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Abstract
The present paper is concerned with the numerical approx-

imation of a three-parameter family of Boussinesq sys-

tems. The systems have been proposed as models of the

propagation of long internal waves along the interface

of a two-layer system of fluids with rigid-lid condition

for the upper layer and under a Boussinesq regime for

the flow in both layers. We first present some theoretical

properties of the systems on well-posedness, conservation

laws, Hamiltonian structure, and solitary-wave solutions,

using the results for analogous models for surface wave

propagation. Then the corresponding periodic initial-value

problem is discretized in space by the spectral Fourier

Galerkin method and for each system, error estimates for

the semidiscrete approximation are proved. The spectral

semidiscretizations are numerically integrated in time by

a fourth-order Runge–Kutta-composition method based on

the implicit midpoint rule. Numerical experiments illus-

trate the accuracy of the fully discrete scheme, in particular

its ability to simulate accurately solitary-wave solutions

of the systems.
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2 DOUGALIS ET AL.

1 INTRODUCTION

The following three-parameter family of Boussinesq/Boussinesq (B/B) systems for internal waves was

derived by Bona et al. [7]:

(1 − bΔ)𝜁t +
1

𝛾 + 𝛿
∇ ⋅ v𝛽 +

(
𝛿2 − 𝛾

(𝛿 + 𝛾)2

)
∇ ⋅

(
𝜁v𝛽

)
+ a∇ ⋅ Δv𝛽 = 0,

(1 − 𝑑Δ)(v𝛽)t + (1 − 𝛾)∇𝜁 +
(

𝛿2 − 𝛾

2(𝛿 + 𝛾)2

)
∇|v𝛽|2 + (1 − 𝛾)cΔ∇𝜁 = 0. (1)

The system (1) is a model (in nondimensional, unscaled form) for the propagation of internal waves

along the interface of an inviscid, homogeneous, two-layer system of fluids, the upper of which is

labeled 1 and the lower 2. The layers have depths 𝑑1, 𝑑2 and densities 𝜌1, 𝜌2 with 𝜌2 > 𝜌1. The upper

layer is restricted by the rigid-lid assumption, at depth z = 0, while the rigid, horizontal bottom lies

at depth z = −(𝑑1 + 𝑑2). In (1) 𝜁 = 𝜁(x, y, t) represents the deviation of the interface from the rest

position at (x, y) at time t, while v𝛽 = (I − 𝛽Δ)−1v, where 𝛽 ≥ 0 is a modeling parameter, Δ denotes

the Laplace operator and v is a “velocity” variable defined in [7] in terms of the horizontal components

of the velocities of the two layers of fluids v(1) and v(2) as the difference v(2) − 𝛾v(1) evaluated at the

interface. The constants

𝛾 = 𝜌1

𝜌2

< 1, 𝛿 = 𝑑1

𝑑2

,

denote the density and depth ratios, respectively. The parameters a, b, c, 𝑑 depend on the physical

parameters 𝛿, 𝛾 and the modeling parameters 𝛼1 ≥ 0, 𝛽 ≥ 0 and 𝛼2 ≤ 1 [7], and are given by

a = (1 − 𝛼1)(1 + 𝛾𝛿) − 3𝛿𝛽(𝛿 + 𝛾)
3𝛿(𝛾 + 𝛿)2

, b = 𝛼1

1 + 𝛾𝛿

3𝛿(𝛾 + 𝛿)
,

c = 𝛽𝛼2, 𝑑 = 𝛽(1 − 𝛼2). (2)

These formulas lead to the relation

(𝛿 + 𝛾)a + b + c + 𝑑 = S(𝛾, 𝛿), S(𝛾, 𝛿) ∶= 1 + 𝛾𝛿

3𝛿(𝛾 + 𝛿)
. (3)

The case 𝛾 = 0, 𝛿 = 1 corresponds to the Boussinesq systems for surface water waves analyzed by

Bona, Chen, and Saut in [5, 6]. In that case 𝛽 should be taken equal to
1

2
(1 − 𝜃2) in the notation of [5,

6], where 0 ≤ 𝜃 ≤ 1 defines a parametrization of the depth variable z = −1+ 𝜃, 𝜁 is the displacement

of the surface elevation of the wave over the rest position z = 0, and the horizontal velocity at the

free surface would be given by v. The variable v𝛽 represents now the horizontal velocity at depth

z = −1 + 𝜃.

In [7] (see also [27]), several asymptotic models for internal waves in different physical regimes

are derived, and the consistency of the corresponding full Euler equations with them is established in

a rigorous manner. The physical regimes are defined in terms of the scaling parameters

𝜖 = a
𝑑1

, 𝜇 =
𝑑2

1

𝜆2
, (4)

and 𝛿, where a and 𝜆 denote a typical amplitude and wavelength of the interface wave, respectively.

The parameters (4) are defined with respect to the upper layer; similar ones, 𝜖2 and 𝜇2, can be defined

with respect to the lower layer. Then the system (1) is valid in the so-called B/B regime; this means

that the flow is in the Boussinesq regime in both fluid domains, that is, the physical parameters satisfy

the conditions 𝛿 ∼ 1 and

𝜇 ∼ 𝜇2 ∼ 𝜖 ∼ 𝜖2 ≪ 1.
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DOUGALIS ET AL. 3

For a review of several other issues concerning the modeling of internal waves in the B/B and the

other asymptotic regimes defined in [7] we refer the reader to the notes of Saut [27]. We would also

like to mention that Nguyen and Dias derived in [24] a B/B system and extended it to the case of

higher-power nonlinear terms. In [16] (see also references therein) Duchêne derived and studied some

B/B models for internal waves in both the free-surface and rigid-lid cases. A KdV approximation is

also proved and illustrated with some numerical comparisons for different initial data.

The present study is focused on the one-dimensional version of (1), which is written in unscaled,

dimensionless variables, for x ∈ R, t ≥ 0, as

(1 − b𝜕xx)𝜁t +
1

𝛾 + 𝛿
𝜕xv𝛽 +

(
𝛿2 − 𝛾

(𝛿 + 𝛾)2

)
𝜕x
(
𝜁v𝛽

)
+ a𝜕xxxv𝛽 = 0,

(1 − 𝑑𝜕xx)(v𝛽)t + (1 − 𝛾)𝜕x𝜁 +
(

𝛿2 − 𝛾

2(𝛿 + 𝛾)2

)
𝜕xv2

𝛽 + (1 − 𝛾)c𝜕xxx𝜁 = 0, (5)

with v𝛽 = (1 − 𝛽𝜕xx)−1u.

The principal goal of this study is two-fold. In Section 2, we first study the linear and nonlinear

well-posedness of the initial-value problem (IVP) of B/B systems for various values of the coefficients

a, b, c, 𝑑, based on the analogous theory valid for the Boussinesq systems for surface waves presented

in [5, 6]. We identify seven classes of B∕B systems that are linearly well posed with coefficients rele-

vant to the internal-wave problem and whose initial-value problems are nonlinearly, in general locally

in time, well-posed in appropriate pairs of Sobolev spaces. In addition, other properties of (5) are dis-

cussed, namely the conservation of various quantities by the solutions and the Hamiltonian structure

for some of the systems. The issue of existence of special solutions such as classical and generalized

solitary waves is studied in detail theoretically and numerically in the companion paper [13], com-

pare also [14], in which we examine the application to (5) of standard theories of existence of solitary

waves, construct numerical approximations to the solitary-wave profiles, and study computationally

properties of the dynamics of these solutions.

In the rest of the article, we consider in detail the numerical approximation of the well-posed sys-

tems of the family (5). Specifically, in Section 3 we discretize in space the periodic IVP for these

systems using the spectral Fourier–Galerkin method and prove L2
error estimates for the ensuing

semidiscrete approximations. These estimates remain of course valid for the analogous surface-wave

Boussinesq systems (take 𝛾 = 0, 𝛿 = 1 in (5)).

In recent years there have appeared several papers with rigorous error estimates for numerical

methods for surface-wave Boussinesq-type systems. For example, in [3, 4, 15, 31] one may find error

analyses of Galerkin-Finite element semidiscretizations for various initial-boundary-value problems

(IBVP’s) for several Boussinesq systems in one and two space dimensions. The papers [3] and [4]

also contain error estimates of temporal discretizations of the semidiscrete problems effected with

high-order accurate, explicit Runge–Kutta (RK) time-stepping schemes. In [32] Xavier et al. analyze

spectral methods of collocation type, coupled with the explicit, “classical,” fourth-order accurate RK

scheme for time-stepping for the surface-wave Boussinesq systems corresponding to the classes of the

cases (i) and (v), compare Section 2.

We complete the study of the numerical approximation of (5) by integrating numerically in time

the spectral semidiscrete systems using a fourth-order Runge–Kutta-composition method based on

the implicit midpoint rule. For the case of spectral semidiscretizations of the periodic IVP of the

Korteweg-de Vries (KdV) equation, an analysis of convergence of the full discretization with this

method has been made in [9]. The scheme has also been shown to be efficient when approximating

other nonlinear dispersive equations [12, 18]. Concerning the B/B systems (5), in Section 4 we formu-

late the corresponding fully discrete method and study computationally its performance by means of
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4 DOUGALIS ET AL.

several numerical experiments. The method is used in the companion paper [13] to conduct a numer-

ical study on the dynamics of solitary-wave solutions. Concluding remarks are outlined in Section 5.

An extended version of the present paper and of [13] can be found in [14].

The following notation will be used throughout the article. For real s, Hs(R) stands for the L2
-based

Sobolev space over R. On the interval (0, 1), the inner product on L2 = L2(0, 1) is denoted by (⋅, ⋅),
and the corresponding norm by || ⋅ ||. For real 𝜇 ≥ 0 we denote the L2

-based periodic Sobolev spaces

on [0, 1] by H𝜇
; for g ∈ H𝜇

its H𝜇
norm will be given by

||g||𝜇 =
(∑

k∈Z

(1 + k2)𝜇|ĝ(k)|2
)1∕2

,

where ĝ(k) is the kth Fourier coefficient of g. We let | ⋅ |∞ resp. || ⋅ ||j,∞ be the norm on L∞, resp. Wj,∞
,

on (0, 1), where for 1 ≤ p ≤ ∞ W𝜇,p = W𝜇,p(0, 1) is the Sobolev space of periodic functions on (0, 1)
of order 𝜇, whose generalized derivatives are in Lp

.

2 DERIVATION AND WELL-POSEDNESS

In this section, we review results of linear and nonlinear well-posedness of the systems (5) based on the

analogous theory of [5, 6] valid for surface-wave Boussinesq systems, note some invariant functionals

of the solutions of these systems and make a brief introduction to the solitary-wave solutions thereof.

2.1 Well-posedness theory

The associated to (5) linearized system, written in terms of 𝜁 and u = (I − 𝛽𝜕xx)v𝛽 is for x ∈ R, t ≥ 0

given by

(1 − b𝜕xx)𝜁t +
1

𝛾 + 𝛿
𝜕x(I − 𝛽𝜕xx)−1u + a(1 − 𝛽𝜕xx)−1𝜕xxxu = 0,

(1 − 𝑑𝜕xx)(1 − 𝛽𝜕xx)−1ut + (1 − 𝛾)𝜕x𝜁 + (1 − 𝛾)c𝜕xxx𝜁 = 0. (6)

The Fourier transform leads to the system

𝑑

𝑑t

(
𝜁 (k, t)
û(k, t)

)
+ (ik)A(k)

(
𝜁(k, t)
û(k, t)

)
= 0, (7)

where k ∈ R, t ≥ 0, a circumflex denotes the Fourier transform, and

A(k) =

(
0 𝜔1(k)

𝜔2(k) 0

)
,

where

𝜔1(k) =

(
1

𝛿+𝛾
− ak2

)
(1 + bk2)(1 + 𝛽k2)

, 𝜔2(k) =
(1 − 𝛾)(1 − ck2)(1 + 𝛽k2)

1 + 𝑑k2
.

The study of (6) (or (7)) can be done in a similar way to that of [5]. If

𝜔1(k)𝜔2(k) =

(
1

𝛿+𝛾
− ak2

)
(1 − 𝛾)(1 − ck2)

(1 + bk2)(1 + 𝑑k2)
≥ 0,

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23021 by U
niversidad D

e V
alladolid, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DOUGALIS ET AL. 5

then the IVP for the linearized system (7) is well posed if the matrix

e−ikA(k)t =
⎛⎜⎜⎝

cos(k𝜎(k)t) −i𝜔1
(k)

𝜎(k)
sin(k𝜎(k)t)

−i𝜔2
(k)

𝜎(k)
sin(k𝜎(k)t) cos(k𝜎(k)t)

⎞⎟⎟⎠
,

where 𝜎 =
√
𝜔1𝜔2, has elements which are bounded for bounded intervals of k. This holds when

𝜔1∕𝜔2 has neither poles nor zeros on the real axis. Since

𝜔1(k)
𝜔2(k)

=

(
1

𝛿+𝛾
− ak2

)
(1 + 𝑑k2)

(1 + 𝛽k2)2(1 − 𝛾)(1 − ck2)(1 + bk2)
,

and 𝛽 ≥ 0, 0 < 𝛾 < 1 and 𝛿 > 0, this is equivalent to requiring that the rational function(
1

𝛿+𝛾
− ak2

)
(1 + 𝑑k2)

(1 − ck2)(1 + bk2)
,

have no poles nor zeros for k ∈ R. This leads to the three “admissible” cases,

(C1) a, c ≤ 0, b, 𝑑 ≥ 0.

(C2) b, 𝑑 ≥ 0, c = a(𝛿 + 𝛾) > 0.

(C3) b = 𝑑 < 0, c = a(𝛿 + 𝛾) > 0.

We note that

𝛼1 =
3𝛿(𝛿 + 𝛾)

1 + 𝛾𝛿
b, 𝛽 = c + 𝑑, 𝛼2 =

c
c + 𝑑

,

and observe that (C3) does not satisfy the hypotheses

𝛼2 ≤ 1, 𝛼1 ≥ 0.

On the other hand, the case (C2) requires

0 < 𝛼1 < 1, 0 < 𝛼2 ≤ 1, 𝛽 > 0.

In the present paper only the case (C1) will be considered.

If we recall that the order of 𝜎(k) is the integer l such that

𝜎(k) ≈ |k|l, |k|→∞,

then Theorem 3.2 of [5] can be applied to prove that if m1 = max{0,−l},m2 = max{0, l} then the

IVP for the linear system (6) is well posed for (𝜁, u) in Hs+m
1(R) ×Hs+m

2(R) for any s ≥ 0. As already

mentioned, the case 𝛽 = 0 leads to conditions for the linear well-posedness for Boussinesq systems

for surface waves [5].

Remark 1. It is to be noted that not all cases described by the set a, c ≤ 0, b, 𝑑 ≥ 0 are

relevant for the internal wave problem, due to the restrictions on the physical parameters

𝛾, 𝛿 and the modeling parameters, 𝛼1, 𝛼2, 𝛽 that determine a, b, c, and 𝑑, compare (2) and

(3). Specifically, the case a = 0, c < 0, b > 0, 𝑑 = 0 should be excluded since 𝑑 = 0

implies either 𝛽 = 0 or 𝛼2 = 1 and in either case c < 0 cannot hold. Arguing similarly

we may see that all cases with b = 𝑑 = 0, a, c ≤ 0 are not valid for internal waves. In

addition, note that several other cases hold, under easily checked conditions between the

parameters. (For example, if two of the four parameters are zero, then (3) implies an affine

relation between the other two.)

As far as local in time well-posedness of the full nonlinear system is concerned, the analysis made

in [6] for the case of surface waves can also be used here. (This was confirmed in [2].) Let us consider
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6 DOUGALIS ET AL.

the systems corresponding to those cases among the set of parameters b, 𝑑 ≥ 0, a, c ≤ 0 that are relevant

for internal waves. In each case of the following list, we mention the corresponding theorem of [6] that

applies. All the results concern existence, uniqueness, and regularity locally in t of the corresponding

solution in the appropriate pairs of Sobolev spaces shown.

• Case (i): b, 𝑑 > 0, a = c = 0 (systems of “BBM-BBM” type; Theorem 2.1, Hs(R) × Hs(R),
s ≥ 0).

• Case (ii): b, 𝑑 > 0, a, c < 0 (“generic” case; Theorem 2.5, Hs(R) × Hs(R), s ≥ 0).

• Case (iii): b = 0, 𝑑 > 0, a, c < 0 (Theorem 3.5, Hs(R) × Hs+1(R), s ≥ 1).

• Case (iv): b = 0, 𝑑 > 0, a = c = 0 (“classical” Boussinesq system; Theorem 3.3, Hs(R) ×
Hs+1(R), s ≥ 1, conditional global existence; see also [17]), or b > 0, 𝑑 = 0, a = c = 0

(analogous theory).

• Case (v): b, 𝑑 > 0, a = 0, c < 0 (Bona-Smith system; Theorem 2.6, Hs+1(R) × Hs(R), s ≥ 0,

conditional global existence), or b, 𝑑 > 0, a < 0, c = 0 (analogous theory).

• Case (vi): b = 0, 𝑑 > 0, a < 0, c = 0 (Theorem 3.1, Hs(R) × Hs+2(R), s ≥ 1).

• Case (vii): b > 0, 𝑑 = 0, a < 0, c = 0 (Theorem 3.9, Hs(R) ×Hs(R), s ≥ 2) or b = 0, 𝑑 > 0, a =
0, c < 0 (analogous theory).

Note that slightly sharper regularity results were achieved in [2] for some of these cases.

2.2 Conserved quantities

It is not hard to show that the linear functionals

M1(𝜁) =
∫

∞

−∞
𝜁𝑑x, M2(v𝛽) =

∫

∞

−∞
v𝛽𝑑x =

∫

∞

−∞
(1 − 𝛽𝜕xx)−1u𝑑x,

are invariant quantities during the evolution of suitable solutions of (5). When b = 𝑑 (cf. the surface

wave case [6]) we have the conserved functionals

I(𝜁, u) =
∫

∞

−∞
(𝜁v𝛽 + b𝜕x𝜁𝜕xv𝛽)𝑑x, (8)

H(𝜁, u) =
∫

∞

−∞

(
(1 − 𝛾)

2
𝜁2 + 1

2(𝛿 + 𝛾)
v2

𝛽 − a(𝜕xv𝛽)2 − (1 − 𝛾)c(𝜕x𝜁)2

+ 𝛿2 − 𝛾

2(𝛿 + 𝛾)2
𝜁v2

𝛽

)
𝑑x, (9)

(where v𝛽 = (1 − 𝛽𝜕xx)−1u) with the Hamiltonian structure for (5) given by

𝑑

𝑑t

(
𝜁

u

)
= J 𝛿H

𝛿(𝜁, u)
,

J = −𝜕x(1 − 𝛽𝜕xx)−1

(
(1 − b𝜕xx) 0

0 (1 − 𝑑𝜕xx)

)(
0 −1

1 0

)
, (10)

where 𝛿H∕𝛿(𝜁, u) stands for the variational derivative with respect to the variables (𝜁, u). All these

conservation laws as well as the Hamiltonian structure hold in suitable function spaces.
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DOUGALIS ET AL. 7

2.3 Solitary-wave solutions

An important property of the systems (5) is that they possess solitary-wave solutions. These are

solutions of (5) of the form 𝜁 = 𝜁(x − cst), u = u(x − cst) that satisfy

𝜕x

(
cs(1 − b𝜕xx) − 1

𝛿+𝛾
− a𝜕xx

−(1 − 𝛾)(1 + c𝜕xx) cs(1 − 𝑑𝜕xx)

)(
𝜁

v𝛽

)
= 𝜅𝛾,𝛿𝜕x

(
𝜁v𝛽

v2

𝛽

2

)
, (11)

where 𝜅𝛾,𝛿 = 𝛿2−𝛾
(𝛿+𝛾)2

. That is, they are waves of permanent form traveling with speed cs ≠ 0. As

mentioned in Section 1, in the companion paper [13] we study the existence, numerical generation and

dynamics of these solutions (see also [14]). The family of B/B systems (5) has two different types of

solitary-wave solutions. If we consider (11) as a dynamical system, the profiles 𝜁 and u could be orbits

homoclinic to the origin at infinity (𝜁, u → 0 as |x − cst| → ∞), and therefore will be solutions of the

system (
cs(1 − b𝜕xx) − 1

𝛿+𝛾
− a𝜕xx

−(1 − 𝛾)(1 + c𝜕xx) cs(1 − 𝑑𝜕xx)

)(
𝜁

v𝛽

)
= 𝜅𝛾,𝛿

(
𝜁v𝛽

v2

𝛽

2

)
. (12)

The corresponding solutions of (5) are then classical solitary waves. In addition, there exist generalized

solitary waves, which are solutions of (5) whose profiles 𝜁 and u satisfy (12) and are homoclinic to

periodic orbits at infinity [21-23]. The existence of both types of solitary-wave solutions is studied

in [13] (see also [14]).

3 ERROR ESTIMATES FOR A SPECTRAL SEMIDISCRETIZATION OF
THE PERIODIC INITIAL-VALUE PROBLEM

We consider the periodic IVP for the one-dimensional system (5) on the spatial interval [0, 1]. In order

to simplify notation we denote v𝛽 = u, 𝜆 = 𝜅𝛾,𝛿 = 𝛿2−𝛾
(𝛿+𝛾)2

, 𝜅1 = 1

𝛿+𝛾
, 𝜅2 = 1 − 𝛾 . (Thus 𝜅1 and 𝜅2

are positive constants.) We also let c′ denote the constant (1 − 𝛾)c multiplying the term 𝜕xxx𝜁 in the

second pde of (5); this does not change the sign of the original c. Thus, given u0(x), 𝜁0(x), 1-periodic

real functions, we seek for 0 ≤ t ≤ T , 𝜁(x, t), u(x, t), 1-periodic in x, satisfying, for 0 ≤ x ≤ 1,

0 ≤ t ≤ T

𝜁t + 𝜅1ux + 𝜆 (𝜁u)x + auxxx − b𝜁xxt = 0,

ut + 𝜅2𝜁x + 𝜆uux + c′𝜁xxx − 𝑑uxxt = 0, (13)

with

𝜁(x, 0) = 𝜁0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1. (14)

In the sequel we assume that the IVP (13), (14) has a unique solution which is smooth enough for the

purposes of error estimation.

We will discretize (13), (14) in space by a spectral Fourier Galerkin method. To this end we let

N ≥ 1 be an integer and define the finite dimensional space SN as

SN = span{e2𝜋ikx, k ∈ Z,−N ≤ k ≤ N}.

Let P = PN denote the L2
-projection operator onto SN given explicitly for v ∈ L2

by

Pv =
∑
|k|≤N

v̂(k)e2𝜋ikx,
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8 DOUGALIS ET AL.

where v̂(k) is the kth Fourier coefficient of v. It is obvious that P commutes with 𝜕x. Moreover, given

integers 0 ≤ j ≤ 𝜇, there exists a constant C independent of N, such that for any v ∈ H𝜇
,

||v − Pv||j ≤ CNj−𝜇||v||𝜇, 𝜇 ≥ 0, (15)

|v − Pv|∞ ≤ CN1∕2−𝜇||v||𝜇, 𝜇 ≥ 1. (16)

In addition, the following inverse inequalities hold in SN : Given 0 ≤ j ≤ 𝜇, there exists a constant C
independent of N, such that for any 𝜓 ∈ SN

||𝜓||𝜇 ≤ CN𝜇−j||𝜓||j, ||𝜓||𝜇,∞ ≤ CN1∕2+𝜇−j||𝜓||j. (17)

In what follows, as is customary, we will denote constants independent of N by C.

The spectral Galerkin semidiscretization of the IVP (13), (14) is defined as follows. Let T > 0. We

seek real-valued 𝜁N , uN ∶ [0,T]→ SN satisfying for 0 ≤ t ≤ T and ∀𝜑, 𝜒 ∈ SN

(𝜁Nt, 𝜑) + 𝜅1(uNx, 𝜑) + 𝜆((𝜁NuN)x, 𝜑) + a(uNxxx, 𝜑) − b(𝜁Nxxt, 𝜑) = 0, (18)

(uNt, 𝜒) + 𝜅2(uNx, 𝜒) + 𝜆(uNuNx, 𝜒) + c′(𝜁Nxxx, 𝜒) − 𝑑(uNxxt, 𝜒) = 0, (19)

and for t = 0

𝜁N(0) = P𝜁0, uN(0) = Pu0. (20)

The ODE IVP (18)–(20) has a unique solution locally in time and a Fourier implementation

(1 + bk2)𝜁N,t + ik𝜅1ûN + ik𝜆𝜁NuN − ik3aûN = 0,

(1 + 𝑑k2)ûN,t + ik𝜅2𝜁N +
ik
2
𝜆û2

N − ik3c′𝜁N = 0, (21)

where 𝜁N = 𝜁N(k, t), ûN = ûN(k, t),−N ≤ k ≤ N, t ≥ 0 are the Fourier coefficients of 𝜁N , uN with initial

values 𝜁N(k, 0) = 𝜁0(k), ûN(k, 0) = û0(k).
In order to estimate the error of the semidiscretization let 𝜃 = 𝜁N − P𝜁, 𝜌 = P𝜁 − 𝜁 , so that

𝜁N − 𝜁 = 𝜃 + 𝜌, and 𝜉 = uN − Pu, 𝜎 = Pu − u, so that uN − u = 𝜉 + 𝜎. Then, subtracting the first pde

in (13) from (18) we obtain, while the solution of (18)–(20) exists and for all 𝜑 ∈ SN

(𝜃t, 𝜑) + 𝜅1(𝜉x, 𝜑) + a(𝜉xxx, 𝜑) − b(𝜃xxt, 𝜑) = −𝜆((𝜁NuN)x, 𝜑) + 𝜆((𝜁u)x, 𝜑).

Therefore for 𝜑 ∈ SN

(𝜃t, 𝜑) + a(𝜉xxx, 𝜑) − b(𝜃xxt, 𝜑) = −𝜅1(𝜉x, 𝜑) − (Ax, 𝜑), (22)

where

A = 𝜆(𝜁NuN − 𝜁u) = 𝜆 ((𝜁 + 𝜃 + 𝜌)(u + 𝜉 + 𝜎) − 𝜁u)) ,

that is,

A = 𝜆 (u𝜌 + 𝜁𝜎 + u𝜃 + 𝜁𝜉 + 𝜎𝜃 + 𝜌𝜉 + 𝜌𝜎 + 𝜃𝜉) . (23)

Subtracting the second pde in (13) from (19) we get for 𝜒 ∈ SN

(𝜉t, 𝜒) + 𝜅2(𝜃x, 𝜒) + c′(𝜃xxx, 𝜒) − 𝑑(𝜉xxt, 𝜒) = −𝜆(uNuNx, 𝜒) + 𝜆(uux, 𝜒).

Therefore, for 𝜒 ∈ SN

(𝜉t, 𝜒) + c′(𝜃xxx, 𝜒) − 𝑑(𝜉xxt, 𝜒) = −𝜅2(𝜃x, 𝜒) − (Bx, 𝜒), (24)

where

B = 𝜆

(
u𝜎 + u𝜉 + 𝜎𝜉 + 1

2
(𝜎2 + 𝜉2)

)
. (25)
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DOUGALIS ET AL. 9

Using the error equations (22)–(25) we proceed now to derive error estimates for the semidiscrete

schemes (18)–(20).

For the purpose of the error analysis, we consider the same seven cases of nonlinearly well posed

systems identified in Section 2.1. For simplicity, in the cases (iv), (v), and (vii) the following systems

will be analyzed; the others are similar:

• Case (iv): “Classical Boussinesq” case: b = 0, 𝑑 > 0, a = c = 0.

• Case (v): “Bona-Smith” systems: b, 𝑑 > 0, a = 0, c < 0.

• Case (vii): b > 0, 𝑑 = 0, a < 0, c = 0.

As mentioned in Section 1, the systems of cases (i) (BBM-BBM) and (v) (“Bona-Smith”) have

been discretized by a collocation spectral method in space and analyzed by Xavier et al. [32], in the

case of surface waves. The error estimates obtained in [32] are similar to those that we obtain below for

the spectral Galerkin method in these cases but we include the proofs as our techniques are somewhat

different.

In all propositions below we assume for simplicity that 𝜁, u ∈ C1(0,T ,H𝜇), 𝜇 ≥ 1, and specify in

each case the least integer 𝜇 needed for the validity of the error estimates. In all cases it is clear that

𝜁N , uN satisfy (18)–(20) at least locally in t; part of the proof is checking that they exist uniquely and

satisfy (18)–(19) up to t = T .

Proposition 2. Let a, b, c, 𝑑 as in case (i). If 𝜇 ≥ 1 then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||) ≤ CN−𝜇. (26)

Proof. While the semidiscrete solution 𝜁N , uN exists, putting 𝜑 = 𝜃 in (22), 𝜒 = 𝜉 in (24),

using integration by parts and adding the resulting equations give

1

2

𝑑

𝑑t
(||𝜃||2 + ||𝜉||2 + b||𝜃x||2 + 𝑑||𝜉x||2) = 𝜅1(𝜉, 𝜃x) + 𝜅2(𝜃, 𝜉x)

+ (A, 𝜃x) + (B, 𝜉x). (27)

We estimate as follows the various terms in the right-hand side of (27). First

|(𝜉, 𝜃x)| ≤ ||𝜉||||𝜃x|| ≤ 1

2

(||𝜉||2 + ||𝜃x||2) . (28)

For the various terms of (A, 𝜃x) we first see, using (15),

|(u𝜌, 𝜃x)| ≤ |u|∞||𝜌||||𝜃x|| ≤ C
(
N−2𝜇 + ||𝜃x||2) . (29)

Similarly,

|(𝜁𝜎, 𝜃x)| ≤ |𝜁 |∞||𝜎||||𝜃x|| ≤ C
(
N−2𝜇 + ||𝜃x||2) . (30)

Now

|(u𝜃, 𝜃x)| ≤ |u|∞||𝜃||||𝜃x|| ≤ C||𝜃||2
1
, (31)

|(𝜁𝜉, 𝜃x)| ≤ |𝜁 |∞||𝜉||||𝜃x|| ≤ C(||𝜉||2 + ||𝜃x||2). (32)

Using (16) we see that |𝜎|∞ ≤ C and therefore

|(𝜎𝜃, 𝜃x)| ≤ |𝜎|∞||𝜃||||𝜃x|| ≤ C||𝜃||2
1
. (33)

Similarly,

|(𝜌𝜉, 𝜃x)| ≤ |𝜌|∞||𝜉||||𝜃x|| ≤ C(||𝜉||2 + ||𝜃x||2), (34)
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10 DOUGALIS ET AL.

|(𝜌𝜎, 𝜃x)| ≤ |𝜌|∞||𝜎||||𝜃x|| ≤ C(N−2𝜇 + ||𝜃x||2). (35)

Since 𝜃(0) = 0, using continuity, let tN , 0 < tN ≤ T , be the maximal time for which the

solution of (18)–(20) exists and satisfies

|𝜃|∞ ≤ 1, 0 ≤ t ≤ tN . (36)

Then for 0 ≤ t ≤ tN

|(𝜃𝜉, 𝜃x)| ≤ |𝜃|∞||𝜉||||𝜃x|| ≤ ||𝜉||||𝜃x|| ≤ 1

2
(||𝜉||2 + ||𝜃x||2). (37)

From (29)–(37) we have therefore for 0 ≤ t ≤ tN that

|(A, 𝜃x)| ≤ C
(
N−2𝜇 + ||𝜉||2 + ||𝜃||2

1

)
. (38)

For the rest of the terms on the right-hand side of (27) we first note that

|(𝜃, 𝜉x)| ≤ ||𝜃||||𝜉x|| ≤ 1

2

(||𝜃||2 + ||𝜉x||2) . (39)

For the (B, 𝜉x) terms, in view of (25) we have the following estimates. Note that by (15)

|(u𝜎, 𝜃x)| ≤ |u|∞||𝜎||||𝜃x|| ≤ C
(
N−2𝜇 + ||𝜃x||2) . (40)

In addition,

|(u𝜉, 𝜉x)| ≤ |u|∞||𝜉||||𝜉x|| ≤ C||𝜉||2
1
. (41)

By (16)

|(𝜎𝜉, 𝜉x)| ≤ |𝜎|∞||𝜉||||𝜉x|| ≤ C||𝜉||2
1
. (42)

By (15), (16) |||12 (𝜎2, 𝜉x)
||| ≤ 1

2
|𝜎|∞||𝜎||||𝜉x|| ≤ C(N−2𝜇 + ||𝜉x||2). (43)

And finally, by periodicity,

1

2
(𝜉2, 𝜉x) = 0. (44)

We conclude from (40)–(44) that, as long as the semidiscrete solution exists,

|(B, 𝜉x)| ≤ C
(
N−2𝜇 + ||𝜃||2 + ||𝜉||2

1

)
. (45)

Hence, since b, 𝑑 > 0 we get from (27), (28), (38), (39), (45) that

𝑑

𝑑t
(||𝜃||2

1
+ ||𝜉||2

1

)
≤ C

(
N−2𝜇 + ||𝜃||2

1
+ ||𝜉||2

1

)
, 0 ≤ t ≤ tN .

Hence, by Gronwall’s lemma and (20) we conclude that for 0 ≤ t ≤ tN and for some

constant C = C(T) there holds

||𝜃||1 + ||𝜉||1 ≤ CN−𝜇. (46)

Therefore, since |𝜃|∞ ≤ C||𝜃||1 by Sobolev’s theorem, we conclude by (46) and our

hypothesis on 𝜇 that (for N sufficiently large) tN was not maximal in (36). Arguing in the

customary way we see that tN may be taken equal to T , and (46) holds for 0 ≤ t ≤ T . By

(15) we conclude that (26) holds, so that 𝜁N , uN satisfy optimal-order error estimates in L2
,

where by “optimal-order” in the context of spectral methods we mean that the semidiscrete

approximations satisfy estimates like (15) if 𝜁, u ∈ H𝜇
. ▪
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DOUGALIS ET AL. 11

Proposition 3. Let a, b, c, 𝑑 as in case (ii). If 𝜇 ≥ 1 then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||) ≤ CN−𝜇.

Proof. While the semidiscrete solution 𝜁N , uN exists, putting 𝜑 = 𝜃 in (22), 𝜒 = 𝜉 in (24)

we obtain, using integration by parts, that

1

2

𝑑

𝑑t
(||𝜃||2 + b||𝜃x||2) − a(𝜉xx, 𝜃x) = 𝜅1(𝜉, 𝜃x) + (A, 𝜃x), (47)

1

2

𝑑

𝑑t
(||𝜉||2 + 𝑑||𝜉x||2) + c′(𝜃x, 𝜉xx) = 𝜅2(𝜃, 𝜉x) + (B, 𝜉x). (48)

Multiplying (47) by −c′ and (48) by −a and adding the resulting equations we get

1

2

𝑑

𝑑t
(|c′|||𝜃||2 + |a|||𝜉||2 + b|c′|||𝜃x||2 + 𝑑|a|||𝜉x||2) = −c′𝜅1(𝜉, 𝜃x)

− c′(A, 𝜃x) − a𝜅2(𝜃, 𝜉x) − a(B, 𝜉x).

The rest of the proof proceeds exactly along the lines of that of Proposition 2. ▪

Proposition 4. Let a, b, c, 𝑑 as in case (iii). If 𝜇 > 3∕2 then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||1) ≤ CN1−𝜇. (49)

Proof. While the semidiscrete solution 𝜁N , uN exists, putting 𝜑 = 𝜃 in (22), 𝜒 = 𝜉 in (24)

we obtain, using integration by parts, that

1

2

𝑑

𝑑t
||𝜃||2 − a(𝜉xx, 𝜃x) = −𝜅1(𝜉x, 𝜃) − (Ax, 𝜃), (50)

1

2

𝑑

𝑑t
(||𝜉||2 + 𝑑||𝜉x||2) + c′(𝜃x, 𝜉xx) = 𝜅2(𝜃, 𝜉x) + (B, 𝜉x). (51)

Multiplying (50) by −c′ and (51) by −a and adding the resulting equations gives

1

2

𝑑

𝑑t
(|c′|||𝜃||2 + |a|||𝜉||2 + 𝑑|a|||𝜉x||2) = c′𝜅1(𝜉x, 𝜃) + c′(Ax, 𝜃)

− a𝜅2(𝜃, 𝜉x) − a(B, 𝜉x). (52)

We estimate the terms of the right-hand side of the above. Obviously,

|(𝜉x, 𝜃)| ≤ ||𝜉x||||𝜃|| ≤ 1

2

(||𝜃||2 + ||𝜉x||2) . (53)

For the terms of (Ax, 𝜃), using (23) and (15) and the fact that H1
is an algebra, we have

|((u𝜌)x, 𝜃)| ≤ ||u𝜌||1||𝜃|| ≤ C||u||1||𝜌||1||𝜃|| ≤ C
(
N2(1−𝜇) + ||𝜃||2) .

Similarly,

|((𝜁𝜎)x, 𝜃)| ≤ C
(
N2(1−𝜇) + ||𝜃||2) . (54)

Using integration by parts we have

|((u𝜃)x, 𝜃)| = |1
2
|(ux𝜃, 𝜃)| ≤ C|ux|∞||𝜃||2 ≤ C||𝜃||2. (55)

Also

|((𝜁𝜉)x, 𝜃)| ≤ C||𝜁 ||1||𝜉||1||𝜃|| ≤ C
(||𝜉||2

1
+ ||𝜃||2) . (56)
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12 DOUGALIS ET AL.

Using integration by parts and (16) and our hypothesis on 𝜇

|(𝜎𝜃)x, 𝜃)| = 1

2
|(𝜎x𝜃, 𝜃)| ≤ C|𝜎x|∞||𝜃||2 ≤ C||𝜃||2. (57)

By (15)

|(𝜌𝜉)x, 𝜃)| ≤ C||𝜌||1||𝜉||1||𝜃|| ≤ C
(||𝜉||2

1
+ ||𝜃||2) . (58)

By (15), (16), and our hypothesis on 𝜇

|(𝜌𝜎)x, 𝜃)| ≤ |𝜌|∞||𝜎x||||𝜃|| + |𝜎|∞||𝜌x||||𝜃||
≤ CN

3

2
−2𝜇||𝜃|| ≤ CN−𝜇||𝜃||

≤ C
(
N−2𝜇 + ||𝜃||2) . (59)

Now, since 𝜃(0) = 0, using continuity, let tN , 0 < tN ≤ T , be the maximal value of t for

which the solution of (18)–(20) exists and satisfies

|𝜃|∞ ≤ 1, 0 ≤ t ≤ tN . (60)

By (60) we have for 0 ≤ t ≤ tN , using integration by parts

|(𝜃𝜉)x, 𝜃)| = 1

2
|(𝜉x𝜃, 𝜃)| ≤ C|𝜃|∞||𝜃||||𝜉x||

≤ C
(||𝜃||2 + ||𝜉x||2) . (61)

We conclude from (54)–(61) that

|(Ax, 𝜃)| ≤ C
(
N2(1−𝜇) + ||𝜃||2 + ||𝜉||2

1

)
, 0 ≤ t ≤ tN . (62)

We estimate now (𝜃, 𝜉x) and the terms of (B, 𝜉x) exactly as in (39)–(44), and conclude that

as long as the semidiscrete approximation exists it holds that

|(𝜃, 𝜉x)| + |(B, 𝜉x)| ≤ C
(
N−2𝜇 + ||𝜃||2 + ||𝜉||2

1

)
. (63)

Therefore, by (52), (53), (62), (63), since c′, a, 𝑑 ≠ 0 we see that for 0 ≤ t ≤ tN
1

2

𝑑

𝑑t
(||𝜃||2 + ||𝜉||2

1

)
≤ C

(
N2(1−𝜇) + ||𝜃||2 + ||𝜉||2

1

)
.

By Gronwall’s lemma and (20) we see that for 0 ≤ t ≤ tN and a constant C(T) there holds

||𝜃|| + ||𝜉||1 ≤ C(T)N1−𝜇. (64)

Therefore, since |𝜃|∞ ≤ CN1∕2||𝜃|| by (17), and using (64) and the assumption that 𝜇 >

3∕2, we see that tN was not maximal in (60) if N was sufficiently large. We conclude that

(64) holds up to t = T which implies that

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||1) ≤ CN1−𝜇,

that is, that the conclusion (49) of the proposition holds. Note that this implies that uN is

optimally close to u in H1
but 𝜁N suboptimally so to 𝜁 in L2

. ▪

Proposition 5. Let a, b, c, 𝑑 as in case (iv), and with no loss of generality suppose that
b = 0, 𝑑 > 0, a = c = 0. If 𝜇 > 3∕2 then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||1) ≤ CN1−𝜇.

Proof. While the semidiscrete solution 𝜁N , uN exists, putting 𝜑 = 𝜃 in (22), 𝜒 = 𝜉 in (24),

and using integration by parts, then adding the resulting equations yields
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DOUGALIS ET AL. 13

1

2

𝑑

𝑑t
(||𝜃||2 + ||𝜉||2 + 𝑑||𝜉x||2) = −𝜅1(𝜉x, 𝜃) − (Ax, 𝜃) + 𝜅2(𝜃, 𝜉x) + (B, 𝜉x).

We estimate now the terms of (Ax, 𝜃) and (B, 𝜉x) exactly as in Proposition 4. The conclusion

follows. ▪

Proposition 6. Let a, b, c, 𝑑 as in case (v), and with no loss of generality suppose that
b > 0, 𝑑 > 0, a = 0, c < 0. If 𝜇 ≥ 1 then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||) ≤ CN−𝜇.

Proof. We write (22) for a = 0 as

𝜃t − b𝜃xxt = −𝜅1𝜉x − PAx,

that is, as

(1 − b𝜕2
x )𝜃t = −𝜅1𝜉x − PAx. (65)

For a constant 𝜅 > 0 let 𝜅 denote the operator 𝜅 = (I − 𝜅𝜕2
x )−1

which is well defined in

Hs
for any s ∈ R. Using its Fourier representation we see, for any f ∈ Hj−2

, that 𝜅 f ∈ Hj

and that

||𝜅 f ||j ≤ Ck||f ||j−2, j ∈ R, (66)

where Ck is a constant depending on 𝜅. (In the sequel we will only use the property that

for f ∈ L2
, ||f ||−j ≤ ||f ||, j ≥ 0, for the negative norms.)

Using this notation, we write (65) as

𝜃t = −𝜅1b𝜉x − bPAx.

Therefore, since 𝜕x commutes with b and P, (66) gives

||𝜃t||1 ≤ |𝜅1|||b𝜉x||1 + ||bPAx||1 ≤ C (||𝜉|| + ||A||) . (67)

From the definition of A, compare (23), we see that

||A|| ≤ C (|u|∞||𝜌|| + |𝜁 |∞||𝜎|| + |u|∞||𝜃|| + |𝜁 |∞||𝜉||
+|𝜎|∞||𝜃|| + |𝜌|∞||𝜉|| + |𝜌|∞||𝜎|| + ||𝜃|||𝜉|∞) . (68)

Since 𝜉(0) = 0, using continuity, let tN ∈ (0,T] denote the maximal time for which the

solution of the semidiscrete IVP exists and satisfies

|𝜉|∞ ≤ 1, 0 ≤ t ≤ tN . (69)

Therefore, from (68), using the fact that 𝜇 ≥ 1, Sobolev’s inequality (15), and (16), we

obtain, in view of (69), that

||A|| ≤ C (N−𝜇 + ||𝜃|| + ||𝜉||) , 0 ≤ t ≤ tN . (70)

Hence, from (67) and (70) we get

||𝜃t||1 ≤ C (N−𝜇 + ||𝜃|| + ||𝜉||) , 0 ≤ t ≤ tN .

We write now (24) as

(1 − 𝑑𝜕2
x )𝜉t = −c′𝜃xxx − 𝜅2𝜃x − PBx,

that is, as

𝜉t = −c′𝑑𝜃xxx − 𝜅2𝑑𝜃x − 𝑑PBx,
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14 DOUGALIS ET AL.

from which, using (66), we get

||𝜉t|| ≤ |c′|||𝑑𝜃xxx|| + |𝜅2|||𝑑𝜃x|| + ||𝑑PBx||
≤ C (||𝜃||1 + ||𝜃|| + ||B||) ≤ C (||𝜃||1 + ||B||) . (71)

From (25) we see that

||B|| ≤ C (|u|∞||𝜎|| + |u|∞||𝜉|| + |𝜎|∞||𝜉|| + |𝜎|∞||𝜎|| + |𝜉|∞||𝜉||) .
Therefore, since 𝜇 ≥ 1, from (15) and (16), we have, in view of (69), that

||B|| ≤ C (N−𝜇 + ||𝜉||) , 0 ≤ t ≤ tN . (72)

Therefore, by (71) and (72) it follows that

||𝜃t||1 + ||𝜉t|| ≤ C (N−𝜇 + ||𝜃||1 + ||𝜉||) , 0 ≤ t ≤ tN , (73)

where C does not depend on tN . From (20) we infer that 𝜃 = ∫ t
0
𝜃𝜏𝑑𝜏, 𝜉 = ∫ t

0
𝜉𝜏𝑑𝜏. Hence,

by (73) we have, for 0 ≤ t ≤ tN

||𝜃||1 + ||𝜉|| ≤
∫

t

0

(||𝜃𝜏 ||1 + ||𝜉𝜏 ||) 𝑑𝜏
≤ C
∫

t

0

(N−𝜇 + ||𝜃||1 + ||𝜉||) 𝑑𝜏
≤ C
∫

t

0

(||𝜃||1 + ||𝜉||) 𝑑𝜏 + CTN−𝜇.

Using Gronwall’s lemma in integral form gives that for some C = C(T)

||𝜃||1 + ||𝜉|| ≤ CN−𝜇, 0 ≤ t ≤ tN . (74)

From this we observe, since 𝜇 ≥ 1, that for 0 ≤ t ≤ tN |𝜉|∞ ≤ 1 if N is sufficiently large,

and therefore that tN was not maximal in (69). We may then take tN = T and conclude

from (74) that

||𝜃||1 + ||𝜉|| ≤ CN−𝜇, 0 ≤ t ≤ T .

Therefore, the conclusion of the proposition holds. It implies that 𝜁N and uN satisfy

optimal-order L2
-error estimates. ▪

Proposition 7. Let a, b, c, 𝑑 as in case (vi) and 𝜇 > 3∕2. Then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||1) ≤ CN1−𝜇.

Proof. Motivated by an a priori estimate for this system in Theorem 3.1 of [6], and putting

𝜑 = 𝜃 in (22) and using integration by parts we get, while the semidiscrete approximation

exists

1

2

𝑑

𝑑t
||𝜃||2 = −𝜅1(𝜉x, 𝜃) − (Ax, 𝜃) + a(𝜉xx, 𝜃x). (75)

Now putting 𝜒 = 𝜉 + a𝜉xx in (24) and using integration by parts, we get, while the

semidiscrete approximation exists,

1

2

𝑑

𝑑t
(||𝜉||2 + (|a| + 𝑑)||𝜉x||2 + |a|𝑑||𝜉xx||2) = −𝜅2(𝜃x, 𝜉) − a𝜅2(𝜃x, 𝜉xx)

− (Bx, 𝜉 + a𝜉xx). (76)
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DOUGALIS ET AL. 15

In order to eliminate the term (𝜉xx, 𝜃x) from (75) and (76) we multiply (75) by 𝜅2 > 0

and add the resulting equation to (76). In this way we get

1

2

𝑑

𝑑t
(
𝜅2||𝜃||2 + ||𝜉||2 + (|a| + 𝑑)||𝜉x||2 + |a|𝑑||𝜉xx||2) = −𝜅1𝜅2(𝜉x, 𝜃) − 𝜅2(Ax, 𝜃)

− (Bx, 𝜉 + a𝜉xx)
− 𝜅2(𝜃x, 𝜉). (77)

We now estimate the right-hand side of (77). The terms (𝜉x, 𝜃), (Ax, 𝜃) are estimated as in

the proof of Proposition 4. Assuming that tN is the maximal time in (0,T] for which the

semidiscrete approximation exists and satisfies, in view of (20),

|𝜃|∞ ≤ 1, 0 ≤ t ≤ tN , (78)

we see, as in (53) and (62), that for 0 ≤ t ≤ tN

|(𝜉x, 𝜃)| + |(Ax, 𝜃)| ≤ C
(
N2(1−𝜇) + ||𝜃||2 + ||𝜉||2

1

)
. (79)

Examining the rest of the terms in the right-hand side of (77) we first note that

|(𝜃x, 𝜉)| = |(𝜃, 𝜉x)| ≤ 1

2
(||𝜃||2 + ||𝜉x||2). (80)

In the last term of the right-hand side of (77) the inner product with 𝜉 is easily estimated

by integrating by parts and arguing as in (40)–(44). This gives

|(Bx, 𝜉)| = |(B, 𝜉x)| ≤ C(N−2𝜇 + ||𝜉||2
1
). (81)

We now estimate the terms in the inner product (Bx, 𝜉xx). We have, since H1
is an algebra,

using (15) and our hypothesis on 𝜇, that

|((u𝜎)x, 𝜉xx)| ≤ C||u||1||𝜎||1||𝜉xx|| ≤ C(N2(1−𝜇) + ||𝜉xx||2), (82)

|((u𝜉)x, 𝜉xx)| ≤ C||u||1||𝜉||1||𝜉xx|| ≤ C||𝜉||2
2
, (83)

|((𝜎𝜉)x, 𝜉xx)| ≤ C||𝜎||1||𝜉||1||𝜉xx|| ≤ C||𝜉||2
2
. (84)

Since 𝜇 > 3∕2 we have by (15), (16)

|((𝜎2)x, 𝜉xx)| ≤ C|𝜎|∞||𝜎||1||𝜉xx|| ≤ CN
3

2
−2𝜇||𝜉xx||

≤ CN−𝜇||𝜉xx|| ≤ C(N−2𝜇 + ||𝜉xx||2). (85)

Finally, assuming that tN in (78) is small enough so that in addition to (78) we have

|𝜉|∞ ≤ 1, 0 ≤ t ≤ tN , (86)

we obtain for 0 ≤ t ≤ tN

|(𝜉2)x, 𝜉xx)| ≤ 2|𝜉|∞||𝜉x||||𝜉xx|| ≤ C||𝜉||2
2
. (87)

From (77), (79)–(85), and (87), since 𝜅2, 𝑑 > 0 we obtain

𝑑

𝑑t
(||𝜃||2 + ||𝜉||2

2

)
≤ C(N2(1−𝜇) + ||𝜃||2 + ||𝜉||2

2
), 0 ≤ t ≤ tN ,

where the constant C does not depend on tN . By Gronwall’s lemma then, for 0 ≤ t ≤ tN

||𝜃|| + ||𝜉||2 ≤ CTN1−𝜇. (88)
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16 DOUGALIS ET AL.

Since by (17) |𝜃|∞ ≤ CN1∕2||𝜃||, and since |𝜉|∞ ≤ C||𝜉||1 by Sobolev’s theorem, we see

that (88) implies, in view of our assumption on 𝜇, that tN in (78) and (86) is not maximal

if N is sufficiently large, and, as usual, can be taken equal to T . We infer that (88) holds

up to t = T and that the conclusion of the proposition follows, giving an optimal-order H1

error estimate for uN and a suboptimal-order one for 𝜁N in L2
. ▪

Proposition 8. Let a, b, c, 𝑑 as in case (vii) and with no loss of generality suppose that
a < 0, b > 0, 𝑑 = 0, c = 0. If 𝜇 > 3∕2, then

max
0≤t≤T

(||𝜁N − 𝜁 || + ||uN − u||) ≤ CN1−𝜇. (89)

Proof. These systems are of the form

𝜁t + 𝜅1ux + 𝜆(𝜁u)x + auxxx − b𝜁xxt = 0, (90)

ut + 𝜅2𝜁x + 𝜆uux = 0. (91)

Motivated by an analogous observation in [6], Section 3.3, we write the first pde (90)

above in the equivalent form

𝜁t −
a
b

ux + (𝜅1 +
a
b
)bux + 𝜆b(𝜁u)x = 0, (92)

where b = (I − b𝜕2
x )−1

was introduced in the proof of Proposition 6.

Consequently, we will adopt the following semidiscretization of the system: for all

𝜑, 𝜒 ∈ SN

(𝜁Nt, 𝜑) −
a
b
(uNx, 𝜑) +

(
𝜅1 +

a
b

)
(buNx, 𝜑) + 𝜆(b(𝜁NuN)x, 𝜑) = 0, (93)

(uNt, 𝜒) + 𝜅2(𝜁Nx, 𝜒) + 𝜆(uNuNx, 𝜒) = 0, (94)

with

𝜁N(0) = P𝜁0, uN(0) = Pu0. (95)

It is clear that the solution of this IVP exists at least locally in time.

We proceed now to the proof of the error estimate (89). While the semidiscrete solution

exists, using our usual notation and subtracting the weak form of (92) from (93) we have

for all 𝜑 ∈ SN

(𝜃t, 𝜑) −
a
b
(𝜉x, 𝜑) = −

(
𝜅1 +

a
b

)
(b(𝜉x + 𝜎x), 𝜑) − 𝜆(bAx, 𝜑). (96)

From the weak form of (91) and (94) we obtain

(𝜉t, 𝜒) + 𝜅2(𝜃x, 𝜒) = −𝜆(Bx, 𝜒),∀𝜒 ∈ SN . (97)

Putting 𝜑 = 𝜃 in (96), 𝜒 = 𝜉 in (97) gives

1

2

𝑑

𝑑t
||𝜃||2 − a

b
(𝜉x, 𝜃) = −

(
𝜅1 +

a
b

)
(b(𝜉x + 𝜎x), 𝜃) − 𝜆(bAx, 𝜃),

1

2

𝑑

𝑑t
||𝜉||2 − 𝜅2(𝜃, 𝜉x) = −𝜆(Bx, 𝜉).

Multiplying the first equation above by 𝜅2 and the second by −a∕b and adding we get

1

2

𝑑

𝑑t

(
𝜅2||𝜃||2 + |a|

b
||𝜉||2

)
= −𝜅2(𝜅1 +

a
b
)(b(𝜉 + 𝜎)x, 𝜃)

− 𝜅2𝜆(bAx, 𝜃) +
a
b
𝜆(Bx, 𝜉). (98)
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DOUGALIS ET AL. 17

For the first two terms in the right-hand side of (98) we have, in view of (66)

|(b(𝜉 + 𝜎)x, 𝜃)| ≤ ||b(𝜉 + 𝜎)x||||𝜃|| ≤ C(||𝜉|| + ||𝜎||)||𝜃||, (99)

|(bAx, 𝜃)| ≤ ||bAx||||𝜃|| ≤ C||A||||𝜃||. (100)

We bound the right-hand side of (99) as usual by

(||𝜉|| + ||𝜎||)||𝜃|| ≤ C(N−2𝜇 + ||𝜉||2 + ||𝜃||2). (101)

In order to bound the right-hand side of (100), we argue as in the proof of Proposition 6;

in particular, consider (68). The only difference is in the last term of A, which we now

bound by ||𝜉|||𝜃|∞. Consequently, let tN , 0 < tN ≤ T be the maximal time for which the

semidiscrete approximation exists and is such that

|𝜃|∞ ≤ 1, 0 ≤ t ≤ tN . (102)

We therefore obtain, for 0 ≤ t ≤ tN , that

||A||||𝜃|| ≤ C(N−2𝜇 + ||𝜃||2 + ||𝜉||2). (103)

We now estimate the last term of the right-hand side of (98). Using the definition (25) of

B, we have, since H1
is an algebra and in view of (15), that

|((u𝜎)x, 𝜉)| ≤ ||u||1||𝜎||1||𝜉|| ≤ C||𝜎||1||𝜉|| ≤ C(N2(1−𝜇) + ||𝜉||2). (104)

By integrating by parts we see that

|((u𝜉)x, 𝜉)| = 1

2
|(ux𝜉, 𝜉)|| ≤ 1

2
|ux|∞||𝜉||2 ≤ C||𝜉||2, (105)

using our hypothesis on 𝜇. Similarly, by (16)

|((𝜎𝜉)x, 𝜉)| = 1

2
|(𝜎x𝜉, 𝜉)|| ≤ 1

2
|𝜎x|∞||𝜉||2 ≤ C||𝜉||2. (106)

By our hypothesis on 𝜇 and (15), (16)

|(𝜎𝜎x, 𝜉)| ≤ |𝜎|∞||𝜎x||||𝜉|| ≤ CN
1

2
−𝜇N1−𝜇||𝜉||

≤ CN−𝜇||𝜉|| ≤ C(N−2𝜇 + ||𝜉||2). (107)

And finally, by periodicity

(𝜉𝜉x, 𝜉) = 0. (108)

By (104)–(108) we conclude, as long as the solution of (93)–(95) exists, that

|(Bx, 𝜉)| ≤ C(N2(1−𝜇) + ||𝜉||2). (109)

Therefore, by (98), since 𝜅2, b > 0, and using (99), (101), (103), (109) we have for 0 ≤

t ≤ tN
𝑑

𝑑t
(||𝜃||2 + ||𝜉||2) ≤ C(N2(1−𝜇) + ||𝜃||2 + ||𝜉||2).

Hence, by Gronwall’s lemma, in view of (95) we obtain for 0 ≤ t ≤ tN

||𝜃|| + ||𝜉|| ≤ CTN1−𝜇. (110)

Since |𝜃|∞ ≤ CN1∕2||𝜃|| ≤ CN3∕2−𝜇
by the above, in view of our hypothesis on 𝜇, and

provided we take N sufficiently large, we infer that tN in (102) was not maximal; as usual,

we may take tN = T . Thus (110) holds up to t = T , giving (89). This inequality implies

that 𝜁N and uN satisfy in this case suboptimal L2
-error estimates. ▪

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23021 by U
niversidad D

e V
alladolid, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 DOUGALIS ET AL.

4 FULL DISCRETIZATION AND NUMERICAL EXPERIMENTS

In this section, we complete the study of the numerical approximation of the B/B systems (5) by

introducing a time-stepping scheme for the spectral semidiscrete systems (18), (19). The performance

of the resulting fully discrete method is illustrated with some numerical experiments.

4.1 Temporal discretization of the spectral semidiscrete systems

We consider the periodic initial-value problem (13), (14) on a long enough interval (−L,L) and dis-

cretize it in space with the spectral Galerkin method introduced in Section 3. After the change from the

interval (0, 1) (for which the convergence analysis was made) to (−L,L) is performed, the correspond-

ing system (18)–(20) is solved in terms of the Fourier coefficients of the semidiscrete approximations

in analogy to (21). This leads to an ode system of the form

𝑑

𝑑t

(
𝜁N

ûN

)
= F

(
𝜁N

ûN

)
, (111)

where for −N ≤ k ≤ N, k̂ = k𝜋∕L

F

(
𝜁N

ûN

)
(k̂) =

⎛⎜⎜⎝
1

1+bk̂2

(
îk((−𝜅1 + ak̂2)ûN(k̂, t) − 𝜆𝜁NuN(k̂, t))

)
1

1+𝑑k̂2

(
îk(−𝜅2(1 − ck̂2)𝜁N(k̂, t) − 𝜆

2
û2

N(k̂, t))
) ⎞⎟⎟⎠

, (112)

with 𝜁N(k̂, 0) = 𝜁0(k̂), ûN(k̂, 0) = û0(k̂). The ode system (111), (112) is then discretized in time with

the fourth-order, three-stage RK-composition method based on the implicit midpoint rule (IMR) [20,

33]. The scheme belongs to the family of RK methods with Butcher tableau

aij

bi
=

b1∕2

b1 b2∕2

b1 b2 ⋱

⋮ ⋮ ⋱

b1 b2 · · · · · · bs∕2

b1 b2 · · · · · · bs

, (113)

in the particular case of s = 3 and

b1 = (2 + 2
1∕3 + 2

−1∕3)∕3 = 1

2 − 2
1∕3

∼ 1.351,

b2 = 1 − 2b1 ∼ −1.702, b3 = b1, (114)

The method (113), (114) can be written as a composition of three steps of the IMR with stepsizes

b1Δt, b2Δt, and b3Δt. For a general ode system ẏ = f (y) this reads

yn,1 = yn + b1Δtf
(

yn + yn,1

2

)
,

yn,j = yn + bjΔtf
(

yn,j−1 + yn,j

2

)
, j = 2, 3,

yn+1 = yn,3.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23021 by U
niversidad D

e V
alladolid, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DOUGALIS ET AL. 19

The scheme is fourth-order accurate, symplectic, symmetric and of easy implementation. The full

discretization has been analyzed in [9] in the case of the spectral semidiscretization of the periodic

IVP for the KdV equation and its efficiency has been checked in computations with other nonlinear

dispersive equations [12, 18]. It has been shown to be L2
-conservative and convergent under suitable

CFL conditions in the case of the KdV. Here, in our experiments with the B/B system (13), (14) in the

generic case a, c < 0, b, 𝑑 > 0, we also observed that a Courant stability condition of the form NΔt ≤ 𝛼

for some 𝛼 > 0 was sufficient to ensure stability and convergence of the fully discrete scheme.

For an integer M ≥ 1 the corresponding fully discrete approximation at times tm = mΔt,m =
0, … ,M, where T = MΔt, is computed in the Fourier space with FFT techniques.

4.2 Validation of the codes

In this section, we present some numerical evidence in order to validate the full discretization intro-

duced in Section 4.1. The experiments will additionally serve to give confidence to the numerical

simulation of stability and interactions of solitary waves to be carried out in the companion paper [13],

compare also [14].

In the first experiment we check the temporal order of convergence by simulating with the fully

discrete scheme the propagation of an exact solitary wave solution of (5). For particular values of the

speed, exact classical solitary waves can be derived by following the arguments used in [8]. If we look

for solutions (𝜁, v𝛽) with v𝛽 = B𝜁 for some constant B, then, substituting into (12) we have

(cs − 𝜅1B)𝜁 − (bcs + aB)𝜁 ′′ = B𝜅𝛾,𝛿𝜁2

(csB − 𝜅2)𝜁 − (𝑑csB + 𝜅2c)𝜁 ′′ = B2

2
𝜅𝛾,𝛿𝜁

2. (115)

The existence of a solution 𝜁 of (115) requires then

2csB − 2𝜅2 = csB − 𝜅1B2

2𝑑csB + 2𝜅2c = bcsB + aB2. (116)

If we consider (116) as a linear system for the variables B2
and csB, then we have two possibilities:

• If b − 2𝑑 − a(𝛿 + 𝛾) ≠ 0, then (116) has a unique solution from which

B2 = 2𝜅2(b − 2𝑑 − c)
𝜅1(b − 2𝑑) − a

, cs =
1

B
2𝜅2(c𝜅1 − a)
𝜅1(b − 2𝑑) − a

. (117)

• If b − 2𝑑 − a(𝛿 + 𝛾) = 0, then (116) has infinitely many solutions iff c = a(𝛿 + 𝛾); they satisfy

cs =
2𝜅2 − 𝜅1B2

B
, (118)

for B ≠ 0 arbitrary.

As far as the exact form of the solutions is concerned, differentiating one of the equations of (115)

and using (116) we have

𝜇1𝜁
′ − 𝜇2𝜁

′′′ = 𝜁𝜁 ′, (119)

where

𝜇1 =
𝜅2 − 𝜅1B2

𝜅𝛾,𝛿B2
, 𝜇2 =

(a − b𝜅1)B2 + 2b𝜅2

2𝜅𝛾,𝛿B2
.

Thus, (119) admits solutions of square hyperbolic secant form if 𝜇1𝜇2 > 0, that is, if

(𝜅2 − 𝜅1B2)((a − b𝜅1)B2 + 2b𝜅2) > 0.
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20 DOUGALIS ET AL.

If this condition is satisfied, then

𝜁(x, t) = 3𝜇1sech2

(
1

2

√
𝜇1

𝜇2

(x − cst − x0)
)
,

u(x, t) = (1 − 𝜕xx)v𝛽 = B(𝜁(x, t) − 𝛽𝜁xx(x, t)), (120)

where B and cs are given by (117) or (118), and x0 ∈ R is arbitrary.

For the first numerical experiment below, we consider the solution of the form (120) corresponding

to the parameter values

𝛿 = 0.9, 𝛾 = 0.5,

a = −1∕3, c = −2∕3,

b = 𝑑 = 1

2

(
a
𝜅1

− c + 1 + 𝛾𝛿

3𝛿(𝛿 + 𝛾)

)
≈ 0.2918, (121)

and compute the fully discrete approximation up to a final time T = 100 on an interval (−L,L)with L =
256 and periodic boundary conditions. According to (117), the speed is cs ≈ 1.0328 and the amplitude

is 𝜁max ≈ 7.9846. We made two runs with N = 2048 and N = 4096 (that is with h = 2L∕N = 0.250

TABLE 1 L2
-errors and temporal convergence rates at T = 100 with L = 256 and N = 2048 (h = 0.25) and N = 4096

(h = 0.125).

𝚫t 𝜻-error Rate v𝜷 -error Rate

N = 2048

1∕40 1.1028E − 05 7.3309E − 06

1∕80 6.8977E − 07 3.9989 4.5852E − 07 3.9989

1∕160 4.3076E − 08 4.0012 2.8635E − 08 4.0011

N = 4096

1∕40 1.1028E − 05 7.3309E − 06

1∕80 6.8977E − 07 3.9989 4.5852E − 07 3.9989

1∕160 4.2945E − 08 4.0056 2.8548E − 08 4.0055

100 101 102

t

10-10

10-8

10-6

10-4

 e
rr

or

 t=1/40
 t=1/80
 t=1/160

FIGURE 1 Numerical simulation of (5) with the parameter values given in (121) up to T = 100 with N = 4096. Normalized

L2
-error for 𝜁 versus time in log-log scale.
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DOUGALIS ET AL. 21

and 0.125 respectively) and several values of Δt. The normalized L2
-errors for 𝜁 and v𝛽 at the final

time and the corresponding temporal convergence rates are presented in Table 1. The results show the

fourth order of convergence of the time discretization and the associated errors in L2
. Since for the

values (121) the system (5) is Hamiltonian (cf. (10)) and its solutions are smooth, decaying to zero at

infinity, and preserving the quantities (8) and (9), we may study the ability of the numerical solution

to conserve the corresponding discrete versions of the invariants, given by

Ih(U,V) = h
N−1∑
j=0

(UjVj + b(DNU)j(DNV)j), (122)

Eh(U,V) = h
N−1∑
j=0

(
𝜅2

2
U2

j +
𝜅1

2
V2

j − a(DNV)2j

−𝜅2c(DNU)2j +
𝜅𝛾,𝛿

2
UjV2

j

)
, (123)
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0|/|I

h
0|

|E
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n-E

h
0|/|E

h
0|

(d)

FIGURE 2 Numerical simulation of (5) with the parameter values given in (121) up to T = 100 with N = 4096. (a) 𝜁 speed

error versus time; (b) 𝜁 amplitude error versus time; (c) 𝜁 phase error versus time; (d) errors of discrete quantities (122) and

(123) versus time (semilog scale). The errors are normalized and Δt = 1∕160 is taken.
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22 DOUGALIS ET AL.

for U = (U0, … ,UN−1),V = (V0, … ,VN−1) and DN standing for the pseudospectral differentiation

matrix of order N. If In
h ,En

h denote, respectively, the values of (122) and (123) evaluated in terms

of the numerical solution at time tn = nΔt, we obtain the evolution of the normalized errors |(In
h −

I0

h )∕I0

h |, |(En
h − E0

h)∕E0

h| shown in Figure 2d for Δt = 1∕160. It suggests the preservation of the two

quantities up to the final time T = 100 with a normalized error of 1.0198 × 10
−10

and 5.1366 × 10
−9

respectively. Due to the form of the bilinear invariant (8), we have almost exact in time conservation

of the discrete H1
-norm, defined by the pseudospectral differentiation of the numerical solution.

In addition, Figure 1 shows, in log-log scale, the evolution of the normalized 𝜁 errors in L2
norm as

functions of time for N = 4096 and several values ofΔt. The slopes of the lines suggest approximately

linear growth in time of the errors, as expected [19]. A source of this behavior is due to the evolution of

the error with respect to some parameters of the solitary waves. For the case at hand this is illustrated

by Figure 2a–c showing, for N = 4096,Δt = 1∕160, the relative errors in speed, amplitude, and the

error in phase, respectively, of the numerical approximation of 𝜁 as functions of time. These errors are

computed in a standard way, as for example, in [11]. The results show the preservation of speed and

amplitude (up to an error at t = 100 of about 6.9340 × 10
−11

and 1.5584 × 10
−9

respectively) and a

-60 -40 -20 0 20 40 60
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0.5
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0.4

0.6
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N
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(

)

(c)

FIGURE 3 Two-pulse solitary wave generated numerically with parameters given by (124). (a) 𝜁 and u profiles; (b) 𝜁 and u
phase portraits; (c) residual error versus number of iterations (semilog scale).
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DOUGALIS ET AL. 23

linear growth of the phase error. The same experiments were also made with N = 1024, 2048. The

qualitative results concerning the time behavior of the errors in L2
norm, in the parameters and in the

quantities (122) and (123) were similar and they will not be shown here.

In the second experiment we took the values

𝛿 = 0.9, 𝛾 = 0.5, a = c = 0, b = 𝑑 = 1

2

(
1 + 𝛾𝛿

3𝛿(𝛿 + 𝛾)

)
≈ 0.1918, (124)

and generated numerically an approximate solution of (12). To this end we followed a standard

procedure (cf. e.g., [10, 12] and references therein), consisting on discretizing (12) on (−L,L) with

periodic boundary conditions by the Fourier collocation method and solving iteratively the system for

the discrete Fourier components of the approximations to the profiles for 𝜁 and v𝛽 by the Petviashvili

method [25, 26]. The iterative procedure is in some cases accelerated by using vector extrapolation

methods [28-30]. For the application of these techniques to Petviashvili’s method for traveling wave

computations see [1]. For details of the implementation in the case of the B/B systems, see [13, 14].

In the experiment below, we ran the corresponding iteration taking as initial profile a superposition

of two hyperbolic secant square profiles of amplitudes equal to 1 and centered at x = ±20. The method
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FIGURE 4 Simulation of (5) with parameter values given by (124) up to T = 400 with Δt = 1∕160. Approximation of 𝜁 (x, t)
at (a) t = 0; (b) t = 100; (c) t = 200; (d) t = 300.
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24 DOUGALIS ET AL.

converges to the profile shown in Figure 3, which has the form of a symmetric two-pulse solitary wave.

The accuracy of the iteration is first suggested by the convergence to practically zero of the residual

error, computed in the standard way [1, 10, 17], and shown in Figure 3c. Both pulses have a computed

amplitude of about 1.6055 and the two-pulse wave travels with a speed of 6.9761 × 10
−1

.

In addition, we took this computed two-pulse as initial condition of the fully discrete method and

monitored the evolution of the numerical solution up to a final time T = 400 with several values

of the discretization parameters N and Δt. The profiles at several times generated with Δt = 1∕160

and N = 2048, 4096, are shown in Figure 4 (note the changing x-axis); they coincide within graph

thickness, confirming the ability of the code to simulate classical solitary waves accurately.

The third experiment for checking the accuracy of the codes concerns the simulation of a

generalized solitary wave. Taking the values L = 256, and

𝛿 = 0.9, 𝛾 = 0.5,

a = c = −1∕3, b = 0, 𝑑 = − a
𝜅1

− c + 1 + 𝛾𝛿

3𝛿(𝛿 + 𝛾)
≈ 1.1836, (125)

the numerical procedure described above generates generalized solitary-wave (GSW) profile, shown

in Figure 5a. (In [13] and [14] we have proved the existence of such solitary waves for systems with
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FIGURE 5 Simulation of (5) with parameter values given by (125) up to T = 400 with Δt = 1∕160. Approximation of 𝜁 (x, t)
at (a) t = 0; (b) t = 100; (c) t = 200; (d) t = 300.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23021 by U
niversidad D

e V
alladolid, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DOUGALIS ET AL. 25
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FIGURE 6 Magnification of Figure 5 near the base of the main pulse. Approximation of 𝜁 (x, t) at (a) t = 0; (b) t = 100; (c)

t = 200; (d) t = 300.

parameters such as those in (125).) This profile was taken as initial condition for the fully discrete

scheme. The evolution of the resulting numerical approximation is observed in the figures that follow.

Figure 5b–d shows the numerical approximation of 𝜁 at several time instances with N = 2048 andΔt =
1∕160, confirming the preservation of the permanent form of the wave as it evolves. (The amplitude

of the computed initial GSW profile is 𝜁max ≈ 1.5764× 10
−1

and the profile was generated with speed

cs = c𝛾,𝛿 + 0.01 ≈ 6.0761 × 10
−1

, where c𝛾,𝛿 =
√
(1 − 𝛾)∕(𝛾 + 𝛿) is the associated speed of sound.)

The profiles obtained with N = 4096 were also computed and they coincide with the corresponding

ones obtained for N = 2048 within the graph thickness. Figure 6 is a magnification of Figure 5 and

shows the structure of the ripples in more detail.

The accuracy of this computation may be also confirmed by considering the evolution of ampli-

tude and speed errors, shown in Figure 7. Observe that this case is not Hamiltonian and the quantities

(8), (9) are not preserved by the solution. On the other hand, the L2
norm of the numerical solution for

N = 2048, 4096, evaluated at several time instances is shown in Table 2. It is equal to 4.5789161770×
10

−1
and is preserved up to twelve digits. This furnishes more evidence of the accuracy of the

computations.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23021 by U
niversidad D

e V
alladolid, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



26 DOUGALIS ET AL.
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FIGURE 7 Simulation of (5) with parameter values given by (125) up to T = 400 with Δt = 1∕160 and N = 4096. (a)

Normalized 𝜁 speed error versus time; (b) normalized 𝜁 amplitude error versus time.

TABLE 2 Simulation of (5) from a GSW (Figure 5) up to T = 400 with Δ = 1∕160.

t N = 2048 N = 4096

t = 0 4.578916177071256e − 01 4.578916177063826e − 01

t = 100 4.578916177071556e − 01 4.578916177064732e − 01

t = 200 4.578916177072831e − 01 4.578916177066413e − 01

t = 300 4.578916177073125e − 01 4.578916177067275e − 01

t = 400 4.578916177075660e − 01 4.578916177070251e − 01

Note: L2
norm of 𝜁 component.

5 CONCLUDING REMARKS

The present paper is concerned with the three-parameter family of internal-wave B/B systems (5).

They model the bi-directional propagation of internal waves along the interface of a two-layer system

of fluids under a rigid-lid assumption for the upper layer and over a rigid bottom bounding the lower

layer below. The systems are derived in [7] under the hypothesis that the flow is in the Boussinesq

regime in both layers and are described by four parameters, a, b, c, 𝑑, three of them independent, like

those corresponding to surface wave propagation [5, 6].

In Section 2 several theoretical issues about this family of systems are discussed. First, the theory

developed in [5] for the case of surface waves is used to establish linear and nonlinear well-posedness of

the internal-wave systems. Specifically, the B/B systems are linearly well-posed when a, c ≤ 0, b, 𝑑 ≥
0. As for local nonlinear well-posedness, an analysis similar to the one in [6] establishes seven types

of systems, depending on the parameters a, b, c, 𝑑, in corresponding Sobolev spaces where existence,

uniqueness and regularity locally in time of solutions hold. They correspond to the cases (i)–(vii) in

Section 2.1. When b = 𝑑 these systems admit a Hamiltonian structure; the Hamiltonian and other

conserved quantities are derived in Section 2.2.

Section 3 is devoted to the error analysis of the spectral semidiscretization for approximating the

periodic IVP for the B/B systems. Error estimates for the semidiscrete schemes are derived for each

cases (i)–(vii) of the nonlinearly well-posed systems.
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In Section 4, we integrate numerically in time the spectral semidiscrete systems with a fourth-order

RK-composition method based on the implicit midpoint rule, which was previously shown to be accu-

rate and stable for approximating other nonlinear dispersive equations. The accuracy and performance

of the resulting full discretization were checked in various numerical experiments involving exact

and approximate solitary-wave solutions of (5). In the companion paper [13], compare also [14], we

study theoretically the existence of solitary-wave solutions, analyze their numerical generation in more

detail, and examine computationally some aspects of their dynamics using the fully discrete procedure

introduced here.
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