAV flight angle and flight speed using a DDPG-based
algorithm running on the UAV. A very similar perspective can be found
in Wei et al. (2021), who considered the use of a network of UAVs that
worked as edge servers enabling mobile devices to offload their tasks.
However, in this scenario, the authors proposed a distributed algorithm
based on DDPG, with cooperative exploring and prioritised experience
replay. This algorithm allowed devices to cooperatively learn new
policies, take into account the movement of UAVs and even possible
UAV failures. Another DDPG-based approach in a UAV-assisted multi-
device MEC system was proposed in Dai et al. (2021). In this article,
the authors considered multiple ground devices that could offload their
applications to multiple UAVs equipped with MEC servers directly,
using direct line-of-sight transmissions or to a BS with a MEC server
(indirectly, through the UAVs). Here, the authors proposed a DDPG-
based algorithm, which was executed on the MEC server associated to
the BS, to minimise the energy consumption of end devices and UAVs,
while satisfying the delay requirements of the applications. Solutions
based on DDPG algorithm were also proposed in Seid et al. (2021b,a),
where authors studied the problem of computation offloading and re-
15

source allocation in a dynamic aerial to ground network. This network
included a macro BS with a MEC server, multiple small BS with MEC
servers, multiple UAVs and multiple IoT devices. In this network, UAVs
formed clusters that enabled IoT devices to offload their tasks for exe-
cution, especially in cases of local server saturation or natural disasters.
In order to find the optimal solution to the computation offloading
and resource allocation problem, the authors proposed two Multi-Agent
DDPG-based algorithms. Both algorithms were trained centrally and
executed in a distributed manner. In Seid et al. (2021b), the actor
network was executed by the IoT devices, while in Seid et al. (2021a)
the actor network was executed by the heads of the UAV clusters. Li
et al. (2021b) studied a scenario where multiple end users could offload
their tasks to multiple MEC servers via a mobile UAV that could also
execute the offloaded applications. In this case, the authors aimed to
minimise latency, energy consumption and the size of the dropped
applications, for which they proposed the use of a Soft Actor Critic
(SAC) algorithm. This algorithm represents a bridge between stochastic
policy optimisation and DDPG approaches, optimising a stochastic
policy in an off-policy manner.

Finally, Mohammed et al. (2020) proposed an architecture to main-
tain the QoS of a MEC network with IoT devices in the case of a natural
or human-made disaster. For this purpose, they proposed to use UAVs
acting as BSs to recover the network. In addition, to secure the system
against possible vulnerabilities, they proposed the use of blockchain
in their multi-UAV-assisted MEC architecture. However, in this article
the authors only proposed the architecture and the use of a RL-based
algorithm, and did not provide simulations or real implementations.

The solutions proposed by the authors considering the use of UAVs
are very varied, with the use of QL and DDPG standing out slightly,
as show in Table 5. In the same way, the objectives most commonly
considered by the authors are to minimise application latency and
energy consumption, similar to other types of networks. Regarding
the algorithm approach, the most commonly used is the centralised
approach. However, the ratio of the number of articles considering a
distributed approach in edge servers is higher than in other types of
networks, due to the use of UAVs, which implement distributed agents,
as edge servers. This also means that networks with multiple edge
servers are also considered in almost all articles, as well as the location
of these servers is considered to be time-varying.

5.4. Specific use cases

Although the most common case studies are included in other
subsections, some articles present a particular use case, so it has been
decided to include this subsection with these articles. Table 6 classifies
these articles under the different criteria considered in this survey.

One of these articles is Shahidinejad et al. (2021), where the authors
investigated the problem of context-aware computation offloading in a
multi-user environment. Here, the authors considered the case study



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
of Virtual Reality (VR) Game, whose application was divided into
modules, some of which could be offloaded to edge servers. In this
scenario, the authors proposed a heuristic algorithm called MUCAO
and a federated learning algorithm based on QL called FLUCO. This
DRL algorithm was run on each mobile device, allowing collaboration
between multiple devices to facilitate learning.

Another example of a VR application is Du et al. (2020), where
the authors studied the use of MEC technology for VR. Due to the
requirements of these applications, and in order to reduce power
consumption, the authors propose a MEC system with bandwidth-rich
terahertz communications to support the ultrahigh-speed wireless data
transmissions required by VR. In this system, they proposed the use of
an A3C algorithm, taking into account the varying conditions of the
wireless channels. Although the authors described the communication
channels exhaustively, they considered a scenario with a simple net-
work architecture, with a single BS where the edge computing units
were located. Lin et al. (2021) also considered a VR application. In this
case, authors studied the problem of secure task offloading and resource
allocation in a Wireless Virtual Reality-enabled Medical Treatment.
For that, authors integrated blockchain into the system to achieve the
consensus of the information of task offloading and data processing in
order to resist malicious attacks. In this scenario, authors proposed a
collective algorithm based on quantum-inspired AC. This algorithm was
executed by each edge node, sharing their learning to adjust the reward
function to avoid local optimum solution. Xiao et al. (2021) studied
the offloading computation problem in a satellite-maritime MEC system
that included the end-user layer, with ships and buoy sensors, the
edge layer, with edge servers and base stations located on ships, the
satellite link layer and the cloud server layer. In this system, the authors
proposed an algorithm for computation offloading decisions. This algo-
rithm also used an AC algorithm to characterise a dynamic threshold for
the urgency of offloading tasks, performing task offloading based on the
value of this threshold. Yuan et al. (2020) focused on the migration and
offloading problem in the field of Software Defined Wireless Body Area
Networks for smart health monitoring. For that, they also proposed an
A3C-based algorithm based, which optimises the neural network with
asynchronous gradient descent.

Wang and Guo (2021) proposed an edge computing solution for
swarm robotics using a mobile server to offload their tasks. Authors
proposed a DQN-based algorithm to reduce the energy consumption
and computation latency.

As can be seen in Table 6, the number of articles proposing a
specific applications like VR or robotics in the context of computation
offloading in edge computing systems is currently very limited, but this
trend will very probably change in the near future.

5.5. Generic studies

This subsection covers all those articles with a generic system with
no specific study cases, being the end devices denominated mobile
devices, user equipment or mobile users. The classification of these
articles in the different points is shown in Tables 7 and 8.

This subsection starts with articles that use RL-based solutions, and
then focuses on DRL-based solutions. Although most of the articles
clearly describe which method they used or based their proposed
solution on, some of them only indicate that their solution is based on
RL. One of these articles is Zhang et al. (2020g), where the authors
investigated the computation offloading problem in an environment
that considered heterogeneous computational resources, channel state,
task type and input data size. In this environment, they proposed a
greedy algorithm to deal with the computation offloading problem,
and, given the large data size, the use of an RL-based algorithm that
enabled communication overhead to be reduced. Yang et al. (2020b)
describe the method proposed, although it is an unusual algorithm
in the articles reviewed: an Adversary Multi Armed Bandit (MAB)
16

algorithm, which they extended with delayed feedback. Using this
technique, the authors investigated the task peer offloading problem in
an edge network with the objective of minimising latency. The authors
also proposed the use of the MAB algorithm in Yang et al. (2021), in
this case executed on the devices of the users, with the load conditions
of the servers being unknown to them.

Focusing on MDP methods, we find on the one hand articles pre-
senting gradient-based solutions, such as the solution proposed by Qiu
et al. (2021), who proposed a distributed and collective AC-based
DRL algorithm to deal with the problem of computation offloading
in a multi-user MEC system. This algorithm was trained with experi-
ences and knowledge from multiple environments in order to give it a
more practical perspective and improve the performance of the differ-
ent agents. This article is particularly notable for its experimentation
in real-world scenarios. Bi et al. (2021b,a) studied the computation
offloading problem in a multi-user network where they considered
stochastic transmissions and task arrivals. Here, the authors proposed
a framework called LyDROO, which combined Lyapunov optimisa-
tion with DRL, in particular an AC-based algorithm, to optimise the
computation rate performance. Sun et al. (2021a) also proposed an
AC-based algorithm for computation offloading decision making. The
main difference with other papers is that learning could be performed
directly from a graph representing the network topology, which was
first processed by a Graph Neural Network (GNN). This allowed to
adapt it to different network topologies, as well as to consider the
mobility of user devices. In this proposal, both the state of the MEC
system and the state of the tasks are constructed as acyclic graphs. Liu
et al. (2021a) also proposed an AC-based solution, in this case a
federated algorithm, with one agent in each MEC server. These authors
considered a MEC system with multiple end devices and multiple MEC
servers, each connected to a BS, where the federated AC algorithm
was responsible for making offloading decisions, as well as radio and
MEC computing resource allocation. Another article proposing an AC-
based solution is Feng et al. (2020), where the authors focused on
the problem of security and privacy. They proposed the use of a
cooperative computation offloading and resource allocation framework
for blockchain-enabled MEC systems, ensuring the reliability and ir-
reversibility of data in MEC systems, as well as the use of an A3C
algorithm, in order to maximise the computation rate and transaction
throughput of blockchain systems. The main limitation of this article
can be found in the consideration of a scenario lacking in dynamism,
as the authors only considered communications as time-varying.

On the other hand, we find value-based methods, which can be
further divided into on-policy and off-policy methods. Within the first
group, we find solutions such as the one of Alfakih et al. (2020),
who proposed a Sarsa algorithm to solve the computation offloading
problem in a multi-server, multi-user MEC system, where different edge
networks were established with their own edge servers. This provided
more offloading options for user devices, allowing tasks to be executed
locally, on the nearest edge server, on the adjacent edge server, or
on the remote cloud. Although the network architecture considered by
the authors was complex, with multiple devices, BSs and servers, the
scenario lacked dynamism, with no time-varying characteristics.

Finally, among the off-policy algorithms, there are solutions based
on QL. Numerous examples of papers proposing solutions based on this
algorithm can be found, such as Jiang et al. (2020c), Zhou et al. (2021),
Nduwayezu et al. (2020), Liang et al. (2020b), Ge et al. (2020), Mao
et al. (2020), Gao et al. (2020), Yang et al. (2020a), Kiran et al. (2020),
Wang et al. (2020g), Ho and Nguyen (2020).

Jiang et al. (2020c) investigated a task execution scheme for offload-
ing decision and resource allocation to minimise energy consumption.
For this purpose, authors modelled the problem as a Mixed Integer
Non-Linear Programming (MINLP) problem, and then proposed a QL-
based algorithm to obtain the optimal policy. The authors extended
their work in Zhou et al. (2021), where they jointly considered the

problems of the offloading decision, spectrum resource allocation, and



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

c
b
(
a
s
t
O
D
w
f
e
m
s
n
t
b
s
s
a

Table 7
Summary of literature related to the Generic Case Study (LAT: Minimise Application Latency; EN: Minimise Energy Consumption; CR: Maximise Computation Rate; SEC: Maximise
System Security; COST: Minimise Economic Cost; CT: Maximise Completed Tasks; ER: Minimise the use of Edge Resources (computation, communication and/or storage); REP:
Maximise Server Reputation). Regarding App. partitioning: ∼, allowed, but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ta
sk

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Zhang et al. (2020g) RL-based CR
Yang et al. (2020b) MAB LAT
Yang et al. (2021) MAB LAT
Qiu et al. (2021) PG, AC LAT, EN ∼
Bi et al. (2021b) AC CR
Bi et al. (2021a) AC CR

Sun et al. (2021a) AC LAT
Liu et al. (2021a) AC LAT, EN, CT
Feng et al. (2020) A3C SEC, CR

Alfakih et al. (2020) SARSA LAT, EN
Jiang et al. (2020c) QL EN
Zhou et al. (2021) QL, DDQN EN

Nduwayezu et al. (2020) DQL CR
Liang et al. (2020b) QL, DQN LAT, EN

Ge et al. (2020) QL LAT, EN, SEC ∼
Mao et al. (2020) QL EN
Gao et al. (2020) QL LAT, EN

Yang et al. (2020a) QL EN
Kiran et al. (2020) QL LAT, EN ∼

Wang et al. (2020g) QL LAT, EN
Ho and Nguyen (2020) QL, DQN LAT ∼

Jiang et al. (2020b) DRL-based EN
Wang and Zhu (2020) DRL-based EN, COST
Jiang et al. (2020a) DQN LAT, EN
Chen et al. (2021c) DQN LAT, EN
Tefera et al. (2020) DQN LAT, EN
Tefera et al. (2021) DQN LAT, EN

Li et al. (2020c) DQN LAT
Jeong et al. (2021) DQN LAT

Elgendy et al. (2021b) QL, DQN LAT, EN
Hao et al. (2020) DQN LAT
Liu et al. (2021b) DQN CR

Tuong et al. (2020) DQN LAT ∼
Wu et al. (2020) DQN CT

Tuong et al. (2021) AC, DQN LAT, EN ∼
Tong et al. (2020) DQN LAT, EN
Ale et al. (2021b) DQN EN, CT
Yu et al. (2021) DQN LAT, ER
Li et al. (2020a) DQN EN
a
(
N
I
f
t
b
e
m
c
c
a
i
o
t
c
o

omputation resource allocation. Here, the authors first proposed a QL-
ased algorithm and then a DDQN based algorithm. Nduwayezu et al.
2020) focused not only on the computation offloading problem, but
lso and subcarrier allocation problem in a MEC Multi-Carrier NOMA
ystem, in which they aimed to optimise the computation rate. In
his scenario, the authors proposed their DRL for Online Computation
ffloading algorithm, which was composed of two elements: an offline
NN and an online QL. In the offline phase, a DNN was constructed,
hich inferred the value function of each state–action pair to be used

or the QL algorithm in the online phase. Another example is Liang
t al. (2020b), who modelled the computation offloading problem as a
ulti-user game and analysed the existence of nash equilibrium in this

cenario. To address this problem, they proposed an algorithm based on
ash equilibrium and RL (Nash-QL), adding neural networks to avoid
he dimensional problem. Ge et al. (2020) also proposed an algorithm
ased on QL to optimally choose the server in a multi-user and multi-
erver MEC system. The peculiarity of this article is that the authors
tudied the behaviour of one of the devices against different types of
17

ttacks. o
Other articles propose the use of this algorithm in scenarios with
network divided into several levels, as is the case of Mao et al.

2020), who considered a MEC system in a Heterogeneous Cellular
etwork with a Small BS and a Macro BS, both with a MEC server.

n this scenario, the authors proposed two QL-based algorithms: the
irst one following the traditional method and the second one applying
he hotbooting technique, which enabled the action-value function to
e initiated based on training data from similar scenarios. Another
xample of this type of scenario was used by Gao et al. (2020), who
odelled an offloading and resource allocation decision process in a

ollaborative environment with a mobile device, a edge server and a
loud server. In this environment, the authors considered a single-chain
pplication that could be split and executed sequentially, representing
t as a DAG graph. In this scenario, the authors proposed a QL-based
ffloading scheme to solve the proposed problem by dividing it into
wo subproblems: the optimisation of the transmission power and
omputation frequency of the edge cloud and the optimisation of the
ffloading decisions. Yang et al. (2020a) also studied the computation

ffloading problem in a scenario with edge and cloud servers. In this



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
scenario, they considered a device that moved exploiting opportunistic
communication to offload its tasks, proposing an algorithm based on
QL to select the optimal node for offloading. Kiran et al. (2020) also
considered a MEC system with edge and cloud servers, in this case with
SDN. Here, the authors proposed two RL based approaches (QL and
cooperative QL) to solve the computation offloading problem.

In addition to the computation offloading problem, which is usually
accompanied by the resource allocation problem, other articles have
taken into account the migration and handover of tasks. Wang et al.
(2020g) dealt with the problem of task offloading and migration in
mobility-aware MEC networks, since the mobility of the devices may
cause offloaded tasks to not be correctly returned. As a solution to
this problem, the authors proposed a framework based on QL. Ho and
Nguyen (2020) also studied the handover problem, in addition to the
problems of server selection and cooperative offloading, in a multi-
server and multi-user MEC system with a dynamic environment. In
this system, tasks offloaded to a MEC server could be sent totally or
partially to other servers for execution in case the first server did not
have enough resources to execute it. In this scenario, the authors first
proposed an algorithm based on QL and then another based on DQN.

As in the previous article, the next logical step is the use of DRL
with neural networks, which allows dealing with problems of great
dimensions. Thus, Jiang et al. (2020b) formulated the offloading com-
putation problem in a multi-server, multi-user MEC system as a multi-
dimensional knapsack problem with constraints. To solve this problem,
the authors proposed a neural network-based architecture called Multi-
Pointer networks (Mptr-Net). Wang and Zhu (2020) also used a DRL-
based algorithm with DNN and KNN. The authors proposed a dynamic
offloading strategy for a multi-user MEC cellular network. The authors
formulated the problem as an energy consumption and offloading cost
optimisation problem, transforming it into a multi-label classification
problem.

Other proposals also include decentralised approaches using DQNs,
such as Jiang et al. (2020a), Chen et al. (2021c), Tefera et al. (2020,
2021). Jiang et al. (2020a) proposed a distributed offloading compu-
tation algorithm in a MEC system with one single BS. According to
the approach of the authors, each user device decides, in a distributed
manner, whether to execute the task locally or offload it to the edge,
based only on its local parameters and a few information broadcasted
by the BS. The authors proposed the use of the DQN algorithm in order
to avoid the risk of transmission failure due to a large number of devices
offloading their tasks simultaneously. Another paper where the authors
proposed a distributed approach is Chen et al. (2021c), where the
authors analysed the dynamic environment and communication shar-
ing in a MEC environment. Then, the authors proposed a distributed
framework in which agents running on terminals used the DQN algo-
rithm to learn autonomously. Meanwhile, Tefera et al. (2020, 2021)
investigated a framework that enabled resource-constrained devices to
offload their tasks to a MEC system in a congestion-aware, adaptive
and decentralised approach. To this end, they proposed a decentralised
algorithm based on non-cooperative game theory and DQN in order to
ensure its convergence to the optimal solution. Li et al. (2020c) also
used a distributed approach. In this case, the authors addressed the
problem of computation offloading in a multi-user, multi-server NOMA-
MEC system, with cooperative caching of multiple servers. Here, the
authors first used a Gated Recurrent Unit (GRU) algorithm to predict
the popularity of tasks and cache them on the corresponding servers.
Once this was done, they proposed the use of a multi-agent DQN
algorithm to take offloading and caching decisions based on the results
of the popularity prediction, being each user device an agent. Jeong
et al. (2021) also developed a DQN-based algorithm to make task
offloading decisions in order to reduce application delay which was
executed in the user device. However, in this article, authors considered
a single end device and single MEC server scenario. The proposed
algorithm took the channel state and the task parameter to learn the
18

best offloading strategy.
As in the previous article Elgendy et al. (2021b) also considered the
problem of computation offloading and task caching, but in this case
in a multi-user and multi-task MEC system with a single server. Here,
the authors formulated a computation offloading and task caching
model, proposing QL and DQN-based algorithms in order to provide an
efficient near-optimum solution to minimise the delay and energy sum.
Although the authors considered the server cache in their scenario,
which is not usually addressed in other articles, no other time-varying
aspects were considered in this paper. Hao et al. (2020) also studied
the problem of computation offloading in an edge-cloud system with
a single BS and multiple users. The authors proposed a DQN-based
algorithm called Multi-Update Reinforcement Learning, which uses
two multi-layer neural networks to reduce the overall latency of the
applications. Other articles using DQNs with a similar network topology
are Liu et al. (2021b), Tuong et al. (2020), Wu et al. (2020). Liu et al.
(2021b) proposed a DQN-based algorithm to maximise the computation
rate in each time frame. This article is interesting because the authors
took into account the consumption and recharging of energy of the user
equipment, which received the power wirelessly at the beginning of
each time period. Tuong et al. (2020) used DQNs to minimise delay in
the execution of device applications in a network with time-varying
channels in a MEC system with NOMA. Wu et al. (2020) proposed
a DQN-based algorithm in order to maximise the number of tasks
completed before their maximum delay timeout. In this scenario, they
took into account the variability of local and MEC server computational
resources and communication channels. Tuong et al. (2021) focused
on the problem of partial computation offloading and channel resource
allocation in a NOMA-assisted MEC system also consisting of a MEC
server with a BS and multiple user devices. The authors considered this
environment with time-varying channels, and proposed an algorithm
based on AC and DQN methods to find an optimal offloading policy
and an optimal channel resource allocation.

In Tong et al. (2020), Ale et al. (2021b), Yu et al. (2021), authors
considered a multi-user multi-server edge computing system. Tong
et al. (2020) proposed a DQN-based algorithm taking into account both
the generation of new tasks and the mobility between BSs of users
equipped with mobile devices. Ale et al. (2021b) proposed the use of a
DQN-based algorithm to select the server for task offloading, which also
recommended a maximum CPU usage for each MEC server. Yu et al.
(2021) considered a ultradense edge network, in which they formulated
the joint problem of application partitioning, resource allocation and
service caching placement. In order to minimise the task execution time
and the usage of system resources, the authors designed a two-tier ap-
proach with two DQN-based algorithms. The first one was responsible
for the service caching placement, while the second one took decisions
about computation offloading and resource allocation. This two-tier
model was trained distributedly using federated learning to protect the
data privacy of the devices, although the execution was carried out in
a centralised agent.

Some articles have a special feature that distinguishes them from
the rest. For example, Li et al. (2020a) investigated the reduction
of power consumption in a network of mobile devices with a MEC
system. The main difference with other works was the use of idle user
equipment for the execution of tasks from overloaded mobile devices.
The authors used a DQN algorithm to deal with this problem, as well
as with the user mobility. Zhang et al. (2021c) considered a hybrid
edge computing network which included MEC servers, wired devices
and mobile devices. The particularity of this scenario was that the
wired devices could also use their idle resources to execute tasks of
mobile devices and alleviate the workload of the MEC servers. Here, the
authors investigated the computation offloading and shunting problem
(dividing the offloaded tasks to MECs and wired devices in a certain
proportion) and proposed their DRL-based computation offloading and
shunting (DCOS) algorithm. This algorithm had two phases, an offline
phase where the DQN technique was used to optimise the shunting

ratio and an online phase where a heuristic algorithm was used to



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
select where each specific task was executed. This concept was also
addressed by the same authors in Zhang et al. (2021b), where they
considered a similar environment, including the collaboration between
MEC servers and wired devices, considering this time that wired devices
could become unavailable to execute tasks. In this case, the authors
proposed a single algorithm, called DRLCOS, to minimise the latency of
the applications, being in charge of taking the offloading and shutting
rate decisions.

Another article with an unusual perspective is Elgendy et al. (2021a),
where the authors also proposed a DQN-based model for computation
offloading and resource allocation that added security to the data,
through a security layer using the Advanced Encryption Standard (AES)
cryptographic algorithm. For this model, the authors considered a
multi-user scenario with a single edge server. There are several articles
related to security, although they usually propose approaches based
on the use of blockchain. In one of these articles, Li et al. (2020e)
focused on the security issues involved in data exchanges and resource
transactions between users in an edge computing system. In the studied
system, idle resources on user devices could be used by other users.
In this approach, the authors proposed a blockchain-based consensus
protocol in a edge environment, where the blockchain acted as a
trusted third party to maintain transactions between users. In order
to improve the throughput of the blockchain, the authors proposed
a method based on a hierarchical DQN which considered the trust
feature of the blockchain nodes and controllers and the computing
resource of the blockchain system. In neither of the last two articles
reviewed (Elgendy et al., 2021a; Li et al., 2020e) did the authors
take into account dynamic aspects in the proposed scenario. Guo
et al. (2020) developed a framework also based on blockchain for
computation offloading and resource allocation in wireless networks
with MEC systems. For this purpose, the authors proposed a consensus
protocol in this distributed wireless network scenario. Besides maximis-
ing the throughput of the blockchain system, the objectives included
minimising the latency of user tasks. In order to improve the MEC
and blockchain systems, the authors proposed in this case the use
of a Double-Dueling DQN algorithm to optimise different parameters,
namely: the spectrum allocation, block size, and block number. This
algorithm was compared with the DQN, Double DQN and Dueling
DQN algorithms in order to demonstrate its faster convergence and
higher accuracy in approximating the Q function. Nguyen et al. (2021)
studied the computation offloading problem with access control. For
that, the authors first proposed an access control mechanism enabled
which used smart contracts and blockchain to improve the security,
prevent malicious offloading access and preserve cloud resources. Then,
they proposed an offloading scheme also based on Double-Dueling DQN
algorithm to solve the joint optimisation problem of task offloading
decision, edge resource allocation, bandwidth allocation and smart
contract usage. Fan et al. (2021) also took into account the security
in a multi-user, multi-server MEC system. In this case, the authors
studied the problem of computation offloading and resource allocation
decision taking in order to reduce the delay and energy consumption of
the applications. In addition, they also used blockchain for the system
security. In this scenario, the authors proposed an algorithm based
on DDQN to take the offloading decisions, as well as those decisions
related to the block size and block interval of the blockchain.

Similarly to the previous article, other authors propose the use of
DDQN methods due to the difficulty of space, such as Fang et al. (2021),
Zhang et al. (2020f), Liu et al. (2021c), Wang et al. (2020a), Zhang and
Xu (2020), Zhang et al. (2021a), Tang and Wong (2020). Fang et al.
(2021) considered a MEC environment with multiple end devices and
multiple MEC servers connected to BSs. In addition, the authors mod-
elled a task queue on the Edge servers, allowing offloaded applications
to be stored for execution until the completion of previous tasks. In
this scenario, the authors proposed a DDQN algorithm for computation
offloading decisions to minimise application delay and system energy
19

consumption. Zhang et al. (2020f) considered a edge computing system
in an ultra-dense network with numerous BSs where a user with a
smart device moved in the network through the different BSs, with
dynamic task arrivals, user movement, communications and remaining
device power. The authors continued their work in Liu et al. (2021c),
where they proposed an algorithm based on DDQN and a context-
aware attention mechanism to adaptively assign different weights to
action values. This algorithm had a distributed approach, running on
the user device and updating itself with the experiences generated
by the environment, although it was trained centrally on a more
powerful server using simulations to create initial network parameters.
In turn, Wang et al. (2020a) investigated the multi-user computing
offloading problem in a Cloud-Assisted Mobile Edge (CAME) computing
scenario. Zhang and Xu (2020) also tested a DDQN algorithm with
a distributed approach designed for computation offloading in a MEC
system. In this case, the authors modelled the Stealthy Interference
Attack (SIA), which causes a disturbance at the input of the DDQN
algorithm. Zhang et al. (2021a), considered a single cell MEC system
equipped with an Intelligent Reflecting Surface (IRS), a technology
that improves the performance of wireless communication systems by
adjusting the wireless propagation channel using different elements.
Moreover, the devices could both receive data and harvest energy from
the AP. In this scenario, the authors also proposed a DDQN algorithm
with a distributed approach, in this case to take the offloading decision
in order to minimise latency, energy consumption and the prize of
renting the MEC system. Also from a distributed approach, Tang and
Wong (2020) proposed a DRL algorithm, which included Dueling DQN
and DDQN techniques, to allow mobile devices to take decisions about
task offloading. For this, the authors considered a multi-user scenario
where the decisions of other mobile devices could vary the conditions
of the MEC system, while other devices had no information about these
changes.

Other articles propose alternative versions of the DQN algorithm, as
is the case of Sun et al. (2021b), who proposed a Deep Q Noisy Network
(DQNN) algorithm in multi-server MEC scenario where a single device
made the decision of offloading its task to one of the MEC servers. This
algorithm utilised the noisy linear network to automatically adjust the
level of noise for the exploration of the smart device.

DQN algorithms are sometimes used in combination with other
DRL algorithms such as DDPG, like in Liang et al. (2020a), Zhan
et al. (2020a). Liang et al. (2020a) designed a strategy for com-
putation offloading and resource allocation of a partially offloaded
task to the MEC server. The authors first divided the tasks into two
subtasks, one of which was executed locally and the other offloaded
to the edge server near the BS. To determine the best portion of
the task to offload, the local execution power and the transmission
power, they proposed two algorithms based on DRL: DQN and DDPG,
which were executed independently at each User Equipment (UE). Zhan
et al. (2020a) also proposed a decentralised computation offloading
approach in an environment with different devices which had to take
into account the decisions of other devices. For that, the authors
designed a decentralised algorithm for computation offloading based on
DDPG to achieve the optimal offloading strategy. Unlike the previous
article, in this case the authors considered a slightly more complex
network architecture, with multiple BSs. However, the complexity due
to dynamic aspects is reduced to the field of communications.

Concerning gradient-based RL methods, we find different proposals
based on the PPO algorithm, such as Li et al. (2021a), Mo et al. (2021).
Li et al. (2021a) proposed a PPO-based algorithm to select the MEC
server in a multi-user multi-server MEC system. The authors formulated
this problem as a two-step optimisation problem, solving it with the
Nash equilibrium of the strategy game. The most remarkable aspect
of this article is that, unlike most articles, the authors did not take
into account communications and energy consumption, but focused on
obtaining the server with the highest reputation, which was given by
the price of the server at a given time, its level of congestion and the

percentage of previous tasks that had been successfully completed. Mo



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
et al. (2021) also proposed a PPO-based solution to take computation
offloading and resource allocation decisions. In this case, the authors
studied an edge computing system with multiple end devices, BSs and
edge servers, where they considered task queues in both end devices
and edge servers.

Of course, some articles propose the use of solutions only based on
the DDPG algorithm, as is the case in Qinghua et al. (2020), Chen et al.
(2021d), Ren and Xu (2021), Chen and Wu (2021), Chen and Wang
(2020), Chen et al. (2021e), Dai et al. (2020). Qinghua et al. (2020) pro-
posed a DDPG approach as a strategy for computational offloading and
resource allocation in an environment with multiple mobile devices and
a BS with a MEC server. Chen et al. (2021d) also studied the problem
of computation offloading and resource allocation in a multi-user MEC
system. For that, they proposed a Temporal Attentional Deterministic
PG (TADPG), based on DDPG. This algorithm was executed in each
mobile device to take dynamic decisions on partial task offloading
and resource allocation. The TADPG agent is featured with a temporal
feature extraction network (which consisted of two parts, the first of
them was responsible for consistently learning the local features of
input data and the second one that captured and mined the information
hidden in long-distance sequential patterns) and a rank-based priority
experience replay (which stored historical experiences with different
importance to train the networks). Ren and Xu (2021) also considered
a multi-user environment, but in this case a MEC system with energy
harvesting. Here, the authors proposed a DDPG-based algorithm to take
optimal offloading decisions to minimise device consumption. Chen and
Wu (2021) also considered energy consumption and energy harvesting
in their MEC system with mobile devices, where they investigated the
joint problem of partial offloading and resource allocation. For this,
they defined a scenario with a single edge server and a single BS, in
which multiple devices could offload their tasks. Then, they proposed
a centralised algorithm that took advantage of the graph-based rela-
tionship deduction ability from Graph Convolutional Networks (GCNs)
and the self-evolution ability from the experience training of DDPG. An-
other example is Chen and Wang (2020), where the authors proposed
a DDPG-based algorithm to offload tasks from devices in a multi-input
multi-output enabled multi-user MEC system with stochastic wireless
channels and task arrivals. The main difference with other algorithms
is its decentralised approach, where the offloading decision is taken
by each user device according to its local observation. Chen et al.
(2021e) considered a NOMA-based multi-user MEC system with a single
multi-antenna BS and a single edge server where they also proposed
two different decentralised-approach solutions. Thus, the authors first
proposed a multi-agent DDPG algorithm, which used fully observable
critics and locally executable actors (strategy of centralised training and
decentralised execution). In this algorithm, each user agent had a full
observable critic placed in the BS and a local actor making decisions
only based on its local observation. Secondly, authors proposed a
Parameter Shared Multi-Agent DDPG algorithm, which trained only one
actor-critic network for all user agents, attempting to learn a generic
actor function for all users, in order to further reduce the computational
complexity.

Dai et al. (2020) designed a DDPG algorithm to optimally solve
the computation offloading and resource allocation problem in a multi-
user system with multiple edge servers, including in this case a cloud
server. Moreover, the authors also took into account the variability of
communications over wireless channels when modelling the real world.
The weakest point of this article can be found in the applications, as
the authors considered only one application with no division by end
device, without considering neither the task arrival as a time-varying
aspect. Zhang et al. (2021d) also proposed a DDPG-based algorithm to
minimise the completion time of all computation tasks. In this case, the
authors studied the computation offloading problem in a multi-server
MEC system consisting of one macro BS and different small BS, each of
them with a edge server. In this system, the authors considered multiple
20

users with mobility, which offloaded their tasks to edge servers (local c
computation is not considered). Huang et al. (2021a) also focused on
the computation offloading problem in multi-server MEC systems with
small cell networks, in which they considered the possible interference
between devices among different cells. For this, the authors proposed a
multi-agent algorithm based on DDPG, which enabled each of the BSs to
select the offloading policy of each device to minimise energy consump-
tion, taking into account the communications of nearby BSs. Chen et al.
(2021b) also proposed a distributed DDPG-based algorithm to fully use
the idle edge computing and storage resources in a multi-server fog
system. In this distributed algorithm, the agents in the mobile devices
only knew the local state, although they could communicate and col-
laborate with each other to offload the tasks. Moreover, the authors
proposed the competition of the agents in groups, where the agents
competed with their capability of dealing with a task. Another solution
based on distributed DDPG is proposed by Ke et al. (2021b), who
studied the problem of partial computation offloading and bandwidth
allocation in a multi-user and multi-server MEC system. Furthermore,
they took into account the importance of security in this system by
using encryption algorithms for data communications. In this scenario,
the authors proposed a distributed algorithm based on Double DQN,
which was executed in each of the wireless devices to decide whether
to offload and the bandwidth ratio to be used following the optimal
policy.

Nath et al. (2020) also studied the use of DDPG in the compu-
tation offloading problem in a MEC system with a BS and several
mobile devices. Given the limited computational resources of the MEC
server, the algorithm took its decision with respect to three parameters:
whether to offload a task, which wireless channels to use, and how
many MEC resources to allocate. This work was extended in Nath and
Wu (2020), where the authors proposed a system that took into account
stochastic task arrivals and wireless channels. Furthermore, apart from
the decision to offload the task for execution, the work also considers
the transmission power of the devices when sending data. Other authors
use algorithms that are a modification of the DDPG algorithm, as is
the case of Huang et al. (2021b), who considered a multi user and
multi server MEC system, with both Real Time and Non-Real time task.
Here, authors formulated the problem as a Partially-Observable Markov
Decision Process, which was solved using the algorithm proposed,
called POTD3 (Partially-Observable Twin Delayed DDPG). Moreover,
the authors proposed the use of the Dynamic Voltage and Frequency
Scheduling (DVFS), which enabled mobile device to adjust CPU fre-
quency in order to optimise the energy consumption. Another solution
based on modifications of the DDPG algorithm can be found in Hu
et al. (2021), where the authors proposed an algorithm, based on
Twin Delayed DDPG (TD3), focused on taking both offloading and
power transmission decisions in order to reduce latency and power
consumption.

As can be seen in Tables 7 and 8, these articles consider multiple
options in the different categories. Regarding the algorithms used, the
most common are RL, with QL in the lead; DQN and DDPG. This greatly
depends on the dimensionality and the type of variables of the scenario
considered by the authors.

6. Discussion

This section provides an analysis and discussion of the articles that
present solutions based on RL to the problem of computation offloading
in MEC systems presented above. For this purpose, this section is
divided into different subsections, where we will answer each of the
research questions stated in Section 2.

6.1. Use cases

This subsection focuses on RQ1: In which use cases, related to

omputation offloading and MEC, are RL approaches used?



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

d
s

t
t
o
t
d

v
w
n
t
o
s
n
c
s

Table 8
Summary of literature related to the Generic Case Study (LAT: Minimise Application Latency; EN: Minimise Energy Consumption; CR: Maximise Computation Rate; SEC: Maximise
System Security; COST: Minimise Economic Cost; CT: Maximise Completed Tasks; REP: Maximise Server Reputation; NET: Minimise the use of network resources). Regarding App.
partitioning: ∼, allowed, but data dependencies ignored;

√

, allowed and data dependencies considered.

Article Algorithm Objective

Approach App. Net. Architecture Time-varying Aspects

Ce
nt

ra
lis

ed

Di
st

rib
ut

ed
(E

nd
De

vi
ce

s)

Di
st

rib
ut

ed
(E

dg
e

Se
rv

er
s)

M
ul

ti-
Ap

pl
ic

at
io

n

Ap
pl

ic
at

io
n

Pa
rt

iti
on

in
g

M
ul

ti-
De

vi
ce

M
ul

tip
le

BS
s

M
ul

tip
le

Ed
ge

Se
rv

er
s

Cl
ou

d

Co
m

m
un

ic
at

io
n

En
er

gy

Ta
sk

Ar
riv

al

De
vi

ce
M

ov
em

en
t

Se
rv

er
Lo

ca
tio

n

Se
rv

er
Ca

ch
e

Zhang et al. (2021c) DQN LAT, EN
Zhang et al. (2021b) DQN LAT

Elgendy et al. (2021a) DQN LAT, EN
Li et al. (2020e) DQN SEC
Guo et al. (2020) Double Dueling DQN LAT, SEC

Nguyen et al. (2021) Double Dueling DQN LAT, EN, SEC
Fan et al. (2021) DDQN LAT, EN
Fang et al. (2021) DDQN LAT, EN

Zhang et al. (2020f) DDQN LAT, EN
Liu et al. (2021c) DDQN LAT, EN

Wang et al. (2020a) DQN, DDQN LAT, EN
Zhang and Xu (2020) DDQN LAT, EN, CT
Zhang et al. (2021a) DDQN EN, LAT, COST ∼

Tang and Wong (2020) DDQN, Dueling DQN LAT
Sun et al. (2021b) DQNN LAT, EN ∼

Liang et al. (2020a) DQN, DDPG LAT, EN ∼
Zhan et al. (2020a) DDPG LAT, EN ∼

Li et al. (2021a) PPO REP ∼
Mo et al. (2021) PPO LAT, EN

Qinghua et al. (2020) DDPG LAT, EN
Chen et al. (2021d) DDPG CT, EN ∼
Ren and Xu (2021) DDPG EN

Chen and Wu (2021) DDPG LAT, EN ∼
Chen and Wang (2020) DDPG LAT, EN ∼

Chen et al. (2021e) DDPG LAT, EN ∼
Dai et al. (2020) DDPG EN

Zhang et al. (2021d) DDPG LAT ∼
Huang et al. (2021a) DDPG EN ∼
Chen et al. (2021b) DDPG LAT
Ke et al. (2021b) DDPG LAT, EN, NET ∼
Nath et al. (2020) DDPG LAT, EN

Nath and Wu (2020) DDPG LAT, EN
Huang et al. (2021b) TD3 EN, CR

Hu et al. (2021) TD3 LAT, EN, CT
f
t
f

6

i
s

B
n
i
i
p
a
C
r

The reviewed articles have been divided in Section 5 into the
ifferent case studies found, namely: IoT, vehicular networks, UAVs,
pecific use cases and generic studies or use cases.

Fig. 5 shows the proportion of each use case. Thus, we can see how
he most common case study is by far the generic one, with 52.14% of
he reviewed articles. In these articles the authors studied the problem
f offloading computing in generic mobile networks, without describing
he end application, describing the end devices as mobile devices, smart
evices, user devices or just users.

Next are three case studies with a similar percentage of articles:
ehicular networks (mainly characterised by the movement of vehicles,
ith 16.43% of the total number of articles reviewed), IoT device
etworks (13.57%) and UAV networks (13.57%). In this last case study,
he most articles concern the use of UAVs as mobile servers (84.21%
f these articles). In these articles, the authors consider these mobile
ervers as an auxiliary solution in case of network failure (including
atural disasters) or network saturation, or to introduce the concept of
omputation offloading to hostile environments where traditional MEC
21

ervers are not suitable. m
Finally, only in 4.29% of the articles reviewed we found proposals
or specific use cases, where the authors described a particular applica-
ion. VR stands out in particular, although we also found applications
or smart hearth monitoring and swarm robotics.

.2. Network and edge computing architecture

This subsection focuses on RQ2: Which network and edge comput-
ng architecture is considered? Are there multiple end devices and edge
ervers? Is a cloud layer also considered?

All of the reviewed papers consider at least one end device, one
S or AP that allows the end device to connect to the rest of the
etwork, and one edge server that allows the end device to offload
ts applications. However, this network architecture is not the most
nteresting from the point of view of using RL algorithms to solve task
lacement and resource allocation in real edge scenarios. Thus, most
rticles extend this minimum network in one or more layers (Fig. 6).
oncerning the end-device layer, 122 articles, a total of 87.14% of the
eviewed articles, considered systems with multiple end-devices.

Regarding the edge layer, 84 articles, 60% of the total, considered
ultiple BSs or APs, while 88 articles, 62.86% of the total, considered



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Fig. 5. The distribution of different case studies of computation offloading solutions
based on RL.

multiple edge servers. However, not all articles that consider multiple
BSs or APs also consider multiple edge servers or vice versa. In 6
articles, 4.23% of the total, the authors considered multiple BSs or APs
but a single edge server, while in 10 articles, 7.14% of the total, they
considered a single BS or AP with multiple edge servers.

In terms of the cloud computing layer, this is only considered in 35
articles, 25% of the total. In most articles, the authors who considered
the cloud layer also considered multiple BSs or APs and multiple
edge servers. However, in 5 articles, 3.57% of the total, the authors
considered this layer together with a single BS or AP and a single
edge server, while in only one article, 0.71% of the total, the authors
considered multiple BSs or APs and a single edge server together with
the cloud layer. Also noteworthy are another 5 articles, 3.57% of the
total, where the authors proposed a network architecture that included
the cloud layer, multiple edge servers and multiple BSs, but a single
end device.

Finally, there are three network architectures that stand out for the
number of articles in which they are considered, namely: (1) multiple
end devices, with a single BS, a single edge server and without cloud
layer (25.7%, in orange in Fig. 6); (2) multiple end devices, with
multiple BSs and multiple edge servers but without cloud layer (29.3%,
in green in Fig. 12); and (3) multiple end devices, with multiple BSs and
multiple edge servers, also including cloud layer (17.1%, in yellow in
Fig. 12).

Table 9 shows the distribution of the articles, in percentage, di-
vided by the different presented case studies according to the network
architecture considered by the authors. For this purpose, we have dif-
ferentiated four different network layers, namely: end devices, APs/BSs,
edge servers and cloud servers.

Regarding IoT networks, 94.74% of the reviewed articles related to
this case study include multiple end devices. IoT networks are typically
composed of a large number of low-power devices with the objective
of covering a large area or performing very heterogeneous operations,
which is reflected in the scenarios proposed by the authors. Further-
more, it is particularly notable that, once the end-device layer has been
defined, the authors mainly consider either a simple edge network, with
a single AP/BS, a single edge server and no cloud server (in 47.37% of
the articles reviewed in this case study), or a complex edge network,
22

with multiple APs/BSs and multiple edge servers, with no cloud server
Fig. 6. Distribution of the network architectures considered in the reviewed articles.

(15.79% of the articles in this case study) or with it (26.32%). This
depends greatly on the scenario proposed by the authors: for example,
in a smart building, there could be a multitude of IoT devices, but all of
them within the coverage range of a single AP/BS connected to a single
edge server, whereas when these IoT devices are deployed over a much
larger area (applied to the field of smart agriculture or smart cities, for
example), a more complex network infrastructure will be required.

For vehicular networks, the authors mainly opted for network ar-
chitectures closer to a possible final deployment, with multiple end
devices, multiple APs/BSs and multiple edge servers, which can or not
include a cloud server, representing more than 60% of the articles
reviewed in this case study. In the articles of this case study, the
authors usually take into account the movement of end devices, being
especially interesting to analyse the handovers produced when one of
these devices leaves the coverage area of an AP/BS and moves to a
different one, as well as the management of offloaded applications in
these cases. For this same reason, the most commonly used network
architectures after those already mentioned include a network with a
single end device, but with multiple APs/BSs, multiple edge servers and
without or with a cloud server (13.04% and 8.7%, respectively of the
case study articles reviewed).

Regarding the UAV networks case study, 47.37% of the articles re-
viewed in this case study propose a scenario with multiple end devices,



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Table 9
Percentage of articles within each use case that consider each type of network architecture.

Network architecture Articles (%) in each case study

Cloud Edge servers APs/BSs End devices IoT Vehicle UAV Specific Generic

With no cloud server

Single
Single Single 0 4.35 0 16.67 4.11

Multiple 47.37 0 10.53 16.67 32.87

Multiple Single 0 0 0 0 0
Multiple 0 4.35 0 0 6.85

Multiple
Single Single 0 0 0 0 0

Multiple 0 4.35 21.05 0 5.48

Multiple Single 5.26 13.04 0 0 5.48
Multiple 15.79 30.43 47.37 16.67 28.77

With cloud server

Single
Single Single 0 0 0 0 0

Multiple 5.26 4.35 0 0 4.11

Multiple Single 0 0 0 0 0
Multiple 0 0 0 0 0

Multiple
Single Single 0 0 0 0 0

Multiple 0 0 5.26 0 0

Multiple Single 0 8.70 0 16.66 2.74
Multiple 26.32 30.43 15.79 33.33 9.59
Fig. 7. Distribution of different RL techniques of the proposed solutions.

multiple APs/BSs and multiple edge servers, but with no cloud server.
The second most proposed option (21.05% of the articles reviewed in
this case study) continues along the lines of the one described above,
but with a single AP/BS. These architectures (together with those of a
single edge server, 10.53% of the papers in this case study) are perfectly
suited to one of the scenarios where the deployment of UAVs is optimal:
locations that are difficult to access, either due to location conditions
or due to some kind of disaster.

With respect to the specific use cases, the authors presented dif-
ferent network architectures, depending on the specific application
proposed in their articles. Finally, concerning the case study of generic
networks, those with multiple end devices, but with a simple edge
architecture (a single AP/BS and a single edge server), stand out with
32.87% of the articles reviewed included in this case study. However,
the second place (28.77% of the articles reviewed in this case study)
appears at the other extreme, with proposals for networks with multiple
end devices, multiple APs/BSs and multiple edge servers, but without
the use of cloud servers. In fact, it is particularly surprising that only a
small percentage of the articles in this case study (16.44%) use cloud
23

computing.
Fig. 8. Distribution of the five most widely used RL techniques (%) of the proposed
solutions, divided according to the different case studies.

6.3. RL algorithms

This subsection addresses RQ3: Which type of RL-based algorithms
are usually employed for computation offloading?

As shown in Fig. 7, DQN is on the top of the ranking with a total of
41 of the 140 reviewed articles. Closely following this result is DDPG,
which is used in 32 articles. The third most used algorithm is QL with
22 articles. Following them is AC, used in 14 articles. The next most
frequently used technique is DDQN, proposed as a solution in 12 of the
reviewed articles. This is followed by A3C and RL/DRL-based solutions
(which simply indicates that they are based on RL or DRL without
referring to the specific algorithm), both with a total of 6 articles. A
fewer number of articles propose the use of PPO and PG, each of them
used in 3 articles. In the remaining articles we find solutions based on
MAB, Dueling DQN, Double Dueling DQN and TD3, with two articles
each, as well as solutions based on DQL, SARSA, DQNN, A2C, SAC,
Dirichlet DDPG and Double Dueling DDPG, which only appear in 1 of
the reviewed articles.

Fig. 8 shows the percentage of use of the 5 most frequently utilised
algorithms in the different case studies. The case study of vehicular
networks is notable, with few papers using QL and AC algorithms. This
could be due to the fact that most of these papers include movement
in their end devices, which increases the state space, with DRL-based

algorithms working better in these cases. Something similar applies



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

o
n

m
e
(
t
(

t
O
a
b
5
n
a
n
p
u
F
n
r
t
o

g
m
a
p
r
b
s

p
f
a
t
7
l
c
f
(
m
l

p

p
o
p
t
t

to the case study of UAVs, where no article uses the AC algorithm,
perhaps because it is not the most appropriate given the movement
of the servers, which is very representative of this type of networks.
The irregularity of the specific use cases is also remarkable. Although
this is due to the small number of articles in this case study, there is a
significant use of QL and AC algorithms. This could be due to the fact
that these types of proposals tend to have a very defined network and
very specific devices, making the spaces of possible actions and states
to be taken more affordable.

However, one of the main problems with this point is that the
authors do not usually detail the reasons why they make use of an RL
algorithm or why they choose a certain algorithm to solve the compu-
tation offloading problem, beyond a few cases where they mention that
traditional algorithms do not allow a real-time response to the scenario
posed, or that DRL algorithms can deal with more complex scenarios.
Moreover, papers generally compare one or at most two RL methods
with other types of algorithms or heuristics, but lack of an exhaustive
comparison between different RL algorithms in the same scenario.

6.4. Objectives

This subsection focuses on RQ4: What are the metrics typically
ptimised when solving computation offloading by means of RL tech-
iques?

Two objectives stand out above the rest: minimising latency and
inimising energy consumption (Fig. 9). Minimising latency in the

xecution of applications appears in 99 of the 140 articles reviewed
70.71% of the total), while minimising energy consumption, either of
he end devices or of the whole system, is considered in 96 articles
68.57% of the papers).

Further below these values, we find articles proposing to maximise
he number of completed task, with a total of 12 articles (8.57%).
ther authors consider maximising computation rate with a total of 9
rticles (6.43%) or the security of the system (closely associated with
lockchain-related proposals), with a total of 8 articles, representing
.71% of the total. Other authors propose to minimise the use of
etwork resources, with a total of 5 articles (3.57% of the reviewed
rticles). Minimising the use of MEC resources and minimising eco-
omic cost are considered at least as one of the objectives of the
roposed solution in 4 articles each (2.86% of the total). Maximising
ser QoS is considered in 3 articles, representing 2.14% of the total.
inally, the objectives of maximising load balancing, maximising the
umber of devices using MEC resources, maximising prediction accu-
acy, maximising the reputation of the selected servers and maximising
ransmission reliability are less common, being taken into account in
nly 1 article each, with 0.71% of the total.

Again, regarding the objectives or metrics used, the authors do not
enerally provide strong reasons for the selection of a particular set of
etrics. When dealing with problems of task placement and resource

llocation in an edge computing scenario, prioritising the lowest ap-
lication delay or the maximum rate of processed tasks is completely
easonable. However, the use of other metrics such as maximising load
alancing or maximising transmission reliability is not so obvious or
traightforward, but can improve the performance of the system.

The objectives of the articles by the different case studies are
resented in Table 10 and explained below. The sum of the percentages
or each case study does not correspond to 100% because the same
rticle can define multiple objectives. With regard to IoT networks,
he reduction of energy consumption stands out, being considered in
8.95% of a total of 19, followed by the minimisation of application
atency which appears in 73.38% of the articles. The two objectives are
ombined in 11 articles of 19. There are also, although in significantly
ewer articles, those whose objective is to maximise completed tasks
15.79%). In all these articles, this objective is combined with either the
inimisation of energy consumption or the minimisation of application
24

atency. Finally, there is only one article (5.26%) whose sole objective r
is to maximise computation rate. Thus, in this case study, the authors
have maintained critical objectives when offloading computation, such
as reducing latency or maximising task completion, but in most cases
prioritising energy reduction, an objective of vital importance in IoT
networks where devices often depend on batteries or harvested energy.

As far as vehicular networks are concerned, the most popular ob-
jective is the minimisation of application latency, which appears in
69.57% of the 23 articles reviewed related to this case study. The
minimisation of energy consumption is also an important objective in
this case study, appearing in 52.17% of the articles. However, we also
find other objectives, namely: minimising economic cost, minimising
the use of MEC resources, minimise the use of network resources, max-
imising system security (all of them in 8.7% of the articles), maximising
transmission reliability, maximising the load balancing, maximising the
number of devices which uses MEC resources and maximising com-
pleted tasks (all of them in 4.35% of the articles). All these objectives
focus not only on the end-device layer, but also on the edge layer
and the use of network resources, as such networks tend to be more
complex, taking into account the complexity of mobility and speed of
end-devices.

Regarding UAV networks, again, the objectives of Minimise Ap-
plication Latency (in 73.68% of the 19 articles reviewed related to
this case study) and Minimise Energy Consumption (68.42%) are the
main objectives set by the authors. In addition, due to the movement
of UAVs, which often play the role of edge servers where devices
offload their applications, network-related objectives are prioritised.
Thus, in addition to the aforementioned minimisation of application
latency, we find objectives such as minimising the use of network
resources, maximising Completed Tasks (both of them in 10.53% of
the articles), maximising the computation rate, minimising the use of
MEC resources, maximising the security of the system, maximising user
QoS or maximising Prediction Accuracy (all of them in 5.26% of the
articles).

In the networks for specific applications, the authors especially
prioritised the objective of minimising energy consumption (in 100%
of a total of 6 articles), as these are applications that either run on
mobile devices or propose that the edge servers have a certain degree
of mobility, so energy is a point to be taken into account. In addition to
this objective, the authors prioritised minimising application latency (in
66.67% of the articles) and maximising QoS (in 33.33% of the articles),
in order to provide users with the optimal user experience.

In the generic devices case study, where the authors describe the
end devices as mobile devices, smart devices or simply user devices, the
most frequently set objectives were minimising the application latency
and minimising the energy consumption, being considered in 69.83%
and 68.49%, respectively, of a total of 73 articles. Other objectives
are used in a more limited way, such as maximising Computation
Rate (9.59% of the articles), maximising Completed Tasks (8.22%) and
maximising Security (6.85% of the articles), which is linked in most
of the articles to BlockChain. However, unlike other case studies, the
objectives related to computation and network resources are not very
common (6.85% of the articles divided into reducing the economic cost,
minimising the use of MEC resources, minimising the use of network
resources and maximising the reputation of the servers).

6.5. Centralised and distributed decision-making approaches

This subsection addresses RQ5: Are centralised or distributed ap-
roaches generally used for decision-making?

The centralised approach in which a single agent makes the com-
utation offloading decisions for all the devices in the network stands
ut, being used in 88 of the 140 articles reviewed (Fig. 10). In second
lace we find the distributed approach where the agent is located on
he end devices of the network, with 38 of the 140 articles. In 9 articles,
he authors proposed a distributed approach where the different agents

un on the edge servers. In Liu et al. (2020c), the authors proposed



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Fig. 9. Distribution of the objectives of the proposed solutions.
Table 10
Percentage of articles within each use case that consider each objective.

Objective Articles (%) in each case study

IoT Vehicular UAV Specific Generic

Minimise Application Latency 73.68 69.57 73.68 66.67 69.86
Minimise Energy Consumption 78.95 52.17 68.42 100 68.49
Maximise Completed Tasks 15.79 4.35 10.53 0 8.22
Maximise Computation Rate 5.26 0 5.26 0 9.59
Maximise System Security 0 8.70 5.26 0 6.85
Minimise the use of network resources 0 8.70 10.53 0 1.37
Minimise the use of edge resources 0 8.70 5.26 0 1.37
Minimise economic cost 0 8.70 0 0 2.74
Maximise user QoS 0 0 5.26 33.33 0
Maximise the load balancing 0 4.35 0 0 0
Maximise the number of devices using edge resources 0 4.35 0 0 0
Maximise the prediction accuracy 0 0 5.26 0 0
Maximise server reputation 0 0 0 0 1.37
Maximise transmission reliability 0 4.35 0 0 0
two solutions, the first one with a centralised approach and the second
one with a distributed approach on edge servers, being included in
both categories. 5 articles Zhang et al. (2020c), Xu et al. (2021),
Zhu et al. (2021), Seid et al. (2021b), Chen et al. (2021e) propose
a distributed approach with the agents run on the end devices, but
in this case the agents were trained in a centralised way. In two of
these articles Zhang et al. (2020c), Chen et al. (2021e) the authors
also proposed two different solutions, in this case with a centralised
approach and with a distributed approach on end devices but using a
centralised training, being included these articles in the corresponding
categories. Only in one article Qian et al. (2021), the authors proposed
a distributed approach where the agents were running on both end
devices and edge servers, while only in other one Seid et al. (2021b),
the authors proposed a distributed approach with the agents running
on the edge servers but trained in a centralised way. Finally, only one
article Mohammed et al. (2020) does not include any approach, as it is
an initial concept but without actual implementation.

Fig. 11 presents the articles divided according to their case studies.
As shown, the centralised approach is the predominant one in all of
them, remaining between 50% and 70%, although it is slightly lower
in IoT networks and UAVs case study. The articles related to these case
studies propose solutions with distributed agents in a slightly higher
percentage compared to the rest of the case studies.

In terms of distributed approaches, these are divided into end
devices and edge servers depending on which device hosts the agent.
Thus, in the IoT case study, approaches distributed on end devices are
25
Fig. 10. Distribution of the approaches of the proposed solutions. In distributed
approaches, (End) refers to agents running on end devices; (Edge) refers to agents
running on edge servers; (End CT) refers to the distributed execution of agents on end
devices but with a centralised training; (Edge CT) refers to the distributed execution
of agents on edge servers but with a centralised training; (End & Edge) refers to the
distributed approach with agents running on end devices and on edge servers.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Fig. 11. Distribution of the approaches of the proposed RL techniques (%) of the
proposed solutions, divided according to the different case studies.

more common than those distributed on edge servers. In IoT networks
battery-powered devices that can sleep for long periods of time, without
constantly communicating with the rest of the network. Therefore, an
approach distributed with an agent on the end devices enables these
devices to decide where to run an application.

The case study of vehicular networks has its approach distributed
only on the end devices, since due to the mobility of the vehicles it is
easy for them to leave the range of the agent placed in an edge server,
so it is more appropriate to keep these agents in the end devices in case
of a distributed approach.

This contrasts with the case study of UAV networks, where the
approach is mainly distributed on edge servers. In this type of networks,
UAVs are commonly used as servers in difficult access environments, to
provide computing and network resources to other devices, so the most
appropriate option is to host the RL agent on the UAV edge server.

The case study of specific applications has only one article in each
of the distributed approaches, with the authors focusing on fulfilling
the requirements of their proposed applications. In the case study of
generic networks, the approach distributed on the end devices prevails
with a notable difference (after the centralised approach), with some of
these articles carrying out a centralised agent training and a distributed
execution, allowing the authors to experiment and compare different
proposals.

The choice of the approach of the RL agent is of great importance.
A centralised approach is simpler to implement, and allows all network
information to be considered when making decisions. However, it can
become a congestion point, and fault tolerance is a critical issue. Dis-
tributed agents can increase the difficulty of implementation, especially
if they work collaboratively, but they can alleviate the above problems.
Moreover, they can reduce the latency in communications between the
devices and the RL agent (although the impact of the communication
delay between nodes and RL agents is generally omitted in the reviewed
papers).

Finally, it is worthy to note that, as Tables 3 to 8 show, there is
no direct relationship between the use of a centralised or a distributed
approach to decision making and the type of underlying network and
edge computing architecture.

6.6. Number of applications and partitioning

This subsection addresses RQ6: Do authors consider that end de-
vices which offload their applications to a MEC system run a single
26
Fig. 12. Distribution of the application considerations of the proposed solutions (NP:
No Partitioning; PNDD: Partitioning with No Data Dependency; PDD: Partitioning with
Data Dependency).

application or multiple applications? Are these applications to be fully
executed on the same platform or can they be split? If they are divided
into smaller tasks, is the data dependency among the tasks of the same
application taken into account?

In the articles reviewed, the authors considered end devices with
multiple applications in 116 articles of the 140 reviewed articles, which
represents a 82.86% of the total (orange rectangles in Fig. 12). This
includes both articles where the end devices started with multiple
applications and those where they started with a single application and
gradually generated new applications. In contrast, 24 articles consider
scenarios where end devices have a single application (in blue in
Fig. 12).

Regarding partitioning, in only 45 articles, 32.14% of the total, the
authors considered the option of splitting the applications into smaller
tasks. Of these, 37 articles, 26.43% of the total, considered a division
without data dependencies, allowing a percentage of the application
to be offloaded for execution on the MEC system. In the remaining
8 articles, which means a 5.71% of the total, the authors considered
splitting the applications into tasks with dependencies, representing the
applications as DAGs.

Table 11 shows the distribution of the articles in the different
case studies according to the scenario presented by the authors in
relation to the number of applications (a single application or multiple
applications on each end device) and their partitioning (no partitioning,
partitioning with no data dependencies and partitioning with data
dependencies between the different tasks of an application).

With respect to the IoT case study, it stands out that all articles
that have a single application per device do not consider any type
of partitioning. Moreover, the percentage of articles in which the
authors consider multiple applications with no application partitioning
or application partitioning with no data dependencies cover the most
of the reviewed IoT articles. The case study of vehicular networks is
more dispersed, following a similar distribution to the case study of
the generic networks. Regarding the case study of UAVs, it is especially
noteworthy that all articles consider multiple applications per device,
although most of them do not consider any type of partitioning. Finally,
in the case study of specific use cases, all the articles consider multiple
applications, but with no partitioning. This may be because the authors
have defined a certain number of specific applications to be executed.

The consideration of multiple applications to be allocated in the
scenarios proposed by the authors is of great importance. Moreover,

the partitioning of these applications, enabling them to be parallelised



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

m

s
m
a
a
v
o
t
n
t
t
h
d
a

c
(
e
a
t
e

b
p
d
6
b

o
o
c
a
h
a
n
T
e
v

e
s
t
t

Table 11
Percentage of articles within each use case according to their consideration of number of applications and type of partitioning.

Applications Articles (%) in each case study

Multi-App App. Partitioning IoT Vehicle UAVs Specific Generic

No
No partitioning 10.53 13.04 0 0 15.07
Partitioning with no data dependencies 0 4.35 0 0 5.48
Partitioning with data dependencies 0 4.35 0 0 2.74

Yes
No partitioning 47.37 52.17 68.42 100 53.42
Partitioning with no data dependencies 42.10 21.74 26.32 0 19.18
Partitioning with data dependencies 0 4.35 5.26 0 4.11
where possible, is of great interest in order to fully optimise their
execution. However, few authors propose real applications detailing
their division into tasks. Although at the simulation level it may be
sufficient to consider standard tasks, it would be of great interest to
analyse how to split real applications into different tasks to allow their
execution on different devices in an edge environment and to join their
outputs.

6.7. Time-varying aspects

This section focuses on RQ7: What characteristics of the environ-
ent are considered to be time-varying in the modelled scenarios?

There are different time-varying aspects in the considered scenarios,
ome of them are common to all of scenarios, while some aspects are
ore specific to certain use cases. For instance, the communications in
wireless environment or the generation of tasks should be reflected

s time-varying aspects in most articles. In contrast, aspects such as the
ariation of energy with time is more relevant for the use cases of IoT
r UAV networks. Similarly, the movement of end devices or servers in
he case of UAV networks, or the movement of end devices in vehicular
etworks, are highly linked to those particular use cases. However,
hese aspects are not always considered by all papers associated with
hose use case categories (e.g., not considering the movement and
andover of vehicles in vehicular networks), this being one of the main
rawbacks related to the dynamic aspects considered in the reviewed
rticles.

The predominant time-varying characteristic in all the scenarios
onsidered in the reviewed articles was the arrival of applications
Fig. 13). Thus, in 89 articles, 63.57% of the total, the authors consid-
red the arrival of new applications at the end devices. The proposed
lgorithm had to adapt and make the decision to offload the computa-
ion of these new applications, choosing to execute them locally or to
xecute them on a different platform.

Secondly, wireless communications was also widely considered to
e time-varying. Wireless communications are more challenging com-
ared to wired communications, and depend on a large number of
ynamic parameters in a real network. In this case, in 88 articles,
2.86% of the total, the authors considered wireless communications
etween end devices and BSs or APs to be time-varying.

The third most considered characteristic was the mobility of users
r end devices, which was taken into account in 41 articles, 29.29%
f the total. This mobility could affect the decision taking of the
omputation offloading both from the point of view of communications
nd from the point of view of the nearest edge server, as well as possible
andovers or migrations of running applications. Of course, among the
rticles that considered the mobility of users, those related to vehicular
etworks stand out, where 82.61% took this mobility into account.
he rest of the articles related to vehicular networks addressed the
xecution of applications related to vehicles, but not the mobility of
ehicles.

Although not very common in traditional networks, the concept of
dge computing has allowed servers to be placed closer to end devices,
ometimes even in vehicles or UAVs. This has enabled certain servers
o be mobile, which was considered in 20 articles, 14.29% of the
otal. In particular, these 20 articles can be divided between vehicular
27
Fig. 13. Distribution of the time-varying aspects considered in the reviewed articles.

networks (20%), where servers were located in certain vehicles, and
UAV networks (80%), where UAVs were used as mobile servers to
provide computing resources to other devices.

Another time-varying characteristic considered by the authors, al-
though in a lower range, was energy. When considering this charac-
teristic, it was not energy consumption nor energy minimisation that
was taken into account as the objective of the proposed algorithms,
but rather the variable energy of the devices: systems in which the
devices consumed energy from their batteries but could also recharge
them. In such systems, the battery charge of a device at a given time
influenced the decision on computation offloading. This characteristic
was considered in 18 articles, 12.86% of the total.

Finally, the last characteristic considered was the server caching. In
6 articles, 4.29% of the total, the authors considered the server cache
as time-variant. In case an application was cached on a server, time
and energy could be saved in communications, since the application
was already on that server. This could influence the decision whether
or not to offload that particular application.

Table 12 presents the distribution of the articles, in percentage,
divided by the different case studies according time-varying aspects
considered by the authors. In this case, the sum of the percentages is not
100%, because the time-varying aspects are not exclusive: the authors
of an article can consider all of them, none of them or an intermediate
number.

Regarding the IoT case study, the two time-variant aspects most
considered by the authors are application arrival (63.16%) and com-
munication (36.84%), in line with most of the other articles, although
this case study is the one with the lowest percentage of articles that
consider communication as a time-variant aspect. It is also noteworthy



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.

v
o

t
t

Table 12
Percentage of articles within each use case that consider each time-varying aspect.

Time-varying
aspects

Articles (%) in each case study

IoT Vehicle UAV Spec. Gen.

Communication 36.84 73.91 68.42 83.33 63.01
Energy 5.26 0 15.79 0.00 19.18
Application arrival 63.16 47.83 84.21 83.33 61.64
Device movement 5.26 82.61 36.84 50 15.07
Server location 0 17.39 84.21 0 0
Server cache 0 8.70 0 0 5.48

that only very few authors (5.26%) consider energy as a variant aspect
in these networks, since IoT devices can harvest energy and manage
it efficiently over time. This same percentage of articles (5.26%) also
consider the movement of devices as time variant.

In the case study of vehicular networks is where the authors con-
sider the movement of end-devices in by far the largest percentage of
articles (82.61%). Such networks add the movement of end-devices
to the challenging problem of determining which applications are
offloaded. This give the possibility for an end device to leave the cov-
erage area of one AP/BS and move into the coverage area of another,
which must be taken into account when receiving the result of the
offloaded application. The second most time-varying aspect considered
in this case study is communication (73.91%), in many cases due to
the movement of end-devices. Application arrival is also considered in
almost half of the articles (47.83%). A 17.39% of these articles have
considered server location as a time variable, as they propose the use
of some vehicles as edge servers. Finally, this case study is where the
highest percentage of articles consider server cache (8.70%).

The case study of UAV networks presents the highest percentage of
articles in which the authors have considered the location of servers as
a time-varying aspect (84.21%). UAVs devices can provide computing
and network resources to end devices located in areas that are difficult
to access, which is the scenario proposed by many authors, making it
necessary to consider the movement and location of edge servers. The
same percentage of articles consider application arrival. The third most
frequently addressed time-varying aspect is communication (68.42%),
many of them influenced by the movement of UAVs acting as APs/BSs.
The next most taken into account aspect by the authors in this case
study is device movement (36.84%), which in many of the proposed
scenarios also involves UAVs. Also noteworthy here is the low percent-
age of articles that consider energy as a time-varying aspect (15.79%),
given that these types of devices are usually battery-powered and
energy-limited.

Concerning the specific use cases, the authors proposed commu-
nications and the arrival of applications as time-variant in most of
the articles (83.33%). In 50% of the articles of this case study, the
authors also addressed the movement of end devices, depending on the
proposed application.

Finally, the generic networks case study shows communications
as the most time-variant aspect taken into account by the authors,
followed by application arrival (63.01% and 61.64%, respectively).
Far behind these percentages are other aspects such as energy (even
being the case study with the highest percentage), with 19.18%, device
movement (more typical of other case studies), with 15.07% and server
cache (being one of the two case studies that contemplate it in some
articles), with 5.48%. However, no article in this case study considers
server location as a time-varying aspect.

6.8. Evaluation of the proposals

This subsection focuses on RQ8: How did the authors evaluate and
erify their proposals? Did they conduct experiments using simulations
r were they conducted in testbed or real environments?

Almost all the articles reviewed validate and test their proposals
hrough simulations. However, 79 of the articles reviewed, 56.43% of
28

he total, indicate that they carried out simulations without describing
the software tools used. In the articles where the authors specified
which tools they used for the simulation, Python and its libraries were
the most notable. In 34 of the articles reviewed, 24.29% of the total, the
authors used Python and TensorFlow to carry out the simulations, and
in one of them they also used Keras. The Keras library was also used
individually in 2 articles, 1.43% of the total. PyTorch was also used
in 9 of the articles reviewed, 6.43% of the total. In another 9 articles
the authors referred to the use of Python in the simulations, but did
not refer to the use of other libraries. On the other hand, 5 articles,
3.57% of the total, used MATLAB for the simulations performed, while
1 article used iFogsim as a simulation tool.

It is particularly striking that a single article Qiu et al. (2021),
0.71% of the total, referred to an evaluation in a real environment, in
which the authors used a testbed with a laptop and several Raspberry
Pis to evaluate the proposed computation offloading decision taking
algorithm.

Finally, in only 4 of the 140 articles reviewed Huang et al. (2020a),
Qu et al. (2021), Qiu et al. (2021), Zhan et al. (2020a), representing
2.86% of the total, the authors report on open source publishing, which
we expect to be a rising trend, since it could be very valuable for
experiment replication or further research.

6.9. Future directions

This subsection addresses the last research question, RQ9: What are
the future directions of research in this field and what areas remain to
be addressed?

6.9.1. Use cases
The description of the use cases often highlights the main challenges

of the considered scenarios. For instance, scenarios focusing on UAV
networks or vehicular networks usually address the challenge of mobile
devices, and scenarios with IoT networks or UAV networks usually
consider the challenge of reducing energy consumption. However, in
general, the descriptions and modelling of the applications linked to the
different use cases are too generic, simplified and lack realism. There-
fore, further research is needed to better model the specific applications
linked to each specific use case, including a characterisation of their
computational load and performance requirements.

On the other hand, most papers have analysed generic scenarios,
vehicular networking, UAV networks and IoT networks. However, we
expect to see in the future more works related to the area of indus-
trial applications and robotics as well as related to VR or augmented
reality, topics in which some papers have already been published
like Shahidinejad et al. (2021), Du et al. (2020), Lin et al. (2021), Wang
and Guo (2021).

6.9.2. Real-world network architectures
Regarding network and edge computing architectures, the biggest

challenge appears in the consideration of multi-device and multi-layer
hierarchical networks, approximating the modelled systems to those of
the real world. Furthermore, to achieve this goal, it would be desirable
in future research to analyse the impact of the heterogeneity of devices,
computing resources, and communication links.

6.9.3. Algorithms and comparatives
As this survey has revealed, there is a large number of very recent

articles in which the authors propose solutions to the problem of com-
putation offloading in edge computing systems based on RL. Moreover,
the use of this type algorithms for computation offloading is on an
increasing trend, as can be seen by comparing the articles collected by
this survey with those reviewed in Shakarami et al. (2020b). Authors
often propose RL solutions due to the complexity of the scenarios and
the large size of the actions and states spaces, and mainly compare
their proposals with other types of offloading algorithms or heuristics.
However, they generally do not provide additional explanations as to



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
why a particular RL algorithm is selected, nor do they provide an
exhaustive comparison between different RL algorithms in the same
scenario, exposing the strengths and limitations of each one, which
would be a desirable outcome of further research.

6.9.4. New objectives and metrics to be optimised
We have also seen in this survey that the minimisation of latency,

which is a driving issue for edge computing, and energy consumption,
have been extensively studied. However, in our opinion, there is a
clear opportunity for research with the aim of improving the security
of these systems, either through the use of blockchain (Zheng et al.,
2021; Mohammed et al., 2020; Feng et al., 2020) or by considering
the possibility of malicious attacks (Ge et al., 2020; Zhang and Xu,
2020), as well as adopting an economic point of view, i.e., optimising
economical benefits when making decisions on computation offloading.

6.9.5. Fault tolerance in decision-making approaches
None of the reviewed articles have tested the fault tolerance of

their proposals, not only against failures that prevent the agent from
communicating with the rest of the devices in the network, but also
from other failures that modify the network structure and require a
change in the offloading policy. This is a particularly challenging point
that would be worth exploring in depth.

For a centralised RL agent approach, regardless of whether it is
located at the cloud layer, edge layer or at a network controller, would
the system tolerate a total or temporary failure of the RL agent or its
communications?

For a distributed approach, with RL agents working coordinately or
not, how would a failure of one of the agents or its communications
affect the system? Would it affect the whole network or would it be
limited to a part of the network? In this field, more contributions are
needed to address these questions.

6.9.6. Application partitioning
The articles that consider the possibility of splitting the applications

into different processing tasks are approximately a third of those re-
viewed, and few of them considered data dependencies between tasks.
Evaluating the trade-offs between performance advantages and com-
plexity is another interesting research, also coupled with an analysis of
the pragmaticity of splitting scenarios, since papers assume for instance
random DAGs or DAGs created ad-hoc for that research, rather than
extracting those graphs of dependency from real applications.

6.9.7. Exploitation of time-varying aspects
With regard to the dynamic aspects considered in the different

scenarios, it can be seen that certain aspects, closely linked to particular
use cases, are not taken into account in all the articles dealing with that
use case. One of these aspects is user mobility, which is not taken into
account in all the articles focused on vehicular and UAV networks. In
fact, user mobility is an aspect that needs to be further investigated
(especially in those use cases), with a focus on application migration
and handovers, which have been little studied. In fact, only 5 of the
articles reviewed Luo et al. (2020), Zhang et al. (2020e), Yuan et al.
(2020), Wang et al. (2020g), Ho and Nguyen (2020) referred to this
problem, which in our opinion deserves more attention.

Another aspect addressed in the reviewed articles, although in a
limited way, is the time-varying energy of the end devices. Considering
that certain devices (especially in IoT and UAV networks) could be
equipped to harvest energy and increase their energy levels, the de-
cision to offload is greatly influenced by the current energy level and
the cost involved in offloading an application or executing it locally.
However, despite its importance, this was a point rarely addressed in
the articles reviewed, especially in articles focusing on IoT networks,
with devices whose energy management is critical (being considered
only in Zhang et al. (2020c)). Consequently, this aspect requires further
29
research, particularly in those scenarios with devices that are extremely
dependent on their energy level.

Similarly, the consideration of caching in servers and devices could
also have a notable influence on the computation offloading decisions
made by the agent, but only a few reviewed articles considered it, and
additional research is required.

6.9.8. Real-world evaluations
Finally, practically all the articles reviewed verify the performance

of their proposals through simulations, which, considering the relative
novelty of these concepts and the difficulty of implementing them
in a real environment, is understandable. However, the size of the
simulated networks is often not fully representative. For example, the
number of users in a smart city can be enormous, and only four
articles Ale et al. (2021a), Shi et al. (2021), Zhang et al. (2021e),
Ale et al. (2021b) evaluated their proposal with simulations of up to
1000 devices. Simulations with a large number of devices can help to
test the scalability of the system, which is of great importance when
considering MEC systems in a city area, for example. Moreover, only
one of the reviewed articles carried out experiments on a real testbed.
Even if they are conducted on a small scale, this may be the right
way to find possible real-world challenges that are not represented in
the models and simulations carried out. The development and use of
testbeds to validate the proposals is one of the most important issues
to be addressed in the following years. It would also be greatly useful,
in order to provide a deeper understanding of the authors’ proposals
and experiments, if the code used would be available, where possible,
as only four articles Huang et al. (2020a), Qu et al. (2021), Qiu et al.
(2021), Zhan et al. (2020a) report the publication of their code.

7. Conclusion

With the increasing trend towards ubiquitous computing, devices
with limited computing capabilities such as mobile devices, vehicles or
IoT devices need to execute increasingly demanding applications with
an appropriate delay. In this context, the use of computation offloading
is of great relevance, even more in combination with the concept of
edge computing, formally defined by ETSI as MEC. The edge computing
paradigm enables powerful computational resources of a data centre
to be available at a much closer location than in the cloud comput-
ing paradigm, greatly reducing the latency of offloaded applications.
However, algorithms are needed to decide which applications should
be optimally offloaded. Due to the complexity of the systems and the
time-varying aspects, reinforcement learning and deep reinforcement
learning algorithms are widely proposed in the literature to solve this
problem.

In this survey, we have explored recently proposed RL-based solu-
tions to this problem. These solutions were classified and compared
according to multiple parameters, related both to the algorithm on
which the proposed solution was based and to the system or model
under consideration. This classification is summarised in Tables 3 to 12
and Figs. 5 to 13. Regarding the algorithm, in our classification we
took into account the RL technique used, the objectives to be achieved
by the algorithm and its approach (centralised or distributed). With
regard to the model and system assumed by the authors, we took into
account aspects related to the network, applications to be offloaded
and time-varying aspects considered in these systems. Similarly, we
also analysed the evaluation of the proposed solution, differentiating
whether it was carried out through simulations or in a testbed or
real environment. Finally, we discussed directions for future research,
explaining the challenges and problems to be addressed in the use
of RL-based algorithms for computation offloading in edge computing
systems.



Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been supported by Consejería de Educación de la
Junta de Castilla y León and the European Regional Development Fund
(Grant VA231P20) and by Ministerio de Ciencia e Innovación / Agen-
cia Estatal de Investigación (Grant PID2020-112675RB-C42 funded
by MCIN/AEI/10.13039/501100011033, Grant PID2021-124463OB-
I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A
way of making Europe, and Grant RED2018-102585-T funded by
MCIN/AEI/10.13039/501100011033).

References

Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi, C., 2019. Dynamic
task offloading and scheduling for low-latency IoT services in multi-access edge
computing. IEEE J. Sel. Areas Commun. 37 (3), 668–682. http://dx.doi.org/10.
1109/JSAC.2019.2894306.

Ale, L., King, S.A., Zhang, N., Sattar, A.R., 2021a. Deep reinforcement learning aided
task partitioning and computation offloading in mobile edge computing. In: 2021
IEEE/CIC International Conference on Communications in China. ICCC 2021, pp.
340–345. http://dx.doi.org/10.1109/ICCC52777.2021.9580392.

Ale, L., Zhang, N., Fang, X., Chen, X., Wu, S., Li, L., 2021b. Delay-aware and
energy-efficient computation offloading in mobile-edge computing using deep
reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 7 (3), 881–892. http:
//dx.doi.org/10.1109/TCCN.2021.3066619.

Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G., 2020. Task offloading
and resource allocation for mobile edge computing by deep reinforcement learning
based on SARSA. IEEE Access 8, 54074–54084. http://dx.doi.org/10.1109/ACCESS.
2020.2981434.

Alhaddadin, F., Liu, W., Gutiérrez, J.A., 2014. A user profile-aware policy-based
management framework for greening the cloud. In: 2014 IEEE Fourth International
Conference on Big Data and Cloud Computing. BDCloud 2014, pp. 682–687.
http://dx.doi.org/10.1109/BDCloud.2014.116.

Althamary, I., Huang, C.-W., Lin, P., 2019. A survey on multi-agent reinforcement
learning methods for vehicular networks. In: 2019 15th International Wireless
Communications Mobile Computing Conference. IWCMC, pp. 1154–1159. http:
//dx.doi.org/10.1109/IWCMC.2019.8766739.

Anon, 2017. The standard, news from ETSI - Issue 2, 2017. URL https://www.etsi.org/
images/files/ETSInewsletter/etsinewsletter-issue2-2017.pdf.

Beck, M., Werner, M., Feld, S., Schimper, T., 2014. Mobile edge computing: A
taxonomy. In: The Sixth International Conference on Advances in Future Internet.
In: AFIN 2014, pp. 48–54.

Bi, S., Huang, L., Wang, H., Zhang, Y.-J.A., 2021a. Lyapunov-guided deep reinforce-
ment learning for stable online computation offloading in mobile-edge computing
networks. IEEE Trans. Wireless Commun. http://dx.doi.org/10.1109/TWC.2021.
3085319.

Bi, S., Huang, L., Wang, H., Zhang, Y.-J.A., 2021b. Stable online computation offloading
via Lyapunov-guided deep reinforcement learning. In: IEEE International Con-
ference on Communications. pp. 1–7. http://dx.doi.org/10.1109/ICC42927.2021.
9500520.

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in
the internet of things. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing. MCC ’12, Association for Computing Machinery, pp.
13–16. http://dx.doi.org/10.1145/2342509.2342513.

Cao, B., Zhang, L., Li, Y., Feng, D., Cao, W., 2019. Intelligent offloading in multi-access
edge computing: A state-of-the-art review and framework. IEEE Commun. Mag. 57
(3), 56–62. http://dx.doi.org/10.1109/MCOM.2019.1800608.

Chen, M., Hao, Y., 2018. Task offloading for mobile edge computing in software
defined ultra-dense network. IEEE J. Sel. Areas Commun. 36 (3), 587–597. http:
//dx.doi.org/10.1109/JSAC.2018.2815360.

Chen, W., Qiu, X., Cai, T., Dai, H.-N., Zheng, Z., Zhang, Y., 2021a. Deep reinforcement
learning for internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor.
30

23 (3), 1659–1692. http://dx.doi.org/10.1109/COMST.2021.3073036.
Chen, Z., Wang, X., 2020. Decentralized computation offloading for multi-user mo-
bile edge computing: a deep reinforcement learning approach. Eurasip J. Wirel.
Commun. Netw. 2020 (1), http://dx.doi.org/10.1186/s13638-020-01801-6.

Chen, M., Wang, T., Zhang, S., Liu, A., 2021b. Deep reinforcement learning for
computation offloading in mobile edge computing environment. Comput. Commun.
175, 1–12. http://dx.doi.org/10.1016/j.comcom.2021.04.028.

Chen, J., Wu, Z., 2021. Dynamic computation offloading with energy harvesting
devices: A graph-based deep reinforcement learning approach. IEEE Commun. Lett.
25 (9), 2968–2972. http://dx.doi.org/10.1109/LCOMM.2021.3094842.

Chen, X., Wu, J., Cai, Y., Zhang, H., Chen, T., 2015. Energy-efficiency oriented
traffic offloading in wireless networks: A brief survey and a learning approach
for heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 33 (4), 627–640.
http://dx.doi.org/10.1109/JSAC.2015.2393496.

Chen, X., Wu, C., Liu, Z., Zhang, N., Ji, Y., 2021c. Computation offloading in beyond 5G
networks: A distributed learning framework and applications. IEEE Wirel. Commun.
28 (2), 56–62. http://dx.doi.org/10.1109/MWC.001.2000296.

Chen, J., Xing, H., Xiao, Z., Xu, L., Tao, T., 2021d. A DRL agent for jointly optimizing
computation offloading and resource allocation in MEC. IEEE Internet Things J.
http://dx.doi.org/10.1109/JIOT.2021.3081694.

Chen, Z., Zhang, L., Pei, Y., Jiang, C., Yin, L., 2021e. NOMA-based multi-user
mobile edge computation offloading via cooperative multi-agent deep reinforcement
learning. IEEE Trans. Cogn. Commun. Netw. http://dx.doi.org/10.1109/TCCN.
2021.3093436.

Chen, C., Zhang, Y., Wang, Z., Wan, S., Pei, Q., 2021f. Distributed computation
offloading method based on deep reinforcement learning in ICV. Appl. Soft Comput.
103, http://dx.doi.org/10.1016/j.asoc.2021.107108.

Cui, Y., Du, L., Wang, H., Wu, D., Wang, R., 2021. Reinforcement learning for joint
optimization of communication and computation in vehicular networks. IEEE Trans.
Veh. Technol. http://dx.doi.org/10.1109/TVT.2021.3125109.

Cui, Y., Zhang, D., Zhang, T., Chen, L., Piao, M., Zhu, H., 2020. Novel method of
mobile edge computation offloading based on evolutionary game strategy for IoT
devices. AEU - Int. J. Electron. Commun. 118, http://dx.doi.org/10.1016/j.aeue.
2020.153134.

Dai, B., Niu, J., Ren, T., Hu, Z., Atiquzzaman, M., 2021. Towards energy-efficient
scheduling of UAV and base station hybrid enabled mobile edge computing. IEEE
Trans. Veh. Technol. http://dx.doi.org/10.1109/TVT.2021.3129214.

Dai, Y., Zhang, K., Maharjan, S., Zhang, Y., 2020. Edge intelligence for energy-efficient
computation offloading and resource allocation in 5G beyond. IEEE Trans. Veh.
Technol. 69 (10), 12175–12186. http://dx.doi.org/10.1109/TVT.2020.3013990.

Davis, A., Parikh, J., Weihl, W.E., 2004. Edgecomputing: Extending enterprise ap-
plications to the edge of the internet. In: Proceedings of the 13th International
World Wide Web Conference on Alternate Track Papers & Posters. WWW Alt. ’04,
Association for Computing Machinery, pp. 180–187. http://dx.doi.org/10.1145/
1013367.1013397.

Deng, X., Yin, J., Guan, P., Xiong, N.N., Zhang, L., Mumtaz, S., 2021. Intelligent delay-
aware partial computing task offloading for multi-user industrial internet of things
through edge computing. IEEE Internet Things J. http://dx.doi.org/10.1109/JIOT.
2021.3123406.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, W., 2002. Globally
distribued content delivery. IEEE Internet Comput. 6, 50–58. http://dx.doi.org/10.
1109/MIC.2002.1036038.

Dinh, H.T., Lee, C., Niyato, D., Wang, P., 2013. A survey of mobile cloud computing:
architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13 (18),
1587–1611. http://dx.doi.org/10.1002/wcm.1203.

Dong, H., Ding, Z., Zhang, S., 2020. Deep Reinforcement Learning Fundamentals,
Research and Applications: Fundamentals, Research and Applications. Springer
Nature Singapore Pte Ltd. http://dx.doi.org/10.1007/978-981-15-4095-0.

Du, J., Yu, F., Lu, G., Wang, J., Jiang, J., Chu, X., 2020. MEC-assisted immersive VR
video streaming over Terahertz wireless networks: A deep reinforcement learning
approach. IEEE Internet Things J. 7 (10), 9517–9529. http://dx.doi.org/10.1109/
JIOT.2020.3003449.

Elgendy, I.A., Muthanna, A., Hammoudeh, M., Shaiba, H., Unal, D., Khayyat, M.,
2021a. Advanced deep learning for resource allocation and security aware data
offloading in industrial mobile edge computing. Big Data 9 (4), 265–278. http:
//dx.doi.org/10.1089/big.2020.0284.

Elgendy, I.A., Zhang, W.-Z., He, H., Gupta, B.B., Abd El-Latif, A.A., 2021b. Joint
computation offloading and task caching for multi-user and multi-task MEC systems:
reinforcement learning-based algorithms. Wirel. Netw. 27 (3), 2023–2038. http:
//dx.doi.org/10.1007/s11276-021-02554-w.

Elsevier, 2022b. Scopus preview. URL www.scopus.com.
Fan, W., Zhang, W., Wang, L., Liu, T., Zhang, G., 2021. Joint offloading and resource

allocation in cooperative blockchain-enabled MEC system. In: ACM International
Conference Proceeding Series. pp. 136–140. http://dx.doi.org/10.1145/3472634.
3472666.

Fang, J., Zhang, M., Ye, Z., Shi, J., Wei, J., 2021. Smart collaborative optimizations
strategy for mobile edge computing based on deep reinforcement learning. Comput.

Electr. Eng. 96, http://dx.doi.org/10.1016/j.compeleceng.2021.107539.

http://dx.doi.org/10.1109/JSAC.2019.2894306
http://dx.doi.org/10.1109/JSAC.2019.2894306
http://dx.doi.org/10.1109/JSAC.2019.2894306
http://dx.doi.org/10.1109/ICCC52777.2021.9580392
http://dx.doi.org/10.1109/TCCN.2021.3066619
http://dx.doi.org/10.1109/TCCN.2021.3066619
http://dx.doi.org/10.1109/TCCN.2021.3066619
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/BDCloud.2014.116
http://dx.doi.org/10.1109/IWCMC.2019.8766739
http://dx.doi.org/10.1109/IWCMC.2019.8766739
http://dx.doi.org/10.1109/IWCMC.2019.8766739
https://www.etsi.org/images/files/ETSInewsletter/etsinewsletter-issue2-2017.pdf
https://www.etsi.org/images/files/ETSInewsletter/etsinewsletter-issue2-2017.pdf
https://www.etsi.org/images/files/ETSInewsletter/etsinewsletter-issue2-2017.pdf
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb8
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb8
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb8
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb8
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb8
http://dx.doi.org/10.1109/TWC.2021.3085319
http://dx.doi.org/10.1109/TWC.2021.3085319
http://dx.doi.org/10.1109/TWC.2021.3085319
http://dx.doi.org/10.1109/ICC42927.2021.9500520
http://dx.doi.org/10.1109/ICC42927.2021.9500520
http://dx.doi.org/10.1109/ICC42927.2021.9500520
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/MCOM.2019.1800608
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/COMST.2021.3073036
http://dx.doi.org/10.1186/s13638-020-01801-6
http://dx.doi.org/10.1016/j.comcom.2021.04.028
http://dx.doi.org/10.1109/LCOMM.2021.3094842
http://dx.doi.org/10.1109/JSAC.2015.2393496
http://dx.doi.org/10.1109/MWC.001.2000296
http://dx.doi.org/10.1109/JIOT.2021.3081694
http://dx.doi.org/10.1109/TCCN.2021.3093436
http://dx.doi.org/10.1109/TCCN.2021.3093436
http://dx.doi.org/10.1109/TCCN.2021.3093436
http://dx.doi.org/10.1016/j.asoc.2021.107108
http://dx.doi.org/10.1109/TVT.2021.3125109
http://dx.doi.org/10.1016/j.aeue.2020.153134
http://dx.doi.org/10.1016/j.aeue.2020.153134
http://dx.doi.org/10.1016/j.aeue.2020.153134
http://dx.doi.org/10.1109/TVT.2021.3129214
http://dx.doi.org/10.1109/TVT.2020.3013990
http://dx.doi.org/10.1145/1013367.1013397
http://dx.doi.org/10.1145/1013367.1013397
http://dx.doi.org/10.1145/1013367.1013397
http://dx.doi.org/10.1109/JIOT.2021.3123406
http://dx.doi.org/10.1109/JIOT.2021.3123406
http://dx.doi.org/10.1109/JIOT.2021.3123406
http://dx.doi.org/10.1109/MIC.2002.1036038
http://dx.doi.org/10.1109/MIC.2002.1036038
http://dx.doi.org/10.1109/MIC.2002.1036038
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1007/978-981-15-4095-0
http://dx.doi.org/10.1109/JIOT.2020.3003449
http://dx.doi.org/10.1109/JIOT.2020.3003449
http://dx.doi.org/10.1109/JIOT.2020.3003449
http://dx.doi.org/10.1089/big.2020.0284
http://dx.doi.org/10.1089/big.2020.0284
http://dx.doi.org/10.1089/big.2020.0284
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s11276-021-02554-w
http://www.scopus.com
http://dx.doi.org/10.1145/3472634.3472666
http://dx.doi.org/10.1145/3472634.3472666
http://dx.doi.org/10.1145/3472634.3472666
http://dx.doi.org/10.1016/j.compeleceng.2021.107539


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Feng, J., Yu, F., Pei, Q., Chu, X., Du, J., Zhu, L., 2020. Cooperative computation
offloading and resource allocation for blockchain-enabled mobile-edge computing:
A deep reinforcement learning approach. IEEE Internet Things J. 7 (7), 6214–6228.
http://dx.doi.org/10.1109/JIOT.2019.2961707.

Ferrer, A.J., Marquès, J.M., Jorba, J., 2019. Towards the decentralised cloud: Survey on
approaches and challenges for mobile, ad hoc, and edge computing. ACM Comput.
Surv. 51 (6), http://dx.doi.org/10.1145/3243929.

Gao, Z., Hao, W., Han, Z., Yang, S., 2020. Q-learning-based task offloading and
resources optimization for a collaborative computing system. IEEE Access 8,
149011–149024. http://dx.doi.org/10.1109/ACCESS.2020.3015993.

Ge, S., Lu, B., Gong, J., Chen, X., 2020. Computation offloading and security with Q-
learning. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, vol. 316 LNICST, pp. 71–81. http:
//dx.doi.org/10.1007/978-3-030-44751-9_7.

Geng, L., Zhao, H., Liu, H., Wang, Y., Feng, W., Bai, L., 2021. Deep reinforcement
learning-based computation offloading in vehicular networks. In: Proceedings -
2021 8th IEEE International Conference on Cyber Security and Cloud Computing
and 2021 7th IEEE International Conference on Edge Computing and Scalable
Cloud, CSCloud-EdgeCom 2021. pp. 200–206. http://dx.doi.org/10.1109/CSCloud-
EdgeCom52276.2021.00044.

Giust, F., Verin, G., Antevski, K., Chou, J., Fang, Y., Featherstone, W., Fontes, F.,
Frydman, D., Li, A., Manzalini, A., et al., 2018. MEC deployments in 4G and
evolution towards 5G. ETSI White Paper 24, 1–24.

Gong, Y., Wang, J., Nie, T., 2020. Deep reinforcement learning aided computation
offloading and resource allocation for IoT. In: 2020 IEEE Computing, Commu-
nications and IoT Applications. ComComAp, pp. 1–6. http://dx.doi.org/10.1109/
ComComAp51192.2020.9398891.

Guo, F., Yu, F., Zhang, H., Ji, H., Liu, M., Leung, V.C., 2020. Adaptive resource
allocation in future wireless networks with blockchain and mobile edge computing.
IEEE Trans. Wireless Commun. 19 (3), 1689–1703. http://dx.doi.org/10.1109/
TWC.2019.2956519.

Hao, H., Xu, C., Zhong, L., Muntean, G.-M., 2020. A multi-update deep reinforcement
learning algorithm for edge computing service offloading. In: MM 2020 - Proceed-
ings of the 28th ACM International Conference on Multimedia. pp. 3256–3264.
http://dx.doi.org/10.1145/3394171.3413702.

Ho, T.M., Nguyen, K.-K., 2020. Joint server selection, cooperative offloading and
handover in multi-access edge computing wireless network: A deep reinforcement
learning approach. IEEE Trans. Mob. Comput. http://dx.doi.org/10.1109/TMC.
2020.3043736.

Hu, Z., Niu, J., Ren, T., Dai, B., Li, Q., Xu, M., Das, S.K., 2021. An efficient online
computation offloading approach for large-scale mobile edge computing via deep
reinforcement learning. IEEE Trans. Serv. Comput. http://dx.doi.org/10.1109/TSC.
2021.3116280.

Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V., 2015. Mobile edge computing:
A key technology towards 5G. ETSI White Paper 11, 1–16.

Huang, L., Bi, S., Zhang, Y.-J.A., 2020a. Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing networks. IEEE
Trans. Mob. Comput. 19 (11), 2581–2593. http://dx.doi.org/10.1109/TMC.2019.
2928811.

Huang, X., He, L., Zhang, W., 2020b. Vehicle speed aware computing task offloading
and resource allocation based on multi-agent reinforcement learning in a vehic-
ular edge computing network. In: Proceedings - 2020 IEEE 13th International
Conference on Edge Computing. EDGE 2020, pp. 1–8. http://dx.doi.org/10.1109/
EDGE50951.2020.00008.

Huang, X., Leng, S., Maharjan, S., Zhang, Y., 2021a. Multi-agent deep reinforcement
learning for computation offloading and interference coordination in small cell
networks. IEEE Trans. Veh. Technol. 70 (9), 9282–9293. http://dx.doi.org/10.
1109/TVT.2021.3096928.

Huang, H., Ye, Q., Zhou, Y., 2021b. Deadline-aware task offloading with partially-
observable deep reinforcement learning for multi-access edge computing. IEEE
Trans. Netw. Sci. Eng. http://dx.doi.org/10.1109/TNSE.2021.3115054.

Islam, A., Debnath, A., Ghose, M., Chakraborty, S., 2021. A survey on task offloading
in multi-access edge computing. J. Syst. Archit. 118 (102225), 1–16. http://dx.doi.
org/10.1016/j.sysarc.2021.102225.

Jeong, J., Kim, I.-M., Hong, D., 2021. Deep reinforcement learning-based task offloading
decision in the time varying channel. In: 2021 International Conference on
Electronics, Information, and Communication. ICEIC 2021, pp. 1–4. http://dx.doi.
org/10.1109/ICEIC51217.2021.9369737.

Jiang, C., Cheng, X., Gao, H., Zhou, X., Wan, J., 2019. Toward computation offloading
in edge computing: A survey. IEEE Access 7, 131543–131558. http://dx.doi.org/
10.1109/ACCESS.2019.2938660.

Jiang, B., Li, K., Zhou, B., Tao, M., Chen, Z., 2020a. Deep reinforcement learning for
distributed computation offloading in massive-user mobile edge networks. In: The
12th International Conference on Wireless Communications and Signal Processing.
WCSP 2020, pp. 811–816. http://dx.doi.org/10.1109/WCSP49889.2020.9299723.

Jiang, Q., Zhang, Y., Yan, J., 2020b. Neural combinatorial optimization for energy-
efficient offloading in mobile edge computing. IEEE Access 8, 35077–35089. http:
31

//dx.doi.org/10.1109/ACCESS.2020.2974484.
Jiang, K., Zhou, H., Li, D., Liu, X., Xu, S., 2020c. A Q-learning based method for energy-
efficient computation offloading in mobile edge computing. In: Proceedings - In-
ternational Conference on Computer Communications and Networks. 2020-August.
ICCCN, pp. 1–7. http://dx.doi.org/10.1109/ICCCN49398.2020.9209738.

Ke, H., Wang, J., Deng, L., Ge, Y., Wang, H., 2020. Deep reinforcement learning-based
adaptive computation offloading for MEC in heterogeneous vehicular networks.
IEEE Trans. Veh. Technol. 69 (7), 7916–7929. http://dx.doi.org/10.1109/TVT.
2020.2993849.

Ke, H., Wang, H., Sun, W., Sun, H., 2021a. Adaptive computation offloading policy
for multi-access edge computing in heterogeneous wireless networks. IEEE Trans.
Netw. Serv. Manag. http://dx.doi.org/10.1109/TNSM.2021.3118696.

Ke, H.C., Wang, H., Zhao, H., Sun, W.J., 2021b. Deep reinforcement learning-based
computation offloading and resource allocation in security-aware mobile edge
computing. Wirel. Netw. 27 (5), 3357–3373. http://dx.doi.org/10.1007/s11276-
021-02643-w.

Khan, I., Tao, X., Shafiqur Rahman, G., Rehman, W.U., Salam, T., 2020. Advanced
energy-efficient computation offloading using deep reinforcement learning in MTC
edge computing. IEEE Access 8, 82867–82875. http://dx.doi.org/10.1109/ACCESS.
2020.2991057.

Khayyat, M., Elgendy, I.A., Muthanna, A., Alshahrani, A.S., Alharbi, S., Koucheryavy, A.,
2020. Advanced deep learning-based computational offloading for multilevel ve-
hicular edge-cloud computing networks. IEEE Access 8, 137052–137062. http:
//dx.doi.org/10.1109/ACCESS.2020.3011705.

Kim, K., Park, Y.M., Seon Hong, C., 2020. Machine learning based edge-assisted
UAV computation offloading for data analyzing. In: International Conference on
Information Networking. 2020-January. pp. 117–120. http://dx.doi.org/10.1109/
ICOIN48656.2020.9016432.

Kiran, N., Pan, C., Wang, S., Yin, C., 2020. Joint resource allocation and computation
offloading in mobile edge computing for SDN based wireless networks. J. Commun.
Netw. 22 (1), 1–11. http://dx.doi.org/10.1109/JCN.2019.000046.

Klas, G., 2015. Fog computing and mobile edge cloud gain momentum open fog
consortium, ETSI MEC and cloudlets. pp. 1–14.

Li, G., Chen, M., Wei, X., Qi, T., Zhuang, W., 2020a. Computation offloading with
reinforcement learning in D2D-MEC network. In: 2020 International Wireless
Communications and Mobile Computing. IWCMC 2020, pp. 69–74. http://dx.doi.
org/10.1109/IWCMC48107.2020.9148285.

Li, M., Gao, J., Zhao, L., Shen, X., 2020b. Deep reinforcement learning for collaborative
edge computing in vehicular networks. IEEE Trans. Cogn. Commun. Netw. 6 (4),
1122–1135. http://dx.doi.org/10.1109/TCCN.2020.3003036.

Li, S., Hu, X., Du, Y., 2021a. Deep reinforcement learning and game theory for
computation offloading in dynamic edge computing markets. IEEE Access 9,
121456–121466. http://dx.doi.org/10.1109/ACCESS.2021.3109132.

Li, S., Hu, X., Du, Y., 2021b. Deep reinforcement learning for computation offload-
ing and resource allocation in unmanned-aerial-vehicle assisted edge computing.
Sensors 21 (19), http://dx.doi.org/10.3390/s21196499.

Li, S., Li, B., Zhao, W., 2020c. Joint optimization of caching and computation
in multi-server NOMA-MEC system via reinforcement learning. IEEE Access 8,
112762–112771. http://dx.doi.org/10.1109/ACCESS.2020.3002895.

Li, Y., Qi, F., Wang, Z., Yu, X., Shao, S., 2020d. Distributed edge computing offloading
algorithm based on deep reinforcement learning. IEEE Access 8, 85204–85215.
http://dx.doi.org/10.1109/ACCESS.2020.2991773.

Li, Q., Sun, Y., Tian, T., Yang, R., Meng, L., Zhang, Y., Yu, F., 2020e. Research on
security of D2D resource sharing based on blockchain in mobile edge network. In:
2020 12th International Conference on Communication Software and Networks.
ICCSN 2020, pp. 202–206. http://dx.doi.org/10.1109/ICCSN49894.2020.9139065.

Li, Y., Xu, S., 2021. Collaborative optimization of edge-cloud computation offloading
in internet of vehicles. In: Proceedings - International Conference on Computer
Communications and Networks. 2021-July. ICCCN, pp. 1–6. http://dx.doi.org/10.
1109/ICCCN52240.2021.9522252.

Li, Z., Xu, M., Nie, J., Kang, J., Chen, W., Xie, S., 2021c. NOMA-enabled cooperative
computation offloading for blockchain-empowered internet of things: A learning
approach. IEEE Internet Things J. 8 (4), 2364–2378. http://dx.doi.org/10.1109/
JIOT.2020.3016644.

Liang, Y., He, Y., Zhong, X., 2020a. Decentralized computation offloading and resource
allocation in MEC by deep reinforcement learning. In: 2020 IEEE/CIC International
Conference on Communications in China. ICCC 2020, pp. 244–249. http://dx.doi.
org/10.1109/ICCC49849.2020.9238942.

Liang, S., Wan, H., Qin, T., Li, J., Chen, W., 2020b. Multi-user computation offloading
for mobile edge computing: A deep reinforcement learning and game theory ap-
proach. In: 2020 IEEE 20th International Conference on Communication Technology
Proceedings. 2020-October. pp. 1534–1539. http://dx.doi.org/10.1109/ICCT50939.
2020.9295872.

Lin, P., Song, Q., Yu, F.R., Wang, D., Guo, L., 2021. Task offloading for wireless VR-
enabled medical treatment with blockchain security using collective reinforcement
learning. IEEE Internet Things J. http://dx.doi.org/10.1109/JIOT.2021.3051419.

Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L., 2020. A survey on computation
offloading modeling for edge computing. J. Netw. Comput. Appl. 169, 102781.

http://dx.doi.org/10.1016/j.jnca.2020.102781.

http://dx.doi.org/10.1109/JIOT.2019.2961707
http://dx.doi.org/10.1145/3243929
http://dx.doi.org/10.1109/ACCESS.2020.3015993
http://dx.doi.org/10.1007/978-3-030-44751-9_7
http://dx.doi.org/10.1007/978-3-030-44751-9_7
http://dx.doi.org/10.1007/978-3-030-44751-9_7
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00044
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00044
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00044
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb43
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb43
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb43
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb43
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb43
http://dx.doi.org/10.1109/ComComAp51192.2020.9398891
http://dx.doi.org/10.1109/ComComAp51192.2020.9398891
http://dx.doi.org/10.1109/ComComAp51192.2020.9398891
http://dx.doi.org/10.1109/TWC.2019.2956519
http://dx.doi.org/10.1109/TWC.2019.2956519
http://dx.doi.org/10.1109/TWC.2019.2956519
http://dx.doi.org/10.1145/3394171.3413702
http://dx.doi.org/10.1109/TMC.2020.3043736
http://dx.doi.org/10.1109/TMC.2020.3043736
http://dx.doi.org/10.1109/TMC.2020.3043736
http://dx.doi.org/10.1109/TSC.2021.3116280
http://dx.doi.org/10.1109/TSC.2021.3116280
http://dx.doi.org/10.1109/TSC.2021.3116280
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb49
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb49
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb49
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/EDGE50951.2020.00008
http://dx.doi.org/10.1109/EDGE50951.2020.00008
http://dx.doi.org/10.1109/EDGE50951.2020.00008
http://dx.doi.org/10.1109/TVT.2021.3096928
http://dx.doi.org/10.1109/TVT.2021.3096928
http://dx.doi.org/10.1109/TVT.2021.3096928
http://dx.doi.org/10.1109/TNSE.2021.3115054
http://dx.doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.1109/ICEIC51217.2021.9369737
http://dx.doi.org/10.1109/ICEIC51217.2021.9369737
http://dx.doi.org/10.1109/ICEIC51217.2021.9369737
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/WCSP49889.2020.9299723
http://dx.doi.org/10.1109/ACCESS.2020.2974484
http://dx.doi.org/10.1109/ACCESS.2020.2974484
http://dx.doi.org/10.1109/ACCESS.2020.2974484
http://dx.doi.org/10.1109/ICCCN49398.2020.9209738
http://dx.doi.org/10.1109/TVT.2020.2993849
http://dx.doi.org/10.1109/TVT.2020.2993849
http://dx.doi.org/10.1109/TVT.2020.2993849
http://dx.doi.org/10.1109/TNSM.2021.3118696
http://dx.doi.org/10.1007/s11276-021-02643-w
http://dx.doi.org/10.1007/s11276-021-02643-w
http://dx.doi.org/10.1007/s11276-021-02643-w
http://dx.doi.org/10.1109/ACCESS.2020.2991057
http://dx.doi.org/10.1109/ACCESS.2020.2991057
http://dx.doi.org/10.1109/ACCESS.2020.2991057
http://dx.doi.org/10.1109/ACCESS.2020.3011705
http://dx.doi.org/10.1109/ACCESS.2020.3011705
http://dx.doi.org/10.1109/ACCESS.2020.3011705
http://dx.doi.org/10.1109/ICOIN48656.2020.9016432
http://dx.doi.org/10.1109/ICOIN48656.2020.9016432
http://dx.doi.org/10.1109/ICOIN48656.2020.9016432
http://dx.doi.org/10.1109/JCN.2019.000046
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb67
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb67
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb67
http://dx.doi.org/10.1109/IWCMC48107.2020.9148285
http://dx.doi.org/10.1109/IWCMC48107.2020.9148285
http://dx.doi.org/10.1109/IWCMC48107.2020.9148285
http://dx.doi.org/10.1109/TCCN.2020.3003036
http://dx.doi.org/10.1109/ACCESS.2021.3109132
http://dx.doi.org/10.3390/s21196499
http://dx.doi.org/10.1109/ACCESS.2020.3002895
http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/ICCSN49894.2020.9139065
http://dx.doi.org/10.1109/ICCCN52240.2021.9522252
http://dx.doi.org/10.1109/ICCCN52240.2021.9522252
http://dx.doi.org/10.1109/ICCCN52240.2021.9522252
http://dx.doi.org/10.1109/JIOT.2020.3016644
http://dx.doi.org/10.1109/JIOT.2020.3016644
http://dx.doi.org/10.1109/JIOT.2020.3016644
http://dx.doi.org/10.1109/ICCC49849.2020.9238942
http://dx.doi.org/10.1109/ICCC49849.2020.9238942
http://dx.doi.org/10.1109/ICCC49849.2020.9238942
http://dx.doi.org/10.1109/ICCT50939.2020.9295872
http://dx.doi.org/10.1109/ICCT50939.2020.9295872
http://dx.doi.org/10.1109/ICCT50939.2020.9295872
http://dx.doi.org/10.1109/JIOT.2021.3051419
http://dx.doi.org/10.1016/j.jnca.2020.102781


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Liu, K.-H., Hsu, Y.-H., Lin, W.-N., Liao, W., 2021a. Fine-grained offloading for multi-
access edge computing with actor-critic federated learning. In: IEEE Wireless
Communications and Networking Conference. 2021-March. WCNC, pp. 1–6. http:
//dx.doi.org/10.1109/WCNC49053.2021.9417477.

Liu, R., Liu, X., Wang, S., Yin, C., 2020a. Deep deterministic policy gradient based
computation offloading in wireless-powered MEC networks. In: Deep Deterministic
Policy Gradient Based Computation Offloading in Wireless-Powered MEC Networks.
pp. 1–6. http://dx.doi.org/10.1109/GCWkshps50303.2020.9367589.

Liu, W., Shao, X., Wang, C., Gu, X., Jiang, F., Peng, J., 2020b. An online reinforcement
learning offloading method for delay-sensitive vehicular service. In: Proceedings -
2020 IEEE 22nd International Conference on High Performance Computing and
Communications, IEEE 18th International Conference on Smart City and IEEE 6th
International Conference on Data Science and Systems, HPCC-SmartCity-DSS 2020.
pp. 973–978. http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00130.

Liu, W., Wang, C., Mi, J., Luan, H., Luo, Y., 2021b. A reinforcement model based
prioritized replay to solve the offloading problem in edge computing. In: Lec-
ture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 12939 LNCS, pp. 471–478.
http://dx.doi.org/10.1007/978-3-030-86137-7_50.

Liu, Y., Xie, S., Zhang, Y., 2020c. Cooperative offloading and resource management
for UAV-enabled mobile edge computing in power IoT system. IEEE Trans. Veh.
Technol. 69 (10), 12229–12239. http://dx.doi.org/10.1109/TVT.2020.3016840.

Liu, X., Yu, J., Feng, Z., Gao, Y., 2020d. Multi-agent reinforcement learning for resource
allocation in IoT networks with edge computing. China Commun. 17 (9), 220–236.
http://dx.doi.org/10.23919/JCC.2020.09.017.

Liu, X., Yu, J., Wang, J., Gao, Y., 2020e. Resource allocation with edge computing
in IoT networks via machine learning. IEEE Internet Things J. 7 (4), 3415–3426.
http://dx.doi.org/10.1109/JIOT.2020.2970110.

Liu, T., Zhang, Y., Zhu, Y., Tong, W., Yang, Y., 2021c. Online computation offloading
and resource scheduling in mobile-edge computing. IEEE Internet Things J. 8 (8),
6649–6664. http://dx.doi.org/10.1109/JIOT.2021.3051427.

Liu, H., Zhao, H., Geng, L., Feng, W., 2020f. A policy gradient based offloading scheme
with dependency guarantees for vehicular networks. In: 2020 IEEE Globecom
Workshops, GC Wkshps 2020 - Proceedings. pp. 1–6. http://dx.doi.org/10.1109/
GCWkshps50303.2020.9367544.

Liu, H., Zhao, H., Geng, L., Wang, Y., Feng, W., 2021d. A distributed dependency-
aware offloading scheme for vehicular edge computing based on policy gradient.
In: Proceedings - 2021 8th IEEE International Conference on Cyber Security and
Cloud Computing and 2021 7th IEEE International Conference on Edge Computing
and Scalable Cloud, CSCloud-EdgeCom 2021. pp. 176–181. http://dx.doi.org/10.
1109/CSCloud-EdgeCom52276.2021.00040.

Long, J., Luo, Y., Zhu, X., Luo, E., Huang, M., 2020. Computation offloading through
mobile vehicles in IoT-edge-cloud network. Eurasip J. Wirel. Commun. Netw. 2020
(1), http://dx.doi.org/10.1186/s13638-020-01848-5.

Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K., 2020. Edge QoE: Computation
offloading with deep reinforcement learning for internet of things. IEEE Internet
Things J. 7 (10), 9255–9265. http://dx.doi.org/10.1109/JIOT.2020.2981557.

Luo, Q., Li, C., Luan, T.H., Shi, W., 2020. Collaborative data scheduling for vehicular
edge computing via deep reinforcement learning. IEEE Internet Things J. 7 (10),
9637–9650. http://dx.doi.org/10.1109/JIOT.2020.2983660.

Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., Kim, D.I., 2019.
Applications of deep reinforcement learning in communications and networking: A
survey. IEEE Commun. Surv. Tutor. 21 (4), 3133–3174. http://dx.doi.org/10.1109/
COMST.2019.2916583.

Mach, P., Becvar, Z., 2017. Mobile edge computing: A survey on architecture and
computation offloading. IEEE Commun. Surv. Tutor. 19 (3), 1628–1656. http:
//dx.doi.org/10.1109/COMST.2017.2682318.

Mao, M., Chai, R., Chen, Q., 2020. Energy efficient computation offloading for energy
harvesting-enabled heterogeneous cellular networks (Workshop). In: Lecture Notes
of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, vol. 313 LNICST, pp. 391–401. http://dx.doi.org/10.1007/
978-3-030-41117-6_32.

Masdari, M., Khezri, H., 2020. Efficient offloading schemes using Markovian models: a
literature review. Computing 102, 1673–1716. http://dx.doi.org/10.1007/s00607-
020-00812-x.

Mekrache, A., Bradai, A., Moulay, E., Dawaliby, S., 2021. Deep reinforcement learning
techniques for vehicular networks: Recent advances and future trends towards 6G.
Veh. Commun. 100398. http://dx.doi.org/10.1016/j.vehcom.2021.100398.

Mell, P., Grance, T., 2011. The NIST Definition of Cloud Computing, . Special Publica-
tion (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD,
http://dx.doi.org/10.6028/NIST.SP.800-145.

Mo, R., Xu, X., Zhang, X., Qi, L., Liu, Q., 2021. Computation offloading and resource
management for energy and cost trade-offs with deep reinforcement learning in
mobile edge computing. In: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
32

13121 LNCS, pp. 563–577. http://dx.doi.org/10.1007/978-3-030-91431-8_35.
Mohammed, A., Nahom, H., Tewodros, A., Habtamu, Y., Hayelom, G., 2020. Deep
reinforcement learning for computation offloading and resource allocation in
blockchain-based multi-UAV-enabled mobile edge computing. In: 2020 17th In-
ternational Computer Conference on Wavalet Active Media Techonology and
Information Processing. ICCWAMTIP, pp. 295–299. http://dx.doi.org/10.1109/
ICCWAMTIP51612.2020.9317445.

Mukherjee, M., Shu, L., Wang, D., 2018. Survey of fog computing: Fundamental,
network applications, and research challenges. IEEE Commun. Surv. Tutor. 20 (3),
1826–1857. http://dx.doi.org/10.1109/COMST.2018.2814571.

Mustafa, E., Shuja, J., uz Zaman, S.K., Jehangiri, A.I., Din, S., Rehman, F., Mustafa, S.,
Maqsood, T., Khan, A.N., 2021. Joint wireless power transfer and task offloading
in mobile edge computing: a survey. Cluster Comput. 101, 1–20. http://dx.doi.org/
10.1007/s10586-021-03376-3.

Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman, P.P., Gao, L., Xiang, Y.,
Ranjan, R., 2018. Fog computing: Survey of trends, architectures, requirements,
and research directions. IEEE Access 6, 47980–48009. http://dx.doi.org/10.1109/
ACCESS.2018.2866491.

Nath, S., Li, Y., Wu, J., Fan, P., 2020. Multi-user multi-channel computation offload-
ing and resource allocation for mobile edge computing. In: IEEE International
Conference on Communications. 2020-June. pp. 1–6. http://dx.doi.org/10.1109/
ICC40277.2020.9149124.

Nath, S., Wu, J., 2020. Dynamic computation offloading and resource allocation
for multi-user mobile edge computing. In: 2020 IEEE Global Communications
Conference, GLOBECOM 2020 - Proceedings. 2020-January. pp. 1–6. http://dx.doi.
org/10.1109/GLOBECOM42002.2020.9348161.

Nduwayezu, M., Pham, Q.-V., Hwang, W.-J., 2020. Online computation offloading
in NOMA-based multi-access edge computing: A deep reinforcement learning
approach. IEEE Access 8, 99098–99109. http://dx.doi.org/10.1109/ACCESS.2020.
2997925.

Nguyen, D., Pathirana, P., Ding, M., Seneviratne, A., 2021. Secure computation
offloading in blockchain based IoT networks with deep reinforcement learning.
IEEE Trans. Netw. Sci. Eng. http://dx.doi.org/10.1109/TNSE.2021.3106956.

Nomikos, N., Zoupanos, S., Charalambous, T., Krikidis, I., Petropulu, A., 2021. A
survey on reinforcement learning-aided caching in mobile edge networks. arXiv:
2105.05564.

Nygren, E., Sitaraman, R.K., Sun, J., 2010. The Akamai network: A platform for
high-performance internet applications. SIGOPS Oper. Syst. Rev. 44 (3), 2–19.
http://dx.doi.org/10.1145/1842733.1842736.

OpenFog Consortium, 2022a. OpenFog reference architecture for fog computing.
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf.
(Accessed 12 July 2022).

Qian, L., Wu, Y., Jiang, F., Yu, N., Lu, W., Lin, B., 2021. NOMA assisted multi-
task multi-access mobile edge computing via deep reinforcement learning for
industrial internet of things. IEEE Trans. Ind. Inform. 17 (8), 5688–5698. http:
//dx.doi.org/10.1109/TII.2020.3001355.

Qian, Y., Wu, J., Wang, R., Zhu, F., Zhang, W., 2019. Survey on reinforcement learning
applications in communication networks. J. Commun. Inform. Netw. 4 (2), 30–39.
http://dx.doi.org/10.23919/JCIN.2019.8917870.

Qinghua, Z., Ying, C., Jingya, Z., Yong, L., 2020. Computation offloading optimization
in edge computing based on deep reinforcement learning. In: 2020 5th International
Conference on Mechanical, Control and Computer Engineering. ICMCCE 2020, pp.
1552–1558. http://dx.doi.org/10.1109/ICMCCE51767.2020.00340.

Qiu, X., Zhang, W., Chen, W., Zheng, Z., 2021. Distributed and collective deep
reinforcement learning for computation offloading: A practical perspective. IEEE
Trans. Parallel Distrib. Syst. 32 (5), 1085–1101. http://dx.doi.org/10.1109/TPDS.
2020.3042599.

Qu, C., Calyam, P., Yu, J., Vandanapu, A., Opeoluwa, O., Gao, K., Wang, S., Chas-
tain, R., Palaniappan, K., 2021. DroneCOCoNet: Learning-based edge computation
offloading and control networking for drone video analytics. Future Gener. Comput.
Syst. 125, 247–262. http://dx.doi.org/10.1016/j.future.2021.06.040.

Ren, T., Niu, J., Dai, B., Liu, X., Hu, Z., Xu, M., Guizani, M., 2021. Enabling efficient
scheduling in large-scale UAV-assisted mobile edge computing via hierarchical
reinforcement learning. IEEE Internet Things J. http://dx.doi.org/10.1109/JIOT.
2021.3071531.

Ren, J., Xu, S., 2021. DDPG based computation offloading and resource allocation
for MEC systems with energy harvesting. In: IEEE Vehicular Technology Confer-
ence. 2021-April. pp. 1–5. http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.
9448922.

Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J.,
Leivadeas, A., Athanasopoulos, N., Mitton, N., Papavassiliou, S., 2021. Task
offloading in Edge and Cloud Computing: A survey on mathematical, artificial
intelligence and control theory solutions. Comput. Netw. 195, 108177. http://dx.
doi.org/10.1016/j.comnet.2021.108177.

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., 2009. The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8 (4), 14–23. http://dx.

doi.org/10.1109/MPRV.2009.82.

http://dx.doi.org/10.1109/WCNC49053.2021.9417477
http://dx.doi.org/10.1109/WCNC49053.2021.9417477
http://dx.doi.org/10.1109/WCNC49053.2021.9417477
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367589
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00130
http://dx.doi.org/10.1007/978-3-030-86137-7_50
http://dx.doi.org/10.1109/TVT.2020.3016840
http://dx.doi.org/10.23919/JCC.2020.09.017
http://dx.doi.org/10.1109/JIOT.2020.2970110
http://dx.doi.org/10.1109/JIOT.2021.3051427
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367544
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367544
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367544
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00040
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00040
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00040
http://dx.doi.org/10.1186/s13638-020-01848-5
http://dx.doi.org/10.1109/JIOT.2020.2981557
http://dx.doi.org/10.1109/JIOT.2020.2983660
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1007/978-3-030-41117-6_32
http://dx.doi.org/10.1007/978-3-030-41117-6_32
http://dx.doi.org/10.1007/978-3-030-41117-6_32
http://dx.doi.org/10.1007/s00607-020-00812-x
http://dx.doi.org/10.1007/s00607-020-00812-x
http://dx.doi.org/10.1007/s00607-020-00812-x
http://dx.doi.org/10.1016/j.vehcom.2021.100398
http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.1007/978-3-030-91431-8_35
http://dx.doi.org/10.1109/ICCWAMTIP51612.2020.9317445
http://dx.doi.org/10.1109/ICCWAMTIP51612.2020.9317445
http://dx.doi.org/10.1109/ICCWAMTIP51612.2020.9317445
http://dx.doi.org/10.1109/COMST.2018.2814571
http://dx.doi.org/10.1007/s10586-021-03376-3
http://dx.doi.org/10.1007/s10586-021-03376-3
http://dx.doi.org/10.1007/s10586-021-03376-3
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ICC40277.2020.9149124
http://dx.doi.org/10.1109/ICC40277.2020.9149124
http://dx.doi.org/10.1109/ICC40277.2020.9149124
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348161
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348161
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348161
http://dx.doi.org/10.1109/ACCESS.2020.2997925
http://dx.doi.org/10.1109/ACCESS.2020.2997925
http://dx.doi.org/10.1109/ACCESS.2020.2997925
http://dx.doi.org/10.1109/TNSE.2021.3106956
http://arxiv.org/abs/2105.05564
http://arxiv.org/abs/2105.05564
http://arxiv.org/abs/2105.05564
http://dx.doi.org/10.1145/1842733.1842736
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://dx.doi.org/10.1109/TII.2020.3001355
http://dx.doi.org/10.1109/TII.2020.3001355
http://dx.doi.org/10.1109/TII.2020.3001355
http://dx.doi.org/10.23919/JCIN.2019.8917870
http://dx.doi.org/10.1109/ICMCCE51767.2020.00340
http://dx.doi.org/10.1109/TPDS.2020.3042599
http://dx.doi.org/10.1109/TPDS.2020.3042599
http://dx.doi.org/10.1109/TPDS.2020.3042599
http://dx.doi.org/10.1016/j.future.2021.06.040
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448922
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448922
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448922
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MPRV.2009.82


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Seid, A.M., Boateng, G.O., Anokye, S., Kwantwi, T., Sun, G., Liu, G., 2021a. Collab-
orative computation offloading and resource allocation in multi-UAV-assisted IoT
networks: A deep reinforcement learning approach. IEEE Internet Things J. 8 (15),
12203–12218. http://dx.doi.org/10.1109/JIOT.2021.3063188.

Seid, A.M., Boateng, G.O., Mareri, B., Jiang, W., 2021b. Multi-agent DRL for task
offloading and resource allocation in multi-UAV enabled IoT edge network. IEEE
Trans. Netw. Serv. Manag. http://dx.doi.org/10.1109/TNSM.2021.3096673.

Sha, D., Zhao, R., 2021. DRL-based task offloading and resource allocation in multi-
UAV-MEC network with SDN. In: 2021 IEEE/CIC International Conference on
Communications in China. ICCC 2021, pp. 595–600. http://dx.doi.org/10.1109/
ICCC52777.2021.9580253.

Shahidinejad, A., Farahbakhsh, F., Ghobaei-Arani, M., Malik, M.H., Anwar, T., 2021.
Context-aware multi-user offloading in mobile edge computing: a federated
learning-based approach. J. Grid Comput. 19 (2), http://dx.doi.org/10.1007/
s10723-021-09559-x.

Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M., 2020a. A survey
on the computation offloading approaches in mobile edge/cloud computing en-
vironment: A stochastic-based perspective. J. Grid Comput. 18, 639–671. http:
//dx.doi.org/10.1007/s10723-020-09530-2.

Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A., 2020b. A survey on the compu-
tation offloading approaches in mobile edge computing: A machine learning-based
perspective. Comput. Netw. 182, 107496. http://dx.doi.org/10.1016/j.comnet.
2020.107496.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: Vision and challenges.
IEEE Internet Things J. 3 (5), 637–646. http://dx.doi.org/10.1109/JIOT.2016.
2579198.

Shi, S., Wang, M., Gu, S., Zheng, Z., 2021. Energy-efficient UAV-enabled computation
offloading for industrial internet of things: a deep reinforcement learning approach.
Wirel. Netw. http://dx.doi.org/10.1007/s11276-021-02789-7.

Shi, M., Wang, R., Liu, E., Xu, Z., Wang, L., 2020. Deep reinforcement learning based
computation offloading for mobility-aware edge computing. In: Lecture Notes of
the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST. vol. 312 LNICST, pp. 53–65. http://dx.doi.org/10.1007/978-
3-030-41114-5_5.

Shu, X., Wu, L., Qin, X., Yang, R., Wu, Y., Wang, D., Liao, B., 2021. Deep reinforcement
learning cloud-edge-terminal computation resource allocation mechanism for IoT.
Adv. Intell. Syst. Comput. 1274 AISC, 1550–1556. http://dx.doi.org/10.1007/978-
981-15-8462-6_177.

Sun, Z., Mo, Y., Yu, C., 2021a. Graph reinforcement learning based task offloading for
multi-access edge computing. IEEE Internet Things J. http://dx.doi.org/10.1109/
JIOT.2021.3123822.

Sun, Z., Nakhai, M.R., 2020. An online learning algorithm for distributed task offloading
in multi-access edge computing. IEEE Trans. Signal Process. 68, 3090–3102. http:
//dx.doi.org/10.1109/TSP.2020.2991383.

Sun, Z., Zhao, M., Nakhai, M.R., 2021b. Computation offloading in energy harvesting
powered MEC network. In: IEEE International Conference on Communications. pp.
1–6. http://dx.doi.org/10.1109/ICC42927.2021.9500984.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction, second ed.
The MIT Press.

Tang, M., Wong, V.W., 2020. Deep reinforcement learning for task offloading in mobile
edge computing systems. IEEE Trans. Mob. Comput. http://dx.doi.org/10.1109/
TMC.2020.3036871.

Tang, D., Zhang, X., Li, M., Tao, X., 2020. Adaptive inference reinforcement learning for
task offloading in vehicular edge computing systems. In: 2020 IEEE International
Conference on Communications Workshops, ICC Workshops 2020 - Proceedings.
pp. 1–6. http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145133.

Tefera, G., She, K., Chen, M., Ahmed, A., 2020. Congestion-aware adaptive decentralised
computation offloading and caching for multiaccess edge computing networks. IET
Commun. 14 (19), 3410–3419. http://dx.doi.org/10.1049/iet-com.2020.0630.

Tefera, G., She, K., Shelke, M., Ahmed, A., 2021. Decentralized adaptive resource-
aware computation offloading & caching for multi-access edge computing
networks. Sustain. Comput. Inform. Syst. 30, http://dx.doi.org/10.1016/j.suscom.
2021.100555.

Tong, Z., Deng, X., Ye, F., Basodi, S., Xiao, X., Pan, Y., 2020. Adaptive computation of-
floading and resource allocation strategy in a mobile edge computing environment.
Inform. Sci. 537, 116–131. http://dx.doi.org/10.1016/j.ins.2020.05.057.

Tuong, V.D., Truong, T.P., Nguyena, T.-V., Noh, W., Cho, S., 2021. Partial computation
offloading in NOMA-assisted mobile-edge computing systems using deep reinforce-
ment learning. IEEE Internet Things J. 8 (17), 13196–13208. http://dx.doi.org/10.
1109/JIOT.2021.3064995.

Tuong, V.D., Truong, T.P., Tran, A.-T., Masood, A., Lakew, D.S., Lee, C., Lee, Y., Cho, S.,
2020. Delay-sensitive task offloading for internet of things in nonorthogonal multi-
ple access MEC networks. In: International Conference on ICT Convergence 2020.
2020-October. pp. 597–599. http://dx.doi.org/10.1109/ICTC49870.2020.9289406.

Vahid Dastjerdi, A., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R., 2016. Fog
computing: principles, architectures, and applications. In: Buyya, R., Vahid Dast-
jerdi, A. (Eds.), Internet of Things. Morgan Kaufmann, pp. 61–75. http://dx.doi.
33

org/10.1016/B978-0-12-805395-9.00004-6.
Vaquero, L.M., Rodero-Merino, L., 2014. Finding your way in the fog: Towards a
comprehensive definition of fog computing. SIGCOMM Comput. Commun. Rev. 44
(5), 27–32. http://dx.doi.org/10.1145/2677046.2677052.

Vu, T.T., Huynh, N.V., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E., 2018. Offloading
energy efficiency with delay constraint for cooperative mobile edge computing
networks. In: 2018 IEEE Global Communications Conference. GLOBECOM, pp. 1–6.
http://dx.doi.org/10.1109/GLOCOM.2018.8647856.

Wang, Y., Fang, W., Ding, Y., Xiong, N., 2021. Computation offloading optimization
for UAV-assisted mobile edge computing: a deep deterministic policy gradient
approach. Wirel. Netw. 27 (4), 2991–3006. http://dx.doi.org/10.1007/s11276-021-
02632-z.

Wang, Y., Ge, H., Feng, A., Li, W., Liu, L., Jiang, H., 2020a. Computation offloading
strategy based on deep reinforcement learning in cloud-assisted mobile edge
computing. In: 2020 IEEE 5th International Conference on Cloud Computing
and Big Data Analytics. ICCCBDA 2020, pp. 108–113. http://dx.doi.org/10.1109/
ICCCBDA49378.2020.9095689.

Wang, X., Guo, H., 2021. Mobility-aware computation offloading for swarm robotics
using deep reinforcement learning. In: 2021 IEEE 18th Annual Consumer Commu-
nications and Networking Conference. CCNC 2021, pp. 1–4. http://dx.doi.org/10.
1109/CCNC49032.2021.9369456.

Wang, H., Ke, H., Liu, G., Sun, W., 2020b. Computation migration and resource alloca-
tion in heterogeneous vehicular networks: A deep reinforcement learning approach.
IEEE Access 8, 171140–171153. http://dx.doi.org/10.1109/ACCESS.2020.3024683.

Wang, H., Ke, H., Sun, W., 2020c. Unmanned-aerial-vehicle-assisted computation
offloading for mobile edge computing based on deep reinforcement learning. IEEE
Access 8, 180784–180798. http://dx.doi.org/10.1109/ACCESS.2020.3028553.

Wang, J., Lv, T., Huang, P., Mathiopoulos, P., 2020d. Mobility-aware partial computa-
tion offloading in vehicular networks: A deep reinforcement learning based scheme.
China Commun. 17 (10), 31–49. http://dx.doi.org/10.23919/JCC.2020.10.003.

Wang, M., Shi, S., Gu, S., Gu, X., Qin, X., 2020e. Q-learning based computation
offloading for multi-UAV-enabled cloud-edge computing networks. IET Commun.
14 (15), 2481–2490. http://dx.doi.org/10.1049/iet-com.2019.1184.

Wang, M., Shi, S., Gu, S., Zhang, N., Gu, X., 2020f. Intelligent resource allocation
in UAV-enabled mobile edge computing networks. In: 2020 IEEEE 92nd Vehicu-
lar Technology Conference. 2020-November. pp. 1–5. http://dx.doi.org/10.1109/
VTC2020-Fall49728.2020.9348573.

Wang, D., Tian, X., Cui, H., Liu, Z., 2020g. Reinforcement learning-based joint task
offloading and migration schemes optimization in mobility-aware MEC network.
China Commun. 17 (8), 31–44. http://dx.doi.org/10.23919/JCC.2020.08.003.

Wang, B., Wang, C., Huang, W., Song, Y., Qin, X., 2020h. A survey and taxonomy
on task offloading for edge-cloud computing. IEEE Access 8, 186080–186101.
http://dx.doi.org/10.1109/ACCESS.2020.3029649.

Wang, Z., Zhu, Q., 2020. Partial task offloading strategy based on deep reinforcement
learning. In: 2020 IEEE 6th International Conference on Computer and Communi-
cations. ICCC 2020, pp. 1516–1521. http://dx.doi.org/10.1109/ICCC51575.2020.
9345003.

Wei, D., Ma, J., Luo, L., Wang, Y., He, L., Li, X., 2021. Computation offloading over
multi-UAV MEC network: A distributed deep reinforcement learning approach.
Comput. Netw. 199, http://dx.doi.org/10.1016/j.comnet.2021.108439.

Wu, S., Sun, Q., Zhou, A., Wang, S., Lei, T., 2020. Adaptive edge resource allocation for
maximizing the number of tasks completed on time: A deep Q-learning approach.
Commun. Comput. Inf. Sci. 1267, 355–367. http://dx.doi.org/10.1007/978-981-
15-9213-3_28.

Wu, Z., Yan, D., 2021. Deep reinforcement learning-based computation offloading for
5G vehicle-aware multi-access edge computing network. China Commun. 18 (11),
26–41. http://dx.doi.org/10.23919/JCC.2021.11.003.

Xiao, A., Chen, H., Wu, S., Ma, L., Zhou, F., Ma, D., 2021. Dynamic priority-based
computation offloading for integrated maritime-satellite mobile networks. Commun.
Comput. Inf. Sci. 1353 CCIS, 70–83. http://dx.doi.org/10.1007/978-981-16-1967-
0_5.

Xu, S., Guo, C., Hu, R.Q., Qian, Y., 2021. BlockChain inspired secure computation
offloading in a vehicular cloud network. IEEE Internet Things J. http://dx.doi.org/
10.1109/JIOT.2021.3054866.

Xu, D., Li, Y., Chen, X., Li, J., Hui, P., Chen, S., Crowcroft, J., 2018. A survey of
opportunistic offloading. IEEE Commun. Surv. Tutor. 20 (3), 2198–2236. http:
//dx.doi.org/10.1109/COMST.2018.2808242.

Xu, S., Liu, Q., Gong, B., Qi, F., Guo, S., Qiu, X., Yang, C., 2020. RJCC:
Reinforcement-learning-based joint communicational-and-computational resource
allocation mechanism for smart city IoT. IEEE Internet Things J. 7 (9), 8059–8076.
http://dx.doi.org/10.1109/JIOT.2020.3002427.

Yan, J., Bi, S., Zhang, Y.J.A., 2020. Offloading and resource allocation with general
task graph in mobile edge computing: A deep reinforcement learning approach.
IEEE Trans. Wireless Commun. 19 (8), 5404–5419. http://dx.doi.org/10.1109/
TWC.2020.2993071.

Yang, G., Hou, L., Cheng, H., He, X., He, D., Chan, S., 2020a. Computation offloading
time optimisation via Q-learning in opportunistic edge computing. IET Commun.

14 (21), 3898–3906. http://dx.doi.org/10.1049/iet-com.2020.0765.

http://dx.doi.org/10.1109/JIOT.2021.3063188
http://dx.doi.org/10.1109/TNSM.2021.3096673
http://dx.doi.org/10.1109/ICCC52777.2021.9580253
http://dx.doi.org/10.1109/ICCC52777.2021.9580253
http://dx.doi.org/10.1109/ICCC52777.2021.9580253
http://dx.doi.org/10.1007/s10723-021-09559-x
http://dx.doi.org/10.1007/s10723-021-09559-x
http://dx.doi.org/10.1007/s10723-021-09559-x
http://dx.doi.org/10.1007/s10723-020-09530-2
http://dx.doi.org/10.1007/s10723-020-09530-2
http://dx.doi.org/10.1007/s10723-020-09530-2
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1007/s11276-021-02789-7
http://dx.doi.org/10.1007/978-3-030-41114-5_5
http://dx.doi.org/10.1007/978-3-030-41114-5_5
http://dx.doi.org/10.1007/978-3-030-41114-5_5
http://dx.doi.org/10.1007/978-981-15-8462-6_177
http://dx.doi.org/10.1007/978-981-15-8462-6_177
http://dx.doi.org/10.1007/978-981-15-8462-6_177
http://dx.doi.org/10.1109/JIOT.2021.3123822
http://dx.doi.org/10.1109/JIOT.2021.3123822
http://dx.doi.org/10.1109/JIOT.2021.3123822
http://dx.doi.org/10.1109/TSP.2020.2991383
http://dx.doi.org/10.1109/TSP.2020.2991383
http://dx.doi.org/10.1109/TSP.2020.2991383
http://dx.doi.org/10.1109/ICC42927.2021.9500984
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb134
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb134
http://refhub.elsevier.com/S1084-8045(23)00088-7/sb134
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145133
http://dx.doi.org/10.1049/iet-com.2020.0630
http://dx.doi.org/10.1016/j.suscom.2021.100555
http://dx.doi.org/10.1016/j.suscom.2021.100555
http://dx.doi.org/10.1016/j.suscom.2021.100555
http://dx.doi.org/10.1016/j.ins.2020.05.057
http://dx.doi.org/10.1109/JIOT.2021.3064995
http://dx.doi.org/10.1109/JIOT.2021.3064995
http://dx.doi.org/10.1109/JIOT.2021.3064995
http://dx.doi.org/10.1109/ICTC49870.2020.9289406
http://dx.doi.org/10.1016/B978-0-12-805395-9.00004-6
http://dx.doi.org/10.1016/B978-0-12-805395-9.00004-6
http://dx.doi.org/10.1016/B978-0-12-805395-9.00004-6
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1109/GLOCOM.2018.8647856
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1109/ICCCBDA49378.2020.9095689
http://dx.doi.org/10.1109/ICCCBDA49378.2020.9095689
http://dx.doi.org/10.1109/ICCCBDA49378.2020.9095689
http://dx.doi.org/10.1109/CCNC49032.2021.9369456
http://dx.doi.org/10.1109/CCNC49032.2021.9369456
http://dx.doi.org/10.1109/CCNC49032.2021.9369456
http://dx.doi.org/10.1109/ACCESS.2020.3024683
http://dx.doi.org/10.1109/ACCESS.2020.3028553
http://dx.doi.org/10.23919/JCC.2020.10.003
http://dx.doi.org/10.1049/iet-com.2019.1184
http://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348573
http://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348573
http://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348573
http://dx.doi.org/10.23919/JCC.2020.08.003
http://dx.doi.org/10.1109/ACCESS.2020.3029649
http://dx.doi.org/10.1109/ICCC51575.2020.9345003
http://dx.doi.org/10.1109/ICCC51575.2020.9345003
http://dx.doi.org/10.1109/ICCC51575.2020.9345003
http://dx.doi.org/10.1016/j.comnet.2021.108439
http://dx.doi.org/10.1007/978-981-15-9213-3_28
http://dx.doi.org/10.1007/978-981-15-9213-3_28
http://dx.doi.org/10.1007/978-981-15-9213-3_28
http://dx.doi.org/10.23919/JCC.2021.11.003
http://dx.doi.org/10.1007/978-981-16-1967-0_5
http://dx.doi.org/10.1007/978-981-16-1967-0_5
http://dx.doi.org/10.1007/978-981-16-1967-0_5
http://dx.doi.org/10.1109/JIOT.2021.3054866
http://dx.doi.org/10.1109/JIOT.2021.3054866
http://dx.doi.org/10.1109/JIOT.2021.3054866
http://dx.doi.org/10.1109/COMST.2018.2808242
http://dx.doi.org/10.1109/COMST.2018.2808242
http://dx.doi.org/10.1109/COMST.2018.2808242
http://dx.doi.org/10.1109/JIOT.2020.3002427
http://dx.doi.org/10.1109/TWC.2020.2993071
http://dx.doi.org/10.1109/TWC.2020.2993071
http://dx.doi.org/10.1109/TWC.2020.2993071
http://dx.doi.org/10.1049/iet-com.2020.0765


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Yang, L., Zhang, H., Li, M., Guo, J., Ji, H., 2018. Mobile edge computing empowered
energy efficient task offloading in 5G. IEEE Trans. Veh. Technol. 67 (7), 6398–6409.
http://dx.doi.org/10.1109/TVT.2018.2799620.

Yang, M., Zhu, H., Wang, H., Koucheryavy, Y., Samouylov, K., Qian, H., 2020b.
Peer to peer offloading with delayed feedback: An adversary bandit approach. In:
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings. 2020-May. pp. 5035–5039. http://dx.doi.org/10.1109/ICASSP40776.
2020.9053680.

Yang, M., Zhu, H., Wang, H., Koucheryavy, Y., Samouylov, K., Qian, H., 2021. An
online learning approach to computation offloading in dynamic fog networks.
IEEE Internet Things J. 8 (3), 1572–1584. http://dx.doi.org/10.1109/JIOT.2020.
3015522.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J.,
Jue, J.P., 2019. All one needs to know about fog computing and related edge
computing paradigms: A complete survey. J. Syst. Archit. 98, 289–330. http:
//dx.doi.org/10.1016/j.sysarc.2019.02.009.

Yu, S., Chen, X., Zhou, Z., Gong, X., Wu, D., 2021. When deep reinforcement
learning meets federated learning: Intelligent multitimescale resource management
for multiaccess edge computing in 5G ultradense network. IEEE Internet Things J.
8 (4), 2238–2251. http://dx.doi.org/10.1109/JIOT.2020.3026589.

Yuan, X., Zhu, Y., Zhao, Z., Zheng, Y., Pan, J., Liu, D., 2020. An A3C-based joint
optimization offloading and migration algorithm for SD-WBANs. In: 2020 IEEE
Globecom Workshops, GC Wkshps 2020 - Proceedings. pp. 1–6. http://dx.doi.org/
10.1109/GCWkshps50303.2020.9367507.

Zamzam, M., Elshabrawy, T., Ashour, M., 2019. Resource management using machine
learning in mobile edge computing: A survey. In: 2019 Ninth International
Conference on Intelligent Computing and Information Systems. ICICIS, pp. 112–117.
http://dx.doi.org/10.1109/ICICIS46948.2019.9014733.

Zhan, Y., Guo, S., Li, P., Zhang, J., 2020a. A deep reinforcement learning based
offloading game in edge computing. IEEE Trans. Comput. 69 (6), 883–893. http:
//dx.doi.org/10.1109/TC.2020.2969148.

Zhan, W., Luo, C., Wang, J., Wang, C., Min, G., Duan, H., Zhu, Q., 2020b. Deep-
reinforcement-learning-based offloading scheduling for vehicular edge computing.
IEEE Internet Things J. 7 (6), 5449–5465. http://dx.doi.org/10.1109/JIOT.2020.
2978830.

Zhang, K., Cao, J., Liu, H., Maharjan, S., Zhang, Y., 2020a. Deep reinforcement learning
for social-aware edge computing and caching in urban informatics. IEEE Trans. Ind.
Inform. 16 (8), 5467–5477. http://dx.doi.org/10.1109/TII.2019.2953189.

Zhang, J., Du, J., Jiang, C., Shen, Y., Wang, J., 2020b. Computation offloading in
energy harvesting systems via continuous deep reinforcement learning. In: IEEE
International Conference on Communications. 2020-June. pp. 1–6. http://dx.doi.
org/10.1109/ICC40277.2020.9148938.

Zhang, J., Du, J., Shen, Y., Wang, J., 2020c. Dynamic computation offloading with
energy harvesting devices: A hybrid-decision-based deep reinforcement learning
approach. IEEE Internet Things J. 7 (10), 9303–9317. http://dx.doi.org/10.1109/
JIOT.2020.3000527.

Zhang, J., Du, J., Wang, J., Shen, Y., 2020d. Hybrid decision based deep reinforce-
ment learning for energy harvesting enabled mobile edge computing. In: 2020
International Wireless Communications and Mobile Computing. IWCMC 2020, pp.
2100–2105. http://dx.doi.org/10.1109/IWCMC48107.2020.9148398.

Zhang, X., Lin, W., Li, Y., Cui, Q., Tao, X., Huang, X., Ren, P., 2020e. Moving server:
Follow-up computation offloading paradigm for vehicular users. In: 2020 IEEE/CIC
International Conference on Communications in China. ICCC 2020, pp. 226–231.
http://dx.doi.org/10.1109/ICCC49849.2020.9238895.

Zhang, Y., Liu, T., Zhu, Y., Yang, Y., 2020f. A deep reinforcement learning approach
for online computation offloading in mobile edge computing. In: 2020 IEEE/ACM
28th International Symposium on Quality of Service. IWQoS 2020, pp. 1–10.
http://dx.doi.org/10.1109/IWQoS49365.2020.9212868.

Zhang, L., Luo, J., Gao, L., Zheng, F.-C., 2020g. Learning-based computation offloading
for edge networks with heterogeneous resources. In: IEEE International Conference
on Communications. 2020-June. pp. 1–6. http://dx.doi.org/10.1109/ICC40277.
2020.9149171.

Zhang, X., Shen, Y., Yang, B., Zang, W., Wang, S., 2021a. DRL based data offloading
for intelligent reflecting surface aided mobile edge computing. In: IEEE Wireless
Communications and Networking Conference. 2021-March. WCNC, pp. 1–7. http:
//dx.doi.org/10.1109/WCNC49053.2021.9417469.

Zhang, J., Shi, W., Zhang, R., Liu, W., 2021b. Computation offloading and shunting
scheme in wireless wireline internetwork. IEEE Trans. Commun. http://dx.doi.org/
10.1109/TCOMM.2021.3092414.

Zhang, J., Shi, W., Zhang, R., Liu, S., 2021c. Deep reinforcement learning for offloading
and shunting in hybrid edge computing network. In: 2021 IEEE International
Conference on Communications Workshops, ICC Workshops 2021 - Proceedings.
pp. 1–6. http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473628.

Zhang, L., Xu, J., 2020. Fooling edge computation offloading via stealthy interference
attack. In: Proceedings - 2020 IEEE/ACM Symposium on Edge Computing, SEC
2020. pp. 415–419. http://dx.doi.org/10.1109/SEC50012.2020.00062.

Zhang, H., Yang, Y., Huang, X., Fang, C., Zhang, P., 2021d. Ultra-low latency multi-
task offloading in mobile edge computing. IEEE Access 9, 32569–32581. http:
//dx.doi.org/10.1109/ACCESS.2021.3061105.
34
Zhang, H., Yu, T., 2020. Taxonomy of reinforcement learning algorithms. In: Dong, H.,
Ding, Z., Zhang, S. (Eds.), Deep Reinforcement Learning: Fundamentals, Research
and Applications. Springer Singapore, pp. 125–133. http://dx.doi.org/10.1007/978-
981-15-4095-0_3.

Zhang, L., Zhang, Z.-Y., Min, L., Tang, C., Zhang, H.-Y., Wang, Y.-H., Cai, P., 2021e.
Task offloading and trajectory control for UAV-assisted mobile edge computing
using deep reinforcement learning. IEEE Access 9, 53708–53719. http://dx.doi.
org/10.1109/ACCESS.2021.3070908.

Zheng, X., Li, M., Chen, Y., Guo, J., Alam, M., Hu, W., 2021. Blockchain-based secure
computation offloading in vehicular networks. IEEE Trans. Intell. Transp. Syst. 22
(7), 4073–4087. http://dx.doi.org/10.1109/TITS.2020.3014229.

Zhou, H., Jiang, K., Liu, X., Li, X., Leung, V.C., 2021. Deep reinforcement learning for
energy-efficient computation offloading in mobile edge computing. IEEE Internet
Things J. http://dx.doi.org/10.1109/JIOT.2021.3091142.

Zhu, S., Gui, L., Cheng, N., Zhang, Q., Sun, F., Lang, X., 2020. UAV-enabled computation
migration for complex missions: A reinforcement learning approach. IET Commun.
14 (15), 2472–2480. http://dx.doi.org/10.1049/iet-com.2019.1188.

Zhu, X., Luo, Y., Liu, A., Bhuiyan, M.Z.A., Zhang, S., 2021. Multiagent deep reinforce-
ment learning for vehicular computation offloading in IoT. IEEE Internet Things J.
8 (12), 9763–9773. http://dx.doi.org/10.1109/JIOT.2020.3040768.

Diego Hortelano received his Ph.D. in low-power wireless
communication networks from the University of Castilla-La
Mancha, Spain, in 2021. In the same year he joined the
Optical Communications Group, Universidad de Valladolid,
as a Postdoctoral Researcher. He is currently an assistant
professor in the Department of Computer Science and Statis-
tics, Universidad Rey Juan Carlos. His main research fields
are Internet of Things, wireless communication protocols,
edge computing and the application of artificial intelligence
to these areas.

Ignacio de Miguel received the degree in telecommunica-
tion engineering and the Ph.D. degree from the Universidad
de Valladolid (UVa), Spain, in 1997 and 2002, respectively.
Since 1997, he has worked as a Lecturer at UVa, and is
currently an Associate Professor. He is also the Coordinator
of the master’s degree in telecommunication engineering
and the master’s degree in big data science at UVa. He has
also been a Visiting Research Fellow at University College
London, U.K. His main research interests include the design,
control and performance evaluation of optical networks,
edge computing, and the application of artificial intelligence
techniques in those environments. He has been a member of
the TPC of several international conferences, besides being
the Chair of the TPC and the Local Organising Committee
of NOC 2009. He was a recipient of the Nortel Networks
Prize to the Best Ph.D. Thesis on Optical Internet in 2002,
awarded by the Spanish Institute and the Association of
Telecommunication Engineers (COIT/AEIT).

Ramón J. Durán received the degree in telecommunication
engineering and the Ph.D. degree from the University of
Valladolid, Spain, in 2002 and 2008, respectively. He cur-
rently works as an Associate Professor with the Universidad
de Valladolid. He is also the Coordinator of the Spanish
Research Thematic Network ‘‘Go2Edge: Engineering Future
Secure Edge Computing Networks, Systems and Services’’
composed of 15 entities and the H2020 IoTalentum Project.
He has authored more than 100 papers in international jour-
nals and conferences. His current research interests include
the use of artificial intelligence techniques for the design,
optimisation, and operation of future heterogeneous net-
works, multi-access edge computing, and network function
virtualization.

http://dx.doi.org/10.1109/TVT.2018.2799620
http://dx.doi.org/10.1109/ICASSP40776.2020.9053680
http://dx.doi.org/10.1109/ICASSP40776.2020.9053680
http://dx.doi.org/10.1109/ICASSP40776.2020.9053680
http://dx.doi.org/10.1109/JIOT.2020.3015522
http://dx.doi.org/10.1109/JIOT.2020.3015522
http://dx.doi.org/10.1109/JIOT.2020.3015522
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1109/JIOT.2020.3026589
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367507
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367507
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367507
http://dx.doi.org/10.1109/ICICIS46948.2019.9014733
http://dx.doi.org/10.1109/TC.2020.2969148
http://dx.doi.org/10.1109/TC.2020.2969148
http://dx.doi.org/10.1109/TC.2020.2969148
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/TII.2019.2953189
http://dx.doi.org/10.1109/ICC40277.2020.9148938
http://dx.doi.org/10.1109/ICC40277.2020.9148938
http://dx.doi.org/10.1109/ICC40277.2020.9148938
http://dx.doi.org/10.1109/JIOT.2020.3000527
http://dx.doi.org/10.1109/JIOT.2020.3000527
http://dx.doi.org/10.1109/JIOT.2020.3000527
http://dx.doi.org/10.1109/IWCMC48107.2020.9148398
http://dx.doi.org/10.1109/ICCC49849.2020.9238895
http://dx.doi.org/10.1109/IWQoS49365.2020.9212868
http://dx.doi.org/10.1109/ICC40277.2020.9149171
http://dx.doi.org/10.1109/ICC40277.2020.9149171
http://dx.doi.org/10.1109/ICC40277.2020.9149171
http://dx.doi.org/10.1109/WCNC49053.2021.9417469
http://dx.doi.org/10.1109/WCNC49053.2021.9417469
http://dx.doi.org/10.1109/WCNC49053.2021.9417469
http://dx.doi.org/10.1109/TCOMM.2021.3092414
http://dx.doi.org/10.1109/TCOMM.2021.3092414
http://dx.doi.org/10.1109/TCOMM.2021.3092414
http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473628
http://dx.doi.org/10.1109/SEC50012.2020.00062
http://dx.doi.org/10.1109/ACCESS.2021.3061105
http://dx.doi.org/10.1109/ACCESS.2021.3061105
http://dx.doi.org/10.1109/ACCESS.2021.3061105
http://dx.doi.org/10.1007/978-981-15-4095-0_3
http://dx.doi.org/10.1007/978-981-15-4095-0_3
http://dx.doi.org/10.1007/978-981-15-4095-0_3
http://dx.doi.org/10.1109/ACCESS.2021.3070908
http://dx.doi.org/10.1109/ACCESS.2021.3070908
http://dx.doi.org/10.1109/ACCESS.2021.3070908
http://dx.doi.org/10.1109/TITS.2020.3014229
http://dx.doi.org/10.1109/JIOT.2021.3091142
http://dx.doi.org/10.1049/iet-com.2019.1188
http://dx.doi.org/10.1109/JIOT.2020.3040768


Journal of Network and Computer Applications 216 (2023) 103669D. Hortelano et al.
Juan Carlos Aguado received the degree in telecommuni-
cation engineering and the Ph.D. degree from Universidad
de Valladolid, Spain, in 1997 and 2005, respectively. Since
1998, he has been working as a Junior Lecturer with the
Universidad de Valladolid, where he is currently an Asso-
ciate Professor. He has also been a Postdoctoral Researcher
with the Group of Transmisiones Ópticas de Banda Ancha
(TOyBA), University of Zaragoza. His current research inter-
ests include vehicular communications and networking, and
the application of edge computing and artificial intelligence
techniques to these environments, as well as the design and
performance evaluation of optical networks.

Noemí Merayo received the degree in telecommunica-
tion engineering from Universidad de Valladolid, Spain,
in February 2004, and the Ph.D. degree from the Optical
Communication Group, Universidad de Valladolid, in July
2009. Since 2005, she has been working as a Lecturer
with the Universidad de Valladolid. She has also been a
Visiting Research Fellow with the Optical Networks Group,
Science and Technology Research Institute (STRI), Uni-
versity of Hertfordshire, another at the TOyBA Research
Group, University of Zaragoza, and more recently at the
Technical University of Munich (TUM). She is currently
coordinating the master’s degree in physics and technology
of lasers at the University of Valladolid and the University
of Salamanca. Her research interests include the design
and performance evaluation of passive optical networks,
and the application of artificial intelligence techniques to
communication networks and edge computing systems.

Lidia Ruiz received the degree in telecommunication
engineering, the M.Res. degree in information and telecom-
munication technologies, and the Ph.D. degree from the
Universidad de Valladolid, Spain, in 2013, 2015, and
2020, respectively. She has been a Visiting Researcher
with the Politecnico di Milano, Italy, and has worked as
an IT Consultant. She is currently working as a Post-
doctoral Researcher. Her research interests include 5G,
network function virtualization, edge computing and optical
networking.

Adrian Asensio received a M.Sc. in Telecommunications
Engineering and a Ph.D. degree in Computer Science from
the Universitat Politècnica de Catalunya (UPC). His publica-
tions include book chapters, papers in relevant international
journals and papers in international refereed conferences.
He is with the CRAAX lab since 2017. His current research
interests include mathematical models and algorithms de-
sign and their applications in network management, and in
cloud and edge computing.
35
Xavi Masip-Bruin received the M.Sc. and Ph.D. degrees
in Telecommunications Engineering from the Universitat
Politècnica de Catalunya (UPC). He is currently a Full
Professor with the Computer Science Department, UPC,
where he is also serving as the Director of the CRAAX
Laboratory. In 2011 and 2012, he was a Visitor Professor
with UPEC, Paris. His current research interests include
cloud and fog computing, network management, cyberse-
curity, the IoT, and particularly on analysing the benefits
brought by combining fog and cloud paradigms. He has
been involved in many different research initiatives at
national and international level as well as in many contracts
with the industry. He has been recognised with the 2016
IBM Faculty Award.

Patricia Fernández received her Telecommunication Engi-
neer Degree from the Universitat Politècnica de Catalunya,
BarcelonaTech (UPC), Spain, in 1997. After that, she joined
the Optical Communications Group of the Universidad de
Valladolid where she obtained her PhD Degree in 2004. She
is author of more than 100 papers in international journals
and conferences. Currently, she is a Professor and she was
the Head of the Technical School of Telecommunications
Engineering at Universidad de Valladolid.

Rubén M. Lorenzo received his Telecommunication Engi-
neer and PhD degrees from the Universidad de Valladolid,
Spain, in 1996 and 1999, respectively. From 1996 to
2000, he was a Junior Lecturer at the Universidad de
Valladolid and joined the Optical Communications Group.
Since 2000, he has been a Lecturer. His research interests
include optical networks and multi-access edge computing.
He was the Head of the Technical School of Telecom-
munications Engineering at Universidad de Valladolid and
Research Director of CEDETEL (Center for the Development
of Telecommunications in Castilla y León).

Evaristo J. Abril received the degree in telecommunication
engineering and the Ph.D. degree from the Universidad
Politècnica de Madrid, Spain, in 1985 and 1987, respec-
tively. From 1984 to 1986, he was a Research Assistant
with the Universidad Politècnica de Madrid and became a
Lecturer in 1987. Since 1995, he has been a Full Profes-
sor with the Universidad de Valladolid, Spain, where he
founded the Optical Communications Group. His research
interests include integrated optics, optical communication
systems and networks, vehicular communications and edge
computing. He has authored more than 100 papers in
international journals and conferences.


	A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems
	Introduction
	Main contributions
	Organisation of the survey

	Research Questions and Methodology
	Research Questions
	Review Protocol

	Background and Categories for the Classification of the Literature
	Use cases (RQ1)
	Network and edge computing architecture (RQ2)
	RL algorithms (RQ3)
	Objectives and performance metrics (RQ4)
	Centralised and distributed decision-making approaches (RQ5)
	Number of applications and partitioning (RQ6)
	Time-varying aspects (RQ7)

	Related Surveys
	Recent Advances on Reinforcement Learning for Computation Offloading
	IoT
	Vehicular networks
	UAVs
	Specific Use Cases
	Generic studies

	Discussion
	Use cases
	Network and edge computing architecture
	RL algorithms
	Objectives
	Centralised and distributed decision-making approaches
	Number of applications and partitioning
	Time-varying aspects
	Evaluation of the proposals
	Future Directions
	Use cases
	Real-world network architectures
	Algorithms and comparatives
	New objectives and metrics to be optimised
	Fault tolerance in decision-making approaches
	Application partitioning
	Exploitation of time-varying aspects
	Real-world evaluations


	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


