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We consider the periodic initial-value problem for the Korteweg–de Vries equation that we discretize
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1. Introduction

In this paper we consider the periodic initial-value problem (IVP) for the Korteweg–de Vries (KdV)
equation

ut + uux + uxxx = 0, x ∈ [−π , π ], 0 � t � T , (1.1)

u(x, 0) = u0(x), x ∈ [−π , π ],

where u0 is a smooth, 2π -periodic, real-valued function. The KdV is one of the simplest nonlinear
partial differential equations (PDE) modelling one-way propagation in one space dimension of long
waves in which the nonlinear term (here given by uux) and the linear dispersive term (modelled by uxxx)
are suitably balanced. It has been studied extensively and has a rich mathematical theory. In the case of
(1.1) it is well known for example, cf. e.g. Bona et al. (1995), Bona & Smith (1975), Temam (1969),
that if u0 ∈ Hμ for μ � 2, where Hμ is the L2-based Sobolev space of order μ of periodic functions
on [−π , π ], then for any T > 0, (1.1) has a unique solution in C(0, T; Hμ), which also belongs to
Ck(0, T; Hμ−3k) for k �

[
μ+2

3

]
. (Here C(0, T; X) is the space of continuous maps u : [0, T] → X,

where X is a Banach space and Ck(0, T; X) is the space of X-valued functions defined on [0, T] that
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2 V. A. DOUGALIS AND A. DURÁN

are k times continuously differentiable.) For the modern literature on the well-posedness of the IVP
for the KdV, we refer the reader to Killip & Vişan (2019) and Kappeler & Topalov (2006), and
their references.

We will analyze a high-order fully discrete, conservative numerical method for (1.1). The scheme
consists of a spectral Fourier–Galerkin discretization of the PDE in the spatial variable, coupled with
a high-order, diagonally implicit Runge–Kutta (RK) time-stepping scheme of composition type based
on the implicit midpoint rule (IMR). Although the analysis is done in the case of the model problem
(1.1) the main ideas and techniques behind the derivation of the error estimates may be used to establish
analogous results for more complicated, L2-conservative periodic IVPs for one-way nonlinear dispersive
wave PDEs with more general nonlinearities and linear dispersive terms and may also prove useful in
analyzing temporal discretizations by more general composition-type RK schemes. As far as we know
this is the first work in which fully discrete schemes for a PDE, with time stepping of RK-composition
type, have been analyzed.

Among the many available L2-conservative spatial discretizations for (1.1) (cf. e.g. the references
of Baker et al., 1983, and Bona et al., 2013) we chose, for reasons of simplicity, the spectral
Fourier–Galerkin method. This semidiscretization conserves the first three invariants of the KdV and
is straightforward to analyze; for rigorous error estimates for the semidiscrete problem see e.g. Deng
& Ma (2009), Kalisch (2005), Maday & Quarteroni (1988) and their references. In the first two of
these papers one may find proofs of L2 error bounds of spectral accuracy, whose rates of convergence
depend on the smoothness of the initial value u0. Specifically, if N is the order of the trigonometric
polynomials used in the Fourier basis, it is shown in Maday & Quarteroni (1988) by an energy method
that if u0 ∈ Hμ, μ � 2, then the L2 error of the semidiscrete problem is O(N1−μ). In Deng & Ma
(2009) the estimate is improved to O(N−μ) if μ � 3, in fact, for the generalized KdV equation. In order
to obtain this optimal-order result, Deng & Ma (2009) compare the semidiscrete approximation to the
third-order projection of Wahlbin (1974), and the proof is accordingly more complicated. In Kalisch
(2005) a result of a different kind is proved: specifically, if u0 is analytic in a strip about the real axis,
then the L2 error bound is O(e−σN), where σ is a constant depending on T; the proof relies on analyticity
results in Bona & Grujic (2003).

In this paper, since we will be primarily concerned with establishing error estimates for our fully
discrete scheme, we give in Section 3 a simplified proof of the error of the semidiscretization with
an L2 error bound of O(N1−μ), provided μ � 2; the method of proof differs from that of Maday
& Quarteroni (1988). An important property of the semidiscrete spectral approximation is that its
temporal derivatives are bounded, uniformly with respect to N, in the Sobolev space norms, provided u0
is sufficiently smooth; cf. Proposition 3.2. This property considerably simplifies estimating the errors
of the full discretization.

An efficient time-stepping procedure for a conservative spatially discrete method for (1.1), such as
the one considered here, should be chosen so that the resulting fully discrete scheme has the following
properties:

• It is L2-conservative, preferably symplectic: these properties will give the scheme the chance to
simulate accurately properties of the solution of the KdV that depend on the balance of dispersive
and nonlinear terms, such as the propagation of solitary waves with constant speed and shape
and their asymptotic stability properties, for example, the resolution of general initial profiles into
sequences of solitary waves plus dispersive tails, their interactions, etc. A dissipative scheme will
not reproduce accurately such properties as time increases.

• It is convergent, at most under a weak mesh condition.
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 3

• It is of high temporal accuracy, in order to take advantage of the high accuracy in space.

• It may be easily implemented.

The class of implicit RK methods includes schemes that fulfill the above requirements. An example
is the family of Gauss–Legendre collocation schemes. It is well known, cf. e.g. Hairer et al. (2004) and
its references, that the q-stage Gauss–Legendre scheme has order of accuracy equal to 2q, is B-stable
and is symplectic. These schemes have been used for the temporal discretization of many nonlinear
dispersive wave PDEs that give rise to stiff semidiscrete systems. Their convergence was analyzed in
Bona et al. (1995) in the case of the periodic IVP for the generalized KdV equation, discretized in space
by the Galerkin finite element method with smooth periodic splines.

In the paper at hand for the temporal discretization we will use implicit, symplectic RK schemes of
composition type, whose general step is constructed as the composition of s steps, of length bik, 1� i �s
(where k is the basic time step), of the IMR; cf. e.g. Frutos & Sanz-Serna (1992), Hairer et al.
(2004), Sanz-Serna & Abia (1991), Sanz-Serna & Calvo (1994), Yoshida (1990). For general
RK-composition methods we refer the reader to Hairer et al. (2004) and its references. The
particular scheme corresponding to s = 3, of fourth-order temporal accuracy, was used in Frutos &
Sanz-Serna (1992), to integrate the IVP (1.1) for the KdV, discretized in space by finite element and
spectral methods. It was also used in Dougalis et al. (2019) (see also the arXiv version of the paper)
for long-time computations in a study of the evolution and stability of solitary waves of the generalized
Benjamin equation (see also Section 7 in the sequel), discretized in space by a spectral method. It should
be pointed out that the schemes in this class are not A-stable, since some of the bi are not positive and
the attendant rational approximations to ez have poles in the left half of the complex plane. However,
for a conservative problem like (1.1), the scheme, being symplectic, is unconditionally L2-conservative
and convergent under a weak mesh condition, as will be proved in Theorem 5.4 in this paper. Let us also
remark that symplectic schemes have other well-known properties related to their long-time fidelity
to solutions of a problem like (1.1). For example, since the spectral semidiscretization of (1.1), when
implemented in the Fourier collocation form, leads to a Hamiltonian system of ordinary differential
equations (ODEs) for the semidiscrete solution at the collocation points (the proof for the KdV case
follows along similar lines to those in Cano, 2006 for the nonlinear wave equation and the nonlinear
Schrödinger equation); the property of symplecticity (Sanz-Serna & Calvo 1994; Hairer et al., 2004)
ensures a good conservation of the Hamiltonian.

In Section 4.1 we review the error estimate for the fully discrete IMR-spectral scheme, while
in Section 4.2 we present the RK-composition scheme under study in the context of ODEs. In
Section 4.3 we consider the general s-stage fully discrete scheme and establish the existence of its
solutions, its L2-conservation property and state, under general hypotheses, a result on the uniqueness
of solutions. In Section 4.4 we study the local temporal error of the time-stepping scheme with s = 3
stages (of fourth order of accuracy), applied to the semidiscrete system. Assuming that the solution of
(1.1) is sufficiently smooth and that k = O(N−1) we prove in Proposition 4.4 that the local temporal
error is O(k5) in L2. The result is achieved by computing the asymptotic expansions in powers of k, up
to O(k5) terms, of the intermediate steps of the local error about the points τ n,i = tn + (b1 + · · · + bi)k
in terms of the semidiscrete solution and its partial derivatives. We compute the coefficients of these
asymptotic expansions, estimate their residuals and substitute them into the final stage of the local error
equation, whereupon, after cancellation, there emerges the O(k5) local error. Thus, the overall plan of
the proof resembles that adopted in the case of other implicit, high-order RK schemes for the KdV
and its generalized version in Bona et al. (1995), Dougalis & Karakashian (1985) and Karakashian
& McKinney (1990) for the nonlinear Schrödinger equation in Karakashian et al. (1993) and for the
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4 V. A. DOUGALIS AND A. DURÁN

explicit, (4, 4) ‘classical’ RK scheme for the system of shallow water equations in Antonopoulos et al.
(2020). With the exception of Karakashian & McKinney (1990), where only the temporal discretization
of the PDE was considered, in the other papers cited above the spatial discretization was effected by
Galerkin finite element methods and the stages of the local temporal error were computed in terms
of continuous in time finite element approximations of the solution of the PDE, such as the quasi-
interpolant, the elliptic projection and the L2 projection. Here, the use of the semidiscrete spectral
approximation itself for this purpose simplifies the analysis; however, many technical difficulties remain
and they are resolved in the course of the proof of Proposition 4.4.

In Section 5 we revert to the general s-stage temporal discretization scheme and, under the
hypotheses that the solution of (1.1) is in Hμ for t ∈ [0, T] for μ sufficiently large, and that the
local temporal error is O(kα+1) in L2, we prove that there exists a constant C such that if kN � C,
the fully discrete scheme has a unique solution whose maximum L2 error over [0, T] has a bound of
O(kα + N1−μ). Therefore, the RK scheme with s = 3 stages, whose local temporal error was analyzed
in Section 4.4, leads to a fully discrete method with an L2 error bound of O(k4 + N1−μ). In a remark
at the end of Section 5 we discuss the convergence of a simple iterative scheme approximating the
nonlinear system of equations that must be solved at each IMR stage of the RK time-stepping scheme.

In Section 6 we illustrate the convergence results and other geometric properties (in the sense of
Hairer et al., 2004; Sanz-Serna & Calvo, 1994) of the scheme, implemented in spectral collocation
form, with some numerical experiments of simulations of solitary-wave solutions of the KdV equation.
In a final Section 7 we summarize the results of the paper and indicate how they may be extended e.g. to
the case of the generalized Benjamin equation, solved numerically with the present scheme in Dougalis
et al. (2019).

As was already mentioned we will denote by Hμ, for real μ � 0, the L2-based Sobolev space of
order μ consisting of periodic functions on (−π , π). For g ∈ Hμ its norm is given by

||g||μ =
(∑

k∈Z
(1 + k2)μ |̂g(k)|2

)1/2

,

where ĝ(k) = 1
2π

∫ π

−π
e−ikxg(x) dx is the kth Fourier coefficient of g. For 1 � p � ∞ we denote by

Wμ
p = Wμ

p (−π , π) the real Sobolev space of periodic functions on (−π , π) and denote its norm by
|| · ||μ,p, while | · |∞ will stand for the norm of L∞(−π , π). Finally, the inner product in L2 = L2(−π , π)

will be defined by (u, v) = ∫ π

−π
u(x)v(x) dx, and || · || will denote the induced L2 norm.

2. Semidiscretization and preliminaries

Let N � 1 be an integer and consider the finite-dimensional space SN defined by

SN = span{eikx, k integer, −N � k � N}.

Let PN denote the L2 projection operator onto SN defined for v ∈ L2 by

PNv =
∑

|k|�N

v̂keikx,
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 5

where v̂k = v̂(k) is the kth Fourier coefficient of v. We note some well-known properties of PN that will
be used throughout the paper. It is obvious that PN commutes with the differentiation operator ∂x. We
also recall that for v ∈ L2 and χ ∈ SN ,

(PNv, χ) = (v, χ). (2.1)

Moreover, cf. Mercier (1989), given integers 0 � j � μ, there exists a constant C, independent of N,
such that for any v ∈ Hμ,

||v − PNv||j � CNj−μ||v||μ, μ � 0, (2.2)

|v − PNv|∞ � CN1/2−μ||v||μ, μ � 1. (2.3)

In addition, the following inverse inequalities hold on SN . Given 0 � j � μ there exists a constant C0
independent of N, such that for all ψ ∈ SN ,

||ψ ||μ � C0Nμ−j||ψ ||j, ||ψ ||μ,∞ � C0N1/2+μ−j||ψ ||j. (2.4)

The semidiscrete Fourier–Galerkin approximation to the solution of (1.1) is a real-valued map uN :
[0, T] → SN such that, for all χ ∈ SN ,

(
uN

t + uNuN
x + uN

xxx, χ
)

= 0, 0 � t � T , (2.5)

uN(x, 0) = PNu0(x).

It is straightforward to see that while the solution of (2.5) exists, it satisfies

d

dt

∫ π

−π

uNdx = 0,

d

dt

∫ π

−π

(uN)2dx = 0, (2.6)

d

dt

∫ π

−π

(
(uN

x )2 − 1

3
(uN)3

)
dx = 0. (2.7)

In particular, while uN exists, we have

||uN(t)|| = ||uN(0)||, (2.8)

from which, from standard ODE theory, we see that uN(t) exists uniquely for all t > 0 and, in particular,
satisfies (2.8) and the other conservation laws for 0 � t � T .
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6 V. A. DOUGALIS AND A. DURÁN

3. Convergence of the semidiscretization

Theorem 3.1 Let uN be the solution of (2.5) and suppose that u, the solution of (1.1), belongs to
Hμ, μ � 2, for t ∈ [0, T]. Then for some constant C independent of N it holds that

max
0�t�T

||uN − u|| � C

Nμ−1 . (3.1)

Proof. We write uN − u = θ + ρ, where θ = uN − PNu ∈ SN , and ρ = PNu − u. We then have for
χ ∈ SN , 0 � t � T , in view of (2.5), (1.1), (2.1),

(θt, χ) + (θxxx, χ) = (uN
t + uN

xxx, χ) − (PN(ut + uxxx), χ) = (uux − uNuN
x , χ).

Since

uux − uNuN
x = uux − (u + θ + ρ)(ux + θx + ρx)

= −uθx − uρx − uxθ − θθx − ρxθ − uxρ − ρθx − ρρx,

we have for χ ∈ SN ,

(θt, χ) + (θxxx, χ) = − (
(uθx, χ) + (uρx, χ) + (uxθ , χ) + (θθx, χ)

+ (ρxθ , χ) + (uxρ, χ) + (ρθx, χ) + (ρρx, χ)
)

.

Putting χ = θ in the above and using integration by parts and periodicity we obtain for 0 � t � T ,

1

2

d

dt
||θ ||2 = −

(
1

2
(ux, θ2) + (uρx, θ) + 1

2
(ρx, θ2) + (uxρ, θ) + (ρρx, θ)

)
. (3.2)

Now we estimate the various inner products in the right-hand side of the above, taking into account that
u ∈ Hμ, μ � 2. We first have

|(ux, θ2)| � |ux|∞||θ ||2 � C||θ ||2. (3.3)

(Here and in the sequel C will denote a generic constant independent of the discretization parameters.)
By (2.2),

|(uρx, θ)| � |u|∞||ρx||||θ || � CN1−μ||θ ||. (3.4)

Using the inequality |vx|∞ � C||vx||1/2||vxx||1/2, valid in H2, we see, in view of (2.2), since μ � 2,

|(ρx, θ2)| � |ρx|∞||θ ||2 � CN
3
2 −μ||θ ||2 � C||θ ||2. (3.5)

Also, by (2.2),

|(uxρ, θ)| � |ux|∞||ρ||||θ || � CN−μ||θ ||. (3.6)
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 7

And, as above,

|(ρρx, θ)| � |ρ|∞||ρx||||θ || � CN
3
2 −2μ||θ || � CN−μ||θ ||. (3.7)

We conclude by (3.2)–(3.7) that

d

dt
||θ ||2 � C

(
N2(1−μ) + ||θ ||2

)
, 0 � t � T ,

from which, by Gronwall’s lemma, since θ(0) = 0, we get

max
0�t�T

||θ || � CN1−μ,

and (3.1) follows, in view of (2.2). �
For the purposes of estimating the error of the temporal discretization of (2.5) we note the following

boundedness result for the semidiscrete approximation uN , which is a consequence of the error estimate
(3.1).

Proposition 3.2 Let uN be the solution of (2.5) and suppose that the solution u of (1.1) belongs to Hμ

for t ∈ [0, T]. Then, given non-negative integers j and l, and provided μ � max{2, 3j + l + 1}, there
exists a constant C independent of N such that

max
0�t�T

||∂ j
t u

N ||l � C. (3.8)

Proof. Using (2.2), (2.4) and (3.1), provided μ � 2, we have

||uN ||l � ||u − PNu||l + ||PNu − uN ||l + ||u||l
� CNl−μ||u||μ + CNl

(
||PNu − u|| + ||u − uN ||

)
+ ||u||l

� CNl−μ||u||μ + CNl+1−μ||u||μ + ||u||l.

Therefore, if μ � max{2, l + 1}, it holds that

max
0�t�T

||uN ||l � C. (3.9)

Since PN is the L2 projection and uN
xxx ∈ SN we have from (2.5),

∂tu
N = −uN

xxx − PN(uNuN
x ). (3.10)

Hence

||∂tu
N ||l � ||uN ||l+3 + ||PN(uNuN

x )||l � ||uN ||l+3 + ||uNuN
x ||l.
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8 V. A. DOUGALIS AND A. DURÁN

From Sobolev’s theorem and the fact that Hl is an algebra for l � 1 we conclude from the above that

||∂tu
N ||l � ||uN ||l+3 + C||uN ||2l+1.

Therefore, in view of (3.9) and if μ � l + 4, we have

||∂tu
N ||l � C. (3.11)

Finally, differentiating (3.10) j − 1 times with respect to t and repeatedly using (3.9) and (3.11), we
obtain (3.8). �

4. Full discretization by an RK method of composition type

As mentioned in the introduction we will discretize in time the IVP for the system of ODEs (ODE
IVP) represented by (2.5), using an implicit s-stage RK-composition scheme based on the IMR. In this
section, after briefly reviewing the IMR, we will present the time-stepping RK method to be analyzed,
study the existence of solutions of the resulting fully discrete scheme and its L2-conservation property,
present a preliminary uniqueness of solutions result and, for s = 3, prove an L2 estimate of its local
temporal error.

4.1 Fully discrete scheme with IMR time stepping

A simple time-stepping method that may be used to discretize the ODE IVP (2.5) in t is the IMR, which,
in the case of the autonomous ODE system ẏ = φ(y), is the single-step scheme

yn+1 − yn = kφ(yn+1/2),

where k here and in the sequel will denote the (uniform) time step, yn is the approximation of y(tn), tn =
nk and yn+1/2 = 1

2 (yn+1 + yn). In the case of the IVP (2.5), assuming that T = Mk where M is an
integer, the scheme is the following: we seek Un ∈ SN for n = 0, . . . , M, satisfying for each χ ∈ SN ,

(Un+1 − Un, χ) = k
(
−(Un+1/2)xxx − f (Un+1/2)x, χ

)
, (4.1)

U0 = PNu0,

where here and in the sequel we put f (v) = v2/2 and Un+1/2 = Un+1+Un

2 . For the Fourier coefficients
Ûn(j), −N � j � N, of Un we may write

Ûn+1(j) − Ûn(j)

k
= i

(
j3Ûn+1/2(j) − j ̂f (Un+1/2)(j)

)
,

Û0(j) = û0(j), −N � j � N,

where ̂f (Un+1/2)(j) denotes the jth Fourier coefficient of f (Un+1/2).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drab060/6350135 by guest on 17 August 2021



A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 9

It is easy to see, by writing, for each n, equations (4.1) in fixed-point form and applying a variant of
Brouwer’s fixed point theorem, that, given Un ∈ SN , there exists a solution Un+1 ∈ SN of the nonlinear
system of equations represented by (4.1). Putting χ = Un + Un+1 and using periodicity one may also
obtain that the method is L2-conservative, i.e. that

||Un|| = ||U0||, 0 � n � M. (4.2)

By comparing Un with uN(tn), where uN is the solution of (2.5), using (3.1) and (3.8), one may derive
in a straightforward way the following error estimate for Un.

Proposition 4.1 Suppose that u, the solution of (1.1), belongs to Hμ for t ∈ [0, T], where μ � 10.
Then there exists a constant α > 0, such that if k � α

N , there exists a unique solution {Un}M
n=0 of (4.1)

satisfying

max
0�n�M

||Un − u(tn)|| � C(k2 + N1−μ), (4.3)

where C is a constant independent of N and k.

As the error analysis of the IMR fully discrete scheme (4.1) may be viewed as a special case of
the convergence proof for the general fully discrete scheme to be considered in the sequel we will not
present the proof of Proposition 4.1 here.

4.2 An RK composition method

We will consider an RK method with s stages for the autonomous ODE system ẏ = φ(y), whose Butcher
tableau is of the form

(4.4)

where the bi are nonzero real numbers. As has been pointed out in Sanz-Serna & Abia (1991), all
symplectic (canonical) RK schemes, i.e. those satisfying biaij + bjaji − bibj = 0, i � i, j � s,
with lower triangular matrix aij (i.e. all diagonally implicit symplectic schemes) are of the
form (4.4).

It is well known, cf. e.g. Yoshida (1990), Frutos & Sanz-Serna (1992), Sanz-Serna & Calvo (1994),
Hairer et al. (2004) and their references, that the RK scheme corresponding to the tableau (4.4) is of
composition type, since it may be constructed as the composition of s steps of the IMR with step sizes
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10 V. A. DOUGALIS AND A. DURÁN

b1k, b2k, . . . , bsk, i.e. in the case of ẏ = φ(y) it is equivalent to the scheme

yn,1 = yn + b1kφ

(
yn + yn,1

2

)
, (4.5)

yn,j = yn,j−1 + bjkφ

(
yn,j−1 + yn,j

2

)
, 2 � j � s,

yn+1 = yn,s.

For example, a method mentioned in the above references and used in Frutos & Sanz-Serna (1992) for
the temporal discretization of the KdV equation, corresponds to s = 3 and

b1 = (2 + 21/3 + 2−1/3)/3 = 1

2 − 21/3
∼= 1.351, b2 = 1 − 2b1

∼= −1.702, b3 = b1, (4.6)

has order of accuracy p = 4 and is symmetric since b3 = b1. This scheme may be generalized using
Yoshida’s approach (Yoshida, 1990), which yields recursively symplectic symmetric methods (in our
case taking the IMR as the base scheme) as follows. Let ψ

[2]
k be the mapping that effects the step

n �→ n + 1 of the IMR with step size k. Then the method with s = 3 may be viewed, in the notation of
Hairer et al. (2004), as the composition

ψ
[4]
k = ψ

[2]
b3k ◦ ψ

[2]
b2k ◦ ψ

[2]
b1k.

From ψ
[4]
k one gets the sixth-order accurate symmetric method with s = 32,

ψ
[6]
k = ψ

[4]
γ3k ◦ ψ

[4]
γ2k ◦ ψ

[4]
γ1k,

where γ1 = γ3 = 1
2−21/5 , γ2 = 1 − 2γ1. In general, given the method ψ

[2r]
k with s = 3r−1 stages and

order of accuracy 2r, one may construct a symmetric scheme with s = 3r stages and order of accuracy
2r + 2 by the formula

ψ
[2r+2]
k = ψ

[2r]
δ3,rk ◦ ψ

[2r]
δ2,rk ◦ ψ

[2r]
δ1,rk,

where δ1,r = δ3,r = 1

2−2
1

2r+1
, δ2,r = 1 − 2δ1,r.

Some properties of the resulting family of s-stage methods are summarized below.

(i) The number of stages is s = 3p−1 and the order of accuracy of the method is 2p.

(ii)
∑s

i=1 bi = 1,
∑s

i=1 bj
i = 0, with s = 3p−1 and j = 3, 5, . . . , 2p − 1; cf. Yoshida (1990).

(iii) The methods are symplectic and symmetric. Thus, when applied to an ODE system with a
Hamiltonian structure, they will preserve important properties of the system and behave well
in long-time computations (Frutos & Sanz-Serna 1992; Sanz-Serna & Calvo 1994; Hairer et al.
2004; Cano 2006).
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 11

(iv) Since some of the bi are negative, cf. e.g. (4.6) and property (ii) above, these schemes are not
A-stable. They are however absolutely stable in a strip of finite width in Re(z) � 0 including the
imaginary axis, and therefore it is expected that a step-size restriction will be needed for stability
in the case of dissipative problems.

(v) The implementation of the schemes is straightforward as, for each time step, it requires solving
s nonlinear systems of the size of the ODE system, as is evident from e.g. (4.5).

4.3 The fully discrete scheme. L2-conservation, existence and uniqueness of solutions

The high-accuracy, straightforward manner of implementation, and the good stability properties (in
the case of conservative, stiff ODE systems) of the family of RK composition methods given by
(4.4) (equivalently by (4.5)), make them a good choice as time-stepping schemes for the semidiscrete
IVP (2.5).

As mentioned already, the fully discrete scheme to be fully analyzed in the sequel is obtained by
applying the s-stage RK composition method (4.4) or (4.5) to the semidiscrete problem (2.5) when
s = 3 and the coefficients bi are given by (4.6). However, with the exception of the estimation of the
local temporal error in Section 4.4, the rest of the proof of convergence holds for the general s-stage
scheme and therefore we will treat the general case and specialize to s = 3 when needed. To simplify
notation we let F : SN → SN be the nonlinear map defined for v ∈ SN by the equation

(F(v), χ) = (−vxxx − PNf (v)x, χ) ∀χ ∈ SN ,

where f (v) = v2/2, or equivalently by

F(v) = −vxxx − PNf (v)x.

Note that, by periodicity,

(F(v), v) = 0 ∀v ∈ SN , (4.7)

and that the semidiscrete IVP (2.5) may be written as

uN
t = F(uN), 0 � t � T ,

uN(0) = PNu0. (4.8)

Using the notation introduced for the temporal discretization in Section 4.1 we write the RK scheme
(4.4) applied to (4.8) as follows. For 0 � n � M we seek Un ∈ SN , approximating uN(tn), and
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12 V. A. DOUGALIS AND A. DURÁN

Un,i ∈ SN , 1 � i � s, such that for 0 � n � M − 1,

Un,i = Un + bik

2
F(Un,i) + k

i−1∑
j=1

bjF(Un,j), 1 � i � s,

Un+1 = Un + k
s∑

i=1

biF(Un,i), (4.9)

and U0 = PNu0. By eliminating recursively the intermediate nonlinear terms and defining
μij = 2(−1)i+j+1, 1 � j < i � s it is easy to check that scheme (4.9) may be equivalently stated
for 0 � n � M − 1 as

Un,i = (−1)i+1Un + bik

2
F(Un,i) +

i−1∑
j=1

μijU
n,j, 1 � i � s,

Un+1 = (−1)sUn + 2
s∑

j=1

(−1)s−jUn,j, (4.10)

and U0 = PNu0. As already mentioned, scheme (4.9) is also equivalent to the following IMR-type
formulation (cf. (4.5)) in which, given Un ∈ SN , 0 � n � M − 1, Yn,i ∈ SN , i � i � s and Un+1 ∈ SN
are computed by the formulas

Yn,1 = Un + kb1F

(
Yn,1 + Un

2

)
,

Yn,i = Yn,i−1 + kbiF

(
Yn,i + Yn,i−1

2

)
, 2 � i � s,

Un+1 = Yn,s, (4.11)

and U0 = PNu0. Note that the intermediate approximations Yn,i of (4.11) are related to the Un,i of (4.9)
or (4.10) by the formulas

Yn,i = 2Un,i − Yn,i−1, 2 � i � s, Yn,1 = 2Un,1 − Un.

Any one of the formulations (4.9)–(4.11) may be used to study the properties and the convergence of the
fully discrete scheme. We will mainly use (4.11), which brings out the fact that the scheme is an s-stage
composition method with IMR as its base scheme.

As is expected by the symplecticity of the RK method (4.4), (4.5), the fully discrete schemes
(4.9)–(4.11) are L2-conservative. Taking, for example, (4.11) and supposing that given Un ∈ SN it
has a solution Yn,i ∈ SN , 1 � i � s, then, if i � 2,

(Yn,i − Yn,i−1, Yn,i + Yn,i−1) = 2kbi

(
F

(
Yn,i + Yn,i−1

2

)
,

Yn,i + Yn,i−1

2

)
,
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 13

which, in view of (4.7), yields ||Yn,i−1|| = ||Yn,i||. The same argument works for i = 1 if we put
Yn,0 = Un and yields ||Yn,1|| = ||Un||. Therefore, ||Un+1|| = ||Yn,i|| = ||Un||, 1 � i � s, and overall

||Un|| = ||U0||, 0 � n � M,

provided Un, 1 � n � M exist. The existence of solutions may be proved by a variant of Brouwer’s
fixed-point theorem. We use (4.11) again.

Proposition 4.2 Given Un ∈ SN there are Yn,i ∈ SN , 1 � i � s and Un+1 in SN satisfying (4.11).

Proof. Putting Z = Yn,1+Un

2 , we write the first equation in (4.11) in the form Z − Un = kb1
2 F(Z).

Hence, if we define G : SN → SN for v ∈ SN as G(v) = v − Un − kb1
2 F(v), for χ ∈ SN we have

(G(v), χ) = (v − Un, χ) − kb1
2 (F(v), χ). Taking χ = v we get, in view of (4.7), (G(v), v) = ||v||2 −

(Un, v) � ||v|| (||v|| − ||Un||). Therefore, if ||v|| = ||Un||, then (G(v), v) � 0. By the definition of F
and the inverse inequalities (2.4) it follows that F, and hence G, is continuous on SN . By a well-known
variant of Brouwer’s fixed-point theorem (see e.g. Bona et al., 1995, Lemma 3.1) there exists Z ∈ SN

with ||Z|| = ||Un||, such that G(Z) = 0, i.e. Z − Un = kb1
2 F(Z), and the existence of Yn,1 follows.

(For Yn,1 we know a priori that ||Yn,1|| = ||Un||.) In an analogous way we may prove recursively the
existence of Yn,i, 2 � i � s, satisfying (4.11). �

The uniqueness of solutions of the nonlinear systems represented by the nonlinear equations in
(4.11) will be shown in the course of the proof of convergence of the fully discrete scheme in Section 5.
The following lemma establishes uniqueness under a condition that will be verified in Section 5.

Lemma 4.3 Suppose that Un and Yn,i, 1 � i � s are solutions of (4.11) satisfying |Un|∞ � R,
|Yn,i|∞ � R, 1 � i � s for some constant R. Then the Yn,i, 1 � i � s are unique,
provided that

k

2
max

1�i�s
|bi|C0NR < 1,

where C0 is the constant in the inverse properties (2.4).

Proof. We prove the uniqueness of Yn,1; that of Yn,i, i � 2 follows by a similar argument. Suppose
Z1, Z2 ∈ SN are two solutions of the first equation in (4.11). (Note that ||Z1|| = ||Z2|| = ||Un||.) Then
Z1 − Z2 = kb1

(
F
(Z1+Un

2

) − F
(Z2+Un

2

))
. Taking the inner product of both sides of this equation with

Z1 − Z2 and using periodicity, the Cauchy–Schwarz inequality and (2.4) we have if Z1 
= Z2 that

||Z1 − Z2|| � k|b1|C0N

∣∣∣∣∣∣∣∣f (
Z1 + Un

2

)
− f

(
Z2 + Un

2

)∣∣∣∣∣∣∣∣ .

By the definition of f and the hypothesis of the lemma we see that

∣∣∣∣∣∣∣∣f (
Z1 + Un

2

)
− f

(
Z2 + Un

2

)∣∣∣∣∣∣∣∣ � ||Z1 − Z2||
2

1

4
|Z1 + Un + Z2 + Un|∞ � 1

2
||Z1 − Z2||R.
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14 V. A. DOUGALIS AND A. DURÁN

These two inequalities imply that 1 � 1
2 k|b1|C0NR, which contradicts the other hypothesis of the lemma.

Therefore Z1 = Z2. �

4.4 Local temporal error of the fully discrete scheme for s = 3

In this section we suppose that s = 3 and that the coefficients bi are given by (4.6). The local temporal
error of the resulting scheme (4.11) is defined in terms of the semidiscrete approximation uN . For this
purpose we let for 0 � n � M, Vn = uN(tn), and Vn,i ∈ SN for 0 � i � 3, 0 � n � M − 1, be given by

Vn,0 = Vn,

Vn,i = Vn,i−1 + kbiF

(
Vn,i + Vn,i−1

2

)
, 1 � i � 3. (4.12)

The local temporal error θn ∈ SN , 0 � n � M − 1 is then

θn = Vn+1 − Vn,3 ≡ uN(tn+1) − Vn,3. (4.13)

Obviously, cf. Section 4.3, the Vn,i exist and satisfy the L2-conservation laws

||Vn,i|| = ||Vn|| = ||uN(tn)|| = ||uN(0)||.

The consistency of the scheme is established in the following.

Proposition 4.4 Let Vn,i and θn be defined by (4.12) and (4.13) and suppose the bi are given by
(4.6). Let u, the solution of (1.1), belong to Hμ for 0 � t � T and let μ be sufficiently large. Suppose
there exists a constant C1 such that kN � C1. Then, for k sufficiently small, there exists a constant C
independent of k and N such that

max
0�n�M−1

||θn|| � Ck5.

Proof. The plan of the proof is first to obtain asymptotic expressions of the Vn,i, i = 1, 2 of the form

Vn,1 = uN(τ n,1) + A1k3 + A2k4 + en,1, (4.14)

Vn,2 = uN(τ n,2) + B1k3 + B2k4 + en,2, (4.15)

where τ n,1 = tn + kb1, τ n,2 = tn + k(b1 + b2), Ai, Bi, en,i ∈ SN and ||en,i|| � Ck5, i = 1, 2; then we show
that

Vn,3 = uN(tn+1) + en,3, (4.16)

where ||en,3|| � Ck5, implying that ||θn|| � Ck5. These estimates will be uniformly valid in n. The
coefficients Ai and Bi will be O(1). Here, and in the sequel, C will denote generic constants independent
of k and N. As the necessary computations require a lot of algebra we present here the main steps of
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 15

the proof in outline; the interested reader may find the requisite details in the arXiv version of the paper
Dougalis & Durán (2020).

(i) Asymptotic expansion of Vn,1. Determination of the coefficients A1, A2.
From (4.12) it follows for i = 1,

Vn,1 = uN − kb1

(
∂3

x

(
Vn,1 + uN

2

))
− kb1

4
PN

(
(Vn,1 + uN)(Vn,1 + uN)x

)
. (4.17)

In (4.17) and in the sequel we put uN = uN(tn). Similarly, we will suppress the argument tn from
derivatives of uN , i.e. write uN

x = uN
x (tn), uN

t = uN
t (tn), etc. For the intermediate times τ n,i we will write

in full uN(τ n,i), etc.
Inserting in (4.17) the assumed expression (4.14) for Vn,1 and expanding in Taylor series about tn

gives

uN + kb1uN
t + k2b2

1

2
uN

tt + k3b3
1

6
uN

ttt + k4b4
1

24
∂4

t uN + ρ1 + A1k3 + A2k4 + en,1

= uN − kb1∂
3
x

(
uN + kb1

2
uN

t + k2b2
1

4
uN

tt + k3b3
1

12
uN

ttt + ρ2

)

− kb1

2

(
k3∂3

x A1 + k4∂3
x A2 + ∂3

x en,1
)

− kb1

4
PN

(
(uN + uN(τ n,1))(uN + uN(τ n,1))x + k3((uN + uN(τ n,1))A1)x

+ k4((uN + uN(τ n,1))A2)x + k6A1A1,x + k7(A1A2)x + k8A2A2,x + A(en,1)
)

, (4.18)

where the residuals ρ1, ρ2 ∈ SN satisfy

||ρ1||j � Ck5 max
t

||∂5
t uN ||j, ||ρ2||j � Ck4 max

t
||∂4

t uN ||j (4.19)

and

A(en,1) = ((uN + uN(τ n,1))en,1)x + k3(A1en,1)x + k4(A2en,1)x + en,1en,1
x . (4.20)

Now equate the terms of equal powers of k in the left- and right-hand sides of (4.18), after expanding
the uN(τ n,1) terms about tn. The O(1),O(k),O(k2) terms give identities, as may be seen by (3.10), and
differentiating (3.10) with respect to t. Equating O(k3) terms gives

k3b3
1

6
∂3

t uN + k3A1 = −k3b3
1

4
∂3

x uN
tt − kb1T2, (4.21)
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16 V. A. DOUGALIS AND A. DURÁN

where

T2 = k2b2
1

4
PN

(
(uNuN

x )tt − uN
t uN

xt

)
.

Substituting this into (4.21) and using the equation that results by differentiating (3.10) twice with
respect to t we obtain

A1 = b3
1

(
1

12
uN

ttt + 1

4
PN

(
uN

t uN
xt

))
. (4.22)

Equating O(k4) terms yields

k4b4
1

24
∂4

t uN + k4A2 = −k4b4
1

12
∂3

t ∂3
x uN − k4b1

2
∂3

x A1 − kb1T3 − k4b1

2
S0, (4.23)

where

−kb1T3 = −k4b4
1

12
PN

(
(uNuN

x )ttt − 3

2

(
uN

t uN
xtt + uN

tt uN
xt

))
,

and, in view of (4.22),

−k4b1

2
S0 = −k4b4

1

2

(
1

12
PN

(
uNuN

ttt

)
x
+ 1

4
PN

(
uNPN

(
uN

t uN
xt

))
x

)
.

Therefore, by (4.22), (4.23) and the above, using Leibniz’s formula for (vvx)ttt and replacing the
linear term ∂3

t (−∂3
x uN) by ∂4

t uN + PN∂3
t (uNuN

x ) in view of (3.10), we obtain, after some algebra, that

A2 = b4
1

12
∂4

t uN + b4
1

8

(
−PN∂3

x (uN
t uN

xt) + 2PN(uN
t uN

xtt + uN
tt uN

xt) − PN

(
uNPN

(
uN

t uN
xt

))
x

)
. (4.24)

(ii) Estimation of en,1.
Having determined A1 and A2 we now equate the O(k5) (and higher-order) terms in (4.18) in order

to find an equation for en,1. This gives

en,1 + kb1

2
∂3

x en,1 = Γ1 − kb1

4
PNA(en,1), (4.25)
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 17

where

Γ1 = −ρ1 − kb1∂
3
x ρ2 − k5b1

2
∂3

x A2 − kb1PN

[(
uN + uN(τ n,1)

2

) (
uN + uN(τ n,1)

2

)
x

] ∣∣∣
O(k4)

− k4b1

4
PN

[(
uN + uN(τ n,1)

2
)A1

)]
x

∣∣∣
O(k)

− k5b1

4
PN

[(
uN + uN(τ n,1)

2

)
A2

]
x

− kb1

4
PN

(
k6A1A1,x + k7(A1A2)x + k8A2A2,x

)
, (4.26)

where ρ1, ρ2 satisfy (4.19) and A(en,1) is defined in (4.20). The two terms denoted above as
· · · ∣∣O(k4)

, · · · ∣∣O(k) will include Taylor remainders of the indicated order. We will prove below that for
μ sufficiently large there is a constant C, independent of N and k, such that

||Γ1|| � Ck5. (4.27)

Assuming for the moment the validity of (4.27), and taking inner products of both sides of (4.25) with
en,1 ∈ SN , we have, using integration by parts, periodicity and (4.20), that

||en,1||2 = (Γ1, en,1) − kb1

8
((uN + uN(τ n,1))xen,1, en,1) − k4b1

8
(A1,xen,1, en,1) − k5b1

8
(A2,xen,1, en,1).

Therefore,

||en,1||2 � ||Γ1||||en,1|| + Ck|(uN + uN(τ n,1))x|∞||en,1||2 + Ck4|A1,x|∞||en,1||2 + Ck5|A2,x|∞||en,1||2.

Using Proposition 3.2 the fact that |PNv|∞ � C||v||1, which follows from (2.3) and Sobolev’s theorem,
and (4.22), (4.24), we see that for 0 � t � T ,

|(uN + uN(τ n,1))x|∞ � C max
t

||uN ||2 � C for μ � 3, (4.28)

|A1,x|∞ � C for μ � 12, |A2,x|∞ � C for μ � 15. (4.29)

Therefore, using (4.22), (4.24), (4.27)–(4.29) we see for k sufficiently small that

||en,1|| � Ck5 for μ � 15. (4.30)

Now, by (4.19), (4.26), (4.22), (4.24), Proposition 3.2 and estimates like (4.28)–(4.29), we may see that
(4.27) holds for μ � 16.

We note, for future use, that (4.25) gives

k||∂3
x en,1|| � C||Γ1|| + Ck||A(en,1)|| + C||en,1||.
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18 V. A. DOUGALIS AND A. DURÁN

Therefore, by (4.20), (4.28), (4.29), (4.30) and (2.4), we have, provided k = O(N−1), that

k||∂3
x en,1|| � Ck5 if μ � 16, k = O(N−1). (4.31)

For estimates (4.30) and (4.31) we tracked, as an example, lower bounds of μ so that the constants
involved are bounded. In the sequel we will just assume that μ is ‘sufficiently large’. Sufficient lower
bounds of μ can always be retrieved if needed.

(iii) Asymptotic expansion of Vn,2. Determination of the coefficients B1, B2.
Using the ansatz (4.15) we now evaluate the O(1) quantities B1 and B2. From (4.12) for i = 2 it

follows that

Vn,2 = Vn,1 − kb2

(
∂3

x

(
Vn,1 + Vn,2

2

))
− kb2

4
PN

(
(Vn,1 + Vn,2)(Vn,1 + Vn,2)x

)
. (4.32)

Since in our case b1 + b2 = 1 − b1
∼= −0.351, in the first step of the fully discrete scheme

τ 0,2 = k(b1 + b2) will be negative. In addition, since b1 > 1, for n = M − 1 τ n,1 will exceed T . Using
the reversibility for t < 0 of the KdV it is easy to see that uN(t) is defined for t ∈ [−k, 0] and satisfies
the semidiscrete equations (2.5) in [−k, 0]. Obviously, we may also extend the well-posedness of (1.1)
and the validity of (2.5) up to t = T + k, as we have tacitly assumed in parts (i) and (ii) of the proof
already. Hence, the error estimate (3.1) and the boundedness estimate (3.8) are valid with the maximum
taken over [−k, T + k] now. In the sequel we will accordingly not specify the range of the subscripted
max in time, as such estimates are obviously valid in the relevant intervals of t.

Inserting in (4.32) the assumed expression (4.15) for Vn,2, using (4.14), and expanding (in the linear
terms) in Taylor series about tn gives

uN +k(b1 + b2)u
N
t + k2(b1 + b2)

2

2
uN

tt +
k3(b1 + b2)

3

6
uN

ttt + k4(b1 + b2)
4

24
∂4

t uN +ρ3+B1k3+B2k4+en,2

= uN + kb1uN
t + k2b2

1

2
uN

tt + k3b3
1

6
uN

ttt + k4b4
1

24
∂4

t uN + ρ1 + en,1 + A1k3 + A2k4

− kb2

2
∂3

x

(
2uN + k(2b1 + b2)u

N
t + k2

2
(b2

1 + (b1 + b2)
2)uN

tt + k3

6
(b3

1 + (b1 + b2)
3)uN

ttt + ρ4 + A1k3

+ A2k4 + B1k3 + B2k4 + en,1 + en,2
)

− kb2

4
PN

(
(uN(τ n,1) + uN(τ n,2))(uN(τ n,1) + uN(τ n,2))x

+ k3
(
(A1 + B1)(u

N(τ n,1) + uN(τ n,2))
)

x
+ k4

(
(A2 + B2)(u

N(τ n,1) + uN(τ n,2))
)

x

+ k6(A1 + B1)(A1 + B1)x + k7 (
(A1 + B1)(A2 + B2)

)
x + k8(A2 + B2)(A2 + B2)x + B(en,1, en,2)

)
,

(4.33)

where the residuals ρ3 and ρ4 ∈ SN satisfy

||ρ3||j � Ck5 max
t

||∂5
t uN ||j, ||ρ4||j � Ck4 max

t
||∂4

t uN ||j, (4.34)
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 19

and B(en,1, en,2) is given by

B(en,1, en,2) =
(
(uN(τ n,1) + uN(τ n,2))(en,1 + en,2)

)
x
+ k3

(
(A1 + B1)(e

n,1 + en,2)
)

x

+ k4
(
(A2 + B2)(e

n,1 + en,2)
)

x
+ (en,1 + en,2)(en,1 + en,2)x. (4.35)

We now equate, as before, terms of the same power of k in both sides of (4.33). (For this purpose we
will need to expand some uN(τ n,i) terms in the right-hand side of (4.33) in Taylor series about t = tn.)
It is straightforward to see that we get identities by equating the O(1),O(k) and O(k2) terms in both
sides of (4.33), as may be seen by (3.10) and differentiating (3.10) once with respect to t. Now equating
O(k3) terms in (4.33) gives

k3

6
(b1 + b2)

3uN
ttt + k3B1 = k3

6
b3

1uN
ttt + k3A1 − k3

4
b2(b

2
1 + (b1 + b2)

2)∂3
x uN

tt − kb2

4
Δ2, (4.36)

where

Δ2 = PN

(
(uN(τ n,1) + uN(τ n,2))(uN(τ n,1) + uN(τ n,2))x

∣∣∣
O(k2)

)
= k2PN

(
(b2

1 + (b1 + b2)
2)(uNuN

ttx + uN
x uN

tt ) + (2b1 + b2)
2uN

t uN
tx

)
.

Differentiating (3.10) twice with respect to t, using Leibniz’s rule for derivatives of products in the
resulting equation, and using the facts that b1 = b3, b3

1 + b3
2 + b3

3 = 0, from which b3
2 = −2b3

1, we see
after some algebra and using (4.22) that

B1 = −A1. (4.37)

From (4.33), equating O(k4) terms, using appropriate Taylor expansions, and the fact that A1 + B1 = 0,
we obtain

B2 = 1

24
(b4

1 − (b1 + b2)
4)∂4

t uN + A2 − b2

12
(b3

1 + (b1 + b2)
3)∂3

x uN
ttt − b2

4
Δ3, (4.38)

where

Δ3 = PN

(1

3
(b3

1 + (b1 + b2)
3)(uNuN

tttx + uN
tttu

N
x ) + 1

2
(b3

1 + b2
1(b1 + b2) + b1(b1 + b2)

2

+ (b1 + b2)
3)(uNuN

ttx + uN
tt uN

tx)
)

. (4.39)

Differentiating (3.10) three times with respect to t and using Leibniz’s rule on the nonlinear terms, and
taking into account the relations 2b1 + b2 = 1, 2b3

1 + b3
2 = 0, we see, after a number of algebraic
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20 V. A. DOUGALIS AND A. DURÁN

computations, that B2 is given by the formula

B2 = A2 − b3
1

12
∂4

t uN + b3
2

8
PN

(
uN

t uN
xtt + uN

tt uN
xt

)
. (4.40)

(iv) Estimation of en,2.
Having determined the O(1) quantities B1, B2 ∈ SN we equate now the O(k5) and higher-order

terms in (4.33) in order to find an equation for the residual en,2. This yields (if we use the fact that
A1 + B1 = 0)

en,2 + kb2

2
∂3

x en,2 = Γ2 + en,1 − kb2

2
∂3

x en,1 − kb2

4
PN(B(en,1, en,2)), (4.41)

where

Γ2 = ρ1 − ρ3 − kb2

4
∂3

x ρ4 − k5b2

2
∂3

x (A2 + B2)

− kb2

4
PN

[
(uN(τ n,1) + uN(τ n,2))(uN(τ n,1) + uN(τ n,2))x

∣∣∣
O(k4)

+ k4
(

(A2 + B2)(u
N(τ n,1) + uN(τ n,2))

∣∣∣
O(k)

)
x
+ k8(A2 + B2)(A2 + B2)x

]
. (4.42)

We will prove below that for μ sufficiently large there is a constant C, independent of N and k, such that

||Γ2|| � Ck5. (4.43)

Assuming for the time being the validity of (4.43) and taking inner products in (4.41) with en,2 we have,
using (4.35), periodicity and the fact that A1 + B1 = 0, that

||en,2||2 = (Γ2, en,2)+(en,1, en,2)− kb2

2
(∂3

x en,1, en,2) − kb2

4

(
((uN(τ n,1) + uN(τ n,2))(en,1+ en,2))x, en,2

)
︸ ︷︷ ︸

I

− k5b2

4

(
((A2 + B2)(e

n,1 + en,2))x, en,2
)

︸ ︷︷ ︸
II

− kb2

4

(
(en,1 + en,2)(en,1 + en,2)x, en,2

)
︸ ︷︷ ︸

III

. (4.44)

For term I above, using integration by parts, and taking into account (3.8), (2.4), (4.30) and the fact that
kN = O(1), we obtain, for μ sufficiently large,

|I| � Ck5||en,2|| + Ck||en,2||2.
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 21

To estimate II, note that by (4.24), (4.29), (4.40) and (3.8), we have, for μ sufficiently large,
||A2 + B2||1,∞ � C. Therefore, using integration by parts, (4.30), (2.4), the fact that kN = O(1)

and taking μ sufficiently large, we see that

|II| � Ck9||en,2|| + Ck5||en,2||2.

Finally, for term III, using integration by parts, (4.30), (2.4) and that kN = O(1), we get

|III| � Ck9.5||en,2|| + Ck4.5||en,2||2.

Using these estimates in (4.44) we obtain by (4.30), (4.31), (4.43), the fact that kN = O(1), taking μ

sufficiently large and k sufficiently small, that

||en,2|| � Ck5. (4.45)

As for en,1 it turns out that we will need in the sequel an optimal-order estimate for the term k||∂3
x en,2||

under no prohibitive stability assumptions. For this purpose, note that for μ sufficiently large, we have
from (4.35), using (4.30), (4.45), (2.4) and kN = O(1), that k||B(en,1, en,2)|| � Ck5. It follows from
(4.41), (4.43), (4.30), (4.45), (4.31) that

k||∂3
x en,2|| � Ck5. (4.46)

Note finally that (4.43) follows if we use Taylor expansions to the required order, take μ sufficiently
large and use (4.19), (4.34), (4.24), (4.40) in conjunction with (3.8).
(v) Final consistency step: verify that (4.16) holds with en,3 satisfying ||en,3|| � Ck5.

In this final step we let en,3 ∈ SN be defined by (4.16), find a suitable equation for en,3 (as we did
for en,1 and en,2) and prove that ||en,3|| � Ck5. For this purpose we substitute (4.16) in the equation for
Vn,3 in (4.12) and prove that ||en,3|| � Ck5, using the expansion (4.15) for Vn,2 and the estimates that
we have for Bi, en,2.

Substituting Vn,3 from (4.16) in (4.12) and using (4.15) and Taylor expansions about tn in the linear
terms, we get

uN + kuN
t + k2

2
uN

tt + k3

6
uN

ttt + k4

24
∂4

t uN + ρ5 + en,3

= uN + k(b1 + b2)u
N
t + k2

2
(b1+ b2)

2uN
tt +

k3

6
(b1 + b2)

3uN
ttt + k4

24
(b1 + b2)

4∂4
t uN + ρ6 +B1k3+ B2k4

+ en,2 − kb3

2
∂3

x

(
2uN + k(b1 + b2 + 1)uN

t + k2

2
((b1 + b2)

2 + 1)uN
tt + k3

6
((b1 + b2)

3+ 1)uN
ttt + ρ7

)
− kb3

2
∂3

x en,3 − kb3

2
∂3

x (B1k3 + B2k4+ en,2) − kb3

4
PN

(
(uN(τ n,2) + uN(tn+1))(uN(τ n,2) + uN(tn+1))x

+ k3
(
(uN(τ n,2) + uN(tn+1))B1

)
x
+ k4

(
(uN(τ n,2) + uN(tn+1))B2

)
x
+ k6B1B1x

+ k7(B1B2)x + k8(B2B2x) + E(en,2, en,3)
)

, (4.47)
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22 V. A. DOUGALIS AND A. DURÁN

where

E(en,2, en,3) =
(
(uN(τ n,2) + uN(tn+1))(en,2 + en,3)

)
x
+ k3

(
B1(e

n,2 + en,3)
)

x

+ k4
(

B2(e
n,2 + en,3)

)
x
+ (en,2 + en,3)(en,2 + en,3)x (4.48)

and where the residuals ρ5, ρ6, ρ7 ∈ SN satisfy

||ρ5|| + ||ρ6|| � Ck5 max
t

||∂5
t uN ||, ||ρ7||j � Ck4 max

t
||∂4

t uN ||j. (4.49)

Now we equate equal-power terms in (4.47). It is evident that the O(1) terms give an identity. It is
also straightforward to see that we get identities for the O(k) and O(k2) terms, using the facts that
b1 + b2 + b3 = 1, b1 = b3, and (3.10) and its temporal derivative, respectively. We now proceed to
prove that we have identities for the O(k3) and O(k4) terms as well.

In order to show the identity of the O(k3) terms we note that from (4.47), using (4.37), (4.22) and a
Taylor expansion up to O(k2) terms in the first nonlinear term in the right-hand side of (4.47), we have
to check whether

1

6
uN

ttt = 1

6
(b1 + b2)

3uN
ttt − b3

1

12
uN

ttt − b3
1

4
PN(uN

t uN
xt) − b3

4
((b1 + b2)

2 + 1)∂3
x uN

tt

− b3

4
PN

(
((b1 + b2)

2 + 1)(uNuN
xtt + uN

tt uN
x ) + (b1 + b2 + 1)2uN

t uN
tx

)
.

If we differentiate (3.10) twice with respect to t, use Leibniz’s rule on the nonlinear terms and insert
the resulting expression for the term ∂3

x uN
tt in the right-hand side of the above we may verify, using the

relations b1 = b3, b1 + b2 + b3 = 1 and some algebra, that it is indeed an identity.
In order to show the identity of the O(k4) terms we note, using (4.40), (4.24), (4.37) and Taylor

expansions in the first and second nonlinear terms on the right-hand side of (4.47), that we must verify
whether

1

24
∂4

t uN = 1

24
(b1 + b2)

4∂4
t uN − 1

12
b3

1∂
4
t uN + b4

1

12
∂4

t uN

+ b4
1

8

(
− PN∂3

x (uN
t uN

xt) + 2PN(uN
t uN

xtt + uN
tt uN

xt)

− PN

(
uNPN(uN

t uN
xt))x

) )
+ b3

2

8
PN(uN

t uN
ttx + uN

tt uN
tx)
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 23

− b3

12
((b1 + b2)

3 + 1)∂3
x uN

ttt + b3b3
1

2

(
1

12
∂3

x ∂3
t uN + 1

4
∂3

x PN(uN
t uN

xt)

)

− b3

4
PN

(
1

3
((b1 + b2)

3 + 1)(uNuN
xttt + uN

tttu
N
x )

+ 1

2

(
1 + (b1 + b2) + (b1 + b2)

2 + (b1 + b2)
3
)

(uN
t uN

xtt + uN
tt uN

xt)

)

+ b3

2
PN

(
b3

1

12
(uNuN

ttt)x + b3
1

4

(
uNPN(uN

t uN
xt)

)
x

)
. (4.50)

Let L be the sum of the linear terms and N1 the sum of the nonlinear terms on the right-hand side of

(4.50). Then L = γ1∂
4
t uN+γ2∂

3
x uN

ttt, where γ1 = 1
24 (b1+b2)

4− b3
1

12 + b4
1

12 , γ2 = − b3
12 ((b1+b2)

3+1)+ b3
1b3
24 .

Now we differentiate (3.10) three times with respect to t and use the result in the definition of L. Taking
into account that b1 = b3, b2 = 1−2b1 we see, after some algebra, that γ1−γ2 = 1

24 , which implies that
L = 1

24∂4
t uN − γ2PN(uNuN

x )ttt, i.e. that L has now acquired a nonlinear term as a result of eliminating
∂3

x uN
ttt. Hence the coefficients of ∂4

t uN on the two sides of (4.50) match, and, therefore, in order to show
that (4.50) holds, we have to check the validity of the identity

N1 − γ2PN(uNuN
x )ttt = 0. (4.51)

From (4.50) we have N1 − γ2PN(uNuN
x )ttt = PNG, where

G = −b4
1

8
∂3

x (uN
t uN

xt) + b4
1

4
(uN

t uN
xtt + uN

tt uN
xt) − b4

1

8

(
uNPN(uN

t uN
xt)

)
x

+ b3
2

8
(uN

t uN
xtt + uN

tt uN
xt) + b3

1b3

8
∂3

x (uN
t uN

xt) − b3

12
((b1 + b2)

3 + 1)(uNuN
xttt + uN

tttu
N
x )

− b3

8

(
1 + (b1 + b2) + (b1 + b2)

2 + (b1 + b2)
3
)

(uN
t uN

xtt + uN
tt uN

xt)

+ b3
1b3

24
(uNuN

ttt)x + b3
1b3

8

(
uNPN(uN

t uN
xt)

)
x
− γ2(u

NuN
x )ttt.

Since b1 = b3 we see that the strange terms ∂3
x (uN

t uN
xt) and

(
uNPN(uN

t uN
xt)

)
x cancel, and we are left (after

some algebra and the application of Leibniz’s rule) simply with G = γ3(u
NuN

xttt + uN
tttu

N
x ) + γ4(u

N
t uN

xtt +
uN

tt uN
xt), where

γ3 = − b3

12
((b1 + b2)

3 + 1) + b3
1b3

24
− γ2,

γ4 = b4
1

4
+ b3

2

8
− b3

8

(
1 + (b1 + b2) + (b1 + b2)

2 + (b1 + b2)
3
)

− 3γ2.
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24 V. A. DOUGALIS AND A. DURÁN

From the definition of γ2, we see that γ3 = 0. Finally, after some algebra and using the facts b1 =
b3, b1 + b2 + b3 = 1 and that x = b1 satisfies the cubic equation x3 − 2x2 + x − 1/6 = 0, we get γ4 = 0.
Therefore, G = 0 and (4.51), and consequently (4.50), hold.

We now embark upon finding an equation for en,3 from the remaining terms in (4.47). We recall
that we have used Taylor expansions in the first two terms of the nonlinear − kb3

4 PN(· · · ) term on the
right-hand side of (4.47) and now we have to put in the residuals. In this way (4.47) becomes

en,3 + kb3

2
∂3

x en,3 = Γ3 + en,2 − kb3

2
∂3

x en,2 − kb3

4
PNE(en,2, en,3), (4.52)

where

Γ3 = −ρ5 + ρ6 − kb3

2
∂3

x ρ7 − k5b3

2
∂3

x B2 − kb3

4
PN

(
ρ8 + k3(ρ9B1)x + k4

(
(uN(τ n,2) + uN(tn+1))B2

)
x

+ k6B1B1x + k7(B1B2)x + k8(B2B2x)
)

, (4.53)

and where the quantities ρ8, ρ9 satisfy, in view of (3.8),

||ρ8|| � Ck4, ||ρ9||1 � Ck, (4.54)

for μ sufficiently large. (Recall that we have estimates for ρ5, ρ6, ρ7, cf. (4.49), and that E was defined
in (4.48).)

We will prove below that for μ sufficiently large there is a constant C, independent of k and N, such
that

||Γ3|| � Ck5. (4.55)

Assuming (4.55) for the time being and taking L2 inner products with en,3 ∈ SN in (4.52) we see, using
integration by parts, that, in view of (4.48),

||en,3||2 = (Γ3, en,3) + (en,2, en,3) − kb3

2
(∂3

x en,2, en,3)

− kb3

4

((
(uN(τ n,2) + uN(tn+1))(en,2 + en,3)

)
x

, en,3
)

︸ ︷︷ ︸
I

− k4b3

4

((
B1(e

n,2 + en,3)
)

x
, en,3

)
︸ ︷︷ ︸

II

− k5b3

4

((
B2(e

n,2 + en,3)
)

x
, en,3

)
︸ ︷︷ ︸

III

− kb3

4

(
(en,2 + en,3)(en,2 + en,3)x, en,3

)
︸ ︷︷ ︸

IV

. (4.56)
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 25

Using integration by parts, (2.4), (4.29), (4.37), (4.40), (4.41), (4.45), our hypothesis that kN = O(1)

and taking μ sufficiently large we may prove that

|I| + |II| + |III| + |IV| � Ck5||en,3|| + Ck||en,3||2.

Therefore, by the above estimate, (4.56), (4.55), (4.45), (4.46), our hypothesis that kN = O(1) and
taking μ sufficiently large and k sufficiently small we finally obtain

||en,3|| � Ck5. (4.57)

To conclude the proof we have to check (4.55). This is not hard to verify, in view of (4.53), (4.49),
(4.24), (4.40), (4.37), (3.8), assuming as usual that μ is sufficiently large. Therefore, by (4.57) and
(4.16), the proof of Proposition 4.4 is now complete. �

5. Error estimate for the fully discrete scheme

In this section we will consider again the fully discrete scheme given by (4.9) or (4.11) and
corresponding to the temporal discretization of (2.5) by the general IMR-based, s-stage RK-composition
method given by (4.4) or (4.5) and prove, under certain conditions on the discretization parameters and
provided the solution of (1.1) belongs to Hμ for μ sufficiently large, that it has a unique solution Un

satisfying the L2 error estimate

max
0�n�M

||Un − u(tn)|| � C
(

kα + N1−μ
)

,

where α is a positive integer, such that the local temporal error, defined by an analogous formula to
(4.13), is O(kα+1) in L2. (In Section 4.4 we considered the special case corresponding to s = 3 and
constants bi given by (4.6) and proved that for that scheme α was equal to 4 provided μ was sufficiently
large and kN = O(1).)

We first establish notation and present a summary of the main steps of the proof. For convenience in
referencing we rewrite scheme (4.11) here. We seek Yn,i, 0 � i � s and Un, 0 � n � M in SN , such that
for 0 � n � M − 1,

Yn,0 = Un, Yn,i = Yn,i−1 + kbiF

(
Yn,i + Yn,i−1

2

)
, 1 � i � s, Un+1 = Yn,s, (5.1)

and U0 = PNu0. (Recall that for v ∈ SN , F(v) = −vxxx−PNf (v)x, where f (v) = v2/2.) As in Section 4.4
we define the local temporal error of scheme (5.1) in terms of the semidiscrete approximation uN . For
this purpose we write for 0 � n � M, Vn = uN(tn) and define Vn,i ∈ SN for 0 � i � s, 0 � n � M − 1,
by

Vn,0 = Vn, Vn,i = Vn,i−1 + kbiF

(
Vn,i + Vn,i−1

2

)
, 1 � i � s, (5.2)
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26 V. A. DOUGALIS AND A. DURÁN

and the local temporal error θn ∈ SN , 0 � n � M − 1 as

θn = Vn+1 − Vn,s ≡ uN(tn+1) − Vn,s. (5.3)

(We use the same notation for Vn, Vn,i, θn as in Section 4.4 as no confusion will arise.) For the local
error we will assume that

max
0�n�M−1

||θn|| � Ckα+1. (5.4)

We let εn = Vn −Un ≡ uN(tn)−Un. Our aim will be to prove that maxn ||εn|| = O(kα), which, together
with (3.1), will give the desired error estimate

max
0�n�M

||Un − u(tn)|| � C
(

kα + N1−μ
)

.

We also let εn,i = Vn,i − Yn,i, 1 � i � s, and note, in view of (5.3), (5.1), that εn+1 = Vn+1 − Un+1 =
θn + Vn,s − Yn,s = θn + εn,s. Obviously, cf. Section 4.3, the Yn,i and Vn,i exist and satisfy for all n and
1 � i � s the L2-conservation laws

||Yn,i|| = ||Un|| = ||U0||, ||Vn,i|| = ||Vn|| = ||uN(tn)|| = ||uN(0)||. (5.5)

In order to bound the εn,i and εn in L2, the L2 bounds of Vn,i in (5.5) are not enough. So we first establish
in Lemma 5.1 a bound for ||Vn,i||1,∞ uniformly in n and i. The proof of Lemma 5.3 follows easily; in it
we show that maxn ||εn|| � Ckα after establishing estimates of the form

max
i

||εn,i|| � (1 + Ck)||εn||.

Finally, in Theorem 5.4, we prove the uniqueness of the fully discrete approximations Un, Yn,i and the
final error estimate.

Lemma 5.1 Let Vn,i be defined by (5.2). Suppose that μ is sufficiently large, k is sufficiently small and
that k = O(N−1/2). Then

max
i,n

||Vn,i||1,∞ � C. (5.6)

Remark 5.2 Here and in the sequel we let τ n,i = tn + k(b1 + b2 + · · · + bi), 1 � i � s, so that
τ n,s = tn+1. Since some of the bi may be negative, and some τ n,i may exceed tn+1, as was remarked
in the course of the proof of Proposition 4.4, it may be necessary to extend the well-posedness of (1.1)
and the validity of (2.5) in temporal intervals of the form [−l1k, T + l2k] for small non-negative integers
l1, l2. In such temporal intervals the bounds in (3.1) and (3.8) obviously hold.

Proof. We break the proof into three steps for ease of reading it.

(i) First prove that maxn ||Vn,1||1,∞ � C.
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We will show that Vn,1 is close to uN(τ n,1), specifically to O(k3) in L2, and then use (2.4) and (3.8) to
prove the desired bound. For this purpose we first need the following consistency result for one step of
length kb1 for the IMR scheme. (As before we denote the values of uN and its derivatives at tn simply
by uN , uN

t , etc.)
Define ζ n,1 ∈ SN by the equation

uN(τ n,1) = uN + kb1F

(
uN(τ n,1) + uN

2

)
+ ζ n,1. (5.7)

Then, it may be easily seen, cf. e.g. Dougalis & Durán (2020), that for μ sufficiently large,

max
n

||ζ n,1|| � Ck3. (5.8)

We now proceed to bound Vn,1 in the || · ||1,∞ norm. By (5.2) for i = 1 and (5.7) (since Vn = uN),
we obtain

Vn,1 − uN(τ n,1) = kb1

(
F

(
Vn,1 + uN

2

)
− F

(
uN(τ n,1) + uN

2

))
− ζ n,1.

Therefore, by integration by parts, we see that

||Vn,1 − uN(τ n,1)||2 = kb1

(
f

(
Vn,1 + uN

2

)
x
− f

(
uN(τ n,1) + uN

2

)
x

, Vn,1 − uN(τ n,1)

)
−

(
ζ n,1, Vn,1 − uN(τ n,1)

)
. (5.9)

Now, by integration by parts, and (3.8), for μ sufficiently large, we see that∣∣∣∣(f

(
Vn,1 + uN

2

)
x
− f

(
uN(τ n,1) + uN

2

)
x

, Vn,1 − uN(τ n,1)

)∣∣∣∣
=

∣∣∣∣(f

(
uN(τ n,1) + uN

2
+ Vn,1 − uN(τ n,1)

2

)
x
− f

(
uN(τ n,1) + uN

2

)
x

, Vn,1 − uN(τ n,1)

)∣∣∣∣
=

∣∣∣∣([(
uN(τ n,1) + uN

2

) (
Vn,1 − uN(τ n,1)

2

)]
x

, Vn,1 − uN(τ n,1)

)∣∣∣∣
� C||uN(τ n,1) + uN ||1,∞||Vn,1 − uN(τ n,1)||2 � C||Vn,1 − uN(τ n,1)||2.

We conclude by (5.9), and (5.8), for k sufficiently small, that

||Vn,1 − uN(τ n,1)|| � Ck3. (5.10)

Therefore, by the above, (2.4) and (3.8), for μ sufficiently large we get

||Vn,1||1,∞ � ||Vn,1 − uN(τ n,1)||1,∞ + ||uN(τ n,1)||1,∞ � Ck3N3/2 + C � C, (5.11)

using the mesh condition k = O
(
N−1/2

)
.
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28 V. A. DOUGALIS AND A. DURÁN

(ii) Now prove that maxn ||Vn,2||1,∞ � C.

We will follow the same general plan as in (i). We let ζ n,2 be the local temporal error of the scheme
during the substep τ n,1 �→ τ n,2, i.e. define it by the equation

uN(τ n,2) = uN(τ n,1) + kb2F

(
uN(τ n,2) + uN(τ n,1)

2

)
+ ζ n,2. (5.12)

Then, we may prove as in (i), mutatis mutandis that

max
n

||ζ n,2|| � Ck3. (5.13)

By (5.2) for i = 2 and (5.12) we have

Vn,2 − uN(τ n,2) = Vn,1 − uN(τ n,1)

+ kb2

(
F

(
Vn,2 + Vn,1

2

)
− F

(
uN(τ n,2) + uN(τ n,1)

2

))
− ζ n,2. (5.14)

In order to simplify the algebra a little, we define χj ∈ SN , 1 � j � 4 as χ1 = Vn,2 − uN(τ n,2),

χ2 = Vn,1 − uN(τ n,1), χ3 = (Vn,2 + Vn,1)/2, χ4 = (uN(τ n,2) + uN(τ n,1))/2. Then (5.14) is written as

χ1 − χ2 = kb2

(
F

(
χ3

) − F
(
χ4

)) − ζ n,2.

Take L2 inner products in the above with χ1+χ2
2 , noting that χ1+χ2

2 = χ3 − χ4 and using integration by
parts, and get

1

2

(
||χ1||2 − ||χ2||2

)
= kb2

(
f

(
χ4 + χ1 + χ2

2

)
x
− f

(
χ4

)
x ,

χ1 + χ2

2

)
−

(
ζ n,2,

χ1 + χ2

2

)
. (5.15)

Now, by integration by parts and (3.8), for μ sufficiently large we see that∣∣∣∣(f

(
χ4 + χ1 + χ2

2

)
x
− f

(
χ4

)
x ,

χ1 + χ2

2

)∣∣∣∣ =
∣∣∣∣((

χ4

(
χ1 + χ2

2

))
x

,
χ1 + χ2

2

)∣∣∣∣
� C||χ4||1,∞||χ1 + χ2||2 � C||χ1 + χ2||2,

and (5.13), (5.15) yield 1
2

(||χ1||2 − ||χ2||2
)

� Ck
(||χ1|| + ||χ2||

)2 + Ck3
(||χ1|| + ||χ2||

)
, i.e.

||χ1|| − ||χ2|| � Ck
(||χ1|| + ||χ2||

) + Ck3, from which, if we recall the definition of χ1 and χ2, it
follows for k sufficiently small, that ||Vn,2 − uN(τ n,2)|| � C||Vn,1 − uN(τ n,1)|| + Ck3. Therefore, by
(5.10),

||Vn,2 − uN(τ n,2)|| � Ck3, (5.16)

from which, as in the derivation of (5.11), we get, for μ sufficiently large, since k = O(N−1/2), that

||Vn,2||1,∞ � C.
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Hence, the proof of (ii) is complete.

(iii) Prove that ||Vn,i||1,∞ � C, 3 � i � s.

The bounds ||Vn,i − uN(τ n,i)|| � Ck3, implying that ||Vn,i||1,∞ � C, 3 � i � s, are obtained entirely
analogously, as in step (ii) above, and their proof is omitted. We conclude that (5.6) holds. �
Lemma 5.3 Let εn = Vn − Un, where Vn = uN , and Un is the fully discrete approximation, defined by
(5.1). We assume the smoothness of u and the mesh condition stated in Lemma 5.1 and we suppose that
the temporal local error estimate (5.4) holds. Then

max
n

||εn|| � Ckα . (5.17)

Proof. We use throughout the notation introduced at the beginning of the section. We first estimate
εn,1 = Vn,1 − Yn,1 in terms of εn. Since

εn,1 − εn = kb1

(
F

(
Vn,1 + Vn

2

)
− F

(
Vn,1 + Vn

2
− εn,1 + εn

2

))
,

taking L2 inner products in this equation with εn,1+εn

2 we obtain, by integration by parts,

1

2

(
||εn,1||2 − ||εn||2

)
= −kb1

(
f

(
Vn,1 + Vn

2
− εn,1 + εn

2

)
x
− f

(
Vn,1 + Vn

2

)
x

,
εn,1 + εn

2

)
.

Therefore, using integration by parts again, we get ||εn,1||2 − ||εn||2 � Ck||Vn,1 + Vn||1,∞||εn,1 +
εn||2, from which, taking into account (5.6) and (3.8), it follows that, for all n, ||εn,1|| − ||εn|| �
Ck

(||εn,1|| + ||εn||). Hence, for k sufficiently small, for all n it holds that

||εn,1|| � (1 + Ck)||εn||. (5.18)

We get similarly that

max
i

||εn,i|| � (1 + Ck)||εn||. (5.19)

This may be seen as follows: since in view of (5.6), as previously, it holds that ||εn,2|| − ||εn,1|| �
Ck

(||εn,2|| + ||εn,1||) , we obtain by (5.19) that ||εn,2|| � (1+Ck)||εn||. The general case (5.19) follows
inductively.

Recall by (5.1) and (5.3) that εn+1 = Vn+1 − Un+1 = Vn+1 − Yn,s = Vn,s − Yn,s + θn = εn,s + θn.
Therefore, by (5.19), for all n we have

||εn+1|| � (1 + Ck)||εn|| + ||θn||,

from which, by the discrete Gronwall inequality, since ε0 = 0, and the hypothesis (5.4), we conclude
that (5.17) holds. �
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30 V. A. DOUGALIS AND A. DURÁN

We now state and prove the main error estimate for our fully discrete method.

Theorem 5.4 Suppose that μ is sufficiently large, that (5.4) holds for some α � 1 and that kN is
sufficiently small. Then the fully discrete scheme (5.1) has for all n a unique solution Un such that

max
n

||Un − u(tn)|| � C(kα + N1−μ). (5.20)

Proof. Let Un be a solution of (5.1). Then

||Un − u(tn)|| � ||Un − uN(tn)|| + ||uN(tn) − u(tn)|| = ||εn|| + ||uN(tn) − u(tn)||,

and (5.20) follows from (5.18) and (3.1).
In order to prove the uniqueness of Un we have to verify the hypotheses of Lemma 4.3. Note that

it follows from (5.17), (3.8), (2.4) and our mesh condition that for all n, |Un|∞ � |εn|∞ + |uN |∞ �
CkαN1/2 + C � R1, for some constant R1, independent of k, N. In addition, for all i and n, by (2.4),
(5.6), (5.19), (5.17), and our mesh condition, we see that

|Yn,i|∞ � |εn,i|∞ + |Vn,i|∞ � CN1/2||εn,i|| + C � CN1/2||εn|| + C � CN1/2kα + C � R2

for some constant R2 independent of k and N. If R is taken as max(R1, R2), by Lemma 4.3 we have
uniqueness of Un = Yn,s if kN is sufficiently small as we have assumed. �
Remark 5.5 Since the fully discrete scheme (5.1) is written as a sequence of IMR steps, its
implementation is quite straightforward, as the attendant nonlinear systems are decoupled and may
each be solved by an iterative scheme.

Indeed, suppose that, for some n and i � 1, Yn,i−1 is known. Then if Z∗ = 1
2

(
Yn,i−1 + Yn,i

)
it

follows that Z∗ ∈ SN satisfies

Z∗ = Yn,i−1 + kbi

2
F(Z∗). (5.21)

Suppose that the hypotheses of Theorem 5.4 hold. Then Z∗ is unique, and if it is known, Yn,i may be
computed as Yn,i = 2Z∗ − Yn,i−1.

In order to approximate Z∗, consider the following simple iterative scheme. For ν = 0, 1, 2, . . ., seek
Zν ∈ SN , such that

Z0 = Yn,i−1,(
I + kbi

2
∂3

x

)
Zν+1 = Yn,i−1 − kbi

2
f (Zν)x, ν = 0, 1, 2, . . . . (5.22)

Given Zν , the next iteration Zν+1 satisfies a linear system of equations. The associated homogeneous
system clearly has only the trivial solution; hence Zν+1 is uniquely defined and its Fourier coefficients
may be readily computed. One may prove by a straightforward argument, see Dougalis & Durán (2020)
for details, that Zν converges to Z∗ as ν → ∞ in L2, and that if ν = O(| log k|) the error ||Z∗ − Zν ||
may be bounded by a constant times a sufficiently large power of k.
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6. Numerical experiments

In this section we present the results of numerical experiments we performed in order to illustrate
the convergence and stability properties and check the efficiency of the fully discrete scheme that
corresponds to the parameters (4.6). The experiments concern long-time computations since we would
like to emphasize that the high order of accuracy, the stability and symplectic character of the time-
stepping scheme make it suitable for accurately approximating long-time properties of solutions of
equations such as the KdV.

To this end we study the accuracy of the scheme in approximating the solitary-wave solution of the
IVP of the KdV, given by uc(x, t) = φc(x − ct), where c > 0 and

φc(z) = 3c sech2
(√

c

2
z

)
. (6.1)

It is well known that the solitary wave (6.1) is the uniform limit of periodic solutions of cnoidal type of
the KdV. This fact and the exponential decay of (6.1) as |z| → ∞ allow one to perform the numerical
approximation by integrating the periodic IVP of the KdV on a long enough interval (−L, L) with (6.1)
as initial condition.

The spectral method for the spatial discretization is implemented in collocation form; cf. e.g. Maday
& Quarteroni (1988). For T > 0 and an integer N � 1 the semidiscrete solution is defined as a mapping
uh : [0, T] → SN satisfying the KdV at a uniform grid of spatial collocation points xj = −L + jh, j =
0, . . . , N − 1, where h = 2L/N. The approximation uh is represented by the nodal values

Uh(t) = (uh(x0, t), . . . , uh(xN−1, t))T,

where the vector Uh satisfies the semidiscrete system

d

dt
Uh + DN

(
U2

h

2

)
+ D3

NUh = 0, 0 � t � T , (6.2)

where DN denotes the N×N Fourier pseudospectral differentiation matrix (scaled to the interval [−L, L])
and the product in the nonlinear term in (6.2) is understood in the Hadamard sense.

We mention now some properties of the ODE system (6.2) that will be used in the experiments in
the sequel. Similar arguments to those in Cano (2006) prove that (6.2) is Hamiltonian with respect to
the symplectic structure given by −DN , and the Hamiltonian is given by

Hh(U) = ||DNUn||2N − 1

3

N−1∑
j=0

(Un
j )3, (6.3)
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32 V. A. DOUGALIS AND A. DURÁN

Table 1 L2 and L∞ errors and temporal convergence rates. Solitary-wave solution (6.1) with c = 1,
T = 104, N = 4096

k L∞ error Rate L2 error Rate

2.5 × 10−2 2.4281 × 10−4 4.6054 × 10−4

1.25 × 10−2 1.5115 × 10−5 4.008 2.8661 × 10−5 4.009
6.25 × 10−3 9.3657 × 10−7 4.017 1.7761 × 10−6 4.017

for U = (U0, . . . , UN−1)
T and where ||·||N stands for the discrete L2 norm in RN . Similarly, the quantity

Ih(U) = ||U||2N (6.4)

is preserved in time by those solutions Uh(t) of (6.2) satisfying the symmetry condition

DUh(t) = Uh(t), t � 0,

where if U = (U0, . . . , UN−1)
T then DU = (UN−1, . . . , U0)

T; cf. Cano (2006).
The ODE system (6.2) is represented in the Fourier space (in order to make use of fast Fourier trans-

form techniques for computing DN), and integrated numerically in time by using the RK composition
method (4.4) corresponding to s = 3 and parameters (4.6). For the experiments below we took L = 64
and N = 4096. These values ensured that errors due to the truncation to the interval [−L, L] and
to the spatial approximation are negligible. We implemented the fully discrete method by using the
iterative scheme (5.22) for the intermediate stages (4.11). The experiments did not require more than
two iterations per stage. Errors were measured with the discrete L2 norm || · ||N , defined above, and the
L∞ norm

||U||∞ = max
0�j�N−1

|Uj|, U = (U0, . . . , UN−1)
T.

We first compare the numerical solution at final time T = 104 with the exact solution uc of speed
c = 1 for several time-step sizes. The errors in the L2 and L∞ norms are displayed in Table 1, which
shows, as expected, the fourth order of convergence of the temporal discretization.

In order to illustrate the benefits of the geometric numerical integration resulting from the additional
properties of the scheme (cf. the introduction and references therein) we include here some numerical
experiments of long-time simulation of the propagation of the solitary wave (6.1).

Figure 1 shows, in logarithmic scale, the temporal behaviour of the error in the L2 norm for several
values of the time step. The order of convergence can be checked in the figure by comparing the distance
between lines corresponding to consecutive time steps. The observed linear in time growth of the error
for larger values of t is expected for this type of conservative scheme; cf. e.g. de Frutos & Sanz-Serna
(1997).

The preservation of invariants is illustrated in Fig. 2. If Un = (Un
0, . . . , Un

N−1)
T denotes the

approximation to the solution of (6.2) at t = tn = nk, Fig. 2 shows the temporal behaviour of the
errors I(Un) − I(U0), H(Un) − H(U0), where

I(U) = hIh(U), H(U) = hHh(U),
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A HIGH-ORDER FULLY DISCRETE SCHEME FOR THE KDV 33

Fig. 1. L2 Error w.r.t the solitary wave (6.1) as function of time (log-log scale).

Fig. 2. Approximation to the solitary wave (6.1). Errors (a) I(Un) − I(U0) and (b) H(Un) − H(U0) as functions of time;
k = 1.25 × 10−2.

and Ih, Hh are given by (6.4) and (6.3), respectively. The preservation of H is a consequence of the
symplectic character of the time integration and the interpretation of the solitary wave solution (6.1) as
relative equilibrium; cf. Cano (2006); Frutos & Sanz-Serna (1997).

The conservative character of the scheme also influences the approximation of the amplitude and
phase of the solitary wave. Figure 3 shows the temporal evolution of the error in the amplitude and in
the phase, computed in the usual way; cf. e.g. Dougalis et al. (2019). The growth of the error of the
speed is similar to that of the amplitude shown in Fig. 3(a). On the other hand, the linear growth of the
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34 V. A. DOUGALIS AND A. DURÁN

Fig. 3. Approximation to the solitary wave (6.1). Temporal evolution of the error in amplitude (a) and phase (b).

phase error, observed in Fig. 3(b), is responsible for similar behaviour of the leading term of the global
error shown in Fig. 1.

It is to be noted that taking a larger time-step size k for a fixed N just increases the phase error in
amplitude as is expected from the L2-conservation of the scheme. The restriction on kN mentioned in the
hypotheses of the convergence Theorem 5.4 seems to be a theoretical artefact of the uniqueness proof
(see Lemma 4.3) and not a stability restriction.

7. Conclusions and extensions

In this paper we analyzed a high-order accurate fully discrete scheme for the periodic IVP for the KdV
equation. The problem was discretized in space by the standard Fourier–Galerkin spectral method. For
the temporal discretization we used a diagonally implicit RK scheme of composition type with s stages;
cf. Hairer et al. (2004), Yoshida (1990), effected by s steps of the IMR method. This type of scheme is
not A-stable, but they are symplectic; hence they are unconditionally L2-conservative for the periodic
IVP and semidiscretization at hand. They are also easy to implement. We proved that the local temporal
error of the scheme with s = 3 stages applied to the semidiscrete equations is O(k5) in L2, where k is
the time step, under the hypothesis that the solution of the periodic IVP belongs to the periodic Sobolev
space Hμ for μ sufficiently large and that k = O(N−1), where N is the order of the trigonometric
polynomials used in the semidiscretization. We also proved that if kN is sufficiently small the fully
discrete scheme has a unique solution and satisfies an L2 error estimate of O(kα + N1−μ), provided
the local temporal error is O(kα+1) in L2 and if μ is sufficiently large. So, for the particular scheme
with s = 3 stages (first used in computations for solving the KdV in Frutos & Sanz-Serna, 1992), the
resulting error estimate is O(k4 + N1−μ). These results are illustrated with some numerical experiments
involving the simulation of the solitary wave solution of the KdV equation.

The RK scheme considered in this paper may be used to discretize, in the temporal variable,
other conservative IVPs for PDEs that model one-way propagation of nonlinear dispersive waves. For
example, in Dougalis et al. (2019), the three-stage, fourth-order accurate scheme, coupled with a spectral
discretization in space, was used for approximating the solution of the periodic IVP for the generalized
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Benjamin equation. This nonlinear PDE, introduced in Chen & Bona (1998) as a generalization of the
KdV, the Benjamin–Ono and the Benjamin equation, is of the form

ut − Lux + f (u)x = 0, (7.1)

where L is the linear, nonlocal, pseudodifferential operator with Fourier symbol

L̂u(ξ) = l(ξ )̂u(ξ) = (δ|ξ |2m − γ |ξ |2r )̂u(ξ), ξ ∈ R,

where m � 1 is an integer, 0 � r < m, γ � 0, δ > 0, û(ξ) denotes the Fourier transform of u at ξ and
the nonlinear term f is given by

f (u) = uq+1

q + 1
,

with q � 1 integer. The Cauchy problem for (7.1) has been shown to be locally well posed in Hs(R) for
s � 1; see e.g. Linares & Scialom (2005), and globally well posed if q = 2 or 3. The equation possesses
solitary-wave solutions, cf. Chen & Bona (1998); the numerical study in Dougalis et al. (2019) was
focused on describing their generation, interactions and stability. In the case of the periodic IVP for
(7.1) the standard Fourier–Galerkin semidiscrete approximation uN may be shown to possess an L2

error estimate of the form ||u − uN || � CN1−μ if u ∈ Hμ, μ � 5/2, and satisfy (3.8) if μ is sufficiently
large. If now we define, for v ∈ SN , F(v) = Lvx − PNf (v)x, so that (F(v), v) = 0 for v ∈ SN , it
may be seen that the proof of existence of solutions and of the L2-conservation property of the fully
discrete scheme proceed as in Section 4.3. The study of the local temporal error of the scheme with
s = 3 stages may be along the lines of Proposition 4.4. An analog of Theorem 5.4 holds as well. It may
be proved that the solution of the s-stage, fully discrete scheme is unique and satisfies (5.20) mutatis
mutandis, under the assumptions that the solution of the periodic IVP is sufficiently smooth, and that

kN is sufficiently small if q = 1, 2 or 3, and kN
q−1

2 is sufficiently small if q � 4. The general plan of
the proof is that of Theorem 5.4 but, as expected, considerable technical complications enter the picture
due to the generalized nonlinear term.
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